
A Survey of Software Fault Tolerance Techniques

Jonathan M. Smith

Computer Science Deparunent, Columbia University, New York, NY 10027

CUCS-325-88

ABSTRACT

This report examines the state of the field of software fault tolerance.

Terminology, techniques for building reliable systems, andfault tolerance are discussed.

While a scientific consensus on the measurement of software reliability has not been reached, software
systems are sufficiently pervasive that' 'software components" of larger systems must be reliable, since
dependence is placed on them. Fault tolerant systems utilize redundant components to mitigate the
e[fecL~ of component failures, and thus create a system which is more reliable than a single component.
This idea can be applied to software systems as well. Several techniques for designing fault tolerant
software systems are discussed and assessed qualitatively, where "software fault" refers to what is
more commonly known as a bug. The assumptions, relative merits, available experimental results, and
implementation experience are discussed for each technique. This leads us to some conclusions about
the state of the field.

1. Introduction

As computer systems become responsible for supporting increasing numbers of human activities, there is a correspond
ing increase in dependence on the machine's correct function. The extremal points are life-critical systems [LevesonI986a],
where the dependence on the system could determine whether a person lives or dies. Simple systems, e.g., a traffic light con
troller, can be constructed using only hardware components. More complex systems are constructed using programmable
components, which require software (programs) in some form. These forms, for purposes of our discussion, can be, for
example, Read-Only Memory (ROM), Erasable Programmable Read-Only Memory (EPROM), or some external device such
as a magnetic disk. The software allows the actions of the general-purpose programmable hardware to be specified, thereby
creat.ing a system which behaves, in some sense, like a specialized piece of hardware.

Failures. which we will define precisely in a later section, can occur due to errors in the hardware (e.g., a short circuit)
or errors in the software (e.g., using '=' instead of the intended '==' [Koenig1986a] in a C comparison). Hardware fault
tolerance ISiewiorek1982a] is well-understood, to the point of being an engineering discipline. There are several reasons
why this is so:

I. The physics of hardware components, such as silicon, are well understood;

2. The complexity of large hardware designs is several orders of magnitude less than large software systems;

3. Experience with buill-in testing circuitry and data gathered by monitoring this circuitry has given engineers "rules of
thumb" by which to design systems;

4. Given the costs associated with mass production, hardware engineers produce a carefully thought out specification,
along with functional tests that can be applied in order to test units coming off the assembly line.

Software Fault Tolerance, the focus of our survey, is not yet an engineering discipline. In fact, in some respects, it retains an
air of alchemy.

- 2 -

1.1. Survey Organization

We begin with a lexicon of terms in Section 2, for precision in the remaining discussion. Section 2 also outlines the
role of fault tolerance in the design process, using a taxonomy developed by Laprie [LaprieI985aj.

Section 3 provides a terse description of error recovery, and Section 4 discusses the nature of Software FaulL~, and also
serves to relate software fault tolerance techniques to other methods for constructing reliable software systems, such as struc
tured programming.

Section 5 discusses techniques which have been proposed for the construction of reliable software systems from less
reliable components, in particular the Recovery Block, N-Version Programming, and Consensus Recovery Block. Assump
tions, weaknesses, and experimental results of the techniques are presented as well. The section concludes with a qualitative
discussion of the methods, and some quantitative data gathered by researchers.

Section 6 makes some observations, and concludes the survey.

2. Terminology

One of the useful factors which discriminates between science and art is a common terminology shared by workers in
the field, with precise definitions. For example, in mathematics, derivative and integral arc well-understood terms. Com
pare this to, e.g., wine-tasting, where tenns such as bouquet describe the wine. From these examples, it's clear that a well
defined term can be used to measure and compare. and to share the results of these measurements. Researchers in Software
Faull Tolerance have suffered from the lack of common definitions, recognized the state of their field. and attempted to
improve it.

Morgan [Morgan 1982a] points out where these problems with terminology have hindered researchers in fault-tolemnt
computing; efforts to remedy the problem are described. Lee and Morgan [Lee1982a] discuss the preliminary results of one
such cffort. In particular, they point Ollt difficulties with definitions of the terms "fault", "error", "failure", "specifica
tions", "recovery", "system reliability", "hardware reliability", and "software reliability". They suggest, as a start. that
correctness and incorrectness be defined with respect to an Authoritative System Reference (ASR), which is in essence an
ideal specification I Melliar-Smith 1979a]. Disagreement with the ASR then constitutes a failure. The ASR can be inserted
into a system in several ways: Figures I and 2 illustrate two of these:

System

input

ASR

output

Adjudication OK
Process Not 0

Figure 1: Lee and Morgan Figure 1 a [Lee 1982a, p. 351

System

input OK
ASR

NotO

Figure 2: Lee and Morgan Figure 1 b [Lee 1982a, p. 35]

- 3 -

Lee and Morgan note that:

"the definition does not imply that the failure is actually observed at the time it occurred, or that it is observed at
all. The only requirement is that it could be observed by a strict application of the ASR." [LeeI982a, p. 35]

Laprie lLaprie1985a] also provides a discussion of terminology. In addition to bibliographic material, many examples for
each term and a terminological taxonomy (reproduced in Figure 3) are given.

Faults

Impairments Errors

Failures

Fault

Procurement
Avoidance

Faull
Dependability Means Tolerance

Error

Validation
Removal

Error
Forecasting

Reliability

Measures

A vailabilit y

Figure 3: Laprie's Taxonomy

Our interest is in software systems which we can depend on to perform their function; thus "dependability" is the
most abstract requirement we have. In order to satisfy this requirement, we have to know what makes systems "non
dependable": these are shown as "impairments", which are further discussed in the next section (2.1). The "means" are
the methods with which we construct a dependable system, and the "measures" provide us with a criteria for evaluating our
success. We shall concentrate on the "means" in this survey.

