
Speeding Up Dynan1.ic Progran1.ming
With Applications to Molecular Biology

Zvi Galil, Raffaele Giancarlo

Technical Report
CUCS-300-87

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161439215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Speeding Up Dynamic Programming with
Applications to Molecular Biology*

Zvi Galil
Dept. of Computer Science, Columbia University, NY 10027

and
Tel-Aviv University, Tel-Aviv, ISRAEL

Raffaele G iancar 10
Dept. of Computer Science, Columbia University, NY 10027

and
University of Salerno, ITALY

OCTOBER 87

• Work Supported in part by NSF Grants DCR-85-11713, CCR-86-05353 and by the Italian Ministry of
Education, Project "Teoria degli Algoritmi"

ABSTRACT

Consider the problem of computing

E[j] = mit:! {D[k] + w(k, j)}, j = 1, ... , n,
O~k~]-l

where w is a given weight function, D[D] is given and for every k = 1, ... , n, D[k] is easily
computable from E[k]. This problem appears as a subproblem in dynamic programming
solutions to various problems. Obviously, it can be solved in time O(n2

), and for a general
weight function no better algorithm is possible.

We consider two dual cases that arise in applications: In the concave case, the weight
function satisfies the quadrangle inequality:

w(k,j) + w(l,j') ~ w(l,j) +w(k,j'), for all k ~ 1 ~ j ~ j'.

In the convex case, the weight function satisfies the inverse quadrangle inequality.
In both cases we show how to use the assumed property of w to derive an O(n log n)

algorithm. Even better, linear-time algorithms are obtained if w satisfies the following
additional closest zero property: for every two integers 1 and k, 1 < k, and real number a,
the smallest zero of f(x) = w(l,x) - w(k,x) - a which is larger than 1 can be found in
constant time.

Surprisingly, the two algorithms are also dual in the following sense: Both work in
stages. In the j-th stage they compute Elj]. They maintain a set of candidates which
satisfies the property that Elj] depends only on D[k] + w(k, j) for k's in the set. Moreover,
each algorithm discards candidates from the set, and discarded candidates never rejoin
the set. To be able to maintain such a set of candidates efficiently one uses the following
"dual" data structures: a queue in the concave case and a stack in the convex case.

The two algorithms speed up several dynamic programming routines that solve as
a subproblem the problem above. The speed-up is from O(n3) to O(n2Iogn) or O(n2).

Applications include algorithms for comparing DNA sequences, algorithms for determining
the secondary structure of RNA, and algorithms used in speech recognition and geology.

One typical problem is the following: Given the cost of substituting any pair of symbols
and a convex cost function g for gaps (where g(r) is the cost of a gap of size r), compute
the modified edit distance between the two given sequences.

1

1 Introduction

Dynamic programming is one of several widely used problem-solving techniques in com
puter science and operations research. In applying the technique, one always seeks to take
advantage of special properties of the problem at hand and speed up the algorithm. There
are very few general techniques for speeding up dynamic programming routines and ad
hoc approaches seem to be characteristic.

The only general technique known to us is due to F. Yao [10]. She considered the
following recurrence relations:

c(i, i) = 0; c(i,j) = w(i,j) + .min.{c(i, k - 1) + c(k,j)}, for i < j. (1)
l<k~1

She proved that if the weight function satisfies the quadrangle inequality

w(k,j) + w(I,j') ~ w(l,j) + w(k,j'), for all k ~ I ~ j ~ j', (2)

then the obvious O(n3) algorithm can be sped up to O(n 2
). A corollary of this result is an

O(n2) algorithm for computing optimum binary search trees, an earlier remarkable result
of Knuth [3].

In this paper we consider the problem of computing

E[j] = mi~ {D[k] + w(k,j)}, j = 1, ... n,
09$1- 1

(3)

where w is a given weight function; D[O] is given and for every k = 1, ... , n, D[k] is easily
computable from E[k]. This problem appears as a subproblem in dynamic progranuning
solutions to various problems. Obviously, it can be solved in time O(n2

), and for a general
weight function no better algorithm is possible.

We consider two dual cases that arise in applications: In the concave case, the weight
function satisfies the quadrangle inequality above. In the convex case, the weight function
satisfies the inverse quadrangle inequality.

