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ABSTRACT 

This paper introduces a syntactic omni-font character recognition system. The "omni­
font" attribute reflects the wide range of fonts that fall within the class of characters that can be 
recognized. This includes hand-printed characters as well. 

A structural pattern-matching approach is employed. Essentially, a set of loosely con­

strained rules specify pattern components and their interrelationships. The robustness of the sys­

tem is derived from the orthogonal set of pattern descriptors, location functions, and the manner 

in which they are combined to exploit the topological structure of characters. 

By virtue of the new pattern description language, POL, developed in this paper, the user 

may easily write rules to define new patterns for the system to recognize. The system also 

features scale-invariance and user-definable sensitivity to tilt orientation. 
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1. INTRODUCTION 

Optical character recognition (OCR) has been the subject of intensive research efforts for 
roughly twenty-five years. The immense activity drawn to OCR is a testimony to its challenge 
and practicality. Clearly there is much motivation to provide automated text and data entry into 

computerized systems. In fact, a solution to process large volumes of data automatically would 
resolve the interesting irony which currently exists in today's Information Age: in the midst of 
all the dramatic advances in computer technology, virtually no advancements have been made in 
data entry, the most serious bottleneck in data processing. 

In all this time, conventional OCR systems have never overcome their inability to read 
more than a handful of type fonts and page formats. Proportionally spaced type (which include 
virtually all typeset documents), and even most non-proportional typewriter fonts, have 
remained beyond the reach of these systems. As a result, conventional OCR has never achieved 

more than a marginal impact on the total number of documents needing conversion into digital 

form. 

This paper describes a syntactic omni-font character recognition system. The goal of this 
system is to recognize isolated (discrete) machine or hand-printed characters that a human would 

be expected to identify, in the absence of contextual information. This requires the system to be 
scale-invariant and immune to reasonable tilt. By designing a system that yields maximal results 
without context, we are succeeding in working towards a system which is superior once context 

will be supplied. Applied over the 26 uppercase characters of the Roman alphabet the system 
has achieved a 95.2% recognition rate. 

Syntactic OCR has been investigated by many researchers. Many systems have been dev­
ised that extract features such as the number of line endings, loops, T-junctions, L-junctions, etc. 

[6], [7]. A more traditional approach is to extract primitives from the input characters. The 

primitives are generally line segments which comprise a polygonal approximation of a character 

[1], [13], [18]. The segments are found by detecting high curvature points [17]. In [5], the 

region occupancy representation of characters is investigated. There, curves define sectors of a 

circle. and straight lines cut regions into subregions. Considerations of the intersections between 
such subregions yields their descriptions of characters. An excellent survey is found in [8]. 
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2. OVERVIEW OF THE RECOGNITION SYSTEM 

A quick glance of the system's approach is now presented. The text is inputted and 
transformed into a binary image. Typically, a video camera, scanner, or digitizing tablet is used 
for image acquisition. In this implementation, the latter device was used since it presented fewer 
noise problems and it assured a binary image. 

The digitized page of text first passes through a thinning stage. This serves to erode the 
characters to their skeletons (stick figures) and thereby achieve data reduction. Each input char­
acter then undergoes a polygonal approximation which serves to map all skeleton segments onto 
a fmite alphabet of descriptors. The eight descriptors chosen for the alphabet comprise a charac­
ter basis set. Their selection, and the heart of the method for that matter, is based on the treat­
ment of the question: what are the barest minimal components needed to recognize any given 
character? The virtue of this method is that the character descriptors and their coupling encapsu­
lates the level of abstraction necessary to recognize the characters in the presence of noise. 
Proper consideration requires us to examine the effects of noise (Le. foreshortened or elongated 
strokes, and gaps) on the ambiguity in character classification. This design approach runs paral­
lel to those proposed in [3] and [15]. Their approaches were based on the phenomenological 

attributes of characters. They advocated that a theory based on ambiguities, rather than the 
archetypical shape of letters, leads to algorithms which will perform more accurately. 

The system described in this paper is driven by a loosely constrained set of description 

rules that make use of the small alphabet of primitive descriptors and another set of functions 
which specify their spatial interrelationships. Furthermore, the presence of extraneous ornamen­
tation (as in calligraphy) does not hinder performance since they are not included in the rules 
which seek out the critical components [16]. 

