
Performance Evaluation of
Global Reading of Entire Databases

Calton Pu, Chri"tine H. Hong,! and Jae M. Wha

Department of Computer Science
Columbia. University

Abstract

Using simulation and probabilistic analysis, we study
the performance of an algorithm to read entire data
bases with locking concurrency control allowing mul
tiple readers or an exclusive writer. The algorithm
runs concurrently with the normal transaction procesa
ing (on-the-fly) and locka the entities in the database
one by one (incremental). The analysis compares differ
ent strategies to resolve the conflicts between the global
read algorithm and update. Since the algorithm is par
allel in nature, its interference with normal transactions
is minimized in parallel and distributed databases. A
simulation study shows that one variant of the algo
rithm can read the entire database with very little over

head and interference with the updates.

1 Introduction

In many situations we would like to read an entire data
base (usually called a checkpoint). Data in a database
must satisfy certain aaaertioa. called co~j,tenc, can
straant.,. In order to preserve data coruistency under

concurrent access, the usual lockin, concurrency con

trol allows mUltiple readen or an exclusive writer. A

common assumption in the literature it that a consis

tent and complete picture can be obtained only with

a quiescent database. The reaaon is that 2-pha.ae lock

ing [2]-necessary for consistency- would require a naive
reader of the entire database to lock aU data at leaat

for a moment, thus updates must stop.

I Current addrfta: AT~T BeU La.b.. Middletown. NJ.
Thia work h ... been pactially aupported by New Yock 5t.c.e Cen
ter ror TechnolOC' in Computer &nd Wonn&1ion 5ywtema under
grant Number NYSSTF-CAT(87)-5.

We should note that checkpointing in databases that
allow multiple readers and a writer presents no prob
lem. In principle, any database that maintains two
versions of its data can provide this level of concur
rency [1]. However, for efficiency reasons, most prac
tical databases write in-place. It is in these cases that
our work should become useful.

We have previously described an algorithm [7,8] that
can read the database entities one by one (it is nacre
mental), avoiding deadlocks and allowing update activ
ities to proceed concurrently (it works on-the-fir). The
algorithm haa two characteristics that facilitate its im
plementation. First, our algorithm consumes modest
hardware resources; it does not maintain extra copies
of the databaae and produces only sequential output.

Second, no additional disk storage is required, so only

modifications on the concurrency control are needed to
adapt the algorithm to existing database systems.

In this paper, we analyze the different strategies to
resolve conflict. between the global-read algorithm and
update transactiolU. We show that one variant of the
global-read (the Save-Some strategy) avoids aborting

the updates, delaying them very little, and carries very

small system overhead. A simulation study provides
a quantitative confirmation of the qualitative analysis.

The global-read is especially useful in parallel data
bases, since it increa.aes system concurrency (and a~all

ability) at modest resourCe consumption, abundant In

a parallel or distributed environment..

The paper is organized as follows. The global read

algorithm [7] is summarized in section 2 to make the pa
per self-contained. In section 3, we expand on a prevI

ous paper [8] describing in detail the different strategl(~~

to resolve the conflicts and estimate their performance

In section 4, we outline the simulation program writ
ten to study quantitatively the performance of the most
promising strategies. Section 5 outHnes the application
of global-read to database checkpoints, including a sim
ple availability analysis. Finally, section 6 concludes
the paper.

2 The Algorithm

2.1 Definitions and Introduction

A database is a set of entitie.! [2]. Each entity may
be individually read through shared locks or written
under an exclusive lock. We will use the term global
read to denote an incremental query reading the entire
database. Normal transactions on the database will be
referred to as either update tran.taction.! or read-ani,
tran.!actions. Even though data movement may be in
larger chunks (e.g. pages) for I/O efficiency, the lock
granularity of the global-read and normal transactioIll
is the same - entities.

The algorithm haa three part •. Firat, we read entitie.s
one by one. Second, the global-read divides the entities
in the database into two subseu; entitie.s not yet read
(white), and the ones already procesaed (black). Third,

update transactions writing both white and black en
tities are not allowed to conunit, becaUle they cannot
be serialized either before or after the global-read. For
simplicity of presentation, we summarize only the algo

rithm to perform one global-read at a time. Concurrent

global-reads may be used for totalizations and statistics
in addition to checkpointing the databue.

