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Abstract 

The recent work on perception and measurement of visual motion has con
sistently advocated the use of a hierarchical representation and analysis. In 
most of the practical applications of motion perception it is absolutely neces
sary to be able to construct and process these hierarchical image representations 
in real-time. First, we discuss a simple scheme for coarse motion detection that 
highlights the capabilities of the PIPE image processor, showing its ability to 
work in both the spatial and temporal dimensions in real-time. Secondly, we 
show how this architecture can be used to build pyramid structures useful for 
motion detection, again emphasizing the real-time nature of the computations. 
Using the PIPE architecture, we have constructed a Pyramid of Oriented Edges 
(POE) which is a logical extension of Burt's pyramid and also a version of Mal
lat's pyramid. The results of these algorithms are available on a video tape to 
highlight their real-time performance on moving images. Third, we propose a 
new method using PIPE that will allow dense optic flow computation and which 
relates the intensity-correlation and spatia-temporal frequency based methods 
of determining optic flow. 

'Current address: Robotics and Flexible Automation, Philips Labs. Briarcliff Manor. N. Y. 
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1 Introduction 

:"lany basic image processing and scene analysis operations can be performed more 
efficiently and robustly using multi-resolution representations. Because of their hi
erarchical organization and local interconnection patterns, they form the basis of 
very simple and efficient algorithms for low-level image processing operations and 
thus render substantial robustness to the higher-level algoritluns via the coarse-ta
fine strategies. Recent studies in psychology reveal that a pyramid is a good model 
for early stages of human vision and several such multi-resolution representations 
have been described in the vision literature [Burt 84], [~lallat 87], [Crowley 84], 
[Shneier 84]. Our interest in pyramid-representations is because of their promise in 
the area of detection and measurement of visual motion in the form of optic flow 

[\Vaxman 84]. Optic flow depicts the 2-D projections of the 3-D scene velocities on 
the projection surface. Recent developments in optic flow computation have be
gun to identify the potential of hierarchical representations and processing. Glazer 
[Glazer 87] extensively investigated the idea of using hierarchical schemes for rna
tion measurement. Recent work by Anandan [Anandan 86b] uses Burt's [Burt 84] 
Laplacian pyramid for hierarchical correlation based matching to compute the optic 
flow over two successive image frames. Heeger [Heeger 87b], in his recent work on 
optic flow using spatia-temporal filtering, alludes to the possibility of using multi
resolution schemes for more robust results. 

The objective of this paper is three fold. First, we discuss a simple scheme 
for coarse motion detection that highlights the capabilities of the PIPE image pra
cessor, showing its ability to work in both the spatial and temporal dimensions in 
real-time. Secondly, we show how this architecture can be used to build pyramid 
structures useful for motion detection, again emphasizing the real-time nature of 
the computations. Using the PIPE architecture, we have constructed a Pyramid 
of Oriented Edges (POE) which is a logical extension of Burt's pyramid and also 
a version of ~allat 's pyramid. Third, we propose a new method using PIPE, that 
will allow dense optic flow computation and which exploits the dual nature of the 
intensity-correlation and spatia-temporal frequency based methods of determining 
optic flow. This method is based on a spatiotemporal extension of the spatial POE 
mentioned above. The main point of this paper is to motivate the real-time compu
tation of spatia-temporal filters. The algorithms discussed in the paper are available 
for viewing on a video tape that shows their real-time response. 

The organization of this paper is as follows: Section 2 describes the PIPE 
architecture, section 3 discusses using the PIPE for temporal filtering of motion. 
section 4 motivates the use of pyramids in motion detection and presents results 
of two such pyramid implementations, and section 5 motivates a new model for 
real-time motion detection that links spatial-temporal frequency based methods 
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and intensity-correlation based methods for optic flow detennination. The POE is 
intended to serve as the linle 

2 The PIPE Architecture 

The PIPE machine [Kent et al. 85] is representative of a number of high speed, 
pipelined processors that are being used for vision applications. \Ve briefly review 
its architecture here and show why it is a suitable target for the motion detection 
algorithms we are implementing. It is a multi-stage processor designed to process 
images at video-rates. Each stage in the system, called a Modular Proce3sing Stage 
(MPS), is designed so that all input, processing and output are completely syn
chronous with the video-raster and thus allows a complete image to be treated as 
one data structure. A schematic diagram of the details of the architecture is shown 
in Figure 1. Figure la shows the connectivity of the eight stages. There is a forward 
path connecting the output of each stage to the input of the next stage, a backward 
path connecting the output of each stage to the input of the previous stage and a 
recursive path connecting the output of em each stage to its own input. In addition, 
there are six video buses to connect the output of any stage to the input of any 
other. Each of these data-paths is eight-bits wide .. Images can be made to stream 
between stages, spending one cycle (1/60th of a second) in each stage for processing. 
The hardware modules available in each stage include: 

• Two image buffers, 256x256x8 bits each, for storing images. 

