
CUCS-326-88

Parallel Algorithmic Techniques for Combinatorial Computation

David Eppstein 1,3 and Zvi Galil l,l,3

1 Computer Science Department, Columbia. University, New York NY 10027
2 Computer Science Department, Tel-Aviv University, Tel-Aviv, Israel
3 Work supported in part by NSF grants DCR-85-11713 and CCR-86-05353

Februa.ry 15, 1988

INTRODUCTION

Parallel computation offers the promise of great improvements in the solution of problems that,

if we were restricted to sequential computation, would take so much time that solution would be

impractical.
There is a drawback to the use of parallel computers, however, and that is that they seem to

be harder to program. For this reason, parallel algorithms in practice are often restricted to simple
problems such as matrix multiplication. Certainly this is useful, and in fact we shall see later some

non-obvious uses of matrix manipulation, but many of the large problems requiring solution are of

a more complex nature. In particular, an instance of a problem may be structured as an arbitrary
graph or tree, rather than in the regular order of a matrix.

In this paper we describe a number of algorithmic techniques that have been developed for

solving such combinatorial problems. The intent of the paper is to show how the algorithmic tools

we present can be used as building blocks for higher level algorithms, and to present pointers

to the literature for the reader to look up the specifics of these algorithms. We make no claim
to completeness; a number of techniques have been omitted for brevity or because their chief
application is not combinatorial in nature. In particular we give very little attention to parallel
sorting, although sorting is used as a subroutine in a number of the algorithms we describe. We

also only describe algorithms, and not lower bounds, for solving problems in parallel.

The model of parallelism used in this paper is that of the PRAM, or shared memory machine.

This model is commonly used by theoretical computer scientists but less often by builders of actual
parallel machines; nevertheless it is hoped that the techniques described here will be useful not

only on the shared memory machines that have been built, but also on other types of parallel

computers, either through simulations of the shared memory model on th06e computers [Mehlhorn

and Vishkin 1984; Vishkin 1984a; Karlin and Upfal 1986; Ranade 1987], or through analogues of

these techniques for different models of parallel computation (e.g. see Hillis and Steele [1986]).

This paper is organized as follows. In the next section we give a brief description of the PRAM

model and the motivation for its use. Then we describe prefix computation and ranking, two tools

for performing calculations on data arranged in some linear order. In the third section we describe

methods for finding such an order when the data are arranged in a graph or tree. Finally we discuss

ways of solving problems using parallel matrix computations.

All logarithms in this paper should be a.8sumed to be base 2 unless explicitly stated otherwise.

-- -- -- ----------

1. THE MODEL OF PARALLELISM

The model of parallel computation we will for the most part be using in this paper is the shared
memory parallel random access machine, known for short as the PRAM. In this model, one is given
an arbitrarily large collection of identical processors and a separate collection of memory cells; any
processor can access any memory cell in unit time. The processors are assumed to know the size
of their input, but the program controlling the machine is the same for all sizes of input.

There are two motivations for this model, practical and theoretical.
The theoretical motivation is based on another model, that of the circuit. An algorithm in this

model consists of a family of Boolean circuits, one for each size of a problem instance. To correspond
with the PRAM requirement of having one program for all input sizes, the circuit family is usually
required to satisfy a uniformity condition. Such a condition states that there must be a program
meeting certain conditions (for instance taking polynomial time, or running in logarithmic space)
which, given as input a number, produces as output the circuit having that number as its input
size.

The output of the algorithm for a given instance of a problem consists of the result of the
circuit of the appropriate size, when the circuit's input lines are set to some binary representation

of the instance. The two measures of an algorithm's complexity in this model are the circuit's size
and depth, both as a function of input size.

Circuit models are good for producing theoretical lower bounds on the complexity of a problem,
because a gate in a Boolean circuit is much simpler than an entire processor in a parallel computer,
and because most other models of parallelism can be described in terms of circuits. But it is difficult
to construct algorithms in the circuit model, again because of the simplicity of the circuits.

It turns out that any uniform circuit family can be described as a PRAM algorithm, by
simulating each gate of the circuits with a processor of the PRAM. The number of processors used
is proportional to the size of the Circuit, and the parallel time is proportional to the circuit's depth.
Similarly, a PRAM algorithm may be simulated by a circuit family of size proportional to the total
number of PRAM operations, and of depth proportional to the parallel time, with perhaps an extra

logarithmic factor in the size and depth due to the fact that PRAM operations are performed on
numbers rather than single bits.

Therefore if a problem can be solved by a PRAM algorithm with a number of processors
polynomial in the size of the input, and a time polynomial in the logarithm of the input size, it can

be solved by a polynomial sized. circuit with polylogarithmic depth, and vice versa. The class of
problems solved in such bounds is called NC; the theoretical importance of this class is due to the
fact that it does not depend on whether one is using the PRAM or the circuit as a model, or on
details such as whether the circuit is allowed unbounded fan-in or whether the PRAM is allowed
simultaneous access to the same memory cell by multiple processors.

Practically, one is given a machine which is capable neither of configuring itself into arbitrary
circuits nor of accessing memory in unit time, and one would like an algorithm that takes a total
number of operations that is close to the best possible sequential time, but with a non-constant
factor speedup over that sequential time. It is in many cases possible to simulate a PRAM algorithm
on a real parallel machine, with only a logarithmic loss in time for the simulation. In particular

such simulations are known for the butterfly network [Karlin and U pfal 1986; Ranade 1987), and

3

for a more specialized combination of sorting and merging networks [Mehlhorn and Vishkin 1984;

Vishkin 198430]. In both cases the interconnection network has bounded degree.

Many combinatorial problems can be solved on the PRAM using algorithms that fulfill both

the theoretical requirement of taking polylogarithmic time, and the practical requirement of taking
a number of operations within a polylogarithmic factor of the best known sequential algorithm.

For a number of other problems, the best known NC algorithm takes a number of processors that

is a small polynomial of the input size, and so for small problem instances the parallel solution

may still be practical. In this paper we restrict our attention to NC algorithms, but we attempt to
keep the number of processors used to a small enough number that the algorithms remain useful

in practice.

1.1 Details of the PRAM Model

We assume that each processor of the PRAM is arbitrarily assigned a unique identifier, which can

fit in a single memory cell; we also assume that memory addresses can fit in memory cells. Each

processor can access any memory cell in unit time. In some cases we add the further restriction that

a memory cell can contain only a number bits of information proportional to the logarithm of the

size of the input (note that there must be at least that many bits to meet our earlier restriction that

addresses fit in a cell). Processors are allowed to perform in constant time any other operation that

a typical sequential processor could do; this usually means processors are restricted to arithmetic

and bit vector operations.

The input to a PRAM algorithm is given in a predetermined fashion in the memory cells of the

processor. We assume that the size of a given input instance (which may be represented by more

than one parameter; e.g. the numbers of vertices and edges in a graph) is known. The number of

processors used for a given computation may vary depending on the size of the instance, but may

not change during the computation, nor may it in any other way depend on the actual contents of

the problem instance.

The efficiency of a PRAM algorithm is measured by two criteria, taken as functions of the

instance size: the number of processors used to perform the computation, a.nd the amount of time

taken by that number of processors for the computation. The latter criterion is usually taken to be

the worst case over all instances of a given size. Another criterion, the total number of operations,

is then the product of the number of processors with the total time taken; that is, we count a

processor as performing an operation even when it is idle. We later describe a way of performing a

parallel computation such that at most a fixed fraction of the time is spent idle; this means that we

could instead count non-idle operations only, and take the number of processors to be the number

of operations divided by the time.

Since a parallel algorithm can easily be simulated on a sequential computer in time proportional

to the number of parallel operations, it is clear that conversely the number of operations of a.
parallel algorithm must be at least proportional to the best known sequential algorithm. A parallel

algorithm that meets this bound is called optimal. Optimality depends on the specifics of the

model we are using, because as we shall see simulation of an algorithm designed for one model on a

processor of a different model may lose a polylogarithmic factor in the number of opera.tions. Many

of the algorithms we will consider are in fact optimal for some model.

4

There is an important question we have not yet addressed, which is what happens when
more than one processor tries to access the same memory cell at a given time. There are various
possible answers that have been chosen; it will be convenient to pick different answers for different
algorithms. This does not mean that the algorithms will only work for a specific choice of concurrent
memory access behavior, because, as we shall see, there are a number of simulation results that let
algorithms written for one choice work with machines that use a different choice.

There are three main choices for processor action on concurrent memory access. The first
choice is simply to disallow such access altogether, and leave undefined the behavior of a program
that attempts to perform such access. Such a machine is called exclusive read exclusive write, or
EREW for short. This is the weakest of the various types of PRAM, and so an algorithm that
works on this model with a given time and number of processors is preferable to one that achieves
the same time and processors on a stronger model.

The second type of PRAM, known as a concurrent read exclusive write machine, or CREW
for short, allows several processors to read the same cell at once, but disallows multiple concurrent
writes to a cell. Again, the behavior of a program that violates these constraints is undefined. For
a long time this seems to have been the only type of PRAM used [K utera 1982]; it appeared in the
literature as early as 1976 [Csanky 1976; Hirschberg 1976].

In third and strongest version of the PRAM, the concurrent read concurrent write machine
or CReW, both concurrent reads and concurrent writes are allowed. We still need to define what
happens when several processors write to a single cell with different data values. A number of
different possibilities have appeared in the literature under various names; these are summarized
as follows.

(1) Weak CRCW. In this model concurrent writes are allowed only if all processors performing a
concurrent write are writing the value zero. Sometimes the further restriction is added that
they be writing to one of a set of special cells that can only contain zero or one; but this
restricted weak CRCW is equivalent to the version described here, as we shall show in the

simulations below. This model was introduced by Kucera [1982], who showed that certain
problems could be solved more quickly on it than on the CREW which had typically been
used before then, and that (as we shall see below) problems that can be solved in a given time
on any version of the CRCW can be solved within a constant factor of that time on this version
(but perhaps with many more processors).

(2) Common-made CRCW. In this model there are no restrictions on the values written in a
concurrent write; however all processors writing at a given time to the same cell must write
the same value. Therefore there is no question of which value is actually written to the cell.

(3) Arbitrary-wiIlller CRCW. Processors may write different values to the same cell, and one of
the values written is the value the cell ends up containing. But which processor wrote the
winning value may be ch06en arbitrarily; in particular the result may be different if the same
step is executed another time. This version of the CRCW is the one most commonly used by
workers in the area of parallel algorithms.

(4) Priority CRCW. The result written in a concurrent write is the value from the writer with
the largest processor identifier. Recall that these identifiers may be chosen arbitrarily; thus

5

like the arbitrary-winner CRCW it is not clear a priori which processor will be the one to get

its value chosen as the result; however unlike the arbitrary-winner CRCW a repetition of the

same concurrent write will give the same result.

(5) Strong CRCW. This model is less often seen than the previous ones, but it has appeared in

the literature [GaUl 1986a; Cole and Vishkin 1986c]. In it, the value written in any concurrent
write is the largest (or equivalently smallest) of any of the values the processors are attempting

to write.

Note that the strong CRCW model can simulate each step of a priority CRCW in constant
time by, in a concurrent write, first writing the identifiers of the processors attempting the write,
and then the winner writing the original value it wanted written. Thus it is at least as strong as
the priority CRCW. Similarly we can see that each of the models we have given is at least as strong
as the previous ones, so the various models form a hierarchy. Grolmusz and Ragde [1987J have
recently described some other CRCW models which are intermediate in power among the ones we
have listed, but which do not fall into a hierarchy with them.

Vishkin [1984bJ has described an even stronger version of the CRCW PRAM. In this model,
which has been partially implemented as the NYU Ultracomputer [Schwartz 1980J, there is a further

kind of concurrent write available. If one processor performs this write to a cell, the value it was

writing is added to the value at the cell, and the result is stored back into the cell. The old cell value,

before the addition, is returned to the writing processor. If several processors write to the same

cell, the effect is as if they had performed the above operation one at a time, in some arbitrary
order. One could further generalize this to any (associative) binary operation, rather than just

addition. Vishkin showed that in certain simulations of one parallel model by another, this very

strong write operation can also be simulated with no further l06S of time or efficiency.

A final distinction to be made among PRAM models is whether they are randomized or deter­

ministic. If we allow randomness in parallel computation, it is performed as follows. Each processor

is given its own random number generator, with which it can generate in constant time a number

drawn from a uniform distribution over the numbers fitting in a memory cell. These numbers are

private; if a processor wants to share its random number with another processor it must write

it to a memory cell. The distribution of numbers drawn at anyone processor is usually taken

to be independant of that drawn at all other processors, although some algorithms have weaker

independance requirements.

When a parallel algorithm uses random numbers, we still require that the number of processors

be a fixed function of the input size; that is, only the run time, and not the number of processors,

may vary randomly. The algorithm may always terminate with the correct answer (such an algo­

rithm is commonly known as a Las Vegas algorithm) or it may get the correct answer with high

probability (a Monte Carlo algorithm). The algorithm must be able to detect when it has termi­

nated. The time we measure for a randomized parallel algorithm is then the worst case expected

time of termination over all instances of a given size.

Random numbers are used in a number of parallel algorithms for which there are efficient

deterministic sequential solutions. One important use of them is for what is known as symmetry

breaking; for instance, one may have a graph in which many nodes have similar local neighborhoods,

6

but in which after the algorithm terminates different nodes must have different data values; one
such problem is that of coloring the graph. If we used a deterministic algorithm, the nodes must
look far away from themselves to see enough to differentiate them from their neighbors, but in a
parallel algorithm they might merely flip coins and expect with high probability to get a different
result. For certain problems these coin flips can be replaced by a use of the processor identifiers
known as deterministic coin tossing, introduced by Cole and Vishkin [1986a, 1986b]j this technique
will be discussed later.

There are several ways in which randomness can improve the parallel time and processor bounds
of an algorithm. First, a randomized parallel algorithm may solve in polylogarithm expected time
a problem for which there is no known NC algorithm. We call the class of problems solved by
such algorithms RNC. Such is the case for matching [Karp et al. 1985aj GallI and Pan 1985a;
Mulmuley et al. 1987] and for the construction of maximal paths [Anderson 1985] and of depth

first search trees [Aggarwal and Anderson 1987]. Karp et al. [1985b] describe a general model of
parallel computation in the presence of oracles in which they give a problem which they prove that
no determlnistic PRAM with polynomial processors can solve in polylogarithmlc parallel time, but
which can be solved quickly and efficiently in parallel using a probabilistic algorithm.