"Procurement" is the methodology which is used to construct a dependable system, and "validation" the methodol
ogy used to ensure its dependability. An important distinction is that made between the two "Procurement" methods,
"Fault Avoidance" and "Fault Tolerance". Highly reliable systems are constructed using combinations of two approaches,
coupled with the information and feedback from "Error Forecasting" and "Error Removal". Fault prevention is t.he
(optimistic) approach which uses forecasting information, and feedback from previous error removal, to eradicate potential
fault" from the system so that errors will not occur. Fault avoidance techniques attempt to avoid introducing additional
faults. An example of fault avoidance from carpentry might be the use of the finest tools (to avoid broken tools) coupled with
careful technique (e.g. use of a nail set to avoid damage to exposed wood surfaces). Error removal techniques attempt to
discover and eliminate faults which were introduced; in the carpentry example, this would be an examination of the wood
surface and filling holes with wood putty. Of course, the feedback from error removal can also be used in forming fault
tolerance strategies.

Fault tolerance stems from the observation that it is rarely possible to carry fault prevention to its logical end, perfec
tion. Fault tolerance recognizes that faults may exist, and fault tolerance strategies attempt to prevent faults from causing
system failures. Four phases of fault tolerance are identified [Anderson 1981 a1,

Error detection: The effects of the fault presumably manifest themselves in an error which results in an observable
failure, which can be detected.

Damage assessment:

Error recovery:

Fault treatment and

continued service:

2.1. Definitions

- 4 -

A flagged error may only be the "tip of the iceberg"; due to information propagation, much state
information other than that directly associated with the erroneous state may be invalid. The extent of
this damage should be discovered.

Error recovery altempt') to transform the erroneolls system state into an error free state. Two tech
niques are discussed below, in Section 3.

While error recovery techniques may have brought the system back to an error-frcc state, further work
may be required so that the system can continue to perform the activities in its specification.

At a given level of decomposition, the system's behavior can be described by a set of external states and a transition
function betwccn states; input data serve as stimuli for the transitions. If we separate the state information from the transition
function, we are left with the following model for a system, illustrated in Figure 4:

S

D R

M

~ -r---
r::: f--

f--

r-

y

-

Figure 4: System as Finite State Machine with Feedback

This allows us to give formal definitions of terms:

- An ideal (intended) system S implements a specified mapping from a Domain D (input) to a Range R (output).
Thus, S serves as the Authoritative System Reference mentioned earlier.

- M describes the conlrol logic for the state change which takes place when 7e D is presented to S to yield 7e R.
Thus, M embodies all of the relevant transition functions to move betwccn states; Y preserves all the relevant suite
information at any stage of the system's operation. The value of 'tis obviously dependent on both'tand the con
tenL') ofY.

- A version of S with an error is an S' with y' such that y' ~Y. This inequality implies that S has at least one
erroneous state. We note that the output may not be affected even if an erroneous sUIte arises, i.e., 7=-1 can still
be true in the presence of an error. Thus, S' is an incorrect system because its state component y' is not as speci
fied. This may be due to externally-induced problems (e.g., bad memory) or to flaws in the control logic embodied
in M.

A/ault stems from the existence within S' of a finite state machine M' such that M~M'. Thus, a/ault is the differ
ence between M and M' that caused the error (erroneous state) to arise.

- A/ai/lire in S is an S' such that (if we denote the output of S.-t. by a functional, SO) S' ~ ~ S~ where 'te D.

- 5 -

S'(t) may not be an element of R. What this inequality between the outputs of Sand S' means, less formally, is
that the effect of the fault in S' has become observable.

- The failure set of an implementation S' is F' = rtE D:8' (t) ~ 8(?)}. Thus, by this definition, the failure set of S is
0.

A slightly different set of definitions is given by Anderson and Lee [Anderson1982a], including some notions from
Avizienis and Kelly [AvizienisI984aJ. A system consists of a set of components which interact under the control of a
design. A component is simply another system. A system having special characteristics is called the design - the design
refers to that part of a system which supports and controls the interaction of the components l

. Systems interact with
environments at interfaces; environments are clearly systems. This is illustrated in Figure 5:

S

Cl C3 I-----I---~

Interface 18' I ,
I ,

C2

Figure 5: System constructed of components

In the figure,

- S is a system.

- S serves to map clements rrom an input domain, D, to an output range, R. Thus, S also defines a mapping.

- CI, C2, and C3 are components.

- CI, C2, and C3 are also systems.

- the dashed lines connecting the components are between iuterfaces in a design; the component') shown thus
comprise the design of S, when connected with the illustrated interfaces.

Note the recursive quality of these definitions; we can essentially continue applying them to components until the sys
tem is appropriately decomposed.

If a system is not atomic2 it has an internal state comprised of the external states of its components.

A specification of the system's behavior allows judgements to be made about the reliability of the system: in particu
lar, it allows one to distinguish between undesirable (behavior that is unwanted, but within the bounds set by the specifica
tion) and unreliable (not within the bounds set by the specification). An authoritative specification ic; one which can be
applied as a test of the acceptability of the system. A failure of the system then can be defined as the initial deviation of the
system from sllch an authoritative specification; the reliability of a system is specified as a function of failures and time.

1 TIlis defmirion allows the notion of a "design fault" to be clarified; the design is the logical "glue" used to combine components.
2 .. Atomic", in this setting of recllrsive decompositions, means that the internal structure of the system is not of interest.

- 6 -

An error occurs when a fault (internal to a component or design) manifests itself in the form of a defective system
state (detectable by means of affected external behavior). An error in a component or in the design of a system is a fault:
this distinction is made with respect to the level of the system's decomposition; thus the fault in the component (or design)
level causes the error at the system level.

The important distinction between the two sets of definitions illustrated by Figures 4 and 5 is the system model. While
the recursive decomposition of a system shown in Figure 5 is quite elegant and general, it is not as useful as the more formal
single-level model in achieving precise definitions, which in tum can be used in making quantitative statements. The single
level model has the additional advantage that when reasoning about any system's behavior, only one level of each com
ponent is of interest at any given analysis point, and thus the "flat" decomposition as a finite state machine is entirely ade
quate, and seems most appropriate.

