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:\BSTRACT 

[sing a discrete distance transform one can quicicly build a map of the distance from a goal to every point in a digital map. [sing this 
map, one can easily solve the shortest path problem irom any point by simply following the gra.d..ient of the distance map. This technique 
can be used in any number of dimensions and can incorporate obstacles of arbitrary shape (represented in the digital map) including 
pseudo-obstacles caused by unattainable configurations of a robotic system. 

This paper further extends the usefulness of the digital distance transform technique by providing an efficient means for dealing with 
objects which undergo motion. In particular, an algorithm is presented that allows one to update only those portions of the distance map 
that will potentially change as an object moves. The technique is based on an analysis of the distance transform as a problem in wave 
propagation. The regions that must be checked for possible update when an object moves are those that are in its "shadow~, or in the 
shadow of objects that are partially in the shadow of the moving object. The technique can handle multiple goals, and multiple objects 
moving and interacting in an arbitrary fashion. 

The algorithm is demonstrated on a number of synthetic two dimensional examples. 

1 I:-.iTRODUCTION 

Given a digital map of distances to a goal (or goals), one can easily solve the shortest path problem to the goal(s) from any othe!poiht 
by simply following the gra.d..ient of the distance map [~iontanari 681. This technique can be used in any number of dimensions and can 
incorporate arbitrary obstacles (represented in the digital map) as well as pseudo-obstacles caused by unattainable configurations of a robotic 
system. 

Through the years. researchers have proposed algorithms which compute digital distances assuming various aeighborhood and ap­
proximations, e.g. see [Lee 611, [Roseafeld and Pfaltz 661, [Rosenfeld and Pfaltz 68], [Barrow et al. 77], [Danielsson 80], [Borgefors g4a], 
[Borgefors 84b]. and [Verbeek et al. 86]. 

Unfortunately, the above referenced techniques for digital distance transforms required complete precomputation of the distance after 
any object undergoes an unpredictable motion (all of the above can be trivially extended to handle periodic motion). However. it i~ obvious 
that, in genera.!. even if an object moves unpredictably, there will lar~ portions of the digital distance map that are unaffected. 

The major advantages of an algorithm that updates only thOM portion. of the distuce map which are actually effected by a moving 
object are twofold. The moet obviou. a.dvutage i. the sa.vin~ in computational effort. The lesa obvious, but possibly equally important, 
is that if it can ~ quiclcly determined that the current location of the Wrobot" is not in an effected region, the "robot" may be allowed to 
continue movement toward its goa.! while the distance aap i, upda.ted in the ba.ckgroUlld. Thus the robot motion would not be unneceuarily 
halted if an object entered its envelope but did not effect it. goalt. 

Another p068ible use of the technique won1d ~ u put of high-level path pl&nning in hoetile environment!. For this application. a system 
would hypothesize obstacle locatioOJ at some future time and could use the ·update" algorithm to determine which regioOlJ of space could 
possibly (but not necessarily) interfere with the movement to the current go&1. A simple variant of the algorithm could be u~ to actually 
predict the minimal velocity of a. given obstacle before it could have a poU!ntial effect. 

The next section presenu some ba.cigroond on the conatra.ined diltuce transform. Following that are sections describing the algorithm, 
describing the experimental testins, and then discuaains the limita.tioOJ of the current algorithm, and avenues for future research. 

2 BACKGROUND: THE CONSTRAINED DISTANCE TRANSFORM 

There have been many sequential approaches to the computation of Digital distance ma.ps. These techniques differ mostly in their 
neighborhood definition, weighting schema.. and "sweepins" algorithm. The algorithm for deU!rmining regions which will poU!ntia.ily ~ 
updated requires knowledge of the neighborhood and weighting fUllCtiOOl. This section brielly introduces the constrained distance transform 
as presented in [Dorst and Ver~k 86] and [Verbeek et al. 86J. both of which dependent heavily on the distance transform discusaed In 
[Borgefors S4a]. 
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Figure 1: Example showing the numbering of the 16 neigh­
bors and their associated weights for a 2D CDT. For 
16 neighbor real valued approximation to euclidean dis­
tance. the weights are dl = 1. d2 = ,f2 and d3 = .,/5. 
The minimal error integer a.pproximation is given by 
dl = 5. d2 = i and d3 =1/. For 8 neighbor the real 
valued approximation 
uses dl = 1. d2 = ,f2 and d3 = 0 and the best integer 
approximation uses dl = 3. d2 = 4 and d3 = o. 

