
Performance Analysis and Improvement in UNIX File System Tree
Traversal.

Jonathan M. Smith

Computer Science Department
Columbia University

New York, New York 10027
and

Bell Communications Researcht
3 Corporate Place

Piscataway, New Jersey 08854

Technical Report CUCS-323-88

ABSTRACT

A utility program has been developed to aid UNIX system administrators in obtaining
information about mounted file systems. The program gathers the information by a traversal of
the accessible nodes in the file hierarchy; without kernel-recorded path names, this is the only
way to dynamically determine mount-point names.

The program has had three significant versions, the second and third of which were driven
by performance requirements rather than functional requirements. The original version showed
a factor of 7 improvement over the performance of a naive tree traversal. The second iteration
showed a factor of 10 improvement over the previous version by using extra information about
the structure of the file system tree to prune unnecessary branches from the traversal. The third
iteration showed another factor of 3 improvement by changing the search strategy. The perfor
mance improvements depend on an analysis described in this report.

Since the program's main task is traversal of a UNIX file system tree, our experience can
be generalized to other such searches.

Performance Analysis and Improvement in UNIX File System Tree
Traversal.

1. Introduction

Jonathan M. Smith

Computer Science Department
Columbia University

New York, New York 10027
and

Bell Communications Researcht
3 Corporate Place

Piscataway, New Jersey 08854

Technical Report CUCS-323-88

The UNIX® kernel [8, 9] does not store the path name passed to system calls. In the instance of open(), this prevents
one from easily duplicating the functionality of a useful MULTICS[6] call such as hcs _$Is _get yath _ name(), which
returned the segment name of the segment descriptor argument. In the instance of chdirO, a rough equivalence of
inverting the name to descriptor conversion is achieved by /binJpwd. In the instance of mount(), an attempt to
remedy the lack of pathnames is made by maintaining a filet containing a mapping between mount point names and
device names. This is used by administrative commands such as mount(1) and dJ(1).

In general, the path name inversion process is impossible without kernel changes[l] such as storing path
names or allowing a directory change to be accomplished with <device,i-nwnber> arguments rather than a name2

•

We have discovered that restoring the information in the file associated with the mounted file systems is tractable;
this discovery was driven by occasional, but not infrequent, obliteration or corruption of this information. This
report describes a set of three algorithms in historical order and the performance analysis which drove development
after the first version. The average improvements3 of the second version over the frrst, as measured by timex(1).
were: real time. 10.5 times faster; user time, 14.3 times faster; and system time, 5.2 times fa<;ter. The average
improvements for the third version over those of the second version were: real time, 3.7 times faster; user time, 3.7
times faster; and system time, 3.1 times faster.

Thus. on average, a user can expect to see a 40-fold improvement in execution time over the original algo
rithm.

1.1. Related Work

McKusick, et al. [5] and Ousterhout, et al. [7] have measured performance by the method we present, that of
profiling and using the profile to aid an analysis of the system events. Those studies both focus on the operating
system. with McKusick's analysis being iterated for further performance improvements. For disk performance,
Johnson, Smith, and Wilson[3] provide trace-gathered measurements of driver activity. but no performance
improvements based on their measurements were reported. The most closely related work is that of Collyer and

t Jonathan M. Smith is a Ph.D. candidate at Columbia University, on educational leave of absence from Bell Communications
Research, Inc. (Bcllcore), wherc some development and all testing was done.
® UNIX is a registered trademark of AT&T.
1.) fetcfmnttab on System V.
2.) This was done by Bellcore Lab 25832 as a method of detecting directory "snooping"; the algoritllnl took a process identifier, found
that process's working directory, changed to it with the <device,i-number> call, and executed Ibinfpwd.
3.) 'These figures were obtained by summing the ratios of improvement for each system, as presented in Figures 7 and 10, and then di
viding by the number of systems.