3. Error Recovery

Assuming that the error detection mechanism has discovered an error, we can either indicate the error and fail, or
attempt to recover from the error and any effects it may have. The essential goal of any error recovery strategy is that the
system be in a correct state, with respect to the specified behavior. We must assume that at some time the system was in a
correct state, and that some later time, it was no longer in a correct state. At the time which the system moved from a correct
state to an incorrect state, an error occurred. Two approaches exist to allaining a correct state, forward error recovery, and
backward error recovery. These are discussed in the following two subsections.

3.1. Forward Error Recovery

Forward error recovery is so named because the scheme moves forward along the time line while attempting to
recover. The basic idea is that once an error is discovered, steps are taken to move the system from its current incorrect state
into a state which is correct. In our state machine formalism, the Y' must be transformed through some means into Y, in
spite of the existence of M' or externally-induced errors. This approach has the major flaw of requiring designers to be
aware of the possible failure modes of the system in advance, as the logic necessary to move the system from an incorrect
state to a correct state must be constructed into the system.

3.2. Backward Error Recovery

Backward error recovery relies on the fact that the system was in a correct state at some time in the past. This is used
in the following way. At a time when the system is known to be in a correct state, a copy of the system state information is
made; call this copy the' 'backup". When the system is determined to be in an incorrect state, the backup copy of the system
is used to restore the system, thus achieving a correct state by moving "backward" in time. In our state machine model, the
error, as instantiated by y' is removed by restoring a previous Y. This scheme (as described) has a major flaw when faced
with recurring errors; the problem that caused the rollback3 may not have gone away, in which case the system will fail
again. This can be dealt with (to some degree) by using an alternative method of moving forward after the system state has
been festored .

.t. Software Faults

Hardware faults can be the result of physical degradation or they can result from poor design. Software however can
only have faulLs due to mistakes in design and implementation; it does not suffer from functional changes due to extemal
inlCraclion. We can state tJ1C nature of software faults in the terminology developed in the previous sections: A "software
[ault" (bug) is afailit in a system S which is implemented in software.

There are two approaches to constructing (i.e., Laprie's "procufement") highly reliable software systems, fault
avoidance andfal/lt tolerance.

3 "Rollback" is a colloquial tenn for restoring state derived from "rolling back the clock".

- 7 -

4.1. Fault Avoidance

The ba'lic notion of fault avoidance is that the systems should be as fault-fTee as they can be made. For example. in
software,failures. anel/aults causing errors. can be reduced or removed by:

• Verification (proofs of correctness) [Floyd1967a. Hoare1969a. Dijkstral976a]

• Precise specifications combined Witll testing. Prather [prather1983a] provides an excellent overview of program
testing, and includes an extensive bibliography.

• Structured programming techniques [DahI1972a] with which we combine the numerous design techniques such as
Parnas' information hiding [parnas(null)aJ, Ross' SADT. et cetera.

However, experience has shown that these techniques are insufficient, i.e. "bugs" remain. Intuitively. it should be clear lhat
testing does not prove lhat no bugs remain. unless both the specification is complete in every detail. and the testing exhausts
all the possibilities specified. To quote Dijkstra [Dijkstra1972a] :

"Program testing can be used to show lhe presence of bugs, but never to show lheir absence"

Proofs of program correctness are an elegant methodology for producing correct programs. but they suffer from lhe same
weaknesses of any malhematical proof, that is:

• What has been proved is what has been specified. For example, it can be shown that a sorting program produces a
lexicographically ordered set of strings as an output, given that a set of strings has been provided as input What is
implied, not proven, and necessary is that the output set be a permutation of the input set; hence, while my "proof'
would be correct, it does not address lhe problem.

• The proof can be believed. As the complexity of mathematical proofs increases. the complete proof becomes
incomprehensible, wilh 200 page proofs not uncommon. With automated logic, this is less of a problem, but anolher
problem is associated with program size: as the program becomes larger, so does the complexity of proving it
correct. so that only small programs can be handled with these techniques. To be fair. the techniques are intuitively
attractive, and once the process of using the automated verification's error detection capabilities became familiar,
confidence in the techniques would improve.

Structured programming techniques are disciplines, which when applied can lead to faster development times and
fewer errors [Brooks I 975a], yet they do not !,ruarantee lhat specifications are followed, nor that the modular decomposition
done is lhe correct one for the problem at hand.

Gerhart and Yelowitz [Gerhart 1 976a] provide a host of examples where published applications of these techniques are
in error; they also attempt to describe some of the general problems which cause the errors.

One design technique which has been successful is the use of High Level Languages. 111is use is predicated on the
observation that, on average. a programmer produces a constant number of fully-debugged source lines per day, and the
number stays the same independent of language. Thus, for a given task and time frame, error-free code will be produced fas
ter using a higher Icvellanguage. In addition, the tools available are very helpful in removing errors early in the process, e.g.
type-checking compilers and support systems [Strom 1983a]. However, the task size may be too large, or the time available
too small for these methods to make the deliverable error-free, in spite of the quality of these tools.

Given lhat lhe approach of fault avoidance cannot yet provide us with fault-free software, the question must be asked:
is there a way LO achieve high reliability in spite of these problems?

-'.2. Software Reliability Assessment

One should of course have a firm grasp of what' 'reliability" is in the context of software, and how to measure it. Lit
tlewood [Littlewood1979a] addresses this concern in a short discourse on measurement techniques applicable to software.
Several software reliability models and metrics have been suggested [Musa1975a, Musal979a, Littlewood1979b,
Goe1l979aJ Musa, Iannino, and Okul11oto [Musa1987a] provide a detailed reference on their approach to software reliability;
the survey paper by Ramamoorthy and Bastani [Ramamoorthy1982a] discusses a wide variety of models and issues. From
this evidence. it seems 11m! predicting and estimating reliability of software are difficult tasks indeed, and of course new
methods make dal<l gathered lIsing, e.g. assembly language, somewhat obsolete. This, unfortunately, makes science hard.
As Feynmann [Feynman 1963al points out, " ... the sole test of the validity of any idea is experiment", and without metrics
and gathered data, this is difficult.

