
Improving Production System Performance
on Parallel Architectures

by Creating Constrained Copies of Rules

Alexander J. Pasik
Salvatore J. Stolfo

Department of Computer Science, Columbia University
New York City, New York 10027

(212) 280-8119
al@cheshire.columbia.edu

c~cs 313- 71

Abstract

(212) 280-2736
sal@cs.columbia.edu

Production systems have pessimistically been hypothesized to contain only minimal

amounts of parallelism [Gupta 1984]. However, techniques are being investigated to extract

more parallelism from existing systems. Among these methods, it is desirable to fmd those

which balance the work being performed in parallel evenly among the rules, while at the same

time decrease the amount of work which must be performed sequentially in each cycle. The

technique of creating constrained copies of culprit rules accomplishes both of the above goals.

Production systems are plagued by occasional rules which slow down the entire execution.

These rules require much more processing than others and thus cause other processors to idle

while the CUlprit rules continue to match. By creating the constrained copies and distributing

them to their own processors. each performs less work while others are busy, yielding

increased parallelism, improved load balancing, and less work overall per cycle.

Improving Production System Performance on Parallel Architectures
by Creating Constrained Copies of Rules

1. Introduction

Production systems are a widely used knowledge representation and programming

paradigm for the implementation of artificial intelligence (AI) software. The search for efficient

hardware and software systems in support of the high-speed execution of AI software is an

important and active area of research. Naive implementations of the production system match

phase require O(IPlxIWln) comparisons on each cycle, where IPI is the number of productions,

IWI is the number of working memory elements, and n is the largest number of preconditions

on a production's left-hand side. Using techniques popularized by the Rete match algorithm

[Forgy 1982], the dependency on both the size of production and working memories can be

reduced. Certain production system programs indeed exhibit running times which are

insensitive to the size of production memory. Nevertheless, production system execution is

characterized by large variations in the time required to match different rules. Regardless of the

match algorithm used, certain productions will require more comparisons than others in

determining left-hand side (LHS) satisfaction. By investigating and implementing techniques

to balance the load of matching rules, production system execution can be more efficient, both

in serial and parallel implementations. This efficiency improvement is a result of decreasing the

variance of rule match times and often increasing the size of the affect set, that is the set of

productions affected by the changes to working memory in a given cycle. The advantages of

increasing the affect set size are apparent in parallel implementations because more processors

can work simultaneously on smaller problems.

Existing production systems have been written in a fashion indicative of the sequential

machinery on which they are executed. Parallel hardware for the execution of production

systems has been hypothesized to provide only minimal speed improvements by using

techniques such as parallel matching algorithms because the underlying design of these

programs is sequential [Gupta 1984, Miranker 1986]. Whereas new, parallel-oriented

production system languages are being investigated [van Biema et al. 1986], it is still desirable

to find other methods of extracting more parallelism from the existing sequential production

systems.

The technique discussed herein increases the amount of parallelism during each production

system cycle while it decreases the variance of match times for all the productions being

matched in a particular cycle. Both advantages are important; more parallelism implies greater

1

speedup, and less variance indicates that fewer processors will be idle. This is achieved by

creating constrained copies of culprit rules. Culprit rules are those which require more

comparisons than other rules which would therefore slow down the overall cycle time [Stolfo

et al. 1985]. Each copy of a selected CUlprit rule is matched against a subset of working

memory elements that was relevant to the original rule. Thus, each copy is matched with fewer

comparisons and all the copies are processed simultaneously. Rules which require a large

number of comparisons to determine precondition satisfaction are those selected for constrained

copying. Therefore the variance is decreased while more work: can be done in parallel.

2. Anatomy of Rule Matching

-= In order to determine rule satisfaction, the preconditions are matched against the working

memory elements. The match can be broken down into two parts. First, the intracondition

tests (a tests, in Rete terminology [Forgy 1982]) correspond to a relational selection on the

working memory elements. Then, the intercondition tests (~ tests, in Rete terminology) are

equi-join operations on the relations which were selected [Stolfo and Miranker 19861.

