
IMAGE WARPING
AMONG ARBITRARY PLANAR SHAPES

George Wolberg

Department of Computer Science
Columbia University

New York, NY 10027
wolberg@cs.columbia.edu

April 1988

Technical Repon CUCS-329-88

ABSTRACT

Image warping refers to the 2D resampling of a source image onto a target image. Despite

the variety of techniques proposed, a large class of image warping problems remains inade­

quately solved: mapping between two images which are delimited by arbitrary, closed, planar

curves, e.g., hand-drawn curves.

This paper describes a novel algorithm to perform image warping among arbitrary planar

shapes whose boundary correspondences are known. A generalized polar coordinate parameteri­

zation is introduced to facilitate an efficient mapping procedure. Images are treated as collec­

tions of interior layers, extracted via a thinning process. Mapping these layers between the

source and target images generates the 2D resampling grid that defines the warping. The thin­

ning operation extends the standard polar coordinate representation to deal with arbitrary shapes.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161439291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMAGE WARPING
AMONG ARBITRARY PLANAR SHAPES

George Walberg

Department of Computer Science
Columbia University

New York, NY 10027

wolberg@cs.columbia.edu

April 1988

Technical Report CUCS-329-88

ABSTRACT

Image warping refers to the 2D resampling of a source image onto a target image. Despite
the variety of techniques proposed, a large class of image warping problems remains inade­
quately solved: mapping between two images which are delimited by arbitrary, closed, planar
curves, e.g., hand-drawn curves.

This paper describes a novel algorithm to perform image warping among arbitrary planar

shapes whose boundary correspondences are known. A generalized polar coordinate parameteri­

zation is introduced to facilitate an efficient mapping procedure. Images are treated as collec­

tions of interior layers, extracted via a thinning process. Mapping these layers between the

source and target images generates the 2D resampling grid that defines the warping. The thin­
ning operation extends the standard polar coordinate representation to deal with arbitrary shapes.

- 2-

1. INTRODUCTION

Image warping is a geometric transformation that maps a source image onto a target image.

The mapping is defined by a 2D resampling grid. Image warping has proven to be an important
tool in image processing and computer graphics. In image processing, warping is used to rectify

distorted images, mapping nonrectangular patches onto rectangular ones. The distortions are
usually attributed to viewing transformations and lens aberrations. In computer graphics, warp­
ing plays an opposite role: the target image is the 2D projection of a 3D surface onto which the
source image had been mapped. Hence warping is a composite mapping of the reparameteriza­
tion from 2D image (texture) space to 3D object space, and the subsequent projection onto 2D

screen space (Heck bert 1986). Consequently, rectangular patches are mapped onto nonrectangu­

lar ones. This procedure is known as texture mapping.

The two roles that image warping plays in these fields has dichotomized the research in this
area (Smith 1987). The common ground, however, is found in two areas - fast spatial

transforms (Catmull 1980, Fant 1986, Fraser 1985, Oka 1987) and filtering (Burt 1981, Crow

1984, Heckbert 1986, Williams 1983).

Despite the considerable attention that image warping has received, a large class of image
warping problems has been neglected: mapping between two images which are delimited by

arbitrary closed curves, e.g., hand-drawn curves. In this instance, the mapping is driven by the
correspondence of boundary points - information provided by the user. The spatial transforma­

tion of the interior points must be computed by the image warping algorithm. Unlike the prob­

lems treated in image processing or computer graphics, the stretching of an arbitrary shape onto

another, and the associated mapping, is a problem not addressed in a tractable fashion in the

literature.

The lack of attention to this class of problems can be easily explained. In image process­
ing, there is a well-defined 2D rectilinear coordinate system. Correcting for distortions amounts

to mapping the four corners of a nonrectangular patch onto the four corners of a rectangular

patch. In computer graphics, a parameterization exists for the 2D image, the 3D object, and the

20 screen. Consequently, warping amounts to a change of coordinate system (2D to 3D) fol­

lowed by a projection onto the 2D screen. The problems considered in this paper fail to meet the

above properties. They are neither parameterized nor are they well suited for four-comer map­
ping.

The algorithm described in this paper treats an image as a collection of interior layers.

Informally, the layers are extracted in a manner similar to peeling an onion. A radial path

emanates from each boundary point, crossing interior layers until the innermost layer, the skele­
ton, is reached. Assuming correspondences may be established between the boundary points of

the source and target images, the warping problem is reduced to mapping between radial paths in

both images. Note that the layers and the radial paths actually comprise a sampling grid.

This algorithm uses a generalization of polar coordinates. The extension lies in that radial

paths are not restricted to terminate at a single point. Rather, a fully connected skeleton obtained
from a thinning operation may serve as terminators of radial paths directed from the boundary.

- 3 -

This permits the processing of arbitrary shapes.

Since this work is more closely tied to the image processing interpretation of warping, a
background of warping for the rectification of images is given in section 2. The problem is for­

mally stated in section 3. An overview of the algorithm is found in section 4. Section 5
describes the parameterization of arbitrary planar shapes, a central issue in the problem. The
mapping procedure within the new parameter space is discussed in section 6. The inverse
reparameterization, responsible for updating the target image with the resampled data, is

described in section 7. Results are shown in section 8, enhancements are discussed in section 9,
and a summary and conclusion is found in section 10.