• Two neighborhood operators to do any arbitrary 3x3 or 9xl convolution on 
the complete image. 

• Look-up table operators to do any arbitrary point transfonnation operation 
on the complete image, such as multiplying each pixel in the image by 2 

• Three ALU's to do simple operations on two images, such as subtracting one 
image from the other, pixel by pixel. 

• A two valued function module (TVF) that is a very powerful tool to do any 
arbitrary operation on two images, or to perform arbitrary image warping 
operation operations, such as rotating an image by an arbitrary angle. 

• Automatic squeeze and zoom image operations to reduce or enlarge an image 
between processing cycles. 
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The ability of the PIPE to process an entire image in 1/60th sec. coupled with 
its ability to pipeline images and move them forward, backward. and recursively in 
time makes it especially suitable for implementing spatio-temporal filtering. 

3 Temporal Filtering for Motion Detection 

In spatial image processing, a popular edge detection method due to Marr and 
Hildreth [1-Iarr 82] is to calculate the Laplacian of a Gaussian filtered image. The 
Gaussian part of this separable operation is used to smooth the image, after which 
the Laplacian operator generates essentially a second derivative response in the 
smoothed image. The zercrcrossings of this second derivative operator are then used 
to find edges in the image. An analog of this operator in the temporal domain can 
be approximated by taking a second derivative operation on a spatially smoothed 
input image (Figure 2). The temporal operator can be extended over a number of 
successive frames and zercrcrossings isolated from it. To implement such a filter on 
the PIPE, three successive images (using every other field for spatial consistency) 
are spatially smoothed with a Gaussian filter (note: more images in the temporal 
dimension could be used with a correspondingly longer latency in the processing 
cycle). The three images are then temporally filtered on a per pixel basis using a 
mask that finds second derivatives over three images. The forward, backward and 
recursive paths allow the spatial processing to be carried out in three successive 
stages and then the three consecutive spatially filtered images can be combined via 
the three paths described above. This concurrency is one of the key aspects of real 
time implementation. 

Once the second derivative response is calculated, the zercrcrossings can be iscr 
lated using a binary neighborhood operator that looks for sign changes across a 
pixel's 3 x 3 neighborhood. The zero-crossings are somewhat noisy, with "oscilla
tory" crossings in areas of weak temporal edge strength. Therefore, a simple energy 
threshold is used to insure that zercrcrossings found by the algorithm are not noise 
artifacts. The results of such a procedure are shown in figure 3a and 3b. Figure 
3a is an image of the Utah/MIT dextrous hand in our laboratory. Only two of the 
three fingers visible in the input image (top and bottom fingers) were set in motion. 
while the middle finger was kept stationary. This is apparent in figure 3b, where 
the contours of the top and the bottom fingers depict motion. This takes 2 PIPE 
cycles, which provides a new set of zercrcrossings every 1/30th sec. with a latency 
of 6 PIPE cycles (l/lOth sec.). These speeds show promise for real-time object 
tracking in robotics, and this method has been used in our lab to track a mO'\ring 
object with a camera mounted on a robot arm [Allen et al. 88]. 
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4 Building Pyramid Structures in Real-Time 

4.1 Pyramid Structures for Motion Detection 

Researchers in motion detection have made extensive use of hierarchical, multi
resolution schemes to detect optic flow. An example of optic flow detection us
ing intensity-correlation methods is the recent work of Anandan [Anandan 86a]. 
Intensity-correlation based techniques essentially use two successive images from an 
image sequence. They use windows of defined size around all (or some selected) 
pixels in the first image to look for a pixel in the second image, which has a similar 
intensity structure in the window around it. This matching process suffers from a 
combinatorial explosion which can be reduced by using a hierarchical model. This 
technique was successfully used by Anandan, who used Burt's Laplacian pyramid 
in the matching process. 