A simple view of parallel match is that a processing element is assigned to each rule. Thus,

the set of ex tests for each rule is performed simultaneOUSly, as is the set of ~ tests. For a given

cycle, the changes to working memory are processed by each rule to result in a revised conflict

set of instantiations. There will likely be only a small variation in the number of a tests

performed by each rule: most rules are approximately the same size in terms of number of

condition elements and number of constants in each. However, the number of ~ tests per rule

will vary much more because it is dependent on how many working memory elements exist

which match each condition independently. This can result in poor load balancing among

processors.

3. Criteria for Creating Copies

Working memory elemen ts represent assertions. They are matched by the productions'

preconditions and created or removed by the postconditions of selected rules upon flring. The

preconditions of a given production match zero or more working memory elements on each

cycle. If each precondition is either not matched by an existing working memory element or is

only matched by a single one, then the time required to match the production is proportional to

2

the number of preconditions and working memory elements: O(cxw). On the other hand, if

multiple working memory elements match a single precondition, each creates an tuple in the

selected relation which must be joined with the relations formed by the remaining

preconditions, requiring many more ~ tests: O(wC). Rules that are particularly plagued in this

way generate a cross product of instantiations between two or more large sets of elements

being joined. These culprit rules slow down the execution of the entire system; in parallel

implementations this is even more detrimental because conflict resolution must occur after all

instantiations are created and thus a single CUlprit rule will cause the other processors to idle

during the match phase. This situation tends to occur frequently in programs which represent a

portion of the knowledge base as large tables in working memory [pasik and Schor, 1984] and

in programs which analyze large amounts of data in working memory [Vesonder et a/. 1983].

Certain working memory element types can be identified which are likely to appear in

greater numbers than others. For example, it may be known a priori that very few working

memory elements of type arithmetic-result will exist whereas many elements of type table-entry

are likely to reside in working memory at a given time. Thus, rules which match on table-entry

working memory elements will require more P tests to detennine precondition satisfaction than

rules which match only on arithmetic-result elements. Each of the former rules should be

rewritten as a set of constrained copies of the original. Each copy would match on a subset of

the table-entry elements during the a test phase, reducing the number of instantiations overall

for ~ testing. Also, each of the copies can be a and ~ tested simultaneously.

4. Time and Space Improvements

Suppose, for example, that the following rule is written in order to identify two pieces of

the same color and fit them together (OPS5 syntax is used):

(p join-pieces
(piece Acolor <x>

Aid <:»
(piece Acolor <x>

Aid { <J> <> <I> } }

(goal A'Cype :::y-join
Aidl <I>
':'d2 <J»

-->
(~ake goal A'Cype 'C,:y-join

Aidl <:>
Aid2 <.:»)

3

--

There may exist many (say n = 100) elements of type piece. The flrst two preconditions

would each create selected relations containing n tuples. Then, n2 = 10,000 ~ tests would be

required to create a IX>ssibly large number of ruples in the joined relation (all sets of two pieces

with the same color), which would in tum be matched in the remaining ~ tests in the rule. The

rule can be copied, say m = 5 times, each copy constrained to match only a subset of the

elements. For example, the domain of the color attribute may be known to be {red, blue,

yellow, green, nil}. One of the five copies would include the following conditions:

(piece Acolor :tED
Aid <I»

(piece Acolor RED
Aid (<J> <> <I> })

The other copies would only match one of the other four IX>ssible values. Assuming that

there is an even distribution of the colors among the pieces in working memory, each condition

would create its selection relation with approximately (nlm) tuples. Each of the m rules would

require (n/my. ~ tests: a factor of m fewer comparisons overall even on a serial implementation.

These m rules, however, could be processed in paralleL In this example, therefore, the

process would be sped up by a factor of m2 = 25.

The method described requires knowledge of the domains of the attributes in order to

constrain the copies. This assumption can be circumvented by employing a hashing scheme;

each copy of the rule would be constrained to match only those working memory elements with

a particular hash value. Once an attribute with enough variability is selected, a new attribute is

defined for the working memory element type. Its value will be the result of a hash function

performed on the selected attribute. Thus, even if the colors of the pieces were unknown, the

copies could still be created. constrained by differing values of the hash attribute. The copies

which would be generated if pieces' colors were hashed into four buckets are shown below.