2. BACKGROUND

Image warping has proven valuable for the geometric correction of digital images. It has

seen extensive use in viewing geometry problems, sensor induced problems, and in the registra­

tion of similar images for comparison purposes. In all instances, a geometric correction map is

required to define the necessary warping, or mapping, to invert the distortion. Determining this

corrective transformation is a central problem in image warping.

The corrective transformation for mapping a distorted sampling grid onto the original grid

is obtained from a distortion model. In the simplest of cases, it is possible to define the spatial

transfonnation with an analytic expression. In most applications, however, the mapping is

obtained from actual image measurements. For example, to derive the geometric correction map

for the aberration of a particular lens, a rectangular grid pattern is used as a reference image.

The distoned output grid is made to map onto the original grid by establishing a simple

correspondence of grid intersections. or control points. Precise spatial mapping is defined at

these sparse locations. The mapping of noncontrol points is determined by interpolation. Usu­

ally bilinear interpolation is adequate. although higher order polynomial functions are sometimes

used. Since the resulting effects often take the appearance of elastic stretching, the geometric

transfonnation associated with image warping is sometimes known as rubber sheet transforma­
tion.

The use of control grids and analytic expressions accounts for the majority of image warp­

ing techniques. Unfortunately, they fail to handle our problem of mapping an image, of arbitrary

shape, onto a second arbitrary shape. This is a consequence of their inappropriateness for boun­

dary value problems, the class with which we are dealing.

Boundary value problems have long been addressed in heat conduction, electrostatic poten­

tial, and fluid flow theory. Conformal mapping and relaxation techniques are commonly used to

evaluate such mappings. In Fiume (1987), a conformal mapping is used to map images among

arbitrary siIT)ple polygons. Conceptually, this approach can be applied to arbitrary shapes. In

practice, however, the Schwarz-Christoffel transformation used to construct the conformal maps

are analytically complicated and the implementation is limited to polygons with only a few ver­

tices.

In a recent paper, Greene and Lamming (1986) describe a relaxation algorithm to propagate

- 4 -

the boundary mapping information to interior points. The user specifies two polygons, and a
mesh relaxation is used to derive a mapping from the first polygon onto the second polygon.
Their low resolution 50 x 50 mesh is analogous to the control grids described earlier. Typically,
the mesh requires 200 iterations to converge. Tailored for interactive use, there is no attempt
made at antialiasing, thereby allowing artifacts to surface upon sampling irreproducibly high

spatial frequencies. In addition, the image folds upon itself when radical transformations are
made near the margin of the figure. Nevertheless, their system, designed for visual art applica­
tions, represents the closest effort to the work described in this paper.

In related approaches, relaxation or finite element analysis techniques may be utilized to
propagate the boundary information while satisfying some constraint A typical constraint may
be the minimization of the pixels' "spring energies." Unlike such methods, which are con­

strained by physical models and require many iterations to converge, the technique proposed
here is not tied to a physical model and allows mapping values to be computed at once. There is

no need for iterative refinement.

3. STATEMENT OF THE PROBLEM

We desire to map a source image, S, onto a target image, T, each of whose boundaries are
arbitrary. Both S and T are actually subimages which may be extracted with the use of a mouse

and digitizing tablet, thresholding, or any other segmentation method. Pixels lying in the
extracted subimage are designated as foreground. The remaining pixels are assigned a back­
ground value. In this manner, the boundaries may be trivially identified as the interface between
foreground and background pixels.

The mapping will effectively treat S as if it were printed on a sheet of rubber, and stretch it

to take the shape of T. The only constraint is that topological equivalence be maintained - that

is, S may be stretched and squeezed but not tom. As a consequence, S and T must have the same

number of interior holes. In this work, the images are assumed to have no interior holes. This

can be rectified with a simple extension (see section 9).

The mapping must allow for the specification of correspondence points among both boun­
daries in order to clamp the warping effect. The mapping of noncontrol points along the boun­

daries is derived through interpolation of adjacent control points. Control point adjustments

made by the user tailor the warping results.

- 5 -

4. OVERVIEW

This section illustrates the algorithm in terms of its functional units. The remainder of the
paper elaborates upon the basic components listed here. The warping algorithm described herein
has three stages:

1) Reparameterize S and T using a transformation function g. This yields S' and T', respec­
tively. The new parameter space facilitates a convenient solution to our boundary value

problem.

2) Apply a second transformation, h, to map (resample) S' onto T'. This stage requires filter-

ing to avoid artifacts arising from severe compression or expansion.

3) Apply an inverse mapping, g -1, to convert T' into T, the desired result.

Figure 1 depicts the homomorphism outlined above. The transformation functions g, h, and g-1

are elaborated in the following sections.

f

g g

h

Figure 1: Chain of transformations to map S onto T.

-1 g

- 6 -

5. REPARAMETERIZATION ONTO THE (U,V) PARAMETER SPACE

This section describes the function that transforms images Sand T into a new
parameter space. This reparameterization corresponds to function g in Fig. 1. Its pur­
pose is to allow the mapping process to operate upon a coordinate system that is more
amenable to the boundary value problem presented here.

5.1 Introduction

A function, f, that maps S onto T requires that a parameterization exist for both
images, such that a correspondence may be established. Unfortunately, the (x,y) coordi­
nate system imposed by the input image is not ideally suited for boundary value prob­
lems. By simply dictating spatial layout, the (x,y) coordinate system lacks the means of
conveniently expressing a relation between the boundary and interior points. We seek to
impose a coordinate system which more closely matches the nature of our problem.