Second, a randomlzed parallel algorithm may perform a task that can be performed determ1IDs­
tically in parallel, but the parallel algorithm may be more efficient than the best known determ1IDstic
algorithm, may take less time than it, or may run on a weaker model of parallelism. Even if the
randomlzed algorithm takes the same asymptotic bounds, it may be simpler and therefore more
practical than its deterministic counterpart. Examples of improved efficiency in randomized parallel

computation are the various algorithms known for finding maximal independent sets; the random­

ized algorithm of Luby [1985J uses less operations than the deterministic algorithm of the same
paper, and runs more quickly (with the same number of processors) than the newer determlnistic

algorithm of Goldberg and Spencer [1987].
Other examples of randomized parallel algorithms that are more efficient than their determin­

istic counterparts include those for finding connected components [Gazit 1986], and sorting integers

[Reif 1985J. Another example in which the randomized parallel time is faster than the best known
deterministic time for a given number of processors (in fact the time is better than the determin­

istic lower bound) is the constant time selection algorithm given by Reischuk [1981J; note however

that both Reischuk's algorithm and the lower bounds given are for the comparison tree model of
parallelism, and therefore do not translate directly to the PRAM.

Finally, a randomized algorithm may use the same asymptotic time and number of processors
as a deterministic algorithm, but may be much simpler. Such an algorithm would typically be
more useful in a practical implementation, because of the ease of writing the program for it and

also because these simpler programs tend to run faster (by a constant factor, but sometimes a

very large constant factor) than their deterministic counterparts. Also the randomized algorithms
are often discovered some time earlier than an equally efficient deterministic solution. One such

instance is the randomized EREW list ranking algorithm of Vishkin [1984cli this algorithm was
later made deterministic [Cole and Vishkin 1986a, 1986bJ and still later made faster with the same

asymptotic number of operations [Cole and Vishkin 1986c].

i

1.2 Simulations Among PRAM Models

We have looked at a number of different ways that the PRAM model of parallel computation may
have its details of concurrent memory access, and of randomness or determinism, filled out. All
of the different types of deterministic PRAM we have seen have been used in the development of
parallel algorithms to solve various problems, and the same is true for many probabilistic PRAM
models. An algorithm designed for a weak model can be used in a stronger model within the same
processor and time bounds as they would take in the weaker model. But we would like to use any
PRAM algorithms on any model, and so it is important be able to simulate efficiently stronger
models by weaker ones.

We will give a number of these simulation results between different pairs of models, but before
we do, let us first see a result in which the model being simulated and the model doing the simulation
are the same. That is, if we have a parallel algorithm running on a certain PRAM model with a
given number of processors and within a given amount of time, we would like to be able to run it
with fewer processors without more than a proportional loss of time.

Theorem 1 [Brent 1974]. IT a parallel computation can be performed in time t, using q operations
on any number of PRAM processors (of a given fixed type), then it can be performed in time

t + (q - t)/p using p processors (of the same type).
Proof: Suppose that at each time step i, taking i from 1 to t, the original computation

performs qi operations, so that q = E;=l qi. Then with p processors, we can simulate step i in

time rqi/pl = l(qi + P - l)/pJ ~ (qi + P - l)/p, by breaking the operations into blocks of size p
and performing one block at a time, with one processor per operation within each block. Summing

gives total time E!=l rqi/pl ~ E:=l(qi + p - l)/p = t + (q - t)/p .•

Corollary. A parallel computation that can be performed in time t, using p processors, can be

performed in any amount of time greater than t and less than pt using O(pt) operations.

Note that the proof of the theorem assumes we know how to split the operations into blocks
of a given size, and within each block assign one processor to each operation of the block. In most

uses we will make of this theorem this sched uling problem will be easy, although this is by no means

true in general. In particular the corollary follows immediately without any assumptions, because

the operations we are counting there are simply the actions of the original processors.

Now let us look at simulations between different types of PRAM. With all of these simulation
results, we have that if the original algorithm took polylog time with polynomial processors, the

same will be true of the simulation of the algorithm.

The next theorem ill the most important: it simulates the strongest of our models, the strong

CRCW, on the weakest, the EREW. Therefore it can also be used to simulate an algorithm designed
for any model by a parallel computer of any weaker model.

Theorem 2 (folklore). A parallel computation that can be performed in time t, using p strong

CRCW processors, can also be performed in time t log p, using p EREW processors.

Proof: Each step of the strong CRCW PRAM is simulated by log p steps of the EREW. We
assume that processor identifiers on the EREW run from 1 to p. IT the processors are reading

from memory, each processor first writes the pair consisting of its own identifier a.nd the address it

8

wants to read from. If the processors are writing, they instead write triples of processor identifiers.
addresses, and the values to be written. In either case the pairs or triples are written in constant

time to an auxiliary array, with the position in the array being the identifier of the processor doing
the writing. Because of uniqueness of identifiers, this causes no write conflict.

Next the pairs or triples are sorted by the addresses in them. In a write cycle, ties are broken by

sorting according to the value being written. This sorting stage can be performed in time O(logp)
with O(p) processors [Ajtai et al. 1983; Cole 1986]. We now assign one processor for each element
of the sorted list.

If the processors were writing, then each processor reads first the triple it is assigned to, and
then the next position in the list. If a processor is assigned the final triple in the list, or if the
address in the following triple differs from the one in the processor's own triple, the processor writes
the value from its triple to the address from its triple. The sorted order of the list guarantees that

only the processor with the highest value for a given address will attempt to write to that address.
If the processors were reading from memory, the values they want can be distributed as follows.

Construct a list, where the values at each point of the list are the addresses and processor identifiers
in sorted order as above, together with a value for each address. For each point in the list, the new

value is computed as follows. If the point is the start of the list, or if the address there differs from
that at the previous point, the processor for that point reads the value from memory. Otherwise it

is taken to be the least value that will fit in a memory cell.

Once the list has been constructed, the processors compute for each prefix of the list the maxi­
mum pair of address and value that can be found in that prefix; pairs are ordered lexicographically,

address first and then the value. This prefix maximum operation can be performed using the prefix
computation algorithm described in the next section. The maximum up to a given element in the
list will have the same address as that element, because the addresses were already sorted, but the

value part of the maximum will be the actual data value at that address. Now the processor for

each triple of value, address, and processor identifier, writes the value of the triple to an auxiliary

array indexed by the processor identifier. Finally, the processors read the value they wanted from

this array using their own identifier as index.

It is not difficult to verify that the above actions simulate exactly those performed by the

original strong CRCW. The initial writing of addresses and reading of values, and the final writing

of values, can be performed in constant time with O(p) processors; by the corollary to theorem 1 they

could also be performed in time o (log p) using O(pj log p) processors. The two prefix computations

each take time O(logp) using O(pj log p) processors, as we shall see later. The initial sorting can be
performed in the same time but with O(p) processors. This gives the total bounds of the statement

of the theorem .•

In fact with a somewhat more complicated prefix computation, we need not sort the addresses,

but may instead choose any order for the list of addresses and values in which all members of
the list having the same address are adjacent in the list. If such an ordering can be found more

'. efficiently than by sorting, or if we could sort addresses more efficiently, we could perform the total

simulation using only O(pj log p) processors, which is the best we could hope for. In general it is

not known how to do this, but for many specific algorithms the structure of concurrent reads and

writes is simple enough that this more efficient simulation can be performed. Also, for probabilistic

9

computation we have the following:

Corollary. A parallel computation that can be performed in time t, with P probabilistic strong
CRCW processors, and using the assumption that addresses can be written in at most O(logp) bits,
can also be performed in expected time O(tlogp), using O(p/logp) probabilistic arbitrary-winner
eReW processors.

Proof: Reif [1985] has shown that n numbers, each represented by at most O(logn) bits,
can be sorted in expected time O{log n) using O(nJ log n) probabilistic arbitrary-winner CRCW
processors. Since it is easy to test that the numbers are sorted, the algorithm is Las Vegas (always
correct). The result follows by using this result in place of the deterministic sort in the proof of
the theorem .•

The corollary above gives one example where a weak model of concurrent write can perform

a better simulation of a strong CRCW than the best known EREW simulation. As another ex­
ample, we give the following theorem, which applies when we want to know the minimum time for
performing a parallel computation with less concern for the total number of processors used.

Theorem 3 [Kucera 1982]. A parallel computation that can be performed in time t, using P strong
CReW processors, can also be performed in the same asymptotic time using OCr) weak CReW

processors.

Proof: For each pair of original processors Pi and Pj we add an auxiliary processor qij. When

Pi wants to write a value Vi to address ai, it first writes aj and Vi to locations in auxiliary memory

where all processors qij read them, and sets a flag Ii in auxiliary memory to one. Each pair of
processors qij and qji then compare their addresses and data. If ai :/: a j, they do nothing. Otherwise

if Vi < Vj, or if Vi = Vj and i < j, processor qij writes a zero to Ii. Finally all original processors

for which the flag is still one perform the write. It can be seen that the only concurrent writes

are those zeroing flags, that of all processors wanting to write to a given address exactly one will

be left with a nonzero flag, and that that one will have the largest data value of those processors

wanting to write there .•

As we discussed earlier, the result of theorem 2 can be improved in the case that we know

enough of the pattern of concurrent memory acce88 to be able to group accesses to the same cell

into blocks without the use of a general-purpose comparison sort. A similar improvement can

be made in theorem 3, again in the case that the pattern of concurrency is known. We will only

describe algorithms for finding the maximum among n values; many uses of strong concurrent write

in parallel algorithms reduce to this case.

Theorem 4 [Fich et a.l. 1983; Shiloach and Vishkin 1981]. The maximum ofn values can be found

in the weak CRCW model (a) in time t = o (log log. n) using O(knJt) processors; (b) in constant
time using O(n 1+t

) processors; and (c) in constant time using O(n) processors, this last case under

the assumption that the values can be represented using at most O(log n) bits.

Proof: Cases (a) and (b) were proved by ShHoach and Vishkin [1981]; in the proof here we

use a technique known as accelerated cascades, described by Cole and Vishkin [1986a], in which
an instance of a problem is red uced in a seq uence of stages to smaller instances of the same type

of problem. The stages start out making small reductions, but as the problem instances become

10

smaller there are proportionally more processors available and the red uctions can become larger
and larger.

The reductions use a subroutine which we will call reduce(r). It reduces the problem from

one of taking the maximum of n values to one of njr values, using rn operations, in the following
manner. The values are split into njr blocks of size r. Then for each block, using r2 processors
per block, we find the maximum in constant time as in theorem 3. The maximum of all n values
can "then be found as the maximum of the njr block maxima.

First we prove case (a). For notational convenience, let m = nj loglog,l: n. The algorithm for

case (a) first performs logloglog,l: n iterations of reduce(2), reducing the total number of values left
to m in time O(log log log,l: n). Because each iteration uses half as many operations as the previous
one, and using theorem 1, the total number of operations is O(n). We now proceed in loglogk m
stages, each taking constant time. Prior to stage i there will be mj k2,-1_1 values left to take the

maximum of; at stage i we call reduce(k 2·-
1

), leaving mjk2'-1 values. The number of processors

used by each call to reduce is O(k2·-
1

• mjk2i - 1 - 1) = O(km), so the total number of processors
used by the algorithm is again O(km).

Case (b) is a special case of case (a), with k = n E
•

The proof of case (c) was given by Galil [1986a], who attributed it to Fich et al. [1983]. We

split each value into blocks of log n/2 bits. Since each value ca.n be represented using at most

O(1og n) bits per value, there is a consta.nt number of blocks per value. We proceed one block at a
time, starting with the high order bits first. Within a block we use weak concurrent write to find
which of the Vn settings of the block's bits are used by the values we have left. Then we take the
maximum of these Vn values in consta.nt time with O(n) processors, using theorem 3, throw out

all values whose bits in that block do not match the maximum, and repeat until we reach the last

block. At this point we know the bits in each block of the maximum value, and therefore we know

the maximum value itself .•

Valiant [1975] has given lower bounds showing that cases (a) and (b) are the best possible for

comparison algorithms. Case (c) improves these bounds but only by splitting the values into bits,

which causes it not to be a comparison algorithm. Valiant also gave matching upper bounds using

a decision tree model of parallelism; the algorithms of Shiloa.ch a.nd Vishkin [1981] given in the

proofs of cases (a) and (b) are essentially those of Valiant translated to the PRAM model.

2. PREFIX COMPUTATION AND RANKING

2.1 The Prefix Computation Algorithm

A prefix calculation takes as input a sequence of data values Vl, V2, •• , Vn for some associative
binary operation 0 taking pairs of data values to single values drawn from the same range. The
binary operation need not be commutative. The result of the computation is a sequence of prefix

sums P1 = Vl, P'2 = Vl 0 V2, ••• Pn = Vl 0 V2 0 '··0 vn . There is a simple algorithm for performing
prefix computation on an EREW PRAM, discovered by Ladner and Fischer [1980], which runs as
follows.

(1) For each input value Vi, if i is even, calculate the values in a new array x of temporary values

as Xi/2 = Vi-l 0 Vi.

(2) Recursively calculate the prefix sums of the In/2J data values from Xi into another new tem­
porary array Yi.

(3) For each value Vi, if i = 1 then Pi = Vi; if i is even then Pi = Yi/2; or finally if i is odd and

greater than 1 then Pi = Y(i-l)/2 0 Vi.

Theorem 5 [Ladner and Fischer 1980]. A prefix computation with n inputs can be performed in
O(log n) time using O(n/ log n) EREW processors, each capable of performing the binary operation
of the prefix computation in constant time.

Proof: Steps (1) and (3) take constant time with n processors. The recursion in step (2)
involves a problem instance half the size of the original one; therefore the recursion bottoms out
O(log n) levels deep, and the whole computation takes time O(log n). At first it would seem that
we need O(n) processors to a.chieve this time, but in fa.ct we only need O(n/logn). This can be

seen in the fact that the number of processors needed decreases by a factor of two at each level of

the recursion, and therefore (using theorem 1) there is a total of O(n) operations performed .•

We should mention here that Reif [1983] has proved that certain prefix computations can be

performed in O(log log n) expected time, again with O(n) total operations. This result is deter­

ministic, but for the average case in which the inputs are drawn from a random distribution. The
result uses essentially the same algorithm as above, together with the observation that it is likely

to be necessary to look at only O(logn) values prior to a value Vi, rather than the entire sequence
of values up to that point, in order to determine the correct value of Pi. Obviously this observation

does not hold for arithmetic operations such as addition or maximum. But it does hold for others,

and in particuia.r it holds for the operation used by Ladner and Fischer [1980J to construct circuits
for bitwise binary addition.