- 2 -

Spencer[2] , who improved the performance of a commonly used news management utility by a factor of 19. We
use a similar methodology on our system administration utility, that of applying prof(l) to drive a performance
analysis. Our performance increases were achieved in two major jumps rather than in many small steps, as the
increases were achieved through a change of method rather than changes in the implementation of an existing
method; many of Collyer and Spencer's optimizations had been performed on our initial program version. We share
the same basic views on performance improvement care about performance and understand the problem. Our
results for this program can be used in other hierarchical file system searches, such as finding the machines in a net
work file system tree.

2. Initial Solution

2.1. The Problem

The essence of the problem is that the path names associated with the mount points are not stored by the ker
nel, and thus they are neither protected from writing nor accessible using a system call. As any fIle, the file contain
ing the mount point names can be written to by processes with uid==O. This can happen by accident or by an errant
program; while infrequent on any given system, if many systems are managed it can happen often. There are
several possible solutions to the problem of a corrupt or obliterated file. These are:

• Maintain copies of the file in case one becomes damaged. This would require kernel support since pro
grams cannot be forced to adhere to the backup-maintenance property without it.

• Maintain mount-point names in the kernel for recovery purposes. Since the path names are not long (the
total storage required for null-terminated path name strings on one large system with 38 mount points is
225 characters, less than a system buffer) they could easily be stored by the kernel.

• Restoring the file from other alternate sources of infornlation. For example, the set of commands invoked
on system startup could be examined to see which fIle systems are mounted, but this does not account for
activity after startup. Another possibility is the use of some utility to examine the kernel-maintained mount
table. This is difficult, and the file system names obtained from the superblock may be misleading, particu
larly if a backup copy of some mounted fIle system is mounted.

The first two are unacceptable, as they require kernel modifications. We've found that the number of kernel
changes necessary for each new release becomes unmanageable, and we always miss one. Without such changes,
the first two methods are not robust. Setmnt(1 m) can be used to write a new copy of the file if we can gather the
information for the third approach using some method other than those suggested.

2.2. Getmntl as a solution

A UNIX system call, stat(2), returns, among other data, the device a file name argument resides on. Since the
device on which a file is mounted changes for fIles beneath a mount point\ we can determine mount points by doing
a tree traversal. The block special files also contain a device datum in their inode entries, so that we can create a
mapping between names and block devices (this is unfortunately not I-to-l: "swap" is typically the same as some
other block device).

Using these facts, a program called getmntJ was written. The program builds a table of block special file
names, subject to certain naming constraints, indexed by the device id. It then recursively descends the directory
tree starting from the root. Whenever the device id of a file differs from that of its "parent", we output the mount
point name and the associated block special file name. The algorithm is tersely described in Figure 1.

The first draft was abominally slo~; the following optimizations were applied to yield acceptable perfor
mance:

4.) Directory entries can also be scanned for i-number == 2; sec Thompson.[9]
5.) Consider the roughly equivalent "f ind I -depth"; this required 5527.92 seconds of real time, 15.91 seconds of user time, and
266.46 seconds of system time as measured by timex on system S16 (names have been changed to protect the innocent), described
further el sewhere.

get_mount~oints(dir)

while (dir not empty
(

get next element;

- 3 -

if(dev(dir) != dev(element)
mount~oint(dir);

if(is_dir(element))
get_mount~oints(element);

Figure 1: Getmntl Algorithm

1.) Relative path names and chdir() were used to effect caching of namei() results. As pointed out by
McKusick, et al. [5] the namei() procedure used by stat() and chdir() is very expensive.

2.) Read() calls on directories were buffered in a 512 byte buffer.

3.) The depth of the traversal was bounded, e.g., to four directories deep.

This version served from late 1983 until the summer of 1987.

