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Abstract. Web applications have emerged as the primary means of ac-
cess to vital and sensitive services such as online payment systems and
databases storing personally identifiable information. Unfortunately, the
need for ubiquitous and often anonymous access exposes web servers to
adversaries. Indeed, network-borne zero-day attacks pose a critical and
widespread threat to web servers that cannot be mitigated by the use
of signature-based intrusion detection systems. To detect previously un-
seen attacks, we correlate web requests containing user submitted content
across multiple web servers that is deemed abnormal by local Content
Anomaly Detection (CAD) sensors. The cross-site information exchange
happens in real-time leveraging privacy preserving data structures. We
filter out high entropy and rarely seen legitimate requests reducing the
amount of data and time an operator has to spend sifting through alerts.
Our results come from a fully working prototype using eleven weeks of
real-world data from production web servers. During that period, we
identify at least three application-specific attacks not belonging to an
existing class of web attacks as well as a wide-range of traditional classes
of attacks including SQL injection, directory traversal, and code inclusion
without using human specified knowledge or input.

Keywords: Intrusion Detection, Web Security, Anomaly Detection, At-
tacks, Defenses, Collaborative Security

1 Introduction

Web applications are the primary means of access to the majority of popular
Internet services including commerce, search, and information retrieval. Indeed,
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online web portals have become a crucial part of our everyday activities with
usage ranging from bank transactions and access to web email to social network-
ing, entertainment, and news. However, this reliance on ubiquitous and, in most
cases, anonymous access has turned web services into prime targets for attacks
of different levels of sophistication. Newly crafted attacks, often termed “zero-
day,” pose a hard to address challenge compromising thousands of web servers
before signature-based defenses are able to recognize them [31]. Although recent
research indicates that Anomaly Detection (AD) sensors can detect a class of
zero-day attacks, currently, AD systems experience limitations which prevent
them from becoming a practical intrusion detection tool.

In this paper, we propose a new defense framework where Content Anomaly
Detection (CAD) sensors, rather than traditional IDS systems, share content
alerts with the aim of detecting wide-spread, zero-day attacks. Contrary to pure
alert correlation and fusion [29], we exchange abnormal content across sites as a
means to reduce the inherent high false positive rate of local CAD systems. We
leverage local CAD sensors to generate an accurate, reliable alert stream where
false positives are consumed through a process of alert validation; false positives
rarely make their way in front of a human operator. We implement information
exchange mechanisms enabling the collaborative detection of attacks across ad-
ministrative domains. We believe such collaboration, if done in a controlled and
privacy preserving manner, will significantly elevate costs for attackers at a low
cost for defenders. Our system has a number of core capabilities: high-quality,
verified alert streams that focus on detecting the presence of and learn from zero-
day attacks and previously unseen attack instances; scalable alert processing; and
modular multi-stage correlation. Figure 1 illustrates the overall architecture.

Intuitively, inbound web requests fall into three categories: legitimate low
entropy requests, legitimate high entropy or rarely seen requests, and malicious
requests. Legitimate low entropy requests are the most accurately modeled by
CAD systems. Therefore, each individual CAD sensor will label previously seen,
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low entropy requests as normal and will not exchange them with other CAD
sensors. Legitimate high entropy or rare requests will often show up as abnormal
to the local CAD sensor and will therefore be exchanged. Since remote sites
do not have similar content due to the high entropy nature or rarity of these
requests, no matches will be identified, and thus no alerts will be raised. On
the other hand, malicious requests will appear as abnormal in many local CAD
models. Therefore, when exchanged, they will match other sites and alerts will
be raised. The more sites participating the better the coverage and the faster
the response to wide-spread web attacks. Space and structural constraints due
to HTTP protocol and specific web application parsing limit the ability for an
attacker to fully exploit polymorphism techniques, analyzed in [22], so each zero-
day attack should exhibit similar content across the attacked web services.

In our experimental evaluation, we use eleven weeks of traffic captured from
real-world, production web servers located in different physical and network
locations. We do not inject any artificial or additional data. All attacks and
statistics described are observed on live networks. We measured the detection
and false positive changes from adding an additional server in the sharing system.
Most interestingly, we confirm the theory presented by [4] that false positives
tend to repeat across sites. Additionally, as most of the false positives occur
early and often, we show that CAD systems can benefit greatly from a reasonable
cross-site training period. This reduces the number of the false positives to 0.03%
of all the normalized web requests. Furthermore, we quantify the similarity of
the produced CAD models from each site over long periods of time. Using these
models we provide an analysis of how aggregate normal and abnormal data
flows compare between sites and change over time. Moreover, we furnish results
regarding the threshold of the matching content and the effects of increasing the
set of participating collaborating sites. Finally, we are the first to present a real-
world study of the average number of alerts a human operator has to process per
day. Moreover, we show that the alert sharing and correlation of alerts reduces
the human workload by at least an order of magnitude.