We should also note that prefix maximum may be performed in O(log log n) (worst case) time,
using linear weak CReW operations [Schieber 1987]. The algorithm is similar to that described in
theorem 4.

The prefix computation algorithm above only works when the input values are listed in an

array, because we need to be able to tell for each value whether it is in an even or odd position

in the list. We sha.ll see later in this section how to deal with input sequences represented as a

linked list; but there is another possible representation of a list for which it is possible to perform

12

prefix computations. This is a representation as a binary tree in which each path from the root to
a leaf has length at most O(log n), with the elements of the sequence stored at the leaves of the

tree. Then in step 1 we compute sums of pairs of leaves into their parent in the tree, in step 2 we
recursively compute the sums in the tree formed by removing the leaves from the original tree, and
in step 3 we bring the results back down to the leaves. In step 3 we need some further information

that was more easily available in the array version, and that is the address of the next leaf after
each leaf in the tree; but that is easily calculated recursively as part of step 2. The condition that

the tree be balanced is necessary for this version of prefix computation to take the same time as
the array version, o {log n). Note also that we must be able to perform operations on one level of
the tree at a time without having to pick out the nodes at that level from all the other nodes in
the tree.

2.2 Applications of Prefix Computation

As we have seen in section 1. prefix computation can be used in the simulation of one model
of parallel computation by another. Another simple application of prefix computation is in list
manipulation. Let us assume that we have a list of data values, represented as an array with the

contents of each array cell being the value at the corresponding position in the list. As mentioned

above, we will see later how to deal with a linked list representation. Suppose that certain members

of the list are marked, and others are unmarked; we want to extract a sublist consisting only of the
marked members.

This problem can be easily solved using prefix computation. With each member of the list

we associate an integer, initially one for the marked members and zero for the unmarked ones.

Then we perform a prefix sum, using the usual arithmetic addition operation. The result we have
calculated is, for each marked member of the list, the position that member has in the new sublist;

then the marked members can simply copy themselves across to an array representing the sublist.

If we wanted to represent the resulting sublist as a linked list (Le. each member of the sublist

knows the name of the next member of the sublist), we could again do it with prefix computation.

In this case the data values would be indices in the original list together with the mark or lack

of a mark. If the first index is marked and the second is not, we take as the result of the binary
operation the first index; otherwise we take the second index. The prefix computation for this

operation copies the index of a marked list member all the way across a sequence of unmarked

members until the member just before the next marked member, which can then read it from there
in a single step.

As a less obvious example of prefix computation we will now describe the parallel simulation

of a finite state automaton. A typical use for such simulation would be the lexical analysis step in

a compiler [Aho and Ullman 1977J; the state of the automaton after each character of the program

text determines where the edges of each token are and which kinds of token those are the edges of.

To calculate the state of an au tomaton after it has processed each prefix of a string of characters.

first replace each input character by the transition function from states to states of the automaton

corresponding to that character. Since the automaton is finite, all such transition functions can

be represented in a constant amount of space. Now perform the prefix sum over these transition

functions, using the binary operation of function composition. This will compute for each character

13

position the function corresponding to the action of the whole prefix substring from the start of
the string to that position. Finally for each resulting composite transition function, compute the
result of that function given as input the initial state of the automaton. This will be the correct
state of the automaton after it has processed characters up through that position.

This use of prefix computation to simulate a finite automaton was given in the original prefix
computation paper of Ladner and Fischer [1980] and also later on, in a description of an imple­
mentation for the Connection Machine, by Hillis and Steele [1986]. The latter paper uses a simpler
version of prefix computation that uses O(n) processors instead of O(n/ log n). The original paper
uses its automaton simulation to define Boolean circuits of size O(n) that can find the sum of two
binary numbers, each n bits long, in time O(log n). The more general prefix computation result

seems to have been new with that paper, but addition circuits with those bounds had been known
for some time [Krapchenko 1970]. The construction follows.

The output of an addition circuit at a given bit position is t:c.e sum taken modulo 2 of the two
input bits at that position with the carry bit from the previous position. The carry is defined to
be the majority of those three bits. Thus one can define a four state automaton, where the states
correspond to each combination of carry and output bits. The input to the automaton at each bit

position, starting from the low order bits, is the pair of input bits at that position. Then the new
state can be calculated from those two bits together with the carry portion of the old state.

One can construct a circuit to perform prefix computation analogously to the EREW algorithm

described above. Composition of the transition functions of the binary addition automaton can
easily be computed by circuits of constant size, so this composition operation can be incorporated
in the prefix computation circuit. Finally, one needs a stage to translate pairs of input bits to
transition functions, and another to translate states to the corresponding output bits. Putting all
of this together we have a linear size circuit to perform binary addition in logarithmic time.

2.3 Ranking

We have seen that prefix computation is useful in a great variety of circumstances. But often we
might want to perform a prefix computation on a sequence of values represented as a linked list, and
the techniques described above are not adequate for the task. Here we shall consider the problem

of ranking, which as we shall see is equivalent to that of prefix computation.
The rank of a member of a linked list is simply the number of its position in the list, i.e. 1 for

the first member, 2 for the next, and so on. The ranking problem is, given a linked list, to calculate

for each member of the list its rank in the list. If we could perform prefix computation we could

perform ranking, by giving each member a number value initially I, and performing a prefix sum

on those numbers. Conversely, if we could rank we could perform prefix computation, by using

the ranks to move the data into an array and performing the array prefix computation algorithm
described above. Thus, as we have said, ranking is equivalent to prefix computation.

One algorithm for ranking, or equivalently prefix computation, due to Wyllie [1979], is as
follows.

(1) Give each list member of the list a data value of 1.

(2) For each list member other than the first, add the value of the previous member in the list
into the value at this list member.

14

(3) Recursively call steps (2) and (3) on a new linked list formed by linking each list member with

the list members two steps away in the original linked list.

This is just like the array prefix computation algorithm, except that we don't distinguish

between even and odd members of the linked list. The recursive call in step (3) splits the list into
two separate lists of half the length, and this can only continue for O(log n) stages before all lists
have only one member; therefore the algorithm takes total time O(log n). But because we don't

distinguish between even and odd, the size of the recursive subinstances of the problem adds to the

same size as the original instance, so we need O(n) processors at each stage. Thus we have lost a

factor of o (log n) in efficiency over the array version of prefix computation.

2.4 Randomized Ranking and Deterministic Coin Tossing

As we have noted, if our list were represented as a balanced binary tree we could perform prefix

computation, or equivalently ranking, as efficiently as if it were an array. Therefore we might start

looking for an algorithm to turn the list into a tree. This can be done as follows:

(1) For each element of the list, flip a random coin. Form set S as that of all elements whose coin

was 1 and wh06e predecessor's coin was O. S is an independent set, that is, no member of S is

adjacent in the list to another member of S.

(2) For each member of S, make a new tree node with both it and its predecessor (which is not in

S) as children.

(3) For each non-member of S that is not followed in the list by a member of S, add a new tree

node with that element as its oqly child.

(4) Make a linked list in a separate array of the new tree nodes.

(5) Recursively find a tree connecting the new list of tree nodes.

With high probability, the new list is 3/4 the size of the old one; therefore the tree has

logarithmic expected height. Further, this geometric reduction between levels of the recursion

ensures that the total number of operations is linear in the size of the original input list. The

steps requiring the most time are (3) and (4), which can each be solved with a prefix sum taking

O(log n) time. There are O(log n) levels of recursion; therefore the algorithm as a whole takes time

O(log2 n), which is more than we would like.

We can make one improvement fairly simply, and that is to only construct tree levels until the

size of the remaining linked list (which can be calculated as part of the prefix sum for step (4»

is 0(n/logn). Each level still takes time O(logn), but in this version there are only O(loglogn)

levels of recursion. This constructs a forest of O(n/ log n) trees; we can perform prefix computation

by using the tree algorithm within each tree, and using Wyllie's linked list algorithm on the roots

of the trees. The total expected time is now O(log n log log n), again using a linear number of

operations. The algorithm described above was first given by Vishkin [1984cj, who also gave a

more complicated probabilistic algorithm taking time O(log n log- n) using the same asymptotic

number of operations.

It turns out that. if we are willing to make the assumption that memory addresses are repre­

sented using at rn06t O(log n) bits, we can achieve the same bounds as above deterministically. We

15

describe the o (log n log log n) version, but similar techniques apply to the 0 (log n logS n) algorithm

mentioned above. Instead of flipping coins we find a maximal independent set in the linked list;
this is an independent set such that each list element is adjacent to some member of the set. Such
a set must have at least nj3 elements, so if we use it as 5 in the algorithm above we will again
get the correct geometric reduction in list length at each level. A maximal independant set can be
found in time O(logn) using O(n) operations (matching the bounds used in step (4) above, and
thus retaining the same total bounds for ranking) using the following algorithm.

(1) Initialize the set 5 to the empty set.

(2) Give each element i a different color Si, such that adjacent members of the list have different
colors. Initially we pick color s~ to be i itself; this gives us n colors ranging from 1 to n. Then
in constant time we can reduce the number of color classes to o (log n), by chOO6ing a new
color Sj to be the position of the first bit at which s~ differs from s~_l' together with the value

of that bit in s~.

(3) Bucket sort the array containing the linked list, ordering the list members by their color classes.
This is performed using the following steps.

(a) Divide the list elements into groups of size log n. Allocate one processor for each of the
nj log n groups; sequentially within each group, calculate for each color class S the number
eg •• of elements in the group with color equal to s. Also count for each list element i the
number Pi of vertices before it in the same group and having the same color.

(b) Perform for each color class s a prefix sum algorithm on the nj logn numbers eg •• , into dg ...

the number of elements up through that group having that color. Let d. be the total
number of elements in all groups having color s.

(c) With a single processor, perform a prefix sum on the numbers d, to obtain t" the total
number of list elements having colors less than or equal to s. Using binary trees, make
nj log n copies of each t., one for each group.

(d) Again allocate one processor per group. For each element i in group 9, with elements
processed sequentially within each group, calculate the position of i in the sorted list as

t. i - 1 + dg - 1 ... + Pi. This is the number of elements in the list having a lower color, or
having the same color but appearing earlier in the unsorted array.

(4) Divide the sorted. list into blocks, with each block consisting of all elements with a given color.

We perform O(log n) stages, in each stage processing a single color block. Within each block

check in pa.ra1le1 for each list element i whether either of its neighbors is in 5 already. If not,
add i to S.

Because adjacent elements have different colors, and because step (4) only processes one color
class with each parallel step, it never adds two adjacent elements to 5, and thus the result is an

independant set. The set is maximal because step (4) checks each element once, and only discards

it if some adjacent element is already in S. It can be seen that all steps can be implemented in
time o (log n) using O(n/ log n) EREW processors; the only point at which these bounds are not

entirely clear is step (4), for which we need to apply theorem 1. Thus we can use this routine in

16

place of the coin tossing in our ranking algori thm, and rank a linked list in O(log n log log n) time
with linear deterministic EREW operations.

We should also note that, by repeatedly reducing the number of colors as we did in step (2),
we can find the independent set S in time O(log* n), using a linear number of processors. For our
purposes the algorithm above is better, since it uses less total operations without slowing down the
main algorithm of which it is a subroutine.

The maximal independent set algorithm above, along with its application to ranking, was
discovered by Cole and Vishkin [1986a, 1986bJ, who called it deterministic coin tossing. A bucket
sorting algorithm similar to the one in step (3) was described by Reif [1985J, who used it as part
of his probabilistic algorithm for bucket sorting numbers with larger keys.

2.5 Optimal Logarithmic Time Ranking

We described above an algorithm for parallel list ranking that runs in time O(lognloglogn) using
O(nj log n log log n) EREW processors, for a linear total number of operations; this algorithm is
likely to be sufficient for all practical purposes. But the extra factor of O(loglogn) in the time
is irritating to theoreticians, and so two of them, Cole and Vishkin [1986cJ, have come up with

an algorithm that runs on logarithmic time and linear EREW operations. As we have said, the
previous algorithm is sufficient in practice; further, the newer logarithmic time algorithm is not

practical, because the constants involved in the bound on its runtime are quite large. Nevertheless,

we shall spend the rest of this section describing the new algorithm.

The general outline of the algorithm is as follows. We start by performing a sequence of

operations, each one removing an element from the list, that reduces the problem to one of size
O(nj logn); then we perform Wyllie's list ranking algorithm on the reduced linked list; finally we

undo the operations we started out with to obtain the final ranking.

We assume that the list we are processing is doubly linked, so each element can find its successor

and predecessor in constant time. Each element i of the list will start out with a number r[i] = 1,

and for mait of the algorithm the prefix sum of the r[i] for the elements remaining in the list will

give the ranks of those elements. At the last stage of the algorithm we will use Wyllie's algorithm

to perform this prefix sum, after which point r[i] will be the actual rank of element i.

The elements removed from the list will further have a pointer P{i] to the predecessor of i at

the time i was removed, and a timestamp t[i]. A removal of element i is performed by setting p[i]
to the current predecessor of i, adding r[i] into rU] where j is the successor of i in the remaining

list, removing i from the doubly linked list, and setting t[i] to be the time at which the removal

was performed. For the algorithm to be correct, no two adjacent list elements may be removed at

the same time.

When Wyllie's algorithm on the shortened list has finished, we still need to find the ranks of

the removed list elements. This is done in the reverse order from that in which they were removed.

Therefore we need to sort elements by their removal times; these times are o (log n) so we can use

the deterministic bucket sort of Reif [1985] described earlier. The reverse order guarantees that,

by the time we calculate the rank of element i, the rank of p[i] will already have been calculated

into r[p[i]]. We add this rank into r[i], giving the correct total rank of element i.

It remains to show how we can perfonn a sequence of removals, with no two adjacent elements

17

removed at the same time, taking total time O(logn) with O(n/logn) processors, and leaving at

most O(n/ logn) elements unremoved.
The algorithm is controlled by a scheduler, about which we will have more to say later. Choices

made by the scheduler alternate with stages of the algorithm; each stage takes constant time using

O(n/logn) processors, and the scheduler will make sure that there are O(logn) stages.

We introduce two more values kept by each list element i: A count e[i] of the number of

removals performed by that element on other elements of the list, and a state sri]. The state can

be anyone of the following five values: waiting, active, marked, full, done. If sri] is waiting, no

processor has yet been assigned to i, but the scheduler may at any time change the state of i to

active. If sri] is active, the scheduler will assign a processor to i in the next stage of the algorithm.

