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Abstract 
Superquadrics are a a class volumetric primitive which can model objects including rectangular solids 

with rounded corners, ellipsoids, octaheadrons, 8-pointed stars, hyperbolic sheets, and toroids with cross 
sections ranging from rectangles with rounded corners to elliptical regions. They can be stretched, bent, 
tapered and combined with boolean operations to model a wide range of objects. This paper discusses 
our progress at attempting to recover a subclass of superquadrics from 3D depth data. 

The first section of this paper prP.Sents a mathematical definition of superquadrics. Some of the 
rationale for using superquadrics for object recognition is then discussed. Briefly, superquadrics are 
flexible enough to represent a wide class of objects, but are simple enough to be recovered from 3d data. 
Additionally, the surface and ita normal surface both have well defined inside-out functions which provide 
a useful tool for their recovery. 

The third section examines some of the difficulties to be encountered when modeling objects with 
superquadrics, or attempting to recover superquadrics from 3D data. These difficulties include the general 
problems of a non-orthogonal representation, difficulties of dealing with objects which are not exactly 
representable with CSG operations on the primitives, the need to recognize negative objects. certain 
numerical instabilities and some problems caused by using the inside-out function as an approximation 
of the distance of a point from the superquadric. 

Our current system employs a nonlinear least square minimization technique on the inside-out func
tion to recover the parameters. After discussing the details of the current system, the paper presents 
examples, using noisy synthetic data, where the system succe88fully uses multiple views to recover under
lying superquadrics. Also presented are examples using range data, including the recovery of a negative 
superellipsiod. 

Some proe and cons of our approach as well as few conclusions, and a discussion of our planned future 
work appear in the final seetion. The main result is that least square minimization using the inside-out 
function allows both positive and negative instances of supereUipsoids to be recovered from depth data. A 
second preliminary result is that & single view of & superquadric may not be sufficient for reconstruction 
without additional &8IIumptioD.II. 
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Mathematical Definition of Superquadrics 
Mathematically. superquadric solids are a spherical product of two superquadric curves. Superquadric 

curves are similar to traditional quadric curves except the terms in the definition are raised to param
eterized exponents (not necessarily integers). For example. a superellipse (see [Gardiner-65]), is defined 

1 1 
such that: (~), + (t), = 1. \\Then c. the relative shape parameter is 1. the curve describes an ellipse. 
As the relative shape parameter varies from 1 down to O. the shape becomes progressively squarish; as 
it varies from 1 toward 2. the shape transforms from a ellipse to a diamond shaped bevel. When the 
parameter is greater than 2. the shape becomes pinched and as the parameter approaches infinity. the 
shape approaches a cross. 

The result of the spherical product of two such curves is conveniently represented in a parametric 
form. e.g .. a superquadric ellipsoid can be represented as (see figure 1): 

for any fixed positiveal. 
a2.a3.Cl. and C2. 

The parameters al,a2,a3 effect the size of the superellipsoid along the x.y and z respectively. The 
parameters Cl and (2 effect the relative shape of the superellipsoid in the latitudinal (xz) and longitudinal 
(xy) directions. When the 5 parameters are all unity. the superellipsoids define the unit sphere. 

Figure 1: Superellipsoids with relative share pa-
rameter (1 having values .1, .5. 1. 1.5 and 2 (len Figure 2: Examples of superquadrics deformed by 
to right), and (1 having values .1 .. 6 and 1 (top to bending and tapering 
bottom). 

Superellipsoids have a well defined inside-out function: 

(( IXI) ~ (IYI)~) ~ /(x.1/.z) = - + - + 
al a1 

. {/(XO.1/O.Z0) = 1. then Xo.1/O,Zo is on the surface boundary; 
where if /(xo. 1/0. zo) < 1. then Xo. 1/0. Zo lies inside the surface boundary, 

/(xo. 1/0. :0) > 1, then Xo.1/O.:0 lies outside the surface boundary. 

The absolute values are introduced to extend the inside-out function beyond the first octant." 