4

-

(p :oin-pieces-l
(piece ~color <x>

~:'d <I>
~hash-color :)

{piece ~=olor <x>
~!'d (<J> <>
~hash-color 1)

-{goal -cype ::ry-joi:'l
~idl <I>
~id2 <.:»

-->

<1>1

{mai<:e goal ~type cry-join
~idl <1>
~id2 <J»)

(p join-pieces-3
(piece ~color <x>

~id <I>
~hash-color 3)

{piece ~color <x>
~id ! <J> <> <I>}
~hash-color 3)

-(goal -type try-join
~idl <I>
~id2 <J»

-->
(make goal -"-ype ,,-ry-join

~idl <I>
~id2 <J»)

{p :oin-pleces-2

-

(piece ~color <x>

{piece

(goal

-->
(make

~:'d <I>
~hash-color 2)

~co:or <x>
.... :.d ! <J> <>
~hash-color 2)
~type ,,-ry-join
~idl <I>
~id2 <J»

<1»

goal ~,:ype try-join
~idl <I>
~id2 <J»)

{p join-pieces-4
(piece ~color <x>

.... id <I>
~hash-color 4)

{piece ~colcr <x>
~id «J> <> <I»
~hash-color 4)

(goal ~type try-joi:'l
~idl <I>
~id2 <J»

-->
(make goal ~type try-join

~idl <:>
~id2 <J»)

The generated copies result in an increase in the number of rules active during ex testing.

More work is performed in this phase resulting in more selection operations in parallel, each of

which would result in a smaller relation to be joined during ~ testing. According to Gupta

[1984], the average affect set size is 30 productions per cycle. This was presented in order to

support the conjecture that massive parallelism was inappropriate for production system

execution; no more than 30 processors would be needed if the productions were distributed

intelligently. These few processors would, however, have to deal with the occasional CUlprit

rule which would slow the execution of the entire system. By creating constrained copies of

culprit rules and distributing them to many more processors, each will be working on a smaller

subset of the changes to working memory yielding an improved performance. Much of the

work is shifted from the ~ test phase to the easily parallelizable ex test phase.

In addition to the speedup obtained, this technique also provides the advantage of smaller

memory requirements for each rule. On fine-grained parallel systems, the number of tuples in

the selection-generated relations created by certain preconditions can become large and thus

overflow the limited memory of the processing element. Upon creating constrained copies of

the rules and assigning each to its own processing element, the number of tuples for each is

dramatically decreased.

5

5. How to Create Constrained Copies

The creation of constrained copies must be performed carefully in order to preserve the

overall behavior of the system. Assume it is determined that the attribute color of the class

piece is to be constrained. Also, assume that the new attribute hash-color will take on one of n

values. If there is only one occurrence of a variable as apiece's color in the LHS, only n

copies of the rule need be created. If two or more occurrences of a variable exist as pieces'

colors in a rule, yet they are all tested to be equal to each other, still only n copies are required.

This is demonstrated in the above example in which both occurrences of pieces' colors are

bound to the same variable <x>. However, if m different variables occur, or if one color must

be <x> whereas another must be < > <x> then nm copies must be made. The following rule

requires 32 = 9 copies if the pieces' colors are hashed into three buckets. The rule on the right

abstractly represents each of the nine copies, with (a b) being (1 1), (1 2), (1 3), (2 1),

\,2 2), (2 3), (3 1), (3 2), (33), in the different copies.

(p separace-pieces
(?iece ~~olor <x>

':'d <I»
(piece 'color <> <x>

':'d <.;»
(:oge::,:e~

'idl C>

'id2 <oJ»
-->
(:emcve 3»

(p separace-pieces-ap
(piece 'color <x> '~ash-color a

Aid <I»
(piece 'color <> <x> 'hash-color b

Aid <J»
(:oge:~er

'idl <I>
'id2 <J»

-->
(remove 3»

Also, occurrences of variables in negative condition elements cannot be constrained unless

they are equality tested with another variable in a positive condition element A program was

written to automatically create the constrained copies of rules adhering to all the above

requirements.

6. Results

Three production systems were executed with different amounts of constrained copying in

order to empirically measure the effect on performance. The working memory type and

attribute to be constrained were selected by choosing the most commonly occurring type and its

6

attribute with the greatest variability. The number of a. and ~ tests for each rule at each cycle of

execution was recorded. A system configuration was defmed as a particular production system

copied and constrained into a set of rules such that the overall behavior of the system was

unchanged from the original. In other words, the changes to working memory at each cycle
were the same.