Figure 2: D D M after various passes of constrained distance transform 
for a scene containing three goal points. and four objects. The 101l.·er 
left sllows the DDM Uter the first pass. Lower right is after the 
second. upper left after the third and upper right is after the final 
(sixth) pass. Distances are represented as iso-distance contours. See 
text (or more details. 

In its general form. the constrained distance transform (hereafter CDT) allows computation in arbitrary dimensions. and with variolll 
neighborhoods. For simplicity. only the calculation of two dimensional digital distance maps (hereafter DDMs) is considered herein. 

The general two dimensional algorithm begins with a definition of neighborhoods and weighting functions. see figure 1. This discussion 
assumes 16 neighbors as in the right of figure I and uses the integer approximations to the euclidean distance provided in that figure. Given 
that neighbors nl ••. nlS all have values. VI ••• VIe which are the distances from that point to some goal point. then the distance from no is 
simply min;=O .. IS( V; + Wi). where Wi is the associated weighting function.· To allow obstacles in the distance map. one can generaliu the 
\-a.lues t'i ... Vie to include the value +c>o whenever the associated pixel is part of an object. 

The serial version CDT algorithm is best described u two alternating passes.! The exact number of alternations required depends on 
the number. shape and relative location of the obataclet. The odd passes sweep left to right over the image from top to bottom. As the pa.&l 
proceeds. it updates the value at every non·infinite (i.e. non-obstacle) pixel. say DDM[ij) according to the equation 

DDM[i,J) = i = 0.2.3.::;. 10.11. 12(v; + w;} (1) 

where the Vi are the distance values of the a.aaociated nei&hborhood of DDMfijJ.: The even pa.aaes sweep from right to left. and from bottom 
to top. They updlote the value lot every non-infinite (i.e. non-obstacle) pixel according to 

DDM[i.j] = i = 0.1.6. 7~~~3.14.15.16(Vi + w;). (2) 

Because these pa.aaee ~ternlote. the information fint 110 •• down i.Ild to the ri&ht but with some spreading on loll angle to the left. see 2-
On the alternate p&U the information 110 •• ap i.Ild to the left. with some i.Ilsular dispenion of information to the ri&ht. If there are multiple 
sources. or obsta.ele. in cenain poIition •• multiple puael will be requited to .pre.ad the dUti.llce information tllroughout the image. 

Given a. DDM. the calculation of the .hortett pAth from the carrent lOCAtion to A g~ point is achieved by simply following the gr&dient 
of the map." A mobile robot a.ctaa.lly never needl to calculate the entire path; motion may be determined locally. This property allow. the 
DDM technique to euily i.Ild efficiently deal with (~thoa&h not anticipate) Ilipp~e i.Ild other problem. with tile robots inertial guidance. 
If the robot system hu some me&l1t of determining ita carrent location. itl can continaa.lly pli.ll the ~shortestft path to its goal even thougJa 
it can not actually (oUo. that path accurately. 

While the expresaed purpoee ol the COT i. to a.llowone to euily solve the .hortest-path problem. it can ~so be used to de~ with the 
any· path problem. Thil i. accomplished by pluniJlg the .hortett p~th to A .ingle ~goal" (the one used to compute the DDM) from both the 
starting point and deaired ending point. If there exiltl a path from the stuting point to the Ugoalft (thi. can be euily determined from the 
DDM). then this techniqae will alWAY' find A pAth. Thi. type of path pli.llning. while generating inefficient path. might be used u a simple 
mechlollism of dealing with unexpected motion. required by real time erron in loll a.aaembly tuk. 
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To summarIze. the advantages of the CDT over other techniques for path planning include: 

• It is fast and simple to compute. See tbe experimentation sec:ion for example timings. 

• It can bandle arbitrary sbaped obstacles. In fact, tbey need not even be simply connected. (~{ultiply connected obstacles can arise 
wben considering patb planning in configuration·space.) 

• If can be very efficiently updated if objects move. 

• It is a better distance measure tban true euclidean distance for tbose simple robotic carts whicb have limited angular mO\'ement (say 
16 or 32 possible directions of motion). 

• It can even be used to find -good- patbs in situations where the robot cannot accurately foUow tbe path (assuming tbat sensory data 
can be used to monitor the actual location). 

• It is easily extended into higher dimensions (witb enougb memory). 