A hierarchy of processing stages is established to work on the incoming binary image that 

comprises the digitized page of text. They include: thinning, skeleton tracing, merging, descrip­
tion generation, parsing, and classification. A block diagram of the character recognition system 
is shown in Figure 1. The sequel is devoted to the elaboration of these modules. 

character 
segmentation 

character bitmap 
.-----1 ..... --, 

skeleton 
lracini 

cmical point lists ,-_ ..... - .. 
des<:ription 
general ion 

descrtplions 
,--..... - ... 

reCOin ition 
(parsmg) 

recognized 
characlers 

Figure 1: Character recognition subsystems. 
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3. THINNING 

The thinning algorithm implemented in this work is similar to that described in [11]. Other 
common thinning algorithms may be found in [2], [4], [10], [14]. Figure 2, shown below, illus­
trates the effect of thinning on text. Notice that dashes (' -') represent pixels which were stripped 

away, and numbers correspond to the skeletal pixels. The values of these numbers refer to the 
number of iterations needed before the algorithm was able to label these pixels as skeletal. 

--3- ----33333-
--3- --3-
--3- --3-
--3- --3-
--3- --3-
--4------4--
---433334---
--4------4--
--3- -3-
--3- --3-
--3- --3-

-3-
--2-

---3-----2 
--3-
--3-
--3- ---
--4-----
---333--
--3-----
-3-
-3- --
--3-------
---333333-

--3-
--4--
--4----4--
-3-
-3-
-3-
-3-
--3------
--4-333--
---3-----

--3-
-3-
-3-
-3-

--3-
--3-
--3-
--3-
--3-
--4-----4-----
----3333-

---44----
---4--34--
--4-----3--
--3- --3-
--3- --3-
-3- --3-
-3- --4--
-3- --3-
--3----4--
--4---4---
--344---

Figure 2: Thinned text. 
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4. SKELETON TRACING 

Skeleton tracing is the fIrst stage of the feature extraction component of this system. The 

information extracted in this stage includes the registration of all strokes and junctions, and the 
calculation of the strokes' critical points. Now that our characters are represented with lines of 
unity thickness, tracing of the strokes, or skeletons, becomes a fairly simple task. 

4.1 Definitions 

A stroke is defined as any segment of the skeleton that is terminated on either end by an 

endpoint or a junction. A junction corresponds to the intersection of two or more strokes. Fig­
ure 3 depicts the letter' A' on a discrete grid. Notice that there are 6 strokes and two junctions. 

junction junction 2 

Figure 3: A digitized letter with six strokes and two junctions. 

Tracing the skeletons to retrieve strokes would be rather useless unless we extracted shape 
information from them. With the many pixels that may lie on a stroke, a representation is 

needed to more readily and compactly capture the detail of the stroke. The identifIcation of 

critical points is used for this purpose. Critical points are defIned as points of high local curva­
ture, or terminal points. The latter refers to the endpoints or junctions that delimit the stroke. 

Figure 4 highlights the critical points of the letter 'A' given in Fig. 3. Notice how these few 

points relay the basic shape information of the stroke. Of the critical points shown, only the top­

most corresponds to local maximum curvature. The remainder are associated with either end­

points, or junction points. 

Figure 4: Highlighted critical points. 

The purpose of collecting these critical points is to compress the shape information con­

tained in the strokes. The imponant assumption made here is that we may extract the necessary 

features (defined later) from a fIrst order polygonal approximation made on the original charac­

ters. Ultimately, we represent the bulk of information contained in the many character pixels in 

only these handful of critical points. 
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During the traversal of each stroke, measurements are made at regular intervals to find its 
critical points. To simplify calculations, the measurements test to see whether the slope of the 
current interval has changed sign. The actual size of these intervals is dependent on the size of 

the character, or equivalently, the coarsest resolution permissible before recognition degradation 
sets in. The interval size, SMPL, is known as the sampling distance. Although this parameter is 
subject to fine tuning, SMPL was generally set to be 1/10 of the character height. 

It is common to have gaps present in the strokes. If the size of the gaps are less than SMPL. 
the sampling distance, and the gap is at the convergent ends of the strokes, then they may be 
considered noise and bridged. For example, consider the question of joining endpoints £ 1 and 
£2 in Fig. 5. 