If sri] is marked, i will no longer be assigned a processor, but it has not yet been removed from the

list; some other active element will remove it later. We mark elements rather than removing them

immediately because otherwise we might try to remove two adjacent elements at the same time. If
sri] is full, it is still in the list, and will remain in the final reduced list. If sri] is done, i has been

removed from the list. Not all removals are counted in c[i]; in particular if i is removed by its own

processor there is no need to increment c[i].
Each element is initially waiting; when the algorithm finishes, all elements must either be full

or done, and there can be at most O(n/ logn) full elements. Therefore we can see that after the

completion of the algorithm, the reduced list will have length at most O(n/ log n) as desired.

At each stage of the algorithm, after the scheduler has perhaps made some waiting elements

active, each active element i is assigned a processor Pi which performs the following operations.

(1) If e[i] ~ log n and the successor of i is not marked, Pi sets s[i] to full and stops processing

element i.

(2) If i is still active and its successor is full, Pi checks the state of the predecessor of i. If the

predecessor is also active, Pi sets s[i] to marked; otherwise it removes i from the list and sets

s[i] to done.
,

(3) If i is still active, then the previous steps did nothing, so in particular the successor of i is

not full. Nor is it done, because done elements have been removed from the list. Therefore i

belongs to a chain of active elements followed by an element that is either marked or waiting.

The processors corresponding to the elements of this chain find an independent subset S of

the chain, such that each member of 5 is at a distance of at most o (log n) from some other

member; this independent set computation will be described below

(4) If i is active, and the first member of its chain, but is not in S, then Pi tests whether the

successor of i is in S. If so, Pi removes i from the list; otherwise, it adds i to S. After this

step, the first element in the remaining chain will be in S.

(5) If i is active, but not in 5, Pi sets J[i] to marked.

(6) Ifi is still active, and therefore in S, Pi removes the (marked or waiting) successor to i (setting

its state to done) and increments e[i].

Elements are only marked \\jhen their predecessors are either marked or active, and when it is

known that the chain of marked elements is headed by some active element; an active element at

18

the head of such a chain will not become inactive until all marked elements have become removed.

Therefore when the algorithm terminates there can be no marked elements. All waiting elements

will eventually become active, so when the algorithm terminates there can be no waiting elements.
And if there is an active element the algorithm has not terminated, so when it does terminate
there can be no active elements. Therefore we can deduce that all elements either become full or

are eventually removed from the list. If an element i becomes full, this can only be after Pi has
performed logn removals of other elements in step 6, and so there can be at most O(n/logn) full

elements. Thus our algorithm correctly reduces the length of the list to O(n/logn).

Before we show that it can be performed in the claimed bounds, let us first tie up the remaining
loose end, the calculation of S. S is found in constant time as follows, using a slightly different
version of the deterministic coin tossing technique described earlier. S will be an independent set,
but it will not necessarily be maximal. As in the previous application of deterministic coin tossing,
calculate for each element a color drawn from a set of o (log n) colors. The members of S are
taken to be those elements i for which the color of i is less than those of both its successor and its

predecessor.

Colors of adjacen t list elements are different; therefore it is impossible for two adjacent elements

to both have colors that are local minima, so S is an independent set. The colors of the elements

following a particular local minimum can grow larger for at most O(log n) elements before they
must drop again, and after this drop they can continue to drop for only o (log n) elements before
rising again; therefore the members of S are at most O(log n) entries apart.

It remains to show that all of the computations described above can be performed in time

O(log n) using linear operations. First let us see that each element i is active for at most O(log n)
time units. Call a stage in which i remains active, but the successor to i was active and becomes
marked, bad; call a stage in which i becomes inactive itself, indifferent; and call a stage in which

i removes a marked successor from the list and increases e[i) good. It can be seen that all stages

are bad, good, or indifferent. Further, there is at most one indifferent stage, and each bad stage is
followed by a good stage, so we need only count the number of good stages.

At any stage, e[i] is exactly the number of prior good stages. Let stage s be the last bad stage

executed for element i. Then prior to s there can only have been O(logn) good stages, because

otherwise i would have declared itself full and s would be an indifferent stage. Stage s will be

followed by a number of good stages equal to the number of marked elements following i in stage s,

because an element following i can only become marked in a bad stage. But the number of marked
elements is bounded by the distance between members of S, which as we have seen is O(logn).

Therefore there are O(log n) good stages both before and after the last bad stage, so the total

number of stages in which i is active is also O(log n).

;.l'ow we can see that, assuming a smart enough scheduler, the algorithm described above can

be performed in time O(logn) using O(n/logn) EREW processors as claimed. Each processor is
assigned a pool of waiting elements; whenever the element it was assigned to becomes inactive, it

chooses a new element from its pool to make active. The pools are periodically rebalanced, so that

u.ntil the number of waiting elements has been reduced to O(n/ log n), a constant fraction of the

processors will have waiting elements in their pools. The rebalancing itself is beyond the scope of

this paper; for details see Cole and Vishkin [1986c].

19

At each stage, each active processor will either make its own element inactive or remove another

element from the list; each of these actions can happen at most linear times. Prior to the stage s

at which the number of waiting elements is reduced to O(nflog n), there will be n(n/ log n) active
processors, so together with the linear bound on the number of actions this gives a bound of O(log n)
on the time used. After that stage, we can distribute the remaining waiting elements evenly among

the processors using a prefix computation; each processor will have a constant number of elements
in its pool, and as we have shown each element can remain active for at most o (log n) stages, so

the time used will again be bounded by O(log n).

3. EULER TOURS, EAR DECOMPOSITION, AND RELATED TECHNIQUES

In the previous section we discussed prefix computation techniques, which have wide application to
problems in which the data is arranged in some linear order. In this section we discuss a number
of algorithmic techniques for handling the case that the data to be processed are not already in
a linear order, and in particular when the data are structured as a graph or as a tree. These
techniques find an ordering of the edges or vertices of the graph or tree, so that prefix computation
can then be used on the resulting sequence of edges or vertices. In general graphs it is less clear
what such an order might be; we also describe algorithms for partitioning the graph edges into a
sequence of subgraphs, each of which has a simple and easily ordered structure.

When the problem already has some structure as a tree, the parallel algorithms can be quite
similar to their sequential counterparts. Sequentially, one often solves tree problems by using some
standard tree traversal order, such as pre-order, post-order, or in-order. For parallel algorithms
one would like to generate a list of the tree vertices in these orders; this can be done using the
Euler tour technique described below. Many tree problems can be solved directly using Euler tours,
rather than indirectly on some generated traversal order.

We should mention another important parallel technique which has in many cases been re­
placed by that of Euler tours. 0 ne obvious method for computing tree functions would be to

process each leaf separately, and then remove the leaves and repeat until all vertices of the tree
have been processed. However, the tree may be very deep, in which case this may not give us the
polylogarithmlc time bounds we want. An improvement to this method, called centroid decomp~
sition [Winograd 1975; Megiddo 1983; Miller and Reif 1985], does give polylogarithmic bounds. In
centroid decomposition, one alternates this removal of leaves with the removal of vertices having

only one child (sometimes with the further restriction that the parent of the vertex also only has

one child).
Cole and Vishkin [1987] have given an improved centroid decomposition algorithm that for

a number of problems can be made to run in logarithmic time and a linear number of EREW
operations, matching the bounds for Euler tours. We will not describe centroid decomposition

further, except to note that as one of the applications of Cole and Vishkin's algorithm we may

compute, given a tree with a value stored at each vertex, the minimum value in each subtree of the
tree. This will turn out to be useful in computing ear decompositions.

For sequential algorithms on general graphs, one would typically traverse the edges of the'

graph using a depth first search [Tarjan 1972]. As we have mentioned, finding a depth first search
tree in parallel seems to be difficult; a randomized parallel algorithm is known that constructs

such a tree [Aggarwal and Anderson 1987], but this algorithm is not useful in practice for finding

efficient parallel algorithms. As replacements for depth first search in general graphs, we describe
algorithms for finding Euler tours, pseud~forest decompositions, and ear decompositions.

Finally, note that two more algorithms for ordering graphs, topological sorting and breadth
first search, have wide application in sequential algorithms. The best known parallel algorithms to
perform these tasks are much less efficient than their sequential counterparts, and therefore these

methods are less useful as building blocks for parallel algorithms than they are sequentially. Finding
a breadth first search tree is equivalent to finding the shortest paths to or from a single vertex in a

graph, but in parallel it seems we must instead find the shortest paths between all pairs of vertices

21

in the graph. This latter task can be described as a closed semiring system [Aho et al. 1974J, and
the parallel semiring algorithm of Kucera [1982] described in the next section can be used to solve
the problem. The best known parallel algorithm for topological sorting, also due to Kucera [1982J,
again uses a semiring system, this time the one for finding the transitive closure of a graph, and

again it will be described in the next section.

3.1 Euler Tours for Trees

In the Euler tour technique, we order the edges of the tree by finding an Euler tour on the directed
graph formed by replacing each tree edge with two directed arcs, one in each direction. Such a
tour is a directed cycle such that each arc appears exactly once in the cycle. Of course the vertices
of the tree will typically appear many times in the cycle, so it is not a simple cycle. The Euler
tour technique for trees was introduced by Tarjan and Vishkin [1984], who used it as part of an
algorithm for finding biconnected components of a graph. The examples we give of tree functions
computable using Euler tours were also introduced in the same paper.

For each vertex v, let p(v) be the parent of v in the tree, or some special marker if v is the root
of the tree; let s(v) be the next sibling of v in some ordered list of the children of p(v), or some
special marker if v is the last in the list or the root of the tree; and let c(v) be the first child of v,
or some special marker if v is a leaf. Denote the number of vertices in the tree by n.

In the Euler tour algorithm that follows we assume that each vertex v has a copy of each of
these three values stored together with its local data. If p(v) is not known but s(v) and c(v) are
known, then p(v) can be calculated in time D(log n) and linear operations using a prefix calculation
on the linked lists formed by s(v), and no efficiency will be lost in our algorithms; however the tour
itself will be found in logarithmic time rather than constant time. But if only p(v) is known, with
s(v) and c(v) unknown, it seems that we must sort the vertices by their values of p(v) in order to
calculate the other two values for each; this takes linear processors and logarithmic time, which is

a loss of both time and efficiency.

In the Euler tour, each vertex v is responsible for two edges, the one from p(v) to v a.nd the
other one in the reverse direction. The edges into and out of the root will be taken care of by the
children of the root; in the following description we assume that v is not the root. We need to
calculate, for each edge, the next edge in the tour. If v is a leaf, we take the edge following (p(v), v)
to be (v,p(v»; otherwise we follow (p(v),v) by (v,c(v». Then, if s{v) exists, the edge following
(v, p(v» is (p(v), ,,(v». 0 therwise ,,(v) does not exist. In this case, if p(v) is the root, we follow
(v,p(v» by (p(v),c(p(v») to ci08e the cycle, or by nothing if an open Eulerian path is desired; if
p(v) is not the root, we follow (11,P(V» by (p(v),p(p(v»).

It can be seen that each edge follows, and is followed by, exactly one edge in the tour; further
all such links may be computed in constant time with D(n) EREW processors. Typically we will
perform prefix computations on values placed at each edge of the tour, this takes O(1ogn) time
with O(nj logn) processors. By theorem 1 we can compute the tour itself in these same bounds.

Theorem 6 [Tarjan and Vishkin 1984J. Given an Euler tour of a tree, a pre-order or post-order
traversal of the vertices can be computed in time D(log n) using D(nj log n) EREW processors.

Proof; IT we form a new tree by reversing the order of the children at each vertex of the original
tree, and find the post-order of this new tree, the resulting ordering will be exactly the reverse of

22

a pre-order of the original tree. Therefore we only describe here the construction of a post-order
traversal.

We perform a prefix computation on the edges of the tour; the data at each edge will be that
edge's name, together with a bit which is true if the edge goes down from a vertex to one of its
children, or false if it goes up from a vertex to its parent. The result of the binary operation used
in the prefix computation is as follows. If the bit of the second operand is true, the edge name and
bit are both copied from the first identifier. Otherwise the resulting edge name is copied from the
second identifier, and the bit of the result is set to false.

If we apply this operation to a sequence of edges, the resulting bit will be true if and only if all
the edges in the sequence run down. The resulting edge name will be that of the edge appearing
before the maximal subsequence of downward edges containing the last edge in the sequence, or
the last edge itself if that edge runs up. This operation can clearly be seen to be a.ssociative.

Consider edges of the form (v, p(v)), let (u, v) be the edge preceding (v, p(v)) in the tour, and
let (x, y) be the edge name left at (u, v) by the prefix computation. If v is not a leaf, then (x, y) will

be ('II, v) itself; x is the last child of v to appear in the tour, and can be taken a.s the predecessor
of v in the post-order traversal. If v is a leaf, y is the first ancestor of v such that some child of

y appears before the subtree containing v, and x is the last such child. Therefore x can again be

seen to be the correct post-order predecessor of v. In this way we can calculate the predecessor of

every vertex except the root; then the vertex v that does not yet have a successor, and is not itself
the root, is the predecessor of the root .•

Theorem 7 [Tarjan and Vishkin 1984]. Given an Euler tour of a tree, we can calculate the number

of vertices in each subtree of the tree, in the same bounds as the previous theorem.

Proof: Assign each edge of the tree the value one if it goes down from p(v) to v, or zero if
it goes up from v to p(v). Find the prefix sum of these numbers. The sum computed at edge

(p(v), v) gives the number of different vertices appearing before v first appears in the tour; the sum

computed at (v,p(v)) gives the number of vertices appearing before the last appearance of v. The

difference between the two sums is the number of vertices in the subtree rooted at v .•

In a similar fashion, we may use prefix computation on Euler tours to compute many other tree

functions. In particular, Tarjan and Vishkin [1984] used this technique to compute the distance

of each vertex from the root of the tree, along with two functions they called low(v) and high(v),

which they used in a parallel algorithm for computing the biconnected components of a graph.

Tsin [1985], and independently Vishkin [1985]. used Euler tours to compute a data structure for

finding the least common ancestors of pairs of vertices in trees, which they both then used a.s part
of algorithms for computing strong orientations of undirected graphs. Schieber and Vishkin [1987]
gave an improved algorithm for least common ancestors, again using Euler tours in trees.

3.2 Euler Tours for Graphs

As in the case of trees, we can order the edges of an undirected or directed graph in an Euler tour;

that is, a cycle such that each edge appears exactly once; if the graph is directed we further require

that the cycle be directed. Obvious necessary conditions for an undirected graph to have an Euler

tour are that it be connected and that the degree of each vertex is even; Euler proved that these

23

conditions are also sufficient. Similarly, necessary and sufficient conditions for a directed graph to

have an Euler tour are that each vertex have an in-degree equalling its out-degree, and that the

graph be connected (strong connectivity follows from this and the first condition).