However, in spite of this lack of experimental data, general techniques have been proposed to increase the reliability of

- 8 -

software. As we point out in the conclusion to the survey, it seems prudent to put effort into the design phase rather than try
ing to remedy problems after the fact. However, there arc situations where the "gold-plated" approach may not be applica
ble, and the techniques in the next section try to address such situations.

5. Software Fault Tolerance

Fault tolerance is a technique based on the somewhat pessimistic assumption (although de facto realistic) that we
haven't removed all the bugs. The basic idea behind all of fault tolerance is the use of redundancy. The idea of using redun
dancy to construct reliable systems from unreliable components was fIrst described by Von Neumann [NeumannI956a] in
1956. Redundancy (multiple copies) is used to detect faults and mask failures. Avizienis and Kelly [AvizienisI984a] sug
gest that the different types of redundancy possible in a computation are:

• repetition

• replication (hardware)

• logic (software)

These arc of course old ideas applied in a new setting; for example, the same methods are used in experimental science to
gauge the reliability of results; thus science sets the criterion that experiments must be repeatable in order to be believed.

We will use the formal state machine model of Section 2 to discuss redundancy. The use of redundancy relies on statistical
independence. In statistics [Robbins 1 975a], independence means that given two events. A and n, from an
outcome space,I,pr(A I B)=pr(A), and pr(B I A)=pr(B). Thus, pr(A B)=pr(A)·pr(B). Since faults are the events of interest
in our discussion, if 81 and 82 behave independently with respect to D, pr(?eF I ?eF2)=pr(?eF1)·pr(?eF2). A/ault is
common to systems S} and 82 (fffor?e D,?e Fl and?E F2 , where Fi is the subset of D constructed from the inputs on which
Sj fails. What this means less formally is that the fault is common to both systems If we concern ourselves with only the?

N

such that XE Fj , we can see that the relation between F j and UFi (the set of inputs on which at least one of N systems, some
i=1

Si fails) is interesting. Analyzing this membership data, however, provides us much more important information, which is:

• The inpulsxsuch that more than one version (some 8 j) fails atK.

• The number of versions which fail at K.

The number of versions which fail at?can be compactly described by using the notation
N

m(X,N)=!:e(Fi ;1)
i=1

[or a given set of systems 81 , •.• , SN where for set b and clement a

e b a = .
{

I aEb
(,) 0 otherwlse

serves as a set membership operator.

Thus, for a given X, the relationship between the errors and the common data domain for three systems could be
described as m(X,3).

S.l. Independence Assumptions

We now discuss coincident errors in relation to the formal model of systems, faults, and errors which we presented
earlier. Reasoning about experiments and events often assumes that the events are independent (although fervent gamblers
might disagree). Then, the reproducibility of experiments implies that the result of the experiment (an event) was not a coin
cidence. The more times and places the experiment is performed, the greater faith we have in the results. Thus, redundant
systems which fail independently of each other can provide a gain in reliability. This is important information if we seek to
estimate reliability of the final system from observations we have made about its constituent components. Where reliability
goals are set, this infonnation can predict how many independent copies of software arc necessary to meet the goal.

Knight and Leveson [Knigh1l986a, Knight1986b, Knight1985a] have carried out experimental work on the indepen
dence assumption of multiple software versions. Their results indicate that the assumption of independence with respect to
the faults in the software is not upheld in practice. Eckhardt and Lee [EckhardtJ985a] provide a theoretical analysis of

- 9 -

coincident errors and their effects on some software fault tolerance schemes. Other results are discussed later in the section
on the "Consensus Recovery Block". However, even if coincident errors constitute a large enough fraction of the errors such
that statistical independence cannot be assumed, if we can combine SI and S2 and decide how to select which"tE R to usc,
we may decrease the number of failures relative t.o the input set. Several techniques, discussed in the following sections,
have been proposed as methods of combining systems and selecting results. Anderson [Anderson I 986a] has proposed a
framework which includes these combining and selection techniques. The combining mechanism combines the multiple
software versions. The selecting mechanism selects a result from the combined multiple versions of software. These two
mechanisms comprise a software faultLOlerance scheme.

5.2. N-Version Programming

N-version Programming is a technique originated and advocated by Avizienis, et al. [Chen 1978a, AvizienisI 977a,
Avizienis1985a]. Much research on the technique has been published, start.ing in the mid-1970s. N-version programming is
conceptually similar to N-modular redundancy. a hardware reliability [Avizienis1978a, Siewiorek1982a] technique. The
basic idea is that N versions of a software system, (where N is an odd positive-valued integer) are executed with 7E D. The
decision algorithm used to resolve differences in "t(i)E R is voting; a vote4 determines which ~;)E R is chosen as correct.
The simplest case in achieving agreement is a test for bitwise equality as it is independent of the application. The decision

algorithm relies on independence because the probability that an 7E D is an element of more than N~ I of the N failure sets

F\, 1"2, ... ,FN should decrease exponentially as N increases. N-version programming fails at 7E D such that m(t.N» N~ I ,
N

where m(t.N)= Le(F(i)''t) is as described above. Thus, if failures do not occur independently, predictions of the reliability
;=\

of N-version programming which a~sume independence will be false. The number of coincident errors, (m above), deter-
mines the set oITE D such that N-version programming will fail.

Some practical issues of constructing such systems are being addressed by the DEDIX [Avizienis1985b] system under
construction at UCLA.

5.3. Recovery Block

The Recovery Block method was originated by Homing, Randell, and others [RandeIll975a, Horning1974aj at the
University of Newcastle upon Tyne. Others associated with that research group [Anderson1981a] have discussed recovery
hlocks and produced special-purpose hardware [Lce1980a] to support efficient implementation of the scheme. A compen
dium of this work ha~ been compiled by Shrivastava [Shrivastava1985aj.

