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Abstract

An updated analysis of the global paleomagnetic database shows that the frequency distributions of paleomagnetic
inclinations for the Cenozoic and Mesozoic eras (younger than 250 Ma) are compatible with a random geographical
sampling of a time-averaged geomagnetic field that closely resembles that of a geocentric axia dipole. In contrast,
the frequency distributions of paleomagnetic inclinations for the Paleozoic and Precambrian eras (prior to 250 Ma) are
over-represented by shallow inclinations. After discounting obvious secondary causes for the bias, such as from data
averaging, sedimentary inclination error, inhomogeneous lithological distributions, and tropical remagnetization, we show
that the anomalous inclination distributions for the Paleozoic and Precambrian can be explained by a geomagnetic field
source model which includes a relatively modest (~25%) contribution to the axial dipole from a zonal octupole field
and an arbitrary zona quadrupolar contribution. The apparent change by around 250 Ma to a much more axial dipolar
field geometry might be due to the stabilization of the geodynamo from growth of the inner core to some critical
threshold size, a gross speculation which would imply that either the threshold size was rather large or the inner core
nuclested rather late in Earth history. Alternatively, if a geocentric axial dipole model is assumed or can eventualy be
demonstrated independently, the anomalous inclination distributions for the Paleozoic and Precambrian may reflect a
tendency of continental lithosphere to be cycled into the equatorial belt, perhaps because geoid highs associated with
long-term continental aggregates influence true polar wander. [0 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

A working model of the time-averaged geomag-
netic field as that of a geocentric axial dipole (GAD)
has proven to be an enormoudly successful and pow-
erful hypothesis in paleomagnetism and is the sim-
plest and most testable field configuration [1]. Strong
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empirical support for the GAD hypothesis comes
from analyses of the time-averaged paleomagnetic
field for the most recent 5 Myr, a time interva
represented by abundant, relatively uncomplicated
data from globally distributed and well located ge-
ographical sites. Such studies show that the GAD
model is a very good approximation to the observa-
tions; the only persistent departures from the axial
dipole (¢?) that can be adequately resolved tend
to be small (~5%) contributions from zonal non-

0012-821X/98/$19.00 [ 1998 Elsevier Science B.V. All rights reserved.

PIl S0012-821X(98)00099-5


https://core.ac.uk/display/161439257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

392 D.V. Kent, M.A. Smethurst / Earth and Planetary Science Letters 160 (1998) 391-402

dipole (quadrupole, g2, and perhaps octupole, g3)
fields (e.g., [2]). The strongly zonal character of the
time-averaged field is not unexpected given the im-
portance of westward drift in the secular variation
[3] and means that the geometry of the time-aver-
aged field can be delineated using only magnetic
inclination data.

Geomagnetic field models become increasingly
less well constrained for older epochs [4,5], but the
broad success of paleomagnetic studies in describing
plate motions (e.g., [6]) and accounting for the geo-
graphical distribution of paleoclimate indicators [7—
11] strongly suggests that the GAD was a dominant
feature of the time-averaged geomagnetic field over
at least much of the Phanerozoic, or the past 550 Ma.
For the preceding and much longer Precambrian Era,
the GAD model is used virtually by default because
the lower density of good quality data, the ambi-
guity of paleocontinental reconstructions (e.g., [12—
14]) and the often uncertain latitudinal significance
of what few paleoclimate indicators are available
(e.g., [15-17]) severely limit our ability to entertain
aternative paleofield models. However, recent theo-
retical work shows that the Earth’'s inner core plays
an important role in the dynamo process [18,19] and
yet it may conceivably not have formed until late
in Earth’s history [20]. The possibility that the fun-
damental generating conditions of the geomagnetic
field have varied over geological time provides ad-
ditional motivation to test the GAD hypothesis by
some technique that is not dependent on specific
paleoclimatological or paleogeographical interpreta-
tions.