Awerbuch et al. [1984] gave efficient algorithms for finding Euler tours in the directed case,
and for finding an orientation for any undirected graph such that the resulting directed graph has
an Euler tour. Atallah and Vishkin [1984] independently arrived at the same results; we follow here

the presentation from Awerbuch et al.
Define an Euler partition of a directed graph to be an assignment to each edge e = (v, w) in

the graph of some succeeding edge s(e) = (w, x) in the graph, with the tail of e equal to the head of
s(e), such that no other edge is also assigned (w, x). This can easily be seen to partition the edges
of the graph into disjoint cycles; the result is an Euler tour if and only if there is only one such
cycle. If at each vertex we are given a list of the edges of that vertex, we can use a simple prefix

computation on that list to compute for each edge its rank in the sublist of in-edges or out-edges.

and from that by matching ranks an Euler partition, in time o (log n) using O(n/log n) EREW
processors. As in the computation of Euler tours for trees, if we are simply given the collection of

edges, without having lists of the edges at each vertex, we will first need to sort the edges.

Given an Euler partition, we now define what it means to swap two edges e = (u, w) and
e = (v, w) having a common tail w. Let s(e) = g, and sU) = h. Then the result of swapping e and

f is to make see) = h and aU) = g; i.e. the two edges will have traded successors.
We define the graph CG of an Euler partition as follows. Vertices of CG will be cycles in the

Euler partition. For each edge e = (u, v) in the original graph, let f be the next edge after e in the

list of edges incoming to v. Then we add an edge in CG between the cycle containing e and that

containing f. Note that CG may contain self loops as well as more than one edge between pairs of
vertices; this turns ou t not to be a problem.

Awerbuch et al. [1984] give the following theorems; the proofs are not difficult, but we refer
the reader to the original paper for them.

Theorem 8 [Awerbuch et al. 1984J. CG is connected.

Theorem 9 (Awerbuch et al. 1984J. Given a spanning tree of CG, if we execute the swaps cor­

responding to the edges of the spanning tree in any order the resulting Euler partition will be a
single cycle.

Because of these theorems, we can find an Euler tour of a directed graph using the following
steps:

(1) Generate an Euler pa..rtition as described above.

(2) Find the circuits of the pa..rtition (which are the vertices of CG) and determine which circuit
each edge of the original graph belongs to.

(3) Construct the edges of CG, and find a spanning tree for it.

(4) Execute the swaps indicated by the spanning tree.

Step (1) has been described already. Step (2) and step (3) both can use any algorithm for

finding connected components and spanning trees of a graph. The best known algorithm for

this is due to Cole and Vishkin (1986c]. It uses O(Jogn) time, with O(ma(m,n)/logn) CRCW

24

processors. Here n is the number of edges in the graph, m is the number of vertices, and Q is the

inverse Ackerman function, which grows very slowly. In both uses we are making of this connected

components algorithm, both the number of vertices and the number of edges can be proportional
to the number of edges in the original graph.

Finally, step (4) can be executed as follows. Let ei,ei+l, .. . ej be a maximal sublist of the

edges coming in to vertex v, such that (ei,ei+d,(ei+l,ei+2), ... (ej_l,ej) are all swaps indicated
by the spanning tree of CG. Then for i ~ k < j we assign the old value of s(ek+d to be the new

value of s(ek), and similarly we assign the old value of s(ei) be the new value of s(ej). This can be
performed in logarithmic time and a linear number of EREW operations using prefix computation
on the lists of edges incoming to each vertex v.

Theorem 10 [Awerbuch et al. 1984]. An Euler tour of a directed graph with n vertices and
m edges, in which the number of edges incoming to each vertex v is the same as the number of

outgoing edges from v, can be found in the same time and processor bounds as those for computing

a spanning tree of an undirected graph with O(m) vertices and edges, assuming those bounds are

no better than O(log n) time with 0(n + m)/log n) EREW processors if the graph is given as a list

of edges at each vertex, or O(n + m) processors if the graph is given only by its edges. Using the

current best known connectivity algorithm gives bounds ofO(logn) time with O(ma(m,m)/logn)

arbitrary winner CRCW processors.

Proof: as described above .•

Theorem 11 [Awerbuch et al. 1984]. An Euler tour of an undirected graph can be found in the

same time and processor bounds as theorem 10.

The above algorithm works only on directed graphs. But note that we can construct an Euler

partition as above for an undirected graph. Then if we could orient the edges of the graph so

that each cycle of the partition is made directed, we would then be able to find an Euler tour for

the resulting directed graph, which would also be an Euler tour for the underlying directed graph.

These cycles can be oriented as follows.

First split the graph into a new graph which is a union of disjoint undirected cycles, by creating

a new vertex between each edge and its successor in the partition. Now find a spanning forest of

this graph. Each cycle of the partition will correspond to one tree of the forest, and each tree will
consist of two directed paths leading to the root of the tree. Use prefix computation to reverse the

direction of the edges on one of the two paths, and once this is done orient the remaining edge of

the cycle by looking at the orientations of the edges to either side. Using this process and then

continuing with the directed Euler tour algorithm gives us an Euler tour of the original undirected

graph .•

Not every graph has an Euler tour, so we cannot usually use this algorithm directly on an

arbitrary graph as part of some other graph algorithm. Further, if we tried the same trick that we

used for trees, splitting every edge in two, one possible tour could be constructed from a tour of

a spanning tree of the graph, and therefore any resulting tour would be little more useful than a

spanning tree. But there is a different way to transform a graph into one having an Euler tour, and

that is to add a new dummy vertex, and add an edge between that vertex and each original vertex

25

having an odd degree. Israeli and Shiloach [1986] use this construction as part of an algorithm that

efficiently and quickly finds a maximal matching for an arbitrary graph.

3.3 Pseudo-Forest Decomposition

Define a pseudo-forest to be a directed graph in which each vertex has out-degree at m06t one. Every

rooted tree or forest is a pseudo-forest, but a pseudo-forest may contain cycles. In this section we

describe extensions of the deterministic coin tossing technique of Cole and Vishkin [1986a. I986bJ

to pseudo-forests, found by Goldberg et al. [1987]. These extensions will in turn lead to efficient
algorithms for graphs of bounded degree, which operate by partitioning the edges of the graph into

a number of pseudo-forests.

By a coloring of a graph or pseudo-forest below, we mean an assignment of colors to the vertices

such that no two adjacent vertices have the same color. In what follows, n will refer to the number

of vertices of a given pseudo-forest or graph, and m will refer to the number of edges of the graph.

The number of edges in a pseudo-forest can of course be no more than n.

Lemma [Goldberg et al. 1987]. Given a pseudo-forest colored with k colors, we can compute a

new coloring with 2jlog k 1 colors, in constant time using O(n) CREW processors.

Proof: We assign one processor per vertex of the pseudo-forest. Each processor reads the color

of the parent of its own vertex, and sets the new color of its vertex to be the number of the first

bit at which the parent's color differs from the color at its vertex, together with the value of that

bi t at the vertex .•

Define log- x to be min{i : [og(i)x $ I}, where log(i) x means the result of iterating the log

function i times, starting with an initial value of x.

Theorem 12 [Goldberg et al. 1987]. Given a pseudo-forest, a coloring of that pseudo-forest using

only 3 colors can be found in time O(log- n) using O(n) CREW processors.

Proof: We start with the n-color coloring given by using the name of each vertex as its color,

and iterate the algorithm of the lemma. After O(log- n) steps, the number of colors will have

been reduced to 6, beyond which the lemma can not make any improvements. We now reduce

the number of colors one step at a time, as follows. Each vertex takes as its color the color of its

parent, with the root (if any) of the pseudo-forest taking any color differing from its previous color.

After this step the neighbors of each vertex will only be of two different colors. Then each vertex

having the color we wish to eliminate chOO6es as its new color some color other than those two.

This can again be performed in constant time with a linear number of CREW processors, and after

a constant number of such steps the number of colors will have been reduced to 3 .•

Theorem 13 [Goldberg et al. 1987J. U the maximum degree of any vertex in the pseudo-forest is

bounded by ~, and if we are already given lists of the vertices incoming at each vertex, then the

algorithm of theorem 12 can be performed on O(nj log~) EREWs using time O(log ~ log- n).

Proof: The only use we make of concurrent read is to get the color of each vertex's parent

at each step. These colors can be distributed using prefix computations on the lists of incoming
vertices .•

26

Theorem 14 [Goldberg et ale 198i]. Given a graph with maximum vertex degree ~, represented

by lists of edges at each vertex, with ~ = o (log n), we can calculate a coloring of the graph with

.6. + I colors in time O(.6.logil(il + log· n), using O(n) EREW processors.

Proof: We first assign each edge of the graph an arbitrary direction. Next we partition the

edges of the graph into O(il) pseudo-forests, by letting each vertex label its outgoing edges from
1 to~. For each value of i from I to il, each vertex constructs the list of edges incoming to it in

pseudo-forest i by using a prefix computation on the list of all its incoming edges. Then we 3-color

each pseudo-forest in turn, adding its edges back to the graph and combining the 3-coloring with

a .6. + I-coloring of the already processed portion of the graph to find a new .6. + 1-coloring.

The combination of colorings is done as follows. First each vertex takes as its color the pair of
colors from the two colorings we are combining; the resulting coloring has 3(.6. + 1) colors. We will

also temporarily color the edges of the graph; initially all edges are uncolored, but as we color each

vertex in the new .6. + I-coloring we will also give the same color to its adjacent edges, so that the

vertices at the other ends of those edges will be able to find which color was used without worrying

about concurrent read conflicts.

We now process each of the pairs of colors in turn; within a color class we process all vertices

in parallel. Each vertex, when it is processed, looks at the colors of the edges adjacent to it and

chooses a color that is not already taken; because it has at most il neighbors there must be at

least one such color. Next it again goes through those edges and recolors them with its new color.

Both of these steps can be performed with a prefix computation on the list of neighbors; because
of the assumption that il = O(log n) we can use bit vector operations to choose a color. Because

we process only vertices from a single color class at a time, each pair of adjacent vertices will be

processed at different times, so they will end up with different colors, and no two processors will

try to color the same edge at once.

There are .6. pseudoforests, and each must be 3-colored and then combined with the previ­

ous coloring. The combination is done for each of O(il) color classes, and each class takes time

O(log.6.) using O(nj logil) processors. The coloring also uses nj logil processors, but it takes time

O(log.6.log" n). Therefore the total time taken is O(.6.(log .6. log· n + .6. log .6.» .•

Theorem 15 [Goldberg et al. 1987]. A maximal independent set of a bounded degree graph can

be found in the same bounds as those of theorem 14.

Proof: We use the above algorithm, but when we recolor a vertex we always pick the lowest

numbered available color. The vertices ending up with the lowest numbered color will form a

maximal independent set .•

Goldberg et al. also give similar algorithrru, again using a pseudo-forest decomp06ition, for

finding colorings, maximal independent sets, maximal matchings, separators, and depth first search

trees, all for planar graphs.

3.4 Ear Decomposition

An ear decomp06ition is another way of partitioning the edges of a graph, in this case into ears.

An ear is simply a path in a graph; if the graph is directed, the ear must also be directed. No

vertex in the interior of the path may appear more than once in the ear. If the endpoints of the

27

ear are different, it is called an open ear. An ear decomposition consists of a partition of the edges

of the graphs into a sequence of ears, such that the endpoints of each ear appear in previous ears

but such that the interior points of each ear appear for the first time in that ear.

The following well-known theorems, quoted by Lovasz [1985], indicate the importance of ear

decompositions to questions of graph connectivity. When we sayan ear decomposition starts from
a vertex v, an edge e, or a cycle c, we mean that the first ear of the decomposition is v, e, or c

respectively. An open ear decomposition is one in which all ears are open.

Theorem 16 [Whitney 1932]. An undirected graph is bridgeless (2-edge-connected) if and only if

it has an ear decomposition starting from a single vertex.

Theorem 17 [Whitney 1932]. An undirected graph is biconnected (2-vertex-connected) if and

only if it has an open ear decomposition starting from a single edge.

Theorem 18 (Folklore). A directed graph is strongly connected if and only if it has an ear

decomposition starting from a single vertex.

In all of the above theorems, the ear decompositions may equivalently be required to start

from a cycle; however the above descriptions give rise to simpler algorithms.
Lovasz [1985] first noted that ear decompositions can be found quickly in parallel; he gave

an algorithm for finding decompositions of strongly connected directed graphs, and of bridgeless

and biconnected undirected graphs. Maon et al. [1986] showed Lovasz' biconnected graph ear
decomposition algorithm to be faulty, and gave a more efficient and correct algorithm for both

undirected cases.
We describe here the algorithm given by Maon et al. for finding an ear decomposition of

a bridgeless graph, shown to exist by theorem 16. The other algorithms are similar but more

complicated. The algorithm itself, perhaps not surprisingly, turns out to be similar to those given by

Tsin [1985] and Vishkin [1985] for strongly directing a bridgeless graph, mentioned as an application

of the Euler tour technique for trees. In fact, if one applies the cycle directing algorithm, described

previously as part of the Euler tour technique for undirected graphs, to the ear decomposition of a

bridgeless graph, the result can be seen by theorem 18 to be a strongly connected directed graph.

To find an ear decomposition of a directed graph, one proceeds as follows.

(1) Find a spanning tree of the graph.

(2) For each edge (u, v) not in the spanning tree, compu te the least common ancestor a = Ica(u, v)
of u and v in the spanning tree, and the distance level(u, v) from a to the root of the spanning

tree.

(3) For each edge e in the spanning tree, find the set S of edges / such that e is part of the cycle

induced by adding / to the tree. Let master(e) be the member of S with the least level, with

ties being broken by picking the minimum edge identifier.

(4) For each edge (u, v) not in the spanning tree, form an ear consisting of (u, v) itself together

with all tree edges over which (u, v) is master. Sort the ears by level(u, v) and within levels

by the identifiers of the master edges used to break ties above.

Theorem 19 [Maon et al. 1986]. The above algorithm correctly finds an ear decomposition of a

bridgeless graph.

28

Proof: For each tree vertex w other than the root, there must be some non-tree edge from ill

or one of its descendants to some vertex that is not a descendant of w. or else the edge from w to

its parent would be a bridge. Therefore the edge from w to its parent, and similarly each tree edge.
is can tained in some ear.

