
Frequency Analysis and Sheared Filtering for

Multidimensional Effects in Rendering

Kevin Egan

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2012

c©2011

Kevin Egan

All Rights Reserved

ABSTRACT

Frequency Analysis and Sheared Filtering for

Multidimensional Effects in Rendering

Kevin Egan

Many of the most expensive effects in rendering are those that require integrating complex mul-

tidimensional signals. Computation for a single pixel can require hundreds of samples, and standard

methods do not provide a mathematically sound way to share samples between pixels with overlap-

ping integrands. This thesis first analyzes the underlying signals for motion blur and occlusion and

identifies the sparse structure of these signals in the Fourier domain. We then leverage this infor-

mation to design a sheared filter that is customized to each pixel’s frequency content. We finally

present practical algorithms that share samples between pixels, reduce sampling requirements by an

order of magnitude, and provide significant speedups for many of the most expensive computations

in computer graphics.

Table of Contents

1 Introduction 1

1.1 Overview . 3

2 Background 4

2.1 Definitions . 4

3 Motion Blur 7

3.1 Introduction . 7

3.2 Related Work . 9

3.3 Space-Time and Fourier Theory . 10

3.3.1 Moving Object: Translating Signal . 11

3.3.2 BRDF Effects and Shading . 14

3.3.3 Visibility and Cast Shadows . 17

3.4 Spatial and Temporal BandLimits . 19

3.5 Sheared Reconstruction Filter . 22

3.5.1 Sheared Filter and Sampling . 22

3.5.2 Sheared Filter in Primal Domain . 24

3.6 Algorithm and Results . 25

3.6.1 Stage 1: Velocity/Frequency Bounds . 26

3.6.2 Stage 2: Sheared Filters and Sampling Rates 28

3.6.3 Stage 3: Final Sampling and Reconstruction 29

3.6.4 Results . 30

3.7 Discussion . 36

i

4 Shadows from Planar Lights 37

4.1 Introduction . 37

4.2 Related Work . 39

4.3 Shadow Signal and Light Field . 42

4.3.1 Fourier Analysis . 44

4.3.2 Relation to Parallel Plane Convolution . 45

4.4 Sheared Filter . 46

4.5 Algorithm . 50

4.6 Results . 55

4.6.1 Canonical “Grid” Scene . 55

4.6.2 Detailed Occluding Geometry . 56

4.6.3 Robustness: Complex Occluders and Receivers 60

4.6.4 Animation . 60

4.7 Artifacts and Convergence . 61

4.8 Discussion . 66

5 Shadows from Distant Lighting 67

5.1 Introduction . 67

5.2 Related Work . 70

5.3 Theory . 71

5.3.1 Occlusion from Distant Lighting . 72

5.3.2 Fourier Analysis . 75

5.3.3 Sheared Filtering Over Linear Sub-Domains 77

5.4 Rotationally-Invariant Filter . 79

5.5 Implementation . 81

5.6 Results . 84

5.6.1 Setup . 84

5.6.2 San Miguel . 84

5.6.3 Bumpy Sponza . 85

5.6.4 Glossy . 88

5.6.5 Blinds Animation . 88

ii

5.6.6 Limitations and Artifacts . 88

5.7 Discussion . 90

6 Conclusion 91

6.1 Future Work . 91

Bibliography 92

A Motion Blur Implementation Details and Special Cases 101

B Shadows from Area Lights 104

C Ambient Occlusion Derivations 106

D Derivation of Motion Blur General Case 107

D.1 General Case . 107

D.2 Moving Texture . 111

D.3 Moving Reflection . 113

D.4 Moving Shadow . 114

iii

List of Figures

1.1 Example of correlation between pixel integrals 2

3.1 3D car scene that compares our motion blur results to Monte Carlo sampling and

MDAS . 8

3.2 Simple scene that demonstrates the space-time image signal in the primal and Fourier

domains . 12

3.3 Space-time plot of motion blurred shadows and motion blurred reflections 15

3.4 Schematic for analysis of motion-blurred reflections 17

3.5 Schematic for analysis of motion-blurred shadows 18

3.6 Plots showing the different stages of computation in the Fourier domain 20

3.7 Plots showing sampling in the Fourier and primal domains with and without our

method . 21

3.8 Plot showing how frequency replicas are tightly packed together in the Fourier domain 23

3.9 Illustration of our three-stage algorithm . 26

3.10 A scene of a ballerina with fast and varying motions 30

3.11 A scene with motion blurred reflections on a teapot 32

3.12 Comparison between Monte Carlo, our method without adaptive sampling, and our

method with adaptive sampling . 33

3.13 A comparison between our method and MDAS with multiple sampling rates 35

4.1 A comparison between our method and, Monte Carlo sampling, and MDAS 38

4.2 Flow chart showing the architecture and data flow in our system 39

4.3 An illustration of the relevant variables in flatland 42

iv

4.4 A plot of the different stages of light transport in the Fourier domain 44

4.5 Diagram showing the size the standard axis-aligned filter and our sheared filter for

shadows . 47

4.6 A plot showing the transformations for shearing the filter and converting from (x, y)

to (v, y) . 48

4.7 Numerical verification of our Fourier theory for shadows 50

4.8 An overview of our algorithm with plots showing various parameters 51

4.9 Comparison between our shadow method, photon mapping for shadows and MDAS 53

4.10 Insets showing results and error for different sampling rates 54

4.11 Comparisons between our method and Monte Carlo on a complex scene with mul-

tiple light source sizes. 55

4.12 Bench scene with complex occluders and receivers 58

4.13 Complex tentacles scene with multiple occluders and receivers. 59

4.14 Still frames from an animation showing a rotating tree and grids scene 61

4.15 An inset showing an example where our method can overblur 62

4.16 Insets showing results with different sampling and Ωmax
y light bandlimit parameters 63

4.17 Inset showing other possible artifacts with our method 64

4.18 Failure cases for our method . 65

5.1 San Miguel scene comparing our method and Monte Carlo sampling 68

5.2 Overview of algorithm for distant lighting . 69

5.3 Ray and distant lighting parameterization in flatland 73

5.4 Stages of distant lighting expressed in the Fourier domain 74

5.5 Sheared filter in the Fourier and primal domains 78

5.6 Visualizing our rotationally invariant filter . 79

5.7 Comparison of our ambient occlusion method to point based occlusion 86

5.8 Teapot scene with matte and glossy BRDFs and environment lighting 87

5.9 Frames from our blinds animation . 88

5.10 Examining errors in our method and point based occlusion 89

v

List of Tables

3.1 Notation for key variables in space-time signal . 11

vi

List of Algorithms

1 Algorithm for computing occlusion from distant lighting 83

vii

Acknowledgments

I would first like to acknowledge the invaluable guidance, insight, and encouragement given to me

by my research advisor Ravi Ramamoorthi. I would also like to thank all of my co-authors for

their tireless efforts and their contributions to this thesis. Specifically, Frédo Durand who has been

a constant source of sound advice and good cheer, Nicolas Holzschuch who helped me with some

of the earliest Fourier derivations, as well as Yu-Ting Tseng and Florian Hecht who both did an

amazing job writing software, suggesting improvements, running experiments, and all the other

things required to bring a project to fruition. I would like to thank Eitan Grinspun, and all the

members of the graphics lab for their helpful discussions and good humor. I would like to thank

Mark Meyer and John Anderson who both contributed to early discussions relating the shadow

method presented in this thesis. Finally, I would like to thank those brave souls on my thesis

committee who have volunteered to help and guide my work on this document.

On a personal note I would like to thank my family and friends (Val, Etienne, Miklos, David,

Maritza, Breannan, the CPC, Ryan, Manu, Trish, Charlie, Loreal, Bill, Kit, JP, Taylor and Kristina

to name a few) for enriching the rare times that were not devoted to furious research.

viii

Dedicated to Mike, Debbie, and Hugh.

ix

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Rendering a single image requires computing the light transport for millions of pixels. In many

common scenarios nearby pixels do expensive integrals across overlapping multidimensional do-

mains, but computational results are not shared between pixels. This is the case for both motion

blur (integrating across time), and soft shadows (integrating over an area light or distant lighting).

These multidimensional effects are expensive, but also crucial for realism in high quality offline

rendering.

As the complexity within a pixel’s multidimensional domain increases the computation time

required to render an image also increases using previous techniques. The faster an object moves

in a motion blurred image, the more information that gets packed into a single pixel’s integration

domain, in turn increasing complexity and the amount of high frequency information. Similarly

for shadows cast by an area light, as the light source becomes larger each pixel sees more complex

geometry, and the occluding signal has more energy in the high frequencies. Capturing these higher

frequencies using previous methods requires computing more samples for each pixel, which slows

down render times.

Another observation is that as the complexity of these effects increases, the final image content is

often stripped of high frequency information. Intuitively for motion blur the faster an object moves

in a motion blurred image the larger the effective blur. This blur in turn removes high frequencies

from the final image.

Putting these two observations together we come to a somewhat frustrating conclusion. Us-

ing previous methods as an object increases in velocity more computation is required, but the the

CHAPTER 1. INTRODUCTION 2

space

integral over

extra dimension

Signal content

of adjacent pixels

Integration over

similar signal content

redundant computation!

Figure 1.1: When integrating across other dimensions such as time or incoming light source, there

is often correlation in the signal content between nearby pixels.

complexity and spatial frequencies in the final image actually decrease due to the blurring or filter-

ing from motion. In effect as velocity increases we devote more and more resources to compute a

simpler and simpler result.

One of the key insights is that as complexity increases inside of a single pixel, it is often true

that there is a corresponding increase in overlap between the integral domains of nearby pixels

(see Figure 1.1). Two adjacent pixels that view a fast moving object will end up integrating over

functions that are very similar. At an intuitive level it seems obvious that we should be able to share

information to reduce the total computation in these cases. However, robustly deriving how much

information to share and how to share it is a more difficult problem, and it is the problem addressed

by this thesis.

This thesis makes the following contributions:

We use Fourier analysis to show how the multidimensional signals such as motion blur and

occlusion transform during rendering. For motion blur this involves looking at how that signal

changes with velocity in both the primal and Fourier space-time domains. For shadows from com-

plex occluders we show that a very similar formulation can be exists in the lightfield between light

and receiver. In both cases we show that most of the Fourier energy is captured inside a wedge

determined by the minimum and maximum velocity (motion blur), or occluder depth (shadows).

We look at bandlimits and sampling rates imposed during rendering. This analysis allows us to

derive required sampling rates to enable adaptive sampling. We also derive other interesting rela-

tionships, such as that using a conventional (axis-aligned) aliasing and shutter filter, for any uniform

velocity, the product of spatial and temporal sampling rates is essentially constant for motion blurred

CHAPTER 1. INTRODUCTION 3

images.

We further demonstrate that we can sample more sparsely and pack frequency replicas much

more tightly if we use a new sheared (not axis-aligned) reconstruction filter, which conforms to the

frequency wedge, and follows the first-order direction of motion or occlusion in the primal domain.

Although the analysis is in the frequency domain, the filter is simple to compute and implement

directly in the primal domain. For the large angular domain of spherical distant lighting we give a

rotationally invariant filter that is based on the sheared filter.

Finally we give a practical rendering method for both motion blur and complex occlusion. The

algorithm sparsely samples the scene, estimates frequency bounds for the underlying signal, com-

putes per-pixel sheared filters, and reconstructs multidimensional effects without requiring any ex-

plicit computation of Fourier spectra.

1.1 Overview

This thesis is organized as follows:

Chapter 2 gives background for rendering, motion blur, shadows, and reconstruction.

Chapter 3 presents a new method for accurately producing motion blurred images. We examine

the image signal in space-time and show that in many cases the spectrum is contained in a double

wedge shape. We propose a novel sheared filter that reduces the number of image space samples,

and shares information across pixels to accelerate rendering.

Chapter 4 extends and expands these filtering ideas to reducing the number of shadow rays at

a given shading point when calculating shadows from an area light source. We first analyze the

frequencies of the 4D shadow light field for a single receiver. We then store all of the samples in

a 4D ray database that is parameterized independent of any single receiver, allowing us to extend

sheared filtering to receivers at many different depths.

Chapter 5 extends applies sheared filtering to a large angular domain for calculating shadows

and spherical harmonic occlusion. We also allow for receivers with high frequency normal maps and

general BRDFs. We first analyze the occlusion frequencies for distant lighting. We then propose a

new rotationally invariant filter that can smoothly handle the large angular extent of the problem.

Chapter 6 summarizes our work, and suggests possible future work.

CHAPTER 2. BACKGROUND 4

Chapter 2

Background

2.1 Definitions

Rendering is the process of simulating how light travels and is recorded. For our purposes we

will consider scenes with solid surfaces and no atmospheric effects. The basic operations for light

transport are travel through free space and reflection. At times it can also be convenient to consider

occlusion to be a separate operation.

Two of the most common measurements of light are flux and radiance. FluxΦ is a measurement

of power, which is simply energy per time. Radiance is a measure of flux across a differential surface

area dA, across a differential solid angle dω.

L =
Φ

dA cos θdω
(2.1)

with θ being the angle between the normal of the differential surface dA and the differential solid

angle dω. This essentially measures light through a cylinder in the limit as the cylinder becomes

infinitely thin. One of the most convenient properties is that radiance is constant along a ray in free

space (no intersecting surfaces and no atmospheric effects).

How light interacts with surfaces is modeled by the bidirectional reflectance distribution func-

tion, or BRDF [Nicodemus et al., 1977]. The BRDF ρ(ωi, ωo) is classically defined to be a 4D

function that relates the differential incoming irradiance Ei along a direction ωi to the differential

CHAPTER 2. BACKGROUND 5

outgoing radiance Lo along a direction ωo:

ρ(ωi, ωo) =
dLo(ωo)

dEi(ωi)
=

dLo(ωo)

Li(ωi) cos(θi)dωi
, (2.2)

where θi is the angle between ωi and the surface normal n. We can additionally parameterize the

BRDF with other variables, such as spatial coordinates x, time t, and light wavelength λ.

The radiance reflected from a surface is defined by the reflection equation. This equation com-

putes the outgoing radiance Lo() by integrating the product of the BRDF ρ() and incoming lighting

Li:

Lo(x, ωo, λ, t) =

∫

H+
ρ(x, ωo, ωi, λ, t)Li(x, ωi, λ, t) cos (θi)dωi . (2.3)

Here H+ specifies the upper hemisphere of possible incoming light directions around the surface

normal n at point x. As an approximation we can assume that the incoming light Li only comes

from light emitters in the scene (ignoring reflections from other surfaces). Simulating this subset of

light paths is called direct illumination.

In the real world this restriction does not exist, light may reflect any number of times before

being recorded. Fully simulating this is more expensive, and is called global illumination. In this

case the outgoing light Lo and incoming light Li are related by Li(x, ωi, λ, t) = Lo(r(x, ωi),−ωi, λ, t),

where r(x, ωi) is the surface location found by tracing away from point x towards the ωidirection.

By also including light emitters Le we can then write the full rendering equation as follows [Kajiya,

1986]:

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t) +

∫

H+
ρ(x, ωo, ωi, λ, t)Lo(r(x, ωi),−ωi, λ, t) cos (θi)dωi (2.4)

Note that Lo appears on both sides of the equation. Specifically the rendering equation is a Fredholm

integral of the second kind, and closed form solutions can only be computed for the simplest of

scenes. For a deeper mathematical analysis of light transport and the rendering equation see [Veach,

1997]. For an introduction to rendering theory and practice see [Pharr and Humphreys, 2004].

Physical cameras must open and close the camera shutter for a finite period of time during the

film exposure. If the recorded light changes during the film exposure the final image can be blurry

due to nearby pixels integrating over similar time domains. This effect is called motion blur, and it

is very common for fast moving objects, such as a speeding car. Motion blur is often very expensive

CHAPTER 2. BACKGROUND 6

to simulate for fast moving phenomenon. To create a motion blurred image we must capture how

the recorded light changes over time and integrate across the time dimension. For an exposure of

length 1 with t′ ∈ [t, t + 1] we have:

Lo(x, ωo, t) =

∫ t+1

t

∫

H+
ρ(x, ωo, ωi, t

′)Li(x, ωi, t
′) cos (θi)dωidt

′ , (2.5)

where we have dropped the dependence on wavelength λ for simplicity.

For direct lighting with area lights we will compute soft shadows, meaning shadows that may

either be fully occluded, partially occluded, or fully unoccluded. For direct lighting we can rewrite

the reflection equation to integrate directly over the surfaces of light sources. With A representing

the surface of all light sources, and y a point on this surface we have:

Lo(x, ωo, t) = Le(x, ωo, t) +

∫

A

ρ(x, ωo, x→ y, t)Le(y, y→ x, t)g(x, y) cos (θy) cos (θi)dy , (2.6)

where g(x, y) is a geometry term that is 0 if the path between light point y and surface point x is

occluded, and 1 otherwise. The θy parameter is the angle between the emitting surface normal and

y→ x, and the θi parameter is the angle between the reflecting surface normal and x→ y.

We can also consider distant lighting, that is lighting from a distant source that is defined across

the sphere of all directions. For direct lighting with a distant light source we can define occlusion in

a similar manner:

Lo(x, ωo, t) = Le(x, ωo, t) +

∫

H+
ρ(x, ωo, ωi, t)g(x,−ωi)Ld(−ωi, t) cos (θi)dωi , (2.7)

where Ld is the distant light source that is assumed to be emitted from an infinite distance away,

g(x,−ωi) is a geometry term that is 0 if there is any surface that intersects the ray that starts at point

x along direction −ωi and 1 otherwise.

A light field is a parameterization of all rays of light crossing through some volume. One

common parameterization is to define rays by their intersection between two parallel planes. One

slight variation is to define a ray by it’s offset between the first and second plane (parameterizing by

position and angle).

CHAPTER 3. MOTION BLUR 7

Chapter 3

Motion Blur

3.1 Introduction

Motion blur is important for creating synthetic images that match physical cameras, and for elimi-

nating temporal aliasing in animations. As the velocity increases, more samples are usually required

to render motion-blurred images. This is frustrating since the complexity and spatial frequencies

in the final image actually decrease due to the blurring or filtering from motion (see Figures 3.1

and 3.2).

We seek to accelerate the rendering of motion-blurred scenes by a combination of adaptive

sampling and a new sheared filter. Our main contribution is an analysis of the frequency content of

scenes in space-time. This theoretical analysis enables us to derive the bandwidth, required sampling

rate, and reconstruction filters for accurate rendering. We make the following contributions:

Space-Time Fourier Theory: We develop our frequency analysis in Sec. 3.3 with three key

visual effects: movement of objects and surface texture, rotations of the BRDF and lighting, and

moving shadows. We find similar mathematical forms in all cases: the final motion-blurred signal

undergoes a shear in space-time and a corresponding shear in the frequency domain. For a given

range of velocities, the Fourier spectrum can be approximated by a wedge.

Spatial and Temporal Bandlimits and Sampling Rates: This analysis allows us to derive re-

quired spatial and temporal sampling rates (Sec. 3.4), enabling adaptive sampling. In fact, we show

CHAPTER 3. MOTION BLUR 8

(a) Our Method

4 samples per pixel
(b) Strati�ed Sampling

4 samples/pixel

(d) Our Method

4 samples/pixel

(e) Ground Truth

256 samples/pixel

(c) Multidimensional

Adaptive Sampling

4 samples/pixel

Figure 3.1: (a) Our method using an average of only 4 samples per pixel over the image. A static

rendering of the scene is inset in the lower right and closeups are shown in (b-e). Stratified sampling

in (b) is very noisy at this low sample count. Multidimensional Adaptive Sampling [Hachisuka et

al. 2008] in (c) performs much better, but still has some noise, especially in fast-moving high-

frequency textures, such as the mural (top) and ground (bottom closeup). Our technique in (d)

produces a high-quality image with minimal noise that closely matches ground truth (e). Figure 3.7

shows details for our sheared filter.

that, using a conventional (axis-aligned) aliasing and shutter filter, and for uniform velocities, the

product of spatial and temporal sampling rates is essentially constant, independent of the speed of

motion.

Sheared Reconstruction Filter: We further demonstrate that we can sample more sparsely and

pack frequency replicas much tighter if we use a new sheared (not axis-aligned across time) recon-

struction filter, which conforms to the frequency wedge (Sec. 3.5), and gathers information from

nearby pixels by following the first-order direction of motion in the primal domain.

Practical Space-Time Rendering Algorithm: Our motion-blur rendering method (Sec. 3.6) first

estimates frequency bounds by sparsely sampling the scene. The algorithm then computes per-pixel

sheared filters and sampling rates, without requiring any explicit computation of Fourier spectra. As

shown in Figure 3.1, it can produce high-quality results with low sample counts.

CHAPTER 3. MOTION BLUR 9

3.2 Related Work

Motion Blur Rendering: Motion-blur rendering often relies on sampling the shutter interval,

e.g. [Korein and Badler, 1983; Cook et al., 1984; Haeberli and Akeley, 1990; Cammarano and

Jensen, 2002; Akenine-Möller et al., 2007] and high-quality sampling patterns can improve re-

sults [Mitchell, 1991]. The Reyes architecture [Cook et al., 1987] reduces costs by shading at one

time instant but densely sampling visibility through time. The Maya rendering system computes

shading and visibility separately to capture changing illumination and reduce noise [Sung et al.,

2002].

Multi-Dimensional Adaptive Sampling (MDAS) is a general approach that adaptively samples

based on contrast in the multi-dimensional integrand [Hachisuka et al., 2008]. They approximate

anisotropic filters with finite differences and a modified nearest-neighbor. In contrast, we predict lo-

cal frequency information with each sample and utilize sheared reconstruction filters. A comparison

of the practical results is made in Sec. 3.6.4; our method is somewhat better on fast-moving high-

frequency signals, as in Figure 3.1. More recently papers have continued to develop new methods in

this area, creating methods that automatically find and exploit coherence in the image signal [Lehti-

nen et al., 2011; Sen and Darabi, 2011]. One advantage of our method is that the derivation predicts

how wide to make the reconstruction filter, whereas many other methods that share information use

a fixed sized filter.

Pixel tracing also looks at the Fourier domain, but only gives spectrum shapes for constant

motion and is intended more for spatial anti-aliasing using multiple frames of an animation rather

than computing motion blurred results within a single frame [Shinya, 1993]. Our paper makes

important theoretical contributions by analyzing practical scenes with non-uniforms velocities in

the frequency domain. This leads to key insights for sampling rates and anisotropic filters that may

be relevant to MDAS and other methods as well.

Multi-dimensional lightcuts [Walter et al., 2006] groups point light sources and shading sam-

ples, including samples in time for motion blur, into hierarchical graphs. This method is orthogonal

to ours, since they reuse similar surface and lighting samples within one pixel, while our sheared

reconstruction filters has a support that can span multiple pixels.

Image-space solutions blur based on the motion field at a single instant [Potmesil and Chakravarty,

1983; Max and Lerner, 1985; Neulander, 2007]. They can be efficient but often require segmentation

CHAPTER 3. MOTION BLUR 10

into layers, provide only an approximation, and are prone to artifacts. Our sheared reconstruction is

related but operates on the full space-time domain and adapts to the content to yield accurate results.

Other methods have used modified filters for motion blur. Catmull [1984] suggests scaling

the pixel anti-aliasing filter to match the motion, but it relies on analytic filtering of polygons.

Anisotropic texture filtering has also been used in real-time rendering [Loviscach, 2005]. Both of

these methods define a stretched space-only filter instead of our sheared space-time filter.

Light Transport Analysis: Our analysis builds on plenoptic sampling [Chai et al., 2000; Isaksen

et al., 2000], and the frequency and gradient analysis of light transport [Durand et al., 2005; Soler

et al., 2009; Ramamoorthi et al., 2007]. In particular, we use the concept of light transport shears in

the frequency domain [Durand et al., 2005] and a wedge for the final spectrum [Chai et al., 2000].

We extend these space-angle methods to consider non-uniform motion in space-time. Other work

has touched on the sheared space-time spectra of translating signals [Shinya, 1993; Christmas, 1998;

Levin et al., 2008]. We go further in deriving explicit sampling rates, a theorem showing that the

total sampling rate (in space and time) is approximately constant for axis-aligned filters, developing

a sheared reconstruction filter, and in considering specularities and shadows.

3.3 Space-Time and Fourier Theory

We analyze the key visual effects in motion blur. We first examine the frequency content of a

moving signal and show that it yields a space-time shear. General light transport involves shearing,

convolution and other operations on spectra [Durand et al., 2005], and it is beyond the scope of this

paper to generalize all of them to the time domain. Instead, we focus on the three most common

phenomena—object motion, BRDF reflection, and moving shadows. We show that, in space-time,

all three effects have strikingly similar mathematical forms, which allows for a general treatment

of motion blur as a shear in the space-time and Fourier domain. In Appendix D we give a detailed

derivation of the general case considering all three effects.

For simplicity, most of the analysis is done for a 1D scanline, but the main insights carry over

to 2D images and 3D space-time (with anisotropic shears following the direction of motion). An

index of notation for the most important symbols is in Table 3.1.

CHAPTER 3. MOTION BLUR 11

g(x, y) 2D spatial signal (such as a planar texture)

f (x, y, t) Time-Varying signal (moving object or texture)

h(x, y, t) Time-Varying motion-blurred signal (image)

f (x, t), h(x, t) 1D time-varying signals for simplicity

w(t) Temporal response of shutter

Ωmax
x ,Ω

max
t Max spatial, temporal frequencies (in g(x),w(t))

Ω∗x,Ω
∗
t Spatial, temporal frequency bandlimit

Ω∗ Net frequency bandlimit (total samples needed)

F Fourier transform operator

F(Ωx,Ωy,Ωt) Fourier transform of f (x, y, t)

G(Ωx,Ωy),H(Ωx,Ωy,Ωt) Fourier transforms of g(x, y), h(x, y, t)

Table 3.1: Notation for the key variables. The frequency analysis will use capital letters for Fourier

transforms of the quantities shown here e.g., F(Ωx,Ωt) denotes the Fourier transform of f (x, t).

Other notation is introduced in Secs. 3.3.2-3.3.3 to discuss BRDF effects and shadows.

3.3.1 Moving Object: Translating Signal

Consider a 2D signal g(x, y), which can be thought of as a texture. The concept of “texture” here is

general, and can also include geometric effects like silhouette boundaries. This signal is translated

through time by x0(t) and y0(t),

f (x, y, t) = g(x − x0(t), y − y0(t)). (3.1)

The motion-blurred signal or image is then given by

h(x, y, t) =

∫ ∞

−∞

f (x, y, t′)w(t − t′) dt′, (3.2)

where w(t) is the shutter response over time, responsible for motion blur. For Fourier analysis, it is

useful to define all integrals over the infinite temporal domain. We consider h to be a continuous

signal for analysis—in practice, the final rendering step will point-sample h in time to generate

individual motion-blurred frames.