2.2 Basic Global-Read Algorithm

The following data strudUlei are needed in the volatile

storage. as an addition to the lock table:

• One entity color bit per entity. (Entities can only
take one of two "colors". black or white.)

• One paint bit per database. used in a trick to re
paint all entity color bit...

• Accompanying the paint bit we have a global-read

semaphore to guarantee only one global-read runs

at anyone time.

At database (lock table) initialization time, the paint
bit is copied onto all entity color bits. Global-Reads
can start only after all entity color bits agree with the
paint bit. We also assume that the update transactions
will start only after the initialization is complete. In
case of a crash, the recovery consists simply of a re
initialization.

Figure 1 describes the Basic Global-Read algorithm,
which is incremental and worlu on-the-fly. The global
read's consistency is maintained by ensuring that all
update transactions writing both white and black enti
ties (gray transaction.s) are aborted. In order to enforce
this rule, if a global-read is in progress, every update
transaction needs to p888 an additional color te.!t be
fore it can execute and commit. After the acquisition
of all exclusive locks (before commit), the color bits of
exclusively locked entities have to be checked. If all
color bits are the same, the update can proceed, oth
erwise it is aborted. Please note that if no global-read
is executing, all entity color bits are the same and the
updates will always pass the color test. A formal proof
of global-read consistency can be found in a previous
paper [81.

3 Performance of Strategies

3.1 Basic Algorithm Performance

In the previoua paper [81, we have shown that the gray
transactions must be aborted. Therefore the basic al

gorithm is optimal in the sense that it aborts only the
update transactions that cannot be serialized with re

spect to the global-read. However, a simple probabilis

tic analysis shows that the abort rate increases rapidly

with the increasing number of entities being updated.

For simplicity, we assume that the update transac
lions access the entities in the database uniformly. This
assumption ignores the locality of acce88, 80 our anal

ysis is a conservative estimate. Since the interference

exist.. only during an active global-read, let us consider

a database with n entities, r of them painted black.

An update transaction writing on k randomly chosen

•

{ Pre-condition: all entity color bits are the same as the paint bit (black). }
step 1: P(semaphore) { Global-Read runs in a critical section. }

change the paint bit. { This re-paints all entities white. }
step 2: while there are white entities

do begin {This loop paints the white entities black. }
if all white entities are exclusively locked { Optimization. }

request shared lock on a white entity and
wait until lock is granted

else lock any sharable white entity;
read entity, change entity color, release entity lock.

step 3:
end while
V(semaphore)

{ All entities are black, the same as the paint bit. }
{ Let the next checkpoint go. }

Figure 1: Basic Global-Read

en tities does not conflict with the global-read if all k

entities are either white or black. The probability of

this happening is:

(;) (n;r)
Pn.r(k) = ill +~.

Figure 2 shows this probability as a function of the r In
ratio for k = 1,2,3, and 4. Taking an example, the

probability of non-interference of an update writing on

3 random entities, in the middle of a global-read, IS

slightly less than 1 in 4.

For the duration of a global-read, the average prob

ability of abort is equal to the area above each curve

integrated from 0 to 1. After some algebraie trans

formations. we obtain the following expreaaion for the

average probability:

2 n k -1 (r _ i)

P(k) = n + 1 L n (n - i)
rail laO

:"iumerically calculatina the probability for k = 2,3,4,5

we obtain 0.333.0.500,0.600,0.667, respectively. These

numbers will be ~ ill IeCtion 4.3 to validate the sim

ulation program.

3.2 Turn-White Strategies

Besides the abort. there are two basic ways to resolve

the conBicts between global-read and updates (summa

rized in table I). First. we can turn the gray transac

tions whj;e. forcing the global-read to backtrack and

l.0 r----------_
probability
of success

.8

.6

.4

o .2 .4 .6 .8

proportion rln
Figure 2: Non-interference Probability

1.0

read some black entities again. Second, we can turn

the gray transactions black by making them wait. Here.

we shalJ consider the turn-white strategy first. In sec

tion 3.3 we deseribe the turn-black strategy.