The ear calculated for each non-tree-edge (u, v) is clearly a subset of the cycle induced by
adding (u,v) to the tree, which can be divided into (u,v) itself, the path from uta lca(u,v), and
the path from v to lca(u, v). If some edge e along the path from u to lca(u, v) is missing from
the ear, then it is part of a cycle induced by an edge (w,x) with level(w,x) ~ level(u, v}. But

this implies that lca(w, x) is either lca(u, v) or an ancestor of lca(u, v), so all edges above e in the
path are also part of the cycle i nd uced by (w, x), and so they can not be part of the ear for (u, v).
Similarly if an edge in the path from v to /ca(u. v) is missing from the ear. all edges above that
edge will also be missing. Thus we see that each ear is in fact either a simple path or a simple
cycle.

We also see from the above argument that if an endpoint x of the ear corresponding to edge

(u, v) is not /ca(u, v), the edge from x to its parent in the spanning tree must belong to an ear
appearing earlier in the sorted order. IT /ca(u,v) is an endpoint, then either it is the root and
appears in the initial point ear, or it has a parent and the edge from it to its parent appears in an
earlier ear.

Finally we must show that no interior vertex of the ear containing (u, v) appears in a previous
ear. If w is the root of the tree, it must be the lca of any ear containing it, and so it will be an

endpoint rather than in the interior. Otherwise, assume w is not the root. Each ear consists of a

nontree edge together with all or part of the cycle it generates; therefore if w is an interior vertex

of an ear, then the edge from w to its parent in the tree must be contained in that ear, and can

be contained in no other ear. Therefore w appears as an interior vertex of at most one ear. But

the first ear containing w must contain it as an interior ear, because as we have seen the endpoints
appear in previous ears. So w appears once as an interior ear, and before that appearance does not

appear in any ear .•

Theorem 20 (Maon et al. 1986]. Given a spanning tree of a bridgeless graph, and assuming that

the ears need not be sorted, the remaining steps of the ear decomposition algorithm above can be

computed in time O(logn) time with O«m + n)/logn) CREW processors.

Proof: The least common ancestors can be computed using an algorithm of Schieber and

Vishkin [1987]. This algorithm pre-computes a number of values at each vertex of the tree using

the Euler tour method described above; from these values the least common ancestor of any pair of

vertices can be computed in constant (sequential) time. In particular we can compute lca(u, v) for

each non-tree edge (u, v) in constant time with one processor per edge. Then level(a) for each such

common ancestor can again be found by the Euler tour method, although in fact it will have already

been computed as part of Schieber and Vishkin's algorithm. Finally, we compute for each vertex the

adjacent edge with the least level. We use the centroid decomposition of Cole and Vishkin [1987J
to propagate these minimum edges up through the spanning tree, so that each vertex knows the

minimum from all of its descendants.

For each vertex v, we calculate the master of the tree edge from v to its parent as the minimum

29

edge value reaching v in the previously described computation; this is the non-tree edge adjacent

to some descendant of v and having the least level of all such edges. If the tree was bridgeless, this
computation will give us a correct ear decomposition. If the tree has a bridge from some vertex
v to its parent, the computed master of that edge will also be the master of more than one edge

from a child of v to v itself, and this erroneous condition can be detected again within the time

and processor bounds given .•

Maon et al. [1986J also give an algorithm for finding an open ear decomposition of a biconnected
graph. This algorithm is essentially the same as the one described above, except that the identifiers
used to break ties between edges with the same level are carefully chosen so that none ofthe resulting

ears are open.
A characterization of biconnected graphs closely related to that of the open ear decomposition

is that each such graph has what is known as an at-numbering. This is an ordering of the vertices of
the graph such that there is an edge between the first vertex s and the last vertex t, and such that

each other vertex has a neighbor in the graph somewhere prior to it in the ordering, and another

neighbor after it. It is well known [Even and Tarjan 1976] that an st-numbering can be computed
from an open ear decomposition of a graph; Maon et al. [1986] also showed how to perform this

efficiently in parallel. Klein and Reif [1986J used this st-numbering algorithm as part of a parallel
algorithm for finding embeddings of planar graphs.

Ear decompositions have also been used as part of other graph algorithms, in particular in
computing the connectivity of a graph. The ear decomposition algorithms we described above
will determine whether a graph is bridgeless or biconnected, although at least in the latter case a

simpler algorithm was known [Tarjan and Vishkin 1984]. Miller and Ramachandran [1987J used

the open ear decomposition algorithm for biconnected graphs as part of an efficient algorithm

for testing graph 3-vertex-connectivity, and Kanevsky and Ramachandran [1987J again used this
decomposition to test 4-vertex-connectivity.

Linial et al. [1986] have found a characterization of vertex connectivity using a generalization
of at-numbering. This characterization does not, however, involve ear decompositions. They give

randomized algorithms for computing the connectivity of a graph using various matrix operations;

we will not describe these algorithms, but they can be performed efficiently in parallel using the
matrix techniques described in the next section.

4. MATRIX METHODS

One usually thinks of matrix calculations in the context of scientific computation, in which the
matrix typically contains floating point numbers, and corresponds to an approximation of some

physical system. Certainly this is a common use of matrices, and as the matrix systems used tend

to be extremely large this is also an important application for parallel computation.

Matrices and matrix methods can, however, also be used to solve combinatorial problems. In
such a problem one might for instance have as input a network (graph with edge weights), and
want to compute shortest paths in the network. One would again have a matrix of floating point
numbers: the adjacency matrix of the graph, with the value at each cell being the weight of the
corresponding edge. As we shall see the values of the matrix cells need not even be numeric;

matrix-like computations may still be useful given a matrix of values taken from some arbitrary
semiring. For this reason the matrix algorithms we describe will be those that work for all matrices,

no matter what algebraic system the cell values are taken from.

More formally, we define a semiring as a triple (S, +, x) where S is some (possibly infinite)

set of values, and + (addition) and x (multiplication) are associative binary operations on S, with
multiplication distributing over addition. Addition in the semi ring must be commutative, but in

general we will not require the same of multiplication. Sometimes, as in the case of closed semiring

systems, we will add further properties holding for the semiring operations. We assume that values

of S can be stored in single memory cells, and that both addition and multiplication in the semiring

can be performed in constant time by a single processor.

A matrix A, of dimension m x n, can be thought of as a function from pairs of integers (i,j)
with 1 ~ i ~ m and 1 ~ j ~ n, to values from the semi ring. We write A[i,j] for the value of the
matrix at the pair (i,j).

4.1 Basic Matrix Operations

Assume we are given two m X n-dimensional matrices A and B. The matrix sum C = A + Bean

be computed by, for each pair (i,j), letting C[i,j] = A[i,j] + B[i,j); this can be computed in the

obvious way, using constant time with O(mn) EREW processors.

Given a matrix A of dimension m x n and another matrix B of dimension n x p, the product

C = AB is defined as the m x p-dimensional matrix calculated by C[i,k] = L;=l A[i,j]x B[j,k]. If.
we use a balanced binary tree of additions to perform the sum for each element of C, the result can

be computed in time O(log n), using mnp/ log n EREW processors. We are unlikely to do better

than this for arbitrary semirings, but if more is known we can sometimes improve this result. For

instance, if the addition operation of the semiring is finding the minimum of log n-bit integers, as

in the case of the breadth first search algorithm given later, we can compute the matrix product

in constant time with O(mnp) weak CRCW operations. Or, if the semiring is in fact a ring (Le.

additive inverses exist), we can use various more complicated algorithms to reduce the total number

of operations; the best known bound on the number of processors needed to multiply two n x n

matrices over a ring in logarithmic time is O(n2•376) [Coppersmith and Winograd 1987].

An important spedal case of matrix multiplication that we will use later is when the two

matrices to be multiplied are lower triangular Toeplitz matrices. In a Toeplitz matrix A, for each

diagonal of the matrix, each cell of the diagonal has the same value as each other cell. If the matrix

31

is lower triangular, it can be represented by the values at A[i,I]; all other values can be derived

from these using the formula AU, j] = A[i - j + 1,1].

Theorem 21 [Berkowitz 1984]. Given two lower triangular Toeplitz matrices A and B, of dimen­

sions m X nand n X p, the product C = AB is lower triangular and Toeplitz, and can be computed

in time O(log n) with O(mn/ logn) EREW processors.
Proof: It can be seen from the definitions of matrix multiplication and of Toeplitz matrices that

C[i, 1] = ~7~~(i,n) A[i - j+ 1, 1] X B[j, 1]. Each of these coefficients can be calculated independently

with a prefix computation in the bounds of the theorem .•

Again one can make improvements in certain special cases; in particular if the base field of the

matrices supports a fast Fourier transform we may compute the product in the same time as before,

but using only O(n) processors. Also note that the product of non-triangular Toeplitz matrices is

not necessarily Toeplitz.
The following result simplifies and improves by a factor of n E a theorem of Berkowitz [1984].

It was discovered by von zur Gathen [1984], and independently by the first author. In this and the

following theorems, Af(n) denotes the number of processors needed to multiply two n X n matrices

in time O(logn). Note that M(n) is at least n(n2 jlogn).

Theorem 22. Let R be a 1 X n matrix (Le. a row vector), A an n X n matrix, and San n X 1 matrix

(column vector). We can compute {R X Ai}, for all i from 0 to n, simultaneously, using O(log2 n)
time and O(U(n)) processors. Further, we may compute {R X Ai X S} in the same bounds.

Proof: The algorithm for computing R X Ai proceeds in log n stages, each consisting of two

matrix multiplications. Prior to stage k we will have computed the values of R X Ai for i from 0

to 2k - 1 - 1, arranged as a 2k - 1 X n matrix X. We will also have computed A2--
I

• In particular

prior to the first stage we already know R and A, as these are the input to the algorithm. Then

at stage k we compute Y = X X 042--
1

• It can be seen that the rows of Yare exactly R X Ai, for

i from 2k - 1 to 2k - 1; therefore combining X with Y gives R X Ai for all i from 0 to 2k - 1. To

complete the required input for the next stage, we also compute A2- by squaring A2--
1

•

Each stage takes time O(logn) using O(M(n)) processors, and there are logn stages, so the

bounds of the theorem follow. Computing R X Ai X S may be accomplished with one further matrix

m ul ti plication .•

An important function of a square n X n matrix A, closely related to the determinant and

inverse. is the characteristic polynomial p(A) = det(A - A' I), where det stands for the determinant

operation and I is the identity matrix (having the multiplicative identity 1 on the main diagonal,

and the additive identity 0 in all other cells). Let X(A) be the column vector (Po,Pl •. .. Pn) of

coefficients of P(A); Po is the coefficient of An in P(A), Pl that of An-I, and so on.

Define Ai to be the square submatrix of A formed by taking rows i + 1 through n and columns

i + 1 through n of A. Also let Ri be the row vector (A[i. i + 1], A[i. i + 2j, ... A[i, n]), and let Si be

the column vector (A[i + 1, ij, A[i + 2, ij, ... A[n, in.
Theorem 23 [Berkowitz 1984J. The coefficients X(A) of the characteristic polynomial of A can be

computed in time O(log2 n) using O(M(n)· n) processors.

Proof: Define Ci. an (n - i + 2) X (n - i + 1) dimensional lower triangular Toeplitz matrix, as

follows. C i [1,1] = -1: C;[2, 1] = A[i. i]; for each j greater than 2, Cdj, 1J = Ri X U!-3 X Sj. By

32

theorem 22, we can calculate the coefficients of each C j in time O(log2 n) using M(n) processors.

so we may calculate all of the C j using a factor of n more processors. Berkowitz [1984] showed that

X(A) = IT?:1 Cj; this can be calculated in time 0(1og2 n) using O(n3 / 10g2 n) processors, which by
assumption is less than O(U(n)· n) .•

Theorem 24 [Berkowitz 1984]. The determinant and inverse of an n X n matrix over an arbitrary
field can be calculated in time O(log2 n) with O(nM(n)) processors.

Proof: The determinant is simply the constant term pn of the characteristic polynomial. By
the Cayley-Hamilton theorem, we may compute A-I as

-1 n-l .

4 -1 = _ ~ A n - I - 1 .
. ~ P"

Pn i=O

Again the computation can be performed in time O(10g2 n) using O(M(n)· n) processors .•

As with the other matrix computations described earlier, the computation of the determinant

and inverse described above can be made more efficient for certain restrictions on the field the

matrix cell values are taken from. In particular, if the field has characteristic 0, Preparata and

Sarwati [1978] improve an algorithm of Csanky [1976] to achieve the same time using O(M(n)fo)
processors; Galil and Pan [1985b] give a small improvement to this result.

If the entries in the matrices are k-bit integers or quotients of k-bit integers, the inverse

contains numbers which may be longer by a factor ofO(nlogn), so the assumption of unit time

arithmetic operations no longer holds. Ga.lil and Pan [1985a] give a randomized algorithm for

inverting matrices of k-bit rational numbers in time O(log2 n) using O(knM(n)) processors, using

only single bit operations.

4.2 Closed Semiring Systems

Let S be a semi ring as defined above, but with the following further properties. First, the addition

property should be idempotent; that is, for any a, a + a = a. Second, any countably infinite sum

al + a2 + ... + aj + ... should have a unique solution; further, the usual commutative, associative,

and distributive laws should apply to infinite as well as finite sums. We call such a system a closed

semiring [Aho et ai. 1974]. By the properties of a cl06ed semiring, the following function, known as

closure, is well defined. For any element a in the ring, let a- , the cl06ure of a, be 1 + a + a2 + a3 + .. "
where 1 is the multiplicative identity of the semiring. We assume that closure as well as addition

and multiplication can be performed in constant time by a single processor.

A closed semiring system consists of a semiring, together with a directed graph labeled on the

edges with elements of the semiring. We define the label of a path in the graph to be the product

in the semiring of all the labels of the edges of the path, in order as they appear in the path. The

problem we wish to solve is. given such a labeled graph, to find the closure of the graph; that is.

for each pair of vertices, the sum of the labels on all p06sible paths between those two vertices.

Note that we don't require the paths to be simple, so the sum as described above is infinite.

Nevertheless it is possible to compute this sum for all pairs of vertices of the graph sequentially

in time O(n3). In fact, this may be computed in the same sequential time as a single matrix

33

multiplication over the given semlring [Aha et al. 1974J. The sequential algorithm for solving closed

semiring systems uses a form of dynamic programming, and seems to be inherently sequential.