E2 
El E2 

(a) (b) 

Figure 5: (a) Converging and (b) diverging strokes. 
Points P 1 and P 2 lie SMPL pixels away from the endpoints on their respective strokes. Having 
labeled these four points, we perform two sets of calculations. We define 

d 1 = [ £ Ix - £ 2x ]2 + [ £ Iy - £ 2y ]2 

d 2 = [ P I x - P 2x ]2 + [ Ply _ P 2y ] 2 

(4.1) 

(4.2) 

Notice that it is desirable to cross gaps between strokes which are converging at their endpoints, 

as in Fig. 5a. This is typified by d2 greater than dl. On the other hand, strokes which are 

diverging are typified by d2 less than d I and are thereby not bridged. This instance is depicted 
in Fig. 5b. Crossing a gap is marked by the registration of the two endpoints as critical points of 

the same stroke. Once a gap is crossed, the traversal process continues as before. 

This module has therefore changed the pixel representation of the image to a list represen­

tation. This new form consists of lists of critical points for the strokes and junctions. Critical 

points are used to generate a more compact stroke representation that conveys shape informa­
tion. 
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5. MERGING 

This stage of the system is responsible for refining the data extracted from the skeleton 

tracing module. In skeleton tracing, junctions, as well as endpoints, defined the endpoints of 
strokes. It is the goal of the merging stage to reach beyond the local ness of the extracted data 
and combine them to yield more meaningful global information. Stated alternately, the goal of 

merging is to combine together strokes which were meant to be together in the first place but 
were broken into pieces at the junctions. Figure 6a illustrates an example in which a vertical line 
was intersected by two horizontal bars. Merging will combine the seven strokes into the original 

three, as shown in Fig. 6b. 

2 2 

3 

4 

S 7 
3 

6 

(a) (b) 

Figure 6: (a) Seven strokes are present before 
merging. (b) After merging. three nstrokes are formed. 

The merging stage consists of two phases. The first phase joins the srrokes supplied from 

skeleton tracing into larger chains of new strokes, called nstrokes. At each junction point, we 

therefore attempt to link together pairs of strokes which are approximately collinear. Stated 

alternately, we merge those srrokes which combine to yield the best candidate for straight lines. 
In Fig. 6a, for example, merging has resulted in the joining of srrokes (1,3), (2,4,6), and (5,7). 

This is in accord with the good continuity rule of Gestalt psychology [5]. Consequently, the 

noise inrroduced at the intersections by thinning is filtered out. 

In the second phase, we seek to combine nsrrokes together if they overlap rriviaUy. Here it 

is implied that lines were meant to be continuous eventhough they overlap slightly. A "rrivial" 
overlap, in this system. is defined to occur when less than a third of an nstroke extends past a 

junction to an endpoint. In Fig. 6b, for example. the resulting three nsrrokes can be considered 
to trivially overlap: nsrroke 1 with nstroke 2, and likewise for nstrokes 2 and 3. As a result, the 3 
nstrokes are reduced to one nsrroke which now consists of those elements which had been 
strokes 3, 4, and 7 in Fig. 6a. Therefore, the pattern shown in Fig. 6b can be described by a sin­

gle curve rather than the intersection of three lines. This agrees with the model of the alphabet 

presented in Section 6. When all the nstrokes have been tested, we have a set of critical point 

lists that have had the noise filtered out. They now embody the most global shape information 

of the drawn lines in the character. 
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6. PATTERN DESCRIPTION LANGUAGE, PDL 

At the hean of any pattern recognition system is a pattern modeling and description 
mechanism. The modeling takes the fonn of a set of simple geometric primitives which are 
mapped onto the input characters. Primitives are basic components of the patterns which are 

used as building blocks to compose a pattern. The new pattern description language (PDL) 
developed in this paper allows us to compactly describe the mapping, or composition, in detail. 
The PDL presented here makes use of simple primitives which are easy to extract yet meaning­
ful to the task-domain. Furthermore, the language syntax. provides flexibility for the addition of 

new rules. 

The PDL described here is similar to the Picture Description Language introduced by Shaw 
[12]. The major differences lie in the broader manner in which the primitives may be coupled. 
Whereas Shaw's PDL supports only tail!head connectivity, the PDL described here permits arbi­
trary connectivity of two primitives. It is more closely related to the method described in [9]. 

6.1 Selection of Character Primitives 

In the context of character recognition, character primitive selection requires us to deter­

mine the members of the character basis set. The results of the selection process are shown in 

Fig. 7. Notice that the core of the basis set are four concavities pointing up, down, left, and 
right. They are denoted as CU, CD, CL, and CR, respectively. The direction assigned to a con­
cavity corresponds to the side of the opening. Note that all concavities can be defmed by three 

critical points: one vertex and two endpoints. The remaining primitives are line segments 
oriented in four directions: horizontal, vertical, and the two diagonal orientations. They are 
denoted as HOR, VERT, NEDIAG, and NWDIAG, respectively. 