Evans [21] used the frequency distribution of pa-
leomagnetic inclinations to test the dipolar nature of
the geomagnetic field over the Phanerozoic. Here,
we conduct a similar test using an updated catalog
of global paleomagnetic results for the Phanero-
zoic as well as the Precambrian. After considera-
tion of possible systematic artifacts, we show that
a marked change in paleomagnetic inclination dis-
tributions since the Paleozoic can be modeled by a
decrease in non-dipole field (NDF) contributions to
the GAD and speculate that this might be due to the
stabilizing effects on the geodynamo of a growing
inner core. Alternatively, the shallow bias in paleo-
magnetic inclinations in the Precambrian and Pale-
ozoic could imply that the continents preferentially

cycled through low-latitude positions, triggering or
triggered by episodes of true polar wander.

2. Analysis of paleomagnetic inclinations

Evans showed that for any given zonal multipole
field there is a distinctive frequency distribution of
magnetic inclination (1) for a set of observations
made at randomly dispersed geographic sites. The
expected frequency distributions of | can be readily
obtained by calculating | in fixed intervals of cos(6),
where 6 is colatitude, to account for the latitudinal
dependence of surface area on the globe. We used
0.001 increments of cos(@) for 6 between 0° and
180° to generate 2001 values of | whose latitudinal
dependence for any combination of axial dipole,
quadrupole or octupole can be obtained from the
relationship:

tan(l) = {2cosf + G2[(9/2) cos’ 6 — (3/2)]
+G3(10cos’ 6 — 6cosh) }
x {sin® + G2(3sinH cosoH)

+G3[(15/2) sind cos’6 — (3/2)sin6]}

where G2 = g9/¢? and G3 = g3/¢? [2,22]. Rep-
resenting each inclination by its absolute value, |1,
so that data of normal and reversed polarity and/or
from the Northern and Southern Hemisphere can be
combined, and sorting the calculated values of |1 in
10° classintervals, we can obtain the same frequency
distribution for an axial dipole (i.e., for G2 = 0 and
G3 = 0) as shown by Evans [21]. This characteris-
tic frequency distribution, where |I| has a mean of
46.5°, a peak or mode in the range of 60°—70° and
very low frequencies between 80°-90°, corresponds
to the GAD model and serves as the null hypoth-
esis for testing observed paleomagnetic inclination
distributions.

We analyzed 6419 mean inclinations from rock
units ranging in age from 3500 Ma to Recent that
were compiled in an updated global paleomagnetic
database (GPMDB v. 3.1; [23]). The compilation in-
cludes mean paleomagnetic directions for individual
rock units so that the mean inclinations we use in
the analysis will already represent some time-aver-
aging of the geomagnetic field. The reliability of
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the data is undoubtedly very heterogeneous but a
uniform quality evaluation or grading of the entire
database is not yet available. From the overall total
of 7569 entries in the database, we chose to exclude
only results described by the authors of the stud-
ies as representing secondary magnetizations. This
liberal acceptance criterion has the practical bene-
fit of allowing a large data inventory in which the
very poor data would contribute mainly noise to the
analysis. Of greater concern are systematic errors
introduced by datathat are even seemingly adequate;
fortunately, the importance of such tendenciesin the
database can be modeled and evaluated statistically,
as described below.

Sampling distributions for the Cenozoic (0—65
Ma; n = 1536 inclinations), Mesozoic (65-250 Ma;
n = 1791), Paleozoic (250-550 Ma; n = 1815) and
Precambrian (550-3500 Ma; n = 1277) are shown
in Fig. 1. Even though the chosen time intervals
vary widely in duration, they correspond to the main
subdivisions of Earth history according to eras and
also happen to contain subequal numbers of data
points for the analysis. The corresponding frequency
distributions of |I| for these time intervals are shown
in Fig. 2a. The main feature is that the distributions
for the Paleozoic and Precambrian are noticeably
skewed to lower |I| values compared to the Ceno-
zoic and Mesozoic. For example, mean |I| are only
31° and 37° for the Paleozoic and Precambrian, re-
spectively, and 49° and 46° for the Cenozoic and
Mesozoic, respectively. None of the distributions,
however, closely resembles the curve for the GAD
model.

