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ABSTRACT

Supply Chain Management: Supplier
Financing Schemes and Inventory Strategies

Min Wang

This dissertation addresses a few fundamental questions on the interface between

supplier financing schemes and inventory management. Traditionally, retailers fi-

nance their inventories through an independent financing institution or by drawing

from their own cash reserves, without any supplier involvement (Independent Fi-

nancing). However, suppliers may reduce their buyers’ costs and stimulate sales

and associated revenues and profits, by either (i) adopting the financing function

themselves (Trade Credit), or (ii) subsidizing the inventory costs (Inventory Subsi-

dies). In the first part (Chapter 2) we analyze and compare the equilibrium perfor-

mance of supply chains under these three basic financing schemes. The objective is

to compare the equilibrium profits of the individual chain members, the aggregate

supply chain profits, the equilibrium wholesale price, the expected sales volumes

and the average inventory levels under the three financing options, and thus provide

important insights for the selection and implementation of supply chain financing

mechanisms. Several of the financing schemes introduce a new type of inventory

control problem for the retailers in response to terms specified by their suppliers. In

Chapter 3 we therefore consider the inventory management problem of a firm which

incurs inventory carrying costs with a general shelf age dependent structure and,

even more generally, that of a firm with shelf age and delay dependent inventory

and backlogging costs. Beyond identifying the structure of optimal replenishment

strategies and corresponding algorithms to compute them, it is often important to

understand how changes in various primitives of the inventory model impact on the

optimal policy parameters and performance measures. In spite of a voluminous lit-



erature over more than fifty years, very little is known about this area. In Chapter

4, we therefore study monotonicity properties of stochastic inventory systems gov-

erned by an (r, q) or (r, nq) policy and apply the results in our general theorems

both to standard inventory models and to those with general shelf age and delay

dependent inventory costs.
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Chapter 1

Introduction

1.1 General Introduction

This dissertation addresses a few fundamental questions on the interface between

supplier financing schemes and inventory management. In the first part (Chapter 2)

we analyze and compare the equilibrium performance of supply chains under three

basic financing schemes, described below. The objective is to compare the equilib-

rium profits of the individual chain members, the aggregate supply chain profits, the

equilibrium wholesale price, the expected sales volumes and the average inventory

levels under the three financing options, and thus provide important insights for the

selection and implementation of supply chain financing mechanisms. Several of the

financing schemes introduce a new type of inventory control problem for the retailers

in response to terms specified by their suppliers. In Chapter 3 we therefore consider

the inventory management problem of a firm which incurs inventory carrying costs

with a general shelf age dependent structure and, even more generally, that of a

firm with shelf age and delay dependent inventory and backlogging costs. Beyond

identifying the structure of optimal replenishment strategies and corresponding al-

gorithms to compute them, it is often important to understand how changes in

various primitives of the inventory model impact on the optimal policy parameters

and performance measures. In spite of a voluminous literature over more than fifty

years, very little is known about this area. In Chapter 4, we therefore study mono-
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tonicity properties of stochastic inventory systems governed by an (r, q) or (r, nq)

policy and apply the results in our general theorems both to standard inventory

models and to those with general shelf age and delay dependent inventory costs.

Traditionally, retailers finance their inventories through an independent financ-

ing institution or by drawing from their own cash reserves, without any supplier

involvement (Independent Financing). However, suppliers may reduce their buyers’

costs and stimulate sales and associated revenues and profits, by either (i) adopting

the financing function themselves (Trade Credit), or (ii) subsidizing the inventory

costs (Inventory Subsidies). In Chapter 2 we characterize the equilibrium perfor-

mance of a supply chain consisting of a supplier and a retailer under the above three

fundamental financing options. We assume that the terms of trade are specified by

the supplier, so that the performance of the supply chain is given by the equilibrium

of a Stackelberg game with the supplier selecting wholesale prices and/or inventory

subsidies or interest charges. (We also address an alternative perspective where

these terms of trade are selected to achieve perfect coordination in the decentralized

supply chain.) Our main objective is to derive rankings of various performance mea-

sures of interests, in particular the expected profit of the individual chain members,

the supply chain wide profit, the wholesale price, the expected sales volume and the

average inventory level.

In Chapter 3 we consider, in a variety of periodic and continuous review models,

the inventory management problem of a firm with shelf age and delay dependent

inventory costs. We show how any model with a general shelf age dependent holding

cost structure may be transformed into an equivalent model in which all expected

inventory costs are level-dependent. We develop our equivalency result, first, for

periodic review models with full backlogging of stockouts. This equivalency result

permits us to characterize the optimal procurement strategy in various settings and

to adopt known algorithms to compute such strategies. For models in which all or

part of stockouts are lost, we show that the addition of any shelf age dependent cost

structure does not complicate the structure of the model beyond what is required

under the simplest, i.e., linear holding costs. We elaborate a similar equivalency
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result for general delay dependent backlogging cost structures; this equivalency re-

quires either a restriction on the actions sets or on the shape of the backlogging cost

rate functions. We proceed to show that our results carry over to continuous review

models, with demands generated by compound renewal processes; the continuous

review models with shelf age and delay dependent carrying and backlogging costs

are shown to be equivalent to periodic review models with convex level dependent

inventory cost functions.

In Chapter 4, we consider inventory systems which are governed by an (r, q) or

(r, nq) policy. We derive general conditions for monotonicity of the optimal cost

value and the three optimal policy parameters, i.e., the optimal reorder level, order

quantity and order-up-to level, as a function of the various model primitives, be it

cost parameters or complete cost rate functions or characteristics of the demand

and leadtime processes. These results are obtained as corollaries from a few general

theorems, with separate treatment given to the case where the policy parameters

are continuous variables and that where they need to be restricted to integer values.

The results are applied both to standard inventory models and to those with general

shelf age and delay dependent inventory costs.

1.2 Inventory Subsidy versus Supplier Trade Credit in

Decentralized Supply Chains

It is well known and broadly documented that in the United States and Europe,

companies depend heavily on supplier financing mechanisms for their working capi-

tal, which consists primarily of inventories. For example, Petersen and Rajan (1997),

quoting Rajan and Zingales (1997), observed for the United States that trade credit

financing is the single largest source of external short-term financing. For European

markets, this phenomenon has been documented by Wilson and Summers (2002)

and Giannetti et al. (2008). If trade credit financing is the dominant source of

credit in first world countries, it is very likely to be more dominant in emerging

economies with a less developed banking industry and capital markets. In addition,
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reliance on trade credit financing, by necessity, increases in economic environments

where bank credit is severely curtailed.

Under trade credit, a supplier adopts the complete financing function, tradi-

tionally assumed by a third-party financial institution - hereafter referred to as the

bank - or by the customer herself drawing from her own cash reserves. Inventory

subsidies represent a third alternative: here, the financing function continues to be

assumed by a bank or the customer herself, but the supplier agrees to cover part of

the financing and/or physical inventory costs. This practice prevails, for example, in

the automobile industry when manufacturers pay the dealer so-called “holdbacks”,

i.e., a given amount for each month a car remains in the dealer’s inventory. (The

holdback amount may be varied as a function of the amount of time the car has

been on the dealer’s lot.) Other industries where suppliers provide inventory sub-

sidies to retailers and distributors include the book and music industries as well as

personal computers, apparel and shoes. See Narayanan et al. (2005) and Nagarajan

and Rajagopalan (2008) for a more detailed discussion of the prevalence of inventory

subsidies.