The ability to specify spatial interrelationships of primitives is given by a set of location 

functions. They pennit us to define ranges of points along primitives. Briefly, a stroke is 

divided into a small number of regions (less than five). The extent of the regions is dependent 

on the total length of the stroke. It is therefore a simple matter to state, for example, that the err 

pan of a CR must meet with the top part of a CL to form the letter'S'. Notice that the names of 

the functions allow for a meaningful description of patterns. Furthermore, the relationships may 
be specified in any order. The function names include top, bottom, err, left, n'ght, lcrr (slightly 

left of center), rcrr (right of center), rerr (top of center), and berr (bottom of center). Their 

graphical correspondence is shown in Fig. 7. 

There is no size information associated with primitives. This allows us to avoid a size nor­

malization preprocessing stage common in many systems. The only constraint on the concavi­
ties is that their two endpoints be roughly the same distance from the vertex. If the ratio of the 

two chords connecting the endpoints to the vertex deviates greater than a given tolerance level 

from I, then we may consider the concavity to be appended to another primitive. An example is 
demonstrated by the letters 'U' and 'J'. Clearly 'U' is just concave up, while 'J' is concave up 

that meets at its right endpoint with the bottom of a vertical line. It is the goal of a language to 

compactly relay this information to the recognition system. The description of the language 
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8 desc:iprors 

1) concaVe! up (ClJ) 

2) concave down (CD) 

3) concave left (CL) 

4) concave right (CR) 

5) vertical (VERn 

6) horizontal (HOR) 

7) NE diagonal Uv'EDIAG) 

8) NW diagonal U''t'WDIAG) 

9 location functions 

1) top 

2) bottom 

3) etr 

4) left 

5) right 

6) letr 

7) retr 

8) tetr 

9) betr 

Examples 

I , 

-----

r ~ 
~ ;::J 

• :J 

~ LJ 
---.. LJ 
I--l " W n 
~C 

~c;: 

C / " c:::a ~ "-
C ,.,., "-.. 

n 
It 

Figure 7: Character basis set: eight descriptors and nine location functions. 

syntax will now be discussed. 

6.2 PDL Syntax 

In order to convey the description of the entire alphabet to the recognition system. a 

mechanism must be devised to compactly describe characters. The language proposed in this 

paper allows the user to describe a rich set of patterns with a straightforward syntax and a visu­

ally meaningful set of descriptors and location functions. There are two forms which description 

rules can take: chain and tree form. 

6.2.1 Description Rules: Chain Form 

Let us begin by demonstrating how two primitives may be combined. We will refer to the 

two primitives as p 1 and p 2. Their respective location functions will be refered to as f 1 and 
f 2. In general, all primitives and location functions will have a 'p' and 'f' prefix, respectively. 

If name is the name of the character comprised of these two primitives, then the description rule 

will look like: 
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name, pI (/1, /2) p 2 

The above form is known as the ehain form. It is read as follows. The / 1 region of p 1 meets 
with the /2 region of p 2. We may add another primitive to be connected to p 2 by adding the 
necessary location functions, and the name of the third primitive, as follows. 

name, pI (/I,/2)p2(/3,/4)p3 

Notice that / 3 is applied to p 2 and /4 is applied to p 3. This template of primitives separated 
by a pair of location functions can be extended to any chain of connected primitives. 

A large class of characters are described this way. The letter'S', for example, may be 
described as either of the following: 

S, CR ( etr, top) CL 

S, CR ( bottom, etr) CL 

Notice that the three location functions used here segment the primitive into three regions: top, 
center, and bottom. Furthermore, specifying primitive composition is easy and intuitively mean­
ingful. Also, the rules can be expressed in any order. 

6.2.2 Description Rules: Tree Form 

Another compact representation is sometimes possible with the tree form. This compaction 

arises when several connections may be made on a single primitive. The implication that a 

primitive may have more than one dependency with another primitive suggests that a distributive 

rule analog may be invoked. This is the contrasting feature to the chain form which has no such 

mechanism. 

The distributive property is implemented by adding extra levels of parentheses. If p 1 is 

connected to both p 2 and p 3, the rule will look like this: 

name, p 1 ( if 1, /2) p 2) if 3, /4) P 3 

Notice that the extra level of parentheses has caused p I to be applied over p 2 and p 3. The loca­

tion function of p I is / 1 when considering p 2, and / 3 when considering p 3. Any number of 

operations may be made on a single primitive by adding the appropriate number of parentheses. 