(1) 

Superellipsoids (hereafter referred to as SEs) define the simplest of the superquadrics. and the only 
subclass which can model convex solids. One can also define superhyperboloids of one or two sheets and 

• Alternatively. one could iruun that fraction&! exponentiation wu broken into two It&«es. squariIll and then raisin, to 
the remainiIll fractional power. 
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supertoroids, see [Barr-81]. In addition to the variety of shapes defined by the basic superquadrics. Barr 
also discusses the application of angle-preserving transforms which allow translation, rotation, bending and 
twisting. With the addition of tapering and traditional boolean combination operations, superquadrics 
become a powerful modeling tool. see Figure 2. 

Why use superquadric solids? 
This section discusses some of the rational for using superquadrics for object recognition. In short, 

they are flexible enough to represent a wide class of objects, but are simple enough to be recovered from 
3d data. Their inside-out function provides a useful tool for their recovery. In addition, they have a useful 
duality principle with their normal surface, which also has an inside-out function. 

Traditional constructive solid modeling systems use boolean operations to combine primitives, such as, 
spheres, cylinders, and rectangular solids. By extending the primitive shapes to SEs, we allow the user to 
easily produce a continuum of forms, from spheres, to cuboids with rounded corners. to cubes, to diamond 
shapes. Such objects are difficult to model with traditional constructive solid geometry (hereafter CSG) 
systems. \laking them primitives simplifies the job of the designer for any problem that contains objects 
with these properties. t 

However. adding flexibility above that of a traditional CSG system is not the only reason to choose 
superquadrics. For added flexibility, one could make the primitives of the system Generalized Cylinders 
or Generalized Cones. as introduced in [Brooks-Binford-80]. The problem with GC's is that recovering 
them is a difficult process, partially because each GC may require hundreds of parameters to describe 
it.: As in [Brooks-8S] or [Rao-Nevatia-86], one generally has to greatly restrict the class of GCs allowed 
before one can reliably recover them. Superquadrics provide such a restriction, and in addition, provide 
mathematical properties (the inside-out function and normal surface duality principle) that will make the 
recovery of superquadrics simpler and more robust than the recovery of unrestricted GCs. 

The inside-out function provides a useful tool for recovery, because it provides a simple way to de
termine which of the data points are inside the surface and the value of the function grows as points are 
moved farther from the surface. Thus it can be used in conjunction with a minimization technique to 
recover the surface. 

Canonical superquadrics (except the supertoroids) have a desirable duality property. The superquadric 
normal vectors lie on a dual superquadric form; that is, if the normal vectors were translated to the origin. 
they would generate another superquadric of the same class such that the normal of the new surface (if 
translated to the origin) would produce a copy of the original superquadric (except for a translation). 
One can easily derive the form of the normal surface as a spherical product as well as its own inside-out 
function, see [Barr-81]. 

Note that the inside-out function for the surface normals may be used to find superquadrics fitting 
surface normal information &8 would be available from shape-from-X methods. 

In summary, the authors are interested in recovering superquadrics because they are a flexible primitive 
for a CSG type system, but are simple enough to be recovered from 3d data. In addition, the surface and 
surface normals have easily computed inside-<>ut functions. 

Some Difficulties with Superquadrics 
The difficulties of modeling with and recovering superquadrics can be divided into two classes: those 

difficulties common to any CSG based system and thoee difficulties particula.r to superquadrics. The 
former class includes general problems of non-orthogonality of the representation, difficulties of dea.ling 
with objects which are not exactly representable with CSG operations on the primitives, and the need 

'A aimple CAD Iy.tern baa been developed by A. Pendancl, .ee [penda.nd-86bJ thAL combines SEa (corutrained to only 
thoee that are convex IOlid.) with csa type operatioll.l piw bendin& and ~5. Tbe euy with which people became 
accu.ol.Omed 1.0 modelins with tru. lyatem may be tied to their own internal repl"e8ent.ation of the object.a. [Pentland-86al 
present. ~ent.a to uaert motiva~ tbe u.e of luperquadria u modelin, primitives by .bowin, corrapondences to human 
v oca.l.i ~Lion of ob j eet descri p t ioo.a. 