Many have been intrigued why supplier financing is as prevalent as it is. After

all, the credit function would seem to be a core competency of the banking world.

The economics literature offers a variety of explanations: first, there are the afore-

mentioned lending capacity limits resulting from internally or externally imposed

capital ratio requirements. Mian and Smith (1992) argue that suppliers may be in a

better position than banks to monitor what activities credit loans are used for. Ad-

ditional explanations can be found in Biais and Gollier (1997), Jain (2001)), Cuñat

(2007), Burkart and Ellingsen (2004), Frank and Maksimovic (2005), Nadiri (1969)

and Wilner (2000)).

However, the above explanations ignore a primary function of various supplier

financing mechanisms, namely, to reduce the customer’s risks and to share these risks

in the most advantageous way possible, thereby stimulating sales and associated

revenues and profits.

While trade credit financing has primarily been analyzed by economists, it ap-
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pears that inventory subsidies have been studied, almost exclusively, in the opera-

tions management literature; see, for example, Anupindi and Bassok (1999), Cachon

and Zipkin (1999), Narayanan et al. (2005) and Nagarajan and Rajagopalan (2008).

These papers have demonstrated that inventory subsidies may be an advantageous

way, for the supply chain as a whole, to reduce the customers’ risks and to stimulate

their purchases and sales.

The objective of this paper is to characterize the equilibrium performance of a

supply chain consisting of a supplier and a (single) buyer, hereafter referred to as

the retailer, under the following three fundamental financing options:

(I) Independent Financing (IF): this reflects the traditional business model where

the retailer finances her inventories through a bank or by drawing from her own cash

reserves, without any supplier involvement.

(II) Inventory Subsidies (IS): same, except that the supplier offers to cover a

specific part of the capital costs associated with the retailer’s inventories.

(III) Trade Credit (TC): here the supplier adopts the financing role otherwise

assumed by a bank or the retailer herself, as in (I) and (II).

In particular under TC arrangements, interest charges may accrue at a rate

which depends on the amount of time a unit has been in stock. For example, the

credit terms may include an interest free grace period, as in “30 (60, 90) days

net”. Similarly, inventory subsidies may be dependent on the “shelf age” of the

items. The aforementioned “holdbacks” in the automobile industry is a case in

point: typically the holdback is only paid for a limited period of time - for example

a quarter - during which a car remains in a dealer’s lot. To provide a fundamental

framework to compare the equilibrium performance of the supply chain under the

three financing options, we confine ourselves to the case where interest accrues at a

constant rate.

The main objective of this paper is to compare equilibrium profits of the in-

dividual chain members, supply chain profits, the equilibrium wholesale price, the

expected sales volumes and the average inventory levels under the three financing

options.
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To this end, we develop a model unifying the three mechanisms, which is based

on the following assumptions: we consider a supply chain with a single supplier

providing a single item to a retailer who sells the item to consumers at a given retail

price. We consider a periodic review, infinite horizon model where consecutive

demands are iid with a known distribution. Demands that can not be satisfied from

existing stock are lost. The supplier incurs variable procurement costs at a given cost

rate. Two types of inventory carrying costs are incurred for the retailer’s inventories:

physical storage and maintenance costs and financing costs which depend on the

specific financing mechanism adopted by the supply chain. Both the supplier and

the retailer face a per dollar financing cost αs and αr, per unit of time, when

using the bank as a financier of its inventories or when financing the inventories

from internal funds. The capital cost rates αs and αr are typically significantly

different from each other, even when both chain members use bank loans to finance

their working capital, see §2.2. In our base model, we assume bankruptcy risks are

negligible. However, in §2.7, we discuss two generalizations of the base model where

the retailer may default.

We assume that the terms of trade are specified by the supplier to maximize his

expected profit under the corresponding optimal procurement policy of the retailer.

This perspective gives rise to so-called Stackelberg games with the supplier (the

retailer) as the leader (the follower). It reflects many, if not most, supply chain

settings and explains why this is assumed in most supply chain models. Other

perspectives do arise as when a perfect coordination mechanism is adopted, with

the aggregate first-best profits split in accordance with a given allocation rule, such

as a Nash bargaining solution, reflecting the relative bargaining powers of the chain

members. We pursue the latter perspective in Appendix A.4.

We now summarize our main results. We distinguish among three Stackelberg

games, depending upon whether only the wholesale price, or only the financing terms

(i.e., the trade credit interest rate, under TC, or the subsidy for the capital cost rate,

under IS) are selected endogenously, or whether the supplier starts out selecting both.

(We refer to the latter game as the full Stackelberg game.) We fully characterize
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the optimal strategies of the supply chain members in these three games. (See §2.5

for a summary of the many intuitive and conterintuitive structural properties of the

equilibria in the various Stackelberg games, as well as comparative statics results.)

The characterization of the equilibrium in the full Stackelberg game requires that

the demand distribution satisfies a slightly stronger variant of the Increasing Failure

Rate (IFR) property. We show that this variant of the IFR condition is satisfied by

many families of distributions, in particular, all uniform, exponential and Normal

distributions.

We proceed with a systematic comparison of the various above mentioned equi-

librium performance measures across the different financing mechanisms. We show,

in full generality, that the supplier is better off under the equilibrium TC arrange-

ment as opposed to IS, if and only if his cost of funds (αs) is lower than that of the

retailer (αr). As to the remaining comparisons, we confine ourselves to the above

three classes of demand distributions (and a few, very minor parameter conditions).

Here, we show that the retailer’s and the supplier’s preference for the IS versus TC

contract are perfectly aligned. In other words, the retailer’s optimal profit level is

higher under TC as opposed to IS if and only if her cost of funds is higher than

that of the supplier. The same, simple, necessary and sufficient condition reveals

whether the wholesale price is lower, and the expected sales volume and average

inventory level are higher under IS, or whether the opposite rankings prevail.

Assume next that the supply chain initially operates under IF where the retailer

arranges her own financing internally or from a third-party bank without any sup-

plier’s subsidies. If the supplier maintains the wholesale price that applies under

IF, both supply chain members benefit by switching to an IS arrangement. Main-

taining the same wholesale price, it is usually, although not always, beneficial for

both supply chain members to switch from IF to a TC arrangement as well. (We

show that if the supplier’s cost of capital is lower than that of the retailer, this is

indeed guaranteed, in fact with greater benefits accruing to both chain members

than under the IS arrangement.)

Clearly, if the supplier is willing and able to deviate from the wholesale price he
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would charge under IF, and adopt an IS agreement with a wholesale price-inventory

subsidy combination which optimizes his profits in the IS Stackelberg game, this re-

sults in additional profit improvements for him (beyond those achieved when main-

taining the old wholesale price). However the same need not apply to the retailer’s

profit. Indeed, we have conducted an extensive numerical study which consistently

reveals that the resulting profits for the retailer are lower than those she enjoys

under IF. The overall conclusion therefore is that the adoption of an appropriately

designed IS or TC agreement always benefits the supplier, but to entice the re-

tailer, the specific terms need to be specified to ensure that her resulting profits are

maintained or improved as well. This gives rise to Stackelberg games with a par-

ticipation constraint, which we characterize in Appendix A.2. The above numerical

study identifies several other rankings between equilibrium performance under IF,

versus those under TC or IS.

Table 1.1 summarizes our comparison results. Π∗, Π∗r and Π∗s denote the expected

aggregate profits and that of the supplier and the retailer, respectively, while w∗ and

s∗ denote the equilibrium wholesale price and the expected sales volume per period.