3. Performance: Problems, Analysis, Improvement

Unfortunately, even with optimizations, getmntl' s approach requires a significant amount of time. It's unfor
tunate because the traversal is the only correct way to obtain the needed path name data. However, as our labora
tory has acquired larger and larger processors, the attached disk resources have grown as well. For example, system
S16, a DEC™ 8650 processor, has 38 file systems mounted on 12 RA81 drives, comprising 5.4 gigabytes of disk
storage. As there is more work, it takes more time; getmntl took tens of minutes of real time to run on this and
similarly configured systems. Since the command is used frequently as an administrative tool and as a part of other
administration packages, this wac; unacceptable. An analysis was begun to see what performance improvements
could be made; this began with a profiled version of the code, which yielded the results shown in Figure 2 when run
on S16.

%Time Seconds Cumsecs #Calls msec/call Name
47.4 26.02 26.02 29626 0.8782 stat
14.4 7.92 33.93 19460 0.4068 read
13.6 7.45 41. 38 16108 0.4625 chdir

7.0 3.83 45.22 8054 0.476 _open
5.1 2.82 48.03 117807 0.0239 _get_mnt~ts

3.3 1. 82 49.85 236012 0.0077 strcat
2.4 1. 32 51.17 117806 0.0112 - strncpy
1.8 1. 00 52.17 8055 0.124 close
1.6 0.90 53.07 118223 0.0076 _strcpy
1.3 0.70 53.77 117806 0.0059 - strcmp

Figure 2: Top 10 lines ofproflle for getrnntl

This data was informative: as discussed above, the code was optimized to reduce the cost of system calls so that the
problem clearly lay with the number being issued. It was not obvious that this number could be reduced6

• Some
small changes were made to the program, which resulted in equally small increases in performance. These were:

1.) Directories had been read in 512 bytes at a time (this wac; an old block size) and the program logic had

• DEC, Digital, RA8l, and V AX are trademarks of Digital Equipment Corporation.
6.) Slal() system calls issued in the course of a file tree walk are used to gather information, e.g., directory status and device number.
Chdir() is used in tree traversal. The open(). read(). and c1ose() system calls are used to gather information from directories.

- 4 -

used Iseek() to skip past the "." and " .. " entries in a directory before reading began, thus rnisaligning the
blocks read with respect to the blocks on disk. The directory reads were parameterized to reflect the
file system block size, thus achieving a halving of the number of readO calls issued. "." and " .. " were
read in and explicitly skipped over rather than using IseekO.

2.) The program read information from Idev and its subdirectories one directory at a time. This was
changed so that the logic described in the previous item was used. The hashing scheme used in device
name lookup was briefly examined at this point; experiments showed that it provides randomly distri
buted short lists of items to search, as it should.

3.) GetJnntytsO, the file tree walking routine, and the source of most string manipulation calls, checked
whether it had exceeded the depth limit specified. This was changed so that the routine is never called
when the depth limit would be exceeded. This exemplifies a rule for trees which broaden rapidly: when
you can, examine from the top.

These changes gave improvements of a few percent, not the necessary order of magnitude. The remainder of
this section describes a method for achieving performance improvements of (possibly) several orders of magnitude;
one system has shown an almost 40 to 1 speedup.

The major improvement was due to derived data about characteristics of the fIle tree which can speed our
traversal. The extra information only improves performance; in the worst case the performance reverts to that of the
old algorithm. However, as is shown in the execution profile of Figure 3, taken from system S16, the performance
improves significantly in some cases. In particular, we have reduced the number of expensive system calls.

%Time Seconds Cumsecs #Calls msec/call Name
81.3 7.70 7.70 8100 0.951 stat

4.0 0.38 8.08 556 0.69 chdir
3.2 0.30 8.38 6749
2.8 0.27 8.65 751
1.6 0.15 8.80 7169
1.4 0.13 8.93 8532
1.2 0.12 9.05 280
1.1 0.10 9.15
0.9 0.08 9.23 6750
0.9 0.08 9.32 6748

Figure 3: Top 10 lines of profile for 2nd getmnt

3.1. Leaf Pruning

0.044
0.36
0.021
0.016
0.42

0.012
0.012

_get_mntyts
read

_strcpy
match

_open
mcount
_strcmp
_strncpy

The system calls are used as part of a search process; if we can make the search more efficient, the number of
system calls can be reduced. One way of making a search more efficient is to generate a better criterion for stop
ping the search; this prevents searching nodes that are irrelevant.

