
cucs-290-87

Updating Distance Maps when Objects Move

Terrance E. Boult
Columbia Cniversity Department of Computer Science

~ew York City, :-;ew York, l002i. tboult'9cs.columbia.edu

:\BSTRACT

[sing a discrete distance transform one can quicicly build a map of the distance from a goal to every point in a digital map. [sing this
map, one can easily solve the shortest path problem irom any point by simply following the gra.d..ient of the distance map. This technique
can be used in any number of dimensions and can incorporate obstacles of arbitrary shape (represented in the digital map) including
pseudo-obstacles caused by unattainable configurations of a robotic system.

This paper further extends the usefulness of the digital distance transform technique by providing an efficient means for dealing with
objects which undergo motion. In particular, an algorithm is presented that allows one to update only those portions of the distance map
that will potentially change as an object moves. The technique is based on an analysis of the distance transform as a problem in wave
propagation. The regions that must be checked for possible update when an object moves are those that are in its "shadow~, or in the
shadow of objects that are partially in the shadow of the moving object. The technique can handle multiple goals, and multiple objects
moving and interacting in an arbitrary fashion.

The algorithm is demonstrated on a number of synthetic two dimensional examples.

1 I:-.iTRODUCTION

Given a digital map of distances to a goal (or goals), one can easily solve the shortest path problem to the goal(s) from any othe!poiht
by simply following the gra.d..ient of the distance map [~iontanari 681. This technique can be used in any number of dimensions and can
incorporate arbitrary obstacles (represented in the digital map) as well as pseudo-obstacles caused by unattainable configurations of a robotic
system.

Through the years. researchers have proposed algorithms which compute digital distances assuming various aeighborhood and ap
proximations, e.g. see [Lee 611, [Roseafeld and Pfaltz 661, [Rosenfeld and Pfaltz 68], [Barrow et al. 77], [Danielsson 80], [Borgefors g4a],
[Borgefors 84b]. and [Verbeek et al. 86].

Unfortunately, the above referenced techniques for digital distance transforms required complete precomputation of the distance after
any object undergoes an unpredictable motion (all of the above can be trivially extended to handle periodic motion). However. it i~ obvious
that, in genera.!. even if an object moves unpredictably, there will lar~ portions of the digital distance map that are unaffected.

The major advantages of an algorithm that updates only thOM portion. of the distuce map which are actually effected by a moving
object are twofold. The moet obviou. a.dvutage i. the sa.vin~ in computational effort. The lesa obvious, but possibly equally important,
is that if it can ~ quiclcly determined that the current location of the Wrobot" is not in an effected region, the "robot" may be allowed to
continue movement toward its goa.! while the distance aap i, upda.ted in the ba.ckgroUlld. Thus the robot motion would not be unneceuarily
halted if an object entered its envelope but did not effect it. goalt.

Another p068ible use of the technique won1d ~ u put of high-level path pl&nning in hoetile environment!. For this application. a system
would hypothesize obstacle locatioOJ at some future time and could use the ·update" algorithm to determine which regioOlJ of space could
possibly (but not necessarily) interfere with the movement to the current go&1. A simple variant of the algorithm could be u~ to actually
predict the minimal velocity of a. given obstacle before it could have a poU!ntial effect.

The next section presenu some ba.cigroond on the conatra.ined diltuce transform. Following that are sections describing the algorithm,
describing the experimental testins, and then discuaains the limita.tioOJ of the current algorithm, and avenues for future research.

2 BACKGROUND: THE CONSTRAINED DISTANCE TRANSFORM

There have been many sequential approaches to the computation of Digital distance ma.ps. These techniques differ mostly in their
neighborhood definition, weighting schema.. and "sweepins" algorithm. The algorithm for deU!rmining regions which will poU!ntia.ily ~
updated requires knowledge of the neighborhood and weighting fUllCtiOOl. This section brielly introduces the constrained distance transform
as presented in [Dorst and Ver~k 86] and [Verbeek et al. 86J. both of which dependent heavily on the distance transform discusaed In
[Borgefors S4a].

