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Production systems have pessimistically been hypothesized to contain only minimal 

amounts of parallelism [Gupta 1984]. However, techniques are being investigated to extract 

more parallelism from existing systems. Among these methods, it is desirable to fmd those 

which balance the work being performed in parallel evenly among the rules, while at the same 

time decrease the amount of work which must be performed sequentially in each cycle. The 

technique of creating constrained copies of culprit rules accomplishes both of the above goals. 

Production systems are plagued by occasional rules which slow down the entire execution. 

These rules require much more processing than others and thus cause other processors to idle 

while the CUlprit rules continue to match. By creating the constrained copies and distributing 

them to their own processors. each performs less work while others are busy, yielding 

increased parallelism, improved load balancing, and less work overall per cycle. 
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1. Introduction 

Production systems are a widely used knowledge representation and programming 

paradigm for the implementation of artificial intelligence (AI) software. The search for efficient 

hardware and software systems in support of the high-speed execution of AI software is an 

important and active area of research. Naive implementations of the production system match 

phase require O(IPlxIWln) comparisons on each cycle, where IPI is the number of productions, 

IWI is the number of working memory elements, and n is the largest number of preconditions 

on a production's left-hand side. Using techniques popularized by the Rete match algorithm 

[Forgy 1982], the dependency on both the size of production and working memories can be 

reduced. Certain production system programs indeed exhibit running times which are 

insensitive to the size of production memory. Nevertheless, production system execution is 

characterized by large variations in the time required to match different rules. Regardless of the 

match algorithm used, certain productions will require more comparisons than others in 

determining left-hand side (LHS) satisfaction. By investigating and implementing techniques 

to balance the load of matching rules, production system execution can be more efficient, both 

in serial and parallel implementations. This efficiency improvement is a result of decreasing the 

variance of rule match times and often increasing the size of the affect set, that is the set of 

productions affected by the changes to working memory in a given cycle. The advantages of 

increasing the affect set size are apparent in parallel implementations because more processors 

can work simultaneously on smaller problems. 

Existing production systems have been written in a fashion indicative of the sequential 

machinery on which they are executed. Parallel hardware for the execution of production 

systems has been hypothesized to provide only minimal speed improvements by using 

techniques such as parallel matching algorithms because the underlying design of these 

programs is sequential [Gupta 1984, Miranker 1986]. Whereas new, parallel-oriented 

production system languages are being investigated [van Biema et al. 1986], it is still desirable 

to find other methods of extracting more parallelism from the existing sequential production 

systems. 

The technique discussed herein increases the amount of parallelism during each production 

system cycle while it decreases the variance of match times for all the productions being 

matched in a particular cycle. Both advantages are important; more parallelism implies greater 

1 



speedup, and less variance indicates that fewer processors will be idle. This is achieved by 

creating constrained copies of culprit rules. Culprit rules are those which require more 

comparisons than other rules which would therefore slow down the overall cycle time [Stolfo 

et al. 1985]. Each copy of a selected CUlprit rule is matched against a subset of working 

memory elements that was relevant to the original rule. Thus, each copy is matched with fewer 

comparisons and all the copies are processed simultaneously. Rules which require a large 

number of comparisons to determine precondition satisfaction are those selected for constrained 

copying. Therefore the variance is decreased while more work: can be done in parallel. 

2. Anatomy of Rule Matching 

-= In order to determine rule satisfaction, the preconditions are matched against the working 

memory elements. The match can be broken down into two parts. First, the intracondition 

tests (a tests, in Rete terminology [Forgy 1982]) correspond to a relational selection on the 

working memory elements. Then, the intercondition tests (~ tests, in Rete terminology) are 

equi-join operations on the relations which were selected [Stolfo and Miranker 19861. 

A simple view of parallel match is that a processing element is assigned to each rule. Thus, 

the set of ex tests for each rule is performed simultaneOUSly, as is the set of ~ tests. For a given 

cycle, the changes to working memory are processed by each rule to result in a revised conflict 

set of instantiations. There will likely be only a small variation in the number of a tests 

performed by each rule: most rules are approximately the same size in terms of number of 

condition elements and number of constants in each. However, the number of ~ tests per rule 

will vary much more because it is dependent on how many working memory elements exist 

which match each condition independently. This can result in poor load balancing among 

processors. 