In both cases we show how to use the assumed property of w to derive an O(n log n)
algorithm. Even better, linear-time algorithms are obtained if w satisfies the following
additional property, which we call the clojeJt zero property: for every two integers I and k,
I < k, and real number a, the smallest zero of f(x) = w(i, x) - w(k, x) - a which is larger
than I can be found in constant time. The two algorithms are simple and short (a dozen
lines of code each).

Surprisingly, the two algorithms are also dual in the following sense: Both work in
stages. In the j-th stage they compute E[j], which is viewed as a competition among
indices 0,1, ... , j - 1 for the minimum in (3). They maintain a set of candidates which
satisfies the property that E[j] depends only on D[k] + w(k, j) for k's in the set. Moreover,
each algorithm discards candidates from the set, and discarded candidates never rejoin
.the set. To be able to maintain such a set of candidates efficiently one uses the following
"dual" data structures: a queue in the concave case and a stack in the convex case.

Despite the similarity, Yao's result does not seem to apply in our case. She uses the
quadrangle inequality to derive tighter bounds on the ranges of indices for computing the

2

minimum in (1) and does not need any data structure. Also, it is not clear what happens
in her case when the inverse quadrangle inequality holds.

Notice that in the special case that D[j] = E(j] and w(j, j) = 0 for j = 1, ... , n our
problem is the single source shortest path problem for the complete acyclic graph where
edge lengths are given by the weight function w. However, neither the convex nor the
concave case is interesting, since the quandrangle inequality implies the inverse triangle
inequality and the inverse quadrangle inequality implies the triangle inequality. Thus in
the convex case E(j] = D[O] + w(O,j) and in the concave case E[j] = D[O] + w(O, 1) +
w(l, 2) + ... + w(j - 1,j).

Hirshberg and Larmore [2] assumed a restricted quandrangle inequality with k $ 1 <
j $ j' in (2) that does not imply the inverse triangle inequality. They solved this special
case (with D[j] = E[j)), the "least weight subsequence" problem, in time O(n log n) and
in some special cases in linear time. They used it to derive improved algorithms for several
problems. Their main application is an O(n log n) algorithm for breaking a paragraph into
lines with a concave penalty function. For quadratic and linear penalty functions they
design a linear-time algorithm. This problem was considered first by Knuth and Plass [4]
with general penalty functions. The algorithm of [2] also uses a queue. Surprisingly, our
algorithm, which solves a more general case, is slightly simpler and in many cases faster,
as in our algorithm the queue is sometimes emptied in a single operation.

At the moment, we only have new applications for the convex case. In the concave
case we derive all the results of [2]. Moreover, we automatically obtain the corresponding
results in the convex case. For example, we have an O(n log n) algorithm for breaking a
paragraph into lines with a convex penalty function.

Our new applications compute various versions of the "modified edit distance" defined
below. Given two strings over alphabet E, x = Xl'" xm and Y = Yl'" Yn, the edit
di8tance of X and Y is the minimal cost of an edit sequence that changes x into y. This
sequence contains operations of the form delete(xj) of cost d(x;), insert(Yj) of cost i(Yj)
and substitute(x/, Yk) of cost sex/' Yk). The edit distance can be easily computed by an
obvious dynamic program in O(mn) time.

Notice that a sequence of deletes (inserts) corresponds to a gap in x (y, respectively).
In many applications the cost of such a gap is not linear. In the applications we list below
the cost of deleting x/+! .•• Xk is

(4)

where 9 is a convex function. The cost consists of charges for breaking X/+l and Xk plus an
additional cost that depends on the length of the gap. The dependence (the function g) is
convex, since the incremental cost decreases as the size of the gap increases. The modified
edit diJtance is defined to be the minimal cost of an edit sequence which changes x into Y,
where the costs of gaps in x are as in (4), and similarly the costs of gaps in yare derived
from an analogous weight function w'.