I 011 nlr, d3 d3

inl:? n4 03 n2 n9 d3 d2 dl d2 d3

n5 nO nl dl 0 dl

013 n6 nj n8 nl6 d3 d2 dl d2 d3

n14 nl,5 d3 d3

Location of 16 ~eighbors Weights for 16 neighbors

Figure 1: Example showing the numbering of the 16 neigh
bors and their associated weights for a 2D CDT. For
16 neighbor real valued approximation to euclidean dis
tance. the weights are dl = 1. d2 = ,f2 and d3 = .,/5.
The minimal error integer a.pproximation is given by
dl = 5. d2 = i and d3 =1/. For 8 neighbor the real
valued approximation
uses dl = 1. d2 = ,f2 and d3 = 0 and the best integer
approximation uses dl = 3. d2 = 4 and d3 = o.

Figure 2: D D M after various passes of constrained distance transform
for a scene containing three goal points. and four objects. The 101l.·er
left sllows the DDM Uter the first pass. Lower right is after the
second. upper left after the third and upper right is after the final
(sixth) pass. Distances are represented as iso-distance contours. See
text (or more details.

In its general form. the constrained distance transform (hereafter CDT) allows computation in arbitrary dimensions. and with variolll
neighborhoods. For simplicity. only the calculation of two dimensional digital distance maps (hereafter DDMs) is considered herein.

The general two dimensional algorithm begins with a definition of neighborhoods and weighting functions. see figure 1. This discussion
assumes 16 neighbors as in the right of figure I and uses the integer approximations to the euclidean distance provided in that figure. Given
that neighbors nl ••. nlS all have values. VI ••• VIe which are the distances from that point to some goal point. then the distance from no is
simply min;=O .. IS(V; + Wi). where Wi is the associated weighting function.· To allow obstacles in the distance map. one can generaliu the
\-a.lues t'i ... Vie to include the value +c>o whenever the associated pixel is part of an object.

The serial version CDT algorithm is best described u two alternating passes.! The exact number of alternations required depends on
the number. shape and relative location of the obataclet. The odd passes sweep left to right over the image from top to bottom. As the pa.&l
proceeds. it updates the value at every non·infinite (i.e. non-obstacle) pixel. say DDM[ij) according to the equation

DDM[i,J) = i = 0.2.3.::;. 10.11. 12(v; + w;} (1)

where the Vi are the distance values of the a.aaociated nei&hborhood of DDMfijJ.: The even pa.aaes sweep from right to left. and from bottom
to top. They updlote the value lot every non-infinite (i.e. non-obstacle) pixel according to

DDM[i.j] = i = 0.1.6. 7~~~3.14.15.16(Vi + w;). (2)

Because these pa.aaee ~ternlote. the information fint 110 •• down i.Ild to the ri&ht but with some spreading on loll angle to the left. see 2-
On the alternate p&U the information 110 •• ap i.Ild to the left. with some i.Ilsular dispenion of information to the ri&ht. If there are multiple
sources. or obsta.ele. in cenain poIition •• multiple puael will be requited to .pre.ad the dUti.llce information tllroughout the image.

Given a. DDM. the calculation of the .hortett pAth from the carrent lOCAtion to A g~ point is achieved by simply following the gr&dient
of the map." A mobile robot a.ctaa.lly never needl to calculate the entire path; motion may be determined locally. This property allow. the
DDM technique to euily i.Ild efficiently deal with (~thoa&h not anticipate) Ilipp~e i.Ild other problem. with tile robots inertial guidance.
If the robot system hu some me&l1t of determining ita carrent location. itl can continaa.lly pli.ll the ~shortestft path to its goal even thougJa
it can not actually (oUo. that path accurately.