We describe below a parallel algorithm, due to Kucera, that works for those semirings in

which, for all a, 1 + a = 1 (so a* = 1). This algorithm uses a number of operations that is within

a logarithmic factor of the best known sequential time for these problems. It is not clear whether

it could be extended to a parallel algorithm for more general closed semi ring systems.

Theorem 25 [Kucera 1982]. Assume that the given semi ring has the property that, for all a,

1 + a = 1, and denote the parallel time and number of processors for multiplication of n x n

matrices over the semiring by T(n) and M(n). Then we can perform a closed semiring system
computation on a graph ofn vertices in parallel time T(n) log n, using M(n) processors.

Proof: Let A be the n X n matrix constructed as follows. For each edge (i, j) in the graph.

labeled with some value v, we let A[i,j] = v. For each i,j with no edge between them, we let

A[i,j] = 0, the additive identity. For each i, A[i, i] = 1, the multiplicative identity. Let m be the

least power of 2 greater than or equal to n, and let B = Am, computed in log n multiplications by

repeated squaring.

In fact the algorithm described by Kucera [1982] repeats, instead of squaring, the following

step: A +- A + A2. But it can be seen that, in the algorithm we give, Ak[i, i] = 1 always, and so

the extra addition performs no useful work.

We claim that for each k, A k [i, i] will hold the sum of all path labels for paths from i to

j using at most 2k edges. Clearly this is the case for k = O. For k > 0, note that each path

from i to j having at most 2k edges can be formed as a path from i to some vertex h having

at most 2k - 1 edges, together with another path from h to j again having at most 2k - 1 edges.

Ak[i, j] = L~=l (A k-1 [i, h] + A k-1 [h,jj), wruch by induction is the sum of the labels of all ways of

combining two paths of length at most 2k-l. The matrix multiplication may compute the label for

a given path in several different ways, but by idempotence the sum of any number of copies of the

path label is that path label itself.

Finally, note that, again using the fact that 1 + a = 1, the sum of the label of any non-simple

path with that of a simple path using a subset of the Same edges will be the label of the simple

path; therefore since all simple paths use at most n - 1 edges we need not take A to any higher
power .•

Now let us describe some applications of closed semiring systems. First consider finding the

shortest path between each pair of vertices in the graph, and assume the edge lengths are given as

log n-bit integers. The corresponding semi ring has as its addition operation the integer minimum

function, and as its multiplication operation integer addition. The multiplicative identity is the

integer 0; we add a special infinite value to be our additive identity.

t-.latrix multiplication in the above semi ring can be seen to take constant time using O(n3)
weak CReW processors. Therefore we can find all shortest paths in the graph in time O(log n),

.and the same number of processors.

As a second example, consider finding the transitive closure of a directed graph. We take as our

semiring Boolean algebra: the addition operator will be logical or and the multiplication operator

logical and. The additive identity is the value representing falsehood, and the multiplicative identity

34

that representing truth. Again matrix multiplication can be performed in constant time with

O(n3
) weak CRCW processors, so finding the transitive closure takes o (log n) time with the same

number of processors. Essentially this algorithm, in a version for EREW processors, was given by
Hirschberg [1976].

As a less obvious example of the use of semi ring systems, consider finding a topological ordering

of a directed acyclic graph. This can easily be performed in linear time sequentially, but the algo­
rithm does not obviously lend itself to parallelism. The following algorithm, due to Kucera [1982],

does find a topological ordering in parallel; however the efficiency of the algorithm is much less

than that of the sequential topological sorting algorithm.
We first find the transitive closure of the graph, using the above semiring algorithm. For each

vertex v, we compute the in-degree of v in the transitive closure. Finally we sort the vertices by
their computed in-degrees. If a vertex v is an ancestor of another vertex w in the original graph,

then in the transitive closure w will have incoming edges from all the ancestors of v, plus one from

v itself, with possibly still others. Therefore sorting by in-degrees in fact results in a topological

ordering. Each step can be performed in O(1og n) time; the step that requires the most processors

is that of computing the transitive cl06ure, which as we have seen takes O(n3) weak CRCWs.

4.3 Matching

Another important problem that can be solved in parallel using matrix techniques is that of match­
ing. A matching is a subset M of the edges of an undirected graph, such that no two edges in M
share a vertex. There are a number of closely related problems one would like solved, all involving

finding matchings of a certain sort. In particular, we might want to find any of the following types

of matching.

(1) A perfect matching. Each vertex must appear in some edge of the matching.

(2) A maximum matching. This is a matching with the largest number of edges over all possible

matchings in the graph. If there is a perfect matching, it is obviously a maximum matching,

but there are graphs in which no perfect matching exists.

(3) A maximal matching. With such a matching, each edge of the graph has at least one of its

vertices covered by the matching, so no more edges can be added to the matching. A maximum

matching must be maximal, but the converse is not necessarily true.

(4) A minimum (or maximum) weight perfect matching. Each edge is given an integer weight; the

task is to find a matching such that the sum of the edge weights is minimized.

(5) A minimum weight perfect matching, assuming that there is only one perfect matching having

the minimum weight.

In problems (4) and (5) we restrict the weights to be integers bounded by a polynomial in the

input size: it is not clear whether the problems can be solved quickly and efficiently in parallel for

more general weights.

~Iatching is interesting in its own right, but it is also closely related to a number of other

problems. In particular if we can calculate maximum flows on a bipartite graph, we can use that

calculation to find a maximum matching on that graph; and conversely matchings can be used

to find certain types of flows. Aggarwal and Anderson [1987] used flows calculated by matchings

35

in their algorithm for computing a depth first search tree. If we could compute matchings more

efficiently, we could in turn use that computation to compute depth first search trees more efficiently.

Here we describe a solution to problems (1) and (5), due to Mulmuley et al. [1987J. Prob­
lem (1) is reduced to problem (5) by an appropriate choice of relatively small random weights; then

problem (5) is solved deterministically using inversion of a matrix derived from the edge weights.
We should note that the same paper also describes a solution of problems (2) and (4) using similar

techniques.
Problem (3), finding a maximal matching, seems to be much easier; it can be solved efficiently

and deterministically in parallel with an algorithm based on the Euler tour technique for graphs

[Israeli and Shiloach 1986J.
Finally we should note that an important special case of all of the above problems is finding

the appropriate matching for a bipartite graph. We shall not discuss this case further here.

Theorem 26 (Mulmuley et al. 1987]. Let 5 = {XbX2,""Xn} be a finite set, and let F =
{5}, 52,'" 5d, with 5j C 5, be a family of subset of 5. Let weights Wi, drawn randomly and
independently from a uniform distribution on the integers from 1 to 2n, be assigned to each of the

Xi, and define the weight w(5j) of a set in F to be the sum of the weights of its members. Then

the probability that there is exactly one member of F having the minimum weight is at least 1/2.

Proof: Let P be the probability that more than one minimum weight matching exists. Let Ei

be the event that Xi is both in some minimum weight matching and not in some other minimum

weight matching, and let Pi be the probability of event E j • We first show a bound on Pj, and then

from this derive a bound on P.
Assume a fixed assignment of weights Wi. For each i, define Fj to be the collection of sets from F

containing Xi. Let m(X) for Xc F be the minimum weight set in X. Then Xi can only be included

in some minimum weight set and not included in some other such set when m(F - Fd = m(Fj); or

equivalently when Wi = m(F - Fd - (m(Fi) - w;). But Wi is independent of both m(F - Fi) and

m(Fd - Wi, so Pi, the probability of Wi being chosen to equal their difference, is at most 1/2n.
If there are two or more minimum weight sets in F, they must differ in at least one Xj; that

is, at least one of the events Ei must occur. These events are not independent, but the probability

of any of them occuring can be no more than the sum of their individual probabilities. That is,

P ~ l::':1 Pi ~ n/2n = 1/2 .•

Corollary. If we can solve problem (5) above in time t using p CRCW processors, we can solve

problem (1) in expected time OCt) using the same number of processors.

Proof: Assume the graph has n vertices and m edges. We give each edge a random weight

from 1 to 2m; this takes linear operations, so it must be within the bounds for solving problem (5).

By the theorem above, there is a unique minimum weighted matching with probability at least

1/2. Therefore with probability 1/2 the algorithm for problem (5) finds a perfect matching; if the
minimum matching is not unique we don't know what the algorithm will do, but we can stop it

after the appropriate amount of time and check in linear (CRCW) operations whether it has in fact

found a perfect matching. Again, since we assume nothing about the algorithm for problem (5), if

the minimum matching is not unique it might attempt some concurrent memory operations that

would not happen otherwise; but with CRCW processors this can cause no harm. The expected

36

number of times we need perform this sequence of operations is at most 2 .•

Now assume we have a graph G with n vertices and m edges, each edge (i, j) marked with an

integer weight 1 ~ wi,i ~ k, and that there is exactly one minimum weight perfect matching in G.
We now show. following Mulmuley et al. [1987], how to find that perfect matching in parallel.

First define the skew-symmetric matrix B as follows. If (i, j) is not an edge of G, or if i = j,
then B[i,j] = O. Otherwise, if i < j, B[i,j] = 2Wi ,J, or if i > j, B[i,j] = _2Wi ,J. The value at each

cell is an integer representable in O(k) binary digits. Also, let w be the weight of the minimum
weight perfect matching .M of G.

Theorem 27 [Mulmuley et al. 1987]. If G has a unique minimum weight perfect matching, and B

is defined as above, then the determinant of B is divisible by 22w , and by no higher power of 2.

Proof: For each permutation a of the numbers from 1 to n, let value(a) = ± rr~l B[i.a(i)],
with the sign positive if a is an even permutation, or negative if it is odd. Then det(B) =
L", va/ue(a).

Now let a be an arbitrary permutation. If a takes any number i to itself, then L'alue(a)

includes B[i, i] = 0 and is therefore zero. If a contains an odd cycle of length more than one,
then it can be paired with another permutation a' which is identical except that it contains the

inverse cycle. If there is more than one odd cycle we choose the one containing the smallest of

the numbers being permuted; in this way we make the pairing of permutations one-ta-one. Where

one cycle contributes B[i,j] to the value of its permutation, the one it is paired with contributes

B[j, i] = - B[i, jJ. Because the cycles are odd, the total number of such terms contributed by either

cycle is odd, so value(a) = - value(a'), and the two values cancel out in det(B).

The remaining case is that a contains only even cycles. Then split each cycle into odd and even
edges; this gives rise to two perfect matchings Ml and AI2 such that value(a) = ±2w(Afj)+wU"f,l. If
All = M2 = AI is the minimum weight matching, with weight w, then value(a) = ±22w

, and a is the

permutation taking each vertex to its match in M. Only one such permutation exists because of the

assumption that the minimum weight perfect matching is unique. Otherwise, w(M I)+w(M2) > 2w.
We have shown that det(B) is the sum of a number of terms, some of which cancel, some of

which are divisible by a higher power of 2 than 2w, and exactly one of which is ±22w
• Therefore

the highest power of 2 dividing det(B) is as claimed exactly 2w .•

Now define Bi,i to be the matrix formed by removing row i and column j from matrix B. The

adjoint adj(B) is defined by a.dj(B)U,i] = det(Bi.j). It turns out that Badj(B) = det(B)· I, so

the adjoint can be found by omitting the division by the determinant from the matrix inversion

algorithm described earlier. In this particular case, we are better off using the matrix inversion

algorithm of Gal.il and Pan [1985a], which also computes the adjoint before dividing it by the

determinant.

Theorem 28 [Mulmuley et al. 1987]. An edge (i,j) is in the unique minimum weight perfect

matching ,H. having weight w. exactly when det(B i ,j)2w
,,J /22w is odd.

Proof: Assume without loss of generality that i < j. Note that det(B i ,i)2w
,,J = L", va/ue(a).

where the sum is over those permutations a such that a(i) = j.
As in the previous theorem, those a taking some k to itself contribute nothing to the sum. If

some (J has an odd cycle of length greater than one, then because n is even either (J takes some

37

k to itself or it contains another odd cycle. In the latter case. at most one of the odd cycles can

contain i and j. We find the odd cycle not containing i and j and having as a member of the

cycle the smallest of the numbers from 1 to n among all such odd cycles, and pair (J with another

permutation obtained by reversing this cycle; again as in the previous theorem, this permutation

exactly cancels va/ue((J).

Finally if (J has only even cycles, then again as in the previous theorem it can be decomposed

into two matchings, and as before it will contribute 22w exactly for the permutation corresponding

to the minimum weight perfect matching (if that matching contains edge (i,j» and higher powers

of two for all other permutations.
Therefore, if (i,j) E M, the highest power of 2 dividing det(Bi,j)2W

;,i will be exactly 2w, and

if (i, j) rt M, then det(Bi,i)2w ;.; will be divisible by a higher power of 2 than 2w .•

The above theorems lead us to the following algorithm, for finding a minimum weight perfect

matching whenever this matching is unique:

(1) Compute B, det(B), and adj(B).

(2) Find w from det(B) as in theorem 27.

(3) Determine for each edge (i, j) whether it is in the minimum weight perfect matching using

theorem 28.

Theorem 29 [Mulmuley et al. 1987]. A unique minimum weight perfect matching on a graph with

n vertices, with integer edge weights from 1 to k, can be found in expected time O(log2 n) using

O(knM(n» CRCW processors.

Proof: We use the integer matrix inversion algorithm of GaUl and Pan [1985a], which computes

the determinant and adjoint of B in the above bounds. The remaining steps may easily be performed

in the same bounds .•

Corollary. A perfect matching of an undirected graph, if one exists, may be found in expected

time O(log2 n) using O(mnM(n) CReW processors.

We should note that GallI and Pan [1985a] give a different perfect matching algorithm, based

on that of Karp et al. [1985a], which takes O(log3 n) expected time with O(nM(n)) processors.

Neither algorithm is as efficient as the best sequential algorithm, which takes O(mv'n) time [Micali

and Vazirani 1980].

As we previously noted, Israeli and Shiloach [1986] gave an algorithm for maximal matching

which takes O(log3 m) time with O(m + n) processors. Maximum matching can be solved by first

computing the size of the matching from the rank of the adjacency matrix, and then computing a

perfect matching on a graph derived from the original graph; the resulting algorithm takes the same

bounds as perfect ma.tching. The minimum weight perfect matching problem ca.n be solved using
a factor of O(nw) more processors than needed to find a perfect matching [Galil1986b; Mulmuley

et al. 1987]; here w is the largest weight on any edge.