To compute the modified edit distance, we consider a dynamic programming equation
of the form

D[i,j] = min{D[i - 1,j - 1] + S(Xi, Yj), E[i,j], F[i,j]} (5)

3

where
E[i, j] = mi~ {D[i, k] + w(k, jn

O~k~]-l

F[i, j] = mi~ {D[I, j] + w'(l, in
O~I~I-l

with initial conditions D[i,O] = w'(O, i), 1 sis m and D[O, j] = w(O,j), 1 S j S n.

(6)

(7)

The obvious algorithm that computes this recurrence takes time O(mn . max(m, n)).
Notice that the computation of D[i,j] reduces to the computation of E[i,j] and F[i,j],
and the computation of a row of E and of a column of F are each just the same as the
problem discussed above. But the weight functions wand w' are defined as in (4) and
therefore satisfy the inverse quadrangle inequality. As a result, we obtain an algorithm
that computes the matrix D in O(mn(logn + logm)) time, and even better O(mn) time
if the weight functions satisfy the closest zero property.

This dynamic programming scheme arises in the context of sequence comparison in
molecular biology [7], geology [6] and in speech recognition [5]. In those fields, the most
natural weight functions w are convex. In molecular biology, for instance, the motivation
for the use of convex weight functions is the following. When a DNA sequence evolves into
another by means of the deletion, say, of some contiguous bases, the event "deletion of
contiguous bases" should be seen as a single event rather than as the combination of many
"deletion" events. Accordingly, the cost of the multiple deletions event must be less than
the total cost of the single deletion events composing it. Experimental evidence supports
this theory [1]. In geology and speech recognition, analogous reasoning motivates the use
of convex weight functions.

Besides the sequence comparison applications just mentioned, the same dynamic pro
gramming equation seems to be useful in determining the minimal energy RNA secondary
structure [8]. Also in this case, the most natural weight functions are convex.

2 The Convex Case

In this section we describe the convex case. That is, the weight function w satisfies the
inverse quadrangle inequality:

w(l,j) + w(k,j') ~ w(k,j) + w(l,j'), for alII S k S j S j', (8)

Let C(k, r) denote D[k] + w(k, r). We give an algorithm, denoted A, that computes
E[j], 0 < j S n, in O(n log n) time. The algorithm consists of n steps. We now describe
step j. \Ve need the following definition.

Definition 1 An index k, k < j, i" dead (at "tep j) if for every j', j S j' S n, either
there i" 1 #- k, 1< j (I may depend on j') with C(l,j') < C(k,j') or there is I < k with
C(l, j') = C(k, j').

Algorithm A implicitly maintains a list of candidates k, k < j. These candidates
compete for the minimum in (3). Then the algorithm justifiably discards dead indices

4

from the list since it is clear that for every j', j :::; j' :::; n, the minimum in the expression
for E[j') corresponding to (3) is achieved on some k that has not been discarded. There
are two criteria that the algorithm uses to kill k's. In the first, an index k dies because of
one of the candidates which will always dominate it (lU') = I for each j', j :::; j' :::; n), and
in the second case k will be dominated by one of two candidates (l(j') E {II, 12 } for each
j', j :::; j' :::; n).

A basic step of the algorithm consists of comparing two candidates I and k. Lemma 1
is the basis for such a comparison.

Lemma 1 For given I and k, I < k :::; n, the function fer) = C(I, r) - C(k, r) = w(l, r) -
w(k, r) + D[l) - D[k) is monotonically nonincreasing.

Proof: Straightforward from equation (8). 0

Facts 1-4 are immediate consequences of Lemma 1.

Fact 1 Given indice" I and k, I < k < j :::; n, assume that C(l,j) < C(k,j). Then
C(l,j') :::; C(k,j') for all j' satisfying j :::; j':::; n.

Fact 2 Given indice" I and k, 1 < k < j :::; n, as"ume that C(I,j) > C(k,j). Let h be the
minimal index, k < h :::; n, such that

C(l, h) S C(k, h). (9)

Then C(I,j') > C(k,j'), for all j' "atisfying k < j' < hand C(l,j') :::; C(k,j'), for all jf
satisfying h :::; j' :::; n.

In what follows, we adopt the shorthand notation h(l, k), for the minimal h, k < h :::; n,
satisfying equation (9) for indices 1 and k, 1 < k < n and we set h(l, k) = n + 1 if no such
h exists.

