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Abstract

This paper presents a survey of computer architectures designed to execute production systems. After a
brief description of production systems and production system languages, the paper summarizes match
algorithms, particularly the Rete algorithm, and outlines suggested paralielizations. Most paralilel
production system algorithms have as their unit of sequential computation a single production's left-hand
side, activations of a single Rete node, a single activation of a Rete node, or a single comparison in a
Rete node. The paper discusses a number of proposed production system machine architectures in
terms of the parallel and sequential computations performed in the algorithms suggested for each
machine. A taxonomy of parallel production system algorithms, describing in detail the distribution and

replication of data and computations, concludes the paper.



1 Introduction
The production system paradigm is a data-directed formalism widely used in artificial intelligence

research and in the building of expert systems. A number of commercially successful expert systems
such as XCON at Digital Equipment Corporation [2€], and ACE at AT&T [66] have been impiemented in
production system languages. The slow execution speeds of production systems (XCON requires five
minutes of CPU time on a fairly powerful computer to configure a single VAX system, while ACE
implemented in OPS4 requires many hours of CPU time to process a single day's data on telephone
cable failure reports for a smail city) stand in the way of constructing larger or real-time production
systems. Consequently, many researchers have attempted to accelerate production system execution
through hardware, software, and algorithmic techniques. This paper discusses some proposed
production system machine architectures and proposes a taxonomy based on the algorithm(s) proposed

for each.

1.1 Production Systems
A production system, or PS[37,5] is a pattern- or data-directed program expressed as a set of

production rules, known collectively as the production memory, or PM, which operates on a giobal
database, the working memory, or WM, under the direction of a control strategy. Each production
consists of an if-then rule whose left-hand side (LHS) consists of a precondition on the database for
application of the rule, and whose right-hand side {RHS) consists of a set of actions, any of which may
affect the database. The control strategy dictates the order of application, or firing, of rules whose
preconditions are satisfied. A rule whose LHS is satisfied, together with the set of WM elements (WME's)

that satisfies it, is known as an instantiation of the rule.

A typical production system control strategy dictates that the system repeatedly execute execution
steps consisting of three parts:
1. Match: Determine the sat of all ruie instantiations, which is known as the confiict set.

2. Select. Choose a subset of the instantiations to fire. In the most widely-used production
system languages, this process, known as conflict resolution, seiects exactly one
instantiation. If there are no rule instantiations, the system haits.

3. Act. Perform the actions indicated by the RHS's of the selected instantiated production(s).

Production systems are typically but not always forward-chaining inference systems.

1.2 Production Systems as a Basic Computational Paradigm for Al
Production systems are widely used in Al research because they are data-driven and separate

program operations from program control [39]. Many problems in Al can be reduced to production
systems. -

Nils Nilsson [39] describes the reduction of theorem-proving and state-space search to generalized
production systems. His reduction makes PM the set of state-generating operators and WM the set of
states being explored.

Michael Rychener [53] shows how semantic nets [46] can be expressed in production system terms,
and constructs an expert system for computer-aided design. In his system, PM consists of two classes of



rules: those that create and traverse the semantic net, and those that encode the net itself, while WM
consists of goals and temporary network structures.

Mark Perlin [45] has proved the equivalence of frame systems [30] and production systems. First he
demonstrates that a frame system can simulate a production system at a cost that is at most linear in the
size of the rule system by constructing, for a given production system, a frame system that performs the
matcning operations for the productions’ LHS's. Next he shows that a production system can simulate a
frame systemn, again at a cost that is at most linear. For each active memory operation such as read and
write, and for each local propagation schedule, he constructs a production that implements the operation.

1.3 Production System Languages
In a typical production system, rules are of the form
P: C,&..&C > A .. A,

where each C‘- is a condition (known as a condition element, or CE), and each A, is an action, which may
add or delete WM elements, or perhaps interact with a user or perform input or output on a file system.
Each condition element is a representation of a class of WM elements that match the condition-- each
production system language defines the form of the representation and what it means to match a
condition element. Condition elements can contain variables, and different CE's can refer to the same
variable; when a CE matches a WME, variables in the CE are bound to the corresponding features of the
WME. In most production system languages, condition elements can also be negated. If the above
production P contains p positive (not negated) CE's, an instantiation of P consists of P together with a
p-tuple of WME's (w,,....wp) such that

1. each w; satisfies the i-th postive condition element,
2. all variables in the positive CE's are bound consistently,

3. and for each negated CE, there is no WME satistying it with variable bindings consistent
with those in the pasitive CE's.

The OPS family of production system languages [43], developed at Carnegie-Mellon University, display
a variely of representations of working memory. In each OPS language, condition elements are
abstractions of working memory elements. Each language provides a variety of predicates for matching
CE's to WME's,

One of the earlier members of the OPS family, OPS4 (7], represents WME's as arbitrary list structures.
OPS4 provides predicates for matching list structures, but also allows programmers to write arbitrary LISP
functions to match CE's and WME's.

In conirast, OPSS (3, 10], probably the most widely used OPS language, represents a WM element as
a tuple of {(named attribute, constant value) pairs. An OPS5 condition element is an abstraction of a WM
element; it contains a number of attribute fieids, each of which can contain variables, constants, and
predicate symbols testing equality, ordering, and equality of type. Each OPS5 WME or CE also belongs
to exactly one class, which is just a name-valued attribute that itself has no name, and occupies the first
position in that WME or CE. OPSS variable names are enclosed in angle brackets ("<name>"), while
attribute names begin with a caret ('*"). Figure 1 displays a contrived OPSS5 production and two WME's
that together constitute an instantiation of the rule.



Figure 1: An OPS5 Production
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OPS5's set of predicates is limited, and the language does not aflow the programmer to define new
ones. OPS83 [12) extends OPS5’s pattern-matching capabilities by allowing the programmer to call
functions in the LHS of productions. In fact, OPS83 is a procedural language with an embedded element
data type (much like a standard record type), and make, modity, and remove statements to manipulate
the contents of WM. Instead of providing a conflict-resolution strategy, OPS83 provides the fire
statement, which fires a programmer-specified rule instantiation.

In spite of the limited expressiveness of OPSS, with its small number of pattern-matching operations
and its lack of programmer-defined predicates, most proposed production system machines are designed
specifically to execute OPS5. This situation may stem from the general availability of an OPSS interpreter
and the consequent widespread use of the language. But OPS5 may not be an ideal production system
language, and not all production systems are written in OPS5, so OPS5-specific machine designs are

open to criticism as being too inflexibie.

1.4 Execution Speed of Uniprocessor PS Implementations

In the worst case, the problem of deciding whether a production’s LHS can be satisfied is at least
NP-complete, since a known NP-complete probiem, conjunctive bgolean query [4], can be recast in
production system terms. Average-case execution speed is therefore of much more interest than worst-
case speed. Since there is no model of an average production system, most measurements of
production system execution speed are empirical studies of large working systems.

Charles Forgy has reported [8] that most production systems spend 90% of their execution time in the
match phase, even using an efficient match algorithm. Most research on accelerating production system
execution has therefore cantered on the match phase. However, one should remember that if the match,
select, and act phases are not overlapped, completely eliminating the time spent in the match phase can
speed up execution only by a factor of 10.

Because diffarent productions make different numbers of changes to WM, and because the number of
WM changes determines the amount of match computation required, the execution speed of production
system interpreters is usually measured in WM changes per second, rather than rule firings [60].
Measurements are usually made on a moderately powerful computer, typically a VAX-11/780. Execution
speed varies widely and depends on the language, the implementation language of the interpreter, and
the degree of compilation of the rules. For exampie, Anoop Gupta reports (17] that the standard OPS5
interpreter written in LISP executes 8 WM changes/second, while the Bliss-based interpreter executes
about 40. OPS83, which is compiled into machine code rather than interpreted, runs at about 200 WM



changes/second. The order-of-magnitude difference in speed between interpreted code and compiled
code complicates the comparison of performance projections for a number of production system

machines discussed later in this paper.

1.5 Algorithms for Sequential Production System Execution
The praoblem of finding all rule instantiations can be recast in relational database terms [64]. As before,
let the production
P: C;&...&C, ->A, ... A,
have p positive CE's C Ci . For each C,. let R; be the relation defined as the subset of WM satisfying
C;. Then the set of rule mstantlatlons I(P) is that subset of R, ® .®R; , the join of the relations R; on the
vanables common to two or more CE's in P, not excluded by a \AfME matching a negated CE with

consistent bindings.