3. Criteria for Creating Copies 

Working memory elemen ts represent assertions. They are matched by the productions' 

preconditions and created or removed by the postconditions of selected rules upon flring. The 

preconditions of a given production match zero or more working memory elements on each 

cycle. If each precondition is either not matched by an existing working memory element or is 

only matched by a single one, then the time required to match the production is proportional to 
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the number of preconditions and working memory elements: O(cxw). On the other hand, if 

multiple working memory elements match a single precondition, each creates an tuple in the 

selected relation which must be joined with the relations formed by the remaining 

preconditions, requiring many more ~ tests: O(wC). Rules that are particularly plagued in this 

way generate a cross product of instantiations between two or more large sets of elements 

being joined. These culprit rules slow down the execution of the entire system; in parallel 

implementations this is even more detrimental because conflict resolution must occur after all 

instantiations are created and thus a single CUlprit rule will cause the other processors to idle 

during the match phase. This situation tends to occur frequently in programs which represent a 

portion of the knowledge base as large tables in working memory [pasik and Schor, 1984] and 

in programs which analyze large amounts of data in working memory [Vesonder et a/. 1983]. 

Certain working memory element types can be identified which are likely to appear in 

greater numbers than others. For example, it may be known a priori that very few working 

memory elements of type arithmetic-result will exist whereas many elements of type table-entry 

are likely to reside in working memory at a given time. Thus, rules which match on table-entry 

working memory elements will require more P tests to detennine precondition satisfaction than 

rules which match only on arithmetic-result elements. Each of the former rules should be 

rewritten as a set of constrained copies of the original. Each copy would match on a subset of 

the table-entry elements during the a test phase, reducing the number of instantiations overall 

for ~ testing. Also, each of the copies can be a and ~ tested simultaneously. 

4. Time and Space Improvements 

Suppose, for example, that the following rule is written in order to identify two pieces of 

the same color and fit them together (OPS5 syntax is used): 

(p join-pieces 
(piece Acolor <x> 

Aid <:» 
(piece Acolor <x> 

Aid { <J> <> <I> } } 

(goal A'Cype :::y-join 
Aidl <I> 
':'d2 <J» 

--> 
(~ake goal A'Cype 'C,:y-join 

Aidl <:> 
Aid2 <.:» ) 
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--

There may exist many (say n = 100) elements of type piece. The flrst two preconditions 

would each create selected relations containing n tuples. Then, n2 = 10,000 ~ tests would be 

required to create a IX>ssibly large number of ruples in the joined relation (all sets of two pieces 

with the same color), which would in tum be matched in the remaining ~ tests in the rule. The 

rule can be copied, say m = 5 times, each copy constrained to match only a subset of the 

elements. For example, the domain of the color attribute may be known to be {red, blue, 

yellow, green, nil}. One of the five copies would include the following conditions: 

(piece Acolor :tED 
Aid <I» 

(piece Acolor RED 
Aid ( <J> <> <I> }) 

The other copies would only match one of the other four IX>ssible values. Assuming that 

there is an even distribution of the colors among the pieces in working memory, each condition 

would create its selection relation with approximately (nlm) tuples. Each of the m rules would 

require (n/my. ~ tests: a factor of m fewer comparisons overall even on a serial implementation. 

These m rules, however, could be processed in paralleL In this example, therefore, the 

process would be sped up by a factor of m2 = 25. 

The method described requires knowledge of the domains of the attributes in order to 

constrain the copies. This assumption can be circumvented by employing a hashing scheme; 

each copy of the rule would be constrained to match only those working memory elements with 

a particular hash value. Once an attribute with enough variability is selected, a new attribute is 

defined for the working memory element type. Its value will be the result of a hash function 

performed on the selected attribute. Thus, even if the colors of the pieces were unknown, the 

copies could still be created. constrained by differing values of the hash attribute. The copies 

which would be generated if pieces' colors were hashed into four buckets are shown below. 
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(p :oin-pieces-l 
(piece ~color <x> 

~:'d <I> 
~hash-color :) 

{piece ~=olor <x> 
~!'d ( <J> <> 
~hash-color 1) 

-{goal -cype ::ry-joi:'l 
~idl <I> 
~id2 <.:» 

--> 

<1>1 

{mai<:e goal ~type cry-join 
~idl <1> 
~id2 <J» ) 

(p join-pieces-3 
(piece ~color <x> 

~id <I> 
~hash-color 3) 

{piece ~color <x> 
~id ! <J> <> <I>} 
~hash-color 3) 

-(goal -type try-join 
~idl <I> 
~id2 <J» 

--> 
(make goal -"-ype ,,-ry-join 

~idl <I> 
~id2 <J») 

{p :oin-pleces-2 

-

(piece ~color <x> 

{piece 

(goal 

--> 
(make 

~:'d <I> 
~hash-color 2) 