In the absence of a suitable parametric representation for both images, the algorithm
decomposes a 2D image into an alternate representation consisting of layers of interior
pixels. The layers are extracted in a manner akin to peeling an onion. This imposes a
(u, v) parameterization in which u runs along the boundary, and v runs radially inward
across successive interior layers.

5.2 The (u,v) Coordinate System

The motivation for this formulation was derived intuitively and will therefore be
expressed in a similar manner. We will begin by considering the merits of the selected
coordinate system. This is followed by a discussion of its implementation.

Since the mapping information is only defined along the boundary, it is reasonable
to first consider the mapping of adjacent points. These points comprise the adjacent
layer. This data can then propagate further until the innermost layer is assigned a
correspondence. Two problems now surface:

1) How may we derive the positions of interior layers? Note that these layers actually

define a sampling grid within the shape.

2) How is the mapping information transformed from layer to layer? Clearly there are
many possible solutions. However, we shall see that a convenient metric may be
expressed as a result of solving the first problem.

In related approaches, relaxation or finite element analysis techniques may be utilized to
propagate the boundary information while satisfying some constraint. A typical con­
straint may be the minimization of the pixels' "spring energies." Unlike such methods,
which are constrained by physical models and require many iterations to converge, the
technique proposed here is not tied to a physical model and allows mapping values to be
computed at once. There is no need for iterative refinement.

The algorithm poses a formulation based on the radial influence of each boundary

- 7 -

point. This measure is defined by the path spanned between the boundary point and its

corresponding point on the innermost layer. These radial paths are analogous to orthogo­

nal grid lines (v direction) with respect to the interior layers (u direction). As we shall

soon discover, the innermost layer will be referred to as the skeleton. Figure 2 illustrates

the (u, v) grid lines superimposed upon an arbitrary shape. The skeleton is highlighted in

boldface.

Figure 2: Arbitrary shape with superimposed sampling grid.

5.3 Extracting Interior Layers

The positions at which each layer must sample the image can be considered to be

defined by an eroding boundary. In convex shapes, an eroding boundary coincides with

shrinking (scaling down) the boundary positions about the centroid. Figure 3a illustrates

these layers for a convex shape. Scaling cannot, however, be applied to shapes contain­

ing concavities. The problem now arises that the reduced boundary does not lie entirely

within the larger adjacent boundary, and the centroid is no longer guaranteed to lie within

the shape. Intuitively, the former problem is a manifestation of intervening background

patches shrinking and bringing foreground pixels, lying along a concavity, closer

together rather than pulling them further apart. Overlapping' 'interior" layers that mani­

fest from scaling the boundary are depicted in Fig. 3b.

(a) (b)

Figure 3: Scaled boundaries for (a) convex and (b) concave shapes.

- 8 -

5.3.1 Thinning

The difficulty of expressing erosion analytically for shapes containing concavities is
bypassed with a discrete approximation - a thinning algorithm. Thinning has long been
a tool in the computer vision field for shape analysis applications. In this context, thin­
ning, together with boundary traversal, is used to erode foreground pixels along the boun­
dary while satisfying a necessary connectivity constraint. This helps us impose the (u, v)

coordinate system upon the S and T images.

Classical thinning algorithms operate on binary raster images. They scan the image
with a window (usually 3 x 3), labeling all foreground pixels lying along the boundary
with one of two labels. The first label, DELPXL, is designated to deem the foreground
pixel as dele table (flip to background value). This designation is issued if the foreground
pixel is not found essential in preserving the mutual connectivity of neighboring fore­
ground pixels in the window. If, however, it must be retained in order to preserve neigh­
borhood connectivity, the pixel is said to lie on the shape's symmetric axis, or skeleton.

Consequently, the SKL label is applied to all skeletal points. Skeletons typically resem­
ble a line drawing, or stick-figure, of the image comprised of foreground pixels. They
have the property of being fully connected (no gaps).

A thinning algorithm is used to assure that the shape is unraveled into closed layers.
This constraint is imposed in order to avoid tearing the eroding shape, thereby maining­

tain topological equiValence over all scales. That is, the deletion of boundary pixels in
one layer must not introduce holes in the next layer. For example, consider a dumbbell
shape. As outer layers of the shape are peeled off, the thin center bar will eventually
erode away, isolating the circles at each end. No simple closed path would remain to

traverse the resulting shape. Skeletons are therefore generated for the purpose of "bridg­
ing the gaps" between remaining boundary pixels. This translates into a guarantee that

subsequent layers will remain closed. Consequently, the two ends of the dumbbell
remain connected even after the center bar would have been eroded by normal means. A
detailed description of the thinning algorithm used in this work is given in [Wolberg 85].
Further references may be found in [Arcelli 85], [pavlidis 82], and [Rosenfeld 82].

5.3.2 Boundary Traversal

The boundary is traversed following each thinning pass. The preceding thinning
iteration imposed a connectivity constraint on the boundary pixels and labeled them
accordingly. Consequently, they are traversed while concurrently initializing the
appropriate layer list and deleting those pixels labeled DELPXL. SKL pixels remain
intact and are guaranteed to appear in all subsequent layers. Note that interior pixels, not

having been labeled by the thinning algorithm, are not traversed in the same pass.