The three systems used were (1) monkeys and bananas which solves the problem of a

monkey trying to reach bananas using tools, (2) puzzle which solves a jigsaw puzzle, and (3)

waltz which labels line drawings according to the Waltz constraint propagation method. The

original systems were composed of 13, 13, and 33 rules respectively. The average number of

working memory elements per cycle in each of the systems was 10, 63, and 42 respectively.

By creating constrained copies of cUlprit rules, the number of rules was increased for each

system as follows:

Monkeys and Bananas

Puzzle

Waltz

13

13

33

25
29
41

55
109

65

139

185

105 185

Each of these system configurations was executed and the number of a. and ~ tests per rule

per cycle was recorded. The maximum number of a. (~) tests per cycle indicates how long the

a. (~) test phase took in that cycle, because each rule is processed simultaneously but all must

wait for the slowest The average of this maximum over all the cycles serves as an indicator of

the average time spent in that phase in any cycle. Plotting the average maximum a. and ~ tests

against the number of rules in the system shows that as more constrained copies are created,

the a. test time is essentially unaffected whereas the ~ test time is substantially decreased (see

Figure 1).

~

to
o 0

.!! ..
~ IS

'0
j 10

\. s
Z S

a
0 20

• zoo
• • ~ I_ • 0 '000

)CO

o a 18S11 \ \ IOD
McrMyw rod BatwnII Puzzle Waltz

lOD

.........
40 eo 10

...,
400 '-. .------. .DO

lOll • • 010
0 0 0 0

a 0
tOO 120 1.0 lto 110 200 a 20 40 eo 10 tOO t2ID 1400 110 110 200 0 20 40 eo eo

Numtlar of R~

FIgure 1. As more copies are created. the average maximum number of a
tests per cycle remains constant whereas the average maximum number of

~ tests decreases. This indicates that the time spent in each cycle is

reduced.

7

0

100 120 140 110 110 200

The worst cycle is that one which requires the maximum of the maximum ~ tests per rule

over all the cycles. Plotting this against the number of rules shows that with more constrained

copies, the worst case cycle becomes much better (see Figure 2).

JO

~ 2$..
~ 20

~15
"0
..! 10

§ 5
Z

•

\ Monkeys and Bar8nas

"------.
• •

11000

12000 \ Ww
3000

2000

'000 .,
------. oL-__________________ _ O~ ________________ __

L ______ ~~~~·======~_ o o 20 .., 60 10 100 120 ,.., '10 '10 200 o 20 .., ao 10 '00 '20 ,.., no 110 200

Number of Au_
o 20 40 10 10 100 120 I.., 110 .ao 200

Figura 2. As more rules are created, the maximum over all the cycles of
the maximum number of ~ tests per rule decreases. This indicates that the
worst case cycle is improved.

The standard deviation of the number of P tests per rule for a given cycle provides a

measurement of the load balance among the processors for that cycle (recalling that ex tests are

close in number). The average of the standard deviations over all the cycles indicates an

approximate measure of the load balance during the entire system execution. Again, plotting

this value against the number of rules displays that as more constrained copies of CUlprit rules

are created, the standard deviation of the ~ test time per rule decreases dramatically (see Figure

3).

~ B
'i
~ :to
a
~ 15

" ! 1.0
~

a
co 05 ..

•

\ •
,,~ 211

~ < 0.0 L-_________ _
o~ ______________ _

o 20 .., 10 10 100 1211 .40 110 110 2110 o 211 40 10 10 100 120 140 110 110 200

~mbef' 01 F\llee

Flgur. 3. As more rules are created, the average over all the cycles of the

standard deviation of the number of ~ tests per rule decreases. This

indicates improved load balance.

The overall time for system matching can be estimated to be proportional to the sum of the

maximum number of P tests per rule over all the cycles. This proportionality is supported by

the results obtained when plotting the timings for running the monkeys and bananas system

against the sum of the maximum number of P tests (see Figure 4). The timings were achieved

8

by running the system on the DADO machine, distributing one rule per processor [Stolfo and

Miranker 1986]. The remaining systems could not be run on DADO in their original form due

to the large relations fonned by the a testing overflowing the limited memory of the processing

element. This unfortunate situation, however, demonstrates the additional advantaae of
o

creating the constrained copies: the larger rule systems were able to run on the fine-grained

machine.