The recovery block is a language construct for encapSUlating a program segment which is to be performed reliably.
Semantically, it behaves in a manner similar to block structuring in programming languages, in that a block has both private
variables and aecess to global variables (those declared external to the block). The recovery block scheme defines a method
for ensuring that the changes effected to external variables be done reliably. The scheme is conceptually similar to the
"standby spare" technique used in constructing reliable hardware systems lToy1983a, Hansen1983a]. N alternate methods
of passing an acceptance test (instances) are provided and rank-ordered according to some criterion such as observed perfor
mance. The first such instance is referred to as the primary. Each instance is tested, and the fIrst which passes the accep
tance test provides the result of the recovery block. It is important to note that each instance is guaranteed to execute with
the system in the same state as before the recovery block was entered. In Anderson's framework, mentioned earlier, the
decision algorithm is the acceptance test. Assuming that the acceptance test performs as intended, the Recovery Block
method fails at7E D such that m(j,N»N-I, i.e .• m(t.N)=N. Figure 6 gives an example, which we'll explain in the next sec
tion, of a Recovery Block designed to perfoml a numerical calculation.

4 There nre several ways that the vote could in fact be implementcd. for cxample, a 2-oUl-of-N scheme could be used, where as soon as 2 respondents agree
on a result, the result is delennined to be valid. However, the nile is typically majority vote, as this intuitively provides the greatest protection against ran
dom errors. We will assume majority vote in the remainder of the discussion.

5.3.1. Notation

- 10 -

#define TOLERANCE (l.Oe-S)
#define EQUAL (_a,_b) ««_a)-(_b»/(_b» < TOLERANCE)

double ft_sqrt(x)
double x;
{

double y, newton(), bisection(), fail();

ENSURE EQUAL(y*y, x
BY

y = newton (x);
ELSE BY

Y = bisection(x);
ELSE ERROR

Y = fail();
END

return (y);

Figure 6: Simple Recovery Block example

The goal of the routine is to provide an output which is the square root of the numerical argument. The notation we
have used in the example is that of the RB [Smithl987a) language of Smith and Maguire; the notation for specifying
recovery blocks closely follows Randell [RandeIl1975a).

The ENSURE keyword indicates that what follows is to be used as the acceptance test for this recovery block. In this
case, we have defined a macro EQUAL which defines equality in terms of a relative error measure to make the example
more realistic.

The BY keyword ends the specification of the acceptance test and denotes the beginning of the primary alternate.
ELSE_BY is used to specify further alternates; the ELSE_ERROR keyword specifies arbitrary code to be executed upon
failure of the set of alternates to produce an acceptable answer. The END keyword terminates the recovery block.

Note that the acceptance test is specific to this application; by its nature, this will almost always be the case. Hecht
[Hechtl979a) provides a detailed discussion of the forms such acceptance tests might take. Scott, Gault, and McAllister
[Scottl983a] and Scott, et aI [Scott1984a]. have shown that acceptance test failures can be tolerated within a certain range,
in particular failure rates f, 0.0 ~f ~ 0.25. Scott's thesis [Scott1983b] proposes a synthetic software fault tolerance method.
which is discussed in the next section.

5.4. Consensus Recovery Block

Scott [Scolll983b] observed the following in an analysis of the N-Version Programming and Recovery Block schemes
for software fault tolerance:

I.) Recovery Blocks: The major difficulty with the Recovery Block scheme is the acceptance test; analysis shows that
it is thc most crucial component of the schemc if reliability is (0 be increased over that of the primary alternateS, In
facL. Scott points out that highly reliable primary versions may succumb to imperfect acceptance tests which, for
example. declare a correct result to be incorrect. Thus:

"Using this information, a software manager may conclude that if he can develop a very reliable program
then there is no reason to consider fault-tolerance in the form of a Recovery Block."

(One potential flaw with the analysis is that Scott considered only reliability. If we have a very reliable acceptance

~ TIuce alternates were rank-ordered based on reliability, determined by testing, 'Ibus.lhe primary alternate is also the most reliable. Anolherrank·ordering
based on execution-time perfonnance, or a product of reliability and performance, might have been chosen,

- 11 -

test. and two alternates. one 90 percent reliable and requiring 1 time unit to complete, and the other 99.9 percent reli
able and requiring 10 time units to complete, we can get higher performance by putting the faster alternate first. for an
average performance of 1.9 time units compared to an average performance of 9.99 time units for the other ordering.)

Given the importance of the acceptance test. the following seem to be major flaws:

• There are no guidelines for developing a test.

• There is no methodology for testing.

• The acceptance test. being written in software, is subject to design faults.

• There are no general guidelines for placement and implementation of Recovery Blocks in a software system.

• The acceptance could be expensive to compute.

2.) N-Version Programming: The major difficulty with the N-Version Programming scheme is the voting aspect of the
design.

• Multiple correct outputs may occur.

• Exact equality may be required in cases where multiple versions have computed the same result to varying
degrees of precision. Otherwise special purpose result comparison logic (which may contain faults) is neces
sary.

Given these observations. Scott concluded that a synthesis of the two systems might alleviate some of the problems of the
Recovery Block scheme. This synthesis of the two schemes is called the "Consensus Recovery Block", and works as fol
lows:

1.) N independently developed versions of a specified program are available.

2.) An acceptance test for the results of the program is developed.

3.) A voting procedure exists.

4.) The versions are rank-ordered based on a set of criteria, as in the Recovery Block Scheme.

5.) All versions execute and submit their outputs to the voting procedure.

6.) The first two of the N which agree are considered "correct" under the assumption of independence, and not sub
jected to the acceptance test.

7.) If no agreement (consensus) is reached, the alternates' outputs are examined using the ordering; the first successful
alternate is marked "correct"; if none are successful, failure occurs.

The proposed advantage of the scheme is in avoiding the acceptance test as a decision mechanism in cases where there is
agreement in 2-of-N of the voters; thus a relatively unreliable acceptance test may not have much impact on the Consensus
Recovery Block's output. Note also that like the N-Version Programming Scheme, there is no requirement for state recovery
and the possibility for tmly parallel activity exists.