This syntax is known as the tree form. The name is attributed to the rather complex patterns that 

can be described due to the facility to embed chains within chains. It allows for both tree and 

chain forms to be intermixed. 

The more complex class of characters are handled using this approach. Some examples 

appear in Sec. 6.4. 
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6.2.3 Multi-Primitive Usage 

It is often common when generating description rules to allow for a choice of primitives to 
be connected to a given component at a given location. For example, we may allow J to be 
described as a CU primitive to meet at its right endpoint with the bottom of either a VERT or 
NEDIAG line. The facility in the language that allows for this choice is given by square brackets 
to contain the choices and 'f to separate them. In the example just provided, the description rule 
for T is given as: 

J, CU (right, bottom) [VERT / NEDIAG ] 

6.3 Description Rule Grammar 

The following syntax will generate any sentence (description rule) S in PDL. 

S -+ CHAR ',' ATRB DSCRUST 

DSCRUST -+ DSCRLlST DSCR 
-+E 

DSCR -+ '(' FCT ',' FCI ')' ATRBS 
-+ '(' DSCRUST DSCR ')' DSCR 

ATRBS -+ ATRB 
-+ '{' ATRB ATRBUST 'J' 

ATRBUST -+ ATRBUST '/' ATRB 

CHAR -+ 'A' 
-+ 'B' 
-+ 'C' 

-+ 'Z 

ATRB -+ CU 
-+CD 
-+CL 
-+CR 
-+HOR 
-+VERT 
-+NEDIAG 
-+NWDIAG 

FCT -+ top 
-+ bottom 
-+ left 
-+ righJ 
-+ tetr 

-+ beer 
-+ [etr 

-+ reer 

Note that all characters in single quotes, as well as the descriptors and location functions, 
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are tenninals. 

6.4 Character Description Rules 

A partial list of descriptions for the alphabet of characters is given below. 

A, CD ((lctr, ieft)[HORINEDIAGINWDIAG]) (rctr, right)[HORINEDIAGINWDIAG] 

B, VERT««top,top)CL) (ctr,bottom)CL) (ctr,top)CL) (bottom,bottom)CL 
D, VERT «top, top )CL) (bottom,boltom)CL 

E, CR (ctr, lejt)HOR 

F, VERT((top,iejt)HOR) (ctr,/ejt)HOR 

H, VERT (ctr,ieft)HOR (right,ctr)VERT 

K, VERT «ctr,bottom)NEDIAG) (ctr,top)NWDIAG 

L, VERT(boltom,iejt)HOR 
M, CD (right, iejt)CD 

M, CD (ctr,lejt)CU (ctr,ctr)CD 

N, CD (ctr,lejt)CU 

N, VERT (top, top )NWDIAG (bottom,bottom)VERT 

P, VERT «top,top)CL) (ctr,bottom)CL 

R, VERT«top,top)CL) (ctr,bottom)CL (bctr,top)NWDIAG 

S, CR (ctr,top)CL 

T, VERT(top,ctr)HOR 

W, CU (ctr,bottom)VERT 

Z, CL(bottom,ctr)CR 

The above rules may be enhanced and supplemented by the user to provide different 

interpretations of the characters. This may improve the recognition rate further. 
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7. DESCRIPTION GENERATION 

The description generator decomposes the observed characters into the character primi­

tives. Effectively, this corresponds to mapping, or fitting, primitives to the data which at this 

stage consists of critical point lists. Each of the primitives can themselves be represented by 

critical points. Therefore, description generation is the final data reduction stage that reduces the 

critical point lists into sequences that directly correspond to primitive descriptors. 

7.1 Definition of Primitives 

We define eight quantized directions as shown in Fig. 8. The numbers associated with the 

directions are known as the direction codes. These vectors serve as the components of the 

high-level concave primitives. 

2 

o 

s 6 7 

Figure 8: The eight quantized directions. 

Concavities may be expressed as a sequence of the eight vectors given in Fig. 8, i.e. a chain 

code. In general, a concavity is characterized by any unidirectional sequence of vectors that lie 

between the terminal vectors for that concavity. Terminal vectors simply refer to the vectors 

found at both ends of a concavity. For example, the illusrrations given in Fig. 9 all represent a 

valid concave down, CD. The attribute that links these variations into a common CD description 

is given by the set of terminal vectors which must be present. 

A 
Figure 9: Valid CD concavities. 