Fact 3 For given I and k, I < k < n, h(l, k) :::; 71 if and only if C(l, 71) :::; C(k, h).

Fact 4 Given 1 and k, 1 < k :::; n, h(l, k) can be computed in time O(log n) and, if w
sati"jies the c10ust zero property, it can be computed in constant time.

Proof: By Fact 2 we can compute h(l, k) by binary search. If the closest zero property
holds, then one computes h(l, k) by finding the closest zero, Xo, of f(x) = w(l, x)-w(k, x)
a, a = D[I) - D[k), and h(l, k) = rxol 0

5

The meaning of Fact 1 is that if a newer candidate k is no better than an older candidate
1, then k is dead. The meaning of Fact 2 is that if the newer candidate is better we know
that it can be declared dead at step h = h(l, k). Moreover, we also know that k is a better
candidate than 1 for steps j, j + 1, ... , h - 1. Thus, there is no need to consider 1 in the
competition for the minimum during these steps.

The algorithm compares the new candidate, namely j -1, with the best among the old
candidates. If the new candidate is no better, then Fact 1 allows us to discard it. If it is
better, Fact 2 tells us that it is better in an interval at the end of which the new candidate
will die. This gives rise to the use of a stack.

The list of candidates at step j is represented in a stack 5 of pairs (corresponding
to intervals) (ktop , htop), (ktop- ll htop_t}, ... , (ko, ho), where (ko, ho) is a dummy pair equal to
(ko, n + 1). At step j, the pairs in 5 satisfy the following conditions, for a ~ s < top,

1. hS+l < h" with j < htop and ho = n + 1.

2. k, < k,+l, with ktop < j - 1

3. h,+l = h(ks,ks+l)

4. If k < j and k is not in any pair in 5, then k is dead.

5. The last element in 5 is always a dummy pair.

Conditions (1)-(5) are referred to as the stack property. Part (1) and (2) of the stack
property mean that the stack consists of a sequence of open intervals, properly nested on
both sides, all of which contain j. By Fact 2 and condition (3), the meaning of adjacent
pairs (ks+1 , hs+d and (k., h,) is that k.+ 1 is a better candidate than ks up to step hs+! -1.
At step hs+1, k,+l can be declared dead since from that point on k. is never worse than
k,+l' The meaning of the dummy pair (ko, n + 1) is that A does not know yet how long
ko is going to survive.

\Ve now show that if the stack property holds at step j, we can easily compute E[j].
Then, we discuss how the algorithm updates 5 so that the stack property holds at step
j+1.

Lemma 2 A.,.mme that 151 > 1. The quaniitie., C(k., j) are monotonically increasing as
we go down the .,tack.

Proof: Fix s, a ~ s < top. From Fact 2 we have that for each adjacent pairs (k., h,)
and (k,+l,h.+d C(k.,j') > C(k.+bj'), for j' satisfying k.+ 1 < j' < h.+1• By conditions
(1) and (2) of the stack property k.+ 1 < j < h.+1 and thus C(k.,j) > C(k.+t,j). 0

Lemma 2 implies that ktop is the best among the old candidates. Thus, E[j] is the
minimum of C(j - 1,j) and C(ktop,j). (In the case that 151 = 1, the same result follows
since j - 1 and ktop are the only two candidates.)

6

\Ve now describe the update of S that follows the computation of E(j]. Informally,
it consists of the insertion of the new candidate j - 1, if appropriate, and of the possi
ble deletion of some "old" candidates. The update step depends on the outcome of the
comparison between C(ktop,j) and C(j - 1,j).

\-Vhen C(ktop,j) $ C(j - l,j), the update of S is very simple. Indeed, algorithm A
can kill j - 1 by Fact 1. Moreover, if htop = j + 1 we also have by Fact 1 that ktop can
be declared dead at step j + 1. Thus, the algorithm kills ktop by popping the stack. If
j + 1 < htop , the stack is not modified since ktop can still be a candidate.