The main idea of turn-white approach is to make

the global-read include the updated values from the

gray transactions, serializing them before the global

read. The basie difficulty with this method is that the

black entities in a gray transaction may have been up

dated by some black transactions. Therefore. if we turn

the gray transaction white, we have to find thoee blac"

transactions and turn them white, too.

Since the main advantage of two-phase locking coo

currency control is to serialize database access WIthout

explicitly calculating the dependencies between trans
actions, to maintain these dependencies only for the
global-read will be impractical for two reasons. First,
significant processing overhead will be necessary to cal
culate the dependencies at the transaction commit time
for the locks held by the committing transaction. Sec
ond, considerable main memory would have to be ded
icated to the maintenance of data structures storing
the dependencies. Therefore, we do not consider this
strategy (called Repaint-Some) further.

To avoid maintaining the dependencies, we might re
paint all updated black entities white. This Repaint
All strategy effectively serializes the global-read after
all update transactions. However, towards the end of
global-read, when alm06t all updates are black. global
read may make little progress because of the re-reading.
As soon as the rate of update surpasses that of read
ing in global-read, the global-read will be unable to
complete. Since Repaint-All will not work for large
databases with frequent updates we will not consider it

further.

3.3 Turn-Black Strategies

Compared to the turn-white strategy, the turn-black
approach is easier to implement. An update tran8&C
tion, realizing that a global-read is in progresa. checks
the color of its entities before locking them. If an en
tity is white, the update waita until the entity haa been

painted black. In other words. we prevent the "white"

transactions from turning gray by executing them aa
black transactions. To decreaae the waiting time. the

global-read may be modified t.o read the waited-for en

tities before the idle ones. In lIe, t. fil'1re 1. instead of
requesting a lock on &I1y wbite entity. we look for those

entities with update. waiting and read thOlle first.

:--; ear the beginning 0(a &iobal-read. the above Wait

All strategy may be suboptimal for two reasons. First.

the update transactions that started before the global
read may have already locked a white entity and there

fore cannot turn black. Second. many white trans

actions that could have started and finished as white

transactions now wait to turn black.

Instead of preventing white transactions from turn-

ing gray. an alternative avoids aborting the already
gray transactions by passing their white entities to
the global-read. This Save-Some strategy turns a gray
transaction black by storing the before-images of its
white entities in a buffer, and painting their entity color
bits black. The global-read will see none of the then
gray transaction's updates, which are now all black.
The white entities have been saved in the buffer for the
global-read.

The only implementation complication of Save-Some
is that at the beginning of a transaction. it may not
know whether it is going to be white or gray. Con
sequently, all before-images of white entities should be
saved in a private buffer before they are updated. If the
transaction turns gray. the private buffer is transferred
to the global-read buffer and the appropriate entity col
ors are painted black. At the beginning of the global
read. most transactions remain white. It is only to

wards the middle of the global-read that more tr&Il8&C
tions become gray and buffer transfers become intense.

In a parallel or distributed environment, the global-read
buffer can be distributed among several processing ele
ments. minimizing the interference with normal trans
actions. In partie ular, if multiple disk! tape devices are
available for global-read output. arbitrarily large trans
action loads can be accommodated. We simply add as
many output devices (and ita buffer and processing el
ement) aa the peak gray transaction rate requires.

3.4 Ordered Reading

Since the global-read accesses the disk only for the nec
essary entity reading (and writing if copying the entity).
its main cost is in memory requirements. Specifically.

an entity color bit per entity may occupy significant

areu of memory for large databases. As explained In

the previous paper [8J, reading the database entities In

order allowl the global-read to encode the entity color

bits. thus reducing memory requirements. (The readln~
order may be a key or physical adjacency.)

However. both the turn-white and turn-black strate

gies depend on the ability to paint individual enlily

color bits to avoid conflicts. For example, Save-Some

requires the gray updates to save the white entiti~ Q'''r

the entire database and paint their color bits [\-' ...