2 Related Work

Anomaly Detection techniques have been employed in the past with promising
results. Alexsander Lazarevic et al. compares several AD systems in Network
Intrusion Detection [12]. For our analysis, we use the STAND [5] method and
Anagram [30] CAD sensor as our base CAD system. The STAND process shows
improved results for CAD sensors by introducing a sanitization phase to scrub
training data. Automated sensor parameter tuning has been shown to work well
with STAND in [6]. Furthermore, the authors in [24] observe that replacing
outdated CAD models with newer models helps improve the performance of the
sensor as the newer models accurately represent the changes in network usage
over time. Similarly, in [30] the authors proposed a local shadow server where
the AD was used as a fiter to perform dynamic execution of suspicious data.
In all of the above works, due to limited resources within a single domain, a
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global picture of the network attack is never examined. Furthermore, Intrusion
Detection Systems that leverage machine learning techniques suffer from well-
known limitations [20]. In the past, there has been a lot of criticism for Anomaly
Detection techniques [25] especially focusing on the high volume of the false
positives they generate. With our work we dispel some of this criticism and we
show that we can improve the performance of CAD systems by sharing content
information across sites and correlating the content alerts.

Initially, Distributed Intrusion Detection Systems (DIDS) dealt with data ag-
gregated across several systems and analyzed them at a central location within a
single organization. EMERALD [23] and GrIDS [18] are examples of these early
scalable DIDS. Recent DIDS systems dealt with collaborative intrusion detec-
tion systems across organizations. Kriigel et al. developed a scalable peer-to-peer
DIDS, Quicksand [9, 10] and showed that no more messages than twice the num-
ber of events are generated to detect an attack in progress. DShield [27] is a
collaborative alert log correlation system. Volunteers provide DShield with their
logs where they are centrally correlated and an early warning system provides
“top 10”-style reports and blacklists to the public gratis. Our work differs in that
we rely on the actual user submitted content of the web request rather than on
source IP. More general mechanisms for node “cooperation” during attacks are
described in [2,1].

DOMINO [33], a closely related DIDS, is an overlay network that distributes
alert information based on hash of the source IP address. DShield logs are used to
measure the information gain. DOMINO differs from our technique as it does not
use AD to generate alerts. DaCID [7] is another collaborative intrusion detection
system based on the Dempster Shafer theory of evidence of fusing data. Another
DIDS with a decentralized analyzer is described by authors in [34].

Centralized and decentralized alert correlation techniques have been studied
in the past. The authors in [26] introduce a hierarchical alert correlation archi-
tecture. In addition to scalability in a DIDS, privacy preservation of data send
across organizations is a concern. Privacy preservation techniques that do not
affect the correlation results have been studied. A privacy preserving alert corre-
lation technique, also based on the hierarchical architecture [32] scrubs the alert
strings based on entropy. We expand Worminator [15] a privacy preserving alert
exchange mechanism based on Bloom filters, which had previously been used for
IP alerts. Furthermore, Carrie Gates et al. [8] used a distributed sensor system
to detect network scans albeit showing limited success. Finally, there has been
extensive work in signature-based intrusion detection schemes [19] [16]. These
systems make use of packet payload identification techniques that are based on
string and regular expression matching for NIDS [28] [11] [14]. This type of
matching is only useful against attacks for which some pattern is already known.



Cross-domain Collaborative Anomaly Detection: So Far Yet So Close 5

GET /cglgraphics_bibtex. php?id=-3109%20UNI ON%20SELECT %20CHAR(49)%
2CHAR(52)%2BCHAR(55)%2BCHAR(101)%2BCHAR (102)%2BCHAR(49)%2BCHAR
(54)%2BCHAR(53)%2BCHAR(97)%2BCHAR(56)--115 HTTP/1 .0

.

id=- union select char()+char()+char()+char()+char()+char()+char()+char()+char()+char()--

Fig. 2. A normalization example from a confirmed attack. The first line of the original
GET request is shown. We use the output of the normalization function for all future
operations.