Superscripts indicate which of the three financing mechanisms the measure refers

to. All inequalities with a numbered footnote are proven in the paper, the footnote

indicating where precisely. The remaining rankings are based on the above extensive

numerical study reported.

The above structural results for the Stackelberg games carry over to to the two

generalized models considered in this paper, where the retailer may default. In this

case some or all of the creditors receive only part of the amount due to them, the so-

called recovery rate. In the first generalized model, we assume only the supplier faces

this default risk when engaging in a TC arrangement while the bank has immunized

itself from this risk; in the second generalization, both the supplier and the bank

face default risks. As to the comparison results across these financing mechanisms,

they carry over to the first generalized model in the sense that many rankings can

be established by comparing αr with an index that depends on αs, the recovery rate

and parameters describing the default and reorganization process. In the second
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αs ≤ αr αs > αr

Supplier’s Profit Π∗IFs ≤1 Π∗ISs ≤2 Π∗TCs Π∗IFs ,Π∗TCs ≤3 Π∗ISs

Retailer’s Profit Π∗ISr ≤4 Π∗TCr ≤a Π∗IFr Π∗TCr ≤5 Π∗ISr ≤ Π∗IFr

Aggregate Profit Π∗IF ≤ Π∗IS ≤6 Π∗TC Π∗IF ,Π∗TC ≤7 Π∗IS

Wholesale Price w∗IF ≤ w∗TC ≤8 w∗IS w∗IF ≤ w∗IS ≤9 w∗TC

Expected Sales s∗IF ≤ s∗IS ≤10s∗TC s∗IF , s∗TC ≤11s∗IS

Table 1.1: Comparisons among the financing schemes

1-2: See Proposition 2.4 (i) and Theorem 2.5 (b) for a proof, respectively.

3: See Proposition 2.4 (i) and Theorem 2.5 (b) for a proof. 4-5: See Theorem 2.6 (c)

for a proof.

6: It follows from inequalities in footnotes 2 and 4

7: Π∗TC ≤ Π∗IS follows from inequalities in footnotes 3 and 5.

a: It holds numerically in all but nine instances. The nine exceptions are instances

where the supplier’s cost of capital is substantially lower than that of the retailer and

the variable profit margin (p − c)/c = 0.11 is small. The small profit margin severely

limits the supplier’s ability to raise the price while his significant capital cost rate

advantage allows for major profit improvement compared to IF.

8-9: See Theorem 2.6 (e) for a proof. 10-11: s∗TC ≤ s∗IS follows from Theorem 2.6

(d).



10

model with default risks, these comparisons need to be made numerically.

1.3 Inventory Models with Shelf Age and Delay Depen-

dent Inventory Costs

One of the main objectives of any inventory planning model is to analyze the trade-

off between competing risks of overage and underage. This requires an adequate

representation of the carrying costs associated with all inventories, as well as the

cost and revenue consequences of shortages. Early contributors, e.g., the pioneer-

ing textbooks by Hadley and Whitin (1963) and Naddor (1966), discussed possible

paradigms to represent the carrying and shortage costs.

One standard paradigm is to assume that carrying costs can be assessed, either

continuously or periodically, as a (possibly non-linear) function of the prevailing

total inventory, irrespective of its age composition. Similarly, shortage costs are

assumed to accrue as a(, again, possibly non-linear) function of the total shortfall

or backlog, irrespective of the amount of time the backlogged demand units have

remained unfilled. We refer to this type of carrying and shortage cost structures

as level-dependent inventory costs. After the above mentioned early discussions in

Hadley and Whitin (1963) and Naddor (1966), this paradigm has been adopted in

virtually every inventory model.

There are, however, many settings where carrying costs need to be differenti-

ated on the basis of the inventory’s shelf-age composition. First, inventories are

often financed by trade credit arrangements, where the supplier allows for a pay-

ment deferral of delivered orders, but charges progressively larger interest rates as

the payment delay increases. For example, the supplier frequently offers an initial

interest-free period (e.g., 30 days) after which interest accumulates. Moreover, in-

terest rates often increase as a function of the item’s shelf age. These trade credit

schemes have been considered in Gupta and Wang (2009) as well as Chapter 2. We

refer to the latter for a discussion of how prevalent this practice is. Another setting

with shelf age dependent inventory cost rates arises when the supplier subsidizes
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part of the inventory cost. For example, in the automobile industry, manufactur-

ers pay the dealer so-called “holdbacks”, i.e., a given amount for each month a car

remains in the dealer’s inventory, up to a given time limit (see, e.g., Nagarajan

and Rajagopalan (2008)). The resulting inventory cost rate for any stocked item is,

again, an increasing function of the item’s shelf age.

Even when inventory costs grow as a linear function of the loan term or the

amount of time the purchased units stay in inventory, time varying purchase prices

or interest rates necessitate disaggregating inventory levels according to the time at

which the units were purchased, i.e., in accordance with the items’ shelf age. As an

example, in the dynamic lot sizing literature, Federgruen and Lee (1990) modeled

holding costs as proportional to the items’ purchasing price, which varies with their

purchase period. As a consequence, holding costs depend on the items’ shelf age.

Even more general shelf-age dependencies are assumed in Levi et al. (2011) and its

generalization, i.e., so-called metric holding costs, in Stauffer et al. (2011). Finally,

beyond capital costs, inventories often incur maintenance related expenses; these,

too, vary as a function of the items’ shelf age.

Similar to shelf age dependent holding costs, backlogging costs may also depend

on the amount of time by which delivery of a demand unit is delayed. This may

reflect the structure of contractually agreed upon penalties for late delivery or, in

case of implicit backlogging costs, the fact that customers become less or more

impatient over time. This type of backlogging costs has been studied by Chen and

Zheng (1993), Rosling (1999, 2002) and Huh et al. (2010).

In this paper, we show how periodic and continuous review models with a general

shelf age dependent holding cost structure may be transformed into an equivalent

“standard” model in which all expected inventory costs are level-dependent. These

equivalency results allow for the rapid identification of the structure of an optimal

policy, in various models. It also allows for the immediate adoption of algorithms

to compute optimal policies. Moreover, in periodic review models, all shelf age

dependent inventory holding cost components are transformed into linear holding

costs, however, with a specific modified random leadtime distribution.
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We develop our equivalency result, first, for models with full backlogging of

stockouts. These models allow for a one-dimensional state representation via the

so-called inventory position, i.e., on-hand inventory + outstanding orders - back-

logs. This equivalency result permits us to characterize the optimal procurement

strategy in various settings. For example, assuming demands are independent with

exogenously given distributions, a simple time-dependent (s, S) policy, acting on the

inventory position is optimal under fixed-plus-linear order costs. In the absence of

fixed delivery costs, this structure further simplifies to that of a base-stock policy. In

the special case where all model parameters are stationary, we show that the base-

stock levels increase as we progress to the end of the planning horizon; moreover

these levels can be determined myopically by computing, for each period, the min-

imum of a period specific, closed-form convex function. When each of the demand

distributions depends on the buyer’s retail price, the optimal combined inventory

and pricing strategy is a so-called base-stock/list price policy, assuming no fixed

ordering costs prevail, and leadtimes are negligible. In the presence of such fixed

costs, and assuming the stochastic demand functions have additive noise terms, the

optimal combined strategy is of the so-called (s, S, p) structure: the procurement

part of the combined strategy continues to be of the (s, S) type. Other variants of

this model and of the associated optimal strategies are discussed as well.