The most naive match algorithm for production systems constructs the conflict set during each match
phase by comparing every production with every tuple of WM elements. However, since the number of
changes to WM each cycle is typically smaller than WM itself (in fact, in OPSS programs, much smaller
[15]), more efficient match algorithms process the changes to WM to produce changes to the conflict set.
These algorithms save some of the state of the match algorithm between production system cycles.
Researchers have designed a spectrum of state-saving algorithms, described below, distinguished by the

amount of state they save.

Daniel Miranker's TREAT algorithm [32, 33] saves only the relations R; and the conflict set [(P). In
each match cycle, it uses new WME's as seeds to construct new instantiations, and it limits the search for
new instantiations to those productions all of whose positive CE's have a nonempty corresponding
relation.

Charles Forgy's Rete algorithm {8, 11] saves all initial subsequence relations of P. Foreachiin 1,...,n
let P, be the partial LHS
P:Cy&..&C,
The Rete algorithm saves all the I(P,), the set of all instantiations of P;, in addition to the R;. A change to
WM, whnether addition or deletion, that affects R; can cause changes in ail the P, for i >= j. The Rete
algorithm underlies the commercial OPSS and OPS83 interpreters and compilers.

A variant of the Rete algorithm, the subject of some experiments by Anoop Gupta [18], recursively
splits the LHS of each production in two, computes the set of instantiations of each half, and computes
the join of the two sets of partial instantiations. Gupta's results indicated that on the OPS5 programs he
studied, computing the partial instantiations of the right-hand half of each LHS wasted time and space.

A final variant of the Rete algorithm, proposed by Kemal Oflazer and reported in [Gupta86a), saves all
nonredundant instantiations of all subsequences of the LHS of each production. Oflazer's algorithm
underlies the design of a proposed machine for production systems, described later in this paper.

\



1.6 The Rete Match Algorithm in More Detail

Since many of the production system architectures discussed in this survey attempt to accelerate
matching by parallelizing the Rete match algorithm, a more detailed discussion of the sequential Rete
algorithm is warranted. The PS language compiler translates the LHS of each production into a dataflow
network, which the runtime System interprets or executes. For each production P and each change to
WM, the network computes the changes to |(P;) from the changes to R; and to P, ). Each node in the
network stores part of the saved match state as a set of tokens, each of which represents an element of
R, or I{P,), or performs part of the computation to update the state. Rete network nodes are of several

types:
» alpha-memory nodes, each of which stores a relation R;.

* beta-memory nodes, each of which stores a relation I(P). The beta-memory node storing
I(P,) is also known as an cutput node, and it stores part of the conflict set.

« single-input-test nodes, which perform tests on WME's for membership in a relation R;.
These tests include comparing a WME attribute against a constant and checking the
consistency of variable bindings within a single CE.

* two-input-test nodes, which construct I(P,) from I(P, ;) (the right inpuf) and R; (the left input).
It the CE corresponding to the right input of a node is negated, the node is known as a
not-node; otherwise it is called an and-node. Thess tests are also known as inter-condition

tests.
Figure 2 shows the network constructed from the production given in figure 1. in practice, the compiler
merges the alpha-memory node storing R, and the beta-memory node storing [(P,).

Rete alpha- and beta-memory nodes can also be shared. If two productions P and P’ share a
substring of CE's P; and P, the compiler can generate a network in which the tests involved in
constructing I(P,) and I(P") are performed once, and a single beta-memory node storing I(P;) has two
outputs. Notice that if the compiler does not generate shared nodes, it can merge each two-input-test
node with its two memory-node inputs.

During production system execution, adding an element to WM initiates a sequence of one-input tests
and the possible creation of an alpha-memory token, which activates the and- and not-nodes connected
1o the alpha-memory node. And-nodes receiving the new token compare it with the tokens stored in their
other memory-node input, and create a new token for each new partial instantiation. Not-nodes receiving
a new token from the right also compare it with the tokens stored in their left input. [f this new token is the
first token from the right input matching a particular token from the left, some previously-created partial
instantiations must be retracted, s0 the not-node creates a negatsd token, which flows through the
network annihilating matching positive tokens and creating new negated tokens. Deleting an element
from WM causaes the removal of ail alpha-memory tokens corresponding to it, and the creation of negated
tokens. A negated token arriving at the right input of a not-node causes the creation of positive tokens if
the positive alpha-memory token corresponding to the newly-arrived negated token is the only one
blocking the creation of partial instantiations. The sequential Rete match aigorithm guarantees that a
negated token arriving at a memory node finds a corresponding positive token.



Figure 2: A Rete network
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1.7 Some Statistics on Production Systems
Anoop Gupta [15, 18] has collected extensive statistics on two sets of six production systems each. He
measured the following properties of production systems:

« Textual characteristics such as the number of CE's per production, the number of negated
CE’s per production, and the number of WM changes per RHS. In his sampie, 27% of all
productions contained at least one negated CE, so negated CE's are important.

« Rete network characteristics such as the number of nodes per CE, for compilation with node
sharing and without.

» Run-ime characteristics such as the average and maximum number of Rete match tokens in
beta-memory nodes, the percentage of and- and not-nodes that perform no test for variable
equality, the number of node activations per WM change, and the number of productions
whose saved state is changed per WM change. He found that on the average, each WM
change aftects about 26 productions in this manner.

Many of the designs discussed in this paper are based on these statistics.



1.8 Suggested Parallelizations of Production Systems

This paper divides proposed production system architectures into groups based on characteristics of
the algorithms proposed for them. This division highlights important common features of the machines in
each group, and the characteristics that distinguish the groups. The paper first discusses uniprocessor
designs, because these designs are often used as building blocks in muitiprocessor architectures. It then
divides the parallel production system algorithms into classes based on which operations are parallelized.

The simplest parallelization technique performs the match operation for different rules in parallel.
Several variants on this technique attempt to provide more speedup. Non-state-saving algorithms can be
parallelized; one example is the distributed version of the TREAT algorithm described later in this paper.
The Rete match can also be paralleiized in a number of ways. A parallel Rete match algorithm can
process sequentially-activated Rete network nodes in parallel, it can process sequentiaily nodes activated
in parallel, or it can process in parallel nodes activated in parallei. Finally, the productions’ RHS can be
processed in parallel if the production system interpreter allows muitiple rules to fire simuitaneously.

2 Specialized Production System Uniprocessors

Several researchers have explored uniprocessor architectures specialized for production systems.
Uniprocessor architectures are important in this context because fast uniprocessors set upper bounds on
communication speed in parallel systems. These designs are also used as processing elements (PE's) in

some of the parallel machines described in this paper.

2.1 RISC architectures for production systems

Theodore Lehr has proposed [26] a Reduced Instruction Set Computer (RISC) (44] architecture for
production system execution. His RISCF processor implements the complete Rete match algorithm. He
bases its design on several characteristics of QPSS program execution. First, a processor executing the
Rete match algorithm makes many references to memory, since inter-condition tests typically involve
large numbers of tokens. Second, the processor executes arithmetic operations consisting mostly of
integer comparisons. Finally, the processor's branching behavior is complex and erratic, as the assembly
code generated from OPSS5 programs contains a large number of conditional jumps and subroutine calls,
which can slow down pipelined architectures and cause cache misses.

The proposed RISCF processor addresses the problems of heavy memory traffic and branching and
has a simple ALU. The compare instructions, for example, compare a register with the contents of
memory and set condition codes and branch prediction bits, and must precede a conditional branch.
Statistics derived from Anoop Gupta's measurements of production systems show that the results of
many of these tests can be predicted statically with 30% accuracy. The branch prediction bits then allow
the processor to keep its instruction fetchvdecode/execute pipeline full most of the time. Lehr projects an
overall speedup of 1.15 from the branch prediction strategy. The RISCF processor, like other RISC's,
aiso has alarge register fiie.

Lehr has also designed a gallium arsenide realization of the RISCF processor [27). This chip set
comprises 9 chips, and has a projected execution rate of one instruction every 30-nanosecond machine

cycle.

James Quinlan has studied the seffectiveness of a number of uniprocessor architectures, including



Lehr's, in executing production systems [47]. Using Anocp Gupta's measurements on six production
systems, Quinlan estimated the numbper of instruction fetches, data reads and writes, and computation
instructions performed Dy six architectures, including a hypothesized microcoded OPS matcher, the
RISCF processor, and a VAX-11/780. From these statistics he derived total number of machine cycles
and execution times for the various architectures. He concluded that the microcoded machine should run
three to six times as fast as a VAX and twice as fast as an NMOS realization of the RISCF processor, but
that a galiium arsenide realization of the RISCF would be as fast as the microcoded machine provided it
had an effective cache.