We can use information about the structure of the tree of mounted file systems to give us a better stopping cri
terion. An example file tree structure is shown in Figure 4; mount points are marked with a parenthesized number.
Getmntl would have traversed the illustrated tree to depth four.

The extra information is obtained in the following manner:

1.) The system mount table structure is read in from ldevlkmem. A flag associated with each block device
is initially marked UNREFERENCED.

2.) The system mount table is examined, as well as the inode table entry of the mounted-on me system for
each entry. This allows us to create a table of <file system device #, mounted-on file system device It>
pairs. For example, letting the parenthesized numbers in Figure 4 be device numbers, we get the table
of Figure 5.

3.) The flag of any devices in the right-hand column of the table is marked INTERNAL. Devices present
in the left-hand column but not in the right-hand column are marked LEAF. We have thus partitioned

- 5 -

Figure 4: Sample File Tree

dev mtd on

0 0
10 0
23 0
12 10
31 10
33 0

Figure 5: Table of <F.S. dev #, mounted-on F.S. dev #> pairs

the block-special devices into three sets based on the information from the mount table: UNREFER
ENCED, LEAF, and INTERNAL. Thus, a membership test is sufficient to determine the type of a
given file system.

This information can be used to optimize the tree traversal. If we are looking for mount points, we can stop a
tree traversal as soon as the file system we are in is a leaf node; no other mount points will be found beneath this
point in the tree. For example, referring again to Figure 4, we can avoid the search beneath luI, lusrlsrc,
lusrlspoollnews. and 1u2 because they are leaf nodes. This is in contrast to getmntI, which will search directories
such as 1u2lsmith and lulljms. The algorithm is described tersely in Figure 6.

The technique of Figure 6 is particularly effective where many leaf file systems are mounted at or near the
root of the tree structure, as the algorithm discovers them almost immediately, and has no further search to perform.
While the effectiveness of the technique is determined to a great degree by the shape of the tree, it appears remark
ably effective in practice. Figure 7 presents the results7 of comparing the performance of the 1st algorithm with the

7.) Results were gathered by a broadcast remote command execution which executed the two commands simultaneously and mailed
their timing statistics to a specified location. While this may introduce perfomlance anifacts, e.g., directories being available in sys
tem buffers, system load is removed as a variable. llle presentation of the data as perfornUlnce ratios should eliminate or reduce the
effect of such artifacts. The execution was done in mid-afternoon, when the systems have a "normal" load.

get_mount-points(dir)

while (dir not empty
(

get next element;

- 6 -

if(dev(dir) != dev(element)
mount-point(element);

if(is_dir(element) && !leaf(dev(element»
get_mount-points(element);

Figure 6: Getmnt2 Algorithm

2nd one in a tabular form.

4. An Altered Search Strategy

In early 1988, breadth-fust search was attempted; the algorithm is shown in Figure 8.

The change in search strategy was made in an attempt to reduce the number of stat() calls stiIJ further. It was quite
successful, as profile results8 in Figure 9 show.

This reduction in the number of calls (note that open() and chdir() have disappeared and that read() has become a
minor cost; also note that while they are reduced in number, each stat() call has become about 50 percent more
costly) should translate into a performance improvement; the table9 in Figure 10 shows that while the magnitude of
the improvement is not uniform (breadth-first search is affected by the tree shape as well) the performance always
improves, and improves significantly on average.