We generalize our equivalency results for models in which all or part of stockouts

are lost. Here, the state of the system needs to be described with a multi-dimensional

inventory vector: more specifically, under a positive leadtime L > 0, it is well known

that the state of the system needs to be represented by an (L + 1)- state vector,

keeping track of the inventory on hand and all outstanding orders from the last L

periods, separately. Here, we show that the addition of any shelf age dependent cost

structure does not complicate the structure of the model beyond what is required

under the simplest, i.e., linear holding costs.

A different transformation, due to Huh et al. (2010), allows for the treatment of

general delay dependent backlogging cost structures, but only under an assumption

guaranteeing either that no demand unit is delayed by more than the leadtime plus
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one periods, or that the incremental backlogging cost rate is constant for delays

in excess thereof. The first condition is equivalent to assuming that the inventory

position after ordering is always non-negative. We review this transformation in

§3.1.3, and prove various optimality results that can be obtained under general

delay dependent cost structures.

In §3.2, we show how general shelf age dependent holding and delay dependent

backlogging costs can be handled in continuous review models. Starting with the

case of renewal demand processes, we show that, for these, an equivalent model

with a convex, inventory level dependent cost structure can be obtained, in full

generality, i.e., without any policy restrictions. This equivalency result is based

on a very different so-called “single unit decomposition approach”, in the spirit of

those introduced by Axsäter(1990, 1993) and Muharremoglu and Tsitsiklis (2008).

The equivalency result allows us to conclude, for example, that in a system with

fixed-plus-linear ordering costs, an (r, q)- policy is optimal, and the long run average

cost as a function of r and q, is of a structure enabling the use of the algorithm in

Federgruen and Zheng (1992) to identify the optimal parameters. Finally we char-

acterize how various model primitives such as the leadtime distribution, the shape

of the marginal shelf age dependent cost function and that of the delay dependent

backlogging cost function impact the optimal policy parameters r∗ and R∗ ≡ r∗+q∗.

We also show (in §3.2.2) that the results for periodic inventory systems carry over

to continuous review models with general compound renewal demand processes. We

show that under minor assumptions, the model is equivalent to a periodic review

model with convex inventory level dependent carrying and backlogging costs. Under

fixed-plus-linear costs, this implies, for example, that an (s, S) policy is optimal.

1.4 Monotonicity Properties of Stochastic Inventory Sys-

tems

In the past fifty years, a voluminous literature has arisen on inventory models.

In many elementary models, we are able to prove that the optimal procurement
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strategy has a relatively simple structure characterized by a few policy parameters.

Moreover, for several of those models, we have identified efficient algorithms, able

to compute the optimal combination of policy parameters.

Nevertheless, most of these models fail to be used widely by practitioners or

to be taught in Operations Management classes or textbooks, with the exception

of Economic Order Quantity (EOQ)- and newsvendor type models. The continued

popularity of the latter two classes of inventory models can not be attributed to the

applicability of the underlying model assumptions, which, in fact, are very restrictive

and fail to fit many of the settings where they are routinely applied. Instead, their

continued popularity is based on the fact that they allow for closed form expressions

of the optimal policy parameters, thus providing easy and immediate insights into

how various model primitives (cost parameters, demand processes, leadtimes etc.)

impact on the above policy parameters. As articulated by Geoffrion (1976), the

main purpose of models is to provide “insights, not numbers”. At the most basic

level, the model user wishes to understand whether optimal policy parameters and

associated performance measures increase or decrease as a function of the various

model primitives.

In this paper, we derive general conditions under which monotonicity of the

optimal parameters and associated key performance measures, with respect to gen-

eral model primitives, can be established within a (single-item) inventory system

governed by an optimal (r, q) or (r, nq) policy. Under an (r, q) policy, the system

is monitored continuously and a replenishment order of a fixed size q is placed

whenever the inventory position drops to the level r. When the demand process ex-

periences jumps of an arbitrary magnitude, it is sensible to apply an (r, nq) policy,

with the order quantity specified as the minimum multiple of q required to bring

the inventory position back above the reorder level r. (r, q) or (r, nq) policies are

also frequently used in serial systems, see, e.g., Shang and Zhou (2009, 2010). In

contrast to the above EOQ related deterministic models, the optimal (r, q) or (r, nq)

policy parameters can not be obtained in closed-form, but need to be computed al-

gorithmically, even under the simplest demand processes, i.e., Brownian motions or
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Poisson processes. Prior literature, reviewed in the next section, has studied the

impact of changes of a few specific model primitives, in particular, the leadtime and

the leadtime distributions.

Many key performance measures are directly related to the optimal policy pa-

rameters r∗, R∗ ≡ r∗+q∗ and q∗. Operations managers are concerned with the max-

imum inventory (position), the average inventory level and the minimum inventory,

the latter being related to the so-called safety stock concept. Logistics managers

focus on the average order size or order frequency, its reciprocal. Suppliers often

prefer a regular order pattern associated with high order frequency to allow for a

smooth production/distribution schedule. Financial analysts and macroeconomists

pay particular attention to the sales/inventory ratio, also referred to as the inventory

turnover.

Beyond providing general insights into inventory systems governed by (r, q) or

(r, nq) policies, the above monotonicity properties have additional benefits: first,

many of the parameters or distributions in the model are difficult to forecast and

the model user needs to understand in which direction an under- (or over-)estimate

biases the optimal policy parameters. Second, the monotonicity properties can be

exploited when the model needs to be solved repeatedly for many parameter val-

ues. This situation arises either because of uncertainty about a parameter or be-

cause service level constraints are added to the model which, when handled via

Lagrangian relaxation, requires the repeated optimization of a traditional aggregate

cost function for many multiplier values or combinations thereof. (Such service level

constraints include constraints on the fill rate, i.e., the fraction of demand that can

be filled immediately without backlogging, or the ready rate, i.e., the fraction of

time the system has stock, or the expected amount of time a backlogged demand

has to wait before being filled.) If it is known that an increase in a parameter or

Lagrange multiplier from a value µ0 to µ1 results in an increase or (decrease) of q∗,

say, this fact can be exploited, for example, when using the algorithm in Federgruen

and Zheng (1992): when re-optimizing the model for µ = µ1, one may, then, start

with q = q∗(µ0) and increase(decrease) q in the outer loop in the algorithm, see the
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Appendix.

Depending upon whether the sample paths of the leadtime demand process are

continuous or step functions, the long-run average cost is of the form:

c(r, q|θ) =
λK +

∫ r+q
r G(y|θ) dy
q

, (1.1)

or

c(r, q|θ) =
λK +

∑r+q
y=r+1G(y|θ)
q

. (1.2)

In both (1.1) and (1.2), λ and K represent the long-run average demand rate and

the fixed cost incurred for every order batch of size q respectively. All other model

primitives θ ∈ Θ impact the long-run average cost exclusively via the so-called

instantaneous expected cost function G(y|θ). When the long-run average cost of an

(r, q) or (r, nq) policy is given by (1.1)[(1.2)], we refer to the model as the continuous

[discrete] model. Since the representations in (1.1) and (1.2) are common under

(r, q) or (r, nq) policies, we henceforth confine ourselves to the former, without loss

of generality.

The fixed cost K impacts only the first term in the numerator of (1.1) and (1.2).

Zheng (1992) already showed that the optimal reorder level r∗ is decreasing while the

optimal order size q∗ and the optimal order-up-to level R∗ ≡ r∗ + q∗ are increasing

in this parameter1. In contrast, the average demand rate λ impacts both terms in

the numerator of the long-run average cost function and the net monotonicity effect

on the optimal policy parameters is therefore, sometimes, ambiguous2. We establish

our monotonicity properties with respect to all other general model primitives θ ∈ Θ,

merely requiring that the space Θ be endowed with a partial order �. As such, θ

may be a cost parameter, or a parameter of the demand or leadtime distribution.