Turn-White Turn-Black

STRATEGY} Global Remedy Global Prevention Local Remedy

Tran8action
REPAINT-SOME REPAINT-ALL WAIT-ALL SAVE-SOME Type - '"

,

Wait for white Save before-
Gray Repaint black entities entities to turn images of

black white entities

Wait for all
White - - entities to turn -

black

Keep dependen-
Repaint all Black cies, repaint if - -
black entities necessary

Read again
Read again all Read Read saved

Global-Read selected black waited-for
output

black output
en tities first

before-images

Table 1: Summary of Abort-Avoiding Strategies

Wait-All strategy relies on the speedy reading of global
read, but since the global-read may be delayed more

often in an ordered reading, the waiting of the updates

will be even longer. Since the cost of main memory

has been dropping the trade-off between memory and

response-time would favor Save-Some and Wait-All.

4 Simulation Study

4.1 The Simulation Model

The main motivatioD rcr this simulation study is the

difficulty in the probabilittic analysis of the abort

avoiding strategies. Therefore. the simulation study

starts from the result.! of probabilistic analysis (section

3.1), which are used for validation, and investigates the

(most promising) turn-black strategies.

Since our database is reasonably a.bstract, the sim

ulation model follows closely the assumptions of the

algorithm. A database is a set of entities; it supports

shared read and exclusive write operations. Read-only

tranaactiona do not conflict with the global-read. Even
though they may delay the update transactions, the

net effect is the same as longer updates. Therefore, we

have omitted read-only transactions from the simula

tion model.

The goal of the simulation is to compare different

strategies regarding their throughput, response time,

and number of aborted transactiona. Of the three

strategies being compared, only the Basic Algorithm

abort. update transactions. To obtain the throughput,

we run the simulation and count the number of suc

cessfully conunitted transactions. As we shall see in

section 4.2, we have chosen to measure "time" (clock

ticks between events) indirectly in the simulation prcr

gram. So we estimate the response time by looking at

the average waiting time of each transaction due to the

global-read.

To isolate the above va.riables of interest. we assume

that the database system has a constant multiprogra.m

ming level during the simulation. which starts and ends

With a single run of global-read. To smooth out the

transient at the beginning of the simulation, we create
a number of initial update transactions before start
ing the global-read. M 800n &8 one of these transac
tions finishes, another is created to take its place. So
global-read always execute. with a constant number of
competing update transactions.

Each update transaction locks" entities and releases
them. In the simulation, we do not require significant
amount of work to be performed by the update trans
actions. In other words. we assume the update transac
tions are traditional short transactions, in accordance
to a database that supports multiple readers or an ex
clusive writer. Each successful lock acquisition implies
a read or write, so it is counted as an I/O operation
to the disk by an update transaction. Similarly. each
entity locked by the global-read counts as a read oper
ation plus a write operation.

4.2 The Simulation Program

The simulation model W&.l implemented usinS Concur
rent Euclid (CE) [4J. CE supports concurrent proceuea
and monitors for their synchronization. Global-Read
runs in its own procea, and the other proceaees execute

update transactions. Each CE proces. may be seen &.I a
transaction manager. running on the same or different
physical procesaors. The multiproganuninS (mUltipro
cessing) level in our study is ten. A monitor containins
the lock table maintains concurrency control

If a transaction prOCeM requesta locu being held by

another transaction. then the simulation prosram puta
the requester on a waiting queue. When the lock is re
leased, the first proce81 in the qUetM pta the lock and

proceeds. The waitinl lime is counted in terrTll of im

plied I/O operatioD.l is the acquwtion of locu. We
avoid deadlocu by makiD, updat.e tranaactions lock

the entities in the same order. Thil deadlock avoid

ance may decrease the conflicta with the global-read
somewhat. since randomly choeen entitiello may have

mixed colors but ordered choice would be black. We

use a counter to detect this situation and the number

of transactions in this category is negligible. the reason

being the slow progress rate of global-read - about one

entity traversed for each completed update transaction.

For a run consuming more than a few seconds of CPU
time, the CE kernel scheduling of processes approxi
mates round-robin very closely. Since all of our trans
actions are exactly the same, l~king the same number
of entities and consuming the same CPU resources, we
decided to factor out the CPU part. Instead of us
ing the CE sleep command to count time (which does
busy wait), we use an artificial clock tick. The clock
used is the total amount of I/O operations the simu
lation has counted from all transactions, including the
global-read.