At the time of Quinlan's study, the VAX-11/780 represented technology that was almost ten years old.
While the use of the VAX is legitimate for baseline comparisons, the age difference among the
technologies he studied vitiates his conclusions about the effectiveness of special processor designs
relative to conventional architectures.

3 Production-level parallelism

Production-level parallelism entails distributing entire productions among different processors. Each
processor receives a different subset of the rules in a production system, and stores the initial working
memory elements potentially matching its rules. During the match phase, all processors, using a suitable
match algorithm, (perhaps naive match, TREAT, or Rete), match their rules against their subset of
working memory. During the select phase, the processors cooperate to determine which rule gets fired in
the act phase. Production-level parallelism can be combined with other levels of parailelism, as is seen in
machines described in later sections.

The copy-and-constrain method [61] applied to a rule produces constrained copies of the rule, each of
which matches a subset of the instantiations of the ariginal rule. If the set of possible working memaory
elements is finite, then the set of possible instantiations of a rule not containing any negated condition
elements is finite as well, and it is at least theoretically possible to creats a constrained copy of the rule
for each instantiation. Such a specialized rule contains no variables, and an instantiation can be found
with just one constant test per condition element. At least two working production system interpreters
work on this principle: the Aspro and the Concurrent Inference System.

3.1 llllac-lvV

Charles Forgy has studied the possiblity of interpreting production systems on the liliac-IlV [9]. The
llliac-1V is an 8-by-8 mesh-connected array of SIMD' PE's. Each PE consists of a powerful processor, a
small local memory (2K bytes), connections to its four neighbors in the array, connections o a broadcast
bus for instructions and data, and access o its own section of a disk. Forgy's algorithm is just an SIMD
version of the Rete match algorithm in which the rules are distributed among the PE’'s. Each PE receives
a number of productions; during the match phase, the host computer broadcasts changes to working
memory and instructions to control the Rete network match in each PE. The algorithm does not use the
mesh inter-PE connections; it simply uses the llliac-1V as a set of processors on a broadcast bus.

In order to simplify the implementation, Forgy adopted a simple production system language, SPS, that

'Single Instruction, Multiple Data



represents data as triples, rather than as tuples of atiribute-value or as lists. SPS's match strategy-amot
guaranteed to find all satisfied productions: starting with the most recently-added wcrking memory
elements, it attempts to build instantiations CE by CE from left to right in each production, binding
variables as it proceeds. If at some point in the process, it cannot satisfy a CE, it abandons the
production rather than backtracking. SPS has no conflict resolution strategy; the interpreter simply fires

all satisfied productions on each cycle.

The SPS compiler divides the set of Rete network nodes into a number of different classes such as
not-, and-, and single-input-test nodes, and allocates space for the input and output memories of each
node. The no-backtracking strategy allows the compiler to determine the maximum size of the alpha- and
beta-memories required. During each production system cycle, all PE's evaluate together all nodes of

each type.

Forgy presents no performance projections or data for his SPS implementation. His parallel match
algorithm differs from that used by other researchers on SIMD machines such as NON-VON and the CAP
(see below) in that it performs the entire match operation in lockstep. In doing so, the algorithm abandons

backtracking and sacrifices complete search.

3.2 Finding Optimal Partitions
In each PS execution cycle, the amount of match computation required varies tremendously among the

rules in the system. Kemal Oflazer of CMU has studied the problem of assigning productions to
processors at compile time to achieve run-time load balancing among the partitions [40]. His studies
used both anaiyses of program texts and statistics derived from previous program executions to derive
production system partitionings; simulations showed, however, that they were only slightly better than

random ones.

Oflazer compared three partitioning methods 0 random paritioning. The first method assigned
productions to processors in a round-robin fashion based on their textual order in a program. This
assignment strategy is not random, since programmers are likely to put similar productions, or
productions that work on simiiar patterns in working memory, close together. Round-robin assignment
should therefore place similar productions, which are likely to require processing during the same
interpreter cycles, into different processors, and contribute to load balancing. The second method used
syntactic information. Many OPS5 productions have goal or context condition elements, whose purpose
is to condition their activation to a phase of program execution. Syntactic assignment places productions
with the same goal element into different panitions. The third technique used the processing time
required by the Rete algorithm to maintain the state of each production and the frequency with which the
algorithm processed productions together during the same match cycle to predict good partitionings.
Finding optimal partitionings is an NP-complete bin-packing problem, so Oflazer used simulated
annealing to search for approximations to the optimal partition.

Simulated executions of the partiioned production systems showed that no static partitioning scheme
worked very well. The method based on execution time gave somewhat better partitionings than the two
textual methods, but all three techniques gave speedups of 1.15 to 1.25 over random partitioning. One
explanation for this poor performance is that production systems have irreqular and very data-dependent
execution paths, and that these paths are ditficult to detect statically.
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3.3 The Aspro System

The Aspro Parallel Inference Engine [49], developed by Goodyear Aerospace, is a specialized pattern-
matching machine attached to a sequential processor. The Asprg consists of a 2K-element array of
bit-serial PE's, each with 4K bits of memory. The Aspro represents the complete state of working
memory as a single 2K-bit vector: it uses the same representation for the LHS and RHS of a production.
During each match phase, the interpreter compares each production bitwise in turn with the current state
of working memory. A production is satisfied if every bit set in its LHS (i.e. every condition) is also set in
working memory. During the act phase, the interpreter fires every satisfied production; firing a production
may include calling functions in the host.

Since each bitwise comparison of working memory with the LHS of a production is a single instruction,
match time is linear in the number of productions. But since the Aspro memory can hold at most 2K
productions, the system is guaranteed to execute atieast 500 match cycles/second.

3.4 The Concurrent Inference System
The Concurrent Inference System (CIS) (1], developed at the MIT Al lab, is a forward- and backward-

chaining inference engine. It has been implemented on the Connection Machine [20], a massively
parallel highly-connected SIMD array of very small processors.

The CIS represents rules in a standard if-then form, but each conclusion has associated with it a
real-valued cenainty factor. Variables in rules are allowed, provided that the set of possible vaiues is
finite and known at compile time; the compiler creates an equivalent set of constrained rules containing
no variables. Since the compiler knows each variable's set of possible values, it can compile the set of

rules into a fixed graph.

At run time, each rule is associated with an activity factor. Inference proceeds synchronously as an
activity network. During each inference step, each rule computes the minimum or maximum activity, for
conjunctions and disjunctions respectively, of its LHS. It then adjusts the activity of each of its
conclusions. All inferences proceed simultaneously, but the system stops after a user-specifiable number
of cycles so that the user can interact with it.

The performance claimed for the CIS is very good: Blelloch states that the system can contain 100000
rules and still provide interactive responses. The system obtains high concurrency by taking advantage
of concurrent matching and concurrent forward propagation. It is difficult to compare the performance of
the CIS with that of any OPS implementation, since the model of matching used in the CIS is very
different from that in OPS systems.

Citing the Prospector (6] and Mycin [56] expert systems as examples, Blelloch claims that restricting
variabies !0 a finite set of values is not very limiting. As he notes, the requirement that the set of values
be known at compile time can be relaxed, provided that the activity network be allowed to change
dynamically, something the Connection Machine architecture allows. But no large rule bases have been
implemented in the CIS, so the flexibility of the system has yet 10 be proved.

Anotrer limitation of both the Aspro and the CIS is the absence of negated conditions. Since the
Connection Machine supports global reduction operations in parallel, it is possible that negations could be
added to the CIS.
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4 Non-State-Saving Machines and Algorithms
The two machines proposed for non-state-saving algorithms, DADO and the Delta-Drive Computer,

execute different algorithms and are quite different architecturally.

4,1 DADO
The DADO machine [57, 62] represents an attempt to accelerate production system execution through

massive parallelism. As originally conceived, the DADO machine cansists of a very large number
(perhaps 10000 to 100000) of fairly small PE's connected in a complete binary tree. The PE's do not
share memory; all inter-PE communication is through /O circuitry. Each PE has a modest amount of
local memory, enough to store a small matching program and some data. The DADQO machine functions
as a rule coprocessor attached to a conventional host machine.

The current operational prototype, DADQO2, has 1023 PE's. Each PE consists of an eight-bit processor
(an Intel 8751), 16K bytes of memory, and a semicustom /O processor. The VO processor provides rapid
bidirectional global communication. Its broadcast circuit allows the host to broadcast data to all PE's in
the tree; its resolve/report circuit calculates the minimum of a set of 8-bit values submitted by the various
PE's, and sets a flag in the PE having the smallest value. All PE's have to participate in each
communication through the I/O processor. Each PE can also communicate with its parent and left and
right children through a channsl separate from the /O processor. One interesting architectural feature of
the /O processor allows a PE to disconnect itself, under software control, from its parent; a PE that does
so becomes the root of its own DADO subtree, and can broadcast data to its descendants, as well as
receive data from them through its resolve/report circuit. Several algorithms proposed for DADO (see

below) exploit this capability.