To minimize bias from spatiotemporal concentra-
tions of sampling, the absolute values of the cata-
loged inclinations were averaged within 10° x 10°
latitude/longitude areas for eleven geologic peri-
ods in the Phanerozoic (Neogene, Paleogene, Creta
Ceous, ... , Ordovician, Cambrian) and in 50-Ma
intervals in the Precambrian. The technique and
its rationale are the same as advanced by Evans
[21] with the result that there are fewer but more
evenly distributed data points. The binned data were
then grouped to construct frequency distributions of
[I] corresponding again to the Cenozoic (n = 253
binned inclinations), Mesozoic (n = 342), Paleozoic
(n = 352) and Precambrian (n = 531). There are
1478 binned values in al, or about one-quarter of

the 6419 discrete inclination results. The Phanero-
zoic (Cenozoic, Mesozoic and Paleozoic combined)
is represented by 5142 inclination values in 947 spa-
tiotemporal bins, considerably greater than the 1271
inclination values in 430 bins available to Evans
[21] in his analysis of approximately the same time
interval. The Precambrian was not included in the
analysis by Evans [21] but happens to be represented
here by alarger number of binned data than the other
eras because the very long duration of the Precam-
brian compensates for the fewer individua studies.
Piper and Grant [24] used a population of 4787 incli-
nation values for the Phanerozoic and Precambrian
but did not bin the datain their analysis.

For the binned data, the Cenozoic and Mesozoic
[l| distributions closely resemble the GAD model
(Fig. 2b). A x? test yields values of 3.63 and 7.18
for the Cenozoic and Mesozoic, respectively, which
are much lower than the critical xy? = 15.51 (eight
degrees of freedom, P = 0.05), indicating that there
is indeed no good statistical reason to reject the hy-
pothesis that the observed Cenozoic and Mesozoic
distributions conform to the predicted GAD distribu-
tion. Evidently the large number of geographically
dispersed data compensated for the relatively short
amount of time available for plate motion in the
Cenozoic and Mesozoic to produce a random pale-
ogeographical sampling of inclinations. The Paleo-
zoic and Precambrian |I| distributions of binned data,
however, till look decidedly skewed toward lower
values compared to the Cenozoic and Mesozoic, as
well asto the GAD model. For example, inclinations
less than 30° constitute 48% of the Paleozoic and
40% of Precambrian |l| values compared to only
28% for the GAD model, 24% for the Cenozoic
and 19% for the Mesozoic. The results of x? tests
yielding values of 32.23 for the Paleozoic and 20.39
for the Precambrian distributions confirm that these
distributions differ significantly from expectations of
the GAD modéd.

3. Sampling and recorder artifacts

The anomalous || distributions for the Paleo-
zoic and the Precambrian may simply be artifacts
of sampling bias or magnetic recording processes.
One might argue, for example, that with increas-
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Fig. 2. Frequency distributions of 1| for the Cenozoic, Mesozoic,
Paleozoic, and Precambrian, compared to predicted || distribu-
tion for GAD shown as heavy line. (8) Raw unweighted data
with number of |I| values for each era in parentheses. (b) Data
binned by averaging in 10° by 10° latitude/longitude areas and
the eleven geologic periods for the Cenozoic, Mesozoic and Pa
leozoic and 50-Ma time intervals for the Precambrian. Number
of binned |I| values for each erain parentheses.

ing geologic age, the 10° by 10° latitude/longitude
grids are more likely to lump together results from
far-traveled terrains, or that greater uncertainties in
age assignments might result in the averaging of
temporally distant results in the ~50-Ma intervals.
Without attempting to address the specifics of po-
tential sources of averaging bias, we note that the
[I] distributions for the Cenozoic and Mesozoic dif-
fer from the Paleozoic and Precambrian using either
binned (i.e., spatiotemporally weighted or averaged)
or individual data (Fig. 2). The obvious effect of
gpatiotemporal binning on the Cenozoic and Meso-
zoic data in bringing these |I| distributions closer

to the expected GAD pattern does indicate that the
averaging procedure successfully reduces bias due to
concentrated sampling.