~co:or <x> 
.... :.d ! <J> <> 
~hash-color 2) 
~type ,,-ry-join 
~idl <I> 
~id2 <J» 

<1» 

goal ~,:ype try-join 
~idl <I> 
~id2 <J» ) 

{p join-pieces-4 
(piece ~color <x> 

.... id <I> 
~hash-color 4) 

{piece ~colcr <x> 
~id «J> <> <I» 
~hash-color 4) 

(goal ~type try-joi:'l 
~idl <I> 
~id2 <J» 

--> 
(make goal ~type try-join 

~idl <:> 
~id2 <J») 

The generated copies result in an increase in the number of rules active during ex testing. 

More work is performed in this phase resulting in more selection operations in parallel, each of 

which would result in a smaller relation to be joined during ~ testing. According to Gupta 

[1984], the average affect set size is 30 productions per cycle. This was presented in order to 

support the conjecture that massive parallelism was inappropriate for production system 

execution; no more than 30 processors would be needed if the productions were distributed 

intelligently. These few processors would, however, have to deal with the occasional CUlprit 

rule which would slow the execution of the entire system. By creating constrained copies of 

culprit rules and distributing them to many more processors, each will be working on a smaller 

subset of the changes to working memory yielding an improved performance. Much of the 

work is shifted from the ~ test phase to the easily parallelizable ex test phase. 

In addition to the speedup obtained, this technique also provides the advantage of smaller 

memory requirements for each rule. On fine-grained parallel systems, the number of tuples in 

the selection-generated relations created by certain preconditions can become large and thus 

overflow the limited memory of the processing element. Upon creating constrained copies of 

the rules and assigning each to its own processing element, the number of tuples for each is 

dramatically decreased. 
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5. How to Create Constrained Copies 

The creation of constrained copies must be performed carefully in order to preserve the 

overall behavior of the system. Assume it is determined that the attribute color of the class 

piece is to be constrained. Also, assume that the new attribute hash-color will take on one of n 

values. If there is only one occurrence of a variable as apiece's color in the LHS, only n 

copies of the rule need be created. If two or more occurrences of a variable exist as pieces' 

colors in a rule, yet they are all tested to be equal to each other, still only n copies are required. 

This is demonstrated in the above example in which both occurrences of pieces' colors are 

bound to the same variable <x>. However, if m different variables occur, or if one color must 

be <x> whereas another must be < > <x> then nm copies must be made. The following rule 

requires 32 = 9 copies if the pieces' colors are hashed into three buckets. The rule on the right 

abstractly represents each of the nine copies, with (a b) being (1 1), (1 2), (1 3), (2 1), 

\,2 2), (2 3), (3 1), (3 2), (33), in the different copies. 

(p separace-pieces 
(?iece ~~olor <x> 

':'d <I» 
(piece 'color <> <x> 

':'d <.;» 
(:oge::,:e~ 

'idl C> 

'id2 <oJ» 
--> 
(:emcve 3» 

(p separace-pieces-ap 
(piece 'color <x> '~ash-color a 

Aid <I» 
(piece 'color <> <x> 'hash-color b 

Aid <J» 
(:oge:~er 

'idl <I> 
'id2 <J» 

--> 
(remove 3» 

Also, occurrences of variables in negative condition elements cannot be constrained unless 

they are equality tested with another variable in a positive condition element A program was 

written to automatically create the constrained copies of rules adhering to all the above 

requirements. 

6. Results 

Three production systems were executed with different amounts of constrained copying in 

order to empirically measure the effect on performance. The working memory type and 

attribute to be constrained were selected by choosing the most commonly occurring type and its 
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attribute with the greatest variability. The number of a. and ~ tests for each rule at each cycle of 

execution was recorded. A system configuration was defmed as a particular production system 

copied and constrained into a set of rules such that the overall behavior of the system was 

unchanged from the original. In other words, the changes to working memory at each cycle 
were the same. 

The three systems used were (1) monkeys and bananas which solves the problem of a 

monkey trying to reach bananas using tools, (2) puzzle which solves a jigsaw puzzle, and (3) 

waltz which labels line drawings according to the Waltz constraint propagation method. The 

original systems were composed of 13, 13, and 33 rules respectively. The average number of 

working memory elements per cycle in each of the systems was 10, 63, and 42 respectively. 