Alternatively, θ may represent the distribution of a random variable or a complete

stochastic process, or a cost rate function.

1Zheng (1992) confines himself to the continuous model; A similar treatment of the discrete

model can easily be obtained based on the algorithm in Federgruen and Zheng (1992).

2See, however, Corollary 4.1(f)-(g) and Corollary 4.2(e).
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Our first main result is that the optimal reorder level r∗ and the optimal order-

up-to level R∗ are decreasing (increasing) in θ whenever the function G(y|θ) is su-

permodular (submodular) in (y, θ), that is, any of the difference functions G(y2|θ)−

G(y1|θ), with y1 < y2, is increasing (decreasing) in θ. Thus, the monotonicity pat-

terns of r∗ and R∗ are identical in the continuous model (1.1) and the discrete model

(1.2) and the general conditions under which they are obtained are identical as well.

As to the remaining policy parameter q∗, i.e., the optimal order quantity, here

the monotonicity patterns that can be expected, differ themselves, between the con-

tinuous model (1.1) and the discrete model (1.2). In the continuous model, we

show that q∗ can often be guaranteed to be monotone in various model parame-

ters. In the discrete model, occasional unit increases (decreases) between stretches

where q∗(θ) is decreasing (increasing) can not be excluded. This gives rise to a new

monotonicity property which we refer to as rough monotonicity : an integer valued

function is roughly decreasing (increasing) if the step function does not exhibit any

pair of consecutive increases (decreases). We show that pure monotonicity of q∗ in

the continuous model and rough monotonicity in the discrete model, with respect to

any model parameter, can be guaranteed if the supermodularity or submodularity

property of G(·|θ) function is combined with a single additional structural property

of this instantaneous expected cost function. While the conditions in the continous

and discrete model are very similar, the required analysis is fundamentally different.

Finally, we identify a broad sufficient condition for monotonicity of the optimal

cost value; to our knowledge, this condition encompasses all known applications as

well as several new ones.

The most frequently used model in which the long-run average cost of an (r, q)

or (r, nq) policy is given by (1.1) or (1.2), has the following assumptions: the item

is obtained at a given price per unit; inventory costs are accrued at a rate which

is a convex increasing function of the inventory level; stockouts are backlogged

where backlogging costs are, again, accrued at a rate which is a convex increasing

function of the backlog size; leadtimes are generated by a so-called exogenous and

sequential process, ensuring that consecutive orders do not cross and the leadtimes
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are independent of the demand process. We refer to this as the standard inventory

model.

For these standard inventory models, our general results imply, in particular,

that r∗ and R∗ are decreasing in the item’s purchase price, assuming that the in-

ventory carrying cost rate function increases monotonically with the purchase price.

Similarly, r∗ and R∗ are decreasing in other parameters on which the marginal in-

ventory carrying cost rate function depends monotonically, for example, the physical

maintenance and warehousing cost per unit of inventory, or more generally, when

the marginal holding cost rate function is replaced by a pointwise larger one. In

contrast, r∗ and R∗ are both increasing when the marginal backlogging cost rate

function is replaced by a pointwise larger one. As a final application for the standard

inventory model, compare two leadtime demand processes such that the leadtime

demand distribution under the first process is stochastically smaller than that under

the second process. (Dominance of the steady-state leadtime demand distribution

may arise because of a change of the demand process, a stochastic enlargement of

the leadtime distribution, or both.) We show that r∗ and R∗ are always smaller

under the first process compared to the latter. As far as q∗ is concerned, our gen-

eral results imply, for example, monotonicity with respect to the purchase price and

holding cost rates, assuming that the leadtime demand distribution is log-concave

or log-convex, a property shared by most classes of distributions. Similarly, q∗ is

monotone in the backlog cost rate if the complementary cumulative distribution of

the leadtime demand distribution is log-cave or log-convex. In the case of normal

leadtime demands, q∗ is monotone in their mean and standard deviation. Similarly,

if the demand process is a Brownian motion and leadtimes are fixed, q∗ is increasing

in the drift and volatility of the Brownian motion and in the leadtime. Sufficient con-

ditions for (rough) monotonicity can often be stated in terms of broadly applicable

properties of the cdf of the leadtime demand distribution such as log-concavity.
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Chapter 2

Inventory Subsidy versus

Supplier Trade Credit in

Decentralized Supply Chains

We refer to Section 1.2 for an introduction of this chapter. In Section 1.2 we intro-

duced the following three fundamental financing options:

(I) Independent Financing (IF): this reflects the traditional business model where

the retailer finances her inventories through a bank or by drawing from her own cash

reserves, without any supplier involvement.

(II) Inventory Subsidies (IS): same, except that the supplier offers to cover a

specific part of the capital costs associated with the retailer’s inventories.

(III) Trade Credit (TC): here the supplier adopts the financing role otherwise

assumed by a bank or the retailer herself, as in (I) and (II).

This chapter is organized as follows. §2.1 reviews related literature. In §2.2 we

model the supply chain under the IF, IS and TC financing schemes. We show that

all three models can be synthesized into a single unified model. For this unified

model, §2.3 characterizes the equilibrium behavior of the first Stackelberg game

with an exogenously given inventory subsidy or trade credit interest charge. §2.4

achieves the same for the remaining two Stackelberg games, i.e., the game with an
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exogenously given wholesale price and the full Stackelberg game, and is followed by a

brief §2.5 in which the various structural results for the three games are summarized.

§2.6 derives the above mentioned comparison results among the three financing

mechanisms. In §2.7 we develop the two generalized models with default risks. The

final §2.8 summarizes our findings and discusses other variants of our models.

2.1 Literature Review

Several papers in the operations management literature have analyzed the interac-

tion between suppliers and retailers facing demand risks, under one of the above

mentioned payment schemes. Most of the literature confines itself to a single sup-

plier servicing a single retailer. The specific payment terms are either assumed to

be selected by the supplier so as to maximize his profits, or by a third party (coor-

dinator) so as to maximize chain wide profits. The former perspective gives rise to

a Stackelberg game with the supplier as the leader, while in the latter the central

question is whether a perfect coordination mechanism exists and if so how these

parameters are to be selected.

Wholesale price only contract

The first Stackelberg game model in this general area is Lariviere and Porteus

(2001), considering a single period model under a simple constant wholesale price

scheme without any additional incentives, as in IF. The authors show that the sup-

plier’s equilibrium profit function under the retailer’s best response is unimodal in

the wholesale price as long as the demand distribution satisfies a generalization of

the IFR property, which the authors refer to as IGFR (Increasing General Fail-

ure Rate). See Lariviere (1999) and Cachon (2003) for detailed reviews of this

model. Numerical studies in these papers show that the chain wide profits under

the Stackelberg solution are 20-30% below those obtained in the centralized solu-

tion. However, perfect coordination can only be achieved when the wholesale price

equals the supplier’s variable cost rate as shown by Pasternack (1985), resulting in

an unsatisfactory arrangement where the supplier’s profits are reduced to zero.
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Wholesale price and inventory subsidy contract

Anupindi and Bassok (1999) and Cachon and Zipkin (1999) appear to be the

first to consider the inventory cost subsidy as a mechanism by the supplier to as-

sume part of inventory risks. As in IS, the former assume that the retailer(s) obtain

independent financing for their purchases, while the supplier assumes part of the

resulting financing/inventory costs. Considering a periodic review infinite horizon

model, Anupindi and Bassok (1999) deals, among others, with settings where all

retail demand is satisfied from a single stocking point. The authors analyze both

the Stackelberg game that arises when the wholesale price is given and the supplier

selects his subsidy of the inventory cost rate as well as the Stackelberg game that

prevails when the wholesale price is chosend, but only in the special case of inven-

tory cost subsidies. For the latter Stackelberg game, Anupindi and Bassok (1999)

show that under Normal demands, an approximation for the equilibrium supplier’s

profit function is concave. For the former game, unimodality is verified numerically.