The list Ls" or Ur" is used to store the layer pixels. The SUbscript Sn and Tn refer to
layer n in the source and target images, respectively. List C is used to store the connec­
tivity status of each boundary pixel. Boundary traversal consists of the following cycle.

- 9 -

1. find starting point and mark it STRT (see section 5.3.3)
2. loop begin

3. append the pixel's color value to list LSn or IJrn
4. append the pixel's DELPXLlSKL label to list C
5. IF(pixel's label is DELPXL) delete it; that is, flip it to background

6. Move to an 8-connected neighbor labeled DELPXL, SKL, or STRT
7. IF(pixel is marked STRT) break loop
8. end

5.3.3 Layer Alignment

Unwrapping the shape into consecutive layers presupposes that the first traversed
point may be accurately mapped from layer to layer. An error in this correspondence

yields misalignment problems. Therefore, the starting point for traversal is initially

chosen to be the top-leftmost boundary point. This choice offers the least ambiguity for
correspondence in subsequent levels. The ambiguity is diminished by the fact that only

four of the eight adjacent neighbors are foreground pixels. Furthermore, since at least

two of the four candidates are in direct contact with the background, they are likely to be

designated as DELPXL by the thinning algorithm and deleted during the traversal. A

better scheme consists of a preliminary search for a boundary point of high curvature.

Clearly the most reliable choice for a starting point is one which is known to be

contained in all subsequent layers. Since skeletal points satisfy this property, we may

choose the first encountered skeletal point to take on this role. Therefore, the top­

leftmost point is used as the starting point for traversal until a skeletal point is found. All

subsequent traversals will then begin from that skeletal point.

5.3.4 An Example

The discussion is now supplemented with an example. Consider the shape given in

Fig. 4. All foreground pixels are labeled with a number. The format used is layer/pos,

where layer denotes the layer in which that pixel is contained, and pos represents its posi­

tion in the layer. For example, the first element in the outermost layer is pixel 0/00, the

top-leftmost boundary point. The label 0/00 is interpreted as layer 0, position 00.

The shape is procesed in p passes, where p is half the maximal width. This
represents the number of iterations needed to yield the entire skeleton and terminate the

peeling operation. Each pass consists of the following cycle.

1) Apply one pass of a thinning process to label all boundary points as deleteable
(DELPXL) or skeletal (SKL).

2) Traverse the boundary as described in section 5.3.2. This procedure serves to ini­
tialize the appropriate layer list and expose interior layers so that they may become

subject to traversal in subsequent passes.

- 10 -

0100 0134 0133 0/32 0/31

om O~H 1/00 1/28 1m 0/30

Oft)4 om 1m 1m 2/10 1/26 0129

O/OS 1ft)4 1ft)3 2/12
2/11Cl

1/25 0/28

0!06 1/05 2/14 2/13 3/12 3m 2J()8 1/24 om

0/rJ7 1/06 2/15 3/13 4/12 4/08 3/08 2J07 1/23 0/26

0!08 1/07 2/16 3/14 4/07 3!rJ7 2.,Q6 1/Zl 0/25

om 1/08 2/17 3/06 2/OS 1/21 0/24
(06)

0/10 1m 2/18 2/19 ~ 1/20 0/23
(OS)

0/11 1/10 1/11 2J2O 2/C13 1/19 0/22 0/21
(04) (03)

0/12 0113 1/12 1/13 1/14 1/18 0/20
(00)

0114 OIlS 1/15 1/16 1117 0/19
(01)

0/16 0117 0/18

Figure 4: An arbitrary shape with labeled pixels.

In Fig. 4, notice that pixels 0/00 and 1100 lie on the top-leftmost points of the image

in the fust and second pass, respectively. In the second pass, however, when pixel 1114

is traversed and is found to be labeled SKL, layer 1 is realigned using a circular shift.

This places pixel 1114 at the start of the list and assures proper alignment in all subse­
quent passes. The new role of pixel 1114 is denoted in Fig. 4 with a (00) entry. Simi­

larly, its neighboring skeletal points will also appear in subsequent traversals and are
numbered appropriately in parentheses.

5.4. Layer Correspondence

Tracking the position of each point on the boundary as it makes its way to the skele­
ton is a central idea of this algorithm. By iteratively establishing correspondence across
successively interior layers, we define the v grid lines in our (u, v) coordinate system.
Due to the list representation that the unraveled layers have taken, the desired mapping

across layers may be achieved by exploiting the ID nature of lists.

.. 11 -

In the absence of SKL points along the boundary, the ID sampling grid of the
extracted layer may be mapped onto its adjacent interior layer by uniform scaling. This
means that the pixels are sampled from the adjacent layer at positions dictated by their
location in the current layer and the ratio of both layers' lengths. However, the introduc­
tion of SKL points complicates the matter. Since they are present in all subsequent
traversals, their correspondences are fixed across layers and must therefore not be

imposed by scaling. Instead, SKL pixels partition DELPXL intervals into subintervals.
These segments, in turn, remain subject to uniform scaling. Their corresponding subin­

tervals in the next layer are found by identifying the same delimiting SKL points which
originally partitioned the intervals.

An example of correspondence among layers is shown in Fig. 5. There we see the
layers of Fig. 4 represented in list form. Each interior pixel is labeled with the iteration
number at which it was traversed. Those pixels highlighted with a double-edged or bold­

face border represent skeletal points. Double-edged borders indicate skeletal pixels that

first appear in the current layer. Boldface borders denote skeletal pixels which originally
surfaced in a previous layer. This distinguishes them as anchor points at which

correspondence is fixed. This property is used to establish the correspondence of subdi­
vided intervals. We shall refer to such anchor points as OWSKL.