3 I;-';TELLIGE;:';T t:PPATI;:';G OF A PPM \VHE;:'; OBJECTS ~IQVE 

This section describes the algOrithm for intelligent updating of a digital distance map wben some number of objects in a scene have moved. 
It is assumed that a.ll objects are given by polybedral approximations. The algorithm for updating is done in two stages. computation of 
effected regions, and actual update. The latter stage employs tbe COT from section 2 with a sligbt modification so tbat it does not require 
the scanning of the entire map. but only sections of said map. 

If one considers iso-distance contoun in a truly euclidean map without obstacles. the contours form circles. The sbortest path from any 
point to the goal is then a straight line. If however. an obstacle is present. tbe sbortest path is a straight line to the goal if and only if tbe goal 
is in -the line of sight- from the current location. Otherwise, tbe shortest patb is a series of lines. to the obstacles, around the obstacles. and 
to the goal. If one examines the difference between a map witbout obstacles. and the map with a single obstacle. the difference forms a figure 
similar to a drawing of the shadowing of light by a planet. with regions of shadow, umbra, and penumbra, see fig 3. However. moat of the 
map remains unaffected. with the percentage of unaffected area depending on the size and location of the obstacle. This type of treatment is 
easily enended to handle multiple goal •. However. the multiple goals are not exactly the same as multiple light sources. The system can be 
viewed aa two I~ca.lly distinct pha.set. One pba.ae is tbe calculation of potential update regions. and tbe other is tbe actual update oC tb06e 
regions. If care is taken. spatially disconnected potential update regions may be updated in para.llel. These phases are discussed aaa~ng a 
two dimensional problem using a .V by .V digital distance map. :-Oote that the algorithm extend. into arbitrary dimensions. although with 
an increase in complexity. 

The actual update phaae of the algorithm is a simple extension to tbe cOllstrained distance transform whicb uses the defined potelltlal 
update region (defined by an array) to limit tbe extent of tbe sweeps in each update paaa. Care must be taken to insure tbat tbe boundaries 
of the region are correctly bandled. The COlt of thit pbase is genera.lly a sma.ll fraction of tbe COlt of a total constrained distance calculation. 

Tbe other pha.ae ofa.!gorithm. i.e .• the one that calcwates the potential update region. assumes that each object is uniquely numbered and 
is described by an array of vertices. It is aasumed tbat obstacles are also explicitly represented in the DDM aa boundary pixels connecting 
tbe vertices. Boulldary values are assumed to be coded such that they can be distinguished from distance values. and such that tbe index 
of tbe associated obstacle can be determilled from the pixel value. 

111 addition to the N x N DDM and list of objecta (stored a.a vertices). the algorithm uses two auxiliary arraya. The first of these. referred 
to aa the update array. is a 2 x .V array of inugera vlUch. for each row of the DDM. sto~ the stAlting and ending column of the potentJal 
region for update. Thi. impliea that the update ~OG i. defined by raater lines. which is of courae a simplification of the true update r~on. 
If the extra area updates becomes ai~lJficant. the algorithm ia ea.&ily modified to handle more complex descriptions of the update region. 

The second auxiliary array. referred to a.a the .tatUi array, i. used to atore markers indicating which objects haa effected. may effect. or 
wiU effect the potential update ~on. When &Il object moves, ita original pocition (if it existed. which is Ilot as8umed) aa well aa the Ilew 
position of the object i. UJed to extend the potential update ~on. ThUi the addition of new objecta il a limple type of motion. 

The calculation of tbe potential update region i. now diJcuued. ASiume tbat the DDM is correct (or the current lilt of obsta.cles. Then 
tlUs pha.ae begins by initia.li%ins the JlGtll.ll QmJr to illdicate that for eioCh object. which haa moved both ita old and new positioDl will 
contribute to the potential update repon. 

The calculation of the potential update ~on i. done iteratively, in six stept. These are: 

Step 1 For each vertex in the objects definition. the algorithm uses puniy loc.al operation. to determines which neighbor is closest to tbe 
goal. and the direction of travel from that neighbor to the goal. Thi. Ileighbor it the initialloca.tion (or expan.ion. 

Step 2 While the current location haa not encountered a boundary or another object, and it i. not a local minima (tlUs it p08aible only If 
the location ia a goal. or if it is equi·distant from multiple goal pointa). then the current loca.tion is moved to a Ileighbor such tbat tbe 
gradient of the distance map at the neighbor lead. to the current location. A. thia path is calculated, each step is checked again.t tbe 
definition of the update region. and if needed. the repon is en.Ia.t!ed. Care mUit be taken to illlure proper operation around ob.twe 
vertices. 