The set of valid terminal vectors for each of the concavities is given in Fig. 10. This figure 
is broken down into two parts: one for counter-clockwise and one for clockwise traversal of the 

concavity. In either case, each concavity has a pair of direction vectors associated with the start 

and end of the traversal. For example, consider a CU traversed counter-clockwise. The (6,7) 

entry indicates that the CU, when traversed counter-clockwise must begin with either direction 



- 14 -

vector 6 or 7. Funhermore, the (1,2) entry indicates that it must tenninate with either direction 
vector 1 or 2. 

Counter-clockwise Clockwise 

Startl Stop Start Stop 

CU (6.7) ( 1.2) (5.6) (2.3) 

CD ( 2.3) ( 5,6) ( 1.2) (6.7) 

CL (0.1 ) (3.4) (7.0) (4.S) 

CR (4,5) (7,0) (3,4) (0,1 ) 

Figure 10: Set of terminal vectors for concavities. 

The fIrst step in description generation requires us to inspect the sequence of directions 
rraversed along the vectors defined by the critical points. This implies that a list of direction 
codes must be extracted from the critical point list 

We begin by partitioning the discrete space into eight regions. The slopes of successive 
critical points are then computed and assigned a direction code. Concavities are then fitted to 
sequences of directions with the use of state tables. 

7.2 Description Registration 

After establishing a sequence of directions to be represented by a concavity, it is necessary 

to measure the concavity for asymmetry, and then register it in a description list. If the concav­

ity is found to be asymmerric, it becomes necessary to break the concavity into a more sym­

merric one with an additional line appended to it (i.e. 'U',' J'). Also, if the concavity does not 
satisfy the north, south, east. or west orientation, it is registered by its two chords (i.e. ·L'). This 

permits us to add emphasis on the fact that such concavities actually have less tolerance for dis­

tortion in our alphabet 

Therefore, there are three actions which may be taken on a concavity. They include: 

1) Registering one concavity alone. This is characterized by the 'U' example. 

2) Registering one concavity and one line. This is typified by the '1' example. 

3) Registering two lines. This is characterized by the 'L' example. 

There are several rules which dictate the actual regisrration of primitives. 

1) No registered primitive can be entirely embedded in another. This means that they must 

either overlap or be attached at their endpoints. In this manner, there is continuity in the 

shape description. 

2) If a concavity is broken into a concavity and a line and the line is at the trailing end of the 

sequence, then temporarily store the line. It may be overwritten with a more significant 
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concavity on the next fitting. Otherwise, if the line is at the start of the sequence, definitely 

register it 

8. RECOGNITION 
For each pattern under consideration, a set of rules are applied individually. Each rule 

attempts to verify the existence of the referenced descriptors, as well as their interrelationships, 
as specified by the rule's location functions. This recognition is achieved by parsing. The two 
chunks of data consisting of the character formation rules and the list of descriptors interact in 

the parsing process. 

The hierarchical syntactic structure of PDL rules is made explicit by the graphical represen­

tation of a parse tree. For example, consider the following rule for 'H'. 

H, VERT ( etr, left) HOR ( right,etr ) VERT 

Figure 11 is generated for the rule given above. Notice that all the leaves consist of descriptors 
while the nodes are comprised of location functions that verify the proximity and interrelation­
ship of the referenced descriptors. The leaves of the tree are ordered from left to right - in the 

same order as that in which the rules are read. 

(righI, elr) 

(elr. [tft) 

/ 
VERT HOR VERT 

Figure ll: Parse tree for 'H' rule. 

In reality, the parse tree exists only as a sequence of actions made by stepping through the 

tree construction process. At each node in the traversal, an evaluation is made regarding the 

existence of the descriptors, and their proximity as specified by the referenced location func­
tions. If, at any time, the proximity criteria (discussed in Sec. 8.1) is violated, then the character 

associated with the tree is eliminated as a candidate for recognition. However, if the criteria is 

satisfied, then the node takes on the value of one of its two children, and the tree traversal con­

tinues. 
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Once a tree has been traversed from all of its leaves to the top root, then the corresponding 
character is considered a candidate for recognition and its confidence is given by a number that 

was computed during the traversal. Effectively, the result of parsing all the PDL rules is to gen­
erate a set of parse trees, known as a forest, with associated confidence values. The winner of 
the recognition process is that character corresponding to the tree with the highest value. Simply 
stated, this confidence value is the number of descriptors that were matched, less a penalty for 
borderline proximity. 