1100

•
1a50

/
~.

-~~~~~--~~--~~ o 20 40 eo eo 100 13) 140

Sum oyer All Cycles of II'B J.Aaximum Beta rllSts

Figura 4. Execution time increases as the sum of the maximum number of

~ tests increases.

Having established the relationship between execution time and the sum of the maximum

number of ~ tests per rule, these values are plotted against the number of rules in each system

configuration. Again, it demonstrates that by creating constrained copies of culprit rules,

execution time is dramatically decreased (see Figure 5).

o~ __________________ ~

o 20 40 60 10 100 120 '40 110 '" 200 o~----------------~ o 29 <0 10 10 100 120 100 110 110 200

NlIT1ber of ~

20000

10000

o~-----------------o 20 <0 10 10 100120 1<0 110 110200

Figure 5. As more copies of culprit rules are created, the sum of the
maximum number of ~ tests per cycle during the whole execution is
decreased. This indicates an overall speed improvement when this method

is used.

7. Conclusion

Although there has been substantial pessimism concerning the parallelization of production

systems, there are still many unexplored methods for extracting more parallelism from these

9

programs. The copy and constrain method serves to load balance as well as extract additional

parallelism from existing, sequentially written production systems. The speed improvements

obtained using this method alone were measured over eight-fold. The advantages of this

technique stem from the reduction in both total number of P tests performed, maximum number

of P tests per cycle, and the decrease in the variance between rules of the number of P tests

required. Overall, many more a. tests are performed because of the proliferation of new rules,

but each can be processed in parallel. This eliminates the a. tests overhead. Even on sequential

implementations, however, systems plagued with large numbers of required P tests exhibit

improved performance in spite of the added a. tests.

Methods to find exactly which rules to copy and constrain, identifying which attributes to

hash on, and other factors require further investigation. Careful selection of the working

memory element type and attribute to hash, and which rules to copy and constrain is necessary

because of large number of copies which can be produced. For example, while only hashing

on a single working memory element type and attribute into 10 buckets, a given rule could

generate 1000 or more copies if three or more occurrences of the attribute were present and not

bound to the same variable. If too many copies are created, such that more rules exist than

processors, the overhead of combining different rules in one processor may outweigh the

advantage of the added constraints.

Creating constrained copies of CUlprit rules by hashing provides a relatively domain

independent mechanism for extracting additional parallelism from production systems. The

resulting speed improvements are encouraging. Driven by these results, other methods are

being investigated for extracting additional parallelism from prcxiuction systems.

Acknowledgements

The authors wish to thank Andrew R. Lowry and Richard L. Reed and the rest of the

DADO project team for their intellectual and technical assistance. Their insight and expertise

were essential to the development of the ideas and software required to successfully complete

this stage of the research.

1 0

References

Forgy c.L. (1982) Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. Artificial Intelligence 19(1): 17-37.

Gupta A. (1984) Parallelism in Production Systems: The Sources and Expected Speed-up.
Technical Report, Department of Computer Science, Carnegie-Mellon University.

Miranker D.P. (1986) TREAT: A New and Efficient Match Algorithm for AI Production
Systems. Ph.D. Thesis, Department of Computer Science, Columbia University.

Pasik A.l. and Schor M.L, (1984) Table-driven Rules in Expert Systems. SIGART
Newslener 87: 31-33. '

Stolfo S.l. and Miranker D.P. (1986) DADO: A Tree-Structured Architecture for Artificial
Intelligence Computation. Annual Review of Computer Science 1: 1-18.

Stolfo S.l., Miranker D.P., and Mills R.c. (1985) A Simple Preprocessing Scheme to Extract
and Balance Implicit Parallelism in the Concurrent Match of Production Rules. IFIP
Conference on Fifth Generation Computing.

van Biema M, Miranker D.P., and Stolfo S.l. (1986) The Do-loop Considered Harmful in
Production System Programming. First International Conference on Expert Database
Systems.

Vesonder G.T., Stolfo S.l., Zielinski J., Miller F., and Copp D. (1983) ACE: An Expert
System for Telephone Cable Maintenance. Eighth International loint Conference on
Artificial Intelligence.

1 1