Step 3 If during tbe processing of step Z. tbe path encountered another object, then if said object haa not already been added to tbe re(lOQ 
(as determined by the mark.ing array). the object ma.y effect tlle regioll. and the object is so mar~ed. 



Step 4 \Vith the expansion from a single vertex complete. the system moves on to the next vertex of :he current object (assumlnl\ :h;,.t It 
has one) and goes to Hep l. If the current object is completed. the system moves on to the step .;. 

Step 5 This step checks to determine jf the objects which were labeled as "may effect" will actually effect the region. This is accomplished 
by determining if the any of the vertices of the object which are in the current upda.te re~ion, could "cast a shadow". i.e. is the local 
gradient into the object (then no sha.dow) or around it (shadow). If any vertex could cast a shadow. the status of the object is moved 
up to "will" effect. otherwise the potential update r~ion is expanded to include any portion of the object boundary in shadow. a.nd 
then the object's status is reset to having no potential. If any objects remain which will effect the update region, the system returns 
to step one, otherwise it goes to step 6. 

Step 6 At this point. the system has enlarged the potential update region to the size required for the moved objects. It is now necessary to 
make a single pass over tills region and reset all distance values to a large value, so that the actual update pass will correctly operate. 

4 EXPERnlENTATION 

Since the main goal of tills research was the study and development of the algorithm to calculate the actual update region, little attempt 
was made to optimize the implementation of the update algorithm. However, the speed with which such calculations can be accomplished 
is of some importance in determining the ~'alue of the algorithm. For that reason, this section presents measures of the efficiency of the 
algorithm on various synthetic examples. While it would be nice to express the running time of the algorithm in terms of some of the input 
parameters, this seems impractical because the times are dependent on the interactions of the location(s} of the goal(s) as well as the spatial 
extent and layout of the obstacles. 

One alternative is to present machine times. but these are too site dependent to be meaningful. Th1Ul. we present two measures of the 
efficiency of the algorithm. These are the percentage of the area of the DOM which must be updated. and the relative time spent on each phase 
of the algorithm. The relative times will be presented in units, ,/, where one '1 is the"average" cost of one pass of the constrained distance 
transformation on a 256 by 250 OOM. Each measurement is an average of 4 runs of the update algorithm. For those readers interested in 
the actual running time, '/. was roughly 4.5 seconds of elapsed time (wall-clock time. not cpu time) and was measured on a Vu750. with 
a system load of approximately L Other researchers have reported running times of 2-3 5e(onds per pass. see [Dorst and Verbeek 86) and 
(Verbeek et al. 86J. ~ote that even these relative measures have dubious me&ning, since they depend on the relative portion of the image 
occupied by the object(s) in motion. 

The examples in this section are all completed using 16 neighbor connections on a 256 by 250 (32 bit wide) two dimensional map. The 
distances were calculated using the integer approximation described in Fig.!. All examples assume the edges of the map are obstacles. The 

Figure 3: EXample showing ~shadow" regions for simple objects with 
a single goa.!. Obtained by computing the difference between OOM 
with no obstacles and a DDM with one obstacle. 
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Figure 4: The result. of "update~ algorithm for a simple scene 
with 3 objecu and one goal. The lower left ie the DDM for 
original ob ject configuration. lower right is the region of poten­
tial update (white region with tilln black outline). upper left 
is after 1 paas of update COT and upper right the final result 

of the update. 



Figure 5: Example containing four goal points. and four objects. where object movement was on a large scale. Also note the termination of 
region a.s it enteN the area effected by a different goal node. 

examples are presented using iso-distance contours. and black outlined objects. The update regions represented as willte space (no contour 
lines) with thin black outlines showing the beginning and end of the update region for each grid line. 

The first example of the update algorithm is on a simple scene with three convex objects and a single ~ point. see Fig 4. ~ote how 
the update region intel'5ects a secondary object. and thus the object is included in determining the potential update region. The calculation 
of the DD~{ for these objects tues 5 ". When the large square in the central portion of the scene moves slightly down and to the left. the 
calculation of the update region and preparation of that region for the update requires .18 ". The percentage of the total area occupied by 
the update region is 38%. The time required by the actual update in tills area is 1.6 ". Thus the update algorithm was approximately 3.1 
times faster than recalculation wi th the eDT willch requires 5 ,,(i.e. passes). 

The second example of the update algorithm is on the scene presented in Fig 5. and Fig 2. willch has four goal points and 4 objects. The 
object willch moved. 'did so on a large scale and was also deform!!! as it moved. ~ote that as the update region (generated by the upper 
object position) is natura.lly terminated by the algorithm as it enteN tbe region of influence of a second goal point. The calculati~ of tbe 
OOM (or the original object position takes 5 ". The calculation of tbe update region takes .0008 ". and tbe preparation for updatfng 'takes 
.0002 '1. The percentage of tbe total area occupied by the update region is 6.5%. The cost of tbe update in this area is .2 '1. Thus the update 

Figure 6: Example with a complex ~room~ scene. La tllla cue. tile motion consisted o( addin~ 4 ob.tacles. Note that because tbe object 
~shadow~ of tbe object nearest tbe goal (~ entirely on one side o( a "room wa.J..l~. the wa.1l does not effect the potential update region. 

algorithm delivered approximately a 25 (old speedup. 

The final example o( the update algoritbm i. on tbe complex '"room" scene in Fig 6. In till. case tbere i, no motion. but ratber 4 objects 
are added to tbe scene. Thi, ex&mple demoOltrates tbe capa.bility o( tbe system to use pre-stored DDMs (or complex scene, and tben update 
them if a (ew objects are added. Till, technique be especially useful in conftgnration space where luge ob.tacles (the robot's self intersection I 
will alway. exist, and will generate complex OOM •. Till, example a.1ao demon.tratea tbe algorithm', ability not to generate update potentia.lJ 
for large objects wben a small shadow f~ on tbem. Apin. this il especia.lly import&nt in configuration space where many ~Iarge" objecu 
Q,'ill exist. The calculation o( the DOM (or tbe ori~nal object position (or tbe new pocition) objects ta.ke,9 ". Tbe calculation of the update 
region takes .0008 ,." and the prepua.tion (or upda.tin~ tues .001 ". The percentage of the total area occupied by the update region i. 25.8%. 
The cost o( the update in tills area i, .99 ". There(ore tbe update algorithm delivered a.pproxima.tely a 9 (old speedup. 

In another experimental setup, an object wu placed so as to iocreue the cost o( every distance in the ·room~ portion of the example 10 

Fi~ 6. This results in the entire room portion o( the scene being added to the update region. Thus the update would still require substantIal 
computation time (9 pa.sses over that region). However. tbe algorithm can determine the update region in only .01 ". U tbe patb plannlnl 
Q,'ere currently occurrinll; outside tbe update region. the path planning could continue as tbe OOM is upda.ted in the background. ThIS a.blUlV 



becomes increasingly important in higher dimensions. and as the resolution of the DD~{ is increased. 

5 CO~CL1JSIO:-IS. LI~UTATIO;-";S A~D FUTURE \VORK 

This paper presented an efficient algorithm for the updating of digital maps when objects undergo motion, or are added to a precomputed 
DDM. The algorithm can intelligently deal with mUltiple goal points. arbitrary object interaction. including not increasing the update region 
when a a small object moves in front of a large object. In situations where a small percentage of the DD~i is effected, the algorithm can save 
significant computation time. Additionally, the algorithm can quickly decide if a given location will be potentially effected by the movement. 

The major lintitations of this approach are actually lintitations of the DDM. These include: possible exorbitant memory requirements 
(especially for higher dimensions). the use of discrete distances, and the ilifficulty of representing obstacles in configuration space. 

The current realization of the algorithm requires very large amounts of memory for higher ilimensional problem. The interested reader 
may consult [Verbeek et at 86J for an estimation of memory requirement in various ilimensions and resolutions. \';lUle the DD~f requires 
considerable memory, much of it is free space. and should be capable of being represented more compactly. Future work will explore the 
possibility of using quad·trees, oct·trees or related structures, e.g .. see [Soetadji 86J, (Kambhampati and Davis 85]. 

The algorithm presented simply provides a means for updating the DDM after object motion is known. However, if the DDM is being used 
to represent configuration space, the calculation of obstacle motions is highJy non-trivial, and may actually dontinate the cost of updating 
the DDM. One avenue for future work is to investigate the use of rough but conservative approximations to the configuration space volume 
of an obstacle, e.g. see [Lozano-Perez 87]. Then if the rough obstacle has no potential to effect the current path. the detailed calculations 
can be done in the background. 

It is interesting to note that the regions that are updated, generally can be ilivided into three regions, the ufringe", the ~umbra" and the 
"penumbra", see Fig. 3. Oddly. the pointwise difference between th~ distance in the penumbra region, and the distance in the same location 
without the associated object present is constant. Similarly, the difference between a large port of the umbra region is extremely regular. 
Future research will attempt to determlne if this observation can be ex-ploited to further reduce the complexity of updates. 
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