By creating constrained copies of cUlprit rules, the number of rules was increased for each 

system as follows: 

Monkeys and Bananas 

Puzzle 

Waltz 

13 

13 

33 

25 
29 
41 

55 
109 

65 

139 

185 

105 185 

Each of these system configurations was executed and the number of a. and ~ tests per rule 

per cycle was recorded. The maximum number of a. (~) tests per cycle indicates how long the 

a. (~) test phase took in that cycle, because each rule is processed simultaneously but all must 

wait for the slowest The average of this maximum over all the cycles serves as an indicator of 

the average time spent in that phase in any cycle. Plotting the average maximum a. and ~ tests 

against the number of rules in the system shows that as more constrained copies are created, 

the a. test time is essentially unaffected whereas the ~ test time is substantially decreased (see 

Figure 1). 
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FIgure 1. As more copies are created. the average maximum number of a 
tests per cycle remains constant whereas the average maximum number of 

~ tests decreases. This indicates that the time spent in each cycle is 

reduced. 
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The worst cycle is that one which requires the maximum of the maximum ~ tests per rule 

over all the cycles. Plotting this against the number of rules shows that with more constrained 

copies, the worst case cycle becomes much better (see Figure 2). 
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Figura 2. As more rules are created, the maximum over all the cycles of 
the maximum number of ~ tests per rule decreases. This indicates that the 
worst case cycle is improved. 

The standard deviation of the number of P tests per rule for a given cycle provides a 

measurement of the load balance among the processors for that cycle (recalling that ex tests are 

close in number). The average of the standard deviations over all the cycles indicates an 

approximate measure of the load balance during the entire system execution. Again, plotting 

this value against the number of rules displays that as more constrained copies of CUlprit rules 

are created, the standard deviation of the ~ test time per rule decreases dramatically (see Figure 

3). 
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Flgur. 3. As more rules are created, the average over all the cycles of the 

standard deviation of the number of ~ tests per rule decreases. This 

indicates improved load balance. 

The overall time for system matching can be estimated to be proportional to the sum of the 

maximum number of P tests per rule over all the cycles. This proportionality is supported by 

the results obtained when plotting the timings for running the monkeys and bananas system 

against the sum of the maximum number of P tests (see Figure 4). The timings were achieved 
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by running the system on the DADO machine, distributing one rule per processor [Stolfo and 

Miranker 1986]. The remaining systems could not be run on DADO in their original form due 

to the large relations fonned by the a testing overflowing the limited memory of the processing 

element. This unfortunate situation, however, demonstrates the additional advantaae of 
o 

creating the constrained copies: the larger rule systems were able to run on the fine-grained 

machine. 
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Figura 4. Execution time increases as the sum of the maximum number of 

~ tests increases. 

Having established the relationship between execution time and the sum of the maximum 

number of ~ tests per rule, these values are plotted against the number of rules in each system 

configuration. Again, it demonstrates that by creating constrained copies of culprit rules, 

execution time is dramatically decreased (see Figure 5). 
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Figure 5. As more copies of culprit rules are created, the sum of the 
maximum number of ~ tests per cycle during the whole execution is 
decreased. This indicates an overall speed improvement when this method 

is used. 

7. Conclusion 

Although there has been substantial pessimism concerning the parallelization of production 

systems, there are still many unexplored methods for extracting more parallelism from these 
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programs. The copy and constrain method serves to load balance as well as extract additional 

parallelism from existing, sequentially written production systems. The speed improvements 

obtained using this method alone were measured over eight-fold. The advantages of this 

technique stem from the reduction in both total number of P tests performed, maximum number 

of P tests per cycle, and the decrease in the variance between rules of the number of P tests 

required. Overall, many more a. tests are performed because of the proliferation of new rules, 

but each can be processed in parallel. This eliminates the a. tests overhead. Even on sequential 

implementations, however, systems plagued with large numbers of required P tests exhibit 

improved performance in spite of the added a. tests. 

Methods to find exactly which rules to copy and constrain, identifying which attributes to 

hash on, and other factors require further investigation. Careful selection of the working 

memory element type and attribute to hash, and which rules to copy and constrain is necessary 

because of large number of copies which can be produced. For example, while only hashing 

on a single working memory element type and attribute into 10 buckets, a given rule could 

generate 1000 or more copies if three or more occurrences of the attribute were present and not 

bound to the same variable. If too many copies are created, such that more rules exist than 

processors, the overhead of combining different rules in one processor may outweigh the 

advantage of the added constraints. 

Creating constrained copies of CUlprit rules by hashing provides a relatively domain­

independent mechanism for extracting additional parallelism from production systems. The 

resulting speed improvements are encouraging. Driven by these results, other methods are 

being investigated for extracting additional parallelism from prcxiuction systems. 
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