3 System Evaluation

3.1 Data Sets

We collected contiguous eight weeks of traffic between October and Novem-
ber 2010 of all incoming HTTP requests to two popular university web servers:
www. ¢s. columbia. edu and www. gmu. edu. To measure the effects of scaling to mul-
tiple sites, we added a third collaborating server, www.cs.gmu.edu. This resulted
in an additional three weeks in December 2010 of data from all three servers.
The second data set allows us to analyze the effects of an additional web site to
the overall detection rate and network load. To that end, we are able to show the
change in the amount of alert parsing a human operator would have to deal with
in a real-world setting and analyze models of web server request content. All
attacks detected are actual attacks coming from the internet to our web servers
and are confirmed independently using either IDS signatures[17,16] developed
weeks after the actual attacks occurred and manual inspection when such sig-
natures were not available. However, that does not preclude false negatives that
could have been missed by both signature-based IDS and our approach. The
number of processed packets across all of our datasets are over 180 million in-
coming HTTP packets. Only 4 million of them are deemed as suspicious because
our normalization process drops simple web requests with no user submitted
variables.

3.2 Normalized Content

Our system inspects normalized content rather than packet header attributes
such as frequency or source IP address. We process all HTTP GET requests
and we extract all user-defined content (i.e. user specified parameters) from the
URI across all request packets. Putting aside serious HT'TP protocol or server
flaws, the user specified argument string appears to be primary source of web
attacks. We use these user-specified argument strings to derive requests that are
deemed abnormal and can be used for correlating data across servers serving dif-
ferent pages. Additionally, we normalize these strings in order to more accurately
compare them [4,21]. We also decode any hex-encoded characters to identify po-
tential encoding and polymorphic attacks. Any numeric characters are inspected
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and but not retained in the normality model to prevent overtraining from legit-
imate but high entropy requests. Also, we convert all the letters to lowercase to
allow accurate comparisons and drop content less than five characters long to
avoid modeling issues. Figure 2 illustrates this process.

Moreover, we perform tests analyzing POST request data as well. POST re-
quests are approximately 0.34% of the total requests. However, our experiments
show that the current CAD sensor does not accurately train with data that ex-
hibits large entropy typical in most POST requests. We leave the development
of a new CAD sensor that can accurately model POST requests for future work
and we focus on analyzing GET requests, which dominate the web traffic we
observe (99.7%).

3.3 Content Anomaly Detector and Models

In cross-site content correlation, each site builds a local model of its incoming
requests using a Content Anomaly Detection (CAD) sensor. In our experiments,
we leverage the STAND [5] optimizations of the Anagram [30] CAD sensor al-
though any CAD sensor with a high detection rate could be used with our
approach. However, we apply the CAD sensors on normalized input instead of
full packet content as they originally operated on in order to obtain more accu-
rate results. Moreover, we fully utilize all of the automatic calibration described
in [6] including the abnormal model exchange to exclude repeated attacks from
poisoning the training data. The Anagram normal models are, as described in
[30], Bloom filters [3] containing the n-gram representation of packets voted as
normal by the STAND micro-models. A Bloom filter is a one-way data structure
where an item is added by taking multiple hashes and setting those indices of a
bit array to one. This provides space efficiency and incredible speed suitable for
high speed networks since adding an element or checking if one is already present
are constant time operations. Each normalized content is spilt into 5-gram sec-
tions as in [5] using a sliding window of five characters. See Figure 3(a) for an
example. Requests can then be easily tested as to how many of the n-grams
from their argument string are present in the model. N-grams give us a granu-
lar view of content allowing partial matches as opposed to hashing full content
while maintaining enough structure of the content to be much more accurate
than character frequency models. Previous work [15] calibrated Bloom filters
to have an almost non-existent false positive rate and shows that extracting the
content is infeasible, which allows for the preservation of privacy. The models
we use are 22® bits long and compress to about 10-80KB, a size that is easily
exchanged as needed. The Anagram models test weather new content is similar
to previous content by comparing how many of the n-grams exist in the model
already.

3.4 Alert Exchange

We leverage the initial work of Worminator [15], an alert exchange system that
we heavily extend to meet the needs of our system. A content exchange client
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testslt”ng Hash Functions

tests, estst, ststr, tstri, strin, tring ...0010000100000000000010000...

(a) A string broken into n-grams. (b) N-grams added to the Bloom Filter.