I The number of paramel.en oe<:euary to define a GC depald. on the complexity of the crou-aection function, the spine, 
and Iweepin& function. It i. interestins 1.0 note that aupereJl.ipeoid. and lupenoroid. can be defined a.a a aubclaaa of GC; 
e.,., SEA are tboee strai&ht Ipined Ge's with their craca-aection and IWeepins functions defined by IUperdlipees. If the SEe 
are bent or tapered, the.e deformations are applied to the spine and .weeping function n!Spectively. 
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to recognize negative objects. The latter class of difficulties includes certain numerical instabilities and 
particular types of parameter ambiguity. This section briefly discusses these difficulties. 

One of the most difficult problems of any CSG system is the non-orthogonality of the representation. 
One can generate the same volume by a number of operations on primitive objects. This makes the 
matching of recovered objects with a database more difficult. Since the underlying objects are symmetric 
with respect to certain sequences of rotation, these rotations form a equivalence class which can be 
anticipated by the matching. 

When the primitive objects are SEs some of the symmetries are nonintuitive. For example a cube with 
just slightly rounded corners can be represented as a SE with fl = .01. (2 = .01. al = a2 = a3 = 1 and 
also (after a rotation of t around the z-axis) by one with f1 = .01, (2 = 1.99. al = a2v'2. and a3 = 1.'. 
Other nonintuitive symmetries may also exist. 

The two basic CSG operations are addition (set union) and subtraction (set difference). Thus if one 
is interested in recovering models created with boolean operations on superquadrics. one must be able to 
recognize them from partial boundaries. and also be able to recognize negative superquadrics as the result 
of a difference operation rather than a partial boundary of some other positive superquadric. Here again, 
a nonintuitive symmetry of SEs becomes apparent. Consider a small patch of strictly concave data. It 
can be modeled as a patch of a negative convex object or part of a positive concave (pinched) SE. 

As with any CSG system, there are the difficulties of approximately representing objects. Two of the 
most difficult problems to solve are what level of detail needs to be preserved, and given that level, how 
does one allocate deviation from the actual object to different pieces of the construction. The importance 
of this became quite apparent as we attempted to reconstruct a soda-can from the utah range data, 
[utah-85]. The actual object (the can upside down) may, at one level of detail be modeled as just a 
cylinder. However, if a better model is desired. one can use a cylinder minus an ellipsoid. Finally more 
accurate models exist (because the small concave bevel which helps makes the can stable when stacked 
must also be modeled), e.g. a cylinder minus the ellipsoid plus a small section of a super hyperboloid of 
one sheet. Thus the level of accuracy chosen for the modeling can greatly effect the resultant model. As 
with the other problems mentioned in this section, the major impact of this difficulty is not really in the 
recovery phase. but becomes quite important when one attempts to match a recovered model (or part 
thereof) against some internal models. 

A second, and more difficult problem in approximate modeling using superquadrics is how to measure 
"error of fit". The intuitive idea is simply to take Li[l- !(ri, Yi, Zi)]l where! is the inside-out function. 
Unfortunately. this measure is not even proportionally related to the distance of the points from the 
surface. This problem is reminiscent of the problem of defining goodness of fit for conic filters, see 
[Turner-74], and in the future, these authors will be attempting to apply results from that work to the 
recovery of SEs. The problem of measuring error is exasperated as one attempts to apportion the error 
to individual data points, especially if there is any nonuniformity in data densities. 

By examining the inside-out functions which define superquadricstt , one might expect to find problems 
of numerical instability because of the exponents (1 and fl. While these researchers have encountered 
some problem (most notably effects of roundoff errors and floating point overflows) when (1 ~ 1 for 
reasonable values (say> .1), the instabilities encountered have not been insurmountable. 