While the expresaed purpoee ol the COT i. to a.llowone to euily solve the .hortest-path problem. it can ~so be used to de~ with the
any· path problem. Thil i. accomplished by pluniJlg the .hortett p~th to A .ingle ~goal" (the one used to compute the DDM) from both the
starting point and deaired ending point. If there exiltl a path from the stuting point to the Ugoalft (thi. can be euily determined from the
DDM). then this techniqae will alWAY' find A pAth. Thi. type of path pli.llning. while generating inefficient path. might be used u a simple
mechlollism of dealing with unexpected motion. required by real time erron in loll a.aaembly tuk.

°nr iDelusioD or aero ia D~ bec.a ... tar POUlI uder co ... deruioa !DiPI b4 a coal potal.

IOa~ CAD acluily do Ille complItalio. i. Cotr (or S or 16) diJl"unl P_ For rOllf ~. ODe colllpuelibe abaft p_ u weD U Olle Ibu nr~ lOll 10 bollOla.
IdllO "pI &lid &lIolber Ibu Iwer .. bollOlII 10 lOp. nPl 10 left. II bu bee. reportad eJ.ewbere. [Verbeek eI &I. 881. Ibu Illia redIa. ,b, Dl1l11ber or p..- teCl1I1nd

10 compl1~ Ihe COT wila obe~.
If(ODe 11_ ollly eiPI Depbor.. Lbe 111111 ia modified by droppia, ~mu aboft I • 8. T1Wr cu lfU1Iy deauae lb. rnaill, lime of Ihe a13orilblll. bill w..

iDcr~ues Ih~ error or Ih~ lrauCorm u compued 10 la. IMae ncbdeu dial&ace.
oOHo_~r. da~ 10 la~ DUur. or disil&! diu&Acee, Crom &Ay pna paoal Ihere ma, b4 I..., dil.rul ditectiou ollran! which rftIl!l ia I..., ~ui-<ii.l&lIc, puu. r.

,ach cues. Ibe ,.&dirDI i.I Dol aaiqaely d.Ji.ed. &Ad Ih. &lsonlbm m&y choc.e direct"'. of mouoa p&Lb. po.IbI, allIIS IOm~ ollarr erilIne. 10 make Ih. dKUloa

To summarIze. the advantages of the CDT over other techniques for path planning include:

• It is fast and simple to compute. See tbe experimentation sec:ion for example timings.

• It can bandle arbitrary sbaped obstacles. In fact, tbey need not even be simply connected. (~{ultiply connected obstacles can arise
wben considering patb planning in configuration·space.)

• If can be very efficiently updated if objects move.

• It is a better distance measure tban true euclidean distance for tbose simple robotic carts whicb have limited angular mO\'ement (say
16 or 32 possible directions of motion).

• It can even be used to find -good- patbs in situations where the robot cannot accurately foUow tbe path (assuming tbat sensory data
can be used to monitor the actual location).

• It is easily extended into higher dimensions (witb enougb memory).

3 I;-';TELLIGE;:';T t:PPATI;:';G OF A PPM \VHE;:'; OBJECTS ~IQVE

This section describes the algOrithm for intelligent updating of a digital distance map wben some number of objects in a scene have moved.
It is assumed that a.ll objects are given by polybedral approximations. The algorithm for updating is done in two stages. computation of
effected regions, and actual update. The latter stage employs tbe COT from section 2 with a sligbt modification so tbat it does not require
the scanning of the entire map. but only sections of said map.

If one considers iso-distance contoun in a truly euclidean map without obstacles. the contours form circles. The sbortest path from any
point to the goal is then a straight line. If however. an obstacle is present. tbe sbortest path is a straight line to the goal if and only if tbe goal
is in -the line of sight- from the current location. Otherwise, tbe shortest patb is a series of lines. to the obstacles, around the obstacles. and
to the goal. If one examines the difference between a map witbout obstacles. and the map with a single obstacle. the difference forms a figure
similar to a drawing of the shadowing of light by a planet. with regions of shadow, umbra, and penumbra, see fig 3. However. moat of the
map remains unaffected. with the percentage of unaffected area depending on the size and location of the obstacle. This type of treatment is
easily enended to handle multiple goal •. However. the multiple goals are not exactly the same as multiple light sources. The system can be
viewed aa two I~ca.lly distinct pha.set. One pba.ae is tbe calculation of potential update regions. and tbe other is tbe actual update oC tb06e
regions. If care is taken. spatially disconnected potential update regions may be updated in para.llel. These phases are discussed aaa~ng a
two dimensional problem using a .V by .V digital distance map. :-Oote that the algorithm extend. into arbitrary dimensions. although with
an increase in complexity.