Fig. 3. n-grams and Bloom Filter

instance runs at each site and receives content alerts and abnormal models. We
use a common format so that any CAD sensor can easily be adapted to work with
the exchange system. In our case, each site’s local STAND/Anagram sensor sends
the content alert packet to the Worminator client as soon as it tests a packet
and finds it abnormal. The Worminator client then encodes the content alerts
as Bloom filters if at a remote site and then sends the content alerts and any
abnormal models through a secure channel over the internet to the Worminator
server. The bandwidth usage with this alert exchange turns out to be minimal
since we only look at GET requests with argument strings and then further
narrow down content by only exchanging the abnormal content alerts. It turns
out that each alert encoded in a Bloom filter takes around 2KB to transmit
on average. For our eight week experiment this translates into an average of
0.9Kb/sec bandwidth needed per site for a real time system, leaving plenty of
room to scale up to a large set of collaborators before running into bandwidth
constraints. A back-end process on the server performs the correlation of content
alerts by comparing the local unencoded alerts to the Bloom filter representation
of alerts from remote sites. We perform all our experiments faster than real time
while exchanging encoded content alerts securely over the internet.

By exchanging content alerts from remote sites only in their Bloom filter form
our system can protect the privacy of legitimate web requests. During the Bloom
filter correlation process only the fact that a match occurs can be determined
not any specific content. If a match occurs then this is a piece of content that a
site has already seen coming to their server, so the only new information revealed
is that the other site also had this content incoming. In this way we can gain
information about the content we have in common, which most likely represents
attacks while keeping the remaining content private in case there is sensitive
information in the web requests.

3.5 Scaling to Multiple Sites

Our initial system deployment consists of three web servers. However, to be
even more effective at quickly detecting widespread attacks, we envision a larger
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model1 ...00{10000f1100000000000010000...
model2 00/10000100000010000000001 ...

Fig. 4. Each model is stored in a Bloom filter, we count the number of bits set in
common and then divide by the total number of bits set.

scale system deployment consisting of many collaborating sensors monitoring
servers positioned in different locations on the Internet. For the system to scale
up to include more sites, the correlation and alert comparison process has to
scale accordingly. If we consider the pair-wise comparison of local alerts with
each remote alert, it appears to grow asymptotically: O(n?). This could turn
can quickly become a problem; however, we can bound this total computation
under a constant K by varying the amount of time duplicate alerts are stored
in the system. In practice, we did not observe problems during our experiments
even keeping eight weeks of data for correlation because indexing of alerts can
be done using existing computationally efficient algorithm. Moreover, we only
have to operate on unique alerts which are much smaller in size. Additionally,
if a longer time frame is desirable, we can employ compression to the remote
site alerts into a small number of Bloom filters by trading-off some accuracy
and turn the scaling into order O(n) allowing many more alerts to be stored
before running into any scaling issues. In that case, each time a new site joins
the collaboration our local site must compare its alerts to the Bloom filters of
those from the new site. Therefore, the overall computational complexity scales
linearly with the number of remote sites participating. Since we can bound the
local comparison with a remote site under K, the total computational cost scales
linearly as well, and each site has optional tradeoffs in time alerts are kept and
Bloom filter aggregation if local resources are limited. In practice, based on
our numbers even with an unoptimized prototype we could scale to around 100
similar servers operating in real time and comparing all alerts over a few weeks’
time. If additional utility is derived from having even more participating servers,
then optimizing the code, time alerts are kept, and trading off accuracy in Bloom
filter aggregation should easily allow additional magnitudes of scaling.

4 Model Comparison

Each normal model is a Bloom filter with all the n-grams of all normalized
requests. By comparing Bloom filters as bit-arrays, we are able to estimate how
much content models share. We test how many set bits each pair of models have
in common and divide by the total number of set bits to get a percentage of
set bits in common. The generated Bloom filters are quite sparse; therefore, the
overlap of bits between content should be small as observed in Figure 4. We used
this model comparison metric to compute the server distinctness and change in
normal flows over time, whether servers in the same domain share additional
commonality, and how much abnormal data we see in common across servers.
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Fig. 5. Model comparison: the higher the figure the higher percentage of set bits the
models had in common. The top and bottom quadrant are intra-site comparisons.
The sides represent the comparison across-sites which, as expected, appear to have
differences.

We first use this comparison to observe the differences in models from distinct
sites with each other. We took every fifth model from our runs and compared the
ones from the same runs to their counter parts at the other location. For normal
models in our eight week run, we see on average 3.00% of bits set in common. We
compare this to the over 40% of bits in common on average comparing models
at the same site (Table 1). There is some overlap indicating that not filtering
out normal content before performing the content alert correlation could lead
to increased false positives. While we do not have enough sites to calculate how
important this distinctness is to the accuracy achieved via correlation of alerts,
we do confirm that at least for the distinct web servers our correlation process
achieves effective results. See Figure 5 for a plot of the model comparison results.
Models across long periods seem to keep a core of commonality but differ more
than models close together in time. A product of this gradual change appears
even with only five weeks difference in our datasets. Averaged over eight weeks
both sites keep over 40% of bits in common while in the three week run this
is closer to 50%. This reinforces existing work [5] showing that traffic patterns
do evolve over time indicating that updating normal models periodically should
increase effectiveness.
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Normal|Abnormal
Comparison Models Models
Oct.-Nov.| Oct.-Nov.