A final problem with the use of superquadrics as a modeling primitive is that they are often not well 
defined by a single view. Thi. i. especially a problem for the size parameters. An example of this is flat 
objects, for which information on a single face does not determine the objects size or rotation in the plane 
of the face. If the object is large enough one can incorporate multiple views (see the discussion below). 
However, if the flat object is juat a patch of a negative object (e.g. the result of an intersection of a negative 
cube with Mother SE), one cannot get another view and recovery is difficult if not impossible without 
additional constraints. There are numerous ad hoc assumptions one can add to alleviate this problem, 
e.g .• both [Bajcsy-Solina-87b] and [Pentland-86a] cOllBider finding only the superquadric with the smallest 
volume. While this is rather ad hoc reasoning, the results are surprisingly good, see figure 10. This 
reformulation can also be rationalized because it makes the inside-out function a better approximation of 

. the true distance of a point to the SE. Consider the square of the distance of a point (r + k, r + k, r + k) 
from a sphere of radius r. The true distance is 3A:l. At that point, the inside-out function has the value 

··There are at leaat two ways to represent any SE wh.ich bAa t) :I: 1, which follows from the fact that except for rotation 
and scaling, an SE with t\ = S.t) = "I' is ~uiva1en1 to one wiLh t\ = S,t] = 2 - '"1'. 

"See [Barr-81) foc t!wee iraide-out functioru ncX preRnted here. 
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3~ which can (depending on r) be a gross underestimate of the distance for large objects. If only 
one view is a\"3.ilable, the '"error of fit"' will decrease as the size of the object increases in the direction 
~pposite the viewing direction. However. the distance of the surface to the data points may actually 
Illcrease. Introducing the volume term into the inside-out function results in the value of 3r(k)2 which 
a overestimates the actual distance. but is still a better approximation than the standard inside-out 
function. 

Our Current System 
This section presents some of the details of our current system for the recovery of superquadrics from 

3-D information. The basis of our system is the use of the inside-out function. see equation 1. Similar 
equations and constraints can be derived using the inside-out function of any of the superquadrics. ~ote 
that one of the advantages of minimizing the inside-out function is that it requires little extra effort to 
incorporate multiple views, assuming one knows the sensor position for each view (to convert points to a 
common coordinate system). 

Given 3-D information about a SE in canonical position, one can use a nonlinear minimization tech
nique to recover the 5 parameters needed to define it. Our system uses a Gauss-Newton iterative nonlinear 
least square minimization technique.H That is, the system minimizes 2:(1 - /(x, y, ;))2 where the sum
mation is over all known information points. 

If the SE is not in canonical position. the system must also recover estimates of the translation 
and rotation necessary to put the information on the surface of a canonical SE. There are obviously 
many approaches to deal with the translation and rotation, the two most obvious are the use of a pair 
of transforms (one for translation and one for rotation) and the use of a homogeneous transform that 
combines both translation and rotation. Our system uses the first approach. 

For the remainder of this section let C, = cos 8 and S, = sin 8. Thus given a canonical SE surface 
defined as s= 5(ry,W) with an inside-out function J = /(x.y,z), the translated and rotated SE solid 5' is 
given by 

where 8, I/J. dJ are the Euler angles expressing the rotation about the x, y, z axes respectively, R,~R.t, are 
the rotation matrices about the x, y, z axes respectively and t z , t y , t. are the translation in the x, y, and z 
d irec tions respec tively. 

Given the data for a general SE the system minimizes L(1- /'(x,y,z»2 where the summation is 
over all know information points"', and where /'(1:, y, z) = /(x', y', z') and [ n = [~~s:: ;:;: s~= i?~: ~:;: ~~: ~ ;;;: 1[ ;:: lJ 

To employ the GaU88-Newton iteration, the system must compute the Jacobian of the transformation, 
and thus also needs the partial derivatives of /'(z,y,z) with respect to the 11 parameters. (5 shape, 3 
rotation and 3 translation), which were obtained symbolically. 

The addition of bending is easily implemented as a simple angle preserving transform on a given axis 
before rotation and translation. Tapering is simply a. linear scaling of the solid along some axis before the 
application of bending, translation or rotation. Thus in recovery, these transforms are applied first. 

The initial implementation of the system recovered only the 5 shape parameters. Using synthetic data 
with up to 10% uniformly distributed noise, the system could start the minimization proced~re from a 
canonical poeition (all 5 parameters = 1) and in most cases was still able to recover the underlymg surface 
within the error of the data. \10reover. the convergence was generally quick, requiring < 15 iterations. 

II While it is often arsued tlat the error in depth meaallNmenta is ",auaaian dHtributed in a direction parallel to the line 
of meaaurement, e.",., see [BoUe-Cooper-86]. one CAWlOt &aIIwne thlU the direction of meaaurement ia cona.t~t. for all data 
point.. Thus in our ayaum the use of leaat squares is an ad hoc auwnption rlUher than an attempt to nuIUIIUZe the elTOr 

of reconstruction with respect to noise in the dat.&. . . 
".One example presented introduced an eXlra factor of 1]\1]11]3 to make the inaide-out function a better apprOXUTlatiOn to 

the true distance. 
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Next the system was extended to deal with translations in addition to the 5 shape parameters. Again 
the system was generally robust with respect to recovery of the underlying surface. The authors believe 
that this robustness is partially due to the fact tha.t many of the symmetries which cause the general SEs 
to be nonorthogonal, require some amount of rotation. 

When the system was extended to handle 11 parameters, things became more complicated. For most 
of the examples presented. even when presented with very poor estimates for starting values, the system 
was quickly able to find an SE that had low error. Unfortunately, the solutions proposed by the system 
often seemed to be nonintuitive. However, when examined closely, these solutions proved themselves to 
be reasonable interpretations of the data. For example, when presented with the range data (from the 
Utah range database, [utah-8S]) for a coke can minus the concave portion of the bottom end. the system 
initially proposed a solution with error = .0078: the parameters were £1 = 2.0, £2 = .88,01 = 1. 02 = 
1.3,03 = 19.59. tr = -.19, ty = -1.69, and t z = - .834." These parameters describe an object that is 
beveled along its long axis, and rather round in the other direction. The length of the object is entirely 
incorrect but then it is being intersected with a negative ellipsoid, and the bottom is cut by a ground 
plane. When examined closely, the proposed object (when intersected with the other objects known to 
be in the scene) does seem to be a reasonable fit to the data, but still a cylinder seems intuitively to be 
a better fit. If forced to look for a cylindrical object, the system finds an SE with error .17.t 

To help the system avoid local minima, Poisson noise was added to the residual! The system also 
derived estimated bounds on the possible values for each parameter. These estimates were derived from 
knowledge of "sensor" and the data values. If during the minimization, any parameter attempts to stray 
beyond its allowed boundary. the system stochastically pushed it back toward its initial value. 

Currently, the system obtaines initial estimates of the translation parameters from the centroids of 
the original data. and derives bounds from sensor information and overall data (maximum variation in any 
data). However there are many problems with these estimates especially if the number of data points is 
small or if the system is only given a partial view of an object. These estimates are are obviously much 
better if multiple views of the object are available. The estimates also assume that the data is segmented, 
an assumption with which the authors feel particularly uncomfortable. 

The system derives estimates of rotation angles and length scales from moments of inertia and bounds 
on the length parameters from sensor information and overall data. Because the moments of inertia 
require second order moments the estimates are plagued with more difficulties than the estimates of the 
translation parameters. The estimates of the both rotation and length scales are very poor if an object 
(after segmentation) is the result of boolean combinations. 

A Few Examples from Our Current System 
The first eX&lTlple in figure 3, is a synthetic SE with noisy synthetic data from multiple views. The 

actual parameters of the superquadric are (1 = 1.59, (, = .39,01 = 1,0, = 2,03 = 3, tr = I.S, ty = 
2.5, t, = 3.5,8 = .1,1'/ = .1, tjJ = .1. The noise in the underlying object was uniformly distributed over 
the interval [-.IS, +.IS] and then added to the z (depth) value of a point. The 1000 data points were 
randomJy distributed on the surface before noise was added. The system recovered an SE with parameters 
(1 = 1.8,(, = .3,01 = 1,0, = 2,03 = 3.58.t# = 1.49,t, = 2.5,t, = 3.47,8 = .079,1'/ = .09,tjJ = .101. The 
error of the reconstruction wu .079. The system required 7 iterations from the initial values to find the 
solution. 

Figure 4, is the recovery of the same synthetic SE as in example 1. However. this time this system was 
given 1000 data points from one view of the object. Under these condition the recovered parameters were: 
(1 = 2.09,(, = .67,01 = 1,02 = 1.94,03 = 3.36,tr = 1.43,t, = 2.S3,t, = 4.3,8 = .075,1'/ = .07,tjJ = .08. 
The error of the reconstruction was .169. Obviously the reconstruction from multiple views is superior. 

Figure 5 shows the system recovering S parameters (i.e. an SE without translation or rotation) using 
only one view, and very sparse data. In figure 5 ODe can see the initial data (small dots) and recovered 

"The error for all eJC&mpls ;. defined to be the r-eaK\uaJ value (1. " •• n[1 - J(r., y .. %,»)J) $ where J i. the inaide-out 
n L,_l 

function of the superquadric. Note tha.t thi. i. not the same aa the leaat squAre diatance to the surface. 
'Thla problem can be allevia.ted by multiply~ by ell elJel3 in the minimi:z.ation, in which c.ue the a>:-tem ~on~ergea to a 

reaaonable cylinder. Oddly enou~ the system converged to a can more rea.dily if da.ta from the negative dlipwld was not 

removed. 
I This waa auueated by A. Pmtland. 
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Figure 3: Example recovering 11 parameters using 
noisy synthetic data from multiple views 

Figure 4: Example recovering 11 parameters using 
noisy synthetic data from single view 

-, 

SE. The parameters of the initial data were: (1 = 1.234, (2 = .2345, a1 = 1.2, a2 = 2.3, a3 = 3.4. The 
system was given only 32 data points which had uniform error in the range [-.17,+.17], and was able to 
reconstruct a SE with parameters (1 = 1.317, (2 = .2745, a1 = 1.222, a2 = 2.333, a3 = 3.53 and an error 
of .178. 

Figure 5: Recovery of 5 parameters from 32 noisy 
points 

Figure 6: Synthetic example recovering 8 parame
ters with no initial estimates. Small dark circle is 
initial approximation. 

As an example of the robustness of the algorithm, figure 6 shows an example of the system recovering 
8 parameters using multiple views of synthetic data. Moreover, the system makes absolutely no calcu
lated starting approximation to the parameters (i.e. starts the minimization with inital values that are 
independent of data). The figure shows the inital data (cloud of dots) computed solution (line figure) and 
the initial estimate (the small dark line figure). The actual parameters were: (1 = 1.39, (2 = .795, a1 = 
50, a2 = 35, a3 = 25, tr = 3, t, = 2, t. = 1,8 = .9, '1 = .6,1/1 = .6. and the recovered parameters were 
(1 = 1.387,£2 = .773,a1 = 50.5,a, = 35,a3 = 27.5,t~ = 3.011,t, = 1.98,t 6 = 1,8 = .9,'1 = .6,1/1 = .6. 
One component of the initial data (or, y, or z with equallikelibood) waa perturbed by a random amount 
in the range [-2.5,2.5]. This noise was meant to simulate error in depth from multiple views. 

The final three examples presented, show the fitting of actual range data from the Utah range database. 

Figure 7 shows the elliptical indentation on the bottom of a soda. ca.n. The object which is defined 
by 590 data points. The system recovered the parameters (1 = 1.29, (2 = .955, a1 = .939, a2 = .930, a3 = 
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Figure 7: Reconstruction of a negative ellipsoid Figure 8: Reconstructed sphere from actual range 
from real range data data 

.277, tr = - .096, ty = -1.55. t. = 2.07,8 = - .05. '1 = 0, tP = O. and the error was .0293. 
Figure 8 shows a quasi-spherical object which is defined by 859 data points. The system recovered the 

parameters (1 = .994,(2 = .951,al = 1.19,a1 = 1.13,a3 = 1.13,tr = .4729,t y = 1.437,t. = -1.457,8 = 
-.05, '1 = -.04.1/J = 0 and the error was .021. 