On the other hand, assume that C(ktop,j) > C(j - 1,j). The algorithm tries to push
a pair corresponding to j - 1 on the stack. However, the new interval (in which j - 1 is
better than the current ktop) may not be properly nested in (k top , h top), i.e. the new interval
may end at h > htop - 1. By Fact 3, we can check it by comparing C(ktop, htop - 1) and
C(j - 1, htop - 1) (i.e. comparing the two candidates at the last point of the interval of
k top). Fortunately, if the nesting property is violated, then ktop can be declared dead as
shown in Fact 5.

Fact 5 Let (ktop, h top) be the pair on top of S at step j and assume that C(ktop , htop -1) >
C(j - 1, htop - 1). Then ktop can be declared dead at step j.

Proof: By the assumption and Fact 1 we have C(ktop , j') > C(j -1, j') for j' satisfying
j $ j' $ htop - 1. If lSI = 1, htop = n + 1 and the proof is complete. Otherwise, by Fact
1 (since ktop- 1 < ktop) C(ktop-1,j') $ C(ktop,j') for j' satisfying htop $ j' $ n, and ktop is
dead (it is dominated either by j - 1 or by ktop-d· 0

When C(k top , j) > C(j -1, j), the update of S is as follows. Algorithm A keeps popping
pairs (k~, h.) when C(k., h. -1) > C(j -1, hI -1). The deletion process stops either when
the stack is empty or when the algorithm finds a pair (kq, hq) such that C(kq, hq - 1) $
C(j -1, hq -1). If the former case holds, the algorithm inserts the dummy pair (j -1, n+ 1)
and ends the update of S. If the latter case holds, the algorithm computes h = h(kq, j - 1)
and pushes (j - 1,7i) on top of S. (Note that, since C(kq, hq - 1) $ C(j - 1, hq - 1),
li $ hg - 1 by Fact 3.) We notice that all the first components of the popped pairs are k's
which are dead by Fact 5.

In what follows let K(r) and H(r) denote the first and second component of the r-th

pair from the bottom in S. The algorithm described above can be formalized as follows.

ALGORITHM A
push (0, n + 1) on S;
for j = 1 to n do

begin
1- K(top);
if C(j - 1,j) ~ C(I,j) then

begin
Efj] - C(l,j);
if H(top) = j + 1 then pop

7

end
else

begin
E[j] - C(j - l,j);
while S:F 0 and C(j - 1, H(top) - 1) < C(K(top), H(top) - 1) do pop
if S = 0 then push (j - 1, n + 1)

else h - h(K(top),j -1); push (j - 1, h)
end

end

Theorem 1 Algorithm A is correct and runs in time O(nlogn). Ifw satisfies the closest
zero property, then one can implement the algorithm in linear time.

Proof: The correctness of the algorithm can be easily proved by induction using the
discussion on the update of the stack at step j. The time bound can be derived as follows.
Notice that for each index j, 1 ::; j ::; n, there may be a computation of h(K(top),j) when
a pair corresponding to j is pushed onto the stack. Since each index can be pushed on
the stack only once and since, by Fact 4, the computation of h(K(top),j) takes O(logn),
we obtain a time bound of O(n log n). If w satisfies the closest zero property, then the
computation h(K(top),j) takes constant time per call and the above time bound reduces
to O(n). 0

3 The Concave Case

In this section we describe the concave case, omitting the proofs since they are analogous
to the ones given in the previous section. In the concave case, the weight function satisfies
the quadrangle inequality (2). \Ve give an algorithm, denoted B, that computes E[j],
o < j ::; n, in O(n log n) time. The algorithm consists of n steps. ''''Ie now describe step j.
\Ve need the following definition.

Definition 2 An index k, k < j, iJ dead (at Jtep j) if for every j', j ::; j' ::; n, either
there is 1 "# k, 1 < j (1 may depend on j') with C(l,j') < C(k,j'), or there is 1 > k with
C(l,j') = C(k,j').

Notice that Definitions 1 and 2 are the same except that now we break ties in favor of
the larger index.

Algorithm B implicitly maintains a list of candidates k, k < j. These candidates
compete for the minimum in expression (3). Then the algorithm discards dead indices
from the list since it is clear that for every j', j ::; j' ::; n, the minimum in the expression
for E[j'] corresponding to (3) is achieved on some k that has not been discarded. Again,
there are two criteria that the algorithm uses to kill k's. These criteria are analogous to
the ones given in the previous section.