5. CONCLUSIONS

vVe have described a number of algorithmic tools that have been found useful in the construction of

parallel algorithms; among these are prefix computation, ranking, Euler tours, ear decomposition,

and matrix calculations. We have also described some of the applications of these tools, and listed

many other applications.
The algorithms and algorithmic tools we have given seem likely to be useful not only in their

own right for the problems they solve, but also as examples of ways to break up other problems
into parts suitable for parallel solution.

A number of open problems remain. It is likely that many of the problems for which we
have described algorithms can be solved more quickly, more efficiently, or with a weaker type of
PRAM. In particular, we would like to reduce the processor bounds and remove the requirement
for random numbers of the algorithms for matching and finding depth first search trees. In the
weighted matching algorithms, we would also like to remove the linear dependence on the weights
from the bound on the number of processors. Another algorithm we gave that was much less efficient
than its sequential counterpart was for topologically sorting a directed acyclic graph; perhaps this
problem can be solved more efficiently. A related problem is that of finding shortest paths from

a single source in a graph; the best known parallel solution is no better than finding the paths
from all sources, using the parallel closed semi ring system algorithm we gave. This algorithm itself

solves an important special case of cl06ed semiring systems; can the general case of these systems

be solved quickly and efficiency in parallel?

REFERENCES

AGGARWAL, A., AND ANDERSON, R. 1987. A Random NC Algorithm for Depth First Search. In

Proceedings of the 19th Annual Symposium on Theory of Computing. ACM. New York, p. 325.

AHO, A.V., HOPCROFT, J .E., AND ULLMAN, J.D. 1974. The Design and Analysis of Computer

Algorithms. Addison Wesley, Reading, Mass.

ARO. A.V., AND ULLMAN, J.D. 1977. Principles of Compiler Design. Addison Wesley, Reading,

Mass.

AJTAI, M., KOMLOS, J., AND SZEMEREDI, E. 1983. An O(n log n) Sorting Network. In Proceedings

of the 15th Annual Symposium on Theory of Computing. ACM, New York, pp. 1-9.

ANDERSON, R. 1985. A Parallel Algorithm for the Maximal Path Problem. In Proceedings of the

17th Annual Symposium on Theory of Computing. ACM, New York, pp. 33-37.

ATALLAR, M.J., AND VISHKIN, U. 1984. Finding Euler Tours in Parallel. J. Comput. Sys. Sci. 29,

pp. 330-337.

AWERBUCR, B., IsRAELI, A., AND SHILOACH, Y. 1984. Finding Euler Circuits in Logarithmic

Parallel Time. In Proceedings of the 16th A nnual Symposium on Theory of Computing. ACM,

New York, pp. 249-257.

BERKOWITZ, S.J. 1984. On Computing the Determinant in Small Parallel Time Using a Small

Number of Processors. Info. Proc. Letters 18, pp. 147-150.

BRENT, R.P. 1974. The Parallel Evaluation of General Arithmetic Expressions. J. ACM 21, 2

(April), pp. 201-206.

COLE, R. 1986. Parallel Merge Sort. In Proceedings of the 27th Annual Symposium on Foundations

of Computer Science, IEEE, New York, pp. 511-516.

COLE, R., AND VISHKIN, U. 1986a. Deterministic Coin Tossing and Accelerating Cascades: Micro

and Macro Techniques for Designing Parallel Algorithms. In Proceedings of the 18th Annual

Symposium on Theory of Computing. ACM, New York, pp. 206-219.

COLE, R., AND VISHKIN, U. 1986h. Deterministic Coin Tossing with Applications to Optimal

Parallel List Ranking. Info. and Control 70, pp. 32-53.

COLE, R., AND VISHKIN, U. 1986c. Approximate and Exact Parallel Scheduling with Applications to

List, Tree a.nd Gra.ph Problems. In Proceedings of the 27th A nnual Symposium on Foundations

of Computer Science. IEEE, New York, pp. 478-491.

COLE, R., AND VISRKIN, U. 1987. The Accelerated Centroid Decomposition Technique for Optimal

Parallel Tree Evaluation in Logarithmic Time. Manuscript.

COPPERSMITH, D., AND WINOGRAD, S. 1987. Matrix Multiplication via Arithmetic Progressions.

In Proceedings of the 19th A nnual Symposium on Theory of Computing. ACM, New York,

pp. 1-6.

40

CSANKY, L. 1976. Fast Parallel Matrix Inversion Algorithms. SIAAf J. Comput. 5, 4 (December).

pp. 618-623.

EVEN, S., AND TARJAN, R.E. 1976. Computing an st-numbering. Theoretical Computer Science 2,

pp. 339-344.

FICH, F.E., RAGDE, R.L., AND WIGDERSON, A. 1983. Relations Between Concurrent-Write Models

of Parallel Computation. Manuscript.

GALIL, Z. 1986a. Optimal Parallel Algorithms for String Matchlng. Info. and Control 67, pp. 144-

157. A preliminary version appeared in Proceedings of the 16th Annual Symposium on Theory

of Computing, 1984. ACM, New York, pp. 240-248.

GALIL, Z. 1986b. Sequential and Parallel Algorithms for Finding Maximum Matchings in Graphs.

Ann. Rev. Comput. Sci. 1, pp. 197-224.

GALIL, Z., AND PAN, V. 1985a. Improved Processor Bounds for Algebraic and Combinatorial

Problems in RNC. In Proceedings of the 26th Annual Symposium on Foundations of Computer

Science. IEEE, New York, pp. 490-495.

GALIL, Z., AND PAN, V. 1985b. Improving the Efficiency of Parallel Algorithms for the Evaluation

of the Determinant and the Inverse of a Matrix. Tech. Rep. 85-5, Computer Science Dept.,

SUNY, Albany, New York.

GAZIT, H. 1986. An Optimal Randomized Parallel Algorithm for Finding Connected Components in

a Graph. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science.

IEEE, New York, pp. 492-501.

GOLDBERG, A., PLOTKIN, S., AND SHANNON, G. 1987. Parallel Symmetry-Breaking in Sparse

Graphs. In Proceedings of the 19th Annual Symposium on Theory of Computing. ACM, New

York, pp. 315-324.

GOLDBERG, M., AND SPENCER, T. 1987. A New Parallel Algorithm for the Maximal Independent

Set Problem. In Proceeding8 of the 28th Annual Symposium on Foundations of Computer

Science. IEEE, New York, pp. 161-165.

GROLMUSZ, V., AND RAGDE, P. 1987. Incomparibility in Parallel Computation. In Proceedings of

the 28th Annual Symposium on Foundations of Computer Science. IEEE, New York, pp. 89-98.

HILLIS, \V.D., AND STEELE, G.L. 1986. Data Parallel Algorithms. Commun. ACM 29, 12 (Decem­

ber), pp. 1170-1183.

HIRSCHBERG, D.S. 1976. Parallel Algorithms for the Transitive Closure and the Connected Compo­

nent Problems. In Proceedings of the 8th Annual Symposium on Theory of Computing. ACM,

New York, pp. 55-57.

IsRAELI, A., AND SHILOACH, Y. 1986. An Improved Parallel Algorithm for Maximal Matching.

Info. Proc. Letters 22, pp. 57~0.

41

KANEVSKY, A., AND RAMACHANDRAN, V. 1987. Improved Algorithms for Graph Four-Connectiv­

ity. In Proceedings of the 28th Annual Symposium on Foundations of Computer Science. IEEE,

New York, pp. 252-259.

KARLIN, A.R., AND UPFAL, E. 1986. Parallel Hashing - An Efficient Implementation of Shared

~lemory. In Proceedings of the 18th Annual Symposium on Theory of Computing. ACM, New

York, pp. 160-168.

KARP, R.M., UPFAL, E., AND WIGDERSON, A. 1985a. Constructing a Perfect Matching is in Ran­

dom NC. In Proceedings of the 17th Annual Symposium on Theory of Computing. ACtI, New

York, pp. 22-32.

KARP, R.M., UPFAL, E., AND WIGDERSON, A. 1985b. Are Search and Decision Problems Compu­

tationally Equivalent? In Proceedings of the 17th Annual Symposium on Theory of Computing.

ACM, New York, pp. 464-483.

KLEIN, P.N., AND REIF, J.H. 1986. An Efficient Parallel Algorithm for Planarity. In Proceedings of

the 27th Annual Symposium on Foundations of Computer Science. IEEE, New York, pp. 465-

477.

KRAPCHENKO, A.N. 1970. Asymptotic Estimation of Addition Time of a Parallel Adder. English

translation in Syst. Theory Res. 19, pp. 105-122.

KUCERA, 1. 1982. Parallel Computation and Conflicts in Memory Access. Info. Pmc. Letters 14,

2 (April), pp. 93-96.

LADNER, R.E., AND FISCHER, M.J. 1980. Parallel Prefix Computation. J. ACM 27,4 (October),

pp.831-838 .
..

LINIAL, N., LovAsz, L., AND WIGDERSON, A. 1986. A Geometric Interpretation of Graph Con­

nectivity and its Algorithmic Applications. In Proceedings of the 27th Annual Symposium on

Foundations of Computer Science. IEEE, New York, pp. 39-48.

LovAsz, L. 1985. Computing Ears and Branchings in Parallel. In Proceedings of the 26th Annual

Symposium on Foundatwl'l8 of Computer Science. IEEE, New York, pp. 464-467.

LUBY, M. 1985. A Simple Parallel Algorithm for the Maximal Independent Set Problem. In Pro­

ceedings of the 17th Annual Symposium on Theory of Computing. ACM, New York, pp. 1-10.

MAON, Y., SCHIEBER, B., AND VISHKIN, U. 1986. Parallel Ear Decomposition Search (EDS) and

ST-Numbering in Graphs. In VLSI Algorithms and Architectures, Lecture Notes in Computer

Science 227, Springer-Verlag, Berlin, pp. 34-45.

MEGIDDO, N. 1983. Applying Parallel Computation Algorithms in the Design of Serial Algorithms.

J. ACAf 30, 4 (October), pp. 852-865.

MEHLHORN, K., AND VISHKIN, U. 1984. Randomized and Deterministic Simulations of PRAMs

by Parallel Machlnes with Restricted Granularity of Parallel Memories. Acta Informatica 21,

pp. 339-374.

42

:'IICALI, S., AND VAZIRANI, V.V. 1980. An O(JiViIEI) Algorithm for Finding Maximum Matchings

in General Graphs. In Proceedings of the 21st Annual Symposium on Foundations of Computer

Science. IEEE, New York, pp. 17-27.

MILLER, G.L., AND RAMACHANDRAN, V. 1987. A New Graph Triconnectivity Algorithm and Its

Parallelization. In Proceedings of the 19th Annual Symposium on Theory of Computing. ACM,

New York, pp. 335-344.

MILLER, G.L., AND REIF, J .H. 1985. Parallel Tree Contraction and its Application. In Proceedings of

the 26th Annual Symposium on Foundations of Computer Science. IEEE, New York. pp. 478-
489.

MULMULEY, K., VAZIRANI, U.V .. AND V AZIRANI, V.V. 1987. Matching is as Easy aL Matrix

Inversion. Combinatorica 7, 1, pp. 105-114. A preliminary version appeared in Proceedings of

the 19th Annual Symposium on Theory of Computing. ACM, New York, pp. 345-354.

PREPARATA, F.P., AND SARWATI. D.V. 1978. An Improved Parallel Processor Bound in Fast Matrix

Inversion. Info. Proc. Letters 7, 3 (April), pp. 148-150.

RANADE, A.G. 1987. How to Emulate Shared Memory. In Proceedings of the 28th Annual Sympo­

sium on Foundations of Computer Science. IEEE, New York, pp. 185-194.

REIF, J.H. 1983. Probabilistic Parallel Prefix Computation. J. ACM, submitted.

REIF, J.H. 1985. An Optimal Parallel Algorithm for Integer Sorting. In Proceedings of the 26th

Annual Symposium on Foundations of Computer Science. IEEE, New York, pp. 496-504.

REISCHUK, R. 1981. A Fast Probabilistic Parallel Sorting Algorithm. In Proceedings of the 22nd

Annual Symposium on Foundations of Computer Science. IEEE, New York, pp. 212-219.

SCHIEBER, B. 1987. Design and Analysis of some Parallel Algorithms. Ph.D. Dissertation, Tel Aviv

U ni vers i ty.

SCHIEBER, B., AND VISHKIN, U. 1987. On Finding Lowest Common Ancestors: Simplification and

Parallelization. Ultracomputer Note 118, Coura.nt Institute, New York University, New York.

SCHWARTZ, J .T. 1980. Ultracomputers. ACM Trans. Prog. Lang. and Sys. 2, pp. 484-521.

SCHILOACH, Y., AND VlSHKIN, U. 1981. Finding the Maximum, Merging and Sorting in a Parallel

Computation Model. J. Algorithms 2, pp. 88-102.

TARJAN, R.E. 1972. Depth-first Search and Linear Graph Algorithms. SIAM J. Comput. 15,3,
pp. 814-830.

TARJAN, R.E., AND VISHKIN, U. 1984. Finding Biconnected Components and Computing Tree

Functions in Logarithmic Parallel Time. In Proceedings of the 25th Annual Symposium on

Foundations of Computer Science. IEEE, New York, pp. 12-20

TSIN, Y.H. 1985. An Optimal Parallel Processor Bound in Strong Orientation of an Undirected

Graph. Info. Proc. Letters 20, pp. 143-146.

43

VALIANT, L.G. 1975. Parallelism in Comparison Problems. SIAM J. Comput. 4, 3 (September),

pp. 348-355.

VISHKIN, U. 1984a. A Parallel-Design Distributed-Implementation (PDDI) General-Purpose Com­

puter. Theor. Comput. Sci. 32, pp. 157-172.

VISHKIN, U. 1984b. On Choice of a Model of Parallel Computation. Manuscript.

VISHKIN, U. 1984c. Randomized Speed-ups in Parallel Computation. In Proceedings of the 16th

Annual Symposium on Theory of Computing. ACM, New York, pp. 230-239.

VISHKIN, U. 1985. On Efficient Parallel Strong Orientation. Info. Proc. Letters 20, pp. 235-240.

VON ZUR GATHEN, J. 1984. Parallel Algebraic Computations. Unpublished course notes.

WHITNEY, H. 1932. Non-Separable and Planar Graphs. Trans. Amer. Math. Soc. 34, pp. 339-362.

WINOGRAD, S. 1975. On the Evaluation of Certain Arithmetic Expressions. J. ACM 22, 4 (Octo­
ber), pp. 477-492.

WYLLIE, J.C. 1979. The Complexity of Parallel Computation. Tech. Rep. TR 79-387, Dept. of

Computer Science, Cornell University, Ithaca., New York.