To see why the performance increases, consider the tree in Figure 4, and imagine that lusrlspoollnews is not a
mount point and that a directory font with many subdirectories is found previous to src in lusr. Since lusr is not a
leaf (src remains to be found), the font directory must be searched to the depth bound, at a potentially large cost.
Breadth-first search will postpone such "deep dives" until they are necessary for correctness.

There are other performance improvements in play here, although their effect is not dramatic. Some of the
more interesting were:

1.) Path bunching; in an attempt to reduce the cost of chdir() calls, we traded the number of calls against a
slightly increa~ed complexity for each call. The idea is quite simple; the canonical directory search,
shown in Figure 11, can be accomplished as shown in Figure 12.

Note that we've made five calls to chdir() do the work of eight. A routine cheap _cd(from, to)
attempts to optimize directory changes.

2.) Directories are read in with a single system call. A set of routines designed to emulate the 4.2BSD [4]
directory access routines was written; the entire directory is read into an allocated buffer, and subse
quent calls for directory entries are satisfied from this buffer. While space utilization might be a prob
lem where a directory structure allocation routine is called by components in a recursive search, the
strategy employed in getmnt3 completes its examination of a given directory before beginning another;
hence the space allocated to directory buffers is proportional to the single largest directory examined.

3.) The information gathered about the kernel table of mounted file systems was expanded to a complete
tree rather than derived set membership data: this has the advantage that we can note changes in the tree

8.) /dev was removed from the search, as it is tJaversed when device names, e.g.,ltievldsJcJl1sfJ, are being mapped to device numbers,
and in addition it is an unlikely place for file systems to be mounted. This accounted for about 600 stat() calls.
9.) 'i1le information was gathered as in the previous table. The systems available for measurement have changed over time; as can be

discerned from the table components and the observed times for gelfMl2.

- 7 -

System getmntl getmnt2 getmnt lIgetmnt2
name real user sys real user sys real user sys
SI 295.23 12.76 66.86 40.03 1.48 15.10 7.38 8.62 4.43
S2 191.73 10.88 49.86 86.48 1.03 14.58 2.22 10.56 3.42
S3 1284.78 10.21 68.83 32.80 0.31 6.31 39.17 32.94 10.91
S4 580.01 12.70 85.41 27.83 0.81 10.86 20.84 15.68 7.86
S5 200.78 6.85 32.23 21.48 0.70 8.60 9.35 9.79 3.75
S6 564.96 16.48 90.71 18.18 0.53 9.40 31.08 31.09 9.65
S7 467.20 15.48 66.18 31.13 0.65 9.68 15.01 23.82 6.84
S8 424.08 12.01 65.78 21.01 0.71 10.10 20.18 16.92 6.51
S9 407.78 10.25 55.61 50.61 0.86 8.83 8.06 11.92 6.30
S10 337.50 12.46 66.31 68.20 0.76 10.95 4.95 16.39 6.06
Sl1 435.81 12.83 59.96 29.33 0.53 8.78 14.86 24.21 6.83
S12 272.63 9.10 53.35 25.85 0.88 8.85 10.55 10.34 6.03
S13 288.00 14.60 66.95 33.21 1.28 15.70 8.67 11.41 4.26
S14 548.25 15.83 90.10 24.00 0.71 10.56 22.84 22.30 8.53
S15 194.33 13.46 69.43 25.15 1.08 13.98 7.73 12.46 4.97
S16 764.03 7.76 43.76 106.06 0.68 8.06 7.20 11.41 5.43
S17 272.75 5.41 18.20 15.78 0.21 3.41 17.28 25.76 5.34
S18 244.50 9.71 44.43 27.83 0.68 8.85 8.79 14.28 5.02
S19 59.71 3.56 17.60 15.20 0.70 8.55 3.93 5.09 2.06
S20 369.45 6.00 74.53 27.70 0.70 7.63 13.34 8.57 9.77
S21 338.31 7.75 43.15 173.21 1.98 22.96 1.95 3.91 1.88
S22 318.31 9.43 66.98 32.58 0.91 12.05 9.77]0.36 5.56
S23 156.10 4.15 22.68 25.78 0.61 8.93 6.06 6.80 2.54
S24 233.98 8.08 46.20 18.70 0.58 9.06 12.51 13.93 5.10
S25 141.81 8.40 45.81 25.80 0.85 11.76 5.50 9.88 3.90
S26 250.83 10.26 48.80 20.13 0.71 8.06 12.46 14.45 6.05
S27 664.38 18.33 127.05 36.11 0.71 11.33 18.40 25.82 11.21
528 83.80 5.90 27.15 18.]] 0.86 11.30 4.63 6.86 2.40
S29 131.45 6.76 31.90 19.35 0.60 9.26 6.79 11.27 3.44
S30 353.08 11.61 52.28 67.35 0.83 9.00 5.24 13.99 5.8]
S31 172.35 11.95 59.18 49.61 2.21 31.56 3.47 5.41 1.88
S32 297.26 9.73 48.33 46.70 1.65 23.93 6.37 5.90 2.02
S33 186.41 7.35 47.03 40.53 1.76 24.68 4.60 4.18 1.91
S34 231.95 10.60 54.83 40.58 1.80 24.11 5.72 5.89 2.27
535 322.06 15.76 94.00 60.86 2.]5 35.26 5.29 7.33 2.67
S36 129.38 9.13 44.80 39.26 1.63 26.13 3.30 5.60 1.71
S37 499.51 11.81 68.58 57.16 0.91 12.70 8.74 12.98 5.40
S38 191.56 7.91 36.65 48.83 0.63 11.85 3.92 12.56 3.09
539 269.80 7.35 45.51 137.60 1.95 26.55 1.96 3.77 1.71
S40 336.33 15.13 63.23 22.41 0.78 9.21 15.01 19.40 6.87