We first study the canonical case of translation with uniform velocities, so that x0(t) = at and

CHAPTER 3. MOTION BLUR 12

10
2

10
3

10
4

10
2

10
3

10
4

(f) (g)

(a) (c)

10
2

10
3

10
4

(d) (e)

(h)(b)

g(x,y) f(x,t)

zero velocity

f(x,t)

positive velocity
h(x,t)

after shutter !lter

h(x,y)
F(Ω

x
,Ω

t
)

fourier transform

zero velocity

F(Ω
x
,Ω

t
)

fourier transform

positive velocity

H(Ω
x
,Ω

t
)

fourier transform

after shutter !lter

x x

x

xx

y
y

ttt

10
2

10
3

10
4

10
2

10
3

10
4

(i)

tilted quad moving right

(j)

"at quad moving right and back

f(x,t)

f(x,t)

g(x,y) F(Ω
x
,Ω

t
)

F(Ω
x
,Ω

t
)g(x,y)

y

x

t

y

x

x

x

t

-a
max

-a
min

-a
max

-a
min

Ω
t

Ω
t

Ω
t

Ω
t

Ω
t

Ωx

Ωx

Ωx Ωx Ωx

Figure 3.2: Space-Time and Fourier domain plots for a moving object. (a) Original signal g(x, y);

the scanline used for graphs (c), (d), and (e) is outlined in red. (b) (below (a)) h(x, y, t) for a single

instant in time; this is our final motion-blurred image. (c) A graph of f (x, t) with zero velocity

(a static image). In this case, there is no variation along the time or vertical axis. (d) f (x, t) with

positive uniform velocity, leading to a shearing along the spatial dimension. (e) h(x, y, t) is obtained

by applying a vertical blur along the time axis corresponding to the shutter filter. (f), (g) and (h) are

the respective Fourier transforms of (c), (d) and (e). Note that (h) has frequencies in time restricted

to Ωt ∈ [−Ω
max
t ,Ω

max
t] based on the shutter filter. (i) Because of perspective, the velocities change

across space. (j) Because of perspective, velocities change across time. The frequency spectra span

a wedge based on the minimum and maximum velocities.

y0(t) = bt,

f (x, y, t) = g(x − at, y − bt). (3.3)

For simplicity, consider a 1D scanline as in Figure 3.2(a):

f (x, t) = g(x − at)

h(x, t) =

∫

f (x, t′)w(t − t′)dt′. (3.4)

The basic setup is as shown in the top row of Figure 3.2, with Figure 3.2(b) being the final

motion-blurred image. Figure 3.2(c) is a space-time diagram for a static scene (a = 0). In this case,

there is no variation along the time (vertical) dimension. In Figure 3.2(d), we see the time-varying

effects of motion. As is expected from Equations 3.3 and 3.4, this is a shear along the spatial x

CHAPTER 3. MOTION BLUR 13

direction. The effects of the shutter in Figure 3.2(e) are a blurring or filtering across the vertical

time dimension. Figure 3.2(f-h), shows the corresponding frequency spectra, which we now derive

analytically.

Fourier Analysis: To calculate the Fourier transform F (f (x, y, t)), we first transform along x

and y axes (denoted Fx,y) to obtain an intermediate Ft(Ωx,Ωy, t), and then transform along the time

dimension. Therefore, we first calculate

Ft(Ωx,Ωy, t) = Fx,y
[

g(x − x0(t), y − y0(t))
]

. (3.5)

Since x0(t) and y0(t) depend only on time, they can be treated as constant shifts for the spatial

Fourier transform above. By the standard theory of shifted Fourier transforms, Ft relates closely to

G(Ωx,Ωy) which is the Fourier transform of g,

Ft(Ωx,Ωy, t) = e−i2π(Ωxx0(t)+Ωyy0(t))G(Ωx,Ωy). (3.6)

Now consider translation with a uniform velocity a and b in the x and y directions, as per

Equation 3.3. Applying the Fourier transform along the time axis

F(Ωx,Ωy,Ωt) = G(Ωx,Ωy)

∫

e−i2πt(Ωxa+Ωyb+Ωt) dt

= G(Ωx,Ωy)δ(Ωxa + Ωyb + Ωt). (3.7)

By translating the 2D signal (corresponding to a spatial shear in the space-time domain), we

have sheared the signal along the temporal axis in the frequency domain (all non-zero frequencies

lie on the plane Ωxa + Ωyb + Ωt = 0 in 3D Fourier space). This result also shows the coupling of

spatial and temporal dimensions.

While our analysis applies fully to 2D signals, it is easier to expose with a single spatial dimen-

sion or a 1D signal per Equation 3.4,

F(Ωx,Ωt) = G(Ωx)δ(Ωxa + Ωt), (3.8)

restricting the frequency spectrum to a single line Ωxa + Ωt = 0, as seen in Figure 3.2(g). Note that

Figure 3.2(g) is obtained by shearing the Fourier spectrum in Figure 3.2(f) along the time dimension,

with the amount of shear given by the velocity a.

CHAPTER 3. MOTION BLUR 14

Finally, from Equation 3.4, we know that h(x, t) is obtained from f (x, t) simply by convolving

with w(t), which becomes a multiplication in the temporal frequency domain,

H(Ωx,Ωt) = G(Ωx)δ(Ωxa + Ωt)W(Ωt). (3.9)

As seen in Figure 3.2(h), the high temporal frequencies in Figure 3.2(g) are attenuated or removed,

becauseW is the frequency spectrum of the low-pass shutter filter (in principle, only an infinite sinc

function can be an exact low-pass filter, but most filters like gaussians allow one to define a practical

threshold, such as capturing 99% of the energy).

Non-Uniform Velocities: For typical shutter speeds that cover a short time window, a uniform

velocity is often a good approximation. However, there are cases where perspective, acceleration

and occlusion effects cause variations in speed and spatially non-uniform velocities. An analytic

Fourier transform cannot be obtained in these cases, but we can approximate its range, based on the

non-negative minimum and maximum velocities a ∈ [amin, amax].

Figure 3.2(i) shows a tilted quad moving to the right, where velocities change across space be-

cause of perspective. Analogously, Figure 3.2(j) shows a quad moving right and away from the

camera, with velocities changing across time because of perspective. While the spectra are com-

plicated, we find that most of the energy lies in the wedge bounded by shears corresponding to

minimum amin and maximum amax velocities (Figures 3.2(i),3.2(j),3.6(a)). This is similar to the

use of minimum and maximum depths to bound the frequency spectrum for image-based render-

ing [Chai et al., 2000].

3.3.2 BRDF Effects and Shading

We now consider the motion of reflections (and shadows in Sec. 3.3.3). We will obtain very similar

mathematical forms as those just seen for moving objects. This is illustrated in Figure 3.3, which

shows the shearing in spatial and frequency domains, analogous to Figure 3.2. Some readers may

wish to skip the derivations on a first reading, and can move directly to Sec. 3.4 without loss of

continuity.

For simplicity, we consider flatland or 2D reflections, similar to [Durand et al., 2005; Ra-

mamoorthi et al., 2007]. A diagram is shown in Figure 3.4. We write the standard reflection

CHAPTER 3. MOTION BLUR 15

10
2

10
3

10
4

(a) sphere moving with rotating environment map (b) moving shadow occluders

f(x,t)

f(x,y)

H(Ω
x
,Ω

t
)

f(x,y)

y

x

y

x

x

t

10
2

10
3

10
4

f(x,t)

h(x,y)

F(Ω
x
,Ω

t
)

y

x

t

x
10

2

10
3

10
4

H(Ω
x
,Ω

t
)

scene diagram

10
2

10
3

10
4

F(Ω
x
,Ω

t
)

h(x,y)

y

x

scene diagram

α

β β

Ω
t

Ω
t

Ω
t Ω
t

Ωx
ΩxΩx

Ωx

Figure 3.3: (a) A moving surface, in this case a sphere, with a rotating environment map. As the

object moves, the specular reflections are motion-blurred. (b) A moving shadow from blockers, in

this case a tree. As the occluder moves, so does the occluded region, leading to motion-blurred

shadows on the receiver. We obtain space-time and frequency-domain shears based on the effective

pixel velocities. (Note that since our analysis is local, curved global paths for specular highlights

and shadows are not an issue.)

equation for f (x, t), but extend it by considering its time-varying nature,

f (x, t) =

∫

l(θ, t)r(2n(x, t) − θ) dθ, (3.10)

where l(θ, t) is the (time-varying) incident lighting1 and r is a radially symmetric BRDF (like Lam-

bertian or Phong), including the cosine term. As shown in Figure 3.4, we consider a single overhead

view, so that the angle between lighting and reflected directions is given by 2n − θ where n is the

normal.

There are two sources of time-dependence or motion blur. First, the lighting may vary with

time—for concreteness, we consider moving the lights. For distant illumination, this corresponds

to a rotation, with α being the angular velocity. We can also linearize motions of local sources to a

rotation and angular velocity,

l(θ, t) = l(θ − θ0(t)) = l(θ − αt). (3.11)

1 The lighting can canonically be thought of as a distant environment map, but can also correspond to the local

environment at x = 0 (assuming the spatial variation of lighting is moderate, such as mid-range illumination).

CHAPTER 3. MOTION BLUR 16

Next, consider normal n(x, t). If the object is translating,

n(x, t) = n(x − x0(t)) = n(x − βt), (3.12)

where we now use β for the velocity of motion (to distinguish from a used previously). Finally, the

normal can be locally linearized so that n(x) = κx + η, with κ related to the surface curvature,2

n(x − βt) = κ(x − βt) + η = κx − κβt + η. (3.13)

Now, substituting Equations 3.11 and 3.13 into Equation 3.10 and using κ′ = 2κ and η′ = 2η to

account for the factor of 2n(·),

f (x, t) =

∫

l(θ − αt)r(κ′x − βκ′t − θ + η′) dθ, (3.14)

The above equation can be integrated by substituting ω = θ − αt,

f (x, t) =

∫

l(ω)r
([

κ′x − (α + βκ′)t + η′
]

− ω
)

dω. (3.15)

The right-hand side of the above equation is a convolution. Defining γ = α + βκ′—where γ is

the relative angular velocity of lighting and surface—and using ⊗ for convolution,

f (x, t) = (l ⊗ r) (κ′x − γt + η′), (3.16)

where the result is evaluated at (κ′x − γt + η′).

It is possible to bring Equation 3.16 into the same form as Equation 3.4, unifying two seemingly

quite different phenomena—motion-blurred texture/geometry and specular reflections. To do so, we

simply need to define g = l ⊗ r, so that in analogy to Equation 3.4,

f (x, t) = g

(

κ′
[

x −
γ

κ′
t +
η′

κ′

])

h(x, t) =

∫

f (x, t′)w(t − t′)dt′. (3.17)

In this case, the effective velocity a from Equation 3.4 is simply γ/κ′, which is the effective spatial

rate of motion (relative angular velocity divided by curvature). The η′/κ′ term is only a constant

offset, which will become a simple phase shift in Fourier space. The curvature κ′ multiplies x to

convert from spatial to angular coordinates.

2Since the surface may be tilted with respect to the image scanline along which the spatial dimension x is measured,

κ is actually the screen-space curvature, and differs by a cosine factor from the geometric curvature.

CHAPTER 3. MOTION BLUR 17

view normal

incoming

lighting

θ

2n
n

lighting l(θ, t) α

β

re!ected view

moving

receiver

rotation speed

Figure 3.4: BRDF effects and shading with motion blur. The basic (planar or flatland 2D) setup

shows a complex lighting environment l(θ, t) that can rotate with angular velocity α. The surface

can also move with speed β.

Fourier Analysis: The convolution of lighting and BRDF in Equation 3.16 leads to a product in

Fourier space,

F(Ωx,Ωt) =
1

|κ′|
L

(

Ωx

κ′

)

R

(

Ωx

κ′

)

ei2πΩxη
′/κ′δ

(

Ωx

γ

κ′
+ Ωt

)

. (3.18)

The scale of κ′ in the arguments of Equations 3.16 and 3.17 leads to the Fourier scale factors of

1/κ′. Equation 3.18 is essentially identical to Equation 3.8 for moving objects, if we define effective

velocity a = γ/κ′, and G(Ωx) =
1
|κ′ |
(LR)(Ωx/κ

′). In both cases, the signal is a shear in both space-

time and Fourier domains.

3.3.3 Visibility and Cast Shadows

We follow previous work [Soler and Sillion, 1998; Ramamoorthi et al., 2004; Mahajan et al., 2007],

which shows that canonical shadow effects are often described by convolutions.

We first define the binary visibility function v(x, θ) as

v(x, θ) = s(µ(x) − θ), (3.19)

where s is the Heaviside step function, and µ(x) is an extremal angle that defines the boundary

between occluded and unoccluded regions, as shown in Figure 3.5. For simplicity, we consider only

a single visibility discontinuity for each x, but a linear combination of functions can be used for

general visibility [Ramamoorthi et al., 2007]. Consider relative motion β between the blocker and

receiver,

s(µ(x − x0(t)) − θ) = s(µ(x − βt) − θ). (3.20)

CHAPTER 3. MOTION BLUR 18

µ(x)

α

normal

β

θ

incoming lighting

moving

occluderreceiver

rotation speedlighting l(θ, t)

Figure 3.5: Schematic for analysis of motion-blurred shadows. The lighting can move with angular

velocity α. The occluder can also move with speed β, leading to a change in the extremal angle µ(x)

for visibility.

We now locally linearize µ(x) ≈ νx [Ramamoorthi et al., 2004]. In general, |ν |∼ cos µ/D, where D

is the distance to the blocker,

s(µ(x − βt) − θ) = s(ν · (x − βt) − θ) = s(νx − βνt − θ). (3.21)

Finally, we define l(θ, t) = l(θ−αt) as in the BRDF case—effective values for angular velocity α

can be computed for point and area lights, or environment maps. If we ignore the BRDF signal for

the moment (cases with multiple surface, BRDF, and shadow signals are discussed later), we can

write the reflection equation as

f (x, t) =

∫

l(θ − αt)s(νx − βνt − θ) dθ. (3.22)

This has exactly the same form as Equation 3.14, only using s instead of the BRDF r, and ν instead

of the curvature κ′. If we similarly define γ = α + βν, we obtain analogous to Equation 3.16,

f (x, t) = (l ⊗ s) (νx − γt). (3.23)

This can be put in the same form as the specularity and motion case (e.g., Equation 3.17), with

effective velocity a = γ/ν.

Fourier Analysis: The Fourier formula in the shadow case is very similar to that for BRDF

effects in Equation 3.18,

F(Ωx,Ωt) =
1

|ν|
L

(

Ωx

ν

)

S

(

Ωx

ν

)

δ

(

Ωx

γ

ν
+ Ωt

)

, (3.24)

CHAPTER 3. MOTION BLUR 19

which has an identical form to Equations 3.8 and 3.18 if we set the effective velocity a = γ/ν and

G(Ωx) =
1
|ν|
(LS)(Ωx/ν). One can also similarly define the Fourier transform of the motion-blurred

signal H for specularity and shadows, as per Equation 3.9.

3.4 Spatial and Temporal BandLimits

We now study the spatial and temporal bandlimits. Since the mathematical form is very similar for

all the visual effects in Secs. 3.3.1-3.3.3 (provided we define an effective velocity a), from now on

we focus on Equations 3.8 and 3.9. Figure 3.6 illustrates the main ideas.

Time-Varying Signal F(Ωx,Ωt): In general, the frequency spectrum is a wedge bounded by

the minimum and maximum velocities/shears, as shown in Figure 3.6(a). From Equation 3.8,

the spatial frequencies are bandlimited by G(Ωx) so that Ωx ∈ [−Ωmax
x ,Ω

max
x], where Ωmax

x is the

highest spatial frequency in the signal g. Therefore, the temporal frequencies lie within Ωt ∈

[−amaxΩ
max
x , amaxΩ

max
x], and the temporal frequency extent Ω∗t is

Ω∗t = 2amaxΩ
max
x . (3.25)

According to the Nyquist theorem, we need to sample at this temporal rate to properly separate the

Fourier domain replicas from sampling (Figure 3.6(c)). Otherwise, even after convolution with the

low-pass camera shutter, the result would be inaccurate because of aliasing into low frequencies.3

Motion-Blurred Result H(Ωx,Ωt): Finally, we convolve the time-varying signal with the camera

shutter to obtain h(x, t) and its associated Fourier transform per Equations 3.4 and 3.9. This leads to

a low-pass filter along the vertical (time) axis as in Figure 3.6(b). Therefore, Ωt ∈ [−Ωmax
t ,Ω

max
t],

where Ωmax
t is the maximum frequency in the Fourier transform of the camera shutterW(Ωt). Inter-

estingly, the spatial frequencies are also bandlimited, since they must lie on the line Ωxa + Ωt = 0.

Hence, it holds that:

Ω∗x = 2
Ωmax

t

amin

(3.26)

3 It is possible to pack the replicas slightly closer together, using a separation between Ω∗t and Ω
∗
t /2. This leads to

aliasing in F, but avoids aliasing in the final lower-frequency motion-blurred result H. For simplicity, we avoid that

discussion here, which only corresponds to a factor of at most 2. The sheared filter in Sec. 3.5 focuses primarily on

non-axis-aligned reconstruction, but does also exploit this small factor.

CHAPTER 3. MOTION BLUR 20

Ω
t

Ω
x

a) source signal

frequency spectrum

Ω
x

max

Ω
t
* = 2Ω

x
max a

max

b) spectrum after

shutter bandlimit

Ω
t

Ω
x

Ω
x

* = 2Ω
t
max / a

min

Ω
t
max

camera shutter

bandlimit

F(Ω
x
, Ω

t
) H(Ω

x
, Ω

t
)

Ω
t

Ω
x

c) packing spectra

with no overlap

slope = -a
max

slope = -a
min

Figure 3.6: (a) Frequency spectrum of source signal F(Ωx,Ωt) in space and time (Ωx and Ωt). We

also mark the highest spatial frequencyΩmax
x , and the highest temporal frequencyΩ∗t , determined by

the maximum velocity/shear amax. (b) The signal is bandlimited in time based on the camera shutter

to temporal frequencies less than Ωmax
t . For images with medium to large amounts of motion blur,

the spatial frequencies are also correspondingly filtered to Ω∗x, depending on the minimum velocity

amin. (c) Sampling introduces replicas of the base spectrum F. To achieve a low sampling rate we

must bring the spectra as close as possible without aliasing.

Not surprisingly, the spatial frequency content is much lower due to motion blur.

The above result needs a small modification in the quasi-static case. If the velocity amin is

sufficiently small, the temporal frequencies Ω∗t in Equation 3.25 is less than the filtering effect of

the shutter response. Therefore, the motion blur filter has minimal impact on the signal (much as

motion blur does not affect a static scene). In this case, we simply have Ω∗x = 2Ωmax
x . In general,

Ω∗x = 2min

(

Ωmax
t

amin

,Ωmax
x

)

. (3.27)

Sampling Theorem: Sampling the time-varying signal f leads to replicas of F(Ωx,Ωt) in the

Fourier domain as shown in Figure 3.6(c). We must separate the replicas enough to avoid overlap

or aliasing in reconstructing the motion-blurred signal H. Figure 3.7 shows this idea in both the

space-time and frequency domains.

The exact separation of replicas needed depends on the reconstruction filter, and for now we

consider a standard rectangular axis-aligned filter in the Fourier domain (Figures 3.7(A,B)). It is

instructive to consider the product of spatial and temporal frequency ranges. By the Nyquist theo-

CHAPTER 3. MOTION BLUR 21

Ω
x

Ω
t

Ω
x

Ω
t

Ω
x

Ω
t

axis-aligned

reconstruction !lter

1. sampling 2. �ltering and

reconstruction

dense sampling

produces sparse replicas

x

3. �nal result

signal is bandlimited

with no aliasing

=

axis-aligned

reconstruction !lter

x

reconstructed signal

has aliasing

=

Ω
t

Ω
x

sheared

reconstruction !lter

sparse sampling

produces dense replicas

x =

signal is bandlimited

with no aliasing

Method A:

dense sampling

axis aligned !lter

Method B:

sparse sampling

axis aligned !lter

Method C:

sparse sampling

sheared !lter

NO ALIASING

aliases

sparse sampling

produces dense replicas

NO ALIASING

axis-aligned !lter

no aliasing

axis-aligned !lter

with aliasing

2. �ltering and

reconstruction

sheared !lter,

no aliasing

PRIMAL DOMAIN (x, t)FREQUENCY DOMAIN (Ω
x
, Ω

t
)

x

t

x

t

x

tΩ
x

Ω
t

dense sampling

moving signal

sparse sampling

moving signal

sparse sampling

moving signal

x

t

x

t

x

t

1. sampling

Ω
x

Ω
t

Ω
x

Ω
t

Ω
t

Ω
x

Ω
t

Ω
x

ALIASING

Figure 3.7: 1. Sampling in the primal domain creates replicas in the frequency domain. The denser

the sampling the further apart the Fourier-domain replicas are spaced. 2. The Fourier transform of

the spatial reconstruction filter bandlimits and reconstructs the signal for display. 3. Filtering the

samples in the primal domain is equivalent to multiplying the Fourier transforms of steps 1 and 2. If

replicas overlap with the Fourier domain reconstruction filter, the final result would contain spurious

frequencies (aliasing). In Method/Row A, a relatively dense sampling is used in space and time to

separate the Fourier domain replicas. Method/Row B shows that a sparser sampling rate with an

axis-aligned filter leads to aliasing. Method/Row C shows that using a sheared reconstruction filter,

we can reconstruct a correct image using a sparse sampling rate.

rem, the number of samples needed is also proportional to these bandlimits. For simplicity, we use

Equations 3.25 and 3.26 (ignoring for now the special case in Equation 3.27),

Ω∗ = (Ω∗x)(Ω
∗
t) = 4

amax

amin

Ωmax
x Ω

max
t . (3.28)

In the limit where we have a uniform velocity with amax = amin, the space-time sampling rate

becomes Ω∗ = 4Ωmax
x Ω

max
t , independent of the velocity a. This indicates that as the motion a

gets faster, the needed temporal sampling rate Ω∗t = 2aΩmax
x increases, but the spatial sampling

rate needed (2/a)Ωmax
t decreases correspondingly due to the spatial filtering or blurring of moving

objects and texture.

CHAPTER 3. MOTION BLUR 22

3.5 Sheared Reconstruction Filter

We have taken a first step in finding spatial and temporal bandlimits. These bandlimits can directly

be used to accelerate motion-blur rendering by adaptive sampling. We may sparsely sample in space

and time according to Equations 3.25 and 3.27, then scale the standard one pixel wide axis-aligned

reconstruction (spatial antialiasing and temporal shutter response) filter to reconstruct the sparse

data.

However, Figure 3.6(c) and Figure 3.7(A) show the corresponding packing of replicas in Fourier

space and illustrate that they still have a lot of free space between them. We seek to achieve sparse

sampling, which means bringing the replicas tighter together. Packing replicas too tightly while

using an axis-aligned filter will cause aliasing (Figure 3.7(B)). We now introduce a sheared filter

that allows for much tighter packing of replicas and lower sampling densities (Sec. 3.5.1). It is

based on two important observations: the shape of the spectrum is slanted and is best matched by

a sheared filter, and we need to prevent overlap only in the central part of the wedge that is within

the shutter bandwidth. Finally, we take a critical step towards a practical algorithm by deriving the

sheared filter in the primal space-time domain (Sec. 3.5.2). This is done simply by appropriately

transforming a standard axis-aligned filter (Figure 3.8(d)).

3.5.1 Sheared Filter and Sampling

As can be seen in Figure 3.8(a), we are really interested in the central wedge of frequencies for

H(Ωx,Ωt). Given the spectrum’s wedge shape, it is best to separate the central spectrum from the

replicas by using a non-axis-aligned parallelogram as the reconstruction filter, as shown in Fig-

ure 3.7(C) and Figure 3.8(a). Figures 3.8(b) and (c) show two ways of tightly packing the replicas,

which we discuss next. Note that the frequency spectra for F(Ωx,Ωt) do in fact alias in this re-

construction (shown in red). However, the final low-pass filtered form from motion blur H(Ωx,Ωt)

does not. The amount of free space in the Fourier domain is considerably reduced, compared to

Figure 3.6(c), enabling lower sampling rates.

Intuitive Sampling Strategy 1—Pack Space Replicas First: The first sampling method we

examine packs replicas tightly in Ωx, then in Ωt, as shown in Figure 3.8(b1-b2). This technique

more closely follows Sec. 3.4 and is useful for developing our intuition for the benefits obtained

CHAPTER 3. MOTION BLUR 23

a) closeup view of original

spectrum before sampling

sheared

reconstruction

!lter

Ω
t

Ω
x

frequencies

outside !lter

Ω
t
max / a

max

Ω
t
max / a

min

Ω
t
max

Ω
x

* = Ω
t
max / a

min
 - Ω

t
max / a

max

Ω
t
* = Ω

t
max + Ω

x
max a

max
Ω

x
* = Ω

x
max + Ω

t
max / a

min

Ω
t
* = (Ω

t
max / a

min
)(a

max
 - a

min
)

b1) !rst pack replicas in space...

b2) ...then pack replicas in time

c1) !rst pack replicas in time...

c2) ...then pack replicas in space

PRIMAL DOMAIN (x, t)FREQUENCY DOMAIN (Ω
x
, Ω

t
)

A
xi

s-
A

lig
n

e
d

Fi
lt

e
r

S
h

e
a

re
d

Fi
lt

e
r

x
t

Ω
t

Ω
x

Ω
t

Ω
x

2Ω
pix

 / Scale

2Ω
pix

2Ω
t
max

Ω
t
max * -Shear

x

t

newWidth = origWidth * Scale

origWidth

(newWidth/2) * Shear

d) transforming an axis-aligned !lter

into a sheared !lter

max

max

Figure 3.8: (a) Zoomed-in view of the frequency wedge and the sheared reconstruction filter. The

distances between the Ωt axis and the near and far points of the sheared filter are shown. Only the

blue frequency content inside of the sheared reconstruction filter will be output for display. (b1)

and (b2) show packing of replicas as tightly as possible first in space, then in time. (c1) and (c2)

show packing of replicas as tightly as possible first in time, then in space. (d) Transforming an

axis-aligned filter into a sheared filter. (d Top) We start with any standard axis-aligned filter in the

frequency and primal domains. (d Bottom) We then consider the scale and shear in the frequency

domain, applying the opposite scale and shear in the space-time domain (Equations 3.33 and 3.34).

from the sheared filter. Our practical algorithm uses the second sampling strategy, developed next,

of packing the time replicas first.

First we compute the spatial sampling rate or bandlimit Ω∗x. From simple trigonometry, Fig-

ure 3.8(b1), and Equation 3.26,

Ω∗x = Ω
max
t

(

1

amin

−
1

amax

)

, (3.29)

which is a significantly lower frequency (and hence sampling rate) than in Equation 3.26 when amin

is close to amax. Indeed, for nearly uniform velocity amin ≈ amax, we obtain Ω
∗
x → 0 (assuming the

reconstruction filter extends infinitely far in space-time). As seen in Figure 3.8(b2), we must next

pack the temporal replicas to determineΩ∗t , and can then compute an overall bandlimit,Ω∗ = Ω∗xΩ
∗
t .

Practical Sampling Strategy 2—Pack Time Replicas First: It is also possible to proceed the

other way, first packing along the temporal axis and then along the spatial axis (an illustration is

in Figures 3.8(c1) and (c2)). This formulation gives essentially the same overall sampling rate Ω∗

as the first sampling strategy above, and has advantages in practical applications where we usually

CHAPTER 3. MOTION BLUR 24

want the spatial samples denser than the temporal samples—with very few time samples required

for high-quality motion blur. Having dense spatial sampling makes it easier to find high-frequency

spatial discontinuities that can be caused by static occluders. Note that the sheared filter itself is the

same in both cases.

