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ABSTRACT 

Image warping refers to the 2D resampling of a source image onto a target image. Despite 
the variety of techniques proposed, a large class of image warping problems remains inade
quately solved: mapping between two images which are delimited by arbitrary, closed, planar 
curves, e.g., hand-drawn curves. 

This paper describes a novel algorithm to perform image warping among arbitrary planar 

shapes whose boundary correspondences are known. A generalized polar coordinate parameteri

zation is introduced to facilitate an efficient mapping procedure. Images are treated as collec

tions of interior layers, extracted via a thinning process. Mapping these layers between the 

source and target images generates the 2D resampling grid that defines the warping. The thin
ning operation extends the standard polar coordinate representation to deal with arbitrary shapes. 
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1. INTRODUCTION 

Image warping is a geometric transformation that maps a source image onto a target image. 

The mapping is defined by a 2D resampling grid. Image warping has proven to be an important 
tool in image processing and computer graphics. In image processing, warping is used to rectify 

distorted images, mapping nonrectangular patches onto rectangular ones. The distortions are 
usually attributed to viewing transformations and lens aberrations. In computer graphics, warp
ing plays an opposite role: the target image is the 2D projection of a 3D surface onto which the 
source image had been mapped. Hence warping is a composite mapping of the reparameteriza
tion from 2D image (texture) space to 3D object space, and the subsequent projection onto 2D 

screen space (Heck bert 1986). Consequently, rectangular patches are mapped onto nonrectangu

lar ones. This procedure is known as texture mapping. 

The two roles that image warping plays in these fields has dichotomized the research in this 
area (Smith 1987). The common ground, however, is found in two areas - fast spatial 

transforms (Catmull 1980, Fant 1986, Fraser 1985, Oka 1987) and filtering (Burt 1981, Crow 

1984, Heckbert 1986, Williams 1983). 

Despite the considerable attention that image warping has received, a large class of image 
warping problems has been neglected: mapping between two images which are delimited by 

arbitrary closed curves, e.g., hand-drawn curves. In this instance, the mapping is driven by the 
correspondence of boundary points - information provided by the user. The spatial transforma

tion of the interior points must be computed by the image warping algorithm. Unlike the prob

lems treated in image processing or computer graphics, the stretching of an arbitrary shape onto 

another, and the associated mapping, is a problem not addressed in a tractable fashion in the 

literature. 

The lack of attention to this class of problems can be easily explained. In image process
ing, there is a well-defined 2D rectilinear coordinate system. Correcting for distortions amounts 

to mapping the four corners of a nonrectangular patch onto the four corners of a rectangular 

patch. In computer graphics, a parameterization exists for the 2D image, the 3D object, and the 

20 screen. Consequently, warping amounts to a change of coordinate system (2D to 3D) fol

lowed by a projection onto the 2D screen. The problems considered in this paper fail to meet the 

above properties. They are neither parameterized nor are they well suited for four-comer map
ping. 

The algorithm described in this paper treats an image as a collection of interior layers. 

Informally, the layers are extracted in a manner similar to peeling an onion. A radial path 

emanates from each boundary point, crossing interior layers until the innermost layer, the skele
ton, is reached. Assuming correspondences may be established between the boundary points of 

the source and target images, the warping problem is reduced to mapping between radial paths in 

both images. Note that the layers and the radial paths actually comprise a sampling grid. 

This algorithm uses a generalization of polar coordinates. The extension lies in that radial 

paths are not restricted to terminate at a single point. Rather, a fully connected skeleton obtained 
from a thinning operation may serve as terminators of radial paths directed from the boundary. 
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This permits the processing of arbitrary shapes. 

Since this work is more closely tied to the image processing interpretation of warping, a 
background of warping for the rectification of images is given in section 2. The problem is for

mally stated in section 3. An overview of the algorithm is found in section 4. Section 5 
describes the parameterization of arbitrary planar shapes, a central issue in the problem. The 
mapping procedure within the new parameter space is discussed in section 6. The inverse 
reparameterization, responsible for updating the target image with the resampled data, is 

described in section 7. Results are shown in section 8, enhancements are discussed in section 9, 
and a summary and conclusion is found in section 10. 

2. BACKGROUND 

Image warping has proven valuable for the geometric correction of digital images. It has 

seen extensive use in viewing geometry problems, sensor induced problems, and in the registra

tion of similar images for comparison purposes. In all instances, a geometric correction map is 

required to define the necessary warping, or mapping, to invert the distortion. Determining this 

corrective transformation is a central problem in image warping. 

The corrective transformation for mapping a distorted sampling grid onto the original grid 

is obtained from a distortion model. In the simplest of cases, it is possible to define the spatial 

transfonnation with an analytic expression. In most applications, however, the mapping is 

obtained from actual image measurements. For example, to derive the geometric correction map 

for the aberration of a particular lens, a rectangular grid pattern is used as a reference image. 

The distoned output grid is made to map onto the original grid by establishing a simple 

correspondence of grid intersections. or control points. Precise spatial mapping is defined at 

these sparse locations. The mapping of noncontrol points is determined by interpolation. Usu

ally bilinear interpolation is adequate. although higher order polynomial functions are sometimes 

used. Since the resulting effects often take the appearance of elastic stretching, the geometric 

transfonnation associated with image warping is sometimes known as rubber sheet transforma
tion. 

The use of control grids and analytic expressions accounts for the majority of image warp

ing techniques. Unfortunately, they fail to handle our problem of mapping an image, of arbitrary 

shape, onto a second arbitrary shape. This is a consequence of their inappropriateness for boun

dary value problems, the class with which we are dealing. 

Boundary value problems have long been addressed in heat conduction, electrostatic poten

tial, and fluid flow theory. Conformal mapping and relaxation techniques are commonly used to 

evaluate such mappings. In Fiume (1987), a conformal mapping is used to map images among 

arbitrary siIT)ple polygons. Conceptually, this approach can be applied to arbitrary shapes. In 

practice, however, the Schwarz-Christoffel transformation used to construct the conformal maps 

are analytically complicated and the implementation is limited to polygons with only a few ver

tices. 

In a recent paper, Greene and Lamming (1986) describe a relaxation algorithm to propagate 
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the boundary mapping information to interior points. The user specifies two polygons, and a 
mesh relaxation is used to derive a mapping from the first polygon onto the second polygon. 
Their low resolution 50 x 50 mesh is analogous to the control grids described earlier. Typically, 
the mesh requires 200 iterations to converge. Tailored for interactive use, there is no attempt 
made at antialiasing, thereby allowing artifacts to surface upon sampling irreproducibly high 

spatial frequencies. In addition, the image folds upon itself when radical transformations are 
made near the margin of the figure. Nevertheless, their system, designed for visual art applica
tions, represents the closest effort to the work described in this paper. 

In related approaches, relaxation or finite element analysis techniques may be utilized to 
propagate the boundary information while satisfying some constraint A typical constraint may 
be the minimization of the pixels' "spring energies." Unlike such methods, which are con

strained by physical models and require many iterations to converge, the technique proposed 
here is not tied to a physical model and allows mapping values to be computed at once. There is 

no need for iterative refinement. 

3. STATEMENT OF THE PROBLEM 

We desire to map a source image, S, onto a target image, T, each of whose boundaries are 
arbitrary. Both S and T are actually subimages which may be extracted with the use of a mouse 

and digitizing tablet, thresholding, or any other segmentation method. Pixels lying in the 
extracted subimage are designated as foreground. The remaining pixels are assigned a back
ground value. In this manner, the boundaries may be trivially identified as the interface between 
foreground and background pixels. 

The mapping will effectively treat S as if it were printed on a sheet of rubber, and stretch it 

to take the shape of T. The only constraint is that topological equivalence be maintained - that 

is, S may be stretched and squeezed but not tom. As a consequence, S and T must have the same 

number of interior holes. In this work, the images are assumed to have no interior holes. This 

can be rectified with a simple extension (see section 9). 

The mapping must allow for the specification of correspondence points among both boun
daries in order to clamp the warping effect. The mapping of noncontrol points along the boun

daries is derived through interpolation of adjacent control points. Control point adjustments 

made by the user tailor the warping results. 
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4. OVERVIEW 

This section illustrates the algorithm in terms of its functional units. The remainder of the 
paper elaborates upon the basic components listed here. The warping algorithm described herein 
has three stages: 

1) Reparameterize S and T using a transformation function g. This yields S' and T', respec
tively. The new parameter space facilitates a convenient solution to our boundary value 

problem. 

2) Apply a second transformation, h, to map (resample) S' onto T'. This stage requires filter-

ing to avoid artifacts arising from severe compression or expansion. 

3) Apply an inverse mapping, g -1, to convert T' into T, the desired result. 

Figure 1 depicts the homomorphism outlined above. The transformation functions g, h, and g-1 

are elaborated in the following sections. 

f 

g g 

h 

Figure 1: Chain of transformations to map S onto T. 

-1 g 
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5. REPARAMETERIZATION ONTO THE (U,V) PARAMETER SPACE 

This section describes the function that transforms images Sand T into a new 
parameter space. This reparameterization corresponds to function g in Fig. 1. Its pur
pose is to allow the mapping process to operate upon a coordinate system that is more 
amenable to the boundary value problem presented here. 

5.1 Introduction 

A function, f, that maps S onto T requires that a parameterization exist for both 
images, such that a correspondence may be established. Unfortunately, the (x,y) coordi
nate system imposed by the input image is not ideally suited for boundary value prob
lems. By simply dictating spatial layout, the (x,y) coordinate system lacks the means of 
conveniently expressing a relation between the boundary and interior points. We seek to 
impose a coordinate system which more closely matches the nature of our problem. 

In the absence of a suitable parametric representation for both images, the algorithm 
decomposes a 2D image into an alternate representation consisting of layers of interior 
pixels. The layers are extracted in a manner akin to peeling an onion. This imposes a 
(u, v) parameterization in which u runs along the boundary, and v runs radially inward 
across successive interior layers. 

5.2 The (u,v) Coordinate System 

The motivation for this formulation was derived intuitively and will therefore be 
expressed in a similar manner. We will begin by considering the merits of the selected 
coordinate system. This is followed by a discussion of its implementation. 

Since the mapping information is only defined along the boundary, it is reasonable 
to first consider the mapping of adjacent points. These points comprise the adjacent 
layer. This data can then propagate further until the innermost layer is assigned a 
correspondence. Two problems now surface: 

1) How may we derive the positions of interior layers? Note that these layers actually 

define a sampling grid within the shape. 

2) How is the mapping information transformed from layer to layer? Clearly there are 
many possible solutions. However, we shall see that a convenient metric may be 
expressed as a result of solving the first problem. 

In related approaches, relaxation or finite element analysis techniques may be utilized to 
propagate the boundary information while satisfying some constraint. A typical con
straint may be the minimization of the pixels' "spring energies." Unlike such methods, 
which are constrained by physical models and require many iterations to converge, the 
technique proposed here is not tied to a physical model and allows mapping values to be 
computed at once. There is no need for iterative refinement. 

The algorithm poses a formulation based on the radial influence of each boundary 
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point. This measure is defined by the path spanned between the boundary point and its 

corresponding point on the innermost layer. These radial paths are analogous to orthogo

nal grid lines (v direction) with respect to the interior layers (u direction). As we shall 

soon discover, the innermost layer will be referred to as the skeleton. Figure 2 illustrates 

the (u, v) grid lines superimposed upon an arbitrary shape. The skeleton is highlighted in 

boldface. 

Figure 2: Arbitrary shape with superimposed sampling grid. 

5.3 Extracting Interior Layers 

The positions at which each layer must sample the image can be considered to be 

defined by an eroding boundary. In convex shapes, an eroding boundary coincides with 

shrinking (scaling down) the boundary positions about the centroid. Figure 3a illustrates 

these layers for a convex shape. Scaling cannot, however, be applied to shapes contain

ing concavities. The problem now arises that the reduced boundary does not lie entirely 

within the larger adjacent boundary, and the centroid is no longer guaranteed to lie within 

the shape. Intuitively, the former problem is a manifestation of intervening background 

patches shrinking and bringing foreground pixels, lying along a concavity, closer 

together rather than pulling them further apart. Overlapping' 'interior" layers that mani

fest from scaling the boundary are depicted in Fig. 3b. 

(a) (b) 

Figure 3: Scaled boundaries for (a) convex and (b) concave shapes. 
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5.3.1 Thinning 

The difficulty of expressing erosion analytically for shapes containing concavities is 
bypassed with a discrete approximation - a thinning algorithm. Thinning has long been 
a tool in the computer vision field for shape analysis applications. In this context, thin
ning, together with boundary traversal, is used to erode foreground pixels along the boun
dary while satisfying a necessary connectivity constraint. This helps us impose the (u, v) 

coordinate system upon the S and T images. 

Classical thinning algorithms operate on binary raster images. They scan the image 
with a window (usually 3 x 3), labeling all foreground pixels lying along the boundary 
with one of two labels. The first label, DELPXL, is designated to deem the foreground 
pixel as dele table (flip to background value). This designation is issued if the foreground 
pixel is not found essential in preserving the mutual connectivity of neighboring fore
ground pixels in the window. If, however, it must be retained in order to preserve neigh
borhood connectivity, the pixel is said to lie on the shape's symmetric axis, or skeleton. 

Consequently, the SKL label is applied to all skeletal points. Skeletons typically resem
ble a line drawing, or stick-figure, of the image comprised of foreground pixels. They 
have the property of being fully connected (no gaps). 

A thinning algorithm is used to assure that the shape is unraveled into closed layers. 
This constraint is imposed in order to avoid tearing the eroding shape, thereby maining

tain topological equiValence over all scales. That is, the deletion of boundary pixels in 
one layer must not introduce holes in the next layer. For example, consider a dumbbell 
shape. As outer layers of the shape are peeled off, the thin center bar will eventually 
erode away, isolating the circles at each end. No simple closed path would remain to 

traverse the resulting shape. Skeletons are therefore generated for the purpose of "bridg
ing the gaps" between remaining boundary pixels. This translates into a guarantee that 

subsequent layers will remain closed. Consequently, the two ends of the dumbbell 
remain connected even after the center bar would have been eroded by normal means. A 
detailed description of the thinning algorithm used in this work is given in [Wolberg 85]. 
Further references may be found in [Arcelli 85], [pavlidis 82], and [Rosenfeld 82]. 

5.3.2 Boundary Traversal 

The boundary is traversed following each thinning pass. The preceding thinning 
iteration imposed a connectivity constraint on the boundary pixels and labeled them 
accordingly. Consequently, they are traversed while concurrently initializing the 
appropriate layer list and deleting those pixels labeled DELPXL. SKL pixels remain 
intact and are guaranteed to appear in all subsequent layers. Note that interior pixels, not 

having been labeled by the thinning algorithm, are not traversed in the same pass. 

The list Ls" or Ur" is used to store the layer pixels. The SUbscript Sn and Tn refer to 
layer n in the source and target images, respectively. List C is used to store the connec
tivity status of each boundary pixel. Boundary traversal consists of the following cycle. 
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1. find starting point and mark it STRT (see section 5.3.3) 
2. loop begin 

3. append the pixel's color value to list LSn or IJrn 
4. append the pixel's DELPXLlSKL label to list C 
5. IF(pixel's label is DELPXL) delete it; that is, flip it to background 

6. Move to an 8-connected neighbor labeled DELPXL, SKL, or STRT 
7. IF( pixel is marked STRT ) break loop 
8. end 

5.3.3 Layer Alignment 

Unwrapping the shape into consecutive layers presupposes that the first traversed 
point may be accurately mapped from layer to layer. An error in this correspondence 

yields misalignment problems. Therefore, the starting point for traversal is initially 

chosen to be the top-leftmost boundary point. This choice offers the least ambiguity for 
correspondence in subsequent levels. The ambiguity is diminished by the fact that only 

four of the eight adjacent neighbors are foreground pixels. Furthermore, since at least 

two of the four candidates are in direct contact with the background, they are likely to be 

designated as DELPXL by the thinning algorithm and deleted during the traversal. A 

better scheme consists of a preliminary search for a boundary point of high curvature. 

Clearly the most reliable choice for a starting point is one which is known to be 

contained in all subsequent layers. Since skeletal points satisfy this property, we may 

choose the first encountered skeletal point to take on this role. Therefore, the top

leftmost point is used as the starting point for traversal until a skeletal point is found. All 

subsequent traversals will then begin from that skeletal point. 

5.3.4 An Example 

The discussion is now supplemented with an example. Consider the shape given in 

Fig. 4. All foreground pixels are labeled with a number. The format used is layer/pos, 

where layer denotes the layer in which that pixel is contained, and pos represents its posi

tion in the layer. For example, the first element in the outermost layer is pixel 0/00, the 

top-leftmost boundary point. The label 0/00 is interpreted as layer 0, position 00. 

The shape is procesed in p passes, where p is half the maximal width. This 
represents the number of iterations needed to yield the entire skeleton and terminate the 

peeling operation. Each pass consists of the following cycle. 

1) Apply one pass of a thinning process to label all boundary points as deleteable 
(DELPXL) or skeletal (SKL). 

2) Traverse the boundary as described in section 5.3.2. This procedure serves to ini
tialize the appropriate layer list and expose interior layers so that they may become 

subject to traversal in subsequent passes. 
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0100 0134 0133 0/32 0/31 

om O~H 1/00 1/28 1m 0/30 

Oft)4 om 1m 1m 2/10 1/26 0129 

O/OS 1ft)4 1ft)3 2/12 
2/11Cl 

1/25 0/28 

0!06 1/05 2/14 2/13 3/12 3m 2J()8 1/24 om 

0/rJ7 1/06 2/15 3/13 4/12 4/08 3/08 2J07 1/23 0/26 

0!08 1/07 2/16 3/14 4/07 3!rJ7 2.,Q6 1/Zl 0/25 

om 1/08 2/17 3/06 2/OS 1/21 0/24 
(06) 

0/10 1m 2/18 2/19 ~ 1/20 0/23 
(OS) 

0/11 1/10 1/11 2J2O 2/C13 1/19 0/22 0/21 
(04) (03) 

0/12 0113 1/12 1/13 1/14 1/18 0/20 
(00) 

0114 OIlS 1/15 1/16 1117 0/19 
(01) 

0/16 0117 0/18 

Figure 4: An arbitrary shape with labeled pixels. 

In Fig. 4, notice that pixels 0/00 and 1100 lie on the top-leftmost points of the image 

in the fust and second pass, respectively. In the second pass, however, when pixel 1114 

is traversed and is found to be labeled SKL, layer 1 is realigned using a circular shift. 

This places pixel 1114 at the start of the list and assures proper alignment in all subse
quent passes. The new role of pixel 1114 is denoted in Fig. 4 with a (00) entry. Simi

larly, its neighboring skeletal points will also appear in subsequent traversals and are 
numbered appropriately in parentheses. 

5.4. Layer Correspondence 

Tracking the position of each point on the boundary as it makes its way to the skele
ton is a central idea of this algorithm. By iteratively establishing correspondence across 
successively interior layers, we define the v grid lines in our (u, v) coordinate system. 
Due to the list representation that the unraveled layers have taken, the desired mapping 

across layers may be achieved by exploiting the ID nature of lists. 
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In the absence of SKL points along the boundary, the ID sampling grid of the 
extracted layer may be mapped onto its adjacent interior layer by uniform scaling. This 
means that the pixels are sampled from the adjacent layer at positions dictated by their 
location in the current layer and the ratio of both layers' lengths. However, the introduc
tion of SKL points complicates the matter. Since they are present in all subsequent 
traversals, their correspondences are fixed across layers and must therefore not be 

imposed by scaling. Instead, SKL pixels partition DELPXL intervals into subintervals. 
These segments, in turn, remain subject to uniform scaling. Their corresponding subin

tervals in the next layer are found by identifying the same delimiting SKL points which 
originally partitioned the intervals. 

An example of correspondence among layers is shown in Fig. 5. There we see the 
layers of Fig. 4 represented in list form. Each interior pixel is labeled with the iteration 
number at which it was traversed. Those pixels highlighted with a double-edged or bold

face border represent skeletal points. Double-edged borders indicate skeletal pixels that 

first appear in the current layer. Boldface borders denote skeletal pixels which originally 
surfaced in a previous layer. This distinguishes them as anchor points at which 

correspondence is fixed. This property is used to establish the correspondence of subdi
vided intervals. We shall refer to such anchor points as OWSKL. 

Layer 0 I 0 I I I ... ... \ 33\ 34\ 

Layer 1 I o I I I IIGII I~IIGII .. I 271 28\ 

Layer l' 1141111~ III 16
111 .. I 28

1 o 1 I 1 
... 

· .. 1 121 13
1 

Layer 2 o 1 I I 21 3111 ... .. ~I 9111 "'1119~1 20111 21~1 
Layer 3 0 ... 3 I 4 ... 6 

III · .. 111 9 I 101 11111 .. ·111 I~ I 16 ... III I 
Layer 4 0 ... 6 I 711 11 19_ 11 1 12111 131 14 171 

Layer 5 0 ... ... 17 1 
Figure 5: Correspondence among layer lists. 

Initially, layer (j is initialized with the pixels lying along the outermost layer. Since 

no skeletal pixels are present, positions within this layer are mapped to layer 1 by uni

form scaling. That is, a scale factor of 28/34 is applied to each index of layer O. In layer 
1, skeletal pixels emerge at posi tions 14 and 16. This partitions layer 1 into two intervals 
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and requires realignment of the layer. Layer l' illustrates the circular shift that positions 
pixel 14 as the first entry in the list. The two intervals are now mapped onto layer 2 by 
identifying corresponding OLDSKL points and their intervening segments. Observe that 
pixel 15 in layer 1 vanishes in layer 2 - it maps onto a skeletal interval. This is the first 
instance in which a subdivided interval has no descendants. Notice that the three 
OWSKL pixels in layer 2 arise from the traversal of (00), (01), and (00) again. This 
explains why (02) is not explicitly labeled in Fig. 4. 

Under most circumstances, the first few layers extracted will be free of skeletal pix
els. Subsequently, some layer pixels will be labeled SKL. These pixels must, by defini
tion, appear in all subsequent iterations. With each iteration, more pixels are labeled 
SKL. This is a consequence of the property that skeletons are fully connected, and thus 

preceding skeletal points must themselves be connected to SKL pixels. Also, the lengths 
of the lists diminish as the skeleton is approached. This follows from the fact that fewer 

pixels are extracted from a continuously eroding boundary. Finally, when all the pixels 
in the outer layer are found to be skeletal, the innermost layer has been reached, and the 
peeling procedure terminates. 

5.5 Data Structure: L-trees 

The recursive subdivision of layers gives rise to a tree representation. We shall 
refer to the resulting data structure as an L -tree, for layer tree. An L -tree has the fol

lowing properties. 

1) Each level of the tree coincides with an interior layer of the shape. Beginning with 

the outermost layer stored in the root, successive layers are represented in consecu

tive tree levels. 

2) The vertices in each level represent the non-OWSKL strips that have been subdi

vided by intervening OWSKL pixels. Non-OWSKL pixels include DELPXL and 

first-generation SKL pixels. 

3) Leaves denote strips which have no descendants - that is, the entire strip maps 

onto an OWSKL segment in the next layer. 

Figure 6 illustrates a tree with nodes consisting of the non-OWSKL strips from Fig. 

5. The root, denoting the outermost layer, has only one child since it contains no SKL 

pixels. The child node represents the second exposed layer. It gives rise to two children 

as a result of the two SKL pixels appearing in that layer. The subdivision continues until 

a node's strip maps onto a skeletal point and thereby vanishes. 
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Figure 6: An L-tree representation. 

Internally, an L -tree is encoded as an array of vertices, each represented by an instance 
of the data structure shown below. 

struct { 

} 

unsigned char *imgbf; 

int len; 

int *links; 

1* pointer to list memory *1 
1* length of list *1 
1* pointer to auxiliary data *1 

The first member contains a pointer to the non-OWSKL list whose length is specified by 
the second member. Finally, the third entry is a pointer to auxiliary data, given as a list 

of 3-tuples. Each 3-tuple specifies the endpoint indices of a DELPXL strip in the vertex 
interviu, and "a pointer to the child vertex containing the corresponding subinterval in the 

next layer. Note that DELPXL strips are delimited by SKL, OWSKL, or boundary end

points. 
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5.6 The (u,v) Parameters 

Our (u, v) parameterization is conveniently represented by L -trees. The (u, v) coor
dinates are indices into the layer lists stored in the tree vertices. 

The v coordinate runs from 0 to Vmax , where Vmax is the height of the tree. Begin
ning at the root, where v = 0, the v coordinate is incremented at each successive tree 
level. This establishes a one-to-one correspondence between interior layers and tree lev
els. Figure 6 shows that all pixels on a given level share the same v coordinate. 

The u coordinate runs from 0 to Umax , where Umax is the length of the outermost 
layer. Since interior layers have fewer pixels than Umax , the successive levels must 
necessarily be supersampled in order to evaluate the pixels along the radial paths. The 
(Ui, Vj) value is determined by performing a recursive descent from the jlh boundary 
pixel, stored in the root, onto the /h level. Clearly, since the distances between boun
dary points and their corresponding skeletal points vary, Cu, v) is defined only over a fin
ite irregular range. 

The subsequent mapping stage requires the image pixels, currently stored in the 
layers of the tree vertices, to be restored into an image of conventional format There
fore, the (u, v) and (x,y) axes are aligned and the (Ui' v j) points are collected from the dis
tinct tree vertices into a single reparameterized image, S'. Figure 7 illustrates the struc
ture of S'. 

11\ 
Ymax J 

radial 

r-- path 
I-

.-- r-
I-- r--;-

l- I-1-

Umax 

Figure 7: S' depicted as an image. 

........ 

.,.", 

Notice that each column represents a radial path. Since the upper rows coincide 
with shorter layers, pixels along these rows are supersampled. In assembling S', we 
have discarded scale infonnation along the rows in return for a structure amenable to 
standard spatial transfonnations. This will prove valuable in the mapping stage that fol
lows. Furthermore, the scaling information will be restored later when the resampled S' 
is mapped onto T' which is then subdivided and scaled to fit back into corresponding 
layers. Moreover, no infonnation is lost in this procedure since the transformations are 
applied over supersampled pixels. 
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6. MAPPING WITHIN THE (U,V) PARAMETER SPACE 

This section describes the function that resamples S I onto T'. This mapping 
corresponds to function h in Fig. 1. The mapping solution in the (u, v) space is now more 
tractable than its counterpart in the rectilinear coordinate system. 

6.1 Introduction 

The L -tree representation has allowed us to impose a convenient (u, v) coordinate 
system on the image. The primary benefit of this reparameterization is that the image 
may now be considered as a collection of radial paths defined between each boundary 
point and its corresponding skeletal point. Furthermore, decomposing the image in this 
manner facilitates efficient referencing of interior image information using an orthogonal 
coordinate system. Since the range of valid (u, v) values for S I and T' are generally dif
ferent, the problem becomes one of resampling S I so that its dimensions match that of 
T'. 

There are a number of techniques available to us in performing the mapping. The 
most straightforward approach involves projecting each pixel in T' onto S', integrating 
over that area, and assigning the normalized value to the appropriate pixel in T'. How

ever, this inverse pixel mapping technique is cumbersome, especially for applications in 
which the parameterized images must be referenced several times, as in multi
dimensional data and animation applications. As a result, we describe a resampling 
scheme which is decomposed into three simple ID transforms: the first pass in the v 

direction, the second in the u direction, and the third pass in the v direction again. 

Therein lies the advantage of the reparameterization stage. 

6.2 First Pass: Normalizing the v -axis 

Unlike standard rectangular images lying on the (x,y) plane, the (u, v) space is 
defmed over an irregular domain. The flrst pass of the mapping function is responsible 
for normalizing the v -axis in S' so that the (u, v) space is deflned over a rectangular 

domain. This serves to establish correspondence between radial paths and facilitates a 
straightforward ID scaling operation along the u -axis, a property required for the second 

pass. 

The normalization is achieved as follows. For each u, resample the column of pix
els along the v -axis so that Vmax samples are used for the corresponding radial path. Vmax 

is the height of the L -tree used to store the layers for S I. This is an appropriate choice 
since it coincides with the number of samples used to represent the longest radial path. 
This forces all c~lumns to be supersampled at a rate dictated by Vmax and the height of 
the respective column. The resulting sampling rate properly exceeds the Nyquist rate 
below which the highest frequency (the samples in the longest radial path) would be 

irreproducible. 
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6.3 Second Pass: Resampling the u -axis 

The second pass of the mapping function scales the u -axis in S' so that its dimen
sion matches that of T'. This serves to equate the number of radial paths in both images. 
Due to the ftrst pass, a simple ID scaling operation may be applied to each row in S I • 

This is a consequence of the fact that the (u, v) space is now deftned over a rectangular 
domain. Since the boundaries of S and T are also their longest layers, respectively, the 
scale factor used is simply the ratio of their boundary lengths. 

6.4 Third Pass: Resampling the v -axis 

Now that the (u, v) parameter spaces for Sand T have identical dimensions in the u 

direction, the information in the v direction must be made identical as well. For each u, 
resample the column of pixels along the v -axis in S I so that its resulting dimension 
matches that of the corresponding column in T'. The sampling rates are dictated by the 
heights of the corresponding columns in S I and T'. 

The three passes are depicted pictorially in Fig. 8. Notice that the first pass super
samples all columns so that they have dimensions v 1, the height of the tree. This now 
allows us to apply a ID scale operation to match the number of radial paths between S 
and T. As a result, the u 1 columns in S' are resampled to map onto the U2 columns in 
T'. Finally, each of the u 2 columns are resampled to take on the dimensions given by 
T'. The intensity data in S' has now been fully mapped onto T'. 
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7. REPARAMETERIZATION FROM (U,V) TO (X,Y) 

Having already initialized the content of T' with the resampled data of S', we must 
now reapply it onto T. This coincides with function g -1 in Fig. 1. Not surprisingly, this 
stage is the reverse sequence of operations described in section 5 that reparameterized 
(x,y) into (u, v). The following two steps are required. 

1) Scale appropriate intervals along the rows of T' to update the layers in T's L-tree. 

2) Traverse shape T while concurrently updating the traversed pixels with the values 
stored in the L -tree. The traversal consists of the same cycle of thinning and boun
dary traversal described in section 5. 

The fIrst step of resampling T' to update T s L -tree requires some discussion since 
it is not entirely symmetric to the forward process. When supersampling values between 
adjacent pixels, it is only necessary to perform interpolation. However, the inverse pro

cess of integrating supersampled values into one pixel requires two accumulators to sum 

the weighted values and weights. Fortunately, since row subintervals corresponding to 
the same layer share the same scale (weight), we can apply simple ID scaling operations 
to map them back onto the appropriate layer in the L -tree. The problem now reduces to 

establishing a correspondence between row subintervals and L -tree vertices. 

Beginning at the bottommost row in T', the pixels along the v = 0 row map directly 
to the root of the L -tree since they share the same dimensions. Conveniently, each child 
corresponds to a row subinterval delimited by undefIned (u, v) points or the T' image 
border. Thus, the s descendants in the rlla generation correspond to the s subintervals in 
the rlh row. Since the pixels have been supersampled, the row subintervals will be sub
sampled to match the dimensions of their counterpart vertices in the L -tree. This com
pletes the flrst phase of g-1. The second phase, as outlined above, is the initialization of 

the pixel values along T by traversing the shape while copying the L-tree entries onto 
the traversed pixels. 
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8. RESULTS 

The algorithm is written in C and runs on an EDGE 1200 super-minicomputer under 
the UNIXt operating system. The execution time for the 256 x 256 images shown was 
approximately 30 seconds. Note, however, that segments of the code are subject to large 

speedups. For instance, the thinning passes are subject to parallel processing. In addi
tion, the ID scaling operations are ideally suited for simple hardware implementation. 

Several warping examples are given below. Figure 9 shows four images. Sand T 
are displayed in the upper left and lower left quadrants, respectively. The upper right 

quadrant shows S mapped onto the shape defined by the foreground pixels of T. The 

mapping of Tonto S is shown in the lower right quadrant. In both cases, only one boun
dary correspondence point is used: the upper leftmost point of S maps onto that of T. 

In Fig. 10, the images in the left column are shown with superimposed skeletons. 

The distance between each boundary point and its corresponding skeletal point is dep

icted in the right column. In the upper right quadrant, the flat curve indicates that all 
boundary points of the box are equidistant to the skeleton, a single point at the center. 
The lower right quadrant shows the irregular domain of its counterpart in the lower left 
quad. Note that the u -axis is shown running counterclockwise along the boundary, start

ing from the top-leftmost point. The peaks denote large radial paths, stemming from 
boundary points that lie farthest from the skeleton. Similarly, valleys correspond to short 

radial paths emanating from boundary points lying close to the skeleton. 

Figure 11 shows the effect of adding a boundary correspondence point to limit the 

effect of the uniform perturbation along the boundary. In the upper right quadrant only 

the top-leftmost points of S and T are used. In the lower right quadrant the central top

most and bottommost points are used. Notice that the checkerboard pattern is less 

severely skewed along the boundary in the latter case. 

The effect of warping a checkerboard into a box with a spike is given in Fig. 12. 

Only one boundary correspondence point is supplied at the top-leftmost point. Notice 

that a minor boundary perturbance has spurred a long skeleton that grossly distorts the 
checkerboard pattern. This issue is addressed in section 9. 

t UNIX is a trademark of AT&T Bell Laboratories 
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Figure 9 



- 20 -

Figure 10 
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Figure 11 
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Figure 12 
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9. ENHANCEMENTS 

This section lists some enhancements and issues which can be used to improve the 

results and versatility of the described algorithm. 

9.1 Skeleton Editing 

The thinning algorithm used to assure the closure of extracted layers is well known 
for its sensitivity to noise. This manifests itself as extraneous branches that are spurred 
by noise along the boundary, i.e. spikes. These branches may then be responsible for 
undesired compression or expansion of interior pixels. To counterbalance this problem, 
there is a facility to edit the skeleton. That is, the user may pick a subset of the displayed 
skeleton as those skeletal points onto which the boundary ultimate maps. In this manner, 

a more desired skeleton may be used for warping. Note that another arbitrary skeleton 

that does not entirely lie on the original skeleton cannot be used. 

9.2 Use of a Better Distance Transformation 

In addition to editing a skeleton, it is also worthwhile to use a more accurate dis

tance transformation to compute the skeleton. Some recent work is described in Bor

gefors (1986) and Dorst (1986) in which large neighborhoods are applied in a 2-pass 
algorithm to determine the distance of each foreground pixel from the boundary. The 

skeleton is taken as the peaks of the resulting distance map. While it might appear 
natural to use this algorithm to evaluate the radial paths as well, there is the issue of mul
tiple equi-distant paths to address. Nevertheless, the use of skeletons with improved 
noise sensitivity is a valuable asset. 

9.3 Non-uniform Scaling 

The algorithm described here used uniform scaling exclusively. This is inappropri
ate near comers where the Manhattan distance is a poor approximation to the Euclidean 

distance metric. Non-uniform scaling, together with additional boundary correspondence 

points. can be used to offset the distortions (skew) that manifests near corners and other 
points of high curvature. 

9.4 Interior Holes 

Adding interior holes changes the topology of the shape. Recall that the target 
image must be topologically equivalent to that of the source image. Therefore, S and T 
must have the same number of holes. With each hole, there is an additional set of boun

dary correspondence points to specify. 
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9.5 Applications 

Warping an arbitrary shape onto, say, a rectangle, has potential value for fast convo
lution. The Fast Fourier Transform, for instance, can only be applied upon rectangular 
images. Applying it to an arbitrary shape would include unwanted neighboring pixels. 
With the proposed warping algorithm, it is possible to warp shape X into rectangle Y, 
apply the FFT to Y, and then warp Y back into X, its original form. In order to avoid 
information loss, X must be entirely contained in Y so that the convolution is applied 

upon supersampled pixels. 

Another application may be to use the domain of S', as given in Fig. 10, as a shape 
measurement that can be used for quantifying shape deformation. This presupposes that 
the skeleton, which is the basis of the measurement, remains fairly consistent among the 
sampled images and the reference modeL 

Finally, the role of this warping algorithm for visual effects is obvious. If an image 
is partitioned into jigsaw pieces, it is now possible to arbitrarily distort the jigsaw boun
daries, warp the interior, and create sophisticated special effects. 

10. SUMMARY AND CONCLUSIONS 

This paper describes an efficient algorithm to perform image warping among arbi
trary shapes. The resulting spatial transformation is derived using boundary correspon
dence specified by control points. These points serve to clamp the effect of the warp per
turbation to specified intervals. 

The algorithm formulates a convenient homomorphism to yield a tractable solution 
to this problem. The chain of transformations begins with the reparameterization of the 
source and target images. This consists of initializing two L -trees with values that are 

peeled off both shapes, one layer at a time. A thinning algorithm supplements this pro
cedure to assure that closed layers are extracted, thereby guaranteeing that all interior 
pixels are considered. Once the L -trees are initialized for the source and target images, 
the warping problem becomes one of mapping one L -tree onto another. Since the pixels 
are now scattered in a tree, we supersample the tree and collect the data into a standard 

image format. This facilitates the application of three 10 transformations to map the 

reparameterized source image onto that of the target. Having done this, we simply 
restore the target's L -tree and reapply the updated pixel values onto the target image. 

This sequence yields the desired result. 

Facilities are available for establishing boundary correspondence points. This 
enables the warping to be clamped to specified intervals. Furthermore, the skeleton may 

be edited to remove. extraneous branches that would otherwise give rise to unwanted 
compression or expansion. This feature is an effort to address the noise sensitivity intrin

sic to skeletons. An improved distance measure would prove more robust against noise 

and yield improved skeletons. 
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Aside from the obvious visual effects application, this algorithm is well-suited for 
warping an arbitrary shape into a rectangle, a shape suited for FFf filtering. This enables 
fast convolution without incorporating neighboring background pixels. More studies 
remain to be done on the effectiveness of this method for this purpose. Finally, an exten
sion of this algorithm from the current discrete implementation to a continous domain 
offers promising possibilities for increased accuracy and control. This would prove valu
able for the mapping, analysis, and registration of 2D and 3D data useful in a variety of 
applications. 
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