Columbia CS 41.45% 52.69%
GMU Main 41.82% 38.51%
Cross site 3.00% 10.14%

Table 1. Commonality of normal and abnormal models.

Comparison - . .

Normal Models Columbia CS |GMU Main|GMU CS
Columbia CS 44.89% 3.89% 4.08%
GMU Main 48.39% 2.41%
GMU CS 56.80%
Comparison -

Abnormal Models

Columbia CS 53.05% 9.46% 9.32%
GMU Main 48.39% 8.55%
GMU CS 70.77%

Table 2. Comparison of abnormal and normal models between three sites. (Percentages
of set bits in common shown.)

With our three week data set, we also have an additional web server from
one administrative domain. With two web servers from the same Autonomous
System we compare them to each other to see if our work has the potential to
help a large organization that may have many separate web servers. See Table 2
for empirical details. Interestingly, we find no more commonality among normal
models in the same domain than across domains. The fact that abnormal models
at the these web servers share about as much in common with the server from
another domain as each other suggests that attackers likely do not specifically
target similar IP ranges with the same attacks. This suggests that web server
administration and location may not play a factor in the effectiveness of using a
particular web server for collaboration. An organization with sufficiently distinct
web servers might be able to achieve good results without having to overcome
the obstacles related to exchanging data between organizations.

The abnormal models from different sites show some similarity with close to
10% set bits matching, while models from the same site show more similarity. The
high amount of common abnormal data between models at the same site may
be influenced by legitimate requests classified as abnormal. More interesting is
the commonality across sites. These shared bits most likely represent the attack
data that we have found in common. There is an irregularity where some of the
abnormal models are empty and could not be compared. We remove these empty
models before computing the averages to avoid divide by zero issues. Multiple
runs with the data confirm the strange behavior which can be contributed to a
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cx=:cjygsheid&cof=forid:&ie=utf-&q=machine+learning+seminar&sa=go
o=-&id=&s=uhkf&k=hsbihtpzbrxvgi&c=kg

Table 3. Normalized examples of legitimate abnormal data seen at only one site.

faqg=" and char()+user+char()= and 7=’
id=" and char()+user+char()= and 7=’

Table 4. Normalized example of abnormal data one from each site that match.

convergence of the STAND micromodels voted to include all the data from that
time period into the normal models leaving the abnormal models empty.
Overall, our model comparisons provide quite interesting results. We find that
each site has normal traffic flows that are distinct although changing somewhat
over long periods of time. We see no major distinctions in comparison of same
domain servers versus servers on separate domains, which indicates that our
system could be deployed by a sufficiently large organization to protect itself
without having to rely on outside collaborators. Finally, our measurements of
abnormal data validate the idea that separate servers will receive similar attacks.

5 Correlation Results

The correlation process compares each unique content alert from the local sen-
sors against the Bloom filter representation of each unique content alert from
other sites. If at least 80% of the n-grams match the Bloom filter and the length
of content before encoding, which is also exchanged, is within 80% of the raw con-
tent then we note it as a match. These matches are what the system identifies as
attacks. Once these attacks are identified, the Bloom filter representation could
be sent out to any additional participating servers and future occurrences could
be blocked. In order to confirm our correlation results with the Bloom filters, we
also perform an offline correlation of results using string edit distance [13] with
a threshold of two changes per ten characters. We cluster together any pair of
alerts from either site with less than this threshold. If a cluster contains alerts
from more than one site, then it represents a common content alert. With only
minor differences, these methods give us similar performance confirming that us-
ing privacy preserving Bloom filters provides an accurate and computationally
efficient correlation. To simulate a production deployment, we use the Bloom
filter comparison as our default correlation technique and use the string edit
distance clustering only to facilitate manual inspection as needed, especially at
a single site. See Table 3 for examples of true negatives where legitimate requests
are not alerted on since each is seen at just one site. Table 4 shows an example
of the same attack with slight variation being matched between two sites.