From the geometry of Figures 3.8(c1) and (c2), we can derive

Ω∗t = Ω
max
t

(

amax

amin

− 1

)

Ω∗x = Ω
max
x +

Ωmax
t

amin

, (3.30)

with the product being given by

Ω∗ = Ω∗xΩ
∗
t =

(

amax

amin

− 1

)

Ωmax
x Ω

max
t +

(

amax

amin

− 1

) (

Ωmax
t

)2

amin

, (3.31)

which is also proportional to the total number of samples needed.

With motion greater than 1 pixel per frame aminΩ
max
x > Ωmax

t , and the first term above will be

dominant. Equation 3.31 is now

Ω∗ ≈

(

amax

amin

− 1

)

Ωmax
x Ω

max
t . (3.32)

The crucial benefit over Equation 3.28 is the use of amax/amin −1 instead of amax/amin. If maximum

and minimum velocities at a pixel for a given frame are similar, sheared reconstruction can be sig-

nificantly more efficient. On the other hand, for pixels with significant occlusions or large velocity

changes so amax/amin ≫ 1, sheared filtering does not provide a large benefit over an optimally sized

rectilinear filter.

3.5.2 Sheared Filter in Primal Domain

So far, we have considered frequency analysis, but practical rendering algorithms do not directly

compute frequency spectra. Fortunately, we can create a sheared reconstruction filter directly in the

space-time domain. We simply apply the corresponding transforms to any standard axis-aligned

filter composed of a spatial antialiasing filter and the temporal shutter response (see Figure 3.8(d)).

Specifically, the original axis-aligned filter has some spatial bandlimit Ωmax
pix

(≈ 0.5 wavelengths

per pixel) that we scaled (Figure 3.8(a)) to a diameter of Ωmax
t (1/amin − 1/amax). Based on Fourier

theory, we must scale by the inverse in the primal domain:

Scale =

Ωmax
t

2Ωmax
pix

(

1

amin

−
1

amax

)

−1

. (3.33)

CHAPTER 3. MOTION BLUR 25

The shear of the filter in the Fourier domain is based on the filter interceptsΩmax
t /amin andΩ

max
t /amax

(Figure 3.8(a)). In the Fourier domain the shear in Ωx per unit Ωt is the average of −1/amin and

−1/amax. Again, based on Fourier theory, we need to apply the opposite shear in the primal domain

(shearing in time per unit x):

Shear =
1

2

(

1

amax

+
1

amin

)

. (3.34)

The shear corresponds to the direction of average motion in the space-time domain, with the filter

“following the motion.” The scale depends on the complexity of motion—the filter is larger (with a

corresponding low sampling rate), the closer amin and amax are.

3.6 Algorithm and Results

We describe one approach for using these theoretical results—a simple practical method that uses

sheared reconstruction filters to greatly reduce sample counts. While the analysis is in the Fourier

domain, the actual practical algorithm need not explicitly compute spectra, and operates directly on

space-time image samples.

Our method involves a three-stage process, shown in Figure 3.9. First, we do an initial sparse

sampling to compute the effective velocities [amin, amax] and frequency bounds Ωmax
x (Sec. 3.6.1).

Second, we determine a single sheared reconstruction filter for each pixel, along with spatial and

temporal sampling densities Ω∗x and Ω∗t (Sec. 3.6.2). Our third stage involves a final round of

sampling, and for each pixel we do a single application of the computed sheared filter to reconstruct

the pixel’s final color (Sec. 3.6.3). There are a few additional special cases and implementation

details in Appendix A.

Our sheared reconstruction filter uses the sampling formulation in Figure 3.8(c). This method

samples sparsely in time (packing the replicas tightly in the temporal frequency domain), but

densely in space. For frequencies Ωmax
t and Ωmax

x in practical images, we sample every pixel

of the frame at least once, but with many fewer samples than are required for the same quality

output using standard Monte Carlo sampling. The source code for our program can be found at

http://www.cs.columbia.edu/cg/mb/, and we include a Renderman shader that computes the

relevant velocities and frequency bounds in our supplementary material.

CHAPTER 3. MOTION BLUR 26

 0

 5

 10

 15

 0

 20

 40

 60

 80

(e) sampling density

(samples per pixel)

(d) �lter width in

(pixels)

STEP 2:

Filter Shape and

Sampling Density

STEP 3:

Final Reconstruction

STEP 1:

Initial Frequency Sampling

 0

 20

 40

 60

 80

(b) a
max

 max speed

(pixels per frame)

(c) Ω
x

max spatial frequency

(wavelengths per pixels)

 0

 20

 40

 60

 80

(a) a
min

 min speed

(pixels per frame)

 0.5

 1

 1.5

 2

(h) static surface, axis-aligned �lter

(i) moving surface, sheared �lter

(j) moving surface, sheared �lter

(k) moving surface, sheared �lter 0

 5

 10

 15

 0

 20

 40

 60

 80

(g) sampling density

(samples per pixel)

(f) kdtree node

anisotropy

Comparison with

Multidimensional

Adpative Sampling

x

t

x

t

x

t

x

t

reconstruction �lter shapes

(h)

(i)

(j)

(k)

1 pixel radius

12 pixel radius

25 pixel radius

65 pixel radius

JH

K

I JH

K

I

Figure 3.9: Illustration of our three-stage algorithm. The scene is shown in Figure 3.1. In Step 1,

we do an initial sampling to compute velocities [amin, amax] and maximum spatial frequenciesΩmax
x .

These are visualized in (a,b) and (c) respectively. Note that areas of the image where amin ≈ amax

will require very low sample counts as seen in (e). In Step 2, we determine the sheared filter shape,

and the sampling densities at each pixel. The filter radius is shown in (d); note the very large filters

for the background. (e) visualizes the total number of samples Ω∗ at a pixel, and is seen to be

high only in regions where the motion is non-uniform, such as the ends of the car (occlusion) and

shadows moving over a textured surface (multiple signals). The edges of the image also require

higher sampling. For areas of uniform motion a low sample count (often close to 1 per pixel)

suffices. We also compare with MDAS, which adapts to the silhouette edges of the car, but has a

more uniform sample distribution, and much less anisotropy in the filters. Finally, Step 3 shows the

sheared filter shape for representative pixels (the image resolution for this scene is 512x512). In

general (i,j,k), sheared filters of different widths are used, based on the speed of motion. For the

special case of a static surface (sharp with minimal motion blur) like (h), our method gracefully

reduces to a 1-pixel axis-aligned filter as required.

3.6.1 Stage 1: Velocity/Frequency Bounds

We start by sparsely computing local frequency information at each pixel. We sample the scene with

N samples per pixel (our implementation uses N = 2). This cost is minimal, since it is less than

what we would need to render a single antialiased image of a static scene. Moreover, only velocity

information is required from the samples; all shading is computed in a separate pass in step 3. At

each sample we compute the image space signal direction, velocity bounds [amin, amax], and signal

CHAPTER 3. MOTION BLUR 27

bandlimit Ωmax
x .

Computing Effective Velocities and Bandlimits: We use surface shaders to compute the image-

space velocities within the renderer for each of the three key signals: object motion, BRDF shading,

and shadows.

For object motion, the effective velocity a is simply the instantaneous screen-space velocity for

the surface (including projection and perspective effects). Assuming the surfaces use mip-mapping

to bandlimit texture frequencies, we simply set Ωmax
x to a maximum frequency of one wavelength

per pixel.

The velocities and bandlimits for BRDF shading and shadows are based on Equations 3.18 and

3.24 respectively,

ashading =
γ

κ′
=
ακ′ + β

κ′
Ωmax

x,shading = min
(

Lmaxκ′,Rmaxκ′
)

(3.35)

ashadow =
γ

ν
=
αν + β

ν
Ωmax

x,shadow = min
(

Lmaxν, Smaxν
)

, (3.36)

where α is the angular velocity of the lighting, β is the linear velocity of the object or blocker,

κ′ = 2κ is twice the screen-space curvature, and | ν |∼ cos µ/D, where D is the distance to the

blocker. These values can be calculated entirely inside the shader if the programmable shading

language supports shader derivatives. For instance, occluder speed can be estimated by querying

the velocity of any surface that blocks a shadow ray. Details on units and computing frequency

bandlimits are in Appendix A.

Velocity and Frequency Bounds: After initial sampling, we compute a frequency bound for

each pixel that captures frequency information across the entire frame. [amin, amax] are simply the

minimum and maximum velocities of all samples inside the pixel. Similarly, Ωmax
x is simply the

maximum frequency of all samples. Our implementation sparsely samples frequency information,

so we use advection to gather nearby frequency samples that may overlap with the current pixel at

a different moment in time. Values for the scene in Figure 3.1 are shown in Figure 3.9(a,b,c).

Multiple Signals: Our theory focuses on the case where all signals (object motion, lighting,

shadows) that affect a given pixel translate along a single direction. Therefore, in the special case

that any of the frequency samples at a pixel has a direction vector that differs greatly in angle from

CHAPTER 3. MOTION BLUR 28

the others, we conservatively bound the frequencies by setting amin for that pixel to 0 (the compu-

tations of amax and Ωmax
x are unaffected). When we are calculating a single frequency sample, a

similar adjustment is occasionally required when multiple signals (more than one of surface texture,

BRDF shading and shadows) have significant amplitude and frequency. Details for this case are

discussed in Appendices A and D.

3.6.2 Stage 2: Sheared Filters and Sampling Rates

Based on the velocities and the frequency information from our initial sampling, we compute

sheared reconstruction filters and sampling densities for each pixel. These are visualized in Fig-

ures 3.9(d) and (e) for an example scene. To derive properties for sheared filters in Sec. 3.5, we first

determined the shape of the filter in Fourier space, and then determined how tightly we could pack

replicas. Similarly, in our practical implementation, for each pixel, we first compute the widest pos-

sible reconstruction filter, and then determine the lowest possible sampling rate that avoids aliasing.

Computing the Shape of the Sheared Filter: To create an optimal sheared filter we use Equa-

tions 3.33 and 3.34 to scale and shear the user’s preferred axis-aligned reconstruction filter. In

image space, both the scale and shear operate strictly along the direction of motion, and the axis

perpendicular to motion is unaffected.

To provide intuition, consider the case of nearly constant velocity where amin ≈ amax = a. In

this case, the space-time shear (Equation 3.34) is just 1/a, as expected. The scale tends to infinity

(since 1/amin ≈ 1/amax in Equation 3.33)—we can use a very wide sheared filter in this case, since

the velocity is constant. Indeed, very wide filters are used in Figure 3.9(d) for much of the car, and

especially the background, which have nearly uniform velocity.

A special case arises for slow-moving signals (as indicated by Equation 3.27), and its handling

is discussed in Appendix A. The final computation of filter widths is also complicated by the fact

that once we select a filter size, we may include incompatible pixels inside the filter. For instance,

in the example above, if amin ≈ amax, the scale should be very large, but this wide filter may contain

other pixels with a greater range of [amin, amax]. Computation of a final filter shape may require an

iterative process where we eventually use a smaller filter size. Details are given in Appendix A.

CHAPTER 3. MOTION BLUR 29

Computing Sample Densities: In most cases, we can compute the sampling rates Ω∗x and Ω
∗
t

directly from Equation 3.30. For scenes with moderate complexity, Ω∗x and Ω
∗
t usually require at

least one sample per pixel per frame. To compute the sampling rate for a 2D image we must also

include frequencies along the spatial axis perpendicular to motion. These frequencies should have

little or no velocity, so we use the spatial bandlimit for static signals with an axis-aligned filter,

(2Ωmax
x) (Equation 3.27):

Pixel Samples = Ω∗ = (Ω∗x)(Ω
∗
t)(2Ω

max
x). (3.37)

In practice, we also cap the maximum number of samples for a pixel (usually to 4× the average

number of samples per pixel).

The number of samples depends on both spatial complexity and motion complexity (howmuch it

differs from uniform velocity). More samples will be given both where the motion varies (amax/amin

is large), and also where there are high spatial frequencies (complex textures or shadows/highlights

with highΩmax
x). Equation 3.37 provides a natural way to allocate samples to different visual effects.

3.6.3 Stage 3: Final Sampling and Reconstruction

The final sampling density for a pixel is simply the maximum density required by reconstruction

filters that overlap that pixel. For sample placement across both space and time within a pixel, we

use a 3DHalton sequence [Halton, 1960]. For low sampling densities (less than 8 samples per pixel),

we do not jitter, and we mirror the Halton sequence at odd pixels. For higher sampling rates, we add

a jittered offset. We limit our sample points to lie inside the shutter bounds to show compatibility

with traditional rendering pipelines. Future implementations could find gains by sampling across

time and sharing samples between frames of an animation.

We send the computed space-time sample locations to the renderer for processing, and read

back the shaded results for each sample. Finally, we reconstruct the motion-blurred image using

the sheared filters computed in step 2. Note that we do only one reconstruction per pixel, with

a single application of the sheared filter for that pixel—this filter combines reconstruction, spatial

antialiasing, and motion-blur integration over time. Figure 3.9(h,i,j,k) shows these filters for some

representative image pixels. In most cases, these are sheared, with the size of the filter determined

by the complexity of the motion (or getting clipped by the camera shutter bounds). In the special

CHAPTER 3. MOTION BLUR 30

Our Method

8 samples/pixel

3 min 57 sec

Equal Time, Strati�ed

16 samples/pixel

4 min 2 sec

Equal Quality, Strati�ed

64 samples/pixel

14 min 25 sec

 0

 5

 10

 15

 20

 25

Sampling density

(samples per pixel)

Our Method, 8 samples per pixel

Static inset

Our Method 8 samples/pixel, additional frames from video

Figure 3.10: A scene of a ballerina with fast and varying motions. The dress is deforming as

the dancer kicks, causing many non-uniform motions that stress the abilities of any motion-blur

algorithm. Note that we focus samples on the most difficult areas: occlusion of the bottom of the

dress, overlapping shadows, and areas of the dress that come out of shadow as the dancer rotates.

It is clear from the insets that our method does not blur frequency content perpendicular to the

direction of motion.

case of static regions (Figure 3.9(h)), the filter reduces to an axis-aligned filter of 1 pixel width, as

it must.

3.6.4 Results

We modified the Pixie renderer [Arikan, 2009] to use our space-time sample placement algorithm

for ray tracing color information in stage 3. We now describe the results obtained by our algorithm

and compare to a stratified sampling Monte Carlo approach using jittering, and to the recent MDAS

technique [Hachisuka et al., 2008]. All images were rendered at a resolution of 512 × 512 with a

single core on a 1.8GHz Core 2 Duo processor.

Scenes: Figures 3.1, 3.9, and 3.13 show a scene with a rotating camera, and a moving object (the

car). Following a common photographic technique, the camera follows the car’s motion to keep

CHAPTER 3. MOTION BLUR 31

it sharp (but not completely stationary), while the other areas have considerable motion blur. The

lighting comes from a moderately distant point light source. Figure 3.10 is intended to be a stress

test of our system, with a deforming dress and multiple non-rigid motions. The dress has a high-

frequency texture, which leads to different patterns depending on the direction of motion. Moreover,

we have mid-field lighting from two point light sources that cast overlapping moving shadows, and

surfaces moving in and out of shadow as well as self-occluding.

Finally, Figure 3.11 shows an example with a motion-blurred glossy reflection of the moving

background (the teapot is shiny with Phong exponent 100). This scene demonstrates that we can

handle curved motion paths and global illumination effects. (Note that calculating motion-blurred

global illumination effects requires that the shader can calculate the movement of indirect light-

ing.) The scene also has motion-blurred reflections of near sources, and sharp shadows on moving

surfaces (shadow of the spout).

Evaluation and Comparison to Stratified Monte Carlo: In Figure 3.1b, stratified Monte Carlo

sampling with 4 samples/pixel leads to considerable noise, especially in the motion-blurred areas

of the background. In contrast, our method (Figures 3.1(a,d)) produces a high-quality result even

at this very low sample count, with only minimal noise at difficult shadow boundaries. It would

require at least an order of magnitude more samples to match it with direct Monte Carlo. Similar

conclusions can be drawn from Figure 3.10. Our implementation properly computes motion blur

and preserves high frequencies on the dress perpendicular to the direction of motion. Our method

can also be used directly to produce motion-blurred sequences, as shown in the supplementary

animation (stills in Figure 3.10). Note also that proper motion-blurred lighting and shadows are

computed in Figures 3.1, 3.10 and 3.11.

Finally, the sheared filter can also be used by itself as a light-weight addition with standard

Monte Carlo sampling and rendering (Figure 3.12). Applying sheared reconstruction to the standard

(non-adaptive) stratified sampling pattern dramatically improves areas of uniform motion like the

dress (Figure 3.12(b)). Of course, also using our adaptive sampling enables more samples at the

dress silhouette, leading to a reduction in noise (Figure 3.12(c)).

Sampling Densities and Filter Widths: The filter widths and sampling densities for our method

are shown in Figures 3.9(d,e) and in Figure 3.10. Interestingly, in the car scene, very few samples are

CHAPTER 3. MOTION BLUR 32

a) our method, 8 samples/pixel

static teapot, moving quad

motion blurred re�ections

c) ground truthb) static d) our method e) moving teapot

Figure 3.11: Shiny teapot (Phong exponent 100) with glossy reflections, rendered with an average

of 8 samples/pixel. (a) Full image. The insets below show (b) static image, (c) ground truth, (d) our

method, (e) our method where the teapot is also moving.

needed for much of the image, where motion although fast, is almost uniform. Note in Figure 3.9(e)

that an average of close to only 1 sample per pixel suffices on much of the car body, background

painting, and road. Samples are thus concentrated near the silhouette boundaries and edges of cast

shadows, where the motions are very complex (also the case in Figure 3.10). The widths of the

sheared reconstruction filter in Figure 3.9(d) clearly show how large our sheared filter can be in

regions of nearly uniform motion such as the background, and much of the car body. Moreover, our

method can gracefully fall back to axis-aligned reconstruction with 1 pixel-wide filters, in difficult

or nearly static areas of the car (Figure 3.9h).

Comparison to Multi-Dimensional Adaptive Sampling: For comparisons on the car scene, we

directly used MDAS software which is a plugin to the PBRT renderer [Pharr and Humphreys, 2004].

We did not do this comparison for the ballerina because the base PBRT renderer does not currently

CHAPTER 3. MOTION BLUR 33

b) Sheared Filter with

Strati�ed Sampling

1 min 52 sec

a) Axis-Aligned Filter with

Strati�ed Sampling

1 min 29 sec

c) Sheared Filter with

Adaptive Sampling

2 min 28 sec

Figure 3.12: An inset from the left video frame in Figure 3.10. (a) Standard Monte Carlo stratified

sampling exhibits fairly uniform noise. (b) Monte Carlo stratified sampling, combined with our

sheared space-time filter. Noise has been reduced in areas of uniform motion. (c) Our adaptive

method samples densely around difficult regions so that the noise in (b) at the silhouette of the dress

is reduced.

support deforming meshes.

First, consider the sampling rates in Figure 3.9. MDAS (Figure 3.9g) has a much more uniform

sampling density, with only a little more importance given to the edges of the car. Our technique

is able to sample many motions more sparsely, allowing it to properly focus on difficult areas.

Similarly, while MDAS takes anisotropy into account (Figure 3.9f), their kD-tree cells never shear

and do not scale as much as our sheared filter does. In contrast, our reconstruction filter can rotate

in any direction in image space and is sheared in time to better match the direction of motion.

Figure 3.13 shows what happens as we increase sample count from an average of 2 per pixel to

8 per pixel (4 samples/pixel is shown in Figure 3.1). At low sample counts (top row of Figure 3.13),

we are already nearly perfect in the background and ground plane because of our wide sheared

reconstruction filter, while MDAS is very noisy. On the other hand, MDAS is somewhat less noisy

near shadow boundaries, since our method often needs to fall back to axis-aligned reconstruction

for these complex motions. This is because MDAS discovers areas of coherence through numerical

measurements, whereas we rely on conservative frequency bounds. At moderate sample counts

(bottom row of Figure 3.13), both methods are close to converged, but MDAS still has a little noise

on the background mural.

CHAPTER 3. MOTION BLUR 34

Timings and Overheads: At 8 samples per pixel, the car scene took our algorithm a total of 3

min, 8 sec, while the ballerina took 3 min, 57 sec. The time for reconstruction using sheared filters

is about half the total for the car, and one-third for the ballerina. As one point of comparison, we are

competitive with MDAS (a total of 3 min, 23 sec on the car, with the overhead for reconstruction

being about one third of total running time). Moreover, MDAS has significant memory overheads.

In our tests MDAS required 1GB of memory to render a 512 × 512 image with 8 samples per pixel.

Our memory overhead is fairly low. To store all samples in memory for a 512 × 512 image requires

36MB during sparse sampling (N = 2), and 32MB during final sampling (using 8 samples per

pixel).

In scenes with more complex shading, our method has much lower overhead (only 15% of the

25 minute rendering time for Figure 3.11). Even with very simple materials, such as Figure 3.10,

we are only twice as slow as standard Monte Carlo (some of this is from overhead, and an equal

amount from the fact that our ray-tracing phase focuses on difficult regions by design, which take

more time). A visual equal quality comparison shows a net wall-clock speedup of more than 3.5×

by our method in Figure 3.10.

Limitations: Our current implementation uses a line segment as the anisotropic filter shape. For

highly-curved motion paths this may lead to over-blurring. Note that we do test all samples inside a

filter to measure non-linearities in speed (divergence of amin and amax) and direction. In particular,

we set amin to 0 if any direction differs significantly in angle from the others. These tests will cause

our method to reduce filter sizes and increase sampling rates near areas of highly curved motion.

With more complete motion information from the renderer, future implementations should be able

to filter along curved paths.

Our method can resort to axis-aligned reconstruction and dense sampling in difficult cases, such

as a shadow moving over a static textured surface. However, these areas are also difficult in most

other motion-blur techniques. Moreover, our method can quickly converge on simpler parts of the

scene, and then focus almost all of its sample budget on the difficult regions.

Similar to any practical rendering application, our system makes approximations during recon-

struction that can lead to aliasing, (such as using a windowed gaussian filter instead of an infinitely

wide sinc filter). Because wide filters overlap and share information, adjacent pixels employing

CHAPTER 3. MOTION BLUR 35

Our Method
Multidimensional

Adaptive Sampling

8
 s

a
m

p
le

s
p

e
r

p
ix

e
l

2
 s

a
m

p
le

s
p

e
r

p
ix

e
l

Figure 3.13: We show further results for our method and MDAS with 2 samples per pixel and 8

samples per pixel. For 2 samples per pixel our method does well for areas with uniform motion

(in fact many areas use one sample per pixel and are in their final state), but does poorly for pixels

where we detect a large difference between amin and amax. At 8 samples per pixel our method

devotes all of the new samples to the difficult areas, and many places such as the shadows improve

dramatically. MDAS by comparison starts out with fairly uniform noise, and then improves evenly

over all areas of the image. The insets show that in areas with fairly uniform motion our method

computes high-quality results at extremely low sample counts.

wide filters will share aliasing data. The net visual effect is usually a small distortion in the image

relative to ground truth. Note that these aliases are low frequency, and are visually hard to detect,

nor do they cause temporal artifacts as seen in the video. Because of this, our method will often

achieve an excellent visual match with ground truth, but a relatively high measure of mean squared

error.

Like most adaptive techniques, our implementation does an initial sampling and can therefore

miss information from very fast-moving or thin objects. In the future, we could try using space-time

bounding boxes to more conservatively bound occlusions.

CHAPTER 3. MOTION BLUR 36

3.7 Discussion

We have presented a frequency-space analysis of time-varying signals and images, as needed for

motion blur. We have shown that many motion-blur effects can be analyzed as shears in the space-

time and Fourier domains. Our analysis gives precise guidelines for an intuitive observation: inte-

grating over the shutter blurs a moving signal in the spatial dimension. This analysis in turn leads

to a novel sheared reconstruction filter that again formalizes an intuitive notion: a moving sample

should contribute not just to the

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 37

Chapter 4

Shadows from Planar Lights

4.1 Introduction

In the previous chapter we computed how to reduce the number of total shading points for mo-

tion blur calculations, but we still required that each shading point emit a large number of shadow

rays. In this chapter we will greatly reduce the number of shadow rays required for computing soft

shadows in a static scene.

Many algorithms have been used to generate soft shadows cast by area lights, but Monte Carlo

sampling is the method of choice for production rendering due to its simplicity and widespread

use for offline rendering. Unfortunately, when computing shadows from intricate geometry (see

Figure 4.1), the (binary) visibility function on the light source is complex and high-frequency. While

the integral of this function can still be relatively smooth, the Monte Carlo point samples (shadow

rays) have high variance and considerable noise persists even for large sample counts (Figure 4.1),

requiring the use of a prohibitive number of shadow rays. This is frustrating because the resulting

shadows can be smooth and simple, despite the complex and costly calculation that went into them.

We propose to efficiently sample and filter the 4D shadow light field from a complex occluder,

thanks to a new analysis of shadow sampling and reconstruction. We introduce a new 4D shadow

light field cache that allows for integration and reuse across pixels. The sampling of our method is

driven by a frequency analysis at the visible receivers, and a new sheared filter allows neighboring

receiver points to share data and reduce sample count. Our specific contributions include:

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 38

a) our method

1.0 rays per pixel

1350 e�ective samples on average

b) Monte Carlo strati�ed sampling

64 rays per pixel

f) monte carlo

2048 rays per pixel

e) our method

1.0 rays per pixel

1350 e�ective samples

on average

c) monte carlo

64 rays per pixel

g) Adaptive Wavelet

Rendering

64 rays per pixel

d) monte carlo

320 rays per pixel

equal time

Monte Carlo

shadow blend

Figure 4.1: (a) Our method casting 1 shadow ray per pixel. Our wide filter gives an average effective

sampling rate of 1350 samples for every pixel that is partially occluded. We use brute force Monte

Carlo ray tracing for self-shadowing and near-field occlusion, and then blend into our results for

mid- and far-field occlusion, as shown in the inset. (b) Monte Carlo stratified sampling with 64

samples has large amounts of noise due to the complex geometry, also shown in the insets in (c). (d)

Even with 320 samples the shadow still has visible noise. (e) Our method using 1 ray per pixel. By

sharing samples between neighboring receiver points, we obtain an effective sampling rate of 1350

samples per pixel. (f) Ground truth, generated using 2048 shadow rays per pixel. (g) Comparison

to Adaptive Wavelet Rendering with 64 samples per pixel. Visible artifacts can be seen due to the

high variance of the shadow samples. (blue box) Our method exhibits some overblurring in the area

highlighted with the blue box. See §4.7 and Figure 4.15 for more details.

Frequency Analysis of Shadow Signal We first show that only a narrow wedge of the Fourier

spectrum usually has significant amplitude if the depth range of the blockers is limited. Complex

occluders with a bounded depth range are common in cases like dense foliage or irregular arrays of

blockers. Our analysis subsumes and extends convolution soft shadows in parallel planes [Soler and

Sillion, 1998].