In both the N-Version Programming scheme he studies, and the Consensus Recovery Block, Scott assumes that 2-of-N
achieves a consensus. He contends that under an independence assumption, the probabilities are such that a majority scheme
provides little incremental value. In any case, it makes the model somewhat easier to understand and analyze. With the
independence assumption, Scott proves tllat the Consensus Recovery Block is more reliable than N-Version Programming or
the Recovery Block scheme in almost all circumstances. and never less reliable.

5.5. Discussion

Much of the analysis of the N-Version Programming scheme and the Recovery Block scheme is provided in the previ
ous section on the "Consensus Recovery Block" method. However. some other issues should be addressed. From the
programmer's point of view, N-Version Progmmming needs no extra logic beyond the program flow itself, unlike the exoal
gorithmic "self-check" embodied in the acceptance test. This reduces the intellectual burden of using the method. and with
this reduction in complexity comes a reduction in software faults.

However, it should be observed that in spite of its conceptual simplicity, a practical implementation ofN-Version Pro
gramming is subject to many of the same implementation problems as a Recovery Block scheme: that is, the support mechan
isms themselves may not be reliable. For example. there is the need for some support mechanism to spawn and collect
results from the N versions. The synchronization mechanism may need timeouls. and the voting mechanism is also subjcct to

- 12 -

design faults, although as support software, there is a strong incentive to apply verification and other techniques to ensure
their correctness.

However. there remain points 1.0 be addressed. In particular, how well do t1le schemes perform in practice? Scott's
experimental data [ScoltI9R3h] provicJe a great deal of insight into the assumptions and behavior of these methodologies.

First, he concludes that the independence assumption is unwarranted6 based on a statistical analysis of many
independently-developed? versions of a program. His analysis of this situation is that independently-developed prol:,'rams
tend to fail on the same problems because the difficult cases remain difficult across versions. Thus, the independence or lack
of it is as much a charact~ristic of the problem space as it is of the solution space.

Second, he concludes that the Recovery Block scheme provides an increase in reliability over the best single-version
programs in each group of 3 programs in his experiment when the reliability of the acceptance test is greater man 0.75. This
was true with varying component reliabilities.

Third, he concludes mat N-Version Programming actually decreases the reliability of the programs in his experiment:
that is, mat me reliability of a 3-Version Programming scheme (3 is bom 2-of-N and majority) is less man mat of me most
reliable version of me 3 used as components. This seems intuitive, as the N-version Programming scheme will fail whenever
the best version is correct and the other two less reliable programs eimer disagree or agree on another output. Scott notes
that the problem of multiple correct outputs particularly plagued the N-version programming scheme.

Finally, the Consensus Recovery Block does not perform as well me Recovery Block schcme, but is more effective
man N-version Programming when me versions are not independent The synthetic memod offers an improvement in relia
bilit)' over me single best program in a group of 3 programs when me acceptance test is sufficiently reliable, e.g., 0.90.

Thus, given me fact that software failures are not independent, it appears mat the Recovery Block scheme provides me
best protection against software faults. While Scott argues mat acceptance tests are me main difficulty of the recovery block
scheme when presenting me Consensus Recovery Block, he later states (when describing me construction of his experiments
and me acceptance test for them):

" ... It was determined that such a simplistic acceptance test could be programmed wimout error ... "

6. Conclusions

We have focused our attention on general methods for software fault tolerance. Cerulin problems allow problem
specific fault-tolerance strategies to be used, e.g., where some redundant information such as an "invariant" is part of me
problem definition. Lerner [LernerI988a] has examined these techniques, and finds them promising, especially in massively
parallel architectures. The more general algorimms, such as the ones we have discussed here, must function without regard
to me problem characteristics. In this sense, N-Version Programming is me most general technique, since the writing of the
Recovery Block's "acceptance test" requires some problem-specific redundancy, like me methods Lerner discusses.

Experimental data gathered to date indicates mat the Recovery Block memod is most effective, but the evidence is not
sufficient to scientifically conclude its superiority. This is true for two reasons. First, as we mentioned in me body of me
survey, me measurement of software reliability is immature. This is most in evidence when we try to estimate the reliability
of a piece of software assuming some metric. Thus, it is hard to rigorously compare, and mus rank and improve, software
reliability techniques.

Second, mere has been insufficient experimental work done and reported. Existing experimental work can be divided
into two t)'pes. These are time-domain and data-domain testing. Time-domain testing is typically used in very large
software systems, where the concern is of the nature' 'when is it going to break next?". The management of the develop
ment process requires logging of failures, meir times and natures. This seems most appropriate for t1le domains in which it
hac; been applied, e.g. ABM software [Musa1987a]. Data-domain testing uses a priori knowledge of t1le input set to deter
mine where the progmms fail, and why. This seems most appropriate for the multiple-version software approach. Experi
ments such as those by Knight and Leveson, et al. should be performed on a greater variety of programs Ulan the
commonly-used missile-tracking example.

Unfortunately, these experiments are both expensive (as they require many copies of a software system to be written)

• And thus concurring with the Knight and Levcson results citcd earlier.
7 It is possible to critici/.e slIch lin experiment on the basis of the programmers being studcnts in the same class, with the same training. Then again, academ
ic environments place constraints on sharin[l of infonnalion not posed by the real world, c.g., accusations of plagiarism.

-13-

and difficult, as they involve humans, so that the control must be done carefully in order to maintain the validity of the con
clusions. The expense of multiple versions often means that classroom situations are used to gather experimental data.
These data may not be represcntative of thc program characteristics in situations where high-reliability software systems arc
needed. The cconomics of these experimenL~ usually preclude much industrial participation, yet industrial (particularly
defense industry) settings providc the most obvious applications of this technology.