Plate motions over the long durations of the Pa-
leozoic and especially the Precambrian should help
to produce a random (paleo)geographical sampling.
However, most of the paleomagnetic data for the
Paleozoic were obtained from Eurasia and North
America (Fig. 1c¢), regions which tended to oc-
cupy low paleolatitudes in the Paleozoic according
to independent lithofacies indicators of paleoclimate
(e.g., [25]). An anomalous distribution of |I| for the
Paleozoic was described previously by Piper and
Grant [24] and attributed to extensive remagnetiza-
tions in the late Paleozoic. These would exacerbate
the potential for a sampling bias but the pattern
could also be explained by the use of unweighted
inclination datain their analysis. In any case, Eurasia
and North America are also the source for much
of the available global Precambrian paleomagnetic
data (Fig. 1d) which have been interpreted to include
evidence for rapid apparent polar wander including
drift of these tectonic elements to regions with steep
inclinations [15,26]. Thus while sampling bias may
possibly contribute to the anomalous |1] distribution
for the Paleozoic, this is not an obvious explanation
to account for a similarly anomalous |1| distribution
for the Precambrian.

Contamination by younger magnetizations also
does not seem to provide an obvious explanation
for the bias to shallow inclinations in the Precam-
brian (and Paleozoic) because the overprinting might
be expected to produce frequency distributions more
similar to the GAD-like patterns of the Mesozoic and
Cenozoic. Asan extreme example, we cal cul ated that
if al the sampling sites had been remagnetized in the
present geomagnetic field, the resulting inclination
distributions for al four (Cenozoic to Precambrian)
data sets would in fact closely resemble the distribu-
tion for a GAD model.

Alternatively, the anomalous || distributions for
the Paleozoic and the Precambrian may be due to
the prevalence of secondary shalowing of paleo-
magnetic inclinations during deposition or subse-
guent compaction of sediments. Inclination error in
sediments has long been known from laboratory de-
position experiments to follow King's Rule [27,28]
which describes the remanent inclination, |;, as a
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function of the applied field inclination, 15, accord-
ing to the relationship:

tan(l,) = f = tan(ly)

where the flattening factor, f, can vary from 0 (to-
tal shallowing) to 1 (no shallowing). King's Rule is
applicable to a variety of models for depositional
remanent magnetization (see review by Tauxe [29])
and also seems to describe the shallowing effect of
compaction [30,31]. The frequency distributions of
[l] for a GAD model affected by different values of
flattening factor are shown in Fig. 3a. Values of f of
about 0.5 to 0.6 produce shifts to shallower inclina-
tions similar to those observed for the Paleozoic and
Precambrian inclination data. However, athough in-
clination shallowing corresponding to such values of
f has been observed in laboratory redeposition exper-
iments in a variety of sediments[29], the prevalence
of significant inclination shallowing in nature has
been difficult to document and generally thought to
be not important [32—34].

To assess the possible influence of inclination
shallowing on the present results, we compared |l|
distributions for sedimentary rocks with those for
crystalline rocks (igneous intrusives, igneous extru-
sives, and metamorphics). If sedimentary inclination
shallowing was important, the |I| distribution for
sedimentary rocks should be more skewed to lower
inclination values than for crystalline rocks in the
same age category. The mean |I| for sedimentary
rocks is actually a few degrees steeper than for crys-
talline rocks in the Cenozoic (47.3° vs. 45.8%), but is
relatively shallower in the Mesozoic (44.2° vs. 50.3°)
as well as in the Paleozoic (32.7° vs. 35.6°) and
Precambrian (31.5° vs. 39.5°). Of the four age cate-
gories, the Paleozoic data set has the largest number
of data from sedimentary rocks (n = 1112 inclina-
tion values in 282 hins) relative to crystalline rocks
(n = 703 inclination values in 172 bins), yet the
inclination distributions for crystalline and sedimen-
tary rocks are virtually the same for unbinned data
(Fig. 3b) even though the binned data are somewhat
noisy and difficult to compare (Fig. 3c). On the other
hand, the Precambrian has the largest proportion of
data from crystaline rocks (n = 388 hins) relative
to sedimentary rocks (n = 190 bins), even though it
shares with the Paleozoic an overall |I| distribution
skewed to lower inclinations. We therefore suggest
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Fig. 3. (a) Theoretica |I| distributions for representative values
of sedimentary inclination error flattening factor, f = 0.5 to
1.0 compared to predicted |I| distribution for GAD where f is
effectively equal to 1. (b) Comparison of |I| distributions for
Paleozoic paleomagnetic data from crystalline (igneous intrusive,
igneous extrusive, and metamorphic) rocks versus sedimentary
rocks for unweighted data. (c) Comparison of |I| distributions for
Paleozoic paleomagnetic data from crystalline (igneous intrusive,
igneous extrusive, and metamorphic) rocks versus sedimentary
rocks for binned data.
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that inclination flattening in sedimentary rocks is
not a primary cause of the shift toward shallower
inclinations that is apparent in the Paleozoic and
Precambrian data sets. Although all other possible
sources of secondary bias cannot be excluded cate-
gorically, we proceed to explore more fundamental
causes for the apparent change in the observed |I|
distributions over geologic time.