Sheared Filters for Shadows We introduce a new reconstruction filter that is sheared in the

receiver-light domain, and enables very sparse sampling since visibility samples can be shared

among adjacent pixels. We generalize previous work on sheared filters in other contexts [Chai et

al., 2000] to irregular reconstruction problems—the depths of the receiver points may vary, which

in turn causes the bundle of rays that we integrate over to have different shapes. We first design the

sheared filter in the native coordinate system of the receiver point, and then transform to a parame-

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 39

Renderman

compatible

renderer

area light

ray tracing shader

point cloud

of shadow

samples

4D ray database

Renderman

compatible

renderer

reconstruction

shader

(sheared !lter)

Shadow

Sampling

Ray Database

Construction

Shadow

Reconstruction

System Overview

y

v

!nal image

Figure 4.2: A flow chart showing the architecture and data flow in our system. (Shadow Sampling)

Sparsely sample the light field using shadow rays and write out each ray result to disk. (Database

Creation) Read in the ray samples and create a ray database. (Shadow Reconstruction) Query the

ray database and use sheared filters to reconstruct the shadow.

terization that is agnostic to the receiver point.

Practical Algorithm An overview of our method can be seen in Figure 4.2. We first sparsely

sample the occlusion light field by shooting a small number of shadow rays. We then store all ray

samples in a ray database. Finally, at each receiver pixel, we use our frequency analysis to calculate

the best filter shape for the receiver, and filter over the samples in our ray database. Our analysis

shows that we can often use a wide filter across the shadow light field, effectively reusing rays cast

from nearby receiver points.

4.2 Related Work

As a full review of shadow algorithms is beyond the scope of this thesis, we focus on approaches

that produce accurate soft shadows. Readers are encouraged to read a survey of approximate real-

time soft shadow techniques [Hasenfratz et al., 2003], as well as a comparison of more recent

methods [Johnson et al., 2009].

Frequency Analysis and Reconstruction Methods Often high dimensional signals have long

narrow spectra in the Fourier domain. In these cases adaptive sampling of the spectra can be

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 40

used [Soler et al., 2009], as well as sheared filters that compactly capture the spectra in the Fourier

domain and allow the use of sparser sampling rates [Shinya, 1993; Chai et al., 2000; Zwicker et al.,

2007]. The shape of shadow spectra has been studied in the Fourier domain [Durand et al., 2005;

Ramamoorthi et al., 2005; Lanman et al., 2008]. We extend these analyses by showing that the

frequency spectrum for practical scenes is most often a wedge based on the minimum and maxi-

mum depth of the occluder. We also draw attention to extreme cases where this assumption does not

hold (§4.7). The use of first-order gradients to aid in reconstruction has been studied [Ramamoorthi

et al., 2007], and several new techniques for reconstructing general signals have also been devel-

oped [Hachisuka et al., 2008; Overbeck et al., 2009]. We use a sheared filter and extend previous

work to solve the more general problem where the pixel integrands are not aligned to a regular grid.

In §4.6 we compare to Adaptive Wavelet Rendering [Overbeck et al., 2009], the state of the art

in contrast-based adaptive reconstruction, and show that for low sample counts our sheared filter

produces more accurate results.

Sheared Filters Our work is perhaps closest to the sheared filters developed for other problems

like light fields [Chai et al., 2000] and motion blur. Our theoretical analysis relates to these ap-

proaches, but we focus on shadows and show how our analysis reduces to convolution soft shadows

in the special case of parallel planes [Soler and Sillion, 1998]. Moreover, previous methods assume

a regular grid of cameras or that all pixels integrate over the same shutter interval. In contrast, we

are integrating over a fixed plane (the light), but our sampling and filtering happen at points that are

at many different depths. Thus, we must solve a more general irregular reconstruction problem. We

therefore introduce an additional step, going from the actual receiver to a shadow light field that is

independent of receiver depth.

Ray Traced Shadows Brute force ray tracing computes correct answers but is expensive [Cook

et al., 1984]. Photon mapping shoots shadow photons as an optimization to classify areas that are

unoccluded, occluded, or partially occluded from direct lighting [Jensen and Christensen, 1995].

Our method focuses on areas with partial occlusion, whereas most photon mapping implementations

fall back to Monte Carlo sampling in these areas rather than directly visualizing the shadow photon

map. Multidimensional lightcuts uses a hierarchical tree graph for receiver points and point light

sources, makes cuts through the receiver and light graphs at each pixel, and shoots shadow rays

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 41

for all pairs of nodes along the graph cuts [Walter et al., 2006]. Our work is complementary to

both photon mapping and multidimensional light cuts, since our sheared filter can be incorporated

to select a large set of appropriate shadow rays to share for a given receiver point, further reducing

shadow ray casts. Coherence across occluders and receivers has been used [Bala et al., 1999;

Hart et al., 1999; Agrawala et al., 2000; Ben-Artzi et al., 2006], as well as separating near- and

far-field occlusion [Arikan et al., 2005]. Blurring sharp ray traced results in image space can also be

used to approximate soft shadows and blurry reflections [Robison and Shirley, 2009]. Other methods

have prefiltered partial occlusion at kd-tree cells, but darkening can occur when locally pre-filtered

nodes are composited together [Lacewell et al., 2008]. Our system enables sparser sampling than

previous methods because we share samples and exploit coherence in the full 4D shadow light field.

Light Fields and Precomputed Radiance Transfer Many previous methods have used light

fields for rendering [Gortler et al., 1996; Levoy and Hanrahan, 1996; Isaksen et al., 2000; Chen

et al., 2002; van der Linden, 2003; Stewart et al., 2003]. The shape of occlusion light fields

has been studied [Durand, 1999], as well as how to capture occlusion light fields [Lanman et

al., 2008]. These methods usually use image-based rendering where data is captured by pho-

tographs taken in a regular grid, whereas we sparsely sample only the areas of the light field

that are used by the receivers of the image. Precomputed radiance transfer methods can also

be used for relighting problems involving complex shadows [Ng et al., 2003; Zhou et al., 2005;

Sun and Ramamoorthi, 2009], but most methods require dense sampling of an object or scene, and

its light transport.

ShadowMaps There are a variety of area light source methods that use shadow maps [Neulander,

2008; Yang et al., 2009], or a statistical description of occlusion [Annen et al., 2008]. The main

drawback to using shadow maps is that most area light source techniques either have a fixed resolu-

tion for the shadow map that can miss geometric detail, or they process occluders independently and

use approximate methods to composite the result [Johnson et al., 2009]. One exception to this rule is

the Sample Based Visibility method that uses alias-free shadow maps and conservative triangle ras-

terization [Sintorn et al., 2008]. The generation of soft shadow textures by [Soler and Sillion, 1998]

shows that for parallel plane occluder-receiver pairs the resulting shadow is a convolution between

the light source and the planar occluder, leading to a multiplication of light and occluder spectra in

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 42

light (y)

occluders

current

receiver (x)

d2min

d1

d1v

v

1

y

rays are parameterized

by a plane 1 unit

from the light source

d2max y

x

(c) visibility function f

in (x, y) space

(b) ray parameterization(a) "atland scene

slope based

on occluder depth

light

y

Figure 4.3: A simple illustration in flatland. (a) Note that we handle many occluders in a range of

depths [d2min, d2max], and that d1 is the distance to the current receiver, but we do not assume all

receivers are co-planar. The vertical line at the left side of the light serves as the origin of spatial

coordinates for all planes. (b) We parameterize rays based on the ray origin and directional offset

at a plane 1 unit away. (c) Occlusion in (x, y) space has coherent diagonal bands where occluders

block the light source.

the frequency domain. We show that our analysis of non-planar occluders and receivers generalizes

their approach (§4.3.2). Furthermore, our implementation samples across a 4D ray database and

can handle receiver surfaces that smoothly vary from close to far away from the light source. In

comparison, their method captures 2D information from a single point on the light source and can

have discontinuities in areas that transition from one soft shadow texture to another.

Object Based Methods for Shadows Storing silhouette edges allows for efficient sampling of

the light source [Laine et al., 2005]. Penumbra wedges [Assarsson and Akenine-Möller, 2003] and

beam tracing can also be used [Overbeck et al., 2007]. These methods process triangle edges, which

becomes a bottleneck for highly tessellated scenes or scenes with spiky geometry.

4.3 Shadow Signal and Light Field

We start our analysis of the shadow signal and light field with a simple scene in flatland, where

the distance from the planar light to the current receiver point is d1, and the occluding geometry is

contained within a depth range of [d2min, d2max] measured from the light (see Figure 4.3a). In our

implementation, this analysis is applied to the local extent of a single pixel allowing our algorithm

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 43

to use a different value of d1 per pixel and handle non-planar receiver surfaces. Parts of our analysis

will examine frequencies of the receiver, and for these problems it is most natural to use a two-

plane (x, y) parameterization, where y is the absolute distance along the planar light source, and x

is the absolute distance along the plane parallel to the light source with distance d1 (the receiver

plane). However, because we want to share rays across many receivers, we store ray samples in a

receiver-independent (v, y) parameterization, where y is still a distance along the light source, and v

is measured as an offset from y at a plane one unit from the light (similar to [Durand et al., 2005],

see Figure 4.3b).

Our analysis in flatland is easy to extend to 3D where the light field has four dimensions

(v1, v2, y1, y2). If we use orthogonal basis vectors to parameterize the area light source, the (v1, y1)

subspace is linearly independent of the (v2, y2) subspace. Because of this, most of the computations

can be broken down into two separate 2D problems.

We consider a single planar occluder parallel to the light source at distance d2 away from the

light source. The occluder is defined by its transparency function g() in this plane, where g() takes

a 1D spatial parameter in flatland. Because a ray (v, y) intersects the occluder at spatial coordinate

(d2v + y), the visibility function f (v, y) is defined by

f (v, y) = g(d2v + y), (4.1)

where a value of one is fully visible and a value of zero is fully occluded. We will extend this to

occluders with a range of depths later. As seen in Figure 4.3c, each occluder creates a diagonally

shaped band in the x-y pixel-light space, and all bands are multiplied together to get the final vis-

ibility function. Our method efficiently exploits the coherence of these diagonal bands across the

light field.

For shadow calculations we use the shadow light field f (v, y) in conjunction with a single re-

ceiver point. The receiver is parameterized by a plane at a distance d1 from the light, and an offset x

along the plane. Note that we do not assume that all points are co-planar; we allow d1 to vary with

x. The incoming irradiance, with shadow h(x), is:

h(x) = r(x)

∫

f

(

x − y

d1
, y

)

l(y) dy, (4.2)

where l(y) is the intensity of the light source, and r(x) captures the geometric form factor from

the receiver point to the area light (separating the form factor from the visibility is a common

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 44

Ωy

Ωv

(a) occluder spectrum F

Ωy

Ωv

(b) occluder spectrum F

slope = 1/d2
 slope range

[1/d , 1/d] 2min 2max

transport

shear
step 1: scale

(c) convert spectrum F

to (Ωx, Ωy)

Ω
v
 by 1/d

1

step 2: shear

-1 per unit Ω
v Ωy

(d) occluder spectrum F

slope = d1/d2max - 1

u

Ωx

(e) shadow and light

Ω

slope = d1/d2min - 1

 in (Ω
x
, Ω

y
)

visible signal

 bandlimit of L

y

Ωx

spectra multiply

Ωg

max

for constant depth occluder for varying depth occluder

Ω y
max

Figure 4.4: We design our filter in the Fourier domain, later reinterpreting these steps in the primal

domain to obtain the filter used in our implementation. Based on Equation 4.3, the frequency content

for the occluder in (v, y) space will be (a) a line for occluders with a constant depth, and (b) a wedge

for occluders with a range of depths. (c) We scale and shear this picture to (d) the frequency space of

the receiver, (Ωx,Ωy). Based on Equation 4.5, our filter must cover the overlap between the occluder

spectrum and the light spectrum (e).

approximation [Soler and Sillion, 1998]). Since r(x) is independent of shadows, we will omit it

from later derivations. In our current implementation we consider diffuse BRDFs, and the reflected

color will simply be the surface color multiplied by h(x) (see §4.7 for a discussion of more general

BRDFs). Note that in many applications, BRDFs are split into a diffuse component and a glossy

component, with shadowing applied to the diffuse component and a different reflection technique

employed for the glossy component.

4.3.1 Fourier Analysis

A Fourier analysis enables the design of a filter that is customized to the frequency content of

shadows. Capital letters like F, G and H denote Fourier transforms. Figure 4.4 shows the process

of mapping a given occluder spectrum into the receiver’s local parameterization.

We first use the Fourier transform to compute the frequency spectrum of visibility F (f (v, y)).

Appendix B provides a detailed algebraic derivation—that also follows directly from Equation 4.1,

and the Fourier linear transformation theorem [Bracewell et al., 1993],

F(Ωv,Ωy) = G(Ωy)δ(Ωv − d2Ωy), (4.3)

where δ(·) is a delta function. For a constant depth, Equation 4.3 shows that the occluder spectrum

lies along a line with slope 1/d2, as seen in Figure 4.4a. For practical scenes with a range of

depths, the occluder spectrum has a wedge shape, shown in Figure 4.4b, with slopes bounded by

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 45

[1/d2min, 1/d2max] [Chai et al., 2000]. The approximated bandlimit for the occluder function g() is

Ωmax
g , and it bounds the F(Ωv,Ωy) spectrum along Ωy (Figure 4.4b).

Our next step is to consider the frequency spectrum of the shadow light field on the receiver,

rather than in its canonical parameterization. This transformation is shown in Figure 4.4c, and

involves both a scale and a shear. Formally, we compute F
[

f
(

x−y

d1
, y

)]

from Equation 4.2, using the

Fourier linear transformation theorem or the detailed derivation in Appendix B,

F

[

f

(

x − y

d1
, y

)]

= d1 F(d1Ωx,Ωy + Ωx), (4.4)

where we now use x and Ωx along the receiver rather than v and Ωv. Note the scaling d1Ωx in the

first argument. The further the receiver point is from the light (large d1), the more compressed the

frequency spectrum is (shadows are smoother). On the other hand, for a receiver point close to

the light (small d1), the frequency spectrum is less compressed, with high-frequency effects near

contact shadows.

We now take the Fourier transform of h(x) to find shadow frequencies on the receiver. We use

the fact that the integral in Equation 4.2 can be seen as convolving the product of f and l with a

constant function of 1 to derive Equation 4.5. It follows that in the Fourier domain we only need the

constant (zero frequency) of (F ⊗ L), where ⊗ represents a convolution:

H(Ωx) = d1

∫

F(d1Ωx,Ωy + Ωx)L(−Ωy) dΩy. (4.5)

The calculation of H(Ωx) is done by integrating over the product of the light frequencies L and the

occlusion function F. In other words, to compute the shadow frequencies for H, we need to find all

places where the non-zero amplitudes of L and F overlap, as shown in Figure 4.4e.

4.3.2 Relation to Parallel Plane Convolution

The above results generalize the seminal parallel plane convolution result of [Soler and Sillion,

1998]. In particular, if d1 and d2 are fixed, we simply substitute Equation 4.3 into Equation 4.4, so

that the frequencies of the shadow light field are reparameterized for Ωx at the receiver:

F

[

f

(

x − y

d1
, y

)]

= d1G(Ωy + Ωx)δ
(

d1Ωx − d2(Ωy + Ωx)
)

, (4.6)

=

(

d1

d2

)

G

(

d1

d2
Ωx

)

δ

((

d1

d2
− 1

)

Ωx −Ωy

)

. (4.7)

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 46

In the last line, we bring the d2 factor outside of the delta function and then use the delta function to

set Ωy = (d1/d2 − 1)Ωx. Note that this implies that the occluder spectrum in the receiver coordinate

space will have Fourier slope d1/d2 − 1. In our case, the spectrum is not simply a line, but a wedge

with slopes ranging from d1/d2min − 1 to d1/d2max − 1, as shown in Figure 4.4d.

If we now substitute Equation 4.7 in Equation 4.5, the integral involves a delta function, and will

therefore simply result in the integrand, in particular L(−Ωy), being evaluated atΩy = (d1/d2−1)Ωx,

H(Ωx) =

(

d1

d2

)

G

(

d1

d2
Ωx

)

L

([

1 −
d1

d2

]

Ωx

)

, (4.8)

which is a simple multiplication in the frequency domain, and hence a (suitably reparameterized)

convolution in the spatial domain.1

Our method generalizes this approach by keeping all needed frequencies of F for a range of

depths (thus considering a frequency wedge for F rather than a simple line), and therefore allowing

the receiver and blockers to be general (they need not be restricted to parallel planes). Note also

that Figure 4.4e therefore involves an integration against the full wedge—when this wedge reduces

to a line, the integration becomes a simple multiplication in frequency space, or a primal-space

convolution as in [Soler and Sillion, 1998].

4.4 Sheared Filter

In this section, we present a new sheared filter that operates over shadow light fields. In the Fourier

domain, we design our sheared filter to be as compact as possible to enable the tight packing of

replicas in the Fourier domain and sparse sampling in the primal domain. Our filter must cover

the overlap of the light L and occluder F spectra to reconstruct the shadow signal H accurately. In

§4.5, we will use the shape of the sheared filter in the primal domain to enable sparse sampling

across our 4D ray database. We begin by calculating the width and shear of the sheared filter in the

Fourier domain. We then examine how to apply transformations to convert a simple axis-aligned

filter into a sheared filter in the Fourier and primal domains. Because shadow receivers integrate

1Our notation differs slightly from [Soler and Sillion, 1998], with their d1 corresponding to our d1 − d2, and their α

corresponding to our (d1/d2) − 1. We also use x for receiver and y for light source, instead of vice-versa. Finally, they

integrate over a two-dimensional light source, causing the outside factor in their convolution equation to be squared.

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 47

(a) simple �lter in (Ωx, Ωy)

2Ωy
max

2Ωpix
max

Ωy
max / (d1/d2min - 1)

Ωy
max / (d1/d2max - 1)

2Ωy
max

Ωx

(b) sheared �lter in (Ωx, Ωy)

d1/d2min - 1
slope

d1/d2max - 1

max

slope

Figure 4.5: (a) A simple filter that captures all displayable frequencies in (Ωx,Ωy). The bandlimits

for display are the pixel bandlimit Ωmax
pix

and the light bandlimit Ωmax
y . (b) Our new sheared filter

compactly covers the same non-zero frequencies that the simple filter does, but its compact shape

enables much sparser sampling rates.

over irregular domains in the light field, our final step is to transform the primal filter from the (x, y)

parameterization to the receiver-independent (v, y) parameterization used for our ray database.

Simple and Sheared Filter Shapes We first look at a simple filter in Fourier space that covers all

displayable frequencies, as shown in Figure 4.5a. This simple filter is axis-aligned in (Ωx,Ωy) space

and captures all frequencies within Ωx ∈ [−Ωmax
pix
,Ωmax

pix
] and Ωy ∈ [−Ωmax

y ,Ω
max
y], where Ωmax

y is

the bandlimit of the light intensity function l(y), and Ωmax
pix

is the maximum frequency in x that can

be displayed in the output image. In the pixel domain the Ωmax
pix

bandlimit is easy to define as 0.5

wavelengths per pixel. By measuring the projected x distance that a given pixel subtends, we can

simply set Ωmax
pix

to 0.5 wavelengths per subtended x pixel distance.

Our sheared filter, shown in Figure 4.5b, has the same spectral extent along Ωy as the simple

filter, but our filter is scaled and sheared to compactly bound the non-zero frequencies. Based on the

distances from the Ωx = 0 axis, as shown in Figure 4.5b, we can see that the width of our filter in

the Fourier domain is simply the difference of these two offsetsΩmax
y ((d1/d2max−1)

−1− (d1/d2min−

1)−1). Similarly, the shear is the ratio between the height of the filter and the average of the offsets

1
2
((d1/d2max − 1)

−1 + (d1/d2min − 1)
−1).

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 48

y

v

y

x

y

x

slope = -d1

projected x

pixel dist

slope = -d2avg

(d) sheared !lter over f(v,y)

light

extent

stretched by

Equation 9

sheared by

Equation 10

y

v slope = -d1

(c) simple !lter over f(v,y)

(x
, y

)
sp

a
ce

(v
, y

)
sp

a
ce

sheared �ltersimple �lter

occlusion

function f(x,y)

(a) simple !lter over f(x,y) (b) sheared !lter over f(x,y)

f(v,y)

Figure 4.6: The occlusion signal f and the simple and sheared filters in the primal (x, y) and (v, y)

domains. (a) The simple filter is axis-aligned in (x, y). (b) We create the sheared filter shape by

taking the simple filter in (a) and applying the transformations in Equations 4.9 and 4.10. (c) The

simple filter transformed to (v, y) using Equations 4.11 and 4.12. (d) The sheared filter transformed

to (v, y) using Equations 4.11 and 4.12. The d2avg slope of the filter is between d2min and d2max.

Our ray database stores samples in (v, y) so this is the final shape of our filter in flatland. For our

practical implementation in 3D there are two additional dimensions (v2, y2) that form an orthogonal

subspace and independently undergo the same transformations.

Transformation to Sheared Filter in Primal Domain As with many previous analyses, the key

insights come from Fourier theory, but our practical implementation operates directly on primal

domain samples, and does not need explicit Fourier transforms. Now that we know the exact di-

mensions and slope of the sheared filter in the Fourier domain, we can derive the transformations

necessary to convert a simple filter into a sheared filter in the Fourier domain. Knowing the Fourier

domain transformations then makes it easy to compute the corresponding primal domain transfor-

mations.

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 49

In the Fourier domain, the first step is to scale along Ωx by the sheared filter width divided by

the simple filter width. Fourier theory dictates that for the primal domain we need to scale along x

by the inverse amount:

primalScale =
2Ωmax

pix

Ωmax
y

(

d1

d2max

− 1

)−1

−

(

d1

d2min

− 1

)−1

−1

. (4.9)

The next step in the Fourier domain is to shear in Ωy per unit Ωx. In this case, Fourier theory tells

us that we need to shear by the negated amount in y per unit x.

primalShear = −
1

2

(

d1

d2max

− 1

)−1

+

(

d1

d2min

− 1

)−1

. (4.10)

The original shape of the simple filter in the primal domain is axis-aligned, integrating over the

projected x pixel distance and the light source y extent, as shown in Figure 4.6a. Using the transfor-

mations of Equations 4.9 and 4.10, this simple filter is transformed into a sheared filter, as shown in

Figure 4.6b. Note that the shearing seeks to align the filter with the diagonal bands from occluders.

Sheared Filter in (v, y) In our implementation we store all samples in (v, y) space, so the last step

is to transform the primal filter from (x, y) to to (v, y), as shown in Figures 4.6c and 4.6d. We know

that (v, y) = ((x − y)/d1, y), and from this we can derive that we first need to shear −1 units in x per

unit y, then scale by 1/d1 in x:

vyShear = − 1, (4.11)

vyScale =
1

d1
. (4.12)

Numerical Verification We verify our frequency analysis by plotting a complex scene in flatland,

and examining the Fourier transform, as shown in Figure 4.7. Our flatland scene is composed of

thin and round elements randomly placed in a depth range near the light source, with x and y both

ranging between 0 and 1 (Figure 4.7a). In Figure 4.7b we graph the occlusion function in (x, y),

using the object colors from Figure 4.7a as a means to visualize. We then take the Fourier transform

of the occlusion function, as shown in Figure 4.7c. Note that the Fourier spectrum has our predicted

wedge shape, and that amplitudes dissipate rapidly in areas farther from the constant zero frequency.

We then zero out all frequencies that are outside of a sheared filter that covers a light bandlimit of

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 50

10
2

10
3

10
4

10
2

10
3

10
4

F(Ωx, Ωy)

b) occlusion functiona) !atland scene

light (y)

receiver (x)

c) occluder spectrum d) occluder spectrum

bandlimited by "lter

e) original and

bandlimited signals

integrated over

the light source

x

y

Ωx

Ωy

Ωx

Ωy

x

v
is

ib
ili

ty

ground truth

bandlimited

0 1

0 1 0

1

1

-0.5 -0.5

0.5 0.5

0.5

0

1

0.5% energy loss

1

0.5

f(x, y)

Figure 4.7: Numerical verification of our Fourier theory. (a) A set of occluders with random

orientations and positions. (b) Graph of the occlusion function f (x, y) for this scene. (c) We take

the Fourier transform of f (x, y) to get F(Ωx,Ωy). (d) Our method captures frequencies inside the

footprint of the sheared filter. All frequencies outside the filter are set to zero. (e) A graph of the

original signal f (x, y) and the corresponding bandlimited signal from (d). Each point x integrates

over the light y to obtain the final visibility.

Ωmax
y equal to 1

8
, as shown in Figure 4.7d (in this example 0.5% of the energy lies outside of the

filter). Using both the original Fourier spectrum as well as the bandlimited spectrum, we convert

back to the primal domain and integrate with the light source to compute the final receiver values

(Figure 4.7e). This final graph of visibility shows that sheared filters can reconstruct shadow signals

with minimal loss of fidelity, despite the high-frequency nature of the original signal.

4.5 Algorithm

Our rendering system provides a practical way to sample occlusion in the scene, produce a ray

database of all samples, and reconstruct the shadows based on the analysis above. We use a very

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 51

Stage 1:

Sparse Sampling

Stage 3: Compute Filter Shape (per-pixel)

Stage 4: Query

Ray Database and

Apply Filter

(per-pixel),

see Figure 13

b) d2min c) d2max

d) !lter size

Stage 2: Construct

Ray Database

a) d1

e)

v

1
y

light

d1

d2

50

1.16

37.5

0.8

42.4

1.02

481513

0

19639

0

samples
in !lter

Figure 4.8: Individual steps of the algorithm illustrated using the scene from Figure 4.13. Stage 1

traces rays and writes samples to disk. Stage 2 converts the 3D information to the (v1, v2, y1, y2) 4D

parameterization, along with distances d1 and d2. Stage 3 computes the shape of the filter using d1,

d2min, d2max. Stage 4 uses the filter to average together multiple samples and compute the shadow

signal.

sparse sampling, often 1 shadow ray per pixel, and a suitably wide sheared reconstruction filter at

each pixel. An overview of the algorithm is depicted in Figure 4.2 and detailed steps are shown in

Figure 4.8.

Shadow Sampling The first stage is to sparsely sample occlusion in the 4D light field (Stage 1

in Figure 4.8). To generate samples we trace a small number of shadow rays from each pixel that

contains a receiver surface. Our sampling is driven by the receivers that are visible in the actual

image, unlike most other light field techniques that sample uniformly and densely in the 4D space

of rays. Our implementation uses a simple programmable shader that traces rays from the receiver

to the light source, and for each sample writes the receiver point, ray direction, and the occluder

distance d2 to a file (if the ray is unoccluded we set d2 to -1).

In principle, we could compute sampling rates at each pixel, directly from the Fourier analysis,

as described in Appendix B. In practice however, we have found that areas that receive soft shadows

need very sparse sample counts, on the order of 1 to 8 samples per pixel. We have developed a

program to do adaptive sampling, but the quality of the final image is usually easier to control by

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 52

simply setting a uniformly low sample density.