Layer 0 I 0 I I I \ 33\ 34\

Layer 1 I o I I I IIGII I~IIGII .. I 271 28\

Layer l' 1141111~ III 16
111 .. I 28

1 o 1 I 1
...

· .. 1 121 13
1

Layer 2 o 1 I I 21 3111 ~I 9111 "'1119~1 20111 21~1
Layer 3 0 ... 3 I 4 ... 6

III · .. 111 9 I 101 11111 .. ·111 I~ I 16 ... III I
Layer 4 0 ... 6 I 711 11 19_ 11 1 12111 131 14 171

Layer 5 0 17 1
Figure 5: Correspondence among layer lists.

Initially, layer (j is initialized with the pixels lying along the outermost layer. Since

no skeletal pixels are present, positions within this layer are mapped to layer 1 by uni­

form scaling. That is, a scale factor of 28/34 is applied to each index of layer O. In layer
1, skeletal pixels emerge at posi tions 14 and 16. This partitions layer 1 into two intervals

- 12 -

and requires realignment of the layer. Layer l' illustrates the circular shift that positions
pixel 14 as the first entry in the list. The two intervals are now mapped onto layer 2 by
identifying corresponding OLDSKL points and their intervening segments. Observe that
pixel 15 in layer 1 vanishes in layer 2 - it maps onto a skeletal interval. This is the first
instance in which a subdivided interval has no descendants. Notice that the three
OWSKL pixels in layer 2 arise from the traversal of (00), (01), and (00) again. This
explains why (02) is not explicitly labeled in Fig. 4.

Under most circumstances, the first few layers extracted will be free of skeletal pix­
els. Subsequently, some layer pixels will be labeled SKL. These pixels must, by defini­
tion, appear in all subsequent iterations. With each iteration, more pixels are labeled
SKL. This is a consequence of the property that skeletons are fully connected, and thus

preceding skeletal points must themselves be connected to SKL pixels. Also, the lengths
of the lists diminish as the skeleton is approached. This follows from the fact that fewer

pixels are extracted from a continuously eroding boundary. Finally, when all the pixels
in the outer layer are found to be skeletal, the innermost layer has been reached, and the
peeling procedure terminates.

5.5 Data Structure: L-trees

The recursive subdivision of layers gives rise to a tree representation. We shall
refer to the resulting data structure as an L -tree, for layer tree. An L -tree has the fol­

lowing properties.

1) Each level of the tree coincides with an interior layer of the shape. Beginning with

the outermost layer stored in the root, successive layers are represented in consecu­

tive tree levels.

2) The vertices in each level represent the non-OWSKL strips that have been subdi­

vided by intervening OWSKL pixels. Non-OWSKL pixels include DELPXL and

first-generation SKL pixels.

3) Leaves denote strips which have no descendants - that is, the entire strip maps

onto an OWSKL segment in the next layer.

Figure 6 illustrates a tree with nodes consisting of the non-OWSKL strips from Fig.

5. The root, denoting the outermost layer, has only one child since it contains no SKL

pixels. The child node represents the second exposed layer. It gives rise to two children

as a result of the two SKL pixels appearing in that layer. The subdivision continues until

a node's strip maps onto a skeletal point and thereby vanishes.

- 13 -

Figure 6: An L-tree representation.

Internally, an L -tree is encoded as an array of vertices, each represented by an instance
of the data structure shown below.

struct {

}

unsigned char *imgbf;

int len;

int *links;

1* pointer to list memory *1
1* length of list *1
1* pointer to auxiliary data *1

The first member contains a pointer to the non-OWSKL list whose length is specified by
the second member. Finally, the third entry is a pointer to auxiliary data, given as a list

of 3-tuples. Each 3-tuple specifies the endpoint indices of a DELPXL strip in the vertex
interviu, and "a pointer to the child vertex containing the corresponding subinterval in the

next layer. Note that DELPXL strips are delimited by SKL, OWSKL, or boundary end­

points.

- 14 -

5.6 The (u,v) Parameters

Our (u, v) parameterization is conveniently represented by L -trees. The (u, v) coor­
dinates are indices into the layer lists stored in the tree vertices.

The v coordinate runs from 0 to Vmax , where Vmax is the height of the tree. Begin­
ning at the root, where v = 0, the v coordinate is incremented at each successive tree
level. This establishes a one-to-one correspondence between interior layers and tree lev­
els. Figure 6 shows that all pixels on a given level share the same v coordinate.

The u coordinate runs from 0 to Umax , where Umax is the length of the outermost
layer. Since interior layers have fewer pixels than Umax , the successive levels must
necessarily be supersampled in order to evaluate the pixels along the radial paths. The
(Ui, Vj) value is determined by performing a recursive descent from the jlh boundary
pixel, stored in the root, onto the /h level. Clearly, since the distances between boun­
dary points and their corresponding skeletal points vary, Cu, v) is defined only over a fin­
ite irregular range.

The subsequent mapping stage requires the image pixels, currently stored in the
layers of the tree vertices, to be restored into an image of conventional format There­
fore, the (u, v) and (x,y) axes are aligned and the (Ui' v j) points are collected from the dis­
tinct tree vertices into a single reparameterized image, S'. Figure 7 illustrates the struc­
ture of S'.