A basic step of the algorithm consists of comparing two candidates 1 and k. Lemma 3
is the basis for such a comparison.

8

Lemma 3 For given 1 and k, k < 1 ~ n, fer) = c(l, r) - C(k, r) = w(l, r) - w(k, r) +
D[l) - D[k] is monotonically nondecreasing.

Facts 6-9 are an immediate consequence of Lemma 3.

Fact 6 Given indices 1 and k, k < 1 < j ~ n, assume that C(l,j) < C(k,j). Then
C(l, j') ~ C(k, j') for j' satisfying j ~ j' ~ n.

Fact 7 Given indices 1 and k, k < 1 < j ~ n, assume that C(l,j) > C(k,j). Let h be the
minimal index, 1 < h ~ n, such that

C(l,h) ~ C(k,h). (10)

Then C(l,j') > C(k,j'), for j' satisfying 1 < j' < hand C(l,j') ~ C(k,j') for j' satisfying
h ~ j' ~ n.

In what follows, we adopt the shorthand notation h(l, k), for the minimal h, 1 < h ~ n,
satisfying equation (10) for indices 1 and k, k < 1 < n, and we set h(l, k) = n+ 1 if no such
h exists.

Fact 8 For given 1 and k, k < 1 < n, h(l,k) ~ h if and only if C(l, h) ~ C(k, h).

Fact 9 Given 1 and k, k < 1 ~ n, h(l, k) can be computed in time O(log n) and, if w
satisfies the closest zero property, it can be computed in constant time.

The meaning of Facts 6 and 7 is analogous to the meaning of Facts 1 and 2, respectively,
with the role of 1 and k switched.

The algorithm compares the new candidate, namely j - 1, with the best among the
old candidates. If the new candidate is better, then Fact 6 allows us to discard all the old
candidates. If it is no better, Fact 7 tells us that it will be better in an interval at the
beginning of which the old candidate will die. This gives rise to the use of a queue.

The list of candidates at step j is represented in a queue Q of pairs
(kjront. hjront), (kjront-I, hIront-d, ... , (ko, ho), where (kjront. hIront) is a dummy pair with
hIront = j. At step j, the pairs in Q satisfy the following conditions, for 0 ~ s < front,

4. If k < j and k is not in any pair in Q, then k is dead.

9

•

5. The first element in Q is always a dummy pair.

In what follows, we refer to conditions (1)-(5) as the queue property. Part (1) and (2) of
the queue property mean that the queue consists of a sequence of open intervals, properly
nested on both sides, all containing j except for the dummy interval. The meaning of
adjacent pairs (k"+l' h,,+d and (k", h,,) is that k"+l is a better candidate than k" up to step
hs - 1. At step h", kS+l can be declared dead since from that point on k" is never worse
than k"+l' The meaning of the dummy pairs (kjront,j) is that kjront has no index in front
of it to kill.

We now show that if the queue property holds at step j, we can easily compute EUl.
Then, we discuss how the algorithm updates Q so as to preserve the queue property at
step j + 1.

Lemma 4 Assume that IQI > 1. The quantities C(k",j) are monotonically increasing as
we go along the queue from the front to the rear.

Lemma 4 implies that kjront is the best among the old candidates. Thus, E[j] is the
minimum of C(j -l,j) and C(kjront,j).

Next, we describe the update of Q that follows the computation of E[j]. Informally,
it consists of the insertion of the new candidate j - 1, if appropriate, and of the possi
ble deletion of some "old" candidates. The update step depends on the outcome of the
comparison between C(kjront,j) and C(j - 1,j).

\Vhen C(kjront,j) ~ C(j - 1,j), the update of Q is very simple. Indeed, ko < j - 1,
k" > k"+l and, by Lemma 4, the quantities C(k", j) are monotonically increasing as we
go down the queue. By Fact 6, all the k" in Q can be declared dead. The algorithm sets
Q = 0, i.e. it discards all elements in the queue, and inserts the dummy pair (j - 1, j + 1).
The operation Q = 0 can obviously be implemented in constant time.