Figure 9 shows the cylindrical portion of a soda can defined by 1645 data points. When using the 
above described estimations techniques, the system recovered the parameters (1 = 2.0, (2 = .88, a1 = 
1,a2 = 1.3.a3 = 19.59,tz = -.19,t ll = -1.69,t. = -.834,8 = -.04.'1 = .05,1/J = 0.0. and the error was 
.0079. When the inside-out function was modified to include an extra multiplicative factor of ala1a3, the 
result was the object in figure 10. Unfortunately, the residual errors cannot be compared. 
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Figure 9: Example using real range data exam
ple of soda can, beat fit surface with standard in
side-out function. 
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Figure 10: E~&mple using real range data exam
ple of soda can, best fit with inside-out function 
multiplied by a 1 ala3. 

Advantages and Drawbacks of Our Approach 
The approach has a number of advantages. This section presents them and discusses them with respect 

to the two other systems for recovery of SEs known to these authors. The other systems are described in 
[Pentland-86a]' [Bajcsy-Solina-87aJ, and [Bajcsy-Solina-87bJ. The advantages of our approach are: 
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+ The system has demonstrated the ability to recover negative superquadrics. This is particularly 
important if we wish to use SEs combined with boolean operations. 

+ The system has shown itself to be quite robust, even for small data sets, if given good estimates of 
rotation and reasonable bounds on translation and size parameters. 

± The system demonstrated (using synthetic data) that multiple views (i.e. data on more than one side of 
the SE) result in much better reconstruction. This turned out be be quite important because it helps 
remove some ambiguity about the size of the object. (The authors believe this approach is better 
than assuming minimal volume as in both [Bajcsy-Solina-87b] and [Pentland-86a]. Unfortunately. 
it is often difficult to obtain mUltiple views from known positions.) 

± The system combines the advantages of a fast nonlinear estimation technique (Gauss-Newton least 
square) with a Poisson randomness to avoid local minima and the use of stochastic resets if param
eters stray beyond their estimated bounds. If the bounds are correct, this helps the system to avoid 
some local minima. Unfortunately, if the bounds are incorrect, we have condemned the system to 
search in a space where no solution can exist. 

- The system is based on the minimization of the inside-out function. Unfortunately, this function is not 
simply related to distance of a point to the surface. This leads to minima that are nonintuitive. 

- If there are many more points on one portion of the surface than another, this surface will dominate 
the search because. as far as least squares minimization is concerned, the small number of points on 
other sides are '"noise". This is partially alleviated by using multiple views of an object (assuming 
we can). Even then we may overly constrain the "top" as compared to the sides. (We share this 
problem with [Bajcsy-Solina-87b].) 

- Currently, if the estimates of the parameters are poor, the system may converge to a point far from 
the true minima. This can be greatly alleviated by using data from multiple views which makes the 
estimates significantly more accurate. 

Conclusions and Future Direction 
This paper has shown that there is some promise in the use of a least square minimization of the inside

out function as an approach to recovering superquadrics from depth data, but the system is currently 
dependent on reuonable estimates of the moments of the object. Thus, our research investigated the use 
of mUltiple views and found that they greatly increase the reliability of the system. 

This paper also demonstrated that the system can recognize negative superquadrics, an important 
consideration if we are going to attempt to segment scenes made with CSG operations. 

In the near future, there are a number of extensions the authors pl8Jl to make to the system. The first is 
to include bending and tapering parameters so we can model more objects, and then begin experimenting 
with p088ible changes to the function to be minimized (currently the inside-out function) to give the 
system better error and convergence properties. 

Future plans for the system also include extensions to incorporate surface derivative information. 
This will be accomplished by minimizing a sum with (some variant of) both the inside-out function 
and a differentiated form of the inside-out function. This is different from the approach suggested in 
[Bajcsy-Solina-87a) where normals are considered. Our approach has advantages over directly using 
surface normw because it is applicable when only one derivative can be accurately measured and if 
normals are available, they provide two pieces of derivative information. Conditions when only one 
derivative can be accurately measured arise on occluding contours of nearly "square" corners. While 
theoretically one knows the actual normal at the occluding contour, small errors in the measurement of 
the location of the contour C8Jl greatly affect the normal. 

Of course one of the most important avenues for future research will be attacking the segmenta
tion problem, our current plans are to attempt at least two approaches: pure growing of superquadrics 

. from small data patches, and a skeletonization (to find axis) followed by both growing and splitting of 
superquadric solids. 
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