As we set Softwarc Fault Tolerance into the context of producing reliable systems, we also sec that the production of
reliable software can consist of several interrelated phases (see Figure 3). We have argued, in defense of software fault toler
ance, that "Fault Avoidancc" in the "Procurement" phase has not been entirely successful. Yel, there is the system design
question of where to spend time, money, and labor to yield a reliable product.

The consensus, an engineering principle almost, is that the time should be spent in the design phase. An example can
be drawn from automotive engineering. Cars are fairly complex systems, and thus in a sense are like our computer systems.
An automobile is a particularly well-chosen example in that while people rarely duplicate components such as complete
automobiles (can you imagine towing a spare car!), fault-tolerance techniques are applied where reliability is important. For
example. the brakes of my current automobile are a dual hydraulic system. Each of the hydraulic systems controls three
wheels; thus I am capable of braking even if one fails. Thus, engineering talent was spent on the design phase, and the
design includes fault-tolerance.

In addition, we should note that while design effort is certainly spent on making brake systems reliable, there are few,
if any, automobiles sold without an emergency brake!

7. Acknowledgments

Gerald Q. Maguire, Jr. participated in all phases of the writing of this survey, from suggesting material to critical
review. Discussions with Yechiam Yemini and Calton Pu were helpful in deciding what material had relevance. Discus
sions with Nancy Levcson and Rob Strom led to a much better understanding of Software Fault Tolerance, its relevance, and
its relation to other approaches in constmcting reliable software. Steve Feiner's insightful reading and comments improved
the paper.

This work was supported in part by equipment grants from AT&T and the Hewlet.t-Packard Corporation, and in part by
NSF grant CDR-84-21402.

8. References

Proceedings of the 16th Annuallnternalional Symposium on Fault-Tolerant Computing (FTCS-16), Vienna, Austria
(July 1986), pp. 165-170.

[Knightl986b] J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the Assumption of Independence in Mul
tivcrsion Programming," IEEE Transactions on Software Engineering SE-12(1), pp. 96-109 (January 1986).

[KoenigI986a] Andrew Koenig, "C Traps and Pitfalls," Computing Science Technical RepOlt No. 123 (July 1, 1986).
AT&T Bell Laboratories

[LaprieI985a] Jean-Claude Laprie. "Dependable Computing and Fault Tolerance: Concepts and Terminology," in Fifteenth
Annual International Symposium on Fault-Tolerant Computing, Ann Arbor, MI (June 1985), pp. 2-11.

[LeeI980a] P.A. Lee, N. Ghani, and K. Heron, "A Recovery Cache for the PDP-II," IEEE Transactions on Computers C-
29(6), pp. 546-549 (June 1980).

[Lee1982a1 P.A. Lee and D.E. Morgan, "Fundamental Concepts of Fault Tolerant Computing, Progress Report," in
Proceedings, 12th International Symposium on Fault-Tolerant Computing, Los Angeles, CA. (June 1982), pp. 34-38.

[Lernerl988a] Mark D. Lerner, "Fault Tolerance on Massively Parallel Processors," Technical Report #CUCS-370-88,
Columbia University Computer Science Department (1988).

[LevesonI986a] Nancy G. Leveson, "Software Safety: What, Why, and How," ACM Computing Surveys 18(2), pp. 125-
163 (June, 1986).

[LittlewooclI979a] B. Littlewood, "How to Measure Software Reliability and How Not To," IEEE Transactions on Relia
hility, pp. 103-110 (June 1979).

[Littlcwood1979bl B. Littlewood, "Software Reliability Model for Modular Program Structure," IEEE Transactions on
Reliability (August 1979).

[Melliar-SmithI979a] P.M. Melliar-Smith, "System Specification," in Computing Systems Reliability, ed. B. Randell, Cam
bridge University Press (1979), pp. 19-65.

[Morgan I 982a] David E. Morgan, "Report of Subcommittee on Models, Fundamental Concepts, and Terminology," in
Proceedings, 12th International Symposium on Fault-Tolerant Computing, Los Angeles, CA. (June 1982), pp. 3-5.

[Musa I 975a] John D. Musa, "A theory of software reliability ancl its application," IEEE Transactions on Software
Engineering SE-l, pp. 312-327 (September 1975).

[Musal979aj John D. Musa, "Validity of Execution-Time Theory of Software Reliability," IEEE Transactions on Reliabil
ity (August 1979).

[Musal987aJ John D. Musa, Anthony lannino, and Kazuhira Okumoto, Software Reliability: Measurement, Prediction,
Application. McGraw-Hili (1987).

[Neumann I 956a1 John von Neumann, "Probabilistic logics and the synthesis of reliable organisms from unreliable com
ponents," in Automata Studies, cd. J. McCarthy, Princeton University Press (1956), pp. 43-98.

[Parnas(null)al D. L. Pamas, "On the Criteria to be used in Decomposing Systems into Modules," Communications of the
ACM 15(12).

[Pratherl983aj R.E. Prather, "Theory of Program Testing - An Overview," The Bell System Technical Journal 62(10, part
2), pp. 3073-3105 (December 1983).

[RamamoorthyI982a] C. V. Ramamoorthy and Farokh B. Bastani, "Software Reliability - Status and Perspectives," IEEE
Transactions on Software Engineering SE-8(4), pp. 354-371 (July 1982).

[RandeJll975a] B. Randell, "System structure for software fault tolerance," IEEE Transactions on Software Engineering
SE-1, pp. 220-232 (June 1975).

[RobbinsI975a] Herbert Robbins and John Van Ryzin, Introduction to Statistics, SRA (1975).

[Scott1983aj R. Keith Scott, James W. Gault, and David F. McAllister, "Modeling Fault-Tolerant Software Reliability," in
Proceedings,lEEE 1983 Symposium on Reliability in Distributed Software and Database Systems (1983), pp. 15-27.

[ScottI983b] Roderick Keith Scott, "Data Domain Modeling of Fault-Tolerant Software Reliability," Ph.D. Thesis, North
Carolina State University at Raleigh (1983).