The actual update phaae of the algorithm is a simple extension to tbe cOllstrained distance transform whicb uses the defined potelltlal
update region (defined by an array) to limit tbe extent of tbe sweeps in each update paaa. Care must be taken to insure tbat tbe boundaries
of the region are correctly bandled. The COlt of thit pbase is genera.lly a sma.ll fraction of tbe COlt of a total constrained distance calculation.

Tbe other pha.ae ofa.!gorithm. i.e .• the one that calcwates the potential update region. assumes that each object is uniquely numbered and
is described by an array of vertices. It is aasumed tbat obstacles are also explicitly represented in the DDM aa boundary pixels connecting
tbe vertices. Boulldary values are assumed to be coded such that they can be distinguished from distance values. and such that tbe index
of tbe associated obstacle can be determilled from the pixel value.

111 addition to the N x N DDM and list of objecta (stored a.a vertices). the algorithm uses two auxiliary arraya. The first of these. referred
to aa the update array. is a 2 x .V array of inugera vlUch. for each row of the DDM. sto~ the stAlting and ending column of the potentJal
region for update. Thi. impliea that the update ~OG i. defined by raater lines. which is of courae a simplification of the true update r~on.
If the extra area updates becomes ai~lJficant. the algorithm ia ea.&ily modified to handle more complex descriptions of the update region.

The second auxiliary array. referred to a.a the .tatUi array, i. used to atore markers indicating which objects haa effected. may effect. or
wiU effect the potential update ~on. When &Il object moves, ita original pocition (if it existed. which is Ilot as8umed) aa well aa the Ilew
position of the object i. UJed to extend the potential update ~on. ThUi the addition of new objecta il a limple type of motion.

The calculation of tbe potential update region i. now diJcuued. ASiume tbat the DDM is correct (or the current lilt of obsta.cles. Then
tlUs pha.ae begins by initia.li%ins the JlGtll.ll QmJr to illdicate that for eioCh object. which haa moved both ita old and new positioDl will
contribute to the potential update repon.

The calculation of the potential update ~on i. done iteratively, in six stept. These are:

Step 1 For each vertex in the objects definition. the algorithm uses puniy loc.al operation. to determines which neighbor is closest to tbe
goal. and the direction of travel from that neighbor to the goal. Thi. Ileighbor it the initialloca.tion (or expan.ion.

Step 2 While the current location haa not encountered a boundary or another object, and it i. not a local minima (tlUs it p08aible only If
the location ia a goal. or if it is equi·distant from multiple goal pointa). then the current loca.tion is moved to a Ileighbor such tbat tbe
gradient of the distance map at the neighbor lead. to the current location. A. thia path is calculated, each step is checked again.t tbe
definition of the update region. and if needed. the repon is en.Ia.t!ed. Care mUit be taken to illlure proper operation around ob.twe
vertices.

Step 3 If during tbe processing of step Z. tbe path encountered another object, then if said object haa not already been added to tbe re(lOQ
(as determined by the mark.ing array). the object ma.y effect tlle regioll. and the object is so mar~ed.

Step 4 \Vith the expansion from a single vertex complete. the system moves on to the next vertex of :he current object (assumlnl\ :h;,.t It
has one) and goes to Hep l. If the current object is completed. the system moves on to the step .;.

Step 5 This step checks to determine jf the objects which were labeled as "may effect" will actually effect the region. This is accomplished
by determining if the any of the vertices of the object which are in the current upda.te re~ion, could "cast a shadow". i.e. is the local
gradient into the object (then no sha.dow) or around it (shadow). If any vertex could cast a shadow. the status of the object is moved
up to "will" effect. otherwise the potential update r~ion is expanded to include any portion of the object boundary in shadow. a.nd
then the object's status is reset to having no potential. If any objects remain which will effect the update region, the system returns
to step one, otherwise it goes to step 6.

Step 6 At this point. the system has enlarged the potential update region to the size required for the moved objects. It is now necessary to
make a single pass over tills region and reset all distance values to a large value, so that the actual update pass will correctly operate.

4 EXPERnlENTATION

Since the main goal of tills research was the study and development of the algorithm to calculate the actual update region, little attempt
was made to optimize the implementation of the update algorithm. However, the speed with which such calculations can be accomplished
is of some importance in determining the ~'alue of the algorithm. For that reason, this section presents measures of the efficiency of the
algorithm on various synthetic examples. While it would be nice to express the running time of the algorithm in terms of some of the input
parameters, this seems impractical because the times are dependent on the interactions of the location(s} of the goal(s) as well as the spatial
extent and layout of the obstacles.

One alternative is to present machine times. but these are too site dependent to be meaningful. Th1Ul. we present two measures of the
efficiency of the algorithm. These are the percentage of the area of the DOM which must be updated. and the relative time spent on each phase
of the algorithm. The relative times will be presented in units, ,/, where one '1 is the"average" cost of one pass of the constrained distance
transformation on a 256 by 250 OOM. Each measurement is an average of 4 runs of the update algorithm. For those readers interested in
the actual running time, '/. was roughly 4.5 seconds of elapsed time (wall-clock time. not cpu time) and was measured on a Vu750. with
a system load of approximately L Other researchers have reported running times of 2-3 5e(onds per pass. see [Dorst and Verbeek 86) and
(Verbeek et al. 86J. ~ote that even these relative measures have dubious me&ning, since they depend on the relative portion of the image
occupied by the object(s) in motion.

The examples in this section are all completed using 16 neighbor connections on a 256 by 250 (32 bit wide) two dimensional map. The
distances were calculated using the integer approximation described in Fig.!. All examples assume the edges of the map are obstacles. The

Figure 3: EXample showing ~shadow" regions for simple objects with
a single goa.!. Obtained by computing the difference between OOM
with no obstacles and a DDM with one obstacle.

\ \\ \
II)\

I

Figure 4: The result. of "update~ algorithm for a simple scene
with 3 objecu and one goal. The lower left ie the DDM for
original ob ject configuration. lower right is the region of poten
tial update (white region with tilln black outline). upper left
is after 1 paas of update COT and upper right the final result

of the update.

Figure 5: Example containing four goal points. and four objects. where object movement was on a large scale. Also note the termination of
region a.s it enteN the area effected by a different goal node.

examples are presented using iso-distance contours. and black outlined objects. The update regions represented as willte space (no contour
lines) with thin black outlines showing the beginning and end of the update region for each grid line.

The first example of the update algorithm is on a simple scene with three convex objects and a single ~ point. see Fig 4. ~ote how
the update region intel'5ects a secondary object. and thus the object is included in determining the potential update region. The calculation
of the DD~{ for these objects tues 5 ". When the large square in the central portion of the scene moves slightly down and to the left. the
calculation of the update region and preparation of that region for the update requires .18 ". The percentage of the total area occupied by
the update region is 38%. The time required by the actual update in tills area is 1.6 ". Thus the update algorithm was approximately 3.1
times faster than recalculation wi th the eDT willch requires 5 ,,(i.e. passes).

The second example of the update algorithm is on the scene presented in Fig 5. and Fig 2. willch has four goal points and 4 objects. The
object willch moved. 'did so on a large scale and was also deform!!! as it moved. ~ote that as the update region (generated by the upper
object position) is natura.lly terminated by the algorithm as it enteN tbe region of influence of a second goal point. The calculati~ of tbe
OOM (or the original object position takes 5 ". The calculation of tbe update region takes .0008 ". and tbe preparation for updatfng 'takes
.0002 '1. The percentage of tbe total area occupied by the update region is 6.5%. The cost of tbe update in this area is .2 '1. Thus the update

Figure 6: Example with a complex ~room~ scene. La tllla cue. tile motion consisted o(addin~ 4 ob.tacles. Note that because tbe object
~shadow~ of tbe object nearest tbe goal (~ entirely on one side o(a "room wa.J..l~. the wa.1l does not effect the potential update region.

algorithm delivered approximately a 25 (old speedup.

The final example o(the update algoritbm i. on tbe complex '"room" scene in Fig 6. In till. case tbere i, no motion. but ratber 4 objects
are added to tbe scene. Thi, ex&mple demoOltrates tbe capa.bility o(tbe system to use pre-stored DDMs (or complex scene, and tben update
them if a (ew objects are added. Till, technique be especially useful in conftgnration space where luge ob.tacles (the robot's self intersection I
will alway. exist, and will generate complex OOM •. Till, example a.1ao demon.tratea tbe algorithm', ability not to generate update potentia.lJ
for large objects wben a small shadow f~ on tbem. Apin. this il especia.lly import&nt in configuration space where many ~Iarge" objecu
Q,'ill exist. The calculation o(the DOM (or tbe ori~nal object position (or tbe new pocition) objects ta.ke,9 ". Tbe calculation of the update
region takes .0008 ,." and the prepua.tion (or upda.tin~ tues .001 ". The percentage of the total area occupied by the update region i. 25.8%.
The cost o(the update in tills area i, .99 ". There(ore tbe update algorithm delivered a.pproxima.tely a 9 (old speedup.

In another experimental setup, an object wu placed so as to iocreue the cost o(every distance in the ·room~ portion of the example 10

Fi~ 6. This results in the entire room portion o(the scene being added to the update region. Thus the update would still require substantIal
computation time (9 pa.sses over that region). However. tbe algorithm can determine the update region in only .01 ". U tbe patb plannlnl
Q,'ere currently occurrinll; outside tbe update region. the path planning could continue as tbe OOM is upda.ted in the background. ThIS a.blUlV

becomes increasingly important in higher dimensions. and as the resolution of the DD~{ is increased.

5 CO~CL1JSIO:-IS. LI~UTATIO;-";S A~D FUTURE \VORK

This paper presented an efficient algorithm for the updating of digital maps when objects undergo motion, or are added to a precomputed
DDM. The algorithm can intelligently deal with mUltiple goal points. arbitrary object interaction. including not increasing the update region
when a a small object moves in front of a large object. In situations where a small percentage of the DD~i is effected, the algorithm can save
significant computation time. Additionally, the algorithm can quickly decide if a given location will be potentially effected by the movement.

The major lintitations of this approach are actually lintitations of the DDM. These include: possible exorbitant memory requirements
(especially for higher dimensions). the use of discrete distances, and the ilifficulty of representing obstacles in configuration space.

The current realization of the algorithm requires very large amounts of memory for higher ilimensional problem. The interested reader
may consult [Verbeek et at 86J for an estimation of memory requirement in various ilimensions and resolutions. \';lUle the DD~f requires
considerable memory, much of it is free space. and should be capable of being represented more compactly. Future work will explore the
possibility of using quad·trees, oct·trees or related structures, e.g .. see [Soetadji 86J, (Kambhampati and Davis 85].

The algorithm presented simply provides a means for updating the DDM after object motion is known. However, if the DDM is being used
to represent configuration space, the calculation of obstacle motions is highJy non-trivial, and may actually dontinate the cost of updating
the DDM. One avenue for future work is to investigate the use of rough but conservative approximations to the configuration space volume
of an obstacle, e.g. see [Lozano-Perez 87]. Then if the rough obstacle has no potential to effect the current path. the detailed calculations
can be done in the background.

It is interesting to note that the regions that are updated, generally can be ilivided into three regions, the ufringe", the ~umbra" and the
"penumbra", see Fig. 3. Oddly. the pointwise difference between th~ distance in the penumbra region, and the distance in the same location
without the associated object present is constant. Similarly, the difference between a large port of the umbra region is extremely regular.
Future research will attempt to determlne if this observation can be ex-ploited to further reduce the complexity of updates.

ACKNOWLEDGMENTS

-'
This work was supported in part by Darpa grant #NOO039-84-C-0165. The author would also like to thank Leo Dorst for introducing

him to [he use of the CDT, and Peter AUen for his comments on this manuscript.

[Barrow et aI. 77}

[Borgefors 8430]

[Borgefors 84b]

(Daniels60n 80}

REFERENCES

H.G. Barrow, J .M. Tenenbaum, R. C. BoUes. a..nd H.C. Wolf. Parametric correspondence and chamfer matching: two
new techniques for image matching. In Proceeding, of the Fifth lntematiolUll Joint Conferen~ on Arificial Intelligena,
pages 65~3. Cambridge, ~{A, 1977.

G. Borgefors. Distance transfortnl in arbitrary dimensiolU. Computer ViJion, Graphia, and Image Proces.ting. 27:321-

345. 1984.

G. Borgefors. Dist&llce transforms in digital irn~es. Computer Vilion, Graphic., and [mage Proce$8ing, 34:344-371.
1984. Also aV1\il6ble a.& FOA report C 30401-El, Na.tional Defence Research Institute, Linkoping Sweeden.

P.E, Danielsaon. Eculediu dilt&.llce map pins. Computer Vilion, Graphic., and lmage Proce$8ing. 14:227-248. 1980.

(Dorst and Verbeek 86} L. Dorst &.lid P.W. Verbeek. The constra.ined distance transformation: a pseudo-euclidean. recursive implementation
of the Lee-algorithm. In I.T. Youn~ Et AJ., editor, SlGNlAL PROCESSING ll/: Theorie.t and Applicatioru, Elsevier

Science Publishers B.V. (North-RoI.la..nd). 1986.

(Kambhampati and Davis 85} S. K6Illbhamp&ti Uld L.S. Davis. Multi-resolution pa.th planning for mobile robota. In Proceedingl of the
DARPA [mage Unde,.,t4ndirlf Worilhop. pages 421-432, DARPA, Decem~r 1985.

[Lee 61] C.Y. Lee. An algorithm for pa.th connections and itt appliations. IRE TranlClCtionl on Electronic Computer" 346-365.

September 1961.

[Lozano-Perez 87} Tomu Loza..no-P&U. A simple motion-plannins algorithm for general robot manipulators. lEEE JouM'l4l of Robotlel

and Automation, RA-3(3):224-238. June 1987.

(~{ontana.ri 68} U. Montan&rl. A method for obtalnins skeletolU using a. quw-eculidea.n diatance. Joumal of the ACM. 15:6~24,
1968.

[Rosenfeld and Pfaltz 66} A. Rosenfeld and J. PfaHz. Sequential operatiolU in digital picture processing. Joumal of the ACM, 13:471-494.

1966.

[R.o6enfeld and Pfaltz 68} A. Rosenfeld &.lid J. Pfaltz. Distance functiolU on iligital pictures. Pattem Rea:>gnition. l(1):33-61. 1968.

(Soetadji B6) T. Soetadji. Cube baaed repreaenta.tion of free space for the navigation of an autonomous mobile robot. In L.O.
Hertzberger and F.C.A. Groen, editors. P1'OCf!tding' of the lnlernational lnlelligent .4utonomou.s Sy,terru confe~nce.
pages .546-561, :-;orth-HoUand. Amsterdam. ~elherla.nds. December 1986.

[Verbeek et aI. B6j P.\'y'. Verbeek. L. Dorst. B.J.H. \·erwp.r. and F.C .. -\. Groen. Collision avoidance and path nndin~ dlTou~h coniua.ined
distance transformation in robot state space. In L.O. Hertzberger and F.C.A. Groen. editors. Proceedings oj the Interna
tional Intelligent .4 utonomous Systems conjerence. pages 627-ii34.);orth- Holland. Amsterdam.); etherlands. December
1986.