4. Zonal non-dipolefield contributions

The observational test described by Evans [21]
was specifically designed to discriminate a dipole
field from the fields of higher order zonal mul-
tipoles. Theoretical |I| frequency distributions for
pure quadrupole and octupol e fields are increasingly
flatter than the |I] distribution for the dipole field
(Fig. 44) and clearly do not provide a better fit to any
of the observed || distributions. However, it does
not necessarily follow that zonal field models more
complex than a GAD are unable to explain anoma-
lous |I| distributions such as those observed for the
Paleozoic or the Precambrian. In fact, plausible field
models that include only modest quadrupolar and
octupolar contributions to a dipole field can produce
asurprisingly wide range of |1| distributions.

Theoretical |I| distributions corresponding to con-
tributions of quadrupole relativeto axial dipole fields
(i.e., G2) ranging from —0.20 to +0.20 are shown in
Fig. 4b. Over thisrange of G2 values, the |1 distribu-
tions are not dependent on the sign and are not even
very sensitive to the magnitude of the quadrupolar
contribution. This is because the antisymmetry of
the quadrupolar contribution resultsin a hemispheric
compensation of steep and shallow inclinationswhen
expressed as a histogram of absolute values sampled
globally.

Theoretical |I| distributions corresponding to var-
ious contributions of octupole relative to axial dipole
fields (i.e,, G3) are shown in Fig. 4c. In this case,
the |I| distributions are very sensitive to both the
sign and the magnitude of the octupolar contribu-
tion. When G3 is negative (i.e., the sign of the
octupole field coefficient, gg, differs from the sign
of the dipole field coefficient, g‘{), modest octupolar
contributions cause inclinations to become gener-
ally steeper globally; this resultsin a |l| distribution
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Fig. 4. Theoretical |I| frequency distributions for different geo-
magnetic field models. (a) 1| distributions for GAD (geocentric
axial dipole), g2 (pure zonal quadrupole) and gz (pure zonal oc-
tupole). (b) |1 distributions for G2 (ratio of zona quadrupole to
axial dipole) varying from 0O (i.e., GAD) to +0.20. Note that ||
distribution is not sensitive to the sign of G2. (c) |I| distributions
for G3 (ratio of zona octupole to axia dipole) varying from
0 (i.e, GAD) to +0.20; aso shown is curve for G3 = —0.10
(dashed line) to illustrate sengitivity to the sign of G3.
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skewed to steeper inclinations compared to the GAD
model (Fig. 4c). This is not in the correct sense to
fit the observations for the Paleozoic and Precam-
brian. However, when the octupole and dipole field
coefficients have the same sign, and G3 is therefore
positive, modest octupolar contributions cause incli-
nations to become generally shallower globally. This
resultsin || distributions with greater frequencies at
shallower inclinations with increasing octupole con-
tribution so that a G3 equal to about +0.2 produces
a |l| spectrum that begins to resemble the observed
[I| distributions for the Paleozoic and Precambrian
(Fig. 4c).