We prove that the exact supplier’s equilibrium profit function is unimodal in both

Stackelberg games for a broad class of demand distributions which include the Nor-

mals as a special case, and for arbitrary choices of the exogenously specified contract

terms. In addition, we characterize the (full) Stackelberg game which arises when

the supplier controls both his wholesale price and his inventory subsidy. The single

period model in Zhou and Groenevelt (2008) may be viewed as a variant of the

Stackelberg game under a given inventory subsidy, indeed, the extreme case where

the supplier assumes all the inventory costs. These authors also incorporate the

possibility of a retailer going bankrupt when his loss exceeds a certain threshold.

Another departure from the literature is the assumption that the retailer’s capital

cost rate is endogenously selected by the bank along with a maximum percentage of

the purchase order which he is willing to finance. The bank selects these financing

terms in advance of the supplier’s wholesale price so as to break even in expectation.

Other papers have established that inventory subsidies may be used as an essen-

tial component of coordination mechanisms, again in a supply chain with a single

supplier and a single retailer. Cachon and Zipkin (1999) establish this in an infinite
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horizon model, assuming both chain members employ a base-stock policy. Similarly,

Wang and Gerchak (2001) show, in a single sales period model, that a combined

wholesale price/inventory cost rate subsidy contract achieves perfect coordination

in the supply chain. (The demand distribution may depend on the stocking level.)

The availability of an inventory cost rate subsidy as a lever allows for a continuum

of coordination mechanisms beyond the single and unsatisfactory (wholesale price

only) mechanism identified by Pasternack (1985). Narayanan et al. (2005) analyze

the same combined wholesale price/inventory cost rate subsidy contracts to coor-

dinate a supply chain consisting a supplier and two retailers. Finally, Nagarajan

and Rajagopalan (2008) consider inventory subsidies in the context of Vendor Man-

aged Inventories where an inventory cost rate subsidy is specified as part of the

contractual agreement.

Wholesale price and trade credit contract

Kouvelis and Zhao (2009) and Yang and Birge (2011) have analyzed settings

where the supplier himself acts as the financing institution, offering a trade credit

option. In the former’s Stackelberg game model, the supplier specifies a cash-on-

delivery wholesale price and a capital cost rate for units paid at the end of the sales

period. As in Zhou and Groenevelt (2008), the authors assume that the retailer’s

ability to pay upfront is constrained by her initial cash balance and they incorporate

the possibility of bankruptcy at the end of period. This supplier financing scheme is

compared with the one in which an outside bank finances the units bought on credit.

As in Zhou and Groenevelt (2008), the interest rate is determined so that the bank

breaks even in expectation. Yang and Birge (2011) consider a variant of this model,

incorporating credit limitations for the supplier and a liquidation or distress cost in

the event of bankruptcy.

Other related papers include Gupta and Wang (2009) who characterize the re-

tailer’s optimal procurement strategy under a TC payment scheme. In their paper,

the supplier charges interest as a general nonlinear function of the amount of time

elapsed between the delivery of goods and the payment. The authors show that

under the standard linear holding and backlog cost the base-stock policy is optimal.
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In Chapter 3, we provide a simple proof and extend the structural result for the

optimal procurement policy to many other settings, for example, those with fixed

procurement costs and/or price-dependent demand.

Finally, we refer to Buzacott and Zhang (2004) and references there for a limited

stream of papers addressing the important topic of inventory management under

credit restrictions in a single firm setting.

2.2 Model

We characterize the interaction between the supplier and the retailer in an infinite

horizon periodic review system. We choose an infinite planning horizon so as to

model an ongoing trade relationship between the supplier and the retailer involving

many repeated procurement decisions for storable items. (The stationary infinite

horizon model is a standard framework in the supply chain literature when repre-

senting repeating procurement decisions, see for example Cachon (2003) and Zipkin

(2000).) While some inventory models involve parameters and distributions that

fluctuate cyclically or, in dependence of a more general exogenous state variable,

the treatment of such phenomena appears tangential to the questions raised in this

paper and complicates its analysis and results needlessly. In other words, there is

no reason to believe that the schemes’ relative advantages and disadvantages differ

in environments with stationary versus fluctuating parameters. See, however, §2.8

for a generalization of our model in which interest rates fluctuate stochastically.

The retailer faces a sequence of independent and identically distributed customer

demands under an exogenously given retail price. She may place a purchase order

with the supplier at the beginning of any period. Orders placed at the beginning of a

period arrive in time to satisfy that period’s demand. Unsatisfied demand results in

lost sales. As a consequence, the retailer’s sales volume, and hence, that of the sup-

plier depend on the retailer’s inventory replenishment strategy; the latter, in turn,

depends on the structure of the selected supplier financing scheme. We distinguish

between two types of inventory carrying costs: (i) physical storage and maintenance
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costs, assumed to be proportional with each end-of-the-period inventory level, (ii)

financing costs, the structure of which depends on the specific terms of the payment

scheme in place. In the base model, we assume that the likelihood of the retailer

defaulting on her payment is negligible. See, however, §2.7 for generalizations that

allow for defaults.

Let D = the random demand observed in an arbitrary period, with a known

cdf F (y), continuously differentiable pdf f(y), mean µ <∞ and standard deviation

σ <∞.

p = the per unit retail price.

c = the per unit supplier’s variable procurement cost rate.

h0 = the physical (storage and maintenance) cost per unit carried in inventory

at the end of a period.

As mentioned in the Introduction, αr denotes the capital cost rate incurred by

the retailer under independent financing, that is when drawing from her own cash

reserves or from a credit line offered by the bank. (The size of the cash reserves or

the credit line is assumed to be ample.) In the former (latter) case, αr represents

the rate of return on its best alternative investment option (bank loan rate). If both

capital sources are available, αr denotes the lower of the two rates. αs denotes the

capital cost rate incurred by the supplier, determined analogously.

Even if αr and αs both represent bank loan rates, significant differences between

these rates arise because of variety of factors. These include the firm’s country

or region, the industry it belongs to, the size of the credit line, the size of the

firm (measured by its assets or gross revenues), the loan type, as well as its overall

financial credit record and several financial ratios on its balance sheet and profit/loss

statement1. Several papers have estimated the relative importance of these factors

1Bank rates for commercial loans and credit lines are determined as a spread with respect to

a base rate, for example LIBOR (The London Interbank Offered Rate) or the U.S. prime rate.

Firms are assigned one of a small number of possible risk ratings based on public or private bond

ratings, the above mentioned financial ratios and its liquidity of the collateral provided (see, for

instance, Koch (1995)). The dependency of bank rates on these characteristics is apparent in

publicly available databases such as DealScan.
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from large databases of bank loans, e.g., Berger and Udell (1990, 1995), Booth

(1992), Petersen and Rajan (1994), Beim (1996) and Fernandez et al. (2008). While

identifying many factors that explain major differences in bank loan rates, these

studies conclude that the role of the borrower’s default risk is either insignificant or

only of moderate importance2.