The DADO machine combines aspects of SIMD and MIMD computers. Since all PE's must execute
the same sequence of communication instructions, communication is SIMD. But between
commmunications, the DADO machine is computationally an MIMD computer, since each PE has its own
local memory and stored program, and can execute arbitrary non-communicating code.

Stolfo [58] has proposed a number of algorithms for production system execution on DADO. All these
algorithms use DADO to acceierate the match and select phases of production system execution, and
make the host computer responsible for actions in the RHS of rules.

The full distribution algorithm is the simpiest, and exploits only production-level parallelism, as
described in the previous section. The algorithm also uses DADO VO hardware during the select and act
phases. During the select phase, PE's communicate encoded priorities for their best instantiations to the
hest. The PE with the highest priority instantiation, as determined by the VO processor, then
communicates its instantiation to the host. During the act phase, the host broadcasts changes to working
memory to the DADQ PE's; each PE retains those cnanges that are potentially relevant to its rules.

The original DADOQ algorithm divides the DADQ into three components: the PM-level (one level of the
tree), the upper tree (those PE’s above the PM-level), and the set of WM-subtrees, one for each PE in the
PM-level. Each PE in the PM-level receives a number of productions; PE's in the WM-subtree below a
PM-level PE store working-memory elements relevant to a rule in that PM-level PE. During the match
phase, each PM-level PE constructs all instantiations of its satisfied rules. For each production P with
LHS C, ... C,, and for each jin 1.....n, the aigorithm constructs R, ®...® R, from R, ®..®R,. For each
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element Q; of R, 8..8R;, the PM-level PE substitutes into C;,, all variables bound in Q;, broadcasts the
resulting constrained condition element, and reads back sequentially all WM elements in its WM-subtree
satisfying the broadcast condition element. The PM-level PE combines each such WM element with Oj 1o
form another element of R, ®..®R;,,. Thus the PM-level PE's use their WM-level subtrees as

generalized content-addressable memory.

Daniel Miranker's distibuted TREAT algorithm [32] is a state-saving version of the ariginal DADOQO
algorithm. Each PM-level PE stores (either in itself or in its WM-level subtree) the current instantiations of
its rules. Each WM-level PE stores a number of Rete alpha-memory tokens; the tokens for a single
aipha-memory node are distributed throughout the WM-ievel PE's. During the match phase of the TREAT
algorithm, each PM-leve! PE first determines which rules are affected by the current changes 10 its
working memory and have non-empty alpha-memories for each positive condition element. For each
such rule, the PE then constructs all new instantiations of that rule.

The fine-grain parallel Rete algorithm maps the Rete network directly onto the DADO machine, The
Rete network without node sharing is in fact a binary tree, so the mapping is a trivial one: leaf PE's store
linear chains of one-input tests, while interior PE's receive and- and not-test nodes. During the match
phase, the host broadcasts changes to PE's containing one-input tests; these PE's construct tokens for
WM elements matching their CEs and pass the tokens to their parent PE's. Two-input test PE's in a
pipelined fashion read tokens from their children, construct new tokens from them, and pass the new
tokens to their parent PE’s. This algorithm processes activations of different nodes in parallel, but
because each node is mapped to a single PE, it cannot process muitiple activations of a single node in

parallel.

Anoop Gupta [16] has suggested another match algorithm for DADO. His algorithm distributes
productions to the PM-level and distributes the tokens stored in each Rete match alpha- and beta-
memory ncde throughout the WM-level subtree of the associated production. Each Rete network token
for this algorithm consists of the node 1D, a list of WME IDs, and a list of the values of the variables used
in the following two-input test. During the match phase, the host broadcasts WM changes to the PM-level
PE's, which perform all intra-condition tests on them; each PM-level PE then stores the resulting alpha-
memory tokens throughout its WM-subtree. For each new token, the WM-level PE broadcasts it and the
ID of the opposite memory node to all WM-level PE’s; each WM-level PE executes the consistency
checks required for the new token. For each two-input test passed, the PM-level PE then creates a new
token, which it stores in some WM-level PE. Conflict resolution proceeds as in the original DADO
algorithm. The algorithm exploits production-lavel parailelism and parallelism in the evaluation of each
node activation, but it serializes node activations during a single match phase. Gupta's algorithm requires
that each PM-lavel PE store all working memory elements (together with all its attribute values) relevant
to any of its rules, as well as a list of the attributes used by each two-input test node. Thus this algorithm
requires that the PM-level PE's store more data than their WM-level PE's, and is more suitable to a
heterogeneous architecture than to the homogeneous DADQ architecture.

Miranker [31] has projected the performance of the DADO2 machine by estimating the number of
instructions required to perform each ot a number of primitive operations and the number of times the
match phase performs each such operation. He concluded that the DADQO2 machine running the
distributed TREAT algorithm should execute about 212 WM changes/second. Based on the same
instruction counts, Gupta [16] estimated an execution speed of 167 WM changes/second for the fine-




13

grain Rete algorithm. As the instruction counts are wildly inaccurate, neither performance figure can be
trusted.

4.2 The Delta-Driven Computer
As part of the European Esprit project, a group at BULL SA Research Center in France has designed a

parailel computer architecture, the Delta Driven Computer {50], to execute relational, logic, and functional
programs. The Deita Driven Computer is unique in having an intermediate language based on production
rules with a forward-chaining inference strategy. Compilers for relational, logic, and function programs
translate the programs into production rules.

The architecture of the Delta-Drive Computer is a cluster of bus-based message-passing PE's with no
shared memory. Each PE consists of a powerful microprocessor, local memory, and an attached
symbolic coprocessor for performing joins, unification, or pattern matching. The authors do not specify
the scale of their machine, but from their hopes for speedup on the order of 1000, one can deduce that

the machine will contain many PE’s.

The authors propose a forward-chaining production rule paradigm as the machine's intermediate
language. Their paradigm encompasses rules of the form P, & ... & P -> A, ... A, where the P; and A)
are predicates of atoms and variables. Thus, although their paradigm seems to lack negated condition
glements (predicates), it permits mors general patterns than OPS5. Execution proceeds by cycles. At
each cycle, the interpreter feeds the changes made to the global database back into the rules--hence the
name "Delta Driven.” All satisfied rules fire on each cycle; the system provides no conflict resolution

strategy.

Rather than distributing productions amang the processors and duplicating parts of the database, the
system distributes individual reiations (corresponding to alpha-memories), and duplicates productions.
The interpreter further distributes each relation to a number of processors by hashing on attributes used

in subsequent joins.

The algorithms suggested for the Deita Driven Computer do not seem suitable as accelerators for
OPS-style production systems, since they do not provide negated condition slements or contlict
resolution. Further, distributing the elements of individual alpha-memories makes negated conditions
difficult to implement without a fast global communication mechanism. On the other hand, it would be
very interasting to see how weil a3 machine designed for OPS-style production system execution could
execute the intarmediate language generated by the Deita-Driven Computer's higher-level language

translators.

5 Parallel Processing of Sequentially-Activated Nodes

All the machines described in this section parallelize the Rete aigorithm by distributing the contents of
Rete alpha- and beta-memory nodes. During the maitch phase, they process each node activation by
using the distributed memory nodes as associative memory. Because this processing requires high
communication bandwidth and low latency, the machines are all SIMD.
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5.1 NON-VON

The NON-VON machine (proposed by {55]) is a fine-grain-parallel architecture designed to accelerate a
wide range of artificial intelligence tasks, including database operations, expert systems, and image
understanding. Like DADO, NON-VON is organized as a binary tree, but its granularity is much finer, its
architecture is not homogeneous, and its operating modes, and hence the algorithms proposed for it, are

different.

NON-VON is actually organized as two very different subsystems connected to a conventicnal host
computer. The primary processing subsystem consists of a very large number (perhaps a million, in a
full-scale version of the machine) of small processing elements (SPE’s) connected in a binary tree. Each
SPE consists of an 8-bit ALU, a very small amount of memory (perhaps 64 bytes), and connections to its
parent and left and right children. Each SPE also has a connection to its predecessor and successor in
an inorder traversal of the entire tree; thus algorithms can treat any subtree of the primary processing
subsystem as a linearly ordered array. Leaf SPE's are aiso interconnected in a mesh, but the production
system algorithm proposed for NON-VON does not use these connections. The SPE's are SIMD
processors: they read and execute instructions broadcast by a controlling processor. An enabled bit
controls conditional instruction execution; Disabled PE's ignore all instructions except the instruction that
enables the PE. A special instruction, the resolve instruction, sets a bit in the first enabled PE in an
inorder traversal of the SPE tree. Algorithms that process sequentially a set of data stored in the SPE’s
use the resolve instruction to enumerate the set. Global instructions—the resolve operation and
communication between linear neighbors--take ten times as long as computation instructions.