Pyramids have also been discussed by researchers using spatia-temporal fre
quency methods for motion [Adelson and Bergen 85], [\Vatson and Ahumada 85]. 
Heeger's recent work, [Heeger 87bJ using the spatia-temporal frequency approach, 
made use of Gabor filters for determination of optic flow. He alluded in his work 
that a multi-resolution scheme such as Burt's pyramid can be used to construct fam
ilies of Gabor filters that will give a more robust estimate of optic flow as compared 
to the current version of his model, that uses only one such family of Gabor filters. 
He also pointed out that the pyramid structure proposed by Mallat [Mallat 87J has 
potential applications in his model, because it offers spatial directional selectivity. 
\Ve describe below a new pyramid scheme, called the Pyramid of Oriented Edges 
(POE) that is functionally similar to Mallat's pyramid, but is computationally much 
less expensive. 

4.2 The Pyramid of Oriented Edges (POE) 

The computational scheme to construct the POE is a very logical extension of Burt's 
pyramid representations. Burt's representations consists of two pyramids, namely 
the Gaussian pyramid (G) and the Laplacian pyramid (L). The Gaussian pyramid 
contains low-pass filtered copies of the original image, at successively decreasing 
resolutions while the Laplacian pyramid contains band-pass filtered copies of the 
original image. A representative example is shown in Figure 4 (after Burt). The 
POE works on a single image and decomposes it into several "channels", each 
channel sensitive to spatial edge features in a specific direction. Functionally, each 
channel is an orientation selective filter in space only. 
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The computations involved in constructing, say, Li and G i+1 , given G i (The 
subscript i refers to the ith level of the pyramid, the original image Go being at 
level zero), can be visualized easily from Figure 4, which shows spatial frequency 
responses of Gaussian filtered images. In this figure. H and V refer to a Gaussian 
filter in the horizontal and vertical direction, as defined by Burt. The characteristic 
property of these filters is that the spatial frequency content of the filtered image is 
half of that of the input image. Thus. for example, if an image is convolved with H, 
the frequency content of the filtered image, in the horizontal direction. is reduced 
to half its original value. This is depicted in Figure 4(i). Similarly, Figure 4(ii) 
shows an image (G i ) filtered with H and V successively. Since the overall frequency 
content of the resultant image is half the original value it is justified to decimate 
the resultant image by sampling every other pixel, both along rows and columns, 
\vithout introducing any aliasing. This decimated image is Gi+1' This decimated 
image can be expanded to twice its current size by an EXPAND operation which 
we have implemented that utilizes the PIPE's ability to filter an image and increase 
its resolution within one video cycle. If we subtract the EXPANDed version of G i+1 

from G i (accomplished in one video cycle using a PIPE ALU), what happens in 
terms of the frequency content is displayed in Figure 4(iii). It is easy to see that the 
resultant image is nothing but L i , a band-pass-filtered image depicting the edges. 

, 
A qualitative description of the extension proposed for orientation selectivity 

can be easily visualized from Figure 5. Basically Li is convolved with H, V and 
(l-H-V) respectively. The results are shown in Figure 5b, 5c and 5d respectively. 
It is apparent that these three images depict the spatial edge features oriented in 
horizontal, vertical and diagonal directions respectively. These three images, thus 
comprise Level; of the POE. The three images at the Leveli of the POE, which we 
denote by LHi , LVi and LDi ( standing for images depicting horizontal, vertical 
and diagonal intensity gradients respectively), can be quantitatively described as 

LHi = Li*H 

LVi = Li * V 

LDi = Li - L j • H - Li * V 

The extension of this model to a general scheme with K channels instead of 
the three described here is not included here for purpose of brevity. The interested 
reader is referred to [Singh and Ranganath 871 for details. Section 5 describes a 
new model that develops a spatiotemporal extension of the spatial POE described 
above and shows how it can be applied to compute dense optic flow. 
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4.3 Doing it in Real-Time 

The spatial operations used in the model described above comprise convolutions 
over small spatial neighborhoods, a fi.xed unary operation on all pixels of an image, 
a fixed binary operation on all the corresponding pixels of two images, subsampling 
to reduce image size or pixel replication to expand image size. They point to an 
SIMD approach to spatial parallelism that is supported by the PIPE, as described 
earlier. 