11\
Ymax J

radial

r-- path
I-

.-- r-
I-- r--;-

l- I-1-

Umax

Figure 7: S' depicted as an image.

........

.,.",

Notice that each column represents a radial path. Since the upper rows coincide
with shorter layers, pixels along these rows are supersampled. In assembling S', we
have discarded scale infonnation along the rows in return for a structure amenable to
standard spatial transfonnations. This will prove valuable in the mapping stage that fol­
lows. Furthermore, the scaling information will be restored later when the resampled S'
is mapped onto T' which is then subdivided and scaled to fit back into corresponding
layers. Moreover, no infonnation is lost in this procedure since the transformations are
applied over supersampled pixels.

- 15 -

6. MAPPING WITHIN THE (U,V) PARAMETER SPACE

This section describes the function that resamples S I onto T'. This mapping
corresponds to function h in Fig. 1. The mapping solution in the (u, v) space is now more
tractable than its counterpart in the rectilinear coordinate system.

6.1 Introduction

The L -tree representation has allowed us to impose a convenient (u, v) coordinate
system on the image. The primary benefit of this reparameterization is that the image
may now be considered as a collection of radial paths defined between each boundary
point and its corresponding skeletal point. Furthermore, decomposing the image in this
manner facilitates efficient referencing of interior image information using an orthogonal
coordinate system. Since the range of valid (u, v) values for S I and T' are generally dif­
ferent, the problem becomes one of resampling S I so that its dimensions match that of
T'.

There are a number of techniques available to us in performing the mapping. The
most straightforward approach involves projecting each pixel in T' onto S', integrating
over that area, and assigning the normalized value to the appropriate pixel in T'. How­

ever, this inverse pixel mapping technique is cumbersome, especially for applications in
which the parameterized images must be referenced several times, as in multi­
dimensional data and animation applications. As a result, we describe a resampling
scheme which is decomposed into three simple ID transforms: the first pass in the v

direction, the second in the u direction, and the third pass in the v direction again.

Therein lies the advantage of the reparameterization stage.

6.2 First Pass: Normalizing the v -axis

Unlike standard rectangular images lying on the (x,y) plane, the (u, v) space is
defmed over an irregular domain. The flrst pass of the mapping function is responsible
for normalizing the v -axis in S' so that the (u, v) space is deflned over a rectangular

domain. This serves to establish correspondence between radial paths and facilitates a
straightforward ID scaling operation along the u -axis, a property required for the second

pass.

The normalization is achieved as follows. For each u, resample the column of pix­
els along the v -axis so that Vmax samples are used for the corresponding radial path. Vmax

is the height of the L -tree used to store the layers for S I. This is an appropriate choice
since it coincides with the number of samples used to represent the longest radial path.
This forces all c~lumns to be supersampled at a rate dictated by Vmax and the height of
the respective column. The resulting sampling rate properly exceeds the Nyquist rate
below which the highest frequency (the samples in the longest radial path) would be

irreproducible.

- 16 -

6.3 Second Pass: Resampling the u -axis

The second pass of the mapping function scales the u -axis in S' so that its dimen­
sion matches that of T'. This serves to equate the number of radial paths in both images.
Due to the ftrst pass, a simple ID scaling operation may be applied to each row in S I •

This is a consequence of the fact that the (u, v) space is now deftned over a rectangular
domain. Since the boundaries of S and T are also their longest layers, respectively, the
scale factor used is simply the ratio of their boundary lengths.

6.4 Third Pass: Resampling the v -axis

Now that the (u, v) parameter spaces for Sand T have identical dimensions in the u

direction, the information in the v direction must be made identical as well. For each u,
resample the column of pixels along the v -axis in S I so that its resulting dimension
matches that of the corresponding column in T'. The sampling rates are dictated by the
heights of the corresponding columns in S I and T'.

The three passes are depicted pictorially in Fig. 8. Notice that the first pass super­
samples all columns so that they have dimensions v 1, the height of the tree. This now
allows us to apply a ID scale operation to match the number of radial paths between S
and T. As a result, the u 1 columns in S' are resampled to map onto the U2 columns in
T'. Finally, each of the u 2 columns are resampled to take on the dimensions given by
T'. The intensity data in S' has now been fully mapped onto T'.

v

y

/\
r-

S'

v-axis

- -

u

normalization

r-

...........

./

u-axis

resamp

U

v
T'

y-axis resampling

y

II'.
r- - .- ~ r - -

..........

./

Figure 8: Three passes are required to map S' onto T'.

u

u

- 17 -

7. REPARAMETERIZATION FROM (U,V) TO (X,Y)

Having already initialized the content of T' with the resampled data of S', we must
now reapply it onto T. This coincides with function g -1 in Fig. 1. Not surprisingly, this
stage is the reverse sequence of operations described in section 5 that reparameterized
(x,y) into (u, v). The following two steps are required.

1) Scale appropriate intervals along the rows of T' to update the layers in T's L-tree.

2) Traverse shape T while concurrently updating the traversed pixels with the values
stored in the L -tree. The traversal consists of the same cycle of thinning and boun­
dary traversal described in section 5.