The secondary processing subsystem is a highly-connected network of a smaller number (perhaps 31
to 1023) of powerful processors known as large processing slements (LPE’s. Each LPE has a 32-bit
processor, a fairly large memory (at least 256K bytes), and a connection to one of the SPE’s in the upper
levels of the primary processing subtree. The LPE's operate in MIMD mode, but each LPE can also
broadcast instructions and data to the subtree of SPE’s to which it is attached. Thus NON-VON supports
multiple-SIMD processing, where same subset of the LPE's, typically those attached to SPE's at one level
of the primary processing subsytem, control SIMD computation in their respective subtrees.

Bruce Hillyer and David Shaw propose in [21] an algorithm for production system execution inspired by
Gupta's algorithm for DADO [16] and by an unpublished algorithm of Daniel Miranker. Their algorithm
partitions the rules in a production system into 32 groups: they assume that the partitioning scheme
places similar rules in different groups, so that the processing time for each production system cycle is
roughly the same for all partitions. Each LPE-SPE subtree rooted at the sixth level (the level containing
32 PE's) receives one of the groups of rules.

Their match algorithm, like Gupta's for DADQ, processes node activations sequentially, but uses the
tree of PE's as associative memory to speed up each activation. Their algorithm differs from Gupta's in
its representation of condition element and Reate network tokens, and in its handling of intra-condition
tests. Since each NON-VON SPE has very little memory, it cannot store an entire condition element or a
complete Rete network token. Thus Hillyer and Shaw propose that each condition element be stored in a
linear array of SPE’s, with each SPE storing a single term of the condition, and that each token likewise
be siored in a linear array, with each SPE storing a single working memeory element ID. An SPE can
store both a term of a condition element and a piece of a token. Each LPE performs intra-condition tests
by broadcasting a working memory change and having each SPE test for satisfaction of its term of a
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condition element. {f the longest condition element in its productions has n terms, the SPE’s then
compute in (n-1) cycles the AND of the tests for each condition element; this computation exploits the
linear connection of the SPE's. LPE's allocate Rete network tokens and process node activations very

much as the WM-level PE’s do in Gupta's DADO aigorithm.

Hillyer and Shaw have analyzed their algorithm by writing NON-VON assembly code for each of the
primitive operations in the match cycle and counting machine cycles. Basing their analysis on Gupta's
statistics on the execution of six large OPSS programs, they then compute the average match-phase
processing time per working memory change. Assuming an LPE processing speed of 3 MIPS, and an
SPE instruction cycle time of 300 microseconds, they conclude that NON-VON should be able to execute
about 2000 working memory elements/second. These performance projections depend on a good rule-
partitioning strategy, but they do not depend on reducing the variance in the processing time for node
activations, since their algorithm processes node activations sequentially.

5.2 The Cellular Array Processor
Ruven Brooks and Rosalyn Lum propose [2] using the ITT Cellular Array Processor (CAP) for

production systems. The CAP is an array of perhaps 32 to 128 processors, each with a fairly large local
memory, connected to a broadcast bus. The CAP has been realized in a CMOS chip set comprising five

chips for a 16-bit CAP processor.

Brooks and Lum suggest a parallelized Rete match algorithm much like the algorithm executed by each
NON-VON LPE. Their algorithm distributes constant tests and input memories for two-input nodes
among the CAP PE's. During the match phase, the controiling computer broadcasts changes to working
memory. Their match algorithm processes node activations sequentially, but uses the CAP PE's to speed
up each activation. For each change to working memory, the CAP PE's evaluate the associated constant
tests and create or delete Rete network tokens. For each two-input node activation, the CAP PE's search
the opposite memory in parallel, creating or deleting new tokens.

The authors suggest performance evaluations of the CAP based on comparisons of aggregate
memory-processor bandwidths. For example, they contrast DADO2, with the capacity to process 1023
bytes/instruction, with the 512 bytes/instruction processed by a CAP consisting of 256 16-bit processors
operating with a faster cdock (each CAP PE can perform a 16-bit addition in 100 nanoseconds), and
conclude that the CAP offers comparable processing capacity with many fewsr componants. They further
assert that since two-input node activations consume most of the processing in the Rete match, and since
most memory nodes are either large or empty, CAP processor utilization shouid be high.

The performance claims for the CAP can be questioned on two grounds. First, it is not clear that
comparing the speeds of processors of different generations has any relevance to performance
evaluation. As Stolfo has pointed out {59], DADO2 was a prototype machine, and a DADOQ built today
would be constructed of fast 32-bit processors. Furthermore, a machine's aggragate processing power is
only an upper bound on its performance. Claims for the CAP’s performance can be verified only by a

detailed study of processor utilization.

The CAP, with its fast communication (broadcasts occur at instruction speed) and lack of contention for
shared memory, may accelerate production system execution. However, the CAP, and all paraliel
processors that use a large number of processors as associative memory, must compete with
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uniprocessor indexing schemes that reduce the cost of searching for a pattern in a set of data.

5.3 The OOPS-MOP
A group at the University of Tennessee has designed and fabricated their OOPS-MOP (Our OPS

Matching-Only Processor) [38] as part of an accelerator for OPS production systems. They envision a
sysiem buiit of a number of OOPS-MOP slave chips and a controlling processor.

Each OOPS-MOP chip consists of eight identical "chunks®, each of which consists of six “slivers”
whose outputs are ANDed together; each sliver consists of a programmable arithmetic comparator. The
slivers in a chunk compare the value of a single binding variable to five constants or bound variables.
Binding a variable and ANDing together a number of comparisons with constants or variables takes one

instruction cycle.

The group only hints at a system architecture and an algorithm to exploit the OOPS-MOP.
Presumably, each one- and two-input test in an OPS program would be assigned to a different chunk at
compile time. During program execution, the controliing processor would execute an algorithm much like
Daniel Miranker's TREAT algorithm. Starting with all variables unbound, the controliing processor would
try to construct a complete instantiation from working memory elements by binding variables in
succession and backtracking when it could not complete an instantiation. Since the OOPS-MOP chips
have only enough memory to bind a variable, they cannot store the tokens involved in the Rete match.

The authors suggest that QOPS-MQOP’s may speed up OPS programs by a factor of 10 or 20 over
brute force sequential implementations, but they offer no substantiation for this claim, and they do not
specify what they mean by a brute force method; the Rete match algorithm alone speeds up matching by

at least a factor of 10.

Lack of on-chip memory and an inflexible instruction set hobble the OOPS-MOP architecture. An
OOPS-MOQP system must contain a dedicated "chunk” for each one- and two-input test. Since many
OPSS5 programs contain thousands of tests, a usable OOPS-MOP system would have to contain
thousands of matching chips, almost all of which would be idle during each OPSS match cycle. The
OOPS-MOP processor can handie only the simplest matching tasks; the spareness of its instruction set
makes it unsuitable even for OPS83.

6 Sequential Processing of Nodes Activated in Parallel

The machines described in this section paralielize the Rete match by assigning individual Rete network
nodes to processors, aither at compile time or at run time. They require fast access to shared memory
containing WM elements, and are based on fast buses.

6.1 The Carnegle-Mellon Production System Machine

Ancop Gupta and others at Carnegie-Mellon University (13, 18] have proposed and anaiyzed a
specialized Production System Machine (PSM) to accelerate production system execution. The PSMis a
multiprocessor realization of the parallelized Rete match algorithm; processors are assigned dynamically
10 individual alpha- and beta-node activations. Successful node activations create new tokens: a task
scheduier, when passed these tokens, creates new node activations. A few architectural features define
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the PSM.

First, the PSM is a shared-memory multiprocessor with a fairly small number (32 to 64) of processors.
Gupta justifies the small number of processors by citing the relatively low degree of parallelism he found
in the execution traces of the OPSS programs he studied [15]. The granularity of communication and
computation in the PSM dictates a shared-memory architecture. individual node activations, which
consume only 50-100 instruction cycles [18], create large tokens that must be communicated to other
nodes in the Rete network. Since pointers to tokens are much smaller than the tokens themselves, it is
faster to pass pointers to the newly-created tokens, and since processors must dereference pointers to
structures created by other processors, the tokens must be in shared memory.