When we shade a receiver point that lies inside the shadow light field’s [d2min, d2max] depth

bounds, our theory can no longer provide tight bounds on the spectrum, and we cannot safely apply

a shear or scale to the primal filter (this can happen with self-shadowing and other cases of near-field

occlusion). In this case we simply revert back to using stratified Monte Carlo sampling.

Ray Database Construction The second stage reads samples from disk, computes the 4D param-

eterization of each ray, and stores the sample into a 4D ray database (Stage 2 in Figure 4.8). Our

current implementation uses a simple 2D grid as an acceleration structure, indexing across direction

parameters v1 and v2. We have experimented with a 4D grid and other bounding volumes, but have

found so far that they delivered little speedup when queried with the highly anisotropic shapes and

varied orientations of sheared filters generated by a practical scene. The depth range of the light

field, [d2min, d2max], is also calculated at this stage.

The memory requirements for our method are small, consisting only of loading the ray database

into memory. Each sample in the ray database consists of (v1, v2, y1, y2) 32 bit floating point coordi-

nates, with an additional distance d2, that stores the distance to the closest occluder or indicates an

unoccluded ray. For the scene in Figure 4.1 the final ray database was 17 MB.

Shadow Reconstruction To reconstruct shadows, another rendering pass uses a programmable

shader that accesses the ray database. For each receiver point, the shader computes the shape of

the appropriate sheared filter, queries the ray database with the filter shape, and weights all samples

inside the filter’s 4D footprint (Stage 3 in Figure 4.8).

The first step is to compute d1, d2min, and d2max for the current receiver as shown in Figure 4.8a-

c (see Optimizations below for more details). The next step is to compute the shape of the sheared

filter. Although the shape of a sheared filter in 4D may be hard to visualize, it is simple to compute:

We require that the planar area light is parameterized with orthogonal basis vectors, guaranteeing

that (v1, y1) and (v2, y2) span orthogonal 2D subspaces of the 4D light field. Consequently, we

treat the sheared filter as the product of two 2D sheared filters in (v1, y1) and (v2, y2). For each 2D

subspace, we first determine the basis vectors that define the light and pixel filter extent of a simple

filter in (x, y) (Figure 4.6a). We then transform the basis vectors using Equations 4.9, 4.10, 4.11,

and 4.12 such that the basis vectors now represent the centerline and “shear axis” of the sheared filter

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 53

b) Photon mapping

32 photons per pixel, 2k samp. �lter

a) Adaptive Wavelet Rendering

32 samples per pixel

d) Adaptive Wavelet

Rendering g) Ground truthf) Our method

c) Our method

4 samples per pixel

e) Photon mapping

Figure 4.9: (a) Adaptive Wavelet Rendering with 32 samples per pixel. (b) Direct visualization

of photon map to compute soft shadows with 32 photons per pixel (photon map requires 1.8GB of

memory). The soft shadows near the top of the image still have a fair amount of noise. (c) Our

method using 4 samples per pixel. (d) Adaptive Wavelet Rendering computes a soft image, but the

shape of the soft shadow is slightly off in this case. (e) Direct visualization of the photon map has

converged in this area, but other areas have noise. (f) Our method accurately reconstructs the soft

shadow signal. (g) Ground truth using 2048 rays with Monte Carlo.

in (v, y) (Figure 4.6d). The range of occluder depths (d2max − d2min)/d2max is shown in Figure 4.8d,

as well as the total number of samples inside the filter in Figure 4.8e.

The next step is to determine where the filter is centered. Focusing on the (v1, y1) dimensions,

and given the positioning of the receiver point and the light in 3D space, we can compute a v1 value

(ray direction) for any given y1 value (light position). It is convenient to compute v1 for y1 = 0 since

this is always defined to be one edge of the light in our implementation. Similary we compute v2 for

y2 = 0, completely anchoring the centerline of our 4D sheared filter.

We have now defined the placement and shape of our filter. We now process every sample

in every grid cell that lies inside the filter’s v1 and v2 extents. We then calculate the sample’s

coordinates relative to the transformed light extent and pixel extent basis vectors. These coordinates

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 54

Ground Truth
2048 samples4 samples2 samples

Our method
1 sample

6 %

0 %

error plot

Ground Truth
2048 samples1 sample0.5 samples

Our method
0.25 samples

Figure 4.10: Analysis of different quality levels for different sample counts. The first and second

rows show a closeup from the scene in Figure 4.9. As the quality increases to four samples we can

see in the error plot that we are converging. The third row shows a new closeup from the scene in

Figure 4.1, near the upper part of the shadow. We see here the spotting artifacts that can occur in

areas of undersampling.

can then be interpreted in the original (x, y) space, where one coordinate determines the pixel filter

response and the other determines the light intensity (Stage 4 in Figure 4.8).

Optimizations Computation of the depth bounds d2min and d2max can often be done by simply

evaluating the global range of d2 occluder values contained in the ray database (this was done for

Figure 4.1). For more complicated scenes with many interacting occluders and receivers, it becomes

necessary to compute d2min and d2max per receiver (this was done for Figures 4.12 and 4.13). To

compute d2min and d2max per receiver, we precompute a 3D hierarchical sphere tree with all occluder

positions to supplement the ray database. For each receiver we cull out points that are outside of the

receiver-light frustum, and then compute the [d2min, d2max] bounds on the remaining points. This

computation is inexpensive relative to filtering, but it can at times lead to discontinuities in d2min or

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 55

a) Our Method, small light

1 ray per pixel

b) Monte Carlo

256 rays per pixel

c) Monte Carlo

2048 rays per pixel

d) Our Method

1 ray per pixel

e) Our Method, large light

1 ray per pixel

f) Monte Carlo

256 rays per pixel

g) Monte Carlo

2048 rays per pixel

h) Our Method

1 ray per pixel

Figure 4.11: Comparisons between our method and stratified Monte Carlo sampling. We show

two scenes: a smaller area light in a) through d), and a larger area light in e) through h). The

timings show that as rays become more incoherent (in this case due to a larger light source), brute

force ray tracing becomes very expensive. This is primarily due to the cost of updating the cached

geometry for ray tracing. All timings are for rendering the right half of the image where shadow

computation dominates the overall time of execution (the one exception is our sparse sampling pass,

which processes the entire image).

d2max across receiver points.

4.6 Results

We demonstrate our results with five scenes, which showcase a variety of challenging situations

in Figures 4.1, 4.9, 4.11, 4.12, and 4.13. We also show comparisons and timings with respect to

stratified Monte Carlo sampling, the current method of choice, as well as optimizations like photon

mapping and the recent development of Adaptive Wavelet Rendering [Overbeck et al., 2009].

All examples were run using Pixar’s Renderman Pro Server 15.0 on a dual quad-core Xeon 2.33

GHz processor with 4 GB of memory. Due to our modular plug-in architecture, our code trivially

runs in parallel for any number of threads. All scenes in this chapter use a planar area light with a

circular Gaussian falloff that captures two standard deviations within the light radius.

4.6.1 Canonical “Grid” Scene

We start with the canonical scene in Figure 4.9, which shows grid occluders with shadows that

smoothly go from sharp to wide. The very regular and smooth growth of the penumbra makes small

artifacts easier to spot, but our method produces high-quality results.

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 56

Figure 4.9 also compares to alternative rendering approaches, like photon mapping [Jensen and

Christensen, 1995] (Figures 4.9b,e use similar parameters to those in our method). We see that

direct visualization of the photon map has converged in some areas, while other areas still have a fair

amount of noise, even when using 32 photons per pixel. In addition, storing the 33M photons takes

1.8GB of memory in Renderman’s implementation. For these reasons, the photon map is usually

used for caustic or global illumination effects, and rarely visualized directly for soft shadows.

Therefore, in the remainder of the chapter, we focus on comparing to stratified Monte Carlo

sampling, and to the state of the art adaptive reconstruction method, Adaptive Wavelet Rendering

(AWR) [Overbeck et al., 2009]. The AWR comparisons in Figure 4.9 (and 4.1) directly use the

original AWR software, with the same scene setup and light source location and falloff as our

method. We see in Figure 4.9 that our method better captures the widening blur of some areas of

the shadow signal. Adaptive Wavelet Rendering with 32 samples per pixel has not converged due

to the high variance of the shadow signal.

We analyze the effect of increasing sample counts in our method in the first two rows of Fig-

ure 4.10 (we will analyze the bottom row in §4.6.2). We first note that even when using only one

sample or shadow ray per pixel, our method is quite accurate, with the maximum pixel error less

than 6%. We are able to use such low sample counts because our sheared reconstruction filter ef-

fectively shares samples between many neighboring pixels. However, some difficult regions can be

noisy, and these rapidly become more accurate with a moderate increase in sample count. Indeed, 4

samples per pixel reduces error almost to 0 everywhere in the image.

4.6.2 Detailed Occluding Geometry

In Figure 4.1, we show a detailed model (1.3M triangles) with many complex sillhouettes and thin

features casting a shadow on a flat receiver. Our method works well in this case because it can

handle complex occluders, and the scene has predominantly mid- and far-field occlusion, which

lets our method use vastly fewer samples than other algorithms. For this scene we traced 1 ray per

pixel during the initial sampling phase and created a ray database with 637,000 samples. In this

scene we used Monte Carlo ray tracing with 4 rays for self-shadowing within the occluder and 64

rays for near-field occlusion on the receiver (a higher number of rays were necessary because of the

extremely thin features of the occluder). We used the Monte Carlo solution for receiver positions

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 57

with d1 ≤ d2max, and did a smooth blend between the Monte Carlo solution and our solution up to

a user-specified distance of (1.1)d2max (as shown in the Figure 4.1a inset).

Figure 4.11 shows another difficult example with two complex tree occluders, this time shad-

owing a curved receiver. The tree trunk and branches are modeled with subdivision surfaces. In

Figures 4.11a-d, a medium sized light source is used, and ray tracing shadows is fairly coherent.

In Figures 4.11e-h, a larger light source is used, causing incoherence among rays and a much more

expensive cost per ray. Our method is most beneficial when the cost per ray is high, which can be

seen in more detail in the timings section below.

Stratified Monte Carlo sampling is still usually the method of choice for high-end rendering.

However, for complex occluders in scenes like Figures 4.1 and 4.11, stratification has minimal

benefit, since every shadow ray has very high variance—there is almost no coherence across the

occlusion signal. Therefore, stratified Monte Carlo sampling requires a very large number of sam-

ples before the variance of the shadow is not visually noticeable (approximately 2048 samples in

our case). While Adaptive Wavelet Rendering in Figure 4.1g is beginning to converge with 64 sam-

ples, the high variance of the signal leads to some low amplitude aliasing in the wavelet basis. In

contrast, the third row of Figure 4.10 shows that our method can get decent results even when using

0.25 samples per pixel during the sparse sampling stage. In this case most of the spotting artifacts

are removed by going up to just 1 ray per pixel.

Timings We report wall clock running times for Figures 4.1 and 4.11. For both images we mea-

sure the cost of rendering the right half of the image, since the shadows are mostly concentrated

there (the costs on the left side of the image are dominated by scan conversion of the occluding

geometry, which is not relevant to our or other algorithms). In our tests, we noticed that timing re-

sults can be fairly non-linear with the number of rays traced per pixel, which we believe is primarily

dependent on how ray trace queries interact with Renderman’s geometry caching algorithm. We

therefore report numbers for canonical numbers of samples, which allow for equal time and quality

comparisons with stratified Monte Carlo.

In Figure 4.1a, our method (with 1 ray per pixel) took 1 min 17 sec for the sparse sampling

phase and 4 min 1 sec to reconstruct the shadows using the ray database, for a total time of 5 min

18 sec. In Figure 4.1b, Monte Carlo sampling with 256 samples per pixel took 5 min 6 sec, and in

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 58

a) Our method: 1 sample per pixel d) Occluder Z range

e) Samples in �lter

b) Our method: 1 sample c) Ground truth: 2048 samples

0 40 % d2max

0 8207

Figure 4.12: Scene with a wide array of occluders and receivers, as well as a curved ground surface

with high frequency displacement.

Figure 4.1e, Monte Carlo sampling with 2048 samples took 23 min 3 sec.

In Figure 4.11a, our method (with 1 ray per pixel) took 5 min 25 sec for sparse sampling,

1 min 25 sec for reconstruction, and a total of 6 min 50 sec. Monte Carlo with 256 samples in

Figure 4.11b took 6 min 9 sec, and Monte Carlo with 2048 samples in Figure 4.11c took 16 min

19 sec. The wider area light source in Figure 4.11e produces more significant speedups because of

the incoherent shadow rays. Our method took 6 min 32 sec for sparse sampling, 6 min 30 sec for

reconstruction, and 13 min 2 sec total. Monte Carlo with 256 samples in Figure 4.11f took 1 hr 15

min, and Monte Carlo with 2048 samples in Figure 4.11g took 3 hr 34 min, for a net speedup for

our method of more than an order of magnitude.

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 59

Our method:

1 sample

Our method:

1 sample

Ground truth:

2048 samples

Ground truth:

2048 samples

Figure 4.13: Complex tentacles scene with multiple occluders and receivers.

The AWR implementation uses an optimized packet ray tracer and a more stripped down shading

system for speed, making comparisons to our Renderman plug-in difficult. They report taking 34

seconds to reconstruct their wavelet basis using 32 samples at image resolutions of 1024 × 1024.

In our test scenes it appears that any noise in the wavelet basis is not visually noticeable after

256 samples. Because our method uses drastically fewer samples, our method will be preferrable

whenever ray tracing is expensive, such as for highly tessellated models that may not fit into main

memory. Note that for the scenes in this chapter we showed significant performance gains relative

to the highly optimized Renderman ray tracer.

In general we note that our system drastically reduces ray tracing computation, making a trade

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 60

for increased filter computation. We have already shown that this is beneficial even for moderately

complex scenes. A commonly noted trend in production rendering is that when computational

power increases, artists will immediately increase the complexity of their scenes rather than enjoy

faster render times. As long as this trend continues, geometric complexity for rendered scenes

will increase, and our substitution of ray casts for filter computation will become more and more

valuable.

4.6.3 Robustness: Complex Occluders and Receivers

Figure 4.12 shows a scene with many interacting occluders and receivers. In Figure 4.12b, we show

that the range of occluder depths [d2min, d2max] computed at each pixel can vary by large amounts.

In Figure 4.12c we show the number of pixels contained in each pixel’s custom reconstruction filter.

Note that our method produces smooth results because of the high number of samples processed by

each pixel. Finally, we show a scene with the foliage model from Figure 4.1, as well as a complex

displacement-mapped receiver surface, and a number of other objects. This scene showcases a

variety of intricate shadowing effects, such as complex objects casting and receving shadows. In

both scenes we used 1 sample per pixel for the sparse sampling stage. In Figure 4.13 we used 4

Monte Carlo samples per pixel to compute near-field occlusion, while in Figure 4.12 we did not use

any Monte Carlo sampling. Figures 4.12 and 4.13 show the robustness of our method for dealing

with a range of complex occluder and scene configurations.

4.6.4 Animation

We have focused on still images, but it is also interesting to examine whether our method can

produce stable animations. We show that our method can indeed produce high-quality animations,

but may require a higher sampling rate to eliminate temporal aliasing.

In our supplementary video we animate the grids and trees scenes (stills from the video are

shown in Figure 4.14). In the grids animation, the grids descend towards the ground plane, and we

show that with 0.3 rays per pixel there are noticeable artifacts, but these artifacts go away using 3.0

rays per pixel. We rotate both trees in the tree scene (Figure 4.11a) to provide a stress test of many

thin occluders moving relative to each other. In this case with 3.0 rays per pixel, the still images

are often visually acceptable, but flickering can be seen as the tree rotates during animation. Small

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 61

frame 20 frame 60 frame 100

G
ri

d
s

a
n

im
a

ti
o

n
Tr

e
e

s
a

n
im

a
ti

o
n

Figure 4.14: Still frames from an animation. The grids animate relative to the ground plane (3.0

rays per pixel). The trees each rotate relative to the ground plane (10.0 rays per pixel).

amounts of undersampling may cause medium to low frequency error relative to ground truth, but

these errors are often visually imperceptible for still images. However, during animation these small

errors can flicker, which is much more noticeable. When we increase the sampling rate to 10.0 rays

per pixel the animating shadows become more stable and the flickering artifacts disappear. With

10.0 rays per pixel the sparse sampling pass took 5 min 46 sec, 16 min 16 sec for reconstruction

(right half of 1k image), and a total of 22 min 2 sec.

Our supplementary video also compares our results to Monte Carlo integration during anima-

tion. Even with 2048 samples per pixel a small amount of noise is still visible in the animation

using Monte Carlo. Our method with 10.0 rays per pixel delivers a smoother result with no visual

flickering.

4.7 Artifacts and Convergence

We discuss the limitations and possible artifacts that come from our method. We first look at the

artifacts that occur from undersampling occlusion and how the light bandlimit Ωmax
y affects render-

ing. We also discuss how these two factors affect the convergence of our method. We then look at

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 62

a) Our Method, 1 ray per pixel

Ωy
max = 1 wavelen / light diam

b) Ground Truth

2048 rays per pixel

c) Our Method, 10 rays per pixel

Ωy
max = 4 wavelen / light diam

Figure 4.15: An inset from Figure 4.1 with contrast increased by 4x. With 1 ray per pixel and a low

value for the Ωmax
y light bandlimit our results are overblurred. By increasing the number of samples

to 10 rays per pixel and increasing the Ωmax
y light bandlimit our method can capture more shadow

frequencies. However, even with these higher quality settings our method is missing some detail.

how undersampling can also manifest itself in the use of the occluder depth bounds dmin
2

and dmax
2

.

Finally we discuss two extreme cases where precise occluder configurations break our assumptions.

Undersampling and Light Bandlimit If the sparse sampling pass does not adequately sample

the occlusion signal, our results will have mid to low frequency artifacts, as seen in Figure 4.10.

Our method can also overblur if we set the Ωmax
y light bandlimit too low, as seen in Figure 4.15.

From Equation 4.9 we can see that the higher the Ωmax
y light bandlimit is set, the smaller the scale

of the reconstruction filter. Using a smaller filter subsequently requires a higher sampling rate to

avoid spotty artifacts. If Ωmax
y is set too low then the reconstruction filter sizes will be large and

overblurring may occur.

Undersampling can be more visually noticeable during animation as it can lead to flickering

artifacts. This is shown in the supplementary video and discussed in § 4.6.4.

In Figure 4.16 we can see how the sampling rate and Ωmax
y light bandlimit interact with each

other. As we increase Ωmax
y we see more and more details in the shadow. If we use a large value

for Ωmax
y but keep a low sampling rate, we can start to see noise (upper left image in Figure 4.16).

If Ωmax
y is too low then the shadows will stay blurry even as we increase samples (bottom row of

Figure 4.16). For low sampling rates it is best to keep Ωmax
y lower (lower left image in Figure 4.16),

and for high-quality renders that use a high sampling rate it is best to use a higher value of Ωmax
y

(upper right image in Figure 4.16).

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 63

samples
(shadow rays per pixel)

Ω
y

m
a

x

(w
a

v
e

le
n

g
th

s
p

e
r

lig
h

t
d

ia
m

e
te

r)
b

lu
rr

y
d

e
ta

ile
d

inexpensive expensive

1 4 16

1

4

16

ground truth

(2048 samples)

Figure 4.16: An inset from Figure 4.13 rendered with different sampling rates and Ωmax
y light ban-

dlimit. In general the best quality per cost is shown along the diagonal from lower left to upper right

(upper right being the highest quality and the most expensive). The upper left image is inexpen-

sive and noisy, and the lower right image is expensive and overblurred. The red circle highlights a

ringing artifact that can occur when depth bounds change suddenly.

Depth bounds dmin
2

and dmax
2

When computing the dmin
2

and dmax
2

depth bounds per receiver,

sudden changes in these bounds can sometimes get ringing artifacts (this can be seen in the bottom

row of Figure 4.16 and in Figure 4.17(ii)). This is due to one pixel using a filter that is much wider

than the neighboring pixel’s (blurring the dmin
2

and dmax
2

bounds as is done in Section 3.6.1 would

help to alleviate this problem). The depth bounds can also be inaccurate when nearby occluder hit

points are culled by the receiver-light frustum, which in turn leads to improper filtering, as seen

in Figure 4.17(i). We believe that this is due to our current implementation using a receiver-light

frustum that converges to a point instead of properly covering the entire extent of the receiver pixel.

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 64

a) Our Method

4 rays per pixel

b) Ground Truth

2048 rays per pixel

(i)

(ii)

Figure 4.17: Our method with 4 samples produces results which are very close to the ground truth

(scene is an inset from Figure 4.12). But there are issues, which can produce subtle differences: (i)

Shadow regions can be inaccurate if the dmin
2
/dmax

2
calculation misses occluder samples. (ii) In this

case the dmin
2
/dmax

2
calculation is not smooth, which leads to jumps in the filter size.

General BRDFs Our current implementation only handles diffuse BRDFs. While other reflection

techniques are often more appropriate for glossy BRDFs, for future work we would like to extend

our method to handle any general BRDF. This can be achieved by replacing the lighting response

l(y) with the product of lighting and the BRDF response of the current receiver point ρ(y). If we

replace L with (P ⊗ L) in our analysis, we see that for specular BRDFs containing high frequency

content we will have less savings, as it becomes more and more difficult to share rays between

receivers. Any second-order terms from surface curvature should be minimal, since our analysis is

local to the receiver surface subtended by a single pixel.

Theoretical Limitations For all practical scenes that we have tested, the shape of the occluder

spectrum has been a good fit with the wedge shape shown in Figure 4.4b. However, there are

extreme cases that break the wedged-shaped spectrum assumption used by our method and previous

work [Chai et al., 2000]. We depict the first case in Figure 4.18a. Using an array of planar occluders

with length and separation proportional to the distance to the receiving plane, the final shadow is

roughly a triangle wave (the signal will be an exact triangle wave for infinitely wide area lights).

Using this setup, we can create arbitrarily high shadow frequencies with no change in amplitude,

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 65

light (y)

v
is

ib
ili

ty 1

0 v
is

ib
ili

ty 1

0

a) double slit occluder b) funnel occluder

light (y)

receiver (x) receiver (x)

y

x

y

x

x x

f(x,y) f(x,y)

10
2

10
3

10
4

10
2

10
3

10
4

Ωx

Ωy

Ωx

Ωy

F(Ωx, Ωy) F(Ωx, Ωy)

signi!cant freq.

amplitudes outside

of wedge

signi!cant freq.

amplitudes outside

of wedge

Figure 4.18: Failure cases for our method. (a) A double slit configuration that causes the visibility

of the receiver to change roughly as a triangle wave. (b) A funnel configuration that shadows all

areas except for one small area that transitions to full visibility. The slanted line segments of the

funnel have a wedge shaped occlusion signal in (x, y). In both failure cases the precise shapes of

the occluders create regular patterns aligned along the y-axis, creating sharp changes in visibility

across the receiver x-axis. In the Fourier domain there is significant energy in F(Ωx,Ωy) that exists

outside of the modeled wedge.

for any two depths, by scaling the length and gaps between occluders closer and closer to zero.

It is also possible to create a funnel-shaped occluder that provides compete visibility to an

arbitrarily small area, which then quickly fades to no visibility outside of the area, as shown in

Figure 4.18b. By squeezing the funnel edges closer and closer together, we can achieve a sharper

and sharper “spike” in visibility. The visibility in (x, y) space for both of these cases is also shown

in Figure 4.18b. Both cases apply directly to previous work in light field rendering [Chai et al.,

2000], and both cases can be applied to motion blur by replacing the receiver plane with a camera

that moves across different x positions over time (Chapter 3). In most practical scenes some high

frequencies may exist due to correlation of occluders, but the amplitude of these high frequencies

will usually be very low compared to the overall signal.

CHAPTER 4. SHADOWS FROM PLANAR LIGHTS 66

4.8 Discussion

We have presented a new frequency analysis of complex occluders, and a rendering algorithm that

leverages sparsity in the Fourier domain of the 4D light field. We have shown large speedups for

a range of complex occluders and scene configurations. Furthermore, our results show that our

method excels when dealing with very soft shadows, which is precisely where other methods have

the most difficulty.

Our method delivers the biggest performance gains for soft shadows cast by mid to far oc-

cluders. However, we could extend our current system to gracefully handle more general cases of

self shadowing by subdividing occlusion data into multiple light fields. This could provide a large

improvement to our method’s performance when occluders are visible at many different depths.

Looking forward, we expect that our generalization of sheared filtering to irregular integrands,

as well as the use of more sophisticated filtering techniques, will spur further advances for rendering

and other areas.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 67

Chapter 5

Shadows from Distant Lighting

5.1 Introduction

In the previous chapter we greatly reduced the number of shadow rays required for planar light

sources. However, this previous analysis does not allow us to model the large angular domain from

distant lighting, and only focuses on the diffuse component of the BRDF when doing the frequency

analysis. In this chapter we will introduce a new filter that is well suited for large angular light

sources, and we will also do a Fourier analysis of shadows using general BRDFs.

Modern production rendering algorithms often compute low frequency hemispherical occlusion,

where the surrounding environment is approximated to either be a solid white dome (ambient oc-

clusion), or a series of low frequency spherical harmonics. Two different bodies of work related to

ambient occlusion were given scientific Academy Awards in 2010 [AcademyAwards, 2010], and the

movie Avatar used ray-traced ambient and spherical harmonic occlusion for lighting and final ren-

dering [Pantaleoni et al., 2010]. While fully sampling the surrounding illumination at each receiver

is the completely accurate way to compute global illumination, these approximations of distant

lighting work well in practice. Another advantage is that the ambient occlusion and spherical har-

monic calculations are independent of the final lighting environment and can be reused throughout

the lighting process.

Ray-traced occlusion is often very expensive to compute due to the large number of incoherent

ray casts. The authors of the PantaRay system state that they typically shoot 512 or 1024 rays

per shading point to compute occlusion [Pantaleoni et al., 2010]. One of their test frames from

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 68

a) Our Method

32 rays / shading pt, 1 hr 48 min

b) Monte Carlo

40 rays, 1 hr 42 min

Equal Time

c) Our Method

32 rays, 1 hr 48 min

d) Monte Carlo

256 rays, 7 hrs 4 min

Equal Quality

e) Relighting output from (a)

30 seconds each

Figure 5.1: (a) A visualization of ambient occlusion produced by our method. This scene used 32

samples per shading point, 13 rays in the sparse sampling pass (41 min) and 19 rays in the second

pass in areas with contact shadows (1 hr 7 min). Total running time for both passes was 1 hr 48

min. (b) Closeups of Monte Carlo using equal time (40 samples, 1 hr 42 min), noise can be seen.

(c) Closeups of our method. (d) Closeups of Monte Carlo with equal quality (256 samples, 7 hrs

4 min). (e) At little extra cost our method can also compute spherical harmonic occlusion for low

frequency lighting. While computing (a) our method also outputs directional occlusion information

for 9 spherical harmonic coefficients (green is positive, blue is negative).

the movie Avatar took over 16 hours and 520 billion rays to compute an occlusion pass. While

our scenes do not have the complexity of production environments, our method shows substantial

performance benefits with scenes of moderate complexity. As scenes become more computationally

bound by ray tracing, the benefits of our method increase.