The fIrst step of resampling T' to update T s L -tree requires some discussion since
it is not entirely symmetric to the forward process. When supersampling values between
adjacent pixels, it is only necessary to perform interpolation. However, the inverse pro­

cess of integrating supersampled values into one pixel requires two accumulators to sum

the weighted values and weights. Fortunately, since row subintervals corresponding to
the same layer share the same scale (weight), we can apply simple ID scaling operations
to map them back onto the appropriate layer in the L -tree. The problem now reduces to

establishing a correspondence between row subintervals and L -tree vertices.

Beginning at the bottommost row in T', the pixels along the v = 0 row map directly
to the root of the L -tree since they share the same dimensions. Conveniently, each child
corresponds to a row subinterval delimited by undefIned (u, v) points or the T' image
border. Thus, the s descendants in the rlla generation correspond to the s subintervals in
the rlh row. Since the pixels have been supersampled, the row subintervals will be sub­
sampled to match the dimensions of their counterpart vertices in the L -tree. This com­
pletes the flrst phase of g-1. The second phase, as outlined above, is the initialization of

the pixel values along T by traversing the shape while copying the L-tree entries onto
the traversed pixels.

- 18 -

8. RESULTS

The algorithm is written in C and runs on an EDGE 1200 super-minicomputer under
the UNIXt operating system. The execution time for the 256 x 256 images shown was
approximately 30 seconds. Note, however, that segments of the code are subject to large

speedups. For instance, the thinning passes are subject to parallel processing. In addi­
tion, the ID scaling operations are ideally suited for simple hardware implementation.

Several warping examples are given below. Figure 9 shows four images. Sand T
are displayed in the upper left and lower left quadrants, respectively. The upper right

quadrant shows S mapped onto the shape defined by the foreground pixels of T. The

mapping of Tonto S is shown in the lower right quadrant. In both cases, only one boun­
dary correspondence point is used: the upper leftmost point of S maps onto that of T.

In Fig. 10, the images in the left column are shown with superimposed skeletons.

The distance between each boundary point and its corresponding skeletal point is dep­

icted in the right column. In the upper right quadrant, the flat curve indicates that all
boundary points of the box are equidistant to the skeleton, a single point at the center.
The lower right quadrant shows the irregular domain of its counterpart in the lower left
quad. Note that the u -axis is shown running counterclockwise along the boundary, start­

ing from the top-leftmost point. The peaks denote large radial paths, stemming from
boundary points that lie farthest from the skeleton. Similarly, valleys correspond to short

radial paths emanating from boundary points lying close to the skeleton.

Figure 11 shows the effect of adding a boundary correspondence point to limit the

effect of the uniform perturbation along the boundary. In the upper right quadrant only

the top-leftmost points of S and T are used. In the lower right quadrant the central top­

most and bottommost points are used. Notice that the checkerboard pattern is less

severely skewed along the boundary in the latter case.

The effect of warping a checkerboard into a box with a spike is given in Fig. 12.

Only one boundary correspondence point is supplied at the top-leftmost point. Notice

that a minor boundary perturbance has spurred a long skeleton that grossly distorts the
checkerboard pattern. This issue is addressed in section 9.

t UNIX is a trademark of AT&T Bell Laboratories

- 19 -

Figure 9

- 20 -

Figure 10

- 21 -

Figure 11

- 22 -

Figure 12

- 23 -

9. ENHANCEMENTS

This section lists some enhancements and issues which can be used to improve the

results and versatility of the described algorithm.

9.1 Skeleton Editing

The thinning algorithm used to assure the closure of extracted layers is well known
for its sensitivity to noise. This manifests itself as extraneous branches that are spurred
by noise along the boundary, i.e. spikes. These branches may then be responsible for
undesired compression or expansion of interior pixels. To counterbalance this problem,
there is a facility to edit the skeleton. That is, the user may pick a subset of the displayed
skeleton as those skeletal points onto which the boundary ultimate maps. In this manner,

a more desired skeleton may be used for warping. Note that another arbitrary skeleton

that does not entirely lie on the original skeleton cannot be used.

9.2 Use of a Better Distance Transformation

In addition to editing a skeleton, it is also worthwhile to use a more accurate dis­

tance transformation to compute the skeleton. Some recent work is described in Bor­

gefors (1986) and Dorst (1986) in which large neighborhoods are applied in a 2-pass
algorithm to determine the distance of each foreground pixel from the boundary. The

skeleton is taken as the peaks of the resulting distance map. While it might appear
natural to use this algorithm to evaluate the radial paths as well, there is the issue of mul­
tiple equi-distant paths to address. Nevertheless, the use of skeletons with improved
noise sensitivity is a valuable asset.

9.3 Non-uniform Scaling

The algorithm described here used uniform scaling exclusively. This is inappropri­
ate near comers where the Manhattan distance is a poor approximation to the Euclidean

distance metric. Non-uniform scaling, together with additional boundary correspondence

points. can be used to offset the distortions (skew) that manifests near corners and other
points of high curvature.

9.4 Interior Holes

Adding interior holes changes the topology of the shape. Recall that the target
image must be topologically equivalent to that of the source image. Therefore, S and T
must have the same number of holes. With each hole, there is an additional set of boun­

dary correspondence points to specify.

- 24 -

9.5 Applications

Warping an arbitrary shape onto, say, a rectangle, has potential value for fast convo­
lution. The Fast Fourier Transform, for instance, can only be applied upon rectangular
images. Applying it to an arbitrary shape would include unwanted neighboring pixels.
With the proposed warping algorithm, it is possible to warp shape X into rectangle Y,
apply the FFT to Y, and then warp Y back into X, its original form. In order to avoid
information loss, X must be entirely contained in Y so that the convolution is applied

upon supersampled pixels.