Second, each processor in the PSM is a powerful processor with some private memory and a cache,
Since the PSM has relatively few processors, each one can be fairly powerful. But since each processor
runs code that is memory-reference-intensive rather than computation-intensive [47], caches are required
if processors are not to wait on memory. Further, the caches must be able to store shared data objects
such as Rete network tokens, since many of the references to shared memory are to these tokens.
Gupta proposes the specialized RISCF processor for the PSM.

Because shared data objects must be cacheable, the PSM must have a cache-coherency scheme.
Therefore, processors communicate with shared memory over a shared bus, rather than through an
interconnection network such as a crossbar switch or a log(n) stage interconnection netwark, since
cache-coherency schemes for shared buses are much easier to construct ( [52], cited by Gupta). The
shared bus limits the number of processors in the PSM, since contention for the shared bus seriously
degrades performance if the number of procassors is larger than 64. Gupta proposes a multiple-bus
system for larger numbers of processors.

Finally, a hardware task scheduler assigns processes (node activations) to waiting processors. The
scheduler sits on the shared bus. A processor passes the scheduler a pointer to a new token by writing
to memory-mapped registers in the scheduler; the scheduler assigns a node activation to an idle
processor by writing to memory-mapped registers in the processor. Both operations take one bus cycle.
The scheduler is responsible for ensuring that muiltiple activations of a single node that cannot be
processed simultaneously are assigned serially. It handles this task by maintaining a task queue in
associative memory of all active and pending node activations. The task queue must be quite large, since
Gupta's simulations show that for the programs he simulated, the maximum number of nodes in the
queue was 2000, while the average number was 90.

The hardware task scheduler transforms a fairly conventional general-purpose shared-memory bus-
based architecture into a specialized dataflow macnine (for a description of dataflow machines, see [22]).
Each computation (node activation) in the Rete network can create new tokens, which actively (through
the scheduler) create new node activations. The mapping of computations to processors can be
completely dynamic, since the shared bus imposes no topological restraints on the pattern of
interprocessor communication.

Gupta's performance projections for the PSM are based on extensive event-driven simulations of the
execution ot six OPSS programs with a parametrized cost model. Traces of actual OPS5 program
execution cdrive the simulator; they show changes to working memory elements, node activations, and the
creation of Rete network tokens. The cost model includes the costs of the operations invoived in
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scheduling and processing node activations. Gupta estimated these costs by writing hypothetical
assembly code to perform various primitive operations and counting processor cycle times. The cost
model also includes the effects of contention for shared memory, based on user-specified cache-hit
ratios.

Gupta measured both concurrency--the mean number of processors busy—and speedup for
parallelization of the Rete match at the production level, at the node level (where the machine processes
node activations in parallel, but only one activation of a given node at a time), and at the intra-node level
(multiple activations of all nodes). Speedup differs from concurrency in the PSM because of the effects of
memory contention, loss of node sharing in the Rete match network, and scheduling overhead. The
intra-node parallelism figures are the most significant, since the PSM is designed to take advantage of
parallelism at this fine grain. Only one of the six programs Gupta studied showed signiticant performance
gains with more than 32 processors. With 32 processors, concurrency ranged from 4 to 22; the true
speedup was less, ranging from 2 to 15. These figures corresponded to execution speeds of 2000 to
14000 WME changes/second. The corresponding figures for node-level parallelism are somewhat worse:
concurrency ranged from 4 to 13, speedup from 1.6 to 6.6, and execution speed from 2000 to 3000 WME
changes/second. The figures for production-level parallelism are worse still: concurrency ranged from 2
to 12, speedup from 1.2 to 4.8, and execution speed from 800 to 7200 WME changes/second.

Gupta’'s simulations also showed that the hardware task scheduler is a necessary part of the PSM.
Using multiple software task queues rather than a hardware scheduler resulled in a halving of the

performance of the system.

According to the simulations, a single-processor PSM should be able to execute about 1000 WME
changes/second, which is several times faster than the best OPS83 implementations. Much of the
improvement seems to come from a change in the data structures used in the two-input nodes. Current
OPS implementations keep the tokens for the left and right inputs of the two-input nodes in linked lists, so
that the average cost of deleting a token from a node or of searching the node for a token with consistent
pindings is proportional to the length of the list. Gupta proposes keeping all tokens in two global hash
tables, one for left inputs of two-input nodes, and one for right inputs. Tokens would be hashed on an
identifying number for the node and on the values of the attributes used in the consistency tests in the
node. With this scheme, the average cost of deleting a token or of searching a node for tokens satistying
equality tests should be independent of the number of tokens slored in the node. One architectural
consequence of maintaining a global hash tabie for tokens is that processors inserting or deleting tokens
must be able to lock an individual hash bucket.

6.2 The Encore Multiprocessor
A group at Carnegie-Mellon University has recently implemented OPSS5 on the Encore muiltiprocessor

[19] and collected statistics on execution times of several programs. The Encore multiprocessor
resembles the proposed PSM in many ways, so the group's experiments also represent tests of the PSM.

The Encore multiprocessor is a shared-memory bus-based machine with 2 to 20 processors. Each pair
of processors shares a 32K byte cache; the caches monitor bus activity to maintain cache coherency, just
as in the PSM. Each Encore processor is a 32-bit microprocessor, an NS32032. Since the Encore is a
general-purpose machine, it lacks the PSM's specialized hardware task scheduler; therefore, Gupta's
experimental results must be compared with his simulation results for a PSM with multiple software task
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queues.

The group varied the number of task queues, locking strategies for global hash table buckets, and the
number of processors used, and recorded actual execution times for three fairly large QPS5 programs
(not the same programs studied in [18]). The resuits agreed quite well with the predictions of Gupta's
simulator: after calibrating the simulator for the NS32032 instruction set, it predicted many execution
times that were within 50% of the observed. Speedups over a single-processor execution ranged from 2
to 11 with 13 processors performing matching tasks. One unanticipated phenomenon was considerabie
contention for shared hash buckets in a program that constructed large cross-products of working
memory elements; each hash bucket grew quite large, and each processor spent hundreds of Cycles

waiting for each access to the hash table.

The experiments on the Encore muitiprocessor are a partial, preliminary validation of the effectiveness
of the PSM. Gupta's experiments indicated that one major bottleneck in the Encore implementation was
slow task scheduling, and his simulator predicted much greater speedup for a machine with a fast
scheduler. One the other hand, for some programs, contention for shared hash buckets was the major
difficulty, and for these programs, software techniques such as copying and constraining rules promise
greater speedup than the hardware task scheduler,

6.3 MANJI
A group of researchers at Keio University in Japan has proposed and evaluated MANJI, a shared-

memory multiprocessor for production systems [34]. The algorithm proposed for MANJI differs somewhat
from the PSM algorithm, and the differences dictate architectural choices made by the researchers. No
performance projections are availabie, so comparisons with the PSM and the Encore must be tentative.

The MANJI group proposes a Rete match algcrithm with distributed node activations, but with nodes
assigned statically to processors, several nodes per processor. The arrival of a token at a processor
activates the processing of a node. Thus task assignment in MANJ! is a distributed operation, while it is a
centralized one in the PSM. The PSM requires centralized task assignment because the architecture
supports muitiple simuitaneous activations of a node; since MANJ! processes activations of a single node
sequentially, it does not require a centralized arbiter.

MANJI is a shared-memory machine with two buses, one for access to working memory, and ane for
broadcasting Rete match tokens. The match processors use the working memory bus for access to
global working memory: in order to reduce bus traffic, each processor has a cache whose block size and
replacement strategy are tied to the structure of OPS5 working memory elements. Match processors use
the token bus for broadcasting and receiving Rete match tokens. The broadcast mechanism is a
receiver-selectable multicast (any processor can broadcast). A processor generating a token writes it to
an address in global memory determined by the node I1D; each destination processor detects the arrival of
the token, and reads and processes it. There is no global queue for the activations of each node, so a
processor generating a node activation must wait to write the token to global memory until all destination
processors have read the previous token at that address. The receiver-selectable multicast has a
complex paging mechanism so that processors can avoid mapping the entire giobal address space into
their local address space. The active role of the token arrival queue at each node gives the MANJI
machine a distinct dataflow character.
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The MANJI group studied the steady-state characteristics of a simple Markov model of bus congestion
in the machine. They concluded that most of the time, in the absence of page faults in the receiver-
selectable multicast mechanism, bus congestion is minor, and most processors can be kept busy.
Presumably, large OPS5 programs would generate page faults, which the model does not take into
account.