Figure 7: Timex(l) derived performance data, 1st vs. 2nd (All times in seconds)

structure as we detect and remove leaves; in particular termination of the search is detected by the root
node's transition to a leaf (when all its children, and their children, and so on, have been detected).

However, the major gain was effected by the change in search strategy.

4.1. At what cost?

The major cost of the changes is clearly in code complexity. Breadth-first search had seemed unnatural at
first, and we feared overuse of memorylO, but this was not a problem. The code complexity increased from getmntl

10.) In fact, we suspect that the memory utilization of gelmnl3 is comparable to that of gelmnl2. On SI6, a size(J) of gelnl1ll2 shows
13812+1624+2780=18216 and gelmnl3 shows 15292+3748+2768=21808. Utili7.3tion of dynamic memory, measured by

- 8 -

List := "I";

while (not(all mount points found))
{

get next directory, dir, from List;
while (dir not empty)
{

get next element for which is_dir(element)

if(dev(dir) != dev(element)
mount-point(element)i

if(leaf(dev(element)))
continue;

append element to List;

Figure 8: Getmnt3 Algorithm

%Time Seconds Cumsecs #Calls mseclcall Name
88.1 2.60 2.60 1767 1. 471 stat
3.4 0.10 2.70 7680 0.013 match
1.7 0.05 2.75 1623 0.031 malloc
1.7 0.05 2.80 1 50. do devs
1.1 0.03 2.83 mcount
1.1 0.03 2.87 39 0.9 write
0.6 0.02 2.88 236 0.07 _append_List
0.6 0.02 2.90 129 0.13 read
0.6 0.02 2.92 560 0.03 insert
0.6 0.02 2.93 77 0.2 _doprnt
0.6 0.02 2.95 114 0.15 lseek

Figure 9: Top 10 lines of profile for getmnt3

TRUE;

to getmnt2 mainly as a result of the examination of kernel memory; the amount of source code for /hinlps is
representative of the program complexity necessary when examining the kernel.