We run our experiments correlating the abnormal traffic between sites from
our October-November eight week dataset and our December three week dataset
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Oct-Nov Dec.| Gained by Dec.
Oct-Nov with| Dec. with adding|Common to
training training|third server| Three Sites

Duration of testing® 54 days| 47 days|19 days| 12 days
Total false positives 46653 362 40364 1031 1006 0
Unique false positives 64 13 48 5 3 0
Total true positives 19478 7599 7404 2805 186 322
Unique true positives 351 263 186 89 9 8

Table 5. Main experiment results considering a match to be at least 80% of n-grams
being in a Bloom filter. Note that the 5th column results are included in column 4.
Also, note that due to self training time for the CAD sensor actual time spent testing
data is about two days less.

and then manually classify the results since ground truth is not known. We depict
the system’s alerts in Table 5. As we predicted in [4], most of the false positives
repeat themselves early and often so we also show the results assuming a naive
one week training period which labels everything seen in that week and then
ignores it. While this training technique could certainly be improved upon, we
choose to show this example in order to better show the effectiveness of the
approach as a whole and to preclude any optimizations that might turn out to
be dataset specific. Such a training period provides a key service in that most
false positives are either due to a client adding additional parameters regardless
of web server, such as with certain browser add-ons, or servers both hosting the
same application with low enough traffic throughput that it fails to be included
in a normal model. Many of these cases tend to be rare enough to not be modeled
but repeat often enough that a training period will identify them and prevent
an operator from having to deal with large volumes of false positives. Certainly
with such a naive automated approach, attacks will not be detected during this
training period, but after this period we end up with a large benefit in terms of
few false positives with little negative beyond the single week of vulnerability.
Any attacks seen during training that are then ignored in the future would have
already compromised the system so we do not give an attacker an advantage
going forward. In fact this training period serves an operator well in that many
of the high volume attacks that are left over “background radiation” will be
seen in this training period and thus not have to be categorized in the future.
Adding an additional web server in our last experiment provides a glimpse at
how broadening the scope of collaboration to a larger network of web servers
can help us realize a high detection rate.

Let us now analyze how accurate our system is. The false positive rate is
relatively easy to compute. We manually classify the unique alerts and then
count the total occurrences of each. With regard to the number of requests that
pass through the normalization process the false positive rate is 0.03%. If you
calculate it based on the total incoming requests then it is much less. The true
positive rate or detection rate is much harder to accurately measure since we have
no ground truth. Recall, we are trying to detect widespread attacks and leave the
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mosconfig_absolute_path=http://phamsight.com/docs/images/head??
config[ppa_root_path]=http://phamsight.com/docs/images/head??
option=com_gcalendar&controller=../../../../..[..[..[..[..[..[..]..]..] ../ ../ proc/self/environT
id=" and user=-

id=-.4-union+select+-—
command=createfolder&type=image&currentfolder=/fck.asp&newfoldername=test&uuid=
option=com_user&view=reset&layout=confirm

Table 6. Normalized examples of actual attacks seen at multiple sites.

goal of detecting attacks targeted at a single site to other security methods in
order to better leverage collaboration. With this in mind, there exists two places
where a widespread attack could be missed. An attack could arrive at multiple
sites but not be detected as abnormal by the one of the local CAD sensors and
therefore, never be exchanged with other sites. The other possibility is that an
attack could be abnormal at both sites but different enough that the correlation
method fails to properly match it.

In the first case where a local CAD sensor fails to identify the attack as
abnormal, we have a better chance to estimate our accuracy. Most CAD sensors
are vulnerable to mimicry attacks where an attacker makes the attack seem like
normal data by padding the malicious data in such a way as to fool the sensor.
We can mitigate this by deploying very different sensors to each site, which while
individually vulnerable to a specific padding method as a whole are very difficult
to bypass. In this way an attacker might bypass some sites, but as the attack is
widespread eventually two of the CAD sensors that the attacker is not prepared
for can detect the attack and broadcast a signature out to the rest of the sites.

In the latter scenario, we have to rely heavily on the vulnerable web applica-
tions having some structure to what input they accept so that attacks exploiting
the same vulnerability will be forced to appear similar. We can certainly loosen
correlation thresholds as seen in Table 8 as well as come up with more correlation
methods in the future. In practice, this is where the lack of ground truth hinders
a comprehensive review of our performance. As far as we can tell, between the
structure imposed by having to exploit a vulnerability with HT'TP parameters,
lower correlation thresholds, and finding additional attributes for correlation we
should have a good head start on attackers in this arms race. At the very least,
our layer of security will make it a race instead of just forfeiting to attackers
immediately once a vulnerability is found. Without ground truth, we cannot be
sure that we detect all widespread attacks. We have seen no indication in our
data that attackers are using any of the above evasion techniques yet, so we be-
lieve that our system will provide an effective barrier, one which we can continue
to strengthen using the above approaches.