For Burt's pyramid and the POE, the current implementation computes three 
levels of the Gaussian pyramid, two levels of the Laplacian pyramid and one level of 
the 2-D POE. It takes four cycles of the PIPE to do all these computations yielding 
a new pyramid every 1/15th of a second, i.e., at one fourth of the standard video 
rate. Figure 6a shows Burt's pyramid constructed on PIPE and the associated 
Laplacian band pass pyramid. The oriented edges produced by the POE are able 
to be extracted in real-time as shown on the video tape. 

It is noteworthy that Mallat's pyramid [Mallat 87J is functionally identical to 
the POE with three channels described above. It however uses Quadrature Mir
ror Filter (QMF) pairs that are computationally much more expensive than the 
simple Gaussian filter used in the POE. QMF pairs, however provide very good 
"tuning" and hence their 3-D extensions to include the temporal dimension have 
potential application to optic low computation. Heeger [Heeger 87a] considers them 
a possible replacement for the Gabor filters he used in his model. \Ve are currently 
investigating the issue of extending Mallat's pyramid to three dimensions. 

For Mallat's pyramid we have implemented a version that constructs one level of 
the pyramid. \Ve used a 9xl low-pass and band-pass QMF. Since a 9xl convolution 
is currently not available on the PIPE, it was implemented using the 3x3 masks by 
the technique described by [Singh 87J. The current version uses 20 cycles, yielding. 
a a new pyramid every 1/3 sec. However, it has been calculated that with the 9xl 
convolution mask available in hardware, the same computation can be done in 6 
PIPE cycles, i.e., a new result is available every l/lOth sec. Figure 6b shows the re
sults for one level of Mallat's pyramid. Image-l(l) shows the low-pass operation and 
Image-h2(1) shows the high-pass operation sensitive to diagonal direction. Again, 
oriented edges are available in real-time as depicted on the video tape. 

5 3-D Spatio-Temporal Filtering 

Having implemented both spatial and temporal hierarchical processing on a real
time architecture, we are now ready to propose a model for extraction of dense 
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optic flow velocities in real-time. As discussed in [Adelson and Bergen 85]wh';'{:='"'--'':-=- " 
is needed to detect and measure motion is a set of motion sensitive filters that 
are oriented in the space and time dimensions, and a set of procedures to extract 
the optic flow from the relative magnitude of the energy content of these filters. 
Most of the reported research [vVatson and Ahumada 83], [Fleet and Jepson 85]~ 
["Watson and Ahumada 85J, [Adelson and Bergen 85], [Singh and Ranganath 87J de-
scribes only how to con struct motion sensitive filters, without a detailed treatment 
of how to extract optic flow, given the motion sensitive filters. In this section, we 
describe a 3-D extension to the POE, that provides a family of filters, each mem-
ber of which occupies a band of spatio-temporal frequencies that is oriented in the 
spatio-temporal frequency space. Seen in the space-time domain, each member of 
this family of filters is sensitive to an edge with a specific orientation in space-time 
and hence is motion-sensitive. We will first describe a generalized version of the 
POE that can be used to measure image motion in x-y plane. In order to keep the 
discussion simple, we will only describe how to construct one level (at the highest 
resolution) of the POE. 'Ve will then simplify the model that allows image motion 
only in x-direction and show how to construct the complete POE and measure the 
image motion in x-direction. We will also discuss some of the practical aspects of 
the model. 

Let a 3-D "difference of Gaussians" (DOG) be taken on an image sequence. 
Theoretically this is a straightforward extension of Burt's pyramid to include the 
temporal dimension. The 3-D DOG can be expressed as: 

DOG(z) = G(z,O'c) - G(z, O'~) 

'Vhere z is the vector [x, y, t] and O'c and O'~ are the center and surround spreads of 
Gaussian, represented by: 

Taking the Fourier transform of both sides of the DOG definition, we get: 

where the subscript f denotes the Fourier transform and W denotes the vector 
[wr' W~" Wt]. Now we take a weighted average of spatio-temporally offset DOG's 
as shown below. In simple terms, this step is equivalent to smoothing, along a 
particular direction in [x, y, t] space, the image resulting from the 3-D difference of 
Gaussians of the original image sequence. This operation can be expressed as: 