We also examined |I| distributions in the parame-
ter space of modest quadrupolar plus octupolar con-
tributions. Although the frequency distributions of
[l| are not very sensitive to G2 alone (e.g., Fig. 4b),
the introduction of a small quadrupolar contribu-
tion (G2 = £0.1) to octupolar contributions varying
from G3 = +0.05 to G3 = +0.30 alows the de-
velopment of a mode in the |I| distribution at low
inclination values (Fig. 5). Theoretical |l| distribu-
tions resulting from asmall quadrupolar contribution
(G2 ~ £0.1) and a somewhat larger octupolar con-
tribution (G3 ~ +0.25) can provide a reasonable
though certainly not a unique match to the observed
Paleozoic and Precambrian distributions.
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Fig. 5. Theoretical || frequency distributions for geomagnetic
field models with a fixed contribution to the axial dipole from
a zonal quadrupole (G2 = +0.10) and various contributions
from a zonal octupole (G3 = +0.05 to +0.20), compared to the
anomalous |I| distributions for the Paleozoic and Precambrian
using binned data (see Fig. 2).

5. Discussion

To summarize the main observations, a compari-
son of predicted and observed || distributions shows
that the GAD hypothesis cannot be rejected for the
Cenozoic and Mesozoic, whereas the |I| frequency
distributions for the Paleozoic and Precambrian are
over-represented by low inclinations and are not
compatible with a GAD field model. An underlying
concern regarding the significance of these obser-
vations is that the paleomagnetic recording mecha-
nism(s) may have systematic biases that are more
prevalent in older rocks, for example, there may be
a greater likelihood of compaction-induced inclina-
tion shalowing in older and more deeper buried
sedimentary rocks. Although classical sedimentary
inclination error can in principle produce || distri-
butions that have a similar pattern to the observed
anomalous |l| distributions for the Paleozoic and
Precambrian, we see no convincing evidence for sys-
tematic differences in the observed inclinations that
might then be expected according to mgor litho-
logical types (i.e., sedimentary versus igneous and
metamorphic). Some of the key sedimentary facies
that are commonly studied for paleomagnetism, for
example carbonates and redbeds, do not have global
distributions but are more frequent in lower latitudes
(e.g., [9]). Thelack of obvious lithologic dependence
of inclinationsin the Paleozoic datawould also argue
that such a potential source of bias, as well as that
resulting from hypothesized systematic remagnetiza-
tions where tropical weathering was thought to have
caused widespread magnetic overprinting mainly of
sediments in the late Paleozoic [35], may not be
that important [24] in accounting for the anomalous
Paleozoic |I| distribution.

Our consideration of the possible effects of sam-
pling or data artifacts in such a large and hetero-
geneous compilation like the global paleomagnetic
data base is by no means exhaustive, but we have not
been able to identify a convincing secondary mech-
anism to explain the anomalous |I| distributions for
the Paleozoic and the Precambrian amongst several
obvious candidates. We therefore speculate that the
anomalous [l| distributions may have a more inter-
esting and fundamental origin, related either to (1)
a core dynamo that produced in its earlier history a
time-averaged geomagnetic field that was different
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from the GAD configuration, or if a GAD model is
assumed, (2) mantle processes that resulted in con-
tinents having a preference to be situated in lower
latitudes.

The time-averaged geomagnetic field need not be
radically different from a GAD configuration: asim-
ple model suggests that an octupolar contribution of
no more than about 25% and a quadrupolar contribu-
tion of about 10% relative to the axial dipole would
be quite sufficient to account for the anomalous
[I] distributions for the Paleozoic and Precambrian
(Fig. 5). This octupolar contribution or G3 is several
times greater than the widely varying estimates of
G3 for the 0-5 Ma time-averaged field (e.g., [2]),
although the quadrupolar contribution or G2 can be
more comparable to Cenozoic estimates of typically
5% to 10% [2-5,36] to satisfy the Paleozoic and
Precambrian data. The observed |I| frequency distri-
butions are thus compatible with a possible decrease
in zonal NDF contributions to the GAD from more
than about 25% in the Precambrian and Paleozoic to
less than about 10% in Mesozoic and Cenozoic. If
real, this long-term change in the overall geometry
of the geomagnetic field could be linked to evolution
of some boundary condition on the geodynamo; an
intriguing albeit ad hoc possibility is growth of the
solid inner core.