Another application may be to use the domain of S', as given in Fig. 10, as a shape
measurement that can be used for quantifying shape deformation. This presupposes that
the skeleton, which is the basis of the measurement, remains fairly consistent among the
sampled images and the reference modeL

Finally, the role of this warping algorithm for visual effects is obvious. If an image
is partitioned into jigsaw pieces, it is now possible to arbitrarily distort the jigsaw boun­
daries, warp the interior, and create sophisticated special effects.

10. SUMMARY AND CONCLUSIONS

This paper describes an efficient algorithm to perform image warping among arbi­
trary shapes. The resulting spatial transformation is derived using boundary correspon­
dence specified by control points. These points serve to clamp the effect of the warp per­
turbation to specified intervals.

The algorithm formulates a convenient homomorphism to yield a tractable solution
to this problem. The chain of transformations begins with the reparameterization of the
source and target images. This consists of initializing two L -trees with values that are

peeled off both shapes, one layer at a time. A thinning algorithm supplements this pro­
cedure to assure that closed layers are extracted, thereby guaranteeing that all interior
pixels are considered. Once the L -trees are initialized for the source and target images,
the warping problem becomes one of mapping one L -tree onto another. Since the pixels
are now scattered in a tree, we supersample the tree and collect the data into a standard

image format. This facilitates the application of three 10 transformations to map the

reparameterized source image onto that of the target. Having done this, we simply
restore the target's L -tree and reapply the updated pixel values onto the target image.

This sequence yields the desired result.

Facilities are available for establishing boundary correspondence points. This
enables the warping to be clamped to specified intervals. Furthermore, the skeleton may

be edited to remove. extraneous branches that would otherwise give rise to unwanted
compression or expansion. This feature is an effort to address the noise sensitivity intrin­

sic to skeletons. An improved distance measure would prove more robust against noise

and yield improved skeletons.

- 25 -

Aside from the obvious visual effects application, this algorithm is well-suited for
warping an arbitrary shape into a rectangle, a shape suited for FFf filtering. This enables
fast convolution without incorporating neighboring background pixels. More studies
remain to be done on the effectiveness of this method for this purpose. Finally, an exten­
sion of this algorithm from the current discrete implementation to a continous domain
offers promising possibilities for increased accuracy and control. This would prove valu­
able for the mapping, analysis, and registration of 2D and 3D data useful in a variety of
applications.

10. REFERENCES

Arcelli C, di Baja GS (1985) A Width-Independent Thinning Algorithm. IEEE Trans.

Pattern Anal. Machine Intell. 7(4) : 463-474

Borgefors G. (1986) Distance Transformations in Digital Images. Computer Vision,

Graphics, and Image Processing 34(3) : 344-371

Burt Pl (1981) Fast Filter Transforms for Image Processing. Computer Graphics and

Image Processing 16: 20-51

Crow FC (1984) Summed-Area Tables for Texture Mapping. Computer Graphics, (SIG­
GRAPH '84 Proceedings) 18(3) : 207-212.

Catmull E, Smith AR (1980) 3-D Transformations of Images in Scanline Order. Com­

puter Graphics, (SIGGRAPH '80 Proceedings) 14(3) : 279-285

Dorst L (1986) Pseudo-Euclidean Skeletons. Proceedings 8th Inti. Conf. Pattern Recog­

nition, pp. 286-288.

Fant KM (1986) A Nonaliasing, Real-Time Spatial Transform Technique. IEEE Com­

puter Graphics and Applications 6(1) : 71-80

Fiume E, Fournier A, Canale V (1987) Conformal Texture Mapping. Proceedings of
Eurographics 1987, pp. 53-64.

Fraser 0, Schowengerdt RA, Briggs I (1985) Rectification of Multichannel Images in

Mass Storage Using Image Transposition. Computer Vision, Graphics, and Image
Processing 29(1) : 23-36

Greene 0, Lamming M (1986) Interactive Distortion of Images. Xerox Palo Alto
Research Center, 1986.

Heckbert P (1986) Survey of Texture Mapping. IEEE Computer Graphics and Applica­
tions 6(11) : 56-67

Oka M, Tsutsui K, Ohba A, Kurauchi y, Tagao T (1987) Real-Time Manipulation of
Texture-Mapped Surfaces. Computer Graphics, (SIGGRAPH '87 Proceedings),
21(4): 181-188

Pavlidis T (1982) An Asynchronous Thinning Algorithm. Comput. Graph. Image Pro­
cessing vol. 20(2) : 133-157

- 26 -

Rosenfeld A, Kak A (1982) Digital Picture Processing, Volume 2, Academic Press, NY

Smith AR (1987) Planar 2-Pass Texture Mapping and Warping. Computer Graphics,
(SIGGRAPH '87 Proceedings), 21(4) : 263-272

Williams L (1983) Pyramidal Parametrics. Computer Graphics, (SIGGRAPH '83
Proceedings), 17(3) : 1-11

Wolberg G (1985) An Omni-font Character Recognition System. M.E.E thesis, Cooper
Union School of Engineering, Oct. 1985. (Available from UMI, Ann Arbor,
Michigan.) Also appears in Proceedings of IEEE Computer Vision and Pattern

Recognition, June 1986.