In addition, all the above loan rate determinants represent characteristics of

the firm’s past and global performance across all of its business units and product

lines, as opposed to the specific product line considered here. Since in this paper

we focus on firms with many markets and product lines, we treat, both under self-

and bank-financing, the capital cost rates αs and αr as exogenous parameters (or

exogenous stochastic processes, see §2.8), analogous to their treatment in almost all

of the inventory and supply chain literature.

2.2.1 Independent Financing (IF)

Under IF, the retailer finances her inventories with a bank, or from her own cash

reserves (self-financing), i.e., the supplier is paid immediately upon delivery of the

procurement orders either by the bank or through self-financing. In the former case,

IF is often implemented through factoring where the purchase invoice is owed to

the bank, and the retailer draws from a credit line; in the latter case the purchasing

invoice is paid from and owed to the firm’s cash reserves. The supplier charges a

constant wholesale price w. It is optimal for the retailer to determine its procurement

decisions in accordance with a base-stock policy, say with base-stock level y. (Under

a base-stock policy, the inventory level is increased to the base-stock level in any

period whose starting inventory is below that level.) Let

s(y) = Emin{D, y} = the expected retailer sales per period under a base-stock

policy with base-stock level y,

2Beim(1996), for example, states “Factors which are important in bond pricing, such as borrower

risk and loan term, have only moderate importance in bank lending, while other factors such as

borrower size and geographic location, lender identity, and pricing benchmark have unexpectedly

high significance.”
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h(y) = E(y − D)+ = the expected end-of-the-period inventory level under a

base-stock policy with base-stock level y.

h(y) also denotes the expected number of units at the end of a period that have

been received by the retailer but not yet paid for under the base-stock policy, so that

wh(y) represents the average per period amount of outstanding debt to the bank or

the firm’s own cash reserves, which is charged at a capital cost rate αr, either by

the bank or by drawing from the retailer’s own cash reserves.

The profit functions of the retailer and the supplier are therefore given by:

πIFr (w, β, y) = (p− w)s(y)− (αrw + h0)h(y), πIFs (w, β, y) = (w − c)s(y)

2.2.2 Inventory Subsidies (IS)

Under IS, the retailer continues to finance her inventories with a bank, or from her

own cash reserves. However, the supplier offers to subsidize the retailer’s holding

cost, specifically the capital cost component. Let β be the subsidy rate where

0 ≤ β ≤ αr. Thus the effective capital cost rate of the retailer is αr − β. The profit

functions of the retailer and the supplier are now given by:

πISr (w, β, y) = (p−w)s(y)−[(αr−β)w+h0]h(y), πISs (w, β, y) = (w−c)s(y)−βwh(y).

Note that IF is a special case of IS with β = 0.

2.2.3 Trade Credit (TC)

Under TC the supplier adopts the financing function, permitting the retailer to

delay payments for purchased goods until the time of sale3. The supplier charges

the retailer a given interest rate for each period during which payment for an item

is outstanding. This per period interest rate may vary as a function of the item’s

shelf age4.

3In practice, the due date is often selected as a fixed calendar day, decoupled from the time of

sale.

4For example, the supplier may charge a flat rate from the time of delivery, or he may offer

an initial grace period of G periods without any interest charges, followed by a constant interest
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To provide a fair comparison of IF and IS, we confine ourselves to the case where

the supplier charges a flat interest rate α ≤ αr irrespective of the item’s shelf age.

At the same time, we consider both the case where α ≥ αs and the one where

α < αs, i.e., the supplier either incurs a net revenue or a net cost when extending

trade credit to the retailer. As under IF and IS, it is easily verified that a base-stock

policy continues to be optimal for the retailer5. Using y to denote the base-stock

level, the expected amount of payables at the end of each period equals wh(y), as

before. This results in an expected per period cost αwh(y) to the retailer, and an

equivalent revenue for the supplier. The supplier finances his working capital at a

cost rate αs, either by his bank or drawing from his cash reserves, therefore the net

interest revenues for the supplier are given by (α−αs)wh(y). We conclude that the

chain members’ profit functions are now given by:

πTCr (w,α, y) = (p−w)s(y)−(αw+h0)h(y), πTCs (w,α, y) = (w−c)s(y)+(α−αs)wh(y).

2.2.4 A General Model

The IF, IS and TC models are special cases of the following general model.

πr(w, βg, y) = (p− w)s(y)− [(α− βg)w + h0]h(y) (2.1)

πs(w, βg, y) = (w − c)s(y)− βgwh(y) (2.2)

Here βg represents the supplier’s effective capital cost rate (ECCR), a term of trade

to be selected by him along with the wholesale price w. Moreover, the supplier’s

ECCR βg is to be selected in a given interval [α, α] with α ≤ α. Note that α − βg

may be interpreted as the retailer’s ECCR.

rate α1, applied to any additional period. As a third example, the interest rate may be increased

to a level α2 > α1 for units purchased more than G2 periods ago. In general, as in Gupta and

Wang (2009), let α(t) be the incremental interest rate charged for any unit with a shelf age of t

periods, i.e., whose payment has been outstanding for t periods, and assume that α(·) is an arbitrary

non-decreasing function.

5This structural result continues to apply under general increasing shelf-age dependent interest

rate function α(·), see Gupta and Wang (2009) and Chapter 3. Chapter 3 also characterize the

optimal procurement policy under more general cost and revenue structures.
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We obtain the IS model by setting βg = β, α = 0 and α = αr. The IF model

has the same parameters as IS except that βg = 0. The TC model can be obtained

by selecting βg = αs − α, α = αs − αr and α = αs.

It is well known and easily verified that in the general model, the retailer’s

optimal base-stock level y(w, βg) in response to given trade terms (w, βg) is given

by a specific fractile of the demand distribution. More specifically, y(w, βg) is the

fractile that satisfies

F (y) = 1− (α− βg)w + h0

p− w + (α− βg)w + h0
. (2.3)

Note that y(w, βg) is decreasing in w and increasing in βg.

Next in §2.3-2.4, we focus on the general model specified by the profit functions

(2.1) and (2.2) and characterize the equilibrium behavior in three distinct Stackel-

berg games with the supplier as the leader and the retailer as the follower. In the

first Stackelberg game the supplier selects the wholesale price under an exogenously

given ECCR βg; In the second Stackelberg game the supplier selects his ECCR un-

der a given wholesale price w, while in the third game the supplier controls both

terms of trade, w and βg.

2.3 The Stackelberg Game under a Given ECCR

Given the supplier’s ECCR βg, he chooses his optimal wholesale price on the interval

[0, p], taking into account the retailer’s best response procurement strategy. (In

some settings, the supplier may offer the product at a wholesale price below the

variable cost rate while still realizing a profit on the basis of the finance charges.)

This gives rise to the equilibrium profit function Π̂s(w|βg) ≡ πs(w, βg, y(w, βg)).

Analysis of the Stackelberg game requires an understanding of the structure of the

equilibrium profit function Π̂s(·|βg). However, it is more convenient to express the

supplier’s equilibrium profit as a function of the retailer’s base-stock level y, as

opposed to his wholesale price. Since the retailer’s optimal base-stock level y(w, βg)

is strictly decreasing in w, we can write w as a function of y. Let w(y) denote the
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inverse function, i.e.,

w(y) ≡ p− (p+ h0)F (y)

1− (1− δ)F (y)
, (2.4)

where δ = α − βg ≥ 0. The supplier’s equilibrium profit, as a function of the base-

stock level y, is thus given by: Πs(y|βg) = (w(y) − c)s(y) − βgw(y)h(y). After

determining the optimal targeted base stock level y∗βg , the corresponding wholesale

price that induces this base stock level is immediate from (2.4).