The fluid core most probably formed rapidly very
early in Earth’s history [37,38], consistent with pale-
omagnetic evidence of early geomagnetic field gen-
eration (e.g., [39]), but the timing of inner core for-
mation and its expected paleomagnetic signature is
very uncertain [40]. Recent thermal evolution mod-
els suggest that the inner core took anywhere from
1000 Mato 3600 Mato grow toits present size [20];
in other words, given 4600 Ma as the age of the
Earth, nucleation of the solid inner core may have
begun in the Archean at about 3600 Ma or not un-
til the Neoproterozoic at about 1000 Ma. Stevenson
et al. [41] suggested that the onset of composi-
tional convection associated with the nucleation of
the inner core would have significantly energized the
geodynamo in the fluid outer core and produced a
digtinctive pattern of change in geomagnetic field
strength; unfortunately, no consistent long-term vari-
ation is apparent according to recent assessments of
the most reliable but still very incomplete paleoin-
tensity record from 3500 Ma to present [42]. More

recent numerical simulations have emphasized the
critical role the inner core plays in the production of
a stable magnetic field by the geodynamo [18,19].
Without theincorporation of a conducting inner core,
most dynamo models generate rapidly oscillating or
chaotic magnetic fields which apparently are damped
owing to the long diffusive time constant of the in-
ner core [43]. Indeed, Hollerbach and Jones [18,44]
suggested that there is a critical threshold size of
the inner core that is required for the operation of a
stabilized geodynamo. If a time-averaged field con-
figuration that more closely resembles a GAD model
is speculatively considered a feature of a more stabi-
lized geodynamo, then the apparent secular decrease
in NDF contribution could be related to growth of
the inner core. The young age of about 250 Ma for
the transition from an apparently larger to smaller
NDF contribution would, however, imply either a
large critical threshold size or very much delayed
nucleation of the inner core.

An aternative explanation for the anomalous ||
inclinations is that the time-averaged geomagnetic
field in fact closely resembled a GAD model from
Precambrian time onward but that the geographic
distribution of data for the Paleozoic and Precam-
brian was for some reason biased to low latitudes.
Piper and Grant [24] suggested, for example, that the
concentration of continental crust in a single, pole-
centered supercontinent from about 1000 Mato 2800
Ma has biased the frequency of observed paleomag-
netic inclinations in the Precambrian. Aside from
the controversies surrounding the existence and spe-
cific configuration(s) of a Proterozoic supercontinent
(e.g., [14,45]), it does not appear that a random geo-
graphical sampling of Piper's[12] pole-centered Pro-
terozoic supercontinent reconstruction significantly
improves upon a uniform global sampling model
as an explanation for the non-GAD distribution of
Precambrian inclinations[24]. Neverthel ess, the pos-
sibility of a fundamental paleogeographic latitudinal
bias underlying the paleomagnetic sampling in the
Paleozoic and Precambrian cannot be excluded. In
this regard, Anderson [46] has argued that large
continental assemblies have major effects on the
mantle and induce long-lived geoid highs (see aso
Ref. [47] for discussion of connections between the
geoid and ancient plate boundaries). Since the body
of the Earth will tumble with respect to the rota-
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tion axis in response to such mantle perturbations
[48], long-lived continental aggregations associated
with the geoid highs will also tend to migrate to-
ward the Equator. The anomalous |I| distributions
for the Paleozoic and the Precambrian could there-
fore reflect a very long-term tendency of true polar
wander to cycle continents into the equatorial belt.
The long-lived continental aggregate that was being
assembled over at least the latter part of the Precam-
brian would be Rodinia. When Rodinia is proposed
to have undergone a protracted dismemberment from
750 to 600 Ma, continental elements with the most
complete apparent polar wander paths (Laurentia,
Baltica and Siberia) all drifted, apparently indepen-
dently, from equatorial positions into intermediate to
high southern latitudes [45]. The long-lived conti-
nental aggregate that was then being assembled in
the Paleozoic was Pangea [6]. In contrast, most of
the Mesozoic and the Cenozoic is marked by the
dispersal of continentswith alooser association with
geoid anomalies, contributing to a more geograph-
icaly random distribution as reflected in the more
GAD-like || frequency distributions.