3 Due to equipment outages approximately three hours of data is missing from the
Oct.-Nov. www.cs.columbia.edu dataset and less than 0.5% of the Dec. dataset ab-
normal data totals are missing.
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Table 7. Normalized examples of false positives seen at multiple sites.

We detect a broad range of widespread attacks, with some examples shown
in Table 6. Common classes of attacks show up such as code inclusion, directory
traversal, and SQL injection. Our system faithfully detects any wide spread
variants of these attacks, some of which might evade certain signature systems;
however, the novel attack detection our system provides lies with the last two
examples shown. These two attacks are attempting to exploit application specific
vulnerabilities, one attacking an in-browser text editor and the other a forum
system. Since attacks such as these resemble the format of legitimate requests
and lack any distinct attribute that must be present to be effective, existing
defenses cannot defend against zero-day attacks of this class. The fact that our
system caught these in the wild bodes well for its performance when encountering
new widespread zero-day attacks.

An examination of the false positives explains the repeated nature and spo-
radic occurrences of new false positives. See Table 7 for some examples of normal-
ized false positives. All the false positives fall into one of two broad categories:
rare browser specific requests or rarely used web applications installed on two
or more collaborating servers. For example the most common false positive we
see is an Internet Explorer browser plug-in for Microsoft Office which sends a
GET request to the web server regardless of user intent. The use of this plug-in
is rare enough that the request shows up as abnormal at all sites. As for server
side applications, we see most of the unique false positives relating to the ad-
ministrative functions of isolated Word Press blogs which see so little use that
the requests stand out as abnormal. New false positives will continue to occur in
small numbers as web servers and browsers evolve over time (less than one per
three days on average during our eight week run). We believe that identifying
these few rare occurrences is quite manageable for operators. This task gets eas-
ier since as the number of collaborators grow so do the resources for the minimal
manual inspection needed to identify these isolated occurrences.

Adding a third web server, www.cs.gmu.edu, to the collaboration shows that
additional web servers help us to identify more attacks and allows some basic
insight into what types of web servers might be best grouped together for collab-
oration. Assuming our training method, adding this third server as a collaborat-
ing server exchanging data with www.cs.columbia.edu allows us to detect 11.25%
more unique attacks than just correlating alerts between www.cs.columbia.edu
and www.gmu.edu. This increase over the 80 unique attacks we detect without
it, supports the need for adding substantial numbers of collaborators to increase
the detection rate. Unfortunately this new collaborating server also introduces
false positives that we do not see in previous experiments. We expect as with
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Oct-Nov Dec.| Gained by Dec.

Oct-Nov with| Dec. with adding|Common to

training training|third server| Three Sites

Total false positives 47605 439(41845 1017 4 0
Unique false positives 7 23 55 5 1 0
Total true positives 25042 10168| 9594 3272 254 293
Unique true positives 488 362 221 109 10 8

Table 8. Experimental results considering a match to be at least 60% of n-grams to
be in a Bloom filter.

previous false positives that future experiments will most likely repeat these with
few new additions. An offline correlation using edit distance shows both GMU
web servers having a number of attacks in common as well. This supports an
idea that collaborating with distinct web servers could be as useful as collab-
orating across sites. False positives seem to be a function of rarely used web
services located at each server, so servers hosting only a few clearly defined and
well used services may give substantially better results.

This additional web server also provides the opportunity to require alerts
to be seen by at least three sites before reporting them as attacks. While this
proposition is hard to accurately evaluate with only one data set and just three
servers, of which www.cs.gmu.edu experiences much lower traffic volumes, a
couple interesting results stand out. As expected, both false positives and true
positives drop off significantly. We see no false positives after the training period.
This shows that for at least our data sets all of the server-side services that
cause false positives drop out once we require three web servers to have the
data in common. If this continues to be the case as more servers are added,
then only reporting attacks that target three or more servers could solve most of
the false positive issues. While requiring three servers to confirm an attack does
yield less true positives, the ones it does detect are quite widespread and if the
collaboration is expanded, the detection should increase greatly. This method,
while scaling in detection rate more slowly than only requiring two servers to
confirm attacks, could be a much more effective option to keep false positives
low once enough servers collaborate.