As welI as making the code harder to understand, the knowledge of so many system details is an impediment
to portability. The increase in source lines, including comments, was on the order of 80 percent (from 445 to 818)
from getmntl to getmnt2; getmnt3 showed a 60 percent (from 818 to 1317) increase. Since, as a result of the
changes, the code is less portable, more effort will be required to maintain it for each new architecture or UNIX
release. In any case, we have archived copies of the previous versions so that the design history can be followed by
maintainers, and we can backtrack from iII-advised designs.

5. Summary

We are particularly pleased with the performance increase shown on our home system, S16 (an aggregate
improvement factor of n!). The general problem of inverting a name to i-number (or descriptor) mapping is hard
without extra kernel support. We have looked at a specific subset of this problem which is tractable due to the prob
lem characteristics. In particular, we know that the items of interest are near the top of the me hierarchy. This

comparing the value of sbrk(O) at the start of execution to il~ value at the end of execution shows that gelm1ll2 uses 23552 bytes while
gelmnJ3 uses 38912 bytes. It is somewhat tricky to compare stack segment utiliUltion, but the deeper recursion involved in gelmnJ2's

algorithm suggests that more of the segment is used. Of course, gelmnJ3' s utilization will climb dramatically with greater depth, as
more infonnation about ancestors must be stored.

- 9 -

System getmnt2 getmnt3 getmnt21getmnt3
name real user sys real user sys real user sys
Sl 10.96 0.98 9.91 4.86 0.31 4.40 2.26 3.16 2.25
S2 26.11 0.96 10.23 5.55 0.23 4.06 4.70 4.17 2.52
S3 33.61 0.60 11.11 11.28 0.28 4.60 2.98 2.14 2.42
S4 18.08 0.68 9.10 2.93 0.13 1.21 6.17 5.23 7.52
S8 86.70 0.66 10.73 22.20 0.25 4.26 3.91 2.64 2.52
S9 8.33 0.68 7.63 3.68 0.30 3.38 2.26 2.27 2.26
SlO 15.45 0.85 11.01 9.68 0.20 4.35 1.60 4.25 2.53
Sl1 9.51 0.51 8.91 6.86 0.25 3.26 1.39 2.04 2.73
S12 12.25 0.76 9.03 4.56 0.25 3.68 2.69 3.04 2.45
S13 16.68 1.01 10.20 5.00 0.23 4.18 3.34 4.39 2.44
S41 21.93 0.36 9.21 4.45 0.21 3.33 4.93 1.71 2.77
S14 13.31 0.83 11.18 4.33 0.28 3.76 3.07 2.96 2.97
S15 13.48 0.93 8.93 7.73 0.26 3.91 1.74 3.58 2.28
S16 71.08 1.13 11.86 7.11 0.26 2.66 10.00 4.35 4.46
S17 4.61 0.31 4.21 2.16 0.18 1.90 2.13 1.72 2.22
S18 18.11 0.53 8.68 5.88 0.33 3.65 3.08 1.61 2.38
S19 9.31 0.50 8.80 3.93 0.11 3.78 2.37 4.55 2.33
S20 8.25 0.63 7.48 1.26 0.13 1.11 6.55 4.85 6.74
S21 190.18 2.03 23.35 161.61 1.71 16.60 1.18 1.19 1.41
S22 70.26 1.03 12.00 4.48 0.10 1.78 15.68 10.30 6.74
S23 10.41 0.80 8.23 1.48 0.06 1.38 7.03 13.33 5.96
S24 8.76 0.73 8.00 6.23 0.25 3.61 1.41 2.92 2.22
S25 9.71 0.61 7.96 1.35 0.13 1.20 7.19 4.69 6.63
S26 43.08 0.60 8.45 15.73 0.31 3.71 2.74 1.94 2.28
S27 13.48 0.76 10.01 4.95 0.35 3.95 2.72 2.17 2.53
S29 32.06 0.86 8.80 to.71 0.21 3.86 2.99 4.10 2.28
S30 27.55 0.81 8.85 6.81 0.18 4.26 4.05 4.50 2.08
S31 24.85 1.56 21.65 14.33 0.50 9.98 1.73 3.12 2.17
S32 26.01 1.43 23.43 12.08 0.83 tO.11 2.15 1.72 2.32
S33 30.25 1.71 24.98 11.48 0.85 10.35 2.64 2.01 2.41
S34 29.70 1.53 24.35 11.80 0.58 9.96 2.52 2.64 2.44
S35 268.40 2.03 34.90 114.31 1.01 15.26 2.35 2.01 2.29
S36 30.00 1.86 26.61 13.05 0.71 11.70 2.30 2.62 2.27
S37 17.16 0.96 10.83 7.73 0.31 4.96 2.22 3.10 2.18
S38 68.65 2.25 18.95 11.38 0.26 4.05 6.03 8.65 4.68
S39 38.60 1.83 26.53 9.28 0.65 8.45 4.16 2.82 3.14
S40 20.93 0.55 8.98 14.51 0.21 4.18 1.44 2.62 2.15