Our I/O model is abstract. Each I/O operation is

counted as a unit of cost. In a sense we are using the
average cost for each I/O operation. Admittedlythia is
a simplification. Using a realistic configuration would
be more precise, but also make the conclusion specific
to the machine we are simulating. The abstract I/O
model applies to just about all conventional machine
configurationa, although at a lesser precision.

An independent monitor maintains the accounting
data. The measurement data collected by the simula
tion program are:

• total I/O operations,

• waiting time per transaction, and

• total number of aborted and conunitted update
transactions.

Accounting data are printed out. in a log file. The statis
tics on I/O operations, waiting time, and update trans

actiona are saved at regular intervala as the global-read

progresae. and calculated at its end.

The entities being locked by the update transac

tions are chosen uniformly from the set of entities by a

pseudo-random number generator. To make the com

parison between strategies more direct, we run the dif·

ferent. strategies with the same seed to the pseudo

random number generator, causing the same sequence

of entities to be locked by all strategies.

4.3 The Simulation Results

Simulation results shown are numbers averaged O\i~r

several runs (between 10 and 20), with the results

0.8

0.6

Probability
of success

0.4

0.2

°-r-----r----,-----~----~-----l
o 0.2 0.4 0.6 0.8

proponion r/rl

Figure 3: Validation of Simulation Program

within the 98% confidence interval

In the first place, we ran the Buic Algorithm to vali
date the simulation program using the analytical result.

from Section 3.1. In this case, we ran each value of It
independently. Each update transaction chooeea It en
titiea randomly from the total (1000) and locka them.
The global-read chooses the next unlocked entity (ac
cording to number) and reads/paint. it. Update trau
actions are aborted if their It entitiea contain both black
and white entities. Simulation result. are shown in the
graph in figure 3. which matchea weU with the theore~
ical values in figure 2.

The main disadvantage ofthe Buie Algoritbm it the
need to abort update transactiona. Both tbe simulated
turn-black strategiea avoid abortin, the update trau
actions. Table 2 sho," ~ abort ratio for It = 1 to 4 of
the Basic Algorithm. The tbeoretical valu~ Call within

the range of values in Table 2. Thil it the leCond valida

tion of the simulation prosnm lain, the probabilistic
analysis.

Once we have obtained the buic valK:J.tion of the
simulation program. we took tbe next variab&e of inter

est. the total amount of I/O activity allowed by eacb

strategy. From figure 4, we can see that of the three
strategies. Save-Some allows consistently high I/O rate,

Wait-All consistently low I/O rate, and the Basic AI-

total UO
(thousands)

10

8

6

4

2

.... , ... ",.,

>

wail'oII -- -- ---

2 3 4 s 6
valuck

Figure 4: Total I/O OperatiollA

gorithm from middle to lowest u It increuea. Since
the multiprogramming level is the 8&Dle for all shat.
giea, the difference in I/O rate reflect. the difference in
cone urrency allowed.

The curves in the grapb admit an intuitive explana
tion. The Wait-AU strategy's constant low I/O rate is

euy to explain. Since we have a relat.ively high trans
act.ion rate, global-read becomes the bottleneck delay
ing the updates waiting for it to paint t.he white entities
black. The Save-Some strategy's constant high I/O rate
is due to it. high throughput, which we will see in fig
ure 6. The decline of the Buic Algorithm I/O rate is
due to the decline of ita throughput a8 It increases. as
shown in table 2.

The second variable of interest is the amount of time
update transactions wait for each other and the global
read. Since we start all the strat.egies with the same

seed for the p~udo-random number generator, we ex
pect the strategy to playa major role in determining
the amount of waiting in the system. Figure 5 shows
that Wait-All dos require the longest waiting time over
the Basic Algorithm and Save-Some. At first, we were
surpri5ed that Save-Some caused as little waiting as the

Basic Algorithm, since the only waiting in the Basic Al
gorithm is between update transactions. But remem
bering that Save-Some allows the update to proc~d
once the white-turned-black entities have b~n plac~

0.8

0.6

Probability
of success

0.4

0.2

°-r-----r----~------~----~-----1
o 0.2 0.4 0.6 0.8

proportion rln

Figure 3: Validation of Simulation Program

within the 98% confidence interval.