We calculate the implications of changing the threshold for matching two
alerts. Increasing the threshold past 80% to require perfect or almost perfect
matches fails to help in reducing the false positives, since at this threshold almost
all of the false positives are exact matches so even requiring all n-grams to match
a Bloom filter exactly does not help. Reducing the threshold to allow more loose
matches does show a trade off in increased detection of attacks at the expense
of additional false positives. By only requiring 60% of n-grams from one alert
to match the Bloom filter representation of another site’s alert, we can expect
to capture attacks with significantly more variance such as similar payloads
targeting different web applications. See experiment details in Table 8. While
at first, the results from a lower threshold appear quite good in terms of raw
numbers of alerts, looking at only the new unique alerts which human operators
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Fig. 6. Time gap between alerts at collaborating sites.

Time Gap Across Site CU, Across Site|Across Site CU |Across Site GMU
in Minutes|GMU and GMU CS|CU and GMU| and GMU CS and GMU CS

Min 0.23 1.48 7.52 0.23
Max 17501.07 25911.00 20589.02 24262.13
Average 4579.85 5477.35 7048.07 6489.08
Std. Dev. 5250.04 6173.61 7038.27 7634.13

Table 9. Time gap statistics across three sites

have to classify tells a more balanced story. Going from an 80% threshold to
60% for our eight week run with a training period increases the detection of new
unique attacks by 37.6%, while increasing the newly seen unique false positives
by 76.9%. In the three week run, the lower threshold adds no new unique false
positives pointing to the need for threshold optimization once the system scales
up. In fact, it lowers the utility of adding a new server since the existing ones
detect additional attacks without it. However, as the number of web servers
collaborating increases, this matching threshold along with the number of servers
required to share an alert before reporting it as an attack should be key settings
in order to optimize the system as they both key methods in this approach for
controlling the false positive rate.

From the offline generated alert clusters, we conduct a temporal study of the
alerts seen across the three servers. Firstly, we look at the time gap between alerts
across sites. We compute the pairwise time gap of common alert clusters across
the three servers. Additionally, we calculate the minimum time gap between alert
clusters common to all of the three servers. Table 9 summarizes the minimum,
maximum, average and standard deviations of the time gaps for the above cases.
A better visual representation of the common alert clusters across all of the
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Fig. 7. Number of new unlabeled unique alerts per day that a human operator would
have to parse. The large number of false positives from AD system is reduced by almost
a magnitude difference when correlated to other sensors.

three servers is represented in Figure 6. The graph shows the minimum time gap
between alerts observed at one server and the same alert being observed at the
other two servers. The horizontal axis denotes the relative time elapsed since the
start of observing the first alert. The vertical axis denotes the cluster. Each of
the bars in the graph start at the time when an alert is observed at a site and
ends at a time when it is seen first among the other two sites. The bar graphs
are color coded to represent where the attack was first seen. From the statistics
it can be seen that the average time gap between alerts could be used to our
advantage. The results from the time gap analysis from the October-November
run computed across CU and GMU shows a similar large average value (Min:
1.57min, Max: 71022.07min, Average: 15172.53min, Std. Dev.: 18504.44min).
This gives us sufficient time to take preventive action at the collaborating sites by
exchanging a small blacklist. Furthermore, we analyze the number of unclassified
unique alerts that an operator has to manually classify every day. Figure 7
depicts the number of unique alerts generated daily. The graph shows both true
positive and false positives observed using our collaborative approach alongside
a stand alone approach. The horizontal axis denotes time in one day bins and
the vertical axis denotes the frequency of alerts observed on a log scale. For the
stand alone CAD sensor, a unique alert is included in the frequency when it
is first observed at a site. However, for multiple sites collaborating, an alert is
included in the frequency count at the time when it is confirmed to be seen at all
sites. On average the number of unique alerts observed every day using a stand
alone CAD sensor at CU is 82.84 compared to 3.87 alerts when a collaborative
approach, over an order of magnitude in difference. Therefore, a collaborative
approach clearly reduces the load on the operator monitoring alerts to an easily
managed amount.
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6 Conclusions

Web services and applications provide vital functionality but are often suscepti-
ble to remote zero-day attacks. Current defenses require manually crafted signa-
tures which take time to deploy leaving the system open to attacks. Contrary, we
can identify zero-day attacks by correlating Content Anomaly Detection (CAD)
alerts from multiple sites while decreasing false positives at every collaborating
site. Indeed, with a false positive rate of 0.03% the system could be entirely
automated or operators could manually inspect the less than four new alerts per
day on average that we observe in our eight week experiment. We demonstrate
that collaborative detection of attacks across administrative domains, if done in
a controlled and privacy preserving manner, can significantly elevate resources
available to the defenders exposing previously unseen attacks.
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