The supplier’s equilibrium profit as a function of y can be written as

Πs(y|βg) = w(y)(s(y)− βgh(y))− cs(y) = w(y)ξ(y)− cs(y). (2.5)

where ξ(y) ≡ s(y)−βgh(y). In other words, if the supplier assumes part of the capital

costs associated with the retailer’s inventory, either in a TC or IS arrangement, this

is equivalent to accepting a reduction of the expected sales volume per period s(y)

to the lower quantity ξ(y), where the correction term is strictly proportional to the

ECCR βg. We therefore refer to ξ(y) as the supplier’s effective expected sales volume,

in contrast to the gross expected sales quantity s(y). In terms of the gross expected

sales quantity, it is always in the supplier’s interest to induce a higher base-stock

level. Since ξ′(y) = 1 − (1 + βg)F (y), the effective expected sales volume increases

with the base-stock level but only up to the 1/(1 + βg)-th fractile of the demand

distribution, i.e.,

ξ′(y) = 1− (1 + βg)F (y) > 0 if and only if y < ys ≡ F−1

(
1

1 + βg

)
. (2.6)

(In case βg = 0, define ys ≡ ∞.) Clearly, the supplier has no interest in targeting

a base-stock level above this critical fractile ys: for any y > ys, either the effective

expected sales volume itself is negative, resulting in negative profits, or the marginal

profit Π′(y|βg) < 0 since w′(y) < 0, ξ′(y) < 0 and s′(y) > 0. In other words, the

critical fractile ys is a natural bound for the targeted base-stock level.

Similarly, a second natural bound for the targeted base-stock level is given by

the 1/(1 + h0/p)-fractile, that is F−1(1/(1 + h0/p)). To verify this, note from (2.3)

that F (y) is a decreasing function of w, so that F (y) is bounded from above by the

expression for the right-hand side of (2.3), obtained when w = 0. Combining the
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two upper bounds, we specify, without loss of generality, that

ymax ≡ min

{
ys, F

−1

(
1

1 + h0/p

)}
= F−1

(
1

1 + max{h0/p, βg}

)
. (2.7)

(As above, in case βg = h0 = 0, define ymax ≡ ∞.) We now show the supplier’s

equilibrium profit is quasi-concave is quasi-concave both as a function of the base-

stock level and as a function of the wholesale price.

Theorem 2.1 (Stackelberg game under given ECCR) Assume the demand distribu-

tion is IFR. (a) The supplier’s equilibrium profit Πs(·|βg) is quasi-concave on the full

base-stock level range [ymin = 0, ymax], achieving its maximum at a unique interior

point y∗βg .

(b) The supplier’s equilibrium profit Π̂s(·|βg), viewed as a function of w, is quasi-

concave on the wholesale price range [0, p], achieving its maximum at a unique in-

terior point w∗βg = w(y∗βg), and with limw↑p Π̂s(w|βg) = 0.

Anupindi and Bassok (1999) address this Stackelberg game in the special case of

IF arrangements with h0 = 0. The authors state that they are unable to determine

if the supplier’s equilibrium profit function is “convex, concave, or even unimodal

in the wholesale price”. This contrasts Lariviere and Porteus (2001), dealing with

the single period Stackelberg game under IF, who show that the supplier’s equilib-

rium profit function is quasi-concave under a generalization of the IFR condition.

(Indeed, the structure of the profit functions in a single period model is essentially

simpler.) Anupindi and Bassok (1999) obtain a characterization of the structure

of the supplier’s equilibrium profit function only for Normal demand distributions

and under Nahmias (1993)’ approximation of the inverse of the standard Normal

cdf by a difference of power functions. Returning to single period models, Kouvelis

and Zhao (2009) address a variant of the Lariviere and Porteus (2001) model with

a bank loan rate endogenously determined so that the bank breaks even in expecta-

tion, considering the possibility of default. The authors show that in this case the

Stackelberg game reduces to that of Lariviere and Porteus (2001) with the capital

cost rate given by the bank’s cost of funds. However, in the same model under

supplier financing, the authors show that the supplier’s equilibrium profit function
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fails to be quasi-concave even under special cases of the class of IFR distribution,

for example, when the failure rate is required to be convex as well as increasing; see

Zhou and Groenevelt (2008) for a similar characterization in their model.

Finally, it is of interest to investigate how the optimal wholesale price depends on

the (exogenously given) ECCR. Based on extensive numerical studies, we conjecture

that the optimal wholesale price is increasing in the supplier’s ECCR.

2.4 The Remaining Two Stackelberg Games

We first assume that the wholesale price is exogenously given and the supplier is

able to select his ECCR value βg. We characterize the equilibrium solution of this

Stackelberg game in §2.4.1. In §2.4.2, we show how the equilibrium performance

measures depend on the wholesale price and characterize the solution of the full

Stackelberg game.

2.4.1 The Stackelberg Game under Given Wholesale Price

It is, again, useful to represent the supplier’s equilibrium profits as a function of the

targeted base-stock level (as opposed to the selected ECCR). It follows from (2.3)

that

βg(w, y) ≡ α−
( p
w
− 1
)( 1

F (y)
− 1

)
+
h0

w
. (2.8)

Substituting (2.8) into (2.2), we obtain the desired representation of the supplier’s

equilibrium profits:

Πs(y|w) = (w − c)s(y)−
(
wα− (p− w)

(
1

F (y)
− 1

)
+ h0

)
h(y). (2.9)

Since the ECCR must be selected in the interval [α, α], the targeted base-stock

level y satisfies the bounds, y ≤ y ≤ y, again specified as fractiles of the demand

distribution:

y ≡ F−1

(
p− w

p− w + w(α− α) + h0

)
and y ≡ F−1

(
p− w

p− w + h0

)
. (2.10)

We now show that the supplier’s equilibrium profit function is quasi-concave on the

relevant range [y, y], similar to the corresponding function in the Stackelberg game
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of the previous section. The result requires a variant of the IFR condition, which

we refer to as the Modified Increasing Failure Rate (MIFR) property:

There exists a number L such that ζ(y) ≡
∫ y

0 F (u)du

F 2(y)

f(y)

1− F (y)
is increasing for y ≥ L.

The following Lemma identifies three important classes of distributions that

satisfy the MIFR property for an appropriate value of L. (For some important

distributions ζ(y) fails to be monotone on its complete support.)

Lemma 2.1 (a) If a distribution is IFR with a non-increasing density function

on the positive half line, it has the MIFR property with L = 0. Examples are the

uniform and exponential distributions.

(b) All normal distributions have the IFR and MIFR property with L = µ−1.8σ.

In summary, the MIFR condition is a variant of the traditional IFR property,

satisfied on the complete support of exponential and uniform distributions. More

generally, let

w ≡ sup{w ≤ p : y(w) ≥ L}. (2.11)

Since y(·) is a decreasing function, the MIFR property is satisfied on the full feasible

range [y(w), y(w)] if and only if w ≤ w. We assume that w is well defined, which,

by the monotonicity property of y(·), is equivalent to L ≤ F−1( p
p+h0

) = y(0). When

L = 0 (, e.g., exponential and uniform distributions), w = p. For Normