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Abstract

The Laschamp Geomagnetic Excursion (ca. 41 ka) and a related increase of cosmogenic nuclides provides a global
tie point among sedimentary and ice core records. In the Wilson Creek Formation, Mono Lake, California, the
Laschamp Excursion has not been recognized although the so-called Mono Lake excursion was found in the section
with an estimated age of about 28 14C ka. However, our reevaluation of the age of the Mono Lake excursion at its
type locality using new 14C dates on carbonates and 40Ar/39Ar sanidine dates on ash layers yields an estimate of 38^41
ka. This chronology and the absence of a second excursion in the Wilson Creek Formation suggest that the distinct
paleomagnetic feature with negative inclinations at Mono Lake is correlative with the Laschamp Excursion. ß 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

The Laschamp Geomagnetic Excursion was
named for anomalous paleomagnetic directions
(up to 158‡ from the expected dipole value) [1]
associated with low absolute paleointensities
[2,3] in several lava £ows from La Cha|“ne des
Puys, Massif Central, France. Deviating direc-
tions and/or very low (absolute or relative) paleo-
intensities of approximately the same age (V41
ka, thousands of years before present) as the La-
schamp Excursion have been found in Icelandic
lavas [4,5] and in numerous deep-sea sediment

and lacustrine records [6^11]. At about Laschamp
time, there is also a substantial peak in cosmogen-
ic 10Be measured in both Antarctic and Greenland
ice cores [12^14] and in deep-sea sediments [15^
17]; a coincident peak in cosmogenic 36Cl occurs
in the GRIP ice core from Greenland [18]. The
increased 10Be and 36Cl £uxes have been attrib-
uted to the low geomagnetic intensity associated
with the Laschamp Excursion [19,20], which must
be considered a global phenomenon. However,
cosmogenic 10Be or 36Cl peaks attributed to the
V28 14C ka Mono Lake excursion have also been
reported in some ice cores [21,22] and sedimentary
records [23], complicating correlations and inter-
pretations with respect to geomagnetic excursions.

In a search for a record of the Laschamp Ex-
cursion in the Great Basin of the western USA,
Denham and Cox [24] found an episode of anom-
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alous paleomagnetic secular variation in a freshly
cut section of lacustrine sediments of the Wilson
Creek Formation at Mono Lake, California [25].
They named this feature the Mono Lake excur-
sion because this record had only steep positive
inclinations but not the negative inclinations that
characterize the Laschamp Excursion at its type
locality. Subsequent work at the Wilson Creek
section [26] revealed a new aspect of the Mono
Lake excursion that included an episode of low
relative paleointensities and negative inclinations
resulting in directions more than 100‡ away from
the expected dipole ¢eld orientation. The Mono
Lake excursion was subsequently documented in
several other sedimentary sections from the west-
ern USA [27^29], even though negative inclina-
tions may not always be found due to overprint-
ing [30] and other imperfections in the
paleomagnetic record [31]. Moreover, elevated
10Be contents in the interval of the Wilson Creek
sediments that corresponds to the Mono Lake
excursion [32] provide supporting evidence of its
global geomagnetic signi¢cance. Nevertheless, the
Mono Lake excursion was still considered tempo-
rally distinct from (although now actually young-
er than) the Laschamp Excursion, a view that has
been accepted almost universally despite dating
uncertainties (see review by [33]).

2. Previous dates on Laschamp and Mono Lake
excursions

The ¢rst published dates on the Laschamp Ex-
cursion at its type locality, obtained from 14C and
whole rock K^Ar dating, ranged from 8.7 to 20
ka [1]. The Laschamp more than doubled in age
when Hall and York [34] obtained whole rock
K^Ar and 40Ar/39Ar dates of 47.4 þ 1.9 and
45.4 þ 2.5 ka, and concurrently Gillot et al. [35]
obtained K/Ar dates of 43.0 þ 5.0 and 50.0 þ 7.5
ka for the Laschamp and Olby £ows, respectively.
Thermoluminescence dates range from 32.5 þ 3.1
ka [36] to 44.1 þ 6.5 ka [35]. A 14C measurement
on residual humin from a thin organic-rich layer
underlying the Olby £ow indicated an age of at
least 36 14C ka (V39.5 calendar ka), the limit of
the counting method used [35]. A concordant re-

sult of 39 þ 6 ka was obtained with the 230Th/238U
disequilibrium method [37]. Dating of the La-
schamp Excursion is thus rather uncertain but
based on several di¡erent chronometers, its age
is likely to be within the limits of 39 and 45 ka
with a generally accepted nominal age of V41 ka
[11].

The initial estimated age (V24 14C ka) for the
Mono Lake excursion [24,26] was based on inter-
polation from just two radiocarbon dates in the
Wilson Creek section [25]. An updated V28 14C
ka estimate [38] for the Mono Lake excursion
used a series of 27 published radiocarbon mea-
surements on tufa or ostracodes [39,40]. This
age estimate is appreciably di¡erent than for the
Laschamp Excursion but it does not take into
account radiocarbon reservoir e¡ects, or modern
carbon contamination e¡ects and radiocarbon
production variations, nor has it been tested di-
rectly with an independent chronometer.

3. New radiocarbon dates from Mono Lake

We present new radiocarbon data from lacus-
trine carbonates (ostracodes and tufa nodules)
from 11 stratigraphic horizons from the lower
5 m of the Wilson Creek section (Fig. 1). Samples
for 14C AMS analysis were disaggregated in de-
ionized water and sieved. Ostracodes or tufa nod-
ules were hand-picked from the s 250 Wm size
fraction. In horizons where there is abundant
tufa, it is virtually impossible to ¢nd clean shells
and this includes much of the interval between
2 and 5 m in the section (Fig. 1, Table 1). Accord-
ingly, we made measurements on pairs of un-
coated and tufa-encrusted ostracodes (3.5 m),
tufa-encrusted ostracodes and tufa nodules (2.0,
2.5 and 3.1 m) and variably encrusted ostracodes
(4.67 m). The more encrusted ostracode or tufa
nodule samples gave ages that were always young-
er (by 780^2160 14C years) with a general trend of
larger age di¡erences in older samples. We con-
sider the greater surface area of the tufa, and thus
greater susceptibility to modern carbon contami-
nation, to be a likely explanation for the age dif-
ferences.

To further address the issue of modern carbon
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contamination, four sample aliquots were sub-
jected to progressive acid leaching where the ap-
parent age of the fraction of carbon remaining
after each leaching step was determined by 14C
AMS analysis (Fig. 2). We ¢nd signi¢cantly
younger ages in the ¢rst partial dissolution step
than in subsequent steps, consistent with absorp-
tion of modern carbon on the surfaces (our pre-
ferred explanation) or diagenetic overgrowth by
younger carbonates. Accordingly, the remainder
of the Wilson Creek samples were leached to leave
between 22% and 88% of the initial carbonate
contents prior to 14C AMS analysis (Table 1).
Because a plateau was not always recorded in
the progressive dissolution experiments to indicate
that the maximum age was achieved (e.g., [41,42]),
these 14C dates should be viewed as minimum age
constraints.

The di¡erences between the 14C results from
residual carbonates that we report here and the
bulk carbonate analyses summarized by Benson et
al. [38] increase systematically with age. At
around the interval of the Mono Lake excursion,
there is a 4 kyr di¡erence between our (uncor-
rected) estimate of 32 14C ka and the (uncor-
rected) estimate of 28 14C ka by Benson et al.
[38]; at the base of the lacustrine section, we es-

Fig. 1. Schematic stratigraphic section of Wilson Creek For-
mation at Mono Lake showing sampling levels of carbonate
for 14C analysis (from Wilson Creek section) and ash layers
for 40Ar/39Ar analysis (from south shore section, Ashes #8, 15,
16 analyzed here, Ashes #5 and 12 reported by [52]). Note
that Ash #15 is within the Mono Lake excursion [24,26].

Fig. 2. Results of progressive dissolution of three ostracode
samples from the Wilson Creek Formation (I. Hajdas, un-
published data). The patterned areas represent the 1c analyt-
ical uncertainties on the analyses. The sample from 0.5 m
was replicated. The fractions are estimated by the pressure of
CO2 evolved as the samples were partially dissolved in the
extraction device. We dissolved away 50% of the CaCO3

from the samples from 1.0 and 1.6 m prior to sending them
to ETH.
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timate an age greater than 46 14C ka whereas
Benson et al. [38] estimate 36 14C ka. These di¡er-
ences can be explained by just a slightly higher
(V1%) modern carbon contamination bias in
the bulk carbonate 14C data reported by Benson
et al. [38]. Our 14C analyses on partially dissolved
carbonate are probably not completely free of
contamination and are therefore probably still
biased to younger ages on this basis alone. With
the caveat of potential addition of dead carbon at
the time of carbonate crystallization (we sub-
tracted 1000 years from the measured 14C dates
as a ¢rst order correction for reservoir e¡ects [43^
45]; Table 1), a strong case is thus emerging that
14C age estimates from carbonates provide a mini-
mum age of the sample (see also [38,40]). In ad-
dition, although the variable 14C production rate
is not well calibrated beyond about 20 ka (e.g.,

[46^51]), the correction of 14C apparent dates to
calendar years is expected to be positive by several
thousand years (Table 1).

4. 40Ar/39Ar data for ash layers at Mono Lake

The Wilson Creek section contains 19 volcanic
ash layers [25] that allow the possibility of using
the 40Ar/39Ar dating technique as an independent
chronometer [52]. The ashes are numbered #1 to
#19 from the top of the section [25] ; the Mono
Lake excursion is virtually bisected by Ash #15
which can be traced throughout the Mono Basin
[26,28]. Although analytically feasible in favorable
cases, the Wilson Creek ashes are pushing the
young limits of the 40Ar/39Ar dating method,
and results can be complicated by extended mag-

Table 1
Radiocarbon data from Wilson Creek Formation carbonate samples from Wilson Creek section

ETH St Height Material 14C agea þ N
13C þ Fraction Ageb Plusb Minusb

(m)

19 889 0.50 Ostracodesc 39 700 790 2.6 1.2 0.268 41 200 3 300 3 340
20 298 8 971 0.50 Ostracodesd 41 590 890 2.0 1.2 0.634 42 390 7 500 2 000
21 056 9 915 0.51 Ostracodes 46 100 1 700 0.7 1.2 0.595 45 900 200 2 200
20 190 1.00 Ostracodese 36 250 430 3.4 1.1 0.253 38 350 4 100 3 780
20 191 1.60 Ostracodesf 33 610 360 3.0 1.2 0.227 35 610 4 500 1 450
21 419 9 900 2.00 Tufa nodules 31 240 360 6.9 1.2 0.878 33 640 700 2 200
21 420 9 901 2.00 Ostracodes (crusted) 33 400 580 2.1 1.2 0.619 35 600 3 700 1 900
21 421 9 902 2.50 Tufa nodules 29 490 320 3.2 1.2 0.806 32 390 500 2 000
21 422 9 903 2.50 Ostracodes (crusted) 30 510 360 4.0 1.2 0.641 32 710 550 2 300
21 429 9 910 2.64 Ostracodes (crusted) 29 400 290 31.3 1.2 0.392 31 900 330 2 200
21 423 9 904 3.10 Tufa nodules 26 290 230 4.7 1.2 0.479 28 790 1 200 2 400
21 424 9 905 3.10 Ostracodes (crusted) 27 620 260 2.2 1.2 0.569 30 120 1 000 2 500
21 426 9 907 3.50 Ostracodes (crusted) 23 080 200 3.3 1.2 0.478 25 380 200 2 300
21 427 9 908 3.50 Ostracodes 23 860 240 0.6 1.2 0.515 26 160 900 2 400
21 430 9 911 3.66 Ostracodes (crusted) 23 720 190 5.2 1.2 0.336 25 720 800 2 200
21 431 9 912 4.67 Ostracodes (crusted) 21 170 160 30.1 1.2 0.457 23 170 400 2 200
21 432 9 913 4.67 Ostracodes (crusted) 20 020 150 1.7 1.2 0.485 22 020 700 2 200
a Measured 14C age of residual carbonate, after sequential dissolution within the evacuated extraction device. Measurements
were made at ETH, Zurich. No corrections are applied. Leach fraction analyzed is indicated in the column labeled fraction.
b Corrected calendar age and assigned uncertainties. 1000 years have been subtracted from the measured values as a ¢rst order
reservoir correction, although values as high as 2500 years have been found for tufa^wood pairs [43]. The reservoir-corrected
ages were then corrected based on published 14C^calendar comparisons in that age range [47,49,50,60] to give the ‘Age’ estimate.
The plus and minus errors are estimated by taking 800 and 2500 year reservoir corrections [43] and adding the minimum pub-
lished calendar age di¡erence to the 2500 year-corrected value, and the maximum published calendar age di¡erence to the 800
year-corrected value.
c Dissolution steps shown in Fig. 3. Recalculated bulk age 37 803.
d Dissolution steps shown in Fig. 3. Recalculated bulk age 38 793.
e Dissolution steps shown in Fig. 3. Recalculated bulk age 33 768.
f Dissolution steps shown in Fig. 3. Recalculated bulk age 32 318.
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ma chamber residence (e.g., [53,54]) or other sour-
ces of old inherited ages (e.g., [52,55,56]). Chen et
al. [52] reported 40Ar/39Ar analyses from individ-
ual sanidine crystals from ash layers #5 and 12 in
the Wilson Creek Formation from the south shore
of Mono Lake. They found a range of sanidine
ages in each ash layer but proposed that the
youngest populations could be interpreted as the
eruption ages because they were generally consis-
tent with 14C ages. For our study, we analyzed
sanidine separates from Ashes #8, 15, and 16.
The new and published 40Ar/39Ar data are shown
as isochron plots and ideograms in Fig. 3.

The individual ash layers from the Wilson
Creek Formation we studied are well de¢ned
with uniform thicknesses on outcrop scale and
occur in the same packaging at the south shore
and Wilson Creek sections, suggesting there has
been little sedimentary reworking. Nevertheless,
the ash layers are usually characterized by a
wide range of sanidine ages. As an example that
is directly pertinent to the age of the Mono Lake
excursion, 34 individual sanidine crystals from
Ash #15 yielded ages between 49 and 108 ka, a
range far exceeding the analytical precision of in-
dividual single-grain measurements (Table 2, Fig.
3G,H). The integrated age is 62.7 þ 0.4 ka but is
unlikely to represent any particular igneous event
since there are distinct subpopulations of sanidine
ages. More meaningful is the constraint on the
maximum depositional age for Ash #15 as
49.9 þ 0.8 ka, represented by eight of the 34 anal-
yses by selecting the youngest grain and those
grains with ages within its analytical uncertainty.
By the same argument, the maximum depositional
ages for Ashes #5, 12, and 16 are 23.1 þ 1.2 ka,
35.4 þ 2.8 ka, and 51.4 þ 1.0 ka, respectively. The
fact that the youngest sanidine age can only be
regarded as the maximum depositional age for an
ash layer is highlighted by the sobering results
from Ash #8. Although stratigraphically above
and therefore younger than Ash #12, which has
a maximum 40Ar/39Ar age of 35.4 ka, all 13 sani-
dines in the sample from Ash #8 yielded 40Ar/
39Ar ages between 764 and 810 ka, with an iso-
chron age of 762.9 þ 0.5 ka (Fig. 3C,D). Clearly,
the entire measured population of sanidines in the
sample from Ash #8 represents contamination

from a much earlier event, perhaps by erupting
through the nearby Bishop Tu¡. More extensive
sampling would be needed to isolate any mag-
matic sanidine associated with this and some of
the other eruptions.

5. Age model for Wilson Creek section at
Mono Lake

To derive age estimates for the Mono Lake ex-
cursion from these data, we have taken three al-
ternative approaches in constructing an age model
for the Wilson Creek section (Fig. 4). Although
both dating systems are complicated, in this con-
text the 14C dates provide minimum constraints
and the 40Ar/39Ar dates provide maximum con-
straints on the age of deposition. According to
the published paleomagnetic data [26], the Mono
Lake excursion in the Wilson Creek section can
be inferred to extend from V15 cm below to
V15 cm above Ash #15, where the most negative
inclination was measured in a sample located 9.9
cm below Ash #15.

Model 1 assumes a constant sedimentation rate
of about 19 cm/kyr, calculated by ¢tting the 14C
results between 2 and 4 m in the section (to avoid
an apparent 14C age reversal in a subset of seven
samples from the interval of 0.61^1.42 m; I. Haj-
das, personal communication, 2000). This ap-
proach yields minimum ages of 33.7 ka for Ash
#15 and 34.2 ka for the diagnostic most negative
inclination of the Mono Lake excursion. Model 2
also assumes a constant sedimentation rate, which
in this case is V13 cm/kyr as calculated from a ¢t
to the minimum 40Ar/39Ar ages for Ashes #5, 12
and 16. This yields an estimate of 40.2 ka for Ash
#15, and 40.8 ka for the most negative inclination
of the Mono Lake excursion. Model 3 is a hybrid
that assumes a change of sedimentation rate at
the beginning of Tioga glaciation (3.3 m, V29
ka [38]), from about 11 cm/kyr that accommo-
dates the 40Ar/39Ar age for Ash #16 and the
46.1 þ 1.7 14C ka age near the base of the section,
to 19 cm/kyr using the 14C-based ages for the
upper part of the section as in Model 1. This
preferred age model yields an estimate of 37.4
ka for Ash #15 (Table 3) and 38.2 ka for the level
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of most negative inclination of the Mono Lake
excursion. Note that the 14C dates can be recon-
ciled to Model 3 by assuming a very small resid-
ual bias of 0.5^1.5% modern carbon contamina-
tion in our carbonate 14C data (Fig. 4).

6. Implications of age model for ‘Mono Lake
excursion’

We conclude that the Mono Lake excursion at
the Wilson Creek type locality is older than 34.2
ka based on interpolation of 14C data taken at
face value and younger than 49.9 ka based on
the youngest population of sanidines in Ash
#15, and most probably occurred somewhere be-
tween 38 and 41 ka. These age limits overlap the
best available age constraints for the Laschamp
excursion at its type locality as discussed above
(Fig. 4). Lacking a distinguishable di¡erence in
age, the paleomagnetic feature that has heretofore
been identi¢ed as the Mono Lake excursion at
Wilson Creek should most logically be regarded
as a record of the Laschamp Excursion. Indirect
support for this conclusion is the absence of a
second geomagnetic excursion that might other-
wise be identi¢ed as the Laschamp in the pub-
lished paleomagnetic records from below (as
well as above) the Mono Lake feature at Wilson
Creek [24,26,39], even though the lacustrine sec-
tion is now documented to extend to at least 46
14C ka and thus encompassing the age constraints
(V35 14C ka in North Atlantic sediment cores
[49]) of the Laschamp Excursion.

In detailed paleomagnetic records from North
Atlantic sediment cores placed on the GISP2 time
scale, negative inclinations associated with the La-
schamp Excursion occur over only V1500 years
and correspond to a marked decrease in geomag-

netic paleointensity in the NAPIS-75 stacked rec-
ord at V41 ka [9,11]. A similar picture emerges
for the published paleomagnetic record for the
Wilson Creek section using our new age con-
straints: the short interval of negative inclinations
just below Ash #15 corresponds to a decrease in
relative paleointensity at an estimated age of V39
ka, which we do not regard as signi¢cantly di¡er-
ent from the GISP2 age estimate of V41 ka for
the Laschamp Excursion (Fig. 5). No other inter-
val with reproducible negative inclinations has
been documented from at least 30 to 50 ka in
the recent study of North Atlantic cores [9] (but
see also [57]) or from 13 ka to the base of the
Wilson Creek section [26,39], which we estimate
is at least 46 14C ka.

A major peak in the £ux of cosmogenic iso-
topes is observed in ice core and sediment records
[12^16,20,58] and has been linked to very low geo-
magnetic intensities associated with the Laschamp
Excursion [17]. A second, younger peak in cosmo-
genic isotopes has also been identi¢ed in some ice
core and sediment records and attributed to the
Mono Lake excursion [22,23,49]. This subsidiary
cosmogenic isotope peak may very well be asso-
ciated with low geomagnetic intensities observed
at around 34 ka in the NAPIS-75 record (Fig. 5);
however, it should not be identi¢ed with the
Mono Lake excursion which we have shown is
not distinguishable in age at its type locality
from the Laschamp Excursion that has priority
in nomenclatural usage.

Highly divergent directions taken as evidence of
geomagnetic excursions are invariably associated
with major decreases in paleointensity (DIPs),
which must involve the global dipole ¢eld [6]. A
case in point is the Laschamp Excursion. How-
ever, the converse often does not hold so that a
DIP may not always be associated with divergent

Fig. 3. Isochron plots (left side) and ideograms (right side) of 40Ar/39Ar data from Wilson Creek Ashes #5, 8, 12, 15, and 16. In
each isochron plot the gray area (sphenochron, terminology of [52]) represents the range of measured ages for the ash, with the
minimum population labeled. Dashed line is our 14C-based calendar year estimate as labeled. In the ideogram plots, the vertical
arrow marks the youngest population, except in D where the age of Ash #8 is estimated by interpolation between ashes #5 and
12. (A,B) Isochron plot and ideogram for Ash #5. Data from Chen et al. [52]. (C,D) Isochron plot (age calculated from all 13
sanidine analyses) and ideogram for Ash #8. (E,F) Isochron plot and ideogram for Ash #12. Data from Chen et al. [52]. (G,H)
Isochron plot (age calculated from eight of 34 analyses) and ideogram for Ash #15. (I,J) Isochron plot (age calculated from ¢ve
of 40 analyses) and ideogram for Ash #16.
6
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Table 2
40Ar/39Ar data from individual sanidine crystals from volcanic ashes in Wilson Creek Formation collected from the south shore
of Mono Lakea

Sampleb Ca/K 36Ar/39Ar 40Ar*/39Ar Mol 40Ar Mol 39Ar % 40Ar* Age þ
(ka)

Ash #8
10388-01 0.0224 0.00337 5.019 3.4E-14 5.9E-15 83.5 808.5 3.9
10388-02 0.0201 0.00219 4.960 1.9E-14 3.5E-15 88.5 799.0 5.8
10388-03 0.0205 0.00185 4.898 2.2E-14 4.2E-15 90.0 788.9 3.9
10388-05 0.0188 0.00210 4.959 2.4E-15 2.7E-16 88.9 798.6 7.7
10388-06 0.0236 0.00198 5.028 1.2E-14 2.3E-15 89.6 810.0 9.2
10388-07 0.0180 0.00288 4.890 2.2E-14 4.2E-15 85.2 787.6 7.4
10388-08 0.0183 0.00130 4.813 1.2E-14 2.1E-15 92.6 775.4 6.7
10388-09 0.0155 0.00170 4.937 9.8E-15 2.0E-15 90.8 795.1 7.6
10388-10 0.0115 0.00093 4.781 1.2E-14 2.2E-15 94.5 770.0 6.8
10388-11 0.0118 0.00087 4.877 1.3E-14 2.6E-15 95.0 785.5 7.4
10388-13 0.0194 0.00218 4.792 9.9E-15 2.0E-15 88.1 771.9 9.6
10388-14 0.0208 0.00069 4.858 8.5E-16 2.3E-16 96.0 782.4 7.4
10388-15 0.0232 0.00135 4.744 9.0E-15 1.7E-15 92.3 764.2 6.5
Ash #15
10386-01 0.0161 0.01272 0.365 6.0E-14 1.5E-14 8.8 58.7 3.3
10386-03 0.0145 0.00216 0.352 4.7E-15 4.8E-15 35.6 56.8 1.7
10386-04 0.0144 0.00085 0.306 3.1E-15 5.4E-15 55.0 49.3 0.9
10386-08 0.0186 0.00133 0.492 3.6E-15 4.0E-15 55.6 79.1 1.6
10386-09 0.0162 0.00371 0.306 7.6E-15 5.4E-15 21.9 49.5 1.9
10386-12 0.0144 0.00563 0.336 8.5E-15 4.2E-15 16.8 54.2 2.5
10386-13 0.0180 0.02284 0.355 3.0E-14 4.3E-15 5.0 57.2 6.3
10386-16 0.0166 0.00173 0.577 4.9E-15 4.5E-15 53.1 92.9 1.4
10386-20 0.0138 0.00530 0.313 7.3E-15 3.9E-15 16.6 50.3 2.8
10386-21 0.0134 0.00122 0.340 1.5E-15 2.1E-15 48.6 54.6 1.9
10386-22 0.0166 0.00379 0.341 3.8E-15 2.6E-15 23.4 55.1 2.8
10386-25 0.0158 0.00488 0.673 5.5E-15 2.6E-15 31.8 108.4 3.1
10386-26 0.0154 0.00105 0.343 1.9E-15 2.9E-15 52.5 55.3 2.0
10386-27 0.0141 0.00594 0.360 6.6E-15 3.1E-15 17.0 58.1 3.2
10386-30 0.0163 0.00174 0.395 3.2E-15 3.5E-15 43.4 63.7 1.7
10386-33 0.0143 0.00350 0.446 4.5E-15 3.0E-15 30.1 71.8 2.5
10386-34 0.0143 0.00206 0.376 1.7E-15 1.7E-15 38.2 60.4 2.9
10386-35 0.0145 0.00514 0.405 3.2E-15 1.7E-15 21.1 65.2 3.7
10386-36 0.0141 0.00326 0.406 2.8E-15 2.0E-15 29.7 65.4 3.2
10386-37 0.0167 0.00755 0.458 5.2E-15 1.9E-15 17.0 73.8 4.1
10386-38 0.0184 0.00196 0.496 2.5E-15 2.3E-15 46.2 80.0 2.5
10386-39 0.0133 0.00114 0.417 2.3E-15 3.0E-15 55.4 67.1 1.9
10386-40 0.0137 0.00326 0.324 3.0E-15 2.3E-15 25.2 52.0 3.0
10386-41 0.0136 0.00195 0.310 1.5E-15 1.7E-15 35.0 49.9 2.4
10386-42 0.0153 0.00184 0.445 1.5E-15 1.5E-15 45.1 71.8 2.9
10386-43 0.0246 0.00129 0.434 2.7E-15 3.2E-15 53.3 69.9 1.7
10386-44 0.0124 0.00369 0.378 2.1E-15 1.4E-15 25.7 60.9 3.8
10386-45 0.0129 0.00286 0.449 1.9E-15 1.5E-15 34.7 72.3 3.5
10386-46 0.0131 0.00296 0.357 2.4E-15 1.9E-15 29.0 57.6 3.0
10386-47 0.0204 0.00162 0.316 1.9E-15 2.4E-15 39.8 50.8 2.1
10386-48 0.0143 0.00466 0.494 3.8E-15 2.0E-15 26.4 79.6 4.2
10386-49 0.0240 0.00301 0.468 2.4E-15 1.8E-15 34.5 75.3 3.2
10386-50 0.0164 0.00199 0.397 2.1E-15 2.1E-15 40.3 64.1 2.0
10386-51 0.0134 0.00245 0.381 1.5E-15 1.3E-15 34.5 61.3 3.6

EPSL 6121 17-4-02

D.V. Kent et al. / Earth and Planetary Science Letters 197 (2002) 151^164158



directions whose occurrence may depend on the
relative magnitude and local con¢guration of the
non-dipole ¢eld as well as the ¢delity of the mag-
netic record. The DIP at 34 ka, which is typically
not as pronounced as the DIP associated with the

Laschamp Excursion at 41 ka [11], is an example
of a geomagnetic feature with a more ephemeral
expression in paleomagnetic directions (e.g.,
[9,57]). DIPs are clearly a key element for the
interpretation of geomagnetic excursions as well

Table 2 (Continued).

Sampleb Ca/K 36Ar/39Ar 40Ar*/39Ar Mol 40Ar Mol 39Ar % 40Ar* Age þ
(ka)

Ash #16
10387-01 0.0140 0.01504 0.321 2.6E-14 5.5E-15 6.7 51.6 6.2
10387-02 0.0150 0.01098 0.598 1.7E-14 4.3E-15 15.6 96.4 8.8
10387-03 0.0152 0.01079 0.418 4.3E-14 1.2E-14 11.6 67.3 5.2
10387-04 0.0133 0.00417 0.380 1.2E-14 7.4E-15 23.6 61.1 4.1
10387-05 0.0162 0.00385 0.407 1.6E-14 1.1E-14 26.4 65.6 2.7
10387-06 0.0156 0.01315 0.320 2.5E-14 6.0E-15 7.6 51.6 7.2
10387-08 0.0144 0.00392 0.430 8.2E-14 3.8E-15 27.1 69.3 2.6
10387-09 0.0148 0.00310 0.397 1.5E-14 9.7E-15 30.3 64.1 3.4
10387-10 0.0155 0.00354 0.414 5.4E-15 4.1E-15 28.4 66.7 4.5
10387-11 0.0186 0.00694 0.513 7.2E-15 4.9E-15 20.0 82.6 4.3
10387-12 0.0156 0.00183 0.387 2.6E-14 1.0E-14 41.7 62.4 3.8
10387-13 0.0129 0.00255 0.479 4.5E-15 4.8E-15 38.9 77.2 6.1
10387-14 0.0137 0.00230 0.484 4.4E-15 3.5E-15 41.7 78.1 5.7
10387-15 0.0137 0.02553 0.363 3.7E-15 3.1E-15 4.6 58.5 13.7
10387-17 0.0116 0.00450 0.427 2.7E-14 3.4E-15 24.3 68.8 7.8
10387-18 0.0153 0.00920 0.388 5.4E-13 1.2E-14 12.5 62.4 7.1
10387-20 0.0124 0.00100 0.418 5.5E-15 3.1E-15 58.6 67.3 4.1
10387-21 0.0151 0.00227 0.456 1.6E-14 5.0E-15 40.5 73.3 3.8
10387-22 0.0120 0.01780 0.419 2.9E-15 4.1E-15 7.4 67.5 12.8
10387-23 0.0145 0.00244 0.403 4.2E-15 3.7E-15 35.8 65.0 4.4
10387-24 0.0124 0.04250 0.559 1.4E-14 2.4E-15 4.3 89.9 14.5
10387-25 0.0175 0.00867 0.412 5.3E-15 4.7E-15 13.9 66.2 9.6
10387-26 0.0142 0.01435 0.326 4.1E-14 3.1E-15 7.1 52.5 9.9
10387-27 0.0137 0.00455 0.426 8.2E-15 2.8E-15 24.1 68.6 5.4
10387-28 0.0127 0.03171 0.360 9.3E-15 2.0E-15 3.7 58.1 12.2
10387-29 0.0114 0.00093 0.443 4.8E-15 2.7E-15 61.7 71.4 5.3
10387-30 0.0134 0.00256 0.464 5.2E-14 5.3E-15 38.0 74.6 5.4
10387-31 0.0135 0.00361 0.519 1.1E-15 1.6E-15 32.7 83.4 5.0
10387-32 0.0172 0.00197 0.387 4.4E-15 3.6E-15 39.9 62.4 3.7
10387-33 0.0148 0.00832 0.465 7.9E-15 4.9E-15 15.9 74.8 8.9
10387-34 0.0125 0.00202 0.518 3.6E-15 3.6E-15 46.4 83.4 5.7
10387-35 0.0125 0.00561 0.393 8.2E-15 2.8E-15 19.2 63.2 7.1
10387-36 0.0125 0.00376 0.489 3.3E-15 2.9E-15 30.6 78.7 4.9
10387-37 0.0122 0.00172 0.505 7.4E-15 3.6E-15 49.9 81.3 8.5
10387-38 0.0124 0.00088 0.385 2.8E-15 1.7E-15 59.7 61.9 4.9
10387-39 0.0105 0.00192 0.396 2.1E-15 2.1E-15 41.1 63.9 5.2
10387-40 0.0113 0.00170 0.311 1.9E-15 3.0E-15 38.3 50.1 6.7
10387-41 0.0109 0.00153 0.378 2.6E-15 2.7E-15 45.5 60.9 6.4
10387-42 0.0122 0.00064 0.399 1.5E-15 1.8E-15 68.0 64.3 7.3
10387-43 0.0157 0.00198 0.379 1.9E-15 2.3E-15 39.4 61.1 3.7
a Samples were co-irradiated with Cobb Mountain sanidine [61] for 20 min at Oregon State University reactor; J-value was de-
termined to be 8.645E-5 þ 1.559E-7. Measurements were made in the Ar geochronology lab at LDEO. Ages were calculated from
Ar isotope ratios corrected for mass discrimination, interfering nuclear reactions, procedural blanks, and atmospheric Ar contam-
ination.
b Italicized samples were used to calculate the age of the minimum populations for Ashes #15 and 16.
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as being of fundamental importance for assessing
geomagnetic modulation of cosmogenic isotope
production rates. A separate identi¢cation scheme
for paleointensity highs and lows might therefore
be useful for correlation. For example, using the
NAPIS-75 record as a template, the DIPs at 34 ka
and 41 ka could be referred to as p5 and p7,
respectively, and the bracketing paleointensity
highs as p4, p6 and p8, and so forth as illustrated
in Fig. 5, reserving p2 for the paleointensity high
at V2 ka and p1 for the subsequent decrease to
the present according to archeomagnetic records
[59].

One broader implication of our revised overall
chronology of the Wilson Creek section concerns
the correlation of lake level variations in the
Mono Lake basin and Heinrich events in the
North Atlantic. Benson et al. [38] found four
N

18O peaks (L1^L4) that they interpreted to rep-
resent persistent dry intervals of V1^2 kyr dura-
tion. The youngest peaks (L1 and L2) appear to
be reasonably correlated with Heinrich events H1
and H2. Due to uncertainties in the chronology,
they were unable to ¢nd a correlation for L3 but
suggested that L4 might correlate to H4. Our pro-
posed age model for the Wilson Creek Formation
would suggest correlation of L3 with H4 (V38
ka) and L4 with H5 (V45 ka) although the age
interpretation for L4 is much less certain with the

Fig. 4. Geochronological constraints for the Wilson Creek
Formation. Horizontal dashed lines, labeled at right, are the
locations of the ash layers at the type locality [25]. Radiocar-
bon data (open circles) are from residual carbonate materials
after removing between 12 and 78% in the extraction appara-
tus (Table 1). 40Ar/39Ar data (black triangles) are from the
youngest population of measured individual sanidines (Table
2, Fig. 3) and represent the maximum age of the ashes that
contain them. Solid and dashed lines labeled 1, 2, and 3 are
three sedimentation rate models based on the 14C and 40Ar/
39Ar data (see text for description). Shaded sinuous area cor-
responds to the calculated e¡ect of residual bias from 0.5 to
1.5% modern carbon contamination applied to Model 3 esti-
mates. Age estimates for the Mono Lake excursion at Mono
Lake, shown by solid bar (most probable) and dashed bar
(extrema) for the interval with negative inclinations, are com-
pared to the Laschamp Excursion at Olby/Laschamp esti-
mated as 39^45 ka (see text) and shown by shaded bar.

Table 3
Estimated ages of volcanic ash layers in Wilson Creek For-
mation based on age Model 3 in Wilson Creek section

Ash # Age
(ka)

5 23.6
6 24.0
7 24.3
8 30.4
9 32.2
10 32.7
11 32.9
12 33.1
13 33.3
14 33.5
15 37.4
16 50.8
17 52.1
18 55.3
19 55.4
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available data. This alternative correlation is also
consistent with the ¢rst order features of geomag-
netic paleosecular variation in these regions, most
obvious being the match of the intervals of low
relative paleointensity and negative inclination as-
sociated with the Laschamp Excursion (Fig. 5).
Nevertheless, our hypothesis can be refuted if sa-
nidines signi¢cantly younger than the V41 ka age
of the Laschamp Excursion are eventually found
in ash layers at or below the ‘Mono Lake excur-
sion’ in the western USA.
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