6. Conclusions

Frequency distributions of |I| from global paleo-
magnetic data are consistent with the GAD model of
the time-averaged geomagnetic field for the Ceno-
zoic and Mesozoic, or the past 250 Ma, but are
skewed toward low inclinations and are thus anoma-
lous with respect to expectations of a geographically
random sample of a GAD field for the Paleozoic and
Precambrian, or from about 250 Mato 3500 Ma, the
practical age limit of paleomagnetic data.

After consideration of several obvious secondary
sources of bias such as sedimentary inclination error,
we suggest that the anomalous |l| distributions for
the Paleozoic and Precambrian have a more funda-
mental origin, due either to a modest but significant
departure of the time-averaged geomagnetic field
from a GAD model or to a geographical bias of the
continents to low latitudes.

A simple model shows that NDF contributions to
the GAD of about 25% from a zonal octupole and
perhaps 10% from a zonal quadrupole could account
for the anomalous |1| distributions for the Paleozoic
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Fig. 6. Inclination as a function of colatitude for the GAD
model compared to a model with contributions to the axia
dipole from a zonal quadrupole (G2 = 0.10) plus a zona
octupole (G3 = 0.25). The curves are shown for normal polarity
and would be reflected across an inclination of 0° for reversed
polarity. The GAD model of the time-averaged field is consistent
with Cenozoic and Mesozoic paleomagnetic data. The particular
NDF model shown (G2 = 0.1, G3 = 0.25) better accounts
for Paleozoic and Precambrian paleomagnetic data even though
a standard GAD model is amost invariably used giving rise
to potential errors in paleolatitude estimates according to the
difference between the curves.

and Precambrian. If real, such atime-averaged field
configuration would result in inclinations that may
be up to about 25° shallower compared to the GAD
model; if used to calculate position with respect
to the paleopole, the standard GAD formula would
therefore tend to underestimate pal eolatitudes by up
to about 15° in mid-latitude regions (Fig. 6).

The apparently diminishing NDF content of the
time-averaged geomagnetic field from the Precam-
brian and Paleozoic to the Mesozoic and Cenozoic
could be somehow related to a stabilizing effect on
the geodynamo of a growing inner core [44], a-
though we are not aware of any other evidence that
supports or refutes such a speculation.

Alternatively, if the GAD model is assumed to
be universally valid, the anomalous |I| distributions
for the Paleozoic and Precambrian can be interpreted
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as providing general support for the idea [46] that
over very long time periods there is a tendency for
continents to aggregate and migrate to low latitudes
as the geoid anomalies they help to induce modulate
true polar wander.

Statistical analysis of paleomagnetic inclination
data may be one of the few observationa methods
available to assess fundamental questions about the
configuration of the geomagnetic field or the geo-
graphic distribution of continents through geologic
time. However, the overall quality of the database
needs to be uniformly assessed (e.g., [49]) and con-
tinually improved by new data that meet modern
standards to minimize the possibility of introducing
artifacts resulting from poor data.

Other constraints will aso be needed to differ-
entiate the effects of geomagnetic (i.e., core-related)
from paleogeographic (i.e., mantle-rel ated) processes
because interpretations of even the most robust |1
anomalies are inherently non-unique. For example,
further 3-D modeling of the geodynamo might even-
tually provide better theoretical support for the GAD
hypothesis, whereas the delineation of long, well
defined apparent polar wander paths for the various
continental blocks might reveal systematic patterns
compatible with episodes of true polar wander and
equatorial cycling.
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