We propose a method that speeds up occlusion calculations by shooting fewer rays and sharing

data across shading points (shown in Figure 5.2). We present a new frequency analysis of occlu-

sion from an omni-directional distant light source that also includes normal mapping and a general

BRDF at the receiver point. Using this analysis, we develop a method to share rays across the full

hemisphere of directions, vastly cutting down on the number of expensive incoherent ray casts. Our

method makes a number of important contributions:

Frequency Analysis of Distant Lighting: We present a frequency analysis of distant lighting

from all possible incoming directions over the hemisphere in Section 5.3. We first derive new

equations to handle distant lighting by splitting up the spherical domain into linear subdomains

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 69

a) standard methods

trace many rays from

each shading point

b) our method shoots

a smaller number of rays

and creates a ray database

c) our method reprojects

and !lters nearby rays

to compute occlusion

receiver

mid hit

depth

Figure 5.2: (a) We show a simple scene in flatland. Standard methods for computing ray-traced

ambient occlusion shoot many rays. (b) Our method shoots a sparse set of rays in a first pass and

saves them to a point cloud. Red dots are ray hits. (c) In a second pass we use our theory to reproject

and weight nearby rays to compute directional or ambient occlusion. The green dot represents the

target point of the unoccluded ray (the intersection between the orginal ray and the mid depth plane).

(such as cube map faces). We then derive the appropriate bandlimits and filter sizes for each linear

sub-domain. This theory is used as the basis for our new rotationally-invariant filter.

General BRDFs and Normal Mapping: We also show how the occlusion signal interacts with

general BRDFs. We show that the sum of the lighting and BRDF bandlimit determines the cutoff

frequencies for occlusion. Furthermore, as long as the surface BRDF is bandlimited, high frequency

changes in the normal do not affect our occlusion calculations. Our method takes advantage of

this by sparsely sampling occlusion, which greatly reduces the the number of expensive ray casts.

We show results with sparse occlusion sampling, glossy BRDFs and low frequency environment

lighting (Figure 5.8).

Rotationally-Invariant Filter: We present a filter that uses the above theory, modified such that

it is rotationally-invariant (Section 5.4). This property of our filter allows us to handle large angular

domains without needing to stitch together linear sub-domains. The filter is intuitive, easy to imple-

ment, and constructed using the frequency analysis in Section 5.3. Results with our filter are shown

in Figures 5.1, 5.7, 5.8, and 5.9.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 70

5.2 Related Work

Shadows and Ambient Occlusion: Ambient occlusion is an approximation of global illumination

that is simply the aggregate visibility for a solid white dome [Zhukov et al., 1998; Landis, 2008].

Spherical harmonic occlusion improves on this, computing the aggregate visibility for a number of

low order spherical harmonics. We focus on the methods most closely related to our paper, and we

refer the reader to a survey of recent ambient occlusion techniques [Méndez-Feliu and Sbert, 2009].

The PantaRay system uses GPU ray tracing, various spatial hierarchies, and geometric LOD

to compute spherical harmonic occlusion [Pantaleoni et al., 2010]. Our method is complementary

because we focus on reducing the number of rays cast, whereas PantaRay focuses on reducing the

cost per ray. Another recent method reduces cost per ray by using similar sample patterns across

many receivers so that they can process multiple receivers in parallel on the GPU [Laine and Karras,

2010]. Pixar’s RenderMan represents distant occluding geometry using an octree that contains point

sampled data as well as spherical harmonics at parent nodes, and rasterizes this data onto a coarse

grid at each receiver [Christensen, 2008]. We compare our results to point based occlusion, and

discuss the relevant tradeoffs with both methods in Section 5.6.

Interactive techniques for approximating ambient occlusion are also used. Ambient Occlusion

Volumes compute analytic occlusion per polygon [McGuire, 2010]. Because some polygons may

be double counted, the method approximates the aggregate occlusion using a compensation map,

whereas our method samples occlusion using ray tracing and does not suffer from double counting.

Screen space methods can be very efficient, but may miss geometry that is not directly visible to

the camera [Bavoil and Sainz, 2009]. Since we focus on ray tracing our method accounts for all

relevant occluders.

Frequency Analysis and Reconstruction: Our method builds upon recent sheared filtering tech-

niques [Chai et al., 2000]. Other methods have also examined occlusion in the Fourier domain [Soler

and Sillion, 1998; Durand et al., 2005; Ramamoorthi et al., 2005; Lanman et al., 2008]. We extend

the theory to include distant lighting, a general BRDF, and high frequency normal maps. We also

introduce a rotationally invariant filter that uses the theory for sheared filtering but is able to orient

itself in any direction across a large angular domain.

A number of other techniques have also shared data between neighboring receiver points to

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 71

cut down on computation. Irradiance caching is used to filter sparse samples of low frequency in-

direct lighting [Ward et al., 1988]. Irradiance caching aggregates angular information, and then

shares it spatially, whereas our method is able to share samples across both space and angle. Radi-

ance caching [Křivánek et al., 2005] shares recorded radiance values and gradients between surface

points while assuming that the visibility of shared radiance samples does not change between re-

ceivers. Our method determines which samples are appropriate to share by setting the filter radius

based on the minimum and maximum occluder depths. Irradiance decomposition uses low fre-

quency radiance caching for far-field components and switches to a heuristic for occluders closer

than a fixed depth chosen by the user [Arikan et al., 2005]. Recently Lehtinen et al. [2011] devel-

oped a method that locally reconstructs multiple points within a pixel using the GPU. Unlike these

methods, the signal processing framework used by our method smoothly scales our filter and tells

us how much information to share.

Sparse Transport Computation: Precomputed Radiance Transport is the foundation for current

relighting methods [Sloan et al., 2002; Ng et al., 2003]. However, the precomputation time required

for these methods is often prohibitive when using standard Monte Carlo sampling. A number of

methods have used various techniques to sparsely sample light transport. Row-column sampling

uses shadow maps to sparsely compute light transport for a single surface point to all lights (one

row), or a single light to all surface points (one column) [Hašan et al., 2007]. The big advantage of

row-column sampling is the batch visibility computation achieved by using shadow maps, whereas

our method uses ray tracing to avoid shadow map artifacts. Huang et al. sparsely precompute

the light transport matrix by only densely sampling the angular domain at selected “dense” ver-

tices [Huang and Ramamoorthi, 2010]. Our method extends this by more intelligently sharing rays

across space and angle. Our method also computes filter widths based on the range of depths of the

occluders.

5.3 Theory

We first discuss the basic reflection equation and derive equations for occlusion from distant lighting

in the primal domain. We then look at preliminary Fourier derivations taken from previous work,

before deriving new equations that give insight into occlusion and reflection under distant lighting.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 72

Our final reconstruction uses a filter that is based on our theory but uses geometric measures that

can rotate to any given sample in the hemispherical domain.

5.3.1 Occlusion from Distant Lighting

5.3.1.1 Preliminaries

The reflected radiance h(x, ωo) at a surface point x in direction ωo can be written as follows:

h(x, ωo) =

∫

r(x, ωi, ωo)l(ωi) f (x, ωi) dωi .

The reflected radiance is computed by integrating over all incoming light directions ωi. Inside

the integral is a product of the spatially varying BRDF r(x, ωi, ωo) (which includes the damped

cosine term for compactness), the distant lighting l(ωi), and occlusion f (x, ωi).

Our method focuses on direct lighting with a fixed camera such that the viewing angle ωo is

fixed for a given spatial location x,

h(x) =

∫

r(x, ωi)l(ωi) f (x, ωi) dωi . (5.1)

To compute ambient occlusion, we simply set l(ωi) to a constant value of 1, and r(x, ωi) to

a clamped cosine max(n(x) · ωi, 0) in Equation 5.1 (where n(x) is the surface normal). For more

accurate low frequency relighting, we replace the lighting l(ωi) term with a set of low order spherical

harmonic basis functions [s0(ωi), ..., sn(ωi)], and a corresponding intermediate response function

[h′
0
(x), ..., h′n(x)] (visualized in Figure 5.1e). Using these intermediate values, we can then easily

relight the scene by projecting any distant lighting l(ωi) into the orthonormal spherical harmonic

basis, taking the resulting coefficients [l0, ..., ln], and performing a dot product:

h(x) =

n
∑

i=0

h′i(x)li . (5.2)

Directional and ambient occlusion are primarily used to aid in the realistic approximation of

slightly glossy or matte components of a BRDF. If a BRDF has sharper specular reflections this is

usually calculated more directly using a different reflection algorithm.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 73

a) Rays parameterized by

space-angle (x, v)

origin

x

v

1

b) Occluders depths are

origin

zmin

zmax

receiver
receiver

distant lighting l(v)

central axis of

parameterization

in range [zmin, zmax]

Figure 5.3: For our theoretical derivation we split up the environment into distinct faces and use

a linearized angle. We parameterize the receiver based on the spatial offset x from the origin. The

linearized angle v is the offset from the central direction of the cube map at a plane one unit away

from the receiver. The occluders are bounded by a range of distances [zmin, zmax] from the receiver.

5.3.1.2 Distant Lighting in Primal Domain

The above angular parameterization using ω is not easy to analyze in a Fourier context. We could

expand the lighting into spherical harmonics, but proceeding to analyze the spatial-angular occlu-

sion of f (x, ω) and subsequent transport becomes intractable. Thus, like Durand et al. [2005], we

use the Fourier basis with a linearized measure of angle.

We first reparameterize the circle of angles in flatland to a square map (the analog of a cube map

in 3D). For each map face we define a linearized angle vmeasured against that map’s central axis of

projection. The v measures a direction vector’s offset from the axis of parameterization at a plane 1

unit away (shown in Figure 5.3), similar to previous methods [Soler and Sillion, 1998; Durand et al.,

2005]. This parameteriztion allows us to analyze how the relevant signals (distant lighting, occlusion

and BRDF) interact, as opposed to using spherical harmonics. We analyze the contribution of

each lighting “face” separately, and the final answer is the sum of all face contributions. Our final

filter uses the following derivations, but with a simpler geometric measure that does not require

reparameterization to cube maps.

We define visibility along a ray as f (x, v) where x is a spatial measure perpendicular to the

central axis of projection (Figure 5.3). We first look at a single planar occluder defined by a binary

visibility function g(x) at constant distance z from the receiver. We will extend this to occluders

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 74

Ωv

Ωx

(a) occluder spectrum F

 slope range

for varying depth occluder

[zmin , zmax]

Ωv

Ωx

(b) transport spectrum K

for combined BRDF

2Ω v

max

2Ω x

max

Ωv

Ωx

(c) step 1: convolve

across Ωx
and lighting

convolution

visible part of

occlusion signal F

Ωv

Ωx

(d) step 2: integrate

over Ωv

integration

Ωx

(e) !nal function

de!ned

Ωx

Η(Ωx)

across

Η(Ωx)
amplitude

Figure 5.4: (a) The occluder spectrum F in the Fourier domain. (b) The combined lighting and

BRDF response has small angular extent for low frequency transport (Ωmax
v), but may have large

spatial extent if the normal varies rapidly (Ωmax
x). (c) The inner integral of Equation 5.7 is a convo-

lution across Ωx. Note that F effectively becomes bandlimited by the Ωmax
v bandlimit of K. (d) The

outer integral of Equation 5.7 integrates over Ωv. (e) The final result is H(Ωx), the Fourier spectrum

of the spatial occlusion function h(x).

with a range of depths later.

f (x, v) = g(x + zv) . (5.3)

We now have a re-parameterized BRDF r(x, v) and distant lighting function l(v). With this

change of variables we have to adjust for the Jacobian |∂ωi/∂v|, which we incorporate into l(v) (note

that Jacobian calculations will not be necessary for the final rotationally invariant version of our

filter). Now the reflection equation for h(x) is:

h(x) =

∫

r(x, v)l(v) f (x, v) dv

=

∫

r(x, v)l(v)g(x + zv) dv . (5.4)

We now combine the BRDF and lighting r(x, v)l(v) into a new combined response function

k(x, v),

h(x) =

∫

k(x, v)g(x + zv) dv. (5.5)

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 75

5.3.2 Fourier Analysis

5.3.2.1 Preliminaries

When we can express a two-dimensional function f in terms of a one-dimensional function g in

the form given in Equation 5.3, previous work has shown that the Fourier transform of f (), which

we name F(), lies along a line segment in the Fourier domain [Shinya, 1993; Chai et al., 2000;

Durand et al., 2005]:

F(Ωx,Ωy) = G(Ωx)δ(Ωy − zΩx) . (5.6)

where G() is the 1D Fourier transform of g(), and δ is the delta function. Intuitively, if you have a

1D function embedded in a 2D domain, it makes sense that the frequency spectrum is also 1D.

If all occluders are planar and lie along a single depth z then the occlusion spectrum corresponds

exactly to Equation 5.6. In practical scenes with a range of depths [zmin, zmax] the occlusion spectrum

F is a double wedge determined by the distance between the occluder and the receiver [Chai et al.,

2000]. The double wedge can be thought of as a spectrum that is swept out by many line segments

that correspond to z values between [zmin, zmax]. This is shown in Figure 5.4a.

5.3.2.2 Fourier Spectrum for Distant Lighting

We now derive the occlusion spectrum for distant lighting, as well as the interaction between the

spectra considering complex occluders and a surface with a general BRDF and normal maps. Both

of these are novel contributions of our paper.

Response Function in the Fourier Domain: The response function spectrum K(Ωx,Ωv) is shown

in Figure 5.4b. Because r and l are multiplied the spectrum K is the convolution R ⊗ L. Because L

has no spatial dimension we can conclude that the spatial bandlimit of K, Ωmax
x , is simply the spatial

bandlimit of R. The angular bandlimit of K, Ωmax
v , is the sum of the angular bandlimits for R and L.

Normal Mapping in the Fourier Domain: Rapid variation in the normal rotates the BRDF and

causes the spectrum K’s spatial bandlimit, Ωmax
x , to be large. However, rapid rotation in the normal

does not affect the angular bandlimit. To see that this is true we can split up the 2D Fourier transform

into two 1D transforms, and first take the Fourier transform in v for a given fixed value of x. After

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 76

transforming in v each slice of the angular transform along Ωv = v0 is zero where v0 > Ω
max
v ,

and therefore the spatial Fourier transform of this slice is zero. Therefore if the BRDF at every x

location is bandlimited by Ωmax
v , then the final spectrum K will be bandlimited by Ωmax

v as well. We

call the the portion of the F spectrum that is non-zero after after bandlimiting by Ωmax
v the “visible

frequencies” of F, as seen in Figure 5.5.

Lighting and Surface Reflection in the Fourier Domain: Taking the Fourier transform of h(x)

in Equation 5.5 is not trivial because the response function k(x, v) has two dimensions but one of the

dimensions is integrated out (see Appendix C for the derivation). In the end we get the following:

H(Ωx) =

∫ (∫

F(Ωx − s,−t)K(s, t) ds

)

dt, (5.7)

where s is a temporary variable used to compute the inner 1D convolution across Ωx (shown in

Figure 5.4c). The t variable is used to compute the outer integral across the Ωv dimension of the re-

sultant spectrum (as seen in Figure 5.4d). Finally we are left with H(Ωx), the spectrum of occlusion

across the spatial axis (Figure 5.4e).

Discussion: The above analysis includes a number of important results. First, we have derived

bandlimits for the occlusion spectrum from distant lighting. We split the angular domain of direc-

tions into sub-domains, and then reparameterized each sub-domain separately using a linearized

angle formulation.

Second, our frequency analysis of occlusion can handle surfaces with a general BRDF and high

frequency normal maps. We have shown that the transport spectrum K may have high frequencies

in the spatial domain due to high frequency changes in the normal. However, an important result

is that the visible portion of the occlusion spectrum F is still low frequency in the angular domain

and is bandlimited by Ωmax
v (Figure 5.4c).

Our method directly reconstructs visibility f (x, v) using sparse ray casting. We can use sparse

sampling because the compact shape of the sheared filter in the Fourier domain lets us pack Fourier

replicas closer together. Our method densely samples the combined lighting-BRDF term k(x, v)

which is much cheaper to sample and may include high frequency normal maps. Attempting to

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 77

share the integrated product h(x) directly, as in irradiance caching, has less benefit because of the

possible high spatial frequencies in H(Ωx).

5.3.3 Sheared Filtering Over Linear Sub-Domains

Now that we have defined the sparse shape of the visible occluder spectrum, we can design a sheared

filter that compactly captures the frequency content of the signal we care about. We can then trans-

form the filter back to the primal domain where it is used to reconstruct our final answer, while

allowing for sparse sampling and the sharing of information across pixels [Chai et al., 2000]. The

shape of the sheared filter will guide our design of our rotationally-invariant filter in Section 5.4.

The visible parts of the occlusion spectrum F that we need to capture are shown in Figure 5.5.

The Fourier footprint for a standard reconstruction filter is shown in Figure 5.5a, and a sheared filter

that tightly bounds the visible parts of F is shown in Figure 5.5b. By applying a scale and shear we

can transform the filter shown in Figure 5.5a to the one shown in Figure 5.5b.

We can see from the measurements in Figure 5.5 that, in the Fourier domain, our filter is scaled

along the Ωx axis and sheared in Ωx per unit Ωv. In the primal domain we need to scale along the

x-axis by the inverse amount, and shear in v per unit x:

primalScale =
2Ωmax

pix

Ωmax
v

[(

1

zmin

)

−

(

1

zmax

)]−1

, (5.8)

primalShear = −
1

2

[(

1

zmin

)

+

(

1

zmax

)]

. (5.9)

whereΩmax
pix

represents the smallest wavelength that can be displayed. We setΩmax
pix

to be (0.5/shadingDiameter),

meaning that the highest frequency that can be captured is half a wavelength per output diameter.

We set Ωmax
v to be 2.0, which approximates that the BRDF * lighting function can be captured with

two wavelengths per unit of linearized angle (45 degrees).

In areas of sharp contact shadows the visible portion of F may extend beyond theΩmax
pix

bandlimit

of the standard filter. In this case we must make sure that our filter does not capture any portion of

F outside the Ωmax
pix

bandlimit. We check this by testing if Ωmax
v /zmin > Ω

max
pix

, and if so we revert to

brute force Monte Carlo. Our implementation stores separate zmin values for different portions of

the hemisphere, see Section 5.5 for details.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 78

(a) standard �lter in

2Ωv
max

2Ωpix
max

Ωv
max / zmax

Ωv
max / zmin

2Ωv
max

zmaxslope

zmin

slope

v

x

receiver x

position

shear axis corresponds

to some depth d1

nearby

ray

sample e!ective

ray at

receiver

Fourier domain (Ωx, Ωv)
(b) sheared �lter in

Fourier domain (Ωx, Ωv)

(c) sheared �lter in

primal ray space (x, v)

(d) the sheared �lter lets us

share nearby samples, this

is the inspiration for our

rotationally invariant �lter

d1

neighbor

sample origin

receiver

neighbor

sample

e!ective ray

at receiver

Figure 5.5: (a) The visible spectrum of F is shown, as well as the Fourier transform of a standard

filter that is axis-aligned in x and v. (b) A sheared filter that tightly bounds the visible parts of F. (c)

The theoretical sheared filter graphed in (x, v) space. The sheared filter effectively reprojects rays

along the shear axis which is based on harmonic average of depth bounds [zmin, zmax]. However, the

sheared filter uses a linearized angle v that depends on a fixed axis of projection. (d) A visualization

of how a sheared filter shares samples in the primal domain. We use this as inspiration for the

rotationally invariant filter presented in Section 5.4 that does not require a fixed axis of projection.

We can now use Equations 5.8 and 5.9 to construct a filter that operates over a linearized sub-

domain of the sphere (as shown in Figures 5.5c). Intuitively this takes a nearby sample, and warps

it to create an effective ray that originates at the current receiver point, pictured in Figure 5.5d.

However, splitting the sphere into multiple sub-domains requires stitching together the results from

each filtering operation. We solve this problem by introducing our rotationally-invariant filter.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 79

b) e�ective directions point

to targets, e�ective distance

measures distance to original

ray, perpendicular to direction

a) target points are either

hit points or intersections

with mid-depth plane

mid hit

depth

receiver

e�ective

distance x

e�ective

direction v

Figure 5.6: (a) To use our rotationally invariant filter filter we first compute target positions for the

current receiver. Unoccluded rays use an intersection with a plane that goes through the harmonic

average of [zmin, zmax] for the current receiver. (b) The effective directions for the samples simply

connect the current receiver to the target positions. To calculate effective distance we compute the

intersection of the original ray and a plane that goes through the current receiver and is perpendicular

to the effective direction.

5.4 Rotationally-Invariant Filter

We now develop our rotationally-invariant filter that allows us to easily filter over large angular

domains. The sheared filter from the previous section essentially has two outputs: what filter weight

to apply to a given sample, and also what is the effective ray direction when we warp a nearby sample

to the receiver point. The directional information is useful when we bucket effective ray directions

to account for non-uniform sampling densities across the receiver.

Implementing a set of finite linear subdomains has a number of drawbacks. There may be

discontinuities where the linear subdomains meet, and we have to account for the Jacobian of the

linearization in the transfer function k(x, v). One possible strategy would be to subdivide the sphere

into even more subdomains. Of course this may reduce possible artifacts but we would still have to

worry about discontinuities and Jacobians. Our approach is to take the limit of subdivision where

each sample that we consider is defined to be in its own infinitesimal subdomain. This leads to a

rotationally-invariant filter that uses the theory from Section 5.3 and is easy to implement.

Figure 5.5d and Equation 5.9 together show that warping a sample ray to an effective ray origi-

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 80

nating from the current receiver is based on the shear, and the shear in turn is based on the harmonic

mean of zmin and zmax. If we consider each sample to be in its own infinitesimally small subdomain,

then for occluded rays we can say that the occluder hit point is the only occlusion distance z that

we care about. In this case the effective ray direction is simply the vector from the receiver to the

sample hit point. If the ray is unoccluded, we make a ray “target” point where the ray intersects a

mid depth plane based on the harmonic mean of occluders in a surrounding region. The calculation

of the depth plane will be explained in more detail in Section 5.5.

To compute a filter weight we must compute the x coordinate for the sample. Using an infinites-

imal subdomain our axis of projection is defined to be the same as our effective ray direction. The

x measure needs to be tangent to our axis of projection, and we compute the intersection point be-

tween the sample ray and plane that is perpendicular to the effective ray direction and goes through

the receiver point. The x measure is simply the offset vector from the receiver to this intersection

point. Our rotationally-invariant filter with the computed target point for a given sample is shown

in Figure 5.6a, and the filter effective direction and spatial x value are shown in Figure 5.6b.

Given a ray target point we compute an effective direction that originates from the origin, and

then compute the tangent x coordinate for the ray sample. These computations are tightly bound

with the derivations in Section 5.3. We used Equation 5.9 and the intuitive notion of the filter shear

(Figure 5.5d) to guide setting the effective direction for a sample. The x coordinate and primalS cale

from Equation 5.8 are used as the input and scale respectively for computing filter weights.

Discussion: Our rotationally-invariant filter operates on an infinite number of of small subdo-

mains, and it is fair to ask how this affects the earlier Fourier derivations. In Equations 5.8 and 5.9

the only Fourier bandlimit that is affected is the transfer function Ωmax
v angular bandlimit. Instead

of computing Ωmax
v for a fixed set of linear subdomains, we can instead precompute the largest

Ωmax
v over a range of different localized areas and orientations both for each BRDF and for the dis-

tant lighting. As stated before, the Ωmax
v value for the transfer spectrum K is the sum of angular

bandlimits for the BRDF and lighting.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 81

5.5 Implementation

Our implementation takes a two pass approach: sampling followed by filtering. Our first pass shoots

a sparse set of rays (4 - 32 rays per shading point) and writes the rays to a point cloud. This is similar

to commonMonte Carlo implementation, except for the low number of rays used (Figure 5.2b). The

second pass reads in the point cloud and filters over a large number of nearby ray samples at each

shading point to compute a smooth and accurate result (Figure 5.2c).

We implemented our algorithm by writing shaders and a C++ plugin for a RenderMan compliant

renderer [Pixar, 2005]. The core filtering algorithm runs inside our plugin for each shading point

and can be seen in Algorithm 1. At a high level we compute depth bounds for different sections

of the hemisphere (lines 1 to 1 in Algorithm 1), then use these depth bounds to filter neighboring

samples (lines 2 to 2).

Computing Bounds for the Hemisphere The first thing we do is compute the [zmin, zmax] depth

bounds for the current receiver (lines 1 to 1). To compute tighter depth bounds we divide the

hemisphere of visible directions into cells of equal projected area and compute depth bounds per

cell (our implementation subdivides the disk into 8x8 cells). We also filter results per cell, which

helps to compensate for possible non-uniform sample densities.

In our implementation, a user-specified screen space radius determines the set of potential neigh-

bor samples (for our results we used a radius of 8-16 pixels). For each neighbor sample that is oc-

cluded and whose hit point is in the correct hemisphere, we compute the effective sample distance

x and effective direction v (line 1 as described in section 5.4). We then use the direction v to lookup

the appropriate cell (line 1) and update the cell’s depth bounds (line 1).

After all samples are processed, we compute the spatial radius and mid depth for each cell

(lines 1 and 1). We compute the spatial radius by multiplying the current micro polygon diameter

by primalScale (from Equation 5.8). In Equation 5.9 we can see that the shear value is simply

the harmonic average of the minimum and maximum depths. Therefore we store the harmonic

average of zmin and zmax for the cell’s mid depth. If a cell has zero samples, or if Ωmax
v /zmin > Ω

max
pix

(see Section 5.3), the ComputeSpatialRadius() function marks the cell as requiring brute force

computation.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 82

// Filtering algorithm for one shading point

// 1. Calculate hemisphere cell info

foreach s in S ampleImageCache do1

if s.isOccluded then2

targetPoint = s.hitPoint;3

if InCorrectHemi(targetPoint) then4

(x, v) = ComputeFilterCoords(s, targetPoint);5

cell = GetCell(v);6

UpdateCellMinMaxDepth(cell, s);7

end8

end9

end10

foreach cell in HemisphereCellArray do11

cell.spatialRadius = ComputeSpatialRadius(cell);12

cell.midDepth = ComputeMidDepth(cell);13

end14

// Listing continued in Part 2...

Filtering Samples Now that we have [zmin, zmax] depth bounds at each cell we can filter over

neighboring samples (lines 2 to 2 in Algorithm 1). We first compute the target point of each sample

(lines 2 to 2). For occluded samples, the target point is simply the hit point of the occluded ray

(line 2). For non-occluded samples, we use a two step process to compute the target point. We

first lookup an initial cell based purely on the ray direction (line 2). We construct a plane that is

perpendicular to the central direction of the cell and whose distance to the current receiver is the

same as the mid depth of the cell. We set the target point to be the intersection of the sample ray

with this plane (line 2).

Once we have the target point we can compute the final sample distance x and effective direction

v (line 2). Using the direction v we can lookup the final cell for the sample (line 2). Using the

sample distance x and the cell’s spatial radius we can compute the filter weight (line 2). With the

effective incoming light direction v we can also compute the BRDF and lighting response (line 2).