Several potential problems loom over MANJI. Since nodes are assigned statically to productions, one
problem is load balancing, but this problem should not be as severe for node-level parallelism as for
production-level parallelism, since there are many more nodes than productions. Another problem is
serialization of activations of a single node; Gupta's studies seem to indicate that this serialization limits
the available parallelism.

7 Parallel Processing of Nodes Activated in Parallel

In the Carnegie-Mellon Production System Machine [13], the unparallelizable unit of computation is the
node activation. Parallelizing single node activations may offer more parallelism than distributing
complete node evaluations. Several researchers [14, 51] have suggested dataflow machines as possible
architectures for fine-grained execution of production systems. Two proposed dataflow machines try to
exploit this parallelism by distributing each Rete memory node among a number of processors. Another
machine described below, a distributed-memory message-passing machine, executes a state-saving
variant of the Rete match algorithm, which distributes tokens among the PE’s at the leaves of a2 complete

binary tree.

7.1 The Waterloo Dataflow machine
Michael Kelly and Rudolph Seviora of the University of Waterloo suggest a distributed Rete match

algorithm and a specialized dataflow machine for accelerating production system execution [25]. The
architecture they propose is a highly parallel distributed-memory machine with fast globai communication.
Since their algorithm motivates the architectural specifics of the machine, it is described first.

Their algorithm distributes Rete match alpha- and beta- memory tokens throughout the machine. Each
logical Rete node contains a single token, though a processor may hold several such nodes. This
scheme lumps memory nodas together with the two-input-test nodes that follow them in the network.
Each logical nods in the Waterloo machine consists of the tests and ID of a two-input-test node, together
with one token from its left or right input.

The arrivai of a token (by a mechanism to be specified later) triggers one of several actions. If a
matching positive token arrives at the empty side of a logical and-node, the node creates a new
composite token and passes it on. If a positive token arrives at the full side of a logical and-node, and
that node is the single generative copy of the node, the node creates a new copy of itself, gives the new
node the token it received, and makes the new node the generative copy. The arrival of a negative token
at the full side of a logical and-node destroys the token and the node. Processing not-nodes is similar,
but more compilicated, since no processor stores global information. The arrival of a token at the negated
input of a not-node generates tokens of the opposite polarity. The authors present a scheme for handling
the tokens generated at not-nodes that depends on a serializing communication channei.

The proposed architecture consists of a number of PE’s interconnected with a bidirectional tree-
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structured bus with higher throughput near the root of the tree. {Such an architecture was proposed and
analyzed by Leiserson [28], who called it a fat-tree.) Each token generated by a logical node flows up
and down throughout the entire tree, since all logical nodes must see it. In addition, the PE's are
connected locally, perhaps in a grid, to facilitate load balancing. At the end of each match phase, the
entire machine executes a load baiancing algorithm: each PE passes some of its newly generated logical
ncdes to its neighbors, choosing the destination PE’s by some criterion unspecified by the researchers.

Keily and Seviora simulated the performance of their machine by simulating the steady-state execution
of a single repetitively-fired production. They abtained timings from a register-transfer-level simulator and
found a speedup of 2.5 with 4 PE's and 4.5 with 16 PE’s. They claim that their machine has the potential
to speed up production systems by a factor of 350, the average number of comparisons performed while
processing the two-input nodes in the average execution cycle in Gupta's study [15].

Several questions about the performance of Kelly and Seviora’s machine remain unanswered. The
tree-structured bus, though it is asynchronous, must depend on buffers at each PE for its asynchrony.
Since buffers are finite, will the variance in processing time at each PE (processing time must vary in spite
of the load-balancing procedure) have a synchronizing effect? Parallelizing the search of a list by
distributing its elements and using many processors does speed up the search, but so can hashing
techniques, which use only one processor. How much speedup will distributing the contents of memory
nodes contribute over hashing them? Also, logical node migration implies code migration as well, since
the tests for a logical node migrate with it. How much does code migration increase the communication
overhead of the machine? Finally, the potential speedup by a factor of 350 is only an upper bound. How
many of the 350 comparisons are inherently sequentiai?

7.2 PESA-1

A group of researchers at Honeywell Computer Sciences Center has proposed and analyzed a
different approach to building a dataflow production system machine. The PESA-1 machine [48, 54] uses
buses and random-number generators to distribute Rete network tokens evenly throughout the machine,
rather than relying on token replication and a load-balancing algorithm to effect distribution.

Conceptually, PESA-1 is just a bus-based distributed-memory machine built of custom processors.
Each PE stores in its local memory all the code for evaluating the production system. PESA-1 executes a
distributed Rete match algorithm; the algorithm's execution consists of a series of token creations and
node activations. A node is activated when a PE storing part of that node receives a token tagged with
the node’s ID. If the new token matches the tokens stored in the PE, the PE generates new combined
tokens and broadcasts them on the bus. For each new token, the creating PE also generates a
destination PE number, using some random number generator. Thus in this distribution scheme, each
PE has a random selection of Rete match tokens from all Rete network nodes. The authors do not
discuss the processing of not-nodes, but presumably they can be handled as in the Waterloo dataflow
machine.

PESA-1's actual architecture and algorithm are somewhat more complicated. The PESA-1 PE's ars
arranged in levels; at each level i, two shared buses connect it with level i+1 and level i-1. The levels
correspond to levels in the Rete match network, and the number of PE's at each level decreases with
increasing level number, as Gupta's statistics indicate that the Rete match creates fewer tokens in each
successive matching level. If the compiler generates a Rete network with more levels than there are
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levels in PESA-1, the compiler folds the network ‘o make it fit in the machine. When a PE creates 3
token, it tags it not just with its destination PE, but alsc with a level number.

Simulations with an instruction-level simulator predict an execution rate of 25K working memory
element changes/second on a small program (10 productions) and a configuration of 4 PE's in the first
level, 32 in the second, 4 in the third, 2 in the fourth, and 1 in the fifth. Analyses of bus contention predict
that a bus with a 100-nanosecond cycle time (the same cycle time assumed in the Production System
Machine) should be able to handle 160K WME changes/second, so bus contention should not be a
limiting factor for PESA-1.

7.3 Oflazer’s machine
Kemal Offazer [41] proposes a tree-structured machine to execute a variant of the Rete match
algorithm that saves all nonredundant state information, and provides some performance projections

derived from simulations.

Recalil that for each production, the Rete match saves the relations (i.e. ordered k-tuples of WME's)
satistying each prefix C, & ... & C, of the production's LHS. Oflazer proposes an algorithm that, for each
production, saves the relations satisfying all subseguences Ci1 & ... & C‘x of the LHS. Oflazer terms a
member of one of these relations an instance element. Although a change to working memory can cause
changes to many of these relations, most of the processing of these changes can be done in parallel,
Oflazer calls a subsequence of an instance element a redundant instance element, since the state
information it contains is duplicated in the larger one. His algorithm does not save redundant instance
elements. Unfortunately, changes to WM can create redundant instance elements, and eliminating them

must be done sequentially.

Ofiazer proposes a tree-structured distributed-memory muiticomputer to execute his algorithm. The
proposed machine has several hundred fast processors at the leaves and specialized switches at the
interior nodes. The algorithm distributes the stored state for a production among the leaf processors of
some subtree, and each processor stores part of the state of a number of productions. During the match
phase, processors make changes to their stored state in response to each working memory change, and
communicate through the I/Q switches at the interior nodes in order to eliminate redundant instance

elements.

Results from simulations of three of the OPS5 programs Gupta studied indicated that 512 5- to 10-
MIPS processors should execute the systems at about 2200 to 7000 WME changes per second.

The most serious difficulty with Ofiazer’'s algorithm is the potential for an exponential explosion of the
size of the saved state. As a remedy for this problem, he suggests splitting productions with many CE's
into several productions with fewer CE’s each, and connnecting them with message CE's. Unfortunately,
this remedy serializes some cf the processing, and increases the number of productions fired in a

program run.
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8 Parallel Rule Firings
A final source of parallelism in production systems is sometimes called application parallelism 18],

which may consist of multiple threads of control or of firing many non-interfering rule instantiations
simultaneously. Several groups have considered multiple rule firings. While their resuits have generally
been inconclusive, their methods promise to have some influence on production system architectures.

D. I. Moldovan and F. M. Tenorio [63, 35, 36] have studied the problem of partitioning production
systems in order to minimize communication among partitions. They identify four types of dependencies
between productions, which they term output dependence, interface dependence, input-output
dependence, and input dependence. Only two types of dependence prevent simultaneous rule firings:
input cependence, where one production’s actions destroy the preconditions for another production's
firing, and input-output dependence, where one production creates preconditions for another. When two
rules cannot fire simultaneously, they must be in the same partition, or there must be communication
between their respective partitions. The authors built a simulator that estimated total execution time,
taking into account synchronization constraints and communication costs for various networks, and c!aim

that a 16-processor system should execute 4000 rule cycles per second.