Figure 10: Timex(l) derived performance data, 2nd vs. 3rd (All times in seconds)

for i in abc d
do

cd ${i}

*' work
cd ..

done
Figure 11: Searching through a directory

cd a
#work
for i in b c d
do

cd ., /$ {i}

#work
done
cd ..

- 10-

Figure 12: Alternate Search through a directory

allowed us to employ an algorithm to prune nodes from our search; this algorithm can be combined with a breadth
fIrst search strategy to yield a signifIcant performance improvement for this problem. The main ideas, of using
extra information and adapting the search strategy to the problem, are applicable to many instances of file system
search, and to algorithms in general.

6. Acknowledgements

Henry Wong, Lorenzo Bonnani and John Ashmead instigated the fIrst round of performance analysis and
improvements. Discussions with John Ashmead and Gerald Maguire prompted the second round, resulting in the
third and possibly fInal version of the program described here.

7. References

[1] Robert Penn Cagle, "Process Suspension and Resumption in the UNIX System V Operating System,"
University of Illinois Computer Science Department, UTUCDCS-R-86-1240 (January 1986).

[2] Geoff Collyer and Henry Spencer, "News Need Not Be Slow," in Proceedings, Winter 1987 USENlX Techn
ical Conference, Washington, DC (January, 1987), pp. 181-190.

[3] Thomas D. Johnson, Jonathan M. Smith, and Eric S. Wilson, "Disk Response Time Mea~urements," in
Proceedings, Winter 1987 USEN1X Technical Conference, Washington, DC (January, 1987). pp. 147-162.

[4] W. Joy, 42BSD System Manual, 1982.

[5] Marshall Kirk McKusick, Samuel J. Leffler, Michael J. Karels, and Luis Felipe Cabrera. "Measuring and
Improving the Performance of Berkeley UNIX," Technical Report, Computer Systems Research Group,
University of California, Berkeley (November 30, 1985).

[6] Elliott I. Organick, The Multics System, Massachusetts Institute of Technology Press (1972).

[7] 1. Ousterhout, H. Da Costa. D. Harrison, J. Kunze, M. Kupfer, and J. Thompson, "A Trace-Driven Analysis
of the UNIX 4.2 BSD File System," in Proceedings of the Tenth ACM Symposium on Operating Systems
Principles (ACM Operating Systems Review), Orcas Island, WA (December. 1985).

[8] D.M. Ritchie and K.L. Thompson, "The UNIX Operating System." Communications of the ACM 17.
pp. 365-375 (July 1974).

[9] K.L. Thompson, "UNIX Implementation," The Bell System Technical Journal 57(6, Part 2), pp. 1931-1946
(July-August 1978).