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 83

// ... continued from Part 1

// 2. Filter over neighboring samples

cellResults = InitializeArray(numCells);15

foreach s in S ampleImageCache do16

if s.isOccluded then17

f ocusPoint = s.hitPoint;18

else19

initCell = GetInitialCell(s);20

targetPoint = ComputeTarget(s, initCell);21

end22

if InCorrectHemi(targetPoint) == FALSE then continue;23

(x, v) = ComputeFilterCoords(s, targetPoint);24

cell = GetCell(v);25

if IsMarkedForBruteForce(cell) then continue;26

weight = ComputerFilterWeight(x / cell.spatialRadius);27

(BRDF,light) = ComputeBRDFandLighting(v);28

AddWeightedSample(cellResults[cell.index],29

weight, BRDF, light, s.visibility);30

end31

NormalizeWeights(cellResults);3333

return cellResults3535

Algorithm 1: Our algorithm for filtering results at each shading point (this is implemented in

our C++ RenderMan plugin). For each shading point we return an array of values, one per

hemisphere cell. Each value either represents a filtered BRDF * lighting value, or a flag that tells

the calling RenderMan shader to brute force the corresponding hemispherical cell.

Many implementations will let the user fade out occlusion beyond a certain distance, so that distant

occluders are not counted [McGuire, 2010]. This is especially necessary for indoor scenes. We have

incorporated this in our method by testing the distance from the receiver to the sample target point

and reducing visibility accordingly.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 84

After we have processed all of the samples, we normalize the total contribution per cell based

on the weight in each cell. Any cells with too little weight (we use a weight that corresponds

to approximately 2 samples) are marked as requiring brute force computation. This is the end of

Algorithm 1, and where our C++ plugin hands control back to the RenderMan shader. The shader

then goes through each cell, and uses Monte Carlo ray tracing to compute answers for any cells that

needed to be brute forced (for our results we shot a single ray to estimate these cells).

5.6 Results

5.6.1 Setup

All results are 512x512 and were generated on a dual quad-core Xeon 2.33 GHz processor with 4

GB of memory using Pixar’s RenderMan Pro Server 15.2. Our plug-in is thread safe and is designed

to run in parallel (we used 8 threads for our results).

We used the trace() call in RenderMan which finds the nearest hit point regardless of occluder

surface. Other functions such as the occlusion() function have options to cap the maximum

distance of a ray, which could reduce the working set of ray-traced geometry and reduce paging to

disk. Of course, with more dense geometry, the problem of paging to disk will easily reoccur. The

San Miguel scene (Figure 5.1) is the only scene that was computationally bound by paging to disk,

and the Sponza scene (Figure 5.7) was limited by computation (ray tracing and displacement).

5.6.2 San Miguel

In the San Miguel scene (Figure 5.1a) we show a complex scene that contains both large smooth

areas, and areas of very high complexity. The smooth areas are challenging because the human

visual system is drawn to any small errors or oscillations. Accurately calculating occlusion for

areas of high geometric detail and/or contact shadows is difficult because these areas can easily be

missed or undersampled.

The scene is 5.2 million triangle faces. Because of the high geometric complexity of the scene

RenderMan generated and shaded an average of 5 micro polygons per pixel. Because of the com-

plexity of the scene and the incoherent nature of the rays, geometry was constantly paged in and out

of memory. While it is always possible to increase memory on a machine, artists will in turn keep

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 85

producing larger models. RenderMan reported using 5.5GB of virtual memory (with 2GB devoted

to ray-traced geometry) and 3.5GB of physical memory. This scene is well suited for our method

because the cost per ray is very high relative to the cost of filtering over nearby ray samples.

In Figure 5.1, we show equal time and equal quality comparisons with stratified Monte Carlo

sampling. Our method took 1 hr and 48 min, spending about 40% of the time in the first pass casting

sparse ray samples (13 rays per shading point), and the remaining time in the second pass filtering

and casting rays for areas with very close occluders (19 rays per shading point). Our method gave

a 4x speed up over Monte Carlo with 256 samples (7 hrs 4 min) as well as an order of magnitude

reduction in the number of ray casts. We also show significantly less noise versus Monte Carlo with

40 samples using equal time. Our method is smoother than Monte Carlo with 256 samples in many

areas, although our method does have some areas with noise (inside the lip of the fountain) and

overblurring (contact shadows with the leaves on the ground). See section 5.6.6 for more discussion

on limitations and artifacts.

The filtering operation in our method is more expensive than simple Monte Carlo, which ac-

counts for the discrepancy between our reduction in rays and speed up. One reason for the increased

filtering cost is the increased algorithmic complexity of our filtering (shown in Algorithm 1). An-

other reason is that our filter often needs more samples to achieve a smooth result due to samples

being unstratified when they are warped onto the hemisphere of the current receiver.

In Figure 5.1e we also show that our method can output spherical harmonic occlusion. Our

RenderMan shader takes the cell reflection values returned from Algorithm 1, calculated per hemi-

spherical cell, and uses environment maps that represent low order spherical harmonic basis func-

tions [s0(ωi), ..., sn(ωi)] as the distant lighting l(ωi) for each cell (Equation 5.2). As of version 15.2

RenderMan does not support an efficient method for producing spherical harmonic occlusion using

its point based algorithm.

5.6.3 Bumpy Sponza

In the bumpy Sponza scene we apply a displacement shader to show that our method can handle

complex occluders as well as high frequency changes in receiver surface and normal orientation.

The scene only has 300,000 triangles (before displacement) and fit inside memory during our ren-

ders. In Figure 5.7 we compare the quality of our method with point based occlusion. We use the

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 86

a) Our Method

32 rays per shading point, 16 min b) error for entire

image (20x)

c) �rst inset d) error for �rst

inset (10x)

e) second inset f) error for second

inset (10x)

O
U

R
 M

E
T

H
O

D

3
2

 R
A

Y
S

P
O

IN
T

 B
A

S
E

D

Monte Carlo 256 rays: 32 min, Point Based Occlusion: 8 minVisualization of where we apply

brute force Monte Carlo

Figure 5.7: This scene shows complex occluders and receivers with displacement. (a) Our method

with 32 rays per shading point (9 rays in the first pass, 23 rays in the second pass). As an inset

we also show a visualization of where our method reverted back to brute force Monte Carlo. We

decide whether to filter over neighboring samples or use Monte Carlo at each hemisphere cell, so

many shading points use a mix of both methods. In (c) and (d) the error in our method comes from

overblurring and missing occlusion within some creases. Point based occlusion has larger error and

over darkens the creases. Green error values are areas that are too bright, red error values are areas

that are too dark. In (e) and (f) our method can be seen to have some noise (due to some cells of the

hemisphere requiring Monte Carlo integration). The point based result is consistently too dark, but

smoother.

RenderMan point based occlusion implementation with high quality settings (6x increase in micro

polygon density for initial geometry pass, clamping turned on, rasterresolution set to 32, max solid

angle set to 0.01). For this scene our method used 32 rays per shading point and took 16 minutes,

while Monte Carlo used 256 rays and took 32 minutes. Our method reduces the number of ray casts

by an order of magnitude, and is still 2x faster than Monte Carlo with 256 samples even when the

scene fits in memory and the cost per ray is low.

Point based occlusion is a popular solution because it is fast and the results are generally smooth

(in this example point based occlusion took 8 minutes). However, it can also have a number of dis-

advantages. In Figure 5.7d, we visualize the image error for our method and point based occlusion

(red is used for areas that are too dark, and green for areas that are too bright). We can see that in

some of the crease areas point based occlusion can produce results that are too dark. Our method is

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 87

Our Method

16 rays per shading point

Ground Truth

2048 rays per shading point

D
IF

F
U

S
E

 M
A

T
E

R
IA

L
G

LO
S

S
Y

 M
A

T
E

R
IA

L

Figure 5.8: Here we show an example of our method with both matte and glossy BRDFs with

environment lighting.

slightly too bright due to overblurring and missing some details, but the amplitude of our errors is

much less.

In Figures 5.7e and 5.7f our method has noise in some areas. Because of the high frequency

displacement many surfaces have nearby occluders which can trigger our method to fallback to

brute force Monte Carlo. A visualization of where and to what degree our method used Monte

Carlo sampling can be seen in Figure 5.7a. In this scene 74% of shading points used Monte Carlo

for less than half of their hemispherical cells. The higher the Ωmax
v is set, the more often our method

falls back to Monte Carlo. Point based occlusion is consistently slightly too dark in this area, but it

does produce smooth results.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 88

Our Method, 22 rays

frame 20

Blinds Animation (brightness 2x)

Our Method, 22 rays

frame 60

Our Method, 22 rays

frame 100

Figure 5.9: Frames from our supplementary video (brightness multiplied by 2). Our method accu-

rately captures the angular content of the small slats.

5.6.4 Glossy

In Figure 5.8, we show a glossy teapot scene demonstrating our method’s ability to handle diffuse

and glossy surfaces with spherical harmonic lighting. The different colored shadows to the left and

right of the teapot show that we are capturing directional occlusion. The shape of the shadow on

the ground plane also changes as the material goes from diffuse to glossy. Our method very closely

matches ground truth with either a diffuse or glossy BRDF and environment lighting.

5.6.5 Blinds Animation

We also provide a supplemental animation (frames shown in Figure 5.9) that shows a set of blinds

rotating together. The angular content of the occluders is very important in this example, and we

show that our method still handles this well. Our method has a low amplitude of error overall

(Figures 5.10a and 5.10b). At object boundaries the non-uniform distribution of samples can lead to

some small errors (in this case the edges of slats are too bright). The point based solution is smooth,

but the results are consistently too dark (Figures 5.10d and 5.10e).

5.6.6 Limitations and Artifacts

We now examine the limitations and possible artifacts that can occur in our method. In Figures 5.10c

and 5.10f we show the artifacts that can occur when we don’t use enough samples in the first pass

of our algorithm (we use 4 and 1 rays per shading point for the first pass in Figures 5.10c and

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 89

b) Our Method, 21 rays

error (20x)

e) Point Based Occlusion

error (20x)

d) Point Based Occlusion

c) Our Method, 10 rays

1st pass 4 rays, 2nd pass 6 rays

f) Our Method, 7 rays

1st pass 1 ray, 2nd pass 6 rays

a) Our Method, 22 rays

1st pass 16 rays, 2nd pass 6 rays

Blinds Error Analysis (brightness 2x)

Figure 5.10: We show the errors with point based occlusion and our method for the blinds scene

frame 60 (ambient occlusion brightness is multiplied by 2x, green error values are areas that are too

bright, red error values are areas that are too dark). (a) (b) Our method produces a scene with overall

low amplitude error. (d) (e) Point based occlusion produces an image that is consistently too dark.

(c) (f) Output from our method using a reduced ray count. The medium frequency noise is due to

too few rays stored in the first pass (4 and 1 rays in (c) and (f) respectively).

5.10f respectively). Because of our wide filtering, any undersampling in the first pass shows up as

low amplitude medium frequency error instead of high frequency noise. While the amplitude of

these errors is often low, spurious changes in the derivative can be visually noticeable, especially in

areas of constant or linearly changing occlusion. Raising the sample count in the first pass of our

algorithm reduces, and at a certain point, eliminates this problem.

In areas where we revert to brute force computation, our method can show noise, such as in

Figure 5.1a near the lip of the fountain. We can again reduce noise in these areas by increasing

sampling density, but this will in turn reduce performance. Our method can also smooth out some

areas of detail. In Figure 5.1a some of the contact shadows under the leaves and around the detailed

geometry of the door are slightly washed out as compared to ground truth.

CHAPTER 5. SHADOWS FROM DISTANT LIGHTING 90

5.7 Discussion

We have presented a new frequency analysis for occlusion that incorporates distant lighting, general

BRDFs, and high frequency normal maps for complex receivers and occluders. In addition, we have

also provided a new rotationally-invariant filter that is parameterized according to our analysis, and

that is capable of sharing samples across a large angular domain. Our results show that our method

can substantially reduce the number of rays cast, and can lead to large speed up in scenes that are

computationally bound by ray tracing costs.

For future work we want to investigate methods for stratifying samples in such a way that the

results will be stratified across multiple receivers. We also want to investigate alternative ways to

integrate over sample point sets. If we could improve our accuracy when dealing with smaller point

sets of non-uniform density, we could reduce our filter radius and speed up the filtering process

substantially.

In summary, directional occlusion is of increasing importance in Monte Carlo rendering. We

have taken an important step towards fully exploiting the space-angle coherence. We expect many

further developments in this direction, based on a deeper analysis of the characteristics of the occlu-

sion function.

CHAPTER 6. CONCLUSION 91

Chapter 6

Conclusion

This thesis has presented new fourier analysis and filtering methods for many of the most expensive

tasks in rendering. In each case we examined the relevant signals in the Fourier domain and detailed

how these signals combined to form the resulting image. Based on these observations we proposed

new filtering techniques that customized the filtering at each shading point to take advantage of the

underlying signals being processed.

We first looked at space-time signals for computing motion blurred images. We showed that the

spectrum is often contained within a double wedge based on the minimum and maximum veloci-

ties. We then proposed a new filter that is sheared to match the underlying velocity of the signal

(Chapter 3).

We then extended the technique to irregular integration problems by looking at complex shad-

ows cast on complex receivers. We created a 4D ray database independent of receiver position, and

transformed each shading point’s sheared filter into this parameterization (Chapter 4).

We then looked at shadows from distant lighting with large angular extent. We also extend our

theory to take into account general BRDFs at the receiver surface. We propose a new rotationally

invariant filter that easily handles integration over the hemispherical domain (Chapter 5).

6.1 Future Work

For future work we would like to analyze a larger class of indirect lighting effects. We would also

like to generalize our insights to other problems involving sheared signals.

CHAPTER 6. CONCLUSION 92

Currently the implementations for our different techniques are separate. Combining these tech-

niques into one solution would be a very useful area of future work. Ideally we would like a

solution that handled many concurrent effects, but as we have shown in Appendix D, handling three

concurrent motion blur effects already leads to a fairly unwieldy result, where the resulting Fourier

spectrum is difficult to analyze.

We would also like to look at hierarchical integration methods to speed up filtering. For instance,

cells in the ray database could store approximate values based on averaging all sample values in the

cell. However, in our experiments we have found that replacing multiple samples with a single

aggregate value often leads to artifacts. The sheared filters used to query the ray database are thin

(relative to the overall size of the database), and sheared at many different angles. Having too few

samples inside of the filter can lead to a less smooth result with visually noticeable errors.

BIBLIOGRAPHY 93

Bibliography

[AcademyAwards, 2010] AcademyAwards. Scientific and Technical Achievements to be Honored

with Academy Awards, 2010. http://www.oscars.org/press/pressreleases/2010/20100107.html.

[Agrawala et al., 2000] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll. Efficient image-

based methods for rendering soft shadows. In SIGGRAPH 2000, pages 375–384, 2000.

[Akenine-Möller et al., 2007] Tomas Akenine-Möller, Jacob Munkberg, and Jon Hasselgren.

Stochastic Rasterization using Time-Continuous Triangles. In Graphics Hardware, pages 7–16,

2007.

[Annen et al., 2008] Thomas Annen, Zhao Dong, Tom Mertens, Philippe Bekaert, Hans-Peter Sei-

del, and Jan Kautz. Real-time, all-frequency shadows in dynamic scenes. ACM Trans. Graph.,

27(3):1–8, 2008.

[Arikan et al., 2005] Okan Arikan, David A. Forsyth, and James F. O’Brien. Fast and Detailed

Approximate Global Illumination by Irradiance Decomposition. ACM Trans. on Graph. (SIG-

GRAPH), 24:1108–1114, 2005.

[Arikan, 2009] Okan Arikan. Pixie - Open Source RenderMan. http://www.renderpixie.com, 2009.

[Assarsson and Akenine-Möller, 2003] Ulf Assarsson and Tomas Akenine-Möller. A geometry-

based soft shadow volume algorithm using graphics hardware. ACM Trans. Graph., 22(3):511–

520, 2003.

[Bala et al., 1999] Kavita Bala, Julie Dorsey, and Seth Teller. Radiance interpolants for accelerated

bounded-error ray tracing. ACM Trans. Graph., 18(3):213–256, 1999.

BIBLIOGRAPHY 94

[Bavoil and Sainz, 2009] Louis Bavoil and Miguel Sainz. ShaderX7 - Advanced Rendering Tech-

niques, chapter Image-Space Horizon-Based Ambient Occlusion. 2009.

[Ben-Artzi et al., 2006] Aner Ben-Artzi, Ravi Ramamoorthi, and Maneesh Agrawala. Efficient

Shadows from Sampled Environment Maps. Journal of Graphics Tools, 11(1):13–36, 2006.

[Bracewell et al., 1993] R. Bracewell, K. Chang, A. Jha, and Y. Wang. Affine theorem for two-

dimensional fourier transform. Electronics Letters, 29:304, 1993.

[Cammarano and Jensen, 2002] Mike Cammarano and HenrikWann Jensen. Time Dependent Pho-

ton Mapping. In EG Symposium on Rendering, pages 135–144, 2002.

[Catmull, 1984] E. Catmull. An Analytic Visible Surface Algorithm for Independent Pixel Pro-

cessing. In Computer Graphics (Proceedings of SIGGRAPH 84), volume 18, pages 109–115.

ACM, 1984.

[Chai et al., 2000] J. Chai, X. Tong, S. Chan, and H. Shum. Plenoptic Sampling. In Kurt Akeley,

editor, Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference

Series, ACM, pages 307–318. ACM Press / ACM SIGGRAPH, 2000.

[Chen et al., 2002] Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu, and Radek Grzeszczuk.

Light field mapping: efficient representation and hardware rendering of surface light fields. ACM

Trans. Graph., 21(3):447–456, 2002.

[Christensen, 2008] Per H. Christensen. Point-Based Approximate Color Bleeding. Technical Re-

port 08–01, Pixar Animation Studios, 2008.

[Christmas, 1998] William J. Christmas. Spatial Filtering Requirements for Gradient-Based Opti-

cal Flow Measurement. In British Machine Vision Conference, pages 185–194, 1998.

[Cook et al., 1984] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed Ray Tracing.

InComputer Graphics (Proceedings of SIGGRAPH 84), volume 18, pages 137–145. ACM, 1984.

[Cook et al., 1987] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes Image Ren-

dering Architecture. In Computer Graphics (Proceedings of SIGGRAPH 87), volume 21, pages

95–102. ACM, 1987.

BIBLIOGRAPHY 95

[Durand et al., 2005] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X.

Sillion. A Frequency Analysis of Light Transport. ACM Transactions on Graphics (SIGGRAPH

05), 24(3):1115–1126, 2005.

[Durand, 1999] Frédo Durand. 3D Visibility: analytical study and applications. PhD thesis, Uni-

versité Joseph Fourier, Grenoble I, July 1999.

[Gortler et al., 1996] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In

SIGGRAPH 96, pages 43–54, 1996.

[Hachisuka et al., 2008] T. Hachisuka, W. Jarosz, R. Weistroffer, K. Dale, G. Humphreys,

M. Zwicker, and H. Jensen. Multidimensional Adaptive Sampling and Reconstruction for Ray

Tracing. ACM Transactions on Graphics (SIGGRAPH), 27(3):33:1–33:10, 2008.

[Haeberli and Akeley, 1990] Paul Haeberli and Kurt Akeley. The Accumulation Buffer: Hardware

Support for High-Quality Rendering. In Computer Graphics (Proceedings of SIGGRAPH 90),

volume 24, pages 309–318. ACM, 1990.

[Halton, 1960] J. H. Halton. On the Efficiency of Certain Quasi-Random Sequences of Points in

Evaluating Multi-Dimensional Integrals. Numerische Mathematik, 2(1):84–90, 1960.

[Hart et al., 1999] David Hart, Philip Dutré, and Donald P. Greenberg. Direct illumination with

lazy visibility evaluation. In SIGGRAPH ’99: Proceedings of the 26th annual conference on

Computer graphics and interactive techniques, pages 147–154, 1999.

[Hasenfratz et al., 2003] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François

Sillion. A survey of real-time soft shadows algorithms. Computer Graphics Forum, 22(4):753–

774, 2003.

[Hašan et al., 2007] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Matrix row-column sampling

for the many-light problem. ACM Trans. Graph., 26(3):26:1–26:10, 2007.

[Huang and Ramamoorthi, 2010] Fu-Chung Huang and Ravi Ramamoorthi. Sparsely Precomput-

ing the Light Transport Matrix for Real-Time Rendering. Computer Graphics Forum (EGSR 10),

29(4), 2010.

BIBLIOGRAPHY 96

[Isaksen et al., 2000] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically Repa-

rameterized Light Fields. In Kurt Akeley, editor, Proceedings of SIGGRAPH 2000, Computer

Graphics Proceedings, Annual Conference Series, ACM, pages 297–306. ACM Press / ACM

SIGGRAPH, 2000.

[Jensen and Christensen, 1995] Henrik Wann Jensen and Niels Jørgen Christensen. Efficiently ren-

dering shadows using the photon map. In Compugraphics ’95, pages 285–291. Publications,

1995.

[Johnson et al., 2009] Gregory S. Johnson, Warren A. Hunt, Allen Hux, William R. Mark, Christo-

pher A. Burns, and Stephen Junkins. Soft irregular shadow mapping: fast, high-quality, and

robust soft shadows. In I3D ’09: Proceedings of the 2009 symposium on Interactive 3D graphics

and games, pages 57–66, 2009.

[Kajiya, 1986] J. Kajiya. The rendering equation. In SIGGRAPH 86, 1986.

[Korein and Badler, 1983] Jonathan Korein and Norman Badler. Temporal Anti-Aliasing in Com-

puter Generated Animation. In Computer Graphics (Proceedings of SIGGRAPH 83), volume 17,

pages 377–388. ACM, 1983.

[Křivánek et al., 2005] Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Boua-

touch. Radiance caching for efficient global illumination computation. IEEE Trans. on Visu-

alization and Computer Graphics, 11(5), 2005.

[Lacewell et al., 2008] Dylan Lacewell, Brent Burley, Solomon Boulos, and Peter Shirley. Raytrac-

ing prefiltered occlusion for aggregate geometry. In IEEE Symposium on Interactive Raytracing

2008, 2008.

[Laine and Karras, 2010] Samuli Laine and Tero Karras. Two methods for fast ray-cast ambient

occlusion. Computer Graphics Forum (EGSR 10), 29(4), 2010.

[Laine et al., 2005] Samuli Laine, Timo Aila, Ulf Assarsson, Jaakko Lehtinen, and Tomas

Akenine-Möller. Soft shadow volumes for ray tracing. ACM Trans. Graph., 24(3):1156–1165,

2005.

BIBLIOGRAPHY 97

[Landis, 2008] Hayden Landis. Production ready global illumination. In ACM SIGGRAPH Course

Notes: RenderMan in Production, pages 87–102, 2008.

[Lanman et al., 2008] Douglas Lanman, Ramesh Raskar, Amit Agrawal, and Gabriel Taubin.

Shield Fields: Modeling and Capturing 3D Occluders. ACM Transactions on Graphics (SIG-

GRAPH Asia), 27(5), 2008.

[Lehtinen et al., 2011] Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Du-

rand. Temporal Light Field Reconstruction for Rendering Distribution effects. ACM Trans.

Graph., 30(4), 2011.

[Levin et al., 2008] Anat Levin, Peter Sand, Taeg Sang Cho, Frédo Durand, and William T. Free-

man. Motion-Invariant Photography. ACM Transactions on Graphics (SIGGRAPH), 27(3):71:1–

71:9, 2008.

[Levoy and Hanrahan, 1996] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96,

pages 31–42, 1996.

[Loviscach, 2005] J. Loviscach. Motion Blur for Textures by Means of Anisotropic Filtering. In

EG Symposium on Rendering, pages 105–110, 2005.

[Mahajan et al., 2007] Dhruv Mahajan, Ira Kemelmacher Shlizerman, Ravi Ramamoorthi, and Pe-

ter Belhumeur. A Theory of Locally Low Dimensional Light Transport. ACM Transactions on

Graphics (SIGGRAPH), 27(3):62:1–62:10, 2007.

[Max and Lerner, 1985] Nelson L. Max and Douglas M. Lerner. A Two-and-a-Half-DMotion-Blur

Algorithm. In Computer Graphics (Proceedings of SIGGRAPH 85), volume 19, pages 85–93.

ACM, 1985.

[McGuire, 2010] Morgan McGuire. Ambient Occlusion Volumes. In Proceedings of High Perfor-

mance Graphics 2010, pages 47–56, June 2010.

[Méndez-Feliu and Sbert, 2009] Alex Méndez-Feliu and Mateu Sbert. From Obscurances to Am-

bient Occlusion: A Survey. Vis. Comput., 25(2):181–196, 2009.

[Mitchell, 1991] D. Mitchell. Spectrally Optimal Sampling for Distribution Ray Tracing. In Com-

puter Graphics (Proceedings of SIGGRAPH 91), volume 25, pages 157–164. ACM, 1991.

BIBLIOGRAPHY 98

[Neulander, 2007] Ivan Neulander. Pixmotor: A Pixel Motion Integrator. In SIGGRAPH 2007:

Sketches, 2007.

[Neulander, 2008] Ivan Neulander. Pismo: Parallax-Interpolated Shadow Map Occlusion. In SIG-

GRAPH 2008: Talks, 2008.

[Ng et al., 2003] R. Ng, R. Ramamoorthi, and P. Hanrahan. All-Frequency Shadows Using Non-

Linear Wavelet Lighting Approximation. ACM Trans. on Graph. (SIGGRAPH 03), 22(3):376–

381, 2003.

[Nicodemus et al., 1977] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and

T. Limperis. Geometric Considerations and Nomenclature for Reflectance. National Bureau

of Standards (US), 1977.

[Overbeck et al., 2007] Ryan Overbeck, Ravi Ramamoorthi, and William R. Mark. A real-time

beam tracer with application to exact soft shadows. In EuroGraphics Symposium on Rendering,

June 2007.

[Overbeck et al., 2009] Ryan S. Overbeck, Craig Donner, and Ravi Ramamoorthi. Adaptive

Wavelet Rendering. ACM Transactions on Graphics (SIGGRAPH Asia 09), 28(5):1–12, 2009.

[Pantaleoni et al., 2010] Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. PantaRay:

Fast Ray-Traced Occlusion Caching of Massive Scenes. ACM Trans. on Graph. (SIGGRAPH

10), 29(4):37:1–37:10, 2010.

[Pharr and Humphreys, 2004] M. Pharr and G. Humphreys. Physically Based Rendering: From

Theory to Implementation. Morgan Kaufmann, 2004.

[Pixar, 2005] Pixar. The RenderMan Interface, version 3.2.1.

https://renderman.pixar.com/products/rispec/rispec pdf/RISpec3 2.pdf, 2005.

[Potmesil and Chakravarty, 1983] Michael Potmesil and Indranil Chakravarty. Modeling Motion

Blur in Computer-Generated Images. In Computer Graphics (Proceedings of SIGGRAPH 83),

volume 17, pages 389–399. ACM, 1983.

[Ramamoorthi et al., 2004] R. Ramamoorthi, M. Koudelka, and P. Belhumeur. A Fourier Theory

for Cast Shadows. In European Conference on Computer Vision 2004, pages I–146–I–162, 2004.

BIBLIOGRAPHY 99

[Ramamoorthi et al., 2005] Ravi Ramamoorthi, Melissa Koudelka, and Peter Belhumeur. A fourier

theory for cast shadows. IEEE Trans. Pattern Anal. Mach. Intell., 27(2):288–295, 2005.