One problematic aspect of Moldovan and Tenorio's research is that it derives partitionings that are very
different from Oflazer's. Oflazer's methods, which addressed load-balancing problems, placed similar
productions into different partitions. But similar productions are likely to have similar pre- and post-
conrditions, and hence to have dependencies. Oflazer's partitioning trades communication (broadcasting
working memory changes to all partitions in the hope that each change affects all partitions) and storage
(replicated working memory elements) for load balancing, while Moldovan and Tencric's partitioning

seems to do the opposite.

Toru Ishida and Saivatore Stolfo have anaiyzed dependencies and synchronization requirements in
production systems in [23, 24]. They also propose a framework for multiple rule firings on tree-structured
machines.

They construct a graph with one vertex for each production and working memory class and plus- and
minus-labeled directed edges between productions and working memory classes. The graph contains an
edge from a production to a working memory class if that production can create (+) or destroy (-) a
working memory element of that class. Likewise, the graph contains an edge from a working memory
class to a production if that class appears in a positive (+) or negative (-) condition element on the LHS of
the production. They distinguish three classes of interactions between productions. Suppose P and Q
are two productions. |If, for every working memory class W such that P has a + edge to W, there is no
ecge, or athers is a + edge from W to Q, then P and Q can be fired in parallel. If there is a class W such
that P has a + edge to W, but W has a - edge to Q, then P and Q may not be fired in parallel, since firing
P may destroy Q's execution environment. Finally, if there is a class W such that P has a + edge to W,
while Q has a - edge to W, then P and Q cannot be fired in paraliel, since the result may not be the same
as any serial firing of P and Q.

Ishida and Stolfo next designed a hierarchical partitioning algorithm intended to maximize parallel
execution. Applying this algorithm to one production system whose synchronization analysis had been
improved manually, they found that they could fire an average of seven productions in parallel. Based on
this splitting algorithm, they propose a scheme for executing multiple rule firings in parallel on a tree-
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structured machine such as DADO.

An unresolved problem in the work of both groups is ihe consistency of their multiple-firing schemes
with standard conflict resolution strategies. For instance, suppose that instantiations of rules P and Q
both exist, but that the conflict resolution strategy favors P's instantiation. Suppose further that firing P
creates a working memory element that creates another instantiation of Q, and that conflict resolution
selects Q's second instantiation for firing. Then the work of Ishida and Stoifo allows P's instantiation and
Q's first instantiation to fire simultaneously, while sequential execution with conflict resolution fires P's
instantiation, followed by Q's second instantiation.

A. O. Oshisanwo and P. P. Dasiewicz propose in [42] a heterogeneous production system machine,
MAPPS, and a scheme for allowing muitiple rule firings. They propose a run-time check for conflicting
instantiations, and present high performance predictions for a distributed Rete algorithm running on the

machine.

The MAPPS machine comprises three sets of PE's. The first set executes constant tests, which are
distributed statically among it. The second set consists of clusters of PE's sharing common memory
within a cluster but communicating between clusters on a bus; each cluster executes the two-input tests
for a set of productions, which constitutes a subset of a partition. The third setis a tree of PE's for conflict

resolution and execution of multiple rule firings.

Oshisanwo and Dasiewicz state that an (unspecified) statistical model of production systems based on
Gupta's statistics gave simulated execution times of 10K to 19K working memory element changes per
second. They are now working on a register-transfer-level simulator of the machine.

Unfortunately, the authors do not present the details of their run-time strategy for avoiding the firing of
conflicting rules. They seem to imply that the cost of the run-time checks involved is linear in the number
of partitions, the number of condition elements in each production, and the number of working memory
elements created or destroyed by each rule. Since each pair of instantiations must be checked for
contlicts, the obvious algorithms have costs quadratic in the number of partitions. If the number of
partitions is large, this check is likely to be expensive, and a major bottleneck in the machine. rtitions.

9 Conclusion
This paper has presented descriptions of proposed production system architectures classified

accorging to properties of the aigorithm(s) each is designed to execute. AImost no consensus can be
ciscerned about any aspect of production system architecture or method of parallelizing the match
computation. The proposed architectures include shared- and distributed-memory machines. Among the
distributed-memory computers, PE's communicate through buses, interconnection networks of various
topologies, or a combination of the two. Researchers have proposed homogeneous and heterogeneous
machines, both SIMD and MIMD, with processars ranging from single-bit ALU's to powerful custom 32-bit
chips. The proposed algorithms occupy several points in the state-saving spectrum, although most are
parallelizations of the Rete match. Parallel versions of the Rete match aigorithm parallelize different parts
of the computation. The algorithms display tradeoffs between the number of parallel tasks (inversely, the
granularity of each task) and delays due o communication, synchronization, and scheduling constraints
and overheads. Each parallelization technique distributes some of data structures and replicates some

data, as displayed below.
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Figure 3: Taxonomy of Parailel PS Algorithms

Scheme Distributed Replicated

Rete Match

Rule-level parallelism PM Alpha-memories
Sequential node activations, Contents of Code
paraliel processing of each alpha- and beta-memaries (possibly at runtime)
Paralle! node activations, One- and two-input tests Alpha- and beta-memories
sequential processing of each (statically or dynamically (if cached)

) distributed)
Parallel node activations, Contents of Code
parallel processing of each alpha- and beta-memories
Other
Distributed TREAT PM, alpha-memories, WM

confiict set

State-saving All partial instantiations Code, WM
Paralle! rule firings set of RHS Code

The wide range of parailsl algorithms for PS execution stems partly from ignerance about the run-time
behavior of production systems. In particular, questions such as how much state a production system
interpreter should save, and how parallelizable production systems are, still lack definitive answers.
Miranker's comparisons of TREAT and Rete [31, 33] show that, for at least some OPS5 production
systems, maintaining the state saved by Rete is computationally more expensive than throwing away
partial instantiations that do not form part of a complete instantiation, and recomputing them as
necessary. Although Gupta's statistics indicate that for the systems he studied, most changes to working
memory caused changes to the stored state of some 26 productions, the size of his sample was quite
smali--he published statistics on only twelve production systems, all written in OPSS5. Although he tried to
select a representative sample of OPSS5 programs, the phenomena he noted may be artifacts of a
programming style dictated by the language (cf. [32, 65]). Also, the number of affected rules in each PS
cycle is closely related to the number of changes to WM in each cycle. Firing several rules in each cycle
can increase the number of changes to WM, but semantic probiems involved in multipie rule firing must

still be resoived.

The performance projections offered by various research groups do not go far toward establishing
sound bases for comparing different machines. The projections are based almost entirely on simulation
results, in some cases at a register-transfer lavel, in others at the level of events such as node
activations. Some working prototype machines (such as DADQ) exist, but few performance
measurements for them have been published. Device technology and processor ¢ycle time are important
determinants of performance, but each research group assumes different values of these parameters. To
make matters worse, performance measurements on prototypes cannot be compared directly with
performance projections, because the prototypes may not use current technology. Finally, the gifferent
degrees of rule compilation assumed in different machines, and the confounding role of the interpreter's
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base language, make comparisons even more difficult.

Even if the various performance projections were normalized and directly comparable, most of them
would still be inadequate for evaluating the proposed machines. Simuiations at the register-transfer level,
for example, give very accurate timing information, but they must be run on very small data sets, and can
simuiate only very small systems. Conclusions based on these small systems cannot be generalized to
very large systems in the absence of statistical and worst-case knowledge about their behavior. On the
other hand, simuiaticns driven by events such as Rete node activations can give information about much
larger sysiems, but the resuits are only as general as the data driving the simulations are representative.
Statistical models of production system behavior offer generality, but only the MANJI group have
constructed such models, and only of bus contention in their machine (which is probably not its

performance-limiting factor anyway).

Most published analyses of production system machines omit two important evaluation criteria:
generality and efficiency. Production system machines should be general--capable of efficient executicn
of more than OPS5 programs--because not all production systems are OPS5 programs. Performance
evaluations of these machines should consider nct just throughput, but should also include studies of

utilization and efficiency.

In summary, although many interesting algorithms and machines for acccelerating production system
execution have been proposed, it is impossible to use predict how well they will perform on real systems.
Furthermore, even though most of the proposed machines are designed to execute one language
(OPSS5), it is impossible 1o conclude which is fastest. Given the large number of proposed machines, and
the importance of speeding up production systems, a more systematic and general evaluation is required.
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