1 1 1 
C(z) = -DOG(z - ~z) + -DOG(z) + -DOG(z + ~z) 

4 2 4 
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"Where ~z is the vector [~x,~y,~t]" Thus, C(z) can be expressed as: 

C(z) = F(z) * DOG(z) 

\Vhere F( z) can be represented as: 

1 1 1 
F(z) = -8(z - ~z) + -8(z) + -8(z + ~z) 

4 2 4 

In Fourier domain, we have: 

This can be expanded as: 

which is the same as: 

The final description of C( z) in the Fourier domain shows that it is a filter 
oriented in in the spatio-temporal frequency space, the orientation depending on 
the offset ~z" This can be understood in a simplified setting where the image 
motion is allowed only in x-direction so that z = [x, t] and W = [wr' w,], \Vith 
these assumptions, the function CI(w) can be plotted as shown in Figure 7. It is 
apparent that the resulting filter is tuned to a band of spatio-temporal frequencies. 
The orientation of the band in the [wrWt] plane can be varied by controlling the 
relative offset in x and t, i.e., by controlling the ratio ~ 

\Ve now turn to the practical aspects of this model, suggesting a hierarchical 
method that we are currently implementing to extract optic flow. In a simple 
implementation that allows image motion only in the x-direction, five successive 
images are taken from an image sequence and a spatial Burt's Laplacian pyramid 
is constructed on each one of them. Now a 5-3 temporal DOG ( the notation 5-3 
refers to the spreads of the of 5 and 3 pixels for "surround" and "center" Gaussians 
respectively) is done on the 5 images at each level of these pyramids resulting into 
a single pyramid. Each level of this pyramid has a spatio-temporal DOG image. 
Now, the following operation is done at each level of the pyramid to get a spatio
temporal extension of the POE. The image is shifted in x-direction by one pixel 
towards and towards the right. We now have three images for each level of the 
pyramid - left shifted image, original image and the right shifted image. They are 
averaged with weights of 1/4, 1/2 and 1/4 respectively. The resulting pyramid is 
the spatio-temporal extension of the POE. It is important to note that a shift of 
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one pixel in the second level of the pyramid is equivalent to a shift of two pixel at 
the full resolution and so on. Thus, each level of the pyramid provides an image 
convolved with C( z) described earlier, but the constant D.t/ D.x is different for each 
level of the pyramid. This results in a family of spatia-temporally oriented filters, 
each member of the family having a different orientation in the spatia-temporal 
frequency space. Based on the prior discussion of the relationship between image 
motion and spatia-temporal orientation, the spatio-temporal orientation of the filter 
with maximum energy content corresponds to the image motion. vVe are hopeful 
that this method will be able to produce robust optic flow measurements in near 
real-time. 

6 Conclusion 

In this paper we have shown the PIPE's ability to detect motion through both 
spatial and temporal filtering, and have described a hierarchical image structure, 
the POE, that can be used in motion detection. We have also emphasized the 
need to implement the basic structures required for motion detection in real-time. 
For this purpose, we have implemented a variety of fundamental image operations 
for motion detection in real-time. They include a spatia-temporal filter for coarse 
level motion detection, the POE and the functionally similar Mallat's pyramid. As 
a prerequisite to the POE, we have also implemented the PIPE versions of Burt's 
pyramid. It is noteworthy that this implementation is useful not only for our spatia
temporal frequency based model, but can also serve as a "core" for the real-time 
implementation of optic flow computation schemes based on intensity-correlation 
based methods such as that of Anandan. 

vVe have also developed a hierarchical model for dense optic flow computation 
that can exploit the PIPE architecture. We are currently implementing this method 
and hope to be able to extract robust optic flow measurements using this model, 
which links both the spatia-temporal frequency and intensity-correlation methods 
of motion detection via the spatia-temporal version of the POE. 
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(Only top and bottom fingers of the UTAH-MIT Dextrous 
Hand seen here were set into motion) 
(b) Image Velocity (Note that the motion is depicted 
only at the contours of the two fingers in motion. 

(a) (D) 

Figure 5: Constructing OrientatiOn Selective Filte .. 
By Directional Smoolning of LaplacIan Filter 
(a) Tne Frequency Content of L(i) 
(D) The Frequency Content 01 L(i)'H 
(e) The Frequency Content 01 L(irV 
(d) The Frequency Content 01 L(i) • (1 -H'V) 