[Ramamoorthi et al., 2007] Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. A First-

Order Analysis of Lighting, Shading, and Shadows. ACM Transactions on Graphics, 26(1):2:1–

2:21, 2007.

[Robison and Shirley, 2009] Austin Robison and Peter Shirley. Image Space Gathering. In HPG

’09: Proceedings of the Conference on High Performance Graphics 2009, pages 91–98, New

York, NY, USA, 2009. ACM.

[Sen and Darabi, 2011] Pradeep Sen and Soheil Darabi. On Filtering the Noise from the Random

Parameters in Monte Carlo Rendering. ACM Transactions on Graphics (TOG), to appear, 2011.

[Shinya, 1993] Mikio Shinya. Spatial anti-aliasing for animation sequences with spatio-temporal

filtering. In SIGGRAPH ’93, pages 289–296, 1993.

[Sintorn et al., 2008] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson. Sample-Based Visibility

for Soft Shadows Using Alias-Free Shadow Maps. EGSR, 27(4):1285–1292, June 2008.

[Sloan et al., 2002] P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for real-time

rendering in dynamic, low-frequency lighting environments. ACM TOG (SIGGRAPH 02), 21(3),

2002.

[Soler and Sillion, 1998] C. Soler and F. Sillion. Fast Calculation of Soft Shadow Textures Using

Convolution. In Michael Cohen, editor, Proceedings of SIGGRAPH 98, Computer Graphics

Proceedings, Annual Conference Series, ACM, pages 321–332. ACM Press / ACM SIGGRAPH,

1998.

[Soler et al., 2009] Cyril Soler, Kartic Subr, Frédo Durand, Nicolas Holzschuch, and François Sil-

lion. Fourier Depth of Field. ACM Transactions on Graphics, 28(2):18:1–18:18, 2009.

[Stewart et al., 2003] J. Stewart, J. Yu, S. J. Gortler, and L. McMillan. A new reconstruction filter

for undersampled light fields. In EGRW ’03: Proceedings of the 14th Eurographics workshop on

Rendering, pages 150–156, 2003.

BIBLIOGRAPHY 100

[Sun and Ramamoorthi, 2009] Bo Sun and Ravi Ramamoorthi. Affine Double and Triple Product

Wavelet Integrals for Rendering. ACM Transactions on Graphics, 28(2):1–17, Apr 2009.

[Sung et al., 2002] K. Sung, A. Pearce, and C. Wang. Spatial-Temporal Antialiasing. IEEE Trans-

actions on Visualization and Computer Graphics, 8(2):144–153, 2002.

[van der Linden, 2003] Jarno van der Linden. Multiple light field rendering. In GRAPHITE ’03,

pages 197–ff, 2003.

[Veach, 1997] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis,

Stanford University, 1997.

[Walter et al., 2006] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. Multidi-

mensional Lightcuts. ACM Transactions on Graphics (SIGGRAPH), 25(3):1081–1088, 2006.

[Ward et al., 1988] G. Ward, F. Rubinstein, and R. Clear. A Ray Tracing Solution for Diffuse

Interreflection. In SIGGRAPH 88, pages 85–92, 1988.

[Yang et al., 2009] Baoguang Yang, Jieqing Feng, Gaël Guennebaud, and Xinguo Liu. Packet-

based Hierarchal Soft ShadowMapping. Computer Graphics Forum (Proceedings of Eurograph-

ics Symposium on Rendering 2009), 28(4):1121–1130, 2009.

[Zhou et al., 2005] Kun Zhou, Yaohua Hu, Stephen Lin, Baining Guo, and Heung-Yeung Shum.

Precomputed shadow fields for dynamic scenes. In SIGGRAPH 05, pages 1196–1201, 2005.

[Zhukov et al., 1998] Sergey Zhukov, Andrei Iones, and Grigorij Kronin. An ambient light illumi-

nation model. In Rendering Techniques (Eurographics 98), pages 45–56, 1998.

[Zwicker et al., 2007] Matthias Zwicker, Sehoon Yea, Anthony Vetro, Clifton Forlines, Wojciech

Matusik, and Hanspeter Pfister. Display pre-filtering for multi-view video compression. In

MULTIMEDIA ’07: Proceedings of the 15th international conference on Multimedia, pages

1046–1053, 2007.

APPENDIX A. MOTION BLUR IMPLEMENTATION DETAILS AND SPECIAL CASES 101

Appendix A

Motion Blur Implementation Details and

Special Cases

Computing Velocities and Bandlimits (Sec. 3.6.1): Any angular/spatial units can be used as

long as κ, α, Lmax,Rmax, Smax, ν and the corresponding trigonometry functions all use the same units.

Corresponding maximum frequencies or bandlimits are expressed in inverse pixel and time units.

Analogously, all velocities are calculated by the shader in pixel distances per unit time, and ac-

count for projection effects. Calculations of frequency bandlimits are specific to the shading model

being used and can be done either before or during rendering. For example, an implementation

may dynamically relate the specularity and frequency of a BRDF using an analytic function, but

precompute Lmax for an environment map by running a Fourier transform. For surface points with

occlusion, Smax will usually have infinite frequencies so we can simply set Ωmax
x,shadow

= Lmaxν.

Finally, note that our implementation sparsely samples frequency information, so we use ad-

vection to gather nearby frequency samples that may overlap with the current pixel at a different

moment in time.

Multiple Signals (Sec. 3.6.1): The final color for a single sample is obtained by multiplying the

surface texture, BRDF and shadow signals, so we need to bound the frequencies of that product. Oc-

casionally, samples may have more than one signal (texture, BRDF or shadow) each with significant

amplitude and frequency. In Fourier space, the product of the signals corresponds to a convolution

of spectra. If all signals have similar velocities, the frequencies will lie along the same Fourier line,

APPENDIX A. MOTION BLUR IMPLEMENTATION DETAILS AND SPECIAL CASES 102

as will the final spectrum—we can simply add the individual signal bandlimits to obtain Ωmax
x .

However, when two different signals have different effective velocities, we can obtain a spectrum

unlike the wedges in Figures 3.2(i) and 3.2(j). One example is a textured surface moving vertically

and a shadow moving horizontally. We can bound this convolved spectrum by setting amin = 0, take

the maximum value of amax, and sum all relevant values of Ωmax
x .

For a full derivation of the general case see Appendix D.

Low Velocities and Axis-Aligned Filters (Sec. 3.6.2): From Equation 3.34, we know that the

applied shear grows large as amin decreases. For slow-moving signals there is a crossing point

where using a standard axis-aligned filter is preferable. In Equation 3.27, we saw that the spatial

bandlimit Ω∗x can be less than Ωmax
t /amin when amin is small. For this reason, we fall back to the

standard axis-aligned filter when (FreqSpacing + Ωmax
t /amin) > Ω

max
x (see below for details).

Filter Width (Sec. 3.6.2): After computing amax, amin, andΩ
max
x for the samples inside of the cur-

rent pixel, we can compute a filter shape using Equations 3.33 and 3.34. However, if this new filter

overlaps with other pixels we must recompute amax, amin, and Ω
max
x for all pixels inside the filter.

The more samples inside the filter, the greater amax, amin, and Ω
max
x will diverge. For this reason the

widest possible filter width may be smaller than the width originally computed using samples only

inside the current pixel (this is common when a filter is close to an occlusion discontinuity). We do

a binary search to find the widest possible filter width, searching between a scale of 1.0 on the low

end, and the scale predicted initially by samples inside the current pixel on the high end.

In cases where the final filter radius (ActualPrimalRadius) is not as wide as the ideal size

(IdealPrimalRadius), the shear is unchanged (Equation 3.34), but the scale is changed (Equation 3.33).

We must adjust our sampling rates (Equation 3.30 and Figure 3.8(c)) to account for the fact that we

have effectively added FreqSpacing to the radius of our reconstruction filter along the Ωx axis in the

Fourier domain:

RadiusRatio =IdealPrimalRadius/ActualPrimalRadius

FreqSpacing =(RadiusRatio − 1)Ωmax
pix /Scale.

When (FreqSpacing + Ωmax
t /amin) > Ω

max
x one corner of the filter has passed beyond Ωmax

x and we

switch to using an axis-aligned filter (along with Equations 3.25, 3.27, and 3.37). If we are using a

APPENDIX A. MOTION BLUR IMPLEMENTATION DETAILS AND SPECIAL CASES 103

sheared filter we have

Ω∗t =

(

FreqSpacing +
Ωmax

t

amin

)

amax −Ω
max
t (A.1)

Ω∗x =Ω
max
x +

Ωmax
t

amin

+ FreqSpacing. (A.2)

APPENDIX B. SHADOWS FROM AREA LIGHTS 104

Appendix B

Shadows from Area Lights

Fourier Derivations

To derive Equation 4.3 we have:

F
[

f (v, y)
]

=

∫ ∫

g(d2v + y) exp(−i2π(vΩv + yΩy))dvdy (B.1)

u = d2v + y y = u − d2v dy = du

=

∫ ∫

g(u) exp(−i2π(vΩv + (u − d2v)Ωy))dvdu

=

∫ ∫

g(u) exp(−i2π(v(Ωv − d2Ωy) + uΩy))dvdu

=

∫ [∫

g(u) exp(−i2πuΩy)du

]

exp(−i2πv(Ωv − d2Ωy))dv

=G(Ωy)

∫

exp(−i2πv(Ωv − d2Ωy))dv

F
[

f (v, y)
]

=G(Ωy)δ(Ωv − d2Ωy). (B.2)

APPENDIX B. SHADOWS FROM AREA LIGHTS 105

To derive Equation 4.4 we have:

F

[

f

(

x − y

d1
, y

)]

=

∫ ∫

f

(

x − y

d1
, y

)

exp(−i2π(xΩx + yΩy))dxdy (B.3)

u =
x − y

d1
x = ud1 + y dx = (d1)du

=

∫ ∫

f (u, y) exp(−i2π((ud1 + y)Ωx + yΩy))(d1)dudy

=d1

∫ ∫

f (u, y) exp(−i2π(ud1Ωx + y(Ωx + Ωy)))dudy

F

[

f

(

x − y

d1
, y

)]

=d1F(d1Ωx,Ωy + Ωx). (B.4)

Sampling Rates

Sampling in the primal domain creates replicas in the Fourier domain, and the sparser the sampling

rate the closer together the replicas are packed. We want to compute the lowest possible sampling

rate such that we prevent the replicas from overlapping the footprint of our filter. The compact

shape of our sheared filter allows for much tighter packing of replicas, which allows for much

lower sampling rates, which in turn leads to faster render times. We can use a derivation similar to

Section 3.5.1. to compute the minimal sampling rates for our sheared filter shape:

Ω∗x =Ω
max
x + Ωmax

y

(

d1

d2max

− 1

)−1

, (B.5)

Ω∗y =Ω
max
y

(

d1

d2max

− 1

)

(

d1

d2max

− 1

)−1

−

(

d1

d2min

− 1

)−1

. (B.6)

In the above equations, Ω∗x and Ω
∗
y are the required sampling rates in the x and y dimensions

respectively. These values are derived by measuring the distance between replicas along Ωx and

Ωy (the exact derivation is omitted for brevity). To compute the number of samples requested by a

receiver point we calculate the 4D product (Ω∗x)
2(Ω∗y)

2 and divide by the 4D volume of the sheared

filter in (x1, x2, y1, y2) (because the subspaces are orthogonal this is simply the product of the filter

areas in (x1, y1) and (x2, y2)). The Ω
max
x bandlimit is the extent of the occluder wedge along Ωx (see

Figure 4.5a). Looking at the shape of the original occluder spectrum, F(Ωv,Ωy) (see Figure 4.4b),

we find that the transformation from (Ωx,Ωy) to (Ωv,Ωy) results in a Ω
max
x being equal to Ωmax

g
d2max

d1
.

APPENDIX C. AMBIENT OCCLUSION DERIVATIONS 106

Appendix C

Ambient Occlusion Derivations

We temporarily define h and H to be 2D to make the derivation more concise (this allows us to use

a 2D convolution operator). The second angular dimension for both of these functions will not be

important, and our final step will be to reduce H to 1D. We define h(x, v) to be constant across v,

such that ∀v ∈ R, h(x, v) = h(x, 0).

m(x, v) =δ(x) (C.1)

h(x, v) =

∫

f (x, t)k(x, t)dt (C.2)

h(x, v) =

∫ ∫

(f (s, t)k(s, t))m(x − s, v − t)dsdt (C.3)

h(x, v) = (f k) ⊗ m (C.4)

Because h(x) is constant across v it is not surprising that spectrum H will only have frequencies

along the Ωv = 0 line.

M(Ωx,Ωv) =δ(Ωv) (C.5)

H(Ωx,Ωv) =(F ⊗ K)M (C.6)

H(Ωx,Ωv) =

∫ ∫

F(Ωx − s,Ωv − t)K(t, s)δ(Ωv) ds dt (C.7)

To reduce a 2D spectrum to 1D we must integrate across the dimension we want to remove. We

integrate out the Ωv dimension to measure the spatial frequencies of H along the Ωx axis:

H(Ωx) =

∫ ∫

F(Ωx − s,−t)K(s, t) ds dt (C.8)

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 107

Appendix D

Derivation of Motion Blur General Case

D.1 General Case

Using the angular form of the reflection equation in Chapter 3 we can derive what happens when

all three effects are present (moving texture, moving reflection, moving shadow). We also make the

derivation more general by adding the outgoing angle θo as a parameter to the reflection equation.

We will see that the general case is fairly complex, but with some simplifying assumptions we can

return to the simple forms seen in chapter 3. While more compact derivations are surely possible,

we give a detailed derivation so that each step is easy to verify.

This assumes a fixed camera (the x measurement is relative to the camera), with surface motion

represented by β, occluder motion represented by τ, and the center of the camera shutter defined by

t0. We also add a ζ offset parameter to the linearization of s() so to avoid any restrictions on the x

parameter. Otherwise this derivation matches Equations 3.4, 3.14 and 3.22. We start with with the

reflection function h().

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 108

h(x, t0, θo) =

∫

w(t0 − t)g(x, t)

∫

l(θi, t)

s(x, θi, t)r(x, t, θi, θo)dθidt

(D.1)

=

∫

w(t0 − t)g(x − βt)

∫

l(θi − αt)

s(µ(x − τt) − θi)r(θo + 2(n(x, t) − θo) − θi)dθidt

(D.2)

=

∫

w(t0 − t)g(x − βt)

∫

l(θi − αt)

s(νx − τνt + ζ − θi)r(κ
′x − βκ′t + η′ − θo − θi)dθidt

(D.3)

(D.4)

Now we plug in spectral versions of functions into h() using the inverse Fourier transform.

w(t) =

∫

W(m)ei2πmtdm (D.5)

g(x) =

∫

G(n)ei2πnxdn (D.6)

l(θ) =

∫

L(q)ei2πqθdq (D.7)

s(θ) =

∫

S (y)ei2πyθdy (D.8)

r(θ) =

∫

R(z)ei2πzθdz (D.9)

(D.10)

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 109

h(x, t0, θo) =

∫ (∫

W(m)ei2πm(t0−t)dm

) (∫

G(n)ei2πn(x−βt)dn

)

∫ (∫

L(q)ei2πq(θi−αt)dq

) (∫

S (y)ei2πy(νx−τνt+ζ−θi)dy

)

(∫

R(z)ei2πz(κ
′x−βκ′t+η′−θo−θi)dz

)

dθidt

(D.11)

h(x, t0, θo) =

∫ ∫ ∫ ∫ ∫ ∫ ∫

W(m)G(n)L(q)S (y)R(z)

ei2πm(t0−t)ei2πn(x−βt)ei2πq(θi−αt)ei2πy(νx−τνt+ζ−θi)

ei2πz(κ
′x−βκ′t+η′−θo−θi)dmdndqdydzdθidt

(D.12)

h(x, t0, θo) =

∫ ∫ ∫ ∫ ∫ ∫ ∫

W(m)G(n)L(q)S (y)R(z)

ei2πx(κ
′z+νy+n)ei2πt0mei2πθo(−z)

ei2πθi(q−y−z)ei2πt(−m−βn−αq−τνy−βκ
′z)

ei2πyζei2πzη
′

dmdndqdydzdθidt

(D.13)

Now take the Fourier transform of h to compute H()

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

W(m)G(n)L(q)S (y)R(z)

e−i2πxΩxei2πx(κ
′z+νy+n)

e−i2πt0Ωt0ei2πt0m

e−i2πθoΩθoei2πθo(−z)

ei2πθi(q−y−z)ei2πt(−m−βn−αq−τνy−βκ
′z)

ei2πyζei2πzη
′

dxdt0dθodmdndqdydzdθidt

(D.14)

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

W(m)G(n)L(q)S (y)R(z)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πt0(Ωt0−m)

e−i2πθo(Ωθo+z)e−i2πθi(−q+y+z)

e−i2πt(m+βn+αq+τνy+βκ
′z)e−i2π(−yζ)e−i2π(−zη

′)

dxdt0dθodmdndqdydzdθidt

(D.15)

Now we simplify for θi and q.

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 110

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

W(m)G(n)L(q)S (y)R(z)

(∫

e−i2πθi(−q+y+z)dθi

)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πt0(Ωt0−m)e−i2πθo(Ωθo+z)

e−i2πt(m+βn+αq+τνy+βκ
′z)e−i2π(−yζ)e−i2π(−zη

′)

dxdt0dθodmdndqdydzdt

(D.16)

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

W(m)G(n)S (y)R(z)

(∫

L(q)e−i2πt(m+βn+αq+τνy+βκ
′z)δ(−q + y + z)dq

)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πt0(Ωt0−m)

e−i2πθo(Ωθo+z)e−i2πy(−ζ)e−i2πz(−η
′)

dxdt0dθodmdndydzdt

(D.17)

−q + y + z = 0 q = y + z (D.18)

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

W(m)G(n)L(y + z)S (y)R(z)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πt0(Ωt0−m)e−i2πθo(Ωθo+z)

e−i2πt(m+βn+α(y+z)+τνy+βκ
′z)e−i2πy(−ζ)e−i2πz(−η

′)

dxdt0dθodmdndydzdt

(D.19)

Now we simplify for t and m.

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 111

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ ∫ ∫ ∫

W(m)G(n)L(y + z)S (y)R(z)

(∫

e−i2πt(m+βn+(τν+α)y+(βκ
′+α)z)dt

)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πt0(Ωt0−m)e−i2πθo(Ωθo+z)

e−i2πy(−ζ)e−i2πz(−η
′)dxdt0dθodmdndydz

(D.20)

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ ∫ ∫

G(n)L(y + z)S (y)R(z)

(∫

W(m)e−i2πt0(Ωt0−m)

δ(m + βn + (τν + α)y + (βκ′ + α)z)dm

)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πθo(Ωθo+z)

e−i2πy(−ζ)e−i2πz(−η
′)dxdt0dθodndydz

(D.21)

m + βn+(τν + α)y + (βκ′ + α)z = 0

m = − βn − (τν + α)y − (βκ′ + α)z

(D.22)

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ ∫ ∫

W(−βn − (τν + α)y − (βκ′ + α)z)G(n)L(y + z)S (y)R(z)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πθo(Ωθo+z)

e−i2πt0(Ωt0+βn+(τν+α)y+(βκ
′+α)z)

e−i2πy(−ζ)e−i2πz(−η
′)dxdt0dθodndydz

(D.23)

Equation D.23 defines the spectrum using all three concurrent effects (moving textures, reflec-

tions and shadows). However, the result is difficult to analyze. We now show that this general

equation simplifies down to previously discussed cases with the addition of a few simplifying as-

sumptions.

D.2 Moving Texture

Now we can derive the case where we have diffuse surfaces and no shadowing (the moving texture

example in Section 3.3.1). In this case we assume that s() and r() are the constant 1 function, and

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 112

S () and R() are the δ() functional.

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ (∫ ∫

W(−βn − (τν + α)y − (βκ′ + α)z)G(n)L(y + z)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πθo(Ωθo+z)

e−i2πt0(Ωt0+βn+(τν+α)y+(βκ
′+α)z)e−i2πy(−ζ)e−i2πz(−η

′)

δ(y)δ(z)dydz

)

dxdt0dθodn

(D.24)

y = 0 z = 0 (D.25)

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫

W(−βn)G(n)L(0)

e−i2πx(Ωx−n)e−i2πθo(Ωθo)

e−i2πt0(Ωt0+βn)dxdt0dθodn

(D.26)

H(Ωx,Ωt0,Ωθo) = L(0)

(∫

e−i2πθo(Ωθo)dθo

) ∫

W(−βn)G(n)

(∫

e−i2πt0(Ωt0+βn)dt0

) (∫

e−i2πx(Ωx−n)dx

)

dn

(D.27)

H(Ωx,Ωt0,Ωθo) = L(0)δ(Ωθo)

∫

W(−βn)G(n)

δ(Ωt0 + βn)δ(Ωx − n)dn

(D.28)

Ωx − n = 0 Ωx = n (D.29)

H(Ωx,Ωt0,Ωθo) = L(0)δ(Ωθo)W(−βΩx)G(Ωx)δ(Ωt0 + βΩx) (D.30)

For any non-zero value, Ωt0 = −βΩx.

H(Ωx,Ωt0,Ωθo) = L(0)δ(Ωθo)W(Ωt0)G(Ωx)δ(Ωt0 + βΩx) (D.31)

The δ(Ωθo) term shows that the non-zero frequencies only exist along the Ωθo = 0 line because

there is no angular variation. The L(0) term shows that the brightness (zero component of spectrum)

for the constant environment has a linear effect on the final outcome. Equation D.31 provides a

more general version of Equation 3.9.

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 113

D.3 Moving Reflection

Now we will derive the case where we have moving reflections with no texture and no shadows (the

moving texture example in Section 3.3.2). In this case we assume that s() and g() are the constant 1

function, and S () and G() are the δ() functional.

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ (∫ ∫

W(−βn − (τν + α)y − (βκ′ + α)z)L(y + z)R(z)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πθo(Ωθo+z)

e−i2πt0(Ωt0+βn+(τν+α)y+(βκ
′+α)z)e−i2πy(−ζ)e−i2πz(−η

′)

δ(n)δ(y)dndy

)

dxdt0dθodz

(D.32)

n = 0 y = 0 (D.33)

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫

W(−(βκ′ + α)z)L(z)R(z)

e−i2πx(Ωx−κ
′z)e−i2πθo(Ωθo+z)

e−i2πt0(Ωt0+(βκ
′+α)z)e−i2πz(−η

′)

dxdt0dθodz

(D.34)

H(Ωx,Ωt0,Ωθo) =

∫

W(−(βκ′ + α)z)L(z)R(z)

(∫

e−i2πx(Ωx−κ
′z)dx

) (∫

e−i2πθo(Ωθo+z)dθo

)

(∫

e−i2πt0(Ωt0+(βκ
′+α)z)dt0

)

e−i2πz(−η
′)dz

(D.35)

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 114

H(Ωx,Ωt0,Ωθo) =

∫

W(−(βκ′ + α)z)L(z)R(z)

δ(Ωx − κ
′z)δ(Ωθo + z)

δ(Ωt0 + (βκ
′ + α)z)e−i2πz(−η

′)dz

(D.36)

H(Ωx,Ωt0,Ωθo) =

∫

W(−(βκ′ + α)z)L(z)R(z)

(

1

|κ′|
δ(
Ωx

κ′
− z)

)

δ(Ωθo + z)

δ(Ωt0 + (βκ
′ + α)z)e−i2πz(−η

′)dz

(D.37)

Ωx

κ′
− z = 0 z =

Ωx

κ′
(D.38)

H(Ωx,Ωt0,Ωθo) =
1

|κ′|
W(
−βκ′ + α

κ′
Ωx)L(

Ωx

κ′
)R(
Ωx

κ′
)

δ(Ωθo +
Ωx

κ′
)δ(Ωt0 +

(βκ′ + α)

κ′
Ωx)e

i2π(η′/κ′)Ωx

(D.39)

For non-zero values Ωt0 =
−βκ′+α

κ′
Ωx.

H(Ωx,Ωt0,Ωθo) =
1

|κ′|
W(Ωt0)L(

Ωx

κ′
)R(
Ωx

κ′
)

δ(Ωθo +
Ωx

κ′
)δ(Ωt0 +

(βκ′ + α)

κ′
Ωx)e

i2π(η′/κ′)Ωx

(D.40)

Equation D.40 provides a more general version of Equation 3.18.

D.4 Moving Shadow

Now we will derive the case where we have moving shadows with no texture and a diffuse BRDF

(the moving shadow example in Section 3.3.3). In this case we assume that r() and g() are the

constant 1 function, and R() and G() are the δ() functional.

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 115

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫ (∫ ∫

W(−βn − (τν + α)y − (βκ′ + α)z)L(y + z)S (y)

e−i2πx(Ωx−κ
′z−νy−n)e−i2πθo(Ωθo+z)

e−i2πt0(Ωt0+βn+(τν+α)y+(βκ
′+α)z)e−i2πy(−ζ)e−i2πz(−η

′)

δ(n)δ(z)dndz

)

dxdt0dθody

(D.41)

n = 0 z = 0 (D.42)

H(Ωx,Ωt0,Ωθo) =

∫ ∫ ∫ ∫

W(−(τν + α)y)L(y)S (y)

e−i2πx(Ωx−νy)e−i2πt0(Ωt0+(τν+α)y)

e−i2πy(−ζ)dxdt0dθody

(D.43)

H(Ωx,Ωt0,Ωθo) =

∫

W(−(τν + α)y)L(y)S (y)

(∫

e−i2πx(Ωx−νy)dx

) (∫

e−i2πθo(Ωθo)dθo

)

(∫

e−i2πt0(Ωt0+(τν+α)y)dt0

)

e−i2πy(−ζ)dy

(D.44)

H(Ωx,Ωt0,Ωθo) =

∫

W(−(τν + α)y)L(y)S (y)

δ(Ωx − νy)δ(Ωθo)

δ(Ωt0 + (τν + α)y)e
−i2πy(−ζ)dy

(D.45)

H(Ωx,Ωt0,Ωθo) =

∫

W(−(τν + α)y)L(y)S (y)

(

1

|ν|
δ(
Ωx

ν
− y)

)

δ(Ωθo)

δ(Ωt0 + (τν + α)y)e
−i2πy(−ζ)dy

(D.46)

Ωx

ν
− y = 0 y =

Ωx

ν
(D.47)

H(Ωx,Ωt0,Ωθo) =
1

|ν|

∫

W(−
(τν + α)

ν
Ωx)L(

Ωx

ν
)S (
Ωx

ν
)

δ(Ωθo)δ(Ωt0 +
τν + α

ν
Ωx)e

i2π(ζ/ν)Ωx

(D.48)

APPENDIX D. DERIVATION OF MOTION BLUR GENERAL CASE 116

For non-zero values Ωt0 = −
τν+α
ν
Ωx

H(Ωx,Ωt0,Ωθo) =
1

|ν|

∫

W(Ωt0)L(
Ωx

ν
)S (
Ωx

ν
)

δ(Ωθo)δ(Ωt0 +
τν + α

ν
Ωx)e

i2π(ζ/ν)Ωx

(D.49)

Equation D.49 provides a more general version of Equation 3.24.