8.1 Proximity 

A criteria must be established to detennine the proximity of two descriptors as specified by 
a PDL rule. Recall that a location function applied to a concavity will return a point on the 
primitive. We now resolve this point into a rectangle. Two points are determined to meet the 
location function specification if their associated rectangles intersect. The size of the rectangle 

is proportional to the size of the concavity. For example, the CD concavity in Fig. 12a is shown 

to be divided into regions A, B, and C. Region A is the set of pixels that satisfy the left function, 
and regions Band C satisfy the etr and right functions, respectively. Also shown in Fig. 12a are 

the associated rectangles for the regions. 

B c 

( a) (b) 

Figure 12: (a) Concavity and (b) line segment are divided into three regions. 

Now that the referenced points have been resolved into rectangles, it is necessary to deter­

mine their relative positions. If the rectangles intersect, we can safely say that the two points are 
sufficiently close together. However, if the rectangles do not intersect, then we must measure 

their relative displacement. We define L1x as the minimum distance between the two bitmaps 

along the x -axis. If the two bitmaps overlap, we set ~x to O. The same procedure is applied to 

the y-coordinates to arrive at a ~y distance. 

Recall from Section 4 that an interval of noise is intended to be confined to SMPL pixels, 

where SMPL is the sampling distance. If such an interval is allowed in the x and y directions. 
then the following expression must be satisfied in order to consider the two rectangles to be suf­

ficiently close together. 

~2 + ~y2 < SMPL2 (8.1) 

Eq. (8.1) is known as the proximity criteria. Later, we will see how it is used in computing the 
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confidence value for the character associated with the parse tree. 

8.2 Confidence Value 

At each node, a confidence value is computed and added to the existing total for that parse 

tree. Initially, all confidence values for characters are set to O. If the evaluation is satisfied, then 
we increment the confidence value for that character by 1. In addition, we wish to subtract a 
penalty tenn owing to the distance between rectangles. A reasonable heuristic to arrive at such a 

penalty is given as 

(8.2) 

Therefore, given that Eq. (8.1) is true, the tenn 

(1 - penalty) 

is added to the current confidence value. However, if the evaluation is not satisfied, then we 
proceed directly to parse the next rule in the rules file without storing the value computed thus 

far. 

This procedure of parsing and computing confidence values is iterated for each PDL rule. 

Note that rules having to match more components will potentially yield higher confidence values 
and are thereby favored over those rules matching fewer descriptors. Of course, multiple rules 
for each character assures a finer matching metric. Finally, the candidate associated with the 

highest confidence value is selected as the recognized character. 
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9. RESULTS AND CONCLUSIONS 

In the character recognition domain, it is often difficult to compare performance levels 
between systems due to variation in the character databases. This system, however, has been 
shown to recognize a wide range of styles. For a database of 489 characters representing the 26 

uppercase Roman letters, a 95.2% recognition rate was achieved. In the remaining 4.8%, the 
actual character had the second highest value 2.7% of the trials, and it had the third highest value 
.9% of the trials. The characters, written by many different users, ranged from acceptable to 
poor in quality. The poorer characters were replete with gaps, and stroke overlaps. 

Three sample runs are shown in Fig. 13. They illustrate the character skeleton, a list of 
generated descriptions (including critical points), and a list of candidates for recognition along 
with their confidence values. Notice that the candidates include subpatterns within the character. 

These characters, though, are recognized as subpatterns through their lower confidence values. 

Errors have usually been attributed to ambiguous merges at the junction points. For exam­
ple, it is not always clear which of several strokes should be merged at the junction points. This 
problem can be remedied by a more sophisticated merging routine that keeps track of several 
choices for merger. This would be akin to dynamic programming. Of course this will add to the 
description list, and consequently the search in the parsing procedure; however, a more complete 
analysis will be achieved. 

The system offers several unique features. Firstly, it provides scale-invariant recognition. 
This is a consequence of the character primitives being defined only in terms of the terminal 
vectors. The sampling rate is a function of the size. However, in this system, experiments with 

character bitmaps ranging from 16 x 16 to 48 x 48 pixels, a sampling rate of 3 consistently 
yielded good results. 

Secondly, the system includes a user-definable tolerance to tilt orientation. Since the user 

may define the maximum and minimum slopes of strokes that may still be considered horizontal 
or vertical, respectively, the sensitivity to tilt is adjustable. Excessive immunity to tilt, however, 

has the ill-effect of degrading the recognition of those characters which make use of the 

NEDIAG and NWDIAG descriptors. This is the case since their ranges in slope are paying the 
price for the increase in tilt insensitivity. 