In the first place, we ran the Basic Algorithm to vali
date the simulation program using the analytical result.
from Section 3.1. In this case, we ran each value of k
independently. Each update transaction chooses Ie en
tities randomly from the total (1000) and loco them.
The global-read chooses the next unlocked entity (ac

cording to number) and reads/paint.. it. Update trana
actions are aborted if their k entities contain both black
and white entities. Simulation result.. are shown in the
graph in figure 3, which matches weU with the theoret
ical values in figure 2.

The main disadvantage of the Buw: Algorithm is the
need to abort update tran.s&CtioD.l. Both the simulated
turn-black strategies avoKi abortins the update trans
actions. Table 2 shoft the abort ratio for c = 1 to 4 of

the Basic Algorithm. The theoretical values fall within
the range of values in Table 2. Thit it the second valida

tion of the simulation progam tuins the probabilistic
analysis.

Once we have obtained the basic validation of the

simulation program. we took the next variable of inter

est, the total amount of I/O activity allowed by each

strategy. From figure 4, we can see that of the three

strategies, Sa\'e-Some allows consistently high I/O rate,

Wait-All consistently low I/O rate, and the Basic AI-

10

save-some

8

6

total I/O
(thousands) bulc ...

4

>
wau-all

2
-- .. ----

2 3 4 s 6
value k

Figure 4: Total I/O Operations

gorithm from middle to lowest 8.8 Ie increase.. Since
. the multiprogramming level is the same for all strate

gies, the difference in I/O rate reflects the difference in
concurrency aUowed.

The curves in the graph admit an intuitive explana
tion. The Wait-AU strategy's constant low I/O rate is

easy to explain. Since we have a relatively high trans
action rate, global-read becomes the bottleneck delay
ing the updates waiting for it to paint the white entities
black. The Save-Some strategy's constant high I/O rate
is due to its high throughput, which we will see in fig

ure 6. The decline of the B8.8ic Algorithm I/O rate is
due to the decline of ita throughput as .c increases. as
shown in table 2.

The second variable of interest is the amount of time
update transactions wait for each other and the global
read. Since we start all the strategies with the same

seed for the pseudo-random number generator, we ex
pect the strategy to playa major role in determining

the amount of waiting in the system. Figure 5 shows

that Wait-All does require the longest waiting time over
the Buic Algorithm and Save-Some. At first, we were

surprised that Save-Some caused as little waiting as the

Basic Algorithm. since the only waiting in the Basic Al
gorithm is between update transactions. But re~m

bering that Save-Some allows the update to proc~d

once the white-turned-black entities have been plau'l

Ie 2 3 4 5 6

Tr ansae tiolll 23099 ± 40 16539 ± 18 12488 ± 37 10244 ± 36 7114 ± 23
Created

Percentage
33 ±O.8% 49 ±0.6% 60 ± 0.4% 68 ± 0.1% 72 ± 0.1%

of aborts

Table 2: Basic Algorithm Transaction Aborts

waiting time
per transaction

(hundreds)

5

4

3

2
... -:~. ~.:-.::::- -.:-. :-.~.--..

. ,
. -

O~--~r---Ir--~----~--~

value i:

Figure 5: Waiting Time per Transaction

in the buffer, then the amount of waiting iI negligible

in the simulation based on I/O operations. Therefore,

Save-Some seems to be the strategy of choi<e.

Finally, the total throughput of the three atrategiea

is compared in figure 6. Since the througbput of each

strategy varies with c, we have norma.li~ the graph for

easy visualization. W. ute the throughput of the Ba

sic Algorithm as the norm, and compare the other two

strategies relative to it. At c = 1 there iI no interfer
ence and the three stratepee are equivalent. At c = 2

Save-Some is the best, Bui< in the middle, and W&it.

All performs the worst. A.. c incfe&ael, Save-Some wUu
by far and Wait-All takes over Basic gradually. Since

Save-Some has very low waiting time and high I/O

rate, its highest throughput is not surprising. W&it

All's throughput is limited by the I/O that global-read

can provide, so as the Basic Algorithm's throughput

3

throughplt
2

rate
sa 1CJI!M

O~----~----~----r---~r---~

2 3 4 s 6
value It

Figure 6: Relative Throughput

declinea (table 2), Wait-All overtakes the Basic Al~o

rithm.

5 Checkpoint and Availability

S.l Asynchronous Checkpoints

One application of global-read. ia the asynchronous

checkpointing of databases. Fischer et a1. [3] have men

tioned several applications using global-reads. such as

checking conaiatency conatrainta in a database, and me
dia recovery. However, like their global checkpoint, our

global-read ia conaiatent but may not reflect any sched

ule based on chronological order. Conllider a global

read that started at time tl and terminated at t'2' The

global-read will reBect all updates committed before 11

plus ail white transactions which must terminate before
t'J. In other words, the global-read may include "later"
white transactions but not "earlier" black transactions.
This characteristic should not affect applications like
totals, statistics or consistency checking, where the ac
tual transaction scheduling is not important.

In order to use a backup copy made by our global
reads to recover from media failures, a log contain
ing the committed transactions is still necessary. Logs
in both shadow pages and fuzzy dump methods are
logs of actions on "physical addresses" because their
backup copies are not necessarily consistent. Since a
backup copy made with our algorithms is transaction
consistent, we need only logs that contain transaction
actions. There are two possibilities for recovery. First,
we can redo the black transactions onto the backup
copy to reach the database at t2' Alternatively, we can
undo the white transactions from the backup to find the
database at tl. In either case, in addition to actions,
the log must include the color of each transaction.

5.2 Availability Analysis

Studies on the performance of backup procedures [6,10]
have assumed that update transaction procesaing is not
allowed during the backup copying time (synchronoUl
checkpoints). Several optimization criteria and optimal
checkpoint policies [5] are based on the above assump
tion, trading interrupted transaction time for short re
covery time. In contraat, our algorithm provides overall
consistent availability with little interference.

The increase of availability l15inS slobaJ-read may be
significant. For example, Ta.ntatri and Ruachitzka [10]

define the system availabili,y in the cue of their check

point strategies as

A = 1 - n(CI + 6 • E(X) + t)

where a and b represent the initialloadins time for the
database and the proportionality factor for reproceu

ing, respectively. During a fixed interval of real time,

there are on average n failures. For each failure the

mean error recovery time is E(X} and the total check

pointing time (with a quiescent system) of t. Since

mean error recovery time is defined as half the interval

---------------------- --- --- -

between checkpoints, we can use their equation to cal
culate the benefits of using global-read for backup and
recovery. Global-Read makes t = o.

If the global-read interfered significantly with the
normal transaction processing, we would have to take
the interference into account when calculating the sys
tem availability. For example, the Basic Algorithms
makes a good percentage of the update transactions
"unavailable" for a good interval of time. However, in
the case of Save-Some, there is no interference other
than resource consumption in the form of buffer and
I/O requirementa. In a database with parallel hardware
the global-read would be able to proceed with enough
buffers and I/O bandwidth. It is under this assump
tion that we compare synchronous and asynchronous
checkpoints directly.

This point was brought home in a recent study
comparing different checkpointing algorithms on main
memory databases [9]. According to the authors, "Most
of the [high] cost comes from rerunning transadions
that are aborted for violating the tW(Kolor restriction."
But even the basic algorithm haa cost and performance
comparable to other database checkpoint algorithms,
such aa Copy-on-Update Checkpointa by Dewitt et al.
Since the abort-avoiding strategies (e.g. Save-Some)
show significant gailUl compared to the Basic Algo
rithm, we expect more interesting results from compar

ing Save-Some to the other checkpointing algorithms.

In a numerical example [10], the optimal system
ava.ilability with equidistant checkpoints is 0.9818 for
an inter-failure time l/n = 60 hours, a mean check
point time of 1 minute per interval, a restart and load

ing time of a = 6 minutes, a reprocessing proportional
ity factor b = 0.5 and the optimal checkpoint interval of

118.9 minutes. If we simply substitute the global-read

for the quiescent checkpoint, we obtain an availabl~

ity of 0.9818. (1 + 1/118.9) = 0.9901 by gaining the
checkpoint time of 1 minute. To improve the system

ava.i1&bility further, we can reduce the interval between

global-reads to 30 minutes, since there is no checkpOInt
quiescent time. Substituting the numbers in the equa

tion, we have 1- (1/3600)(6 + 0.5. IS) = 0.9963 whic h

is significantly higher.

6 Conclusion

\Ve have studied the performance of the global-read al
gorithm to checkpoint entire databases on-th-fiy using
a combination of simple probabilistic analysis and sim
ulation. The global-read algorithm does not voluntarily
abort, does not cause deadlocks, does not incur excess
writes to disk. and terminates given a fair lock manage
ment. The Save-Some strategy reads and writes each

entity only once for the entire global-read and avoids
aborting the update transactions. We have written a
simulation program validated by probabilistic analy
sis. Using the simulation study. we have shown that
the Save-Some strategy allows high concurrency, and
causes negligible delays in update transaction response

time.

According to recent research [9], the main cost ofthe
global-read algorithm is due to rerunning the aborted

transactions. not the global-read itself. Since Save
Some avoids aborts with little additional coet, we be

lieve that the global-read algorithm with the Save-Some

abort avoiding strategy is a promising solution to in

cremental, on-the-fly, consistent reading of entire data·

bases. Since global-read algorithms are parallel in n~

ture and they only compete with normal transactions in

memory buffer and disk I/0. we exped the global-read
algorithm to be even more useful for databases running
on parallel or distributed hard ware.

7 Acknowledgment

We would like to thank Peter Caia.ui for implement

ing the deadlock avoidance mecbaniam, Michael Carey

for suggesting the simulation approacb and A. A. Helal

for encouragements. One ol tbe referee. made detailed

comments that improved .i&nmcantly the presentation

of the paper.

References

[l} R. Dayer. H. Heller. and A. Reiser.

Parallelism and recovery in databue systems .

. 4 CM Tran.sacilon" on Databa"e Sy"terru.

5(2):139-156. June 1980.

[2] K.P. Eswaran. J.N. Gray, R.A. Lorie. and LL.
Traiger.

The notions of consistency and predicate locks in
a database system.

Communication.! of ACM. 19{1l):624-{)33.
November 1976.

[3] M.J. Fischer. N.D. Griffeth, and N.A. Lynch.
Global states of a distributed system.
In Proceeding.f of Symp06ium on Reliability in Di.f

tributed Software and Databa.!e Sy.!tem.f. July
1981.

[4] R.C. Holt.
Concurrent Euclid, The Unix SY.ftem, and Tuni.!.

Addison-Wesley Publishing Company, 1983.

[5] C.M. Krishna, K.G. Shin, and Y.H. Lee.

Optimization criteria for checkpoint placement.
Communication.f of ACM. 27(10):1008-1012, Oc

tober 1984.

[6] G.M. Lohman and J.A. Muckstadt.
Optimal policy for batch operations: backup,

checkpointing, reorganization and updating.

A CM Tran..action.. on Databa.te SY.ftem.f,

2(3):209-222, September 1977.

[7] Calton Pu.

On-the-fiy, incremental, consistent reading of en

tire databases.
In Proceeding.! of the Eleventh International Con

ference on Very Large Data Ba.!e.f, pages 369-

375, Stockholm, August 1985.

[8] Calton Pu.

On-the-fly. incremental, consistent reading of en

tire databases.

Algonthmica. 1(3):271-287, October 1986.

[9] K. Salem and H. Garcia-Molina.

Checkpoinhng Memory.Re6ident Databau!.

Technical Report CS-TR-126-87. Department of

Computer Science. Princeton University. De

cember 1987.

[10] A.N. Tantawi and M. Rtaehitzka.
Performance analysis of checkpointing strategies.

A CM Tranjacllon.. on Computer Sy.!tem.f.

2(2):123-144. May 1984.