\Vhen C(kjront,j) < C(j -l,j), the algorithm must insert a pair corresponding to j-1
at the rear of the queue. Again, such insertion may cause the departure of some pairs in
Q. The following fact is useful in this respect.

Fact 10 Let (ko, ho) be the pair at the end of Q at step j and a.!sume that C(ko, ho) >
C(j - 1, ho). Then ko can be declared dead at .!tep j.

\Vhen C(kjrontlj) < C(j -l,j), the update of Q is as follows. The algorithm keeps
on deleting pairs (k" h,,) from the rear of Q when C(k" h.) ~ C(j - 1, h.). The deletion
process stops when the algorithm finds a pair (kq, hq) such that C(kq, hq) < C(j - 1, hq).
(At least the dummy pair meets this condition). Then, the algorithm computes h(j -1, kg).
Notice that all the first components of the deleted pairs are k's that are dead by Fact 10.
Moreover. if j + 1 = hjront-I> the algorithm deletes the front of the queue.

In what follows, let K(r) and H(r) denote the first and second component, respectively,
of the r -th pair from the back of the queue and let rear denote the last element in Q. The
algorithm outlined above can be formalized as follows. It uses the following operations:

10

•
delete and dequeue to remove the last and first element of Q, respectively; and enqueue
to insert a new element at the end of the queue.

ALGORITHM B
enqueue (0,1) in Q
for j = i to n do

begin
I - K(front);
if C(j - 1,j) $ C(l,j) then

begin
EU] - C(j - 1,j);
Q -0;
enqueue (j - 1,j + 1)

end
else

begin
EU] <-- C(l,j)
while C(j - 1, H(rear)) $ C(K(rear), H(rear)) do delete
h +- h(j - 1,K(rear)); enqueue (j - 1,h)
if j + 1 = H(front) then dequeue

else H(front) +- H(front) + 1;
end

end

Theorem 2 Algorithm B is correct and runs in time O(n log n). If w satisfies the closest
zero property, then one can implement the algorithm in linear time.

Hirshberg and Larmore [2] and \Vilber [9] considered a special case of our concave case.
The first two authors gave an O(n log n) time algorithm. Such a time bound becomes O(n)
in case a certain condition (similar to our closest zero property) is satisfied by the weight
function. Wilber obtained an ingenious O(n) algorithm that has quite a large constant.
His algorithm is recursive and its recursive calls use another recursive algorithm. Wilber
claims that his algorithm is superior to the O(n log n) one given in [2] only for n in the
thousands.

Although they deal with a special case, both approaches handle our more general
concave case. However, our algorithm is simpler, and for all practical applications, faster
than the ones in [2] and [9]. The algorithm in [2] is similar to algorithm B and it uses
a queue. Unlike the former, in our algorithm the queue is sometimes emptied in a single
operation. We also point out that the method by Wilber does not seems to be useful in
the convex case, which is the main subject of this paper.

11

References

[1] 'V.M. Fitch and T.F. Smith. Optimal sequence alignment. In National Academy of
Sciences U.S.A., pages 1382-1385, 1983.

[2] D.S. Hirshberg and 1.L. Larmore. The least weight subsequence problem. SIAM J.
on Computing, 16:628-638, 1987.

[3] D.E. Knuth. Optimum binary search trees. Acta Informatica, 1:14-25, 1973.

[4J D.E. Knuth and M.F. Plass. Breaking paragraphs into lines. Software: Practice and
Experience, 11:1119-1184, 1981.

(5] J.B. Kruskal and D. Sankoff, editors. Time Wraps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-'Wesley, 1983.

(6] T.F. Smith and M.S. Waterman. New stratigraphic correlation techniques. Journal
of Geology, 88:451-457, 1980.

[7] M.S. Waterman. General methods of sequence comparison. Bulletin of Mathematical
Biology, 46:473-501, 1984.

[8] M.S. 'Waterman and M.T. Smith. RNA secondary structure: a complete mathematical
analysis. Mathematical Biosciences, 42:257-266, 1978.

(9] R.E. Wilber. The concave least weight subsequence problem revisited. J. of Algo-
rithms, to appear.

[10] F.F. Yao. Speed-up in dynamic programming. SIAM J. on Alg. Discr. Meth., 3:532-
540, 1982.

12