Additionally, another feature is the ease in the user's ability to modify the set of patterns to 
be recognized. This takes form in two ways. Firstly, since the rules file is interpreted, it must 

only be edited to edit a pattern. Secondly, if the user is not quite sure how to describe the pat­

tern, he must only run several versions and inspect the output of the description generator. Tak­
ing those results which underly the output, the user may be assisted in writing PDL rule(s) for 
that pattern. In this manner, the system can be used to aid the formation of rules for new pat­

terns. 

The system is written in C and runs on a DEC PDP-ll/45 under the UNIXt operating sys­
tem. Roughly two characters were recognized per second. However, two of the modules 

t UNIX is a trademark of AT&T Bell LaboralOries 
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Sample Run '1: W Sample Run '2: P Sample Run '3: E 

2 2 2 
2 2 2 
2 2 -2 
2 2 222- 2 -2222 
2 2 - -222- -322-222222 
2 2 -22222 222 222- 2 
2 2 - 2 2 2 
2 -2 2 2 2 
2 2 2 -2 2 
2 2 2 2 
2 2 -2 2 
2 2 2 -2 2 
2 -2 2 -222222 - --22222 
2 22 2 -3-2 -2 
-2 2 2 2 2 2 
2 2 2 2 2 2 
2 -2 2 2 2 2 
2 2 2 2 2 2 
2 -2 -2 2 2 2 -2 -
2 2 2 2 2 -222222 22 
2 22 2 22222 
2 22 2 
2 2- 2 
-2 -2 descri ption 1 2 

dscrp-VERT 2 
plS[OI-IO,8 2 
plS[ll-IO,28 

descri ption 1 pts[21-0,O 

dsc~VERT descri plion 2 descri ption 1 
pts[ 1~7,6 dSC'61.CL dsc~HOR 
plS[l1-9,29 pts[ 1-6,13 pts( )-11,15 
plS[2]"{),O plS[l]-20,17 pts(I]-14,15 

descri ption 2 plS[2]-12,21 pts[2]"{),O 
dscrp-CU 

RECOGN1ZED: 
descri ption 2 

plS[O]-14,19 =~6 plS[1]-16,28 D 1.44 
plS[2]-19,19 [ 1.00 pts[I]-8,14 

descri ption 3 p 2.56 pts(2]-19,22 
dSCffi:VERT 
pts[ ]-22,9 RECOGNIZED: 
plS(I]-19,19 C 1.00 
pts(2]-O,O E 2.00 

description 4 

=,24 
pu[1]-14,19 
pt.s[2]-17,28 

RECOGNIZED: 
[ 1.00 
1 1.89 
W 2.89 
U 1.00 

Figure 13: Sample runs. 
(thinning and parsing PDL rules) are ideally suited for parallel processing and therefore subject 

to large speedups. 
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10. SUMMARY 

The character recognition system discussed in this paper has made use of the syntactic 

rule-based approach. Our understanding of character fonnation allows us to piece together those 
critical primitives that are essential to the character. This knowledge becomes effective only at 
the final stage of the recognition system when the character formation rules are actually parsed. 
Up to that point, the system extracts a list of descriptors that is the result of fitting members of 
the character basis set to the observed character. 

Since hand-printed characters exhibit a wide range of styles, it is crucial that our system be 
flexible and captures only those shapes, which may be hidden under many others, that are intrin­

sic to the character represented by the given pattern. A set of character formation rules is 

created to specify the interrelationships of primitives necessary to recognize the characters. This 
fonnat has the disadvantage that the entire forest of trees must be parsed, and parsing is gen­
erally not a fast operation. However, since our rules define the minimal set of components for 

each character, there are relatively few levels for each tree (usually no more than four levels). 

Furthermore, the parsing stage can be implemented in parallel by assigning one processor per 

parse tree. An advantage of this technique is that intuitive rules are used to define characters. 

These rules are easy to write and can be added or deleted from the list of rules at any time. The 
proximity evaluations made at the nodes of these trees make use of parameters that are user­

definable. Therefore, the user may determine the tolerance of the eight orientations introduced 

in Section 7. In addition, the proposed method can be applied to the recognition of any pattern 

that can be composed of the primitives provided for by PDL. Implemented together with context 

and a more sophisticated merging routine, the system's 95.2% recognition rate will be further 
increased and thereby deal with an even larger class of characters. 
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