[ScottI984a] R. Keith Scott, James W. Gault, David F. McAllister, and Jeffrey Wiggs, "Experimental Validation of Six
Fault-Tolerant Software Reliability Models," in Proceedings of tlte 14th Annual International Symposium on Fault
Tolerant Computing (1984).

[Anderson 1981a] T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice. Prentice-Hall International (1981).

[Anderson 1982a] T. Anderson and P.A. Lee, "Fault Tolerance Terminology Proposals." in Proceedings. 12th International
Symposium on Fault-Tolerant Computing, Los Angeles. CA. (June 1982), pp. 29-33.

[AndersonI986a] T. Anderson, "A structured decision mechanism for Diverse Software," in Proceedings. IEEE 1986 Sym
posium on Reliability in Distributed Software and Database Systems. (1986), pp. 125-129.

[Avizienis I 977a] A. Avizienis and L. Chen, "On the implementation of N-version programming for software fault tolerance
during execution," in Proceedings. COMPSAC 77. 1stIEEE-CS International Computer Software and Applications
Conference, Chicago, IL (November 8-11 1977). pp. 149-155.

[Avizienisl978a] A. Avizienis, "Fault tolerance: The survival attribute of digital systems," Proceedings of the IEEE 66,
pp. 1109-1125 (October 1978).

[Avizienisl984a] A. Avizienis and John P.J. Kelly. "Fault Tolerance by Design Diversity: Concepts and Experiments,"
IEEE Compllter. pp. 67-80 (August 1984).

[Avizienisl985a] A. Avizienis, "The N-Version Approach to Fault-Tolerant Software," IEEE Transactions on Software
Engineering, pp. 1491-1501 (December 1985).

[Avizienisl985b] A. Avizienis, P. Gunningberg, 1. P. J. Kelly, L. Strigini, P. J. Traverse, K. S. Tso, and U. Voges, "The
UCLA DEDI X system: a Distributed Testbed for Multiple-Version Software," in Digest of FTCS-15 , the 15th Interna
tional Symposium on Fault-Tolerant Computing, Ann Arbor, Michigan (June 1985), pp. 126-134.

[Brooksl975a] F. P. Brooks, Jr., The Mythical Man-Month. Addison-Wesley, Reading, Mass. (1975).

[Chenl978al L. Chen and A. Avizienis, "N-version programming: A fault tolerance approach to reliability of software
operation," in Digest. 8th Annual International Conference on Fault-Tolerant Computing, Toulouse, France (June
21-23 1978), pp. 3-9.

[DahI1972a] O.-J. Dahl, C.A.R. Hoare, and E.W. Dijkstra. Structured Programming, Academic Press, New York (1972).

I Dijkstra I 972a) E.W. Dijkstra, "NOles on Structured Programming." in Structured Programming, Academic Press. New
York (1972).

[DijkstraI976al E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J. (1976).

[Eckhardt 1985a] Dave E. Eckhardt, Jr. and Larry D. Lee, "A Theoretical Basis for the Analysis of Multiversion Software
Subject to Coincident Errors," IEEE Transactions on Software Engineering SI<:-11(12), pp. 1511-1517 (December
1985).

[Feynmanl963a] Richard P. Feynman, Robert B. Leighton, and Mattht Sands, The Feynman Lectures on Physics.
Addison-Wesley, Reading, MA (1963).

rFloyd 1967a] R.W. Floyd, "Assigning meanings to programs," in proctdings. American Math. Society Symposium in
Applied Mathematics (1967), pp. 19-31.

[Gerhart1976a] Susan L. Gerhart and Lawrence Yelowitz, "Observations Fallibility in Applications of Modem Program-
ming Methodologies," IEEE Transactions on Software Engineering (eptembcr 1976).

[Goe11979al A.L. Goel and K. Okumoto, "A Lime dependent error detection rate model for software reliability and other
performance measures," IEEE Transactions on Reliability, pp. 206-211 (August 1979).

[Hansen1983a] R.C. Hansen, R.W. Peterson, and N.O. Whittington, "Fault Detection and Recovery," Bell System Techni
cal lournaI62(l), pp. 349-366 (January 1983).

[Hechtl979al H. Hecht, "Fault-Tolerant Software," IEEE Transactions on Reliability, pp. 227-232 (August 1979).

[Hoare 1 969a] C.A.R. Hoare, "An axiomatic basis for computer programming," Communications of the ACM 12. pp. 576-
580,583 (October 1969).

IHorning1974al 1.1. Homing, H.C. Lauer, P.M. Melliar-Smith, and B. Randell, "A program structure for error detection and
recovery.," in Proceedings, Conference on Operating Systems: Theoretical and Practical Aspects (April 1974),
pp.I77-193.

[Knightl985a] John C. Knight, Nancy G. Leveson, and Lois D. Sl. Jean, "A Large Scale Experiment in N-Version Pro
gramming," in Proceedings of the 15th Annual International Symposiwn on Fault-Tolerant Computing (FTCS-15),
IEEE (1985), pp. 135-139.

[Knightl986a] J .C. Knight and N.G. Leveson, .. An Empirical study of failure probabilities in multi-version software.," in

jShrivastaval985a] Santosh K. Shrivastava, Reliable Computing Systems, Springer-Verlag (1985).

[Siewiorck1982a] Daniel P. Siewiorek and Robert S. Swarz, The Theory and Practice of Reliable System Design, Digital
Press (1982).

[Smith 1987a] Jonathan M. Smith and Gerald Q. Maguire,Jr., "RB: Programmer Specification of Redundancy," Technical
Report CUCS-269-87, Columbia University Computer Science Department (1987).

[Strom 1 983a] R. E. Strom and S. Yemini, "NIL: An Integrated Language and System [or Distributed Programming," ACM
SIGPLAN Notices. pp. 73-82 (June 1983).

[Toy1983a] W.N. Toy and L.E. Gallaher, "Overview and Architecture of the 3B20D Processor," Bell System Technical
Journal 62(1), pp. 181-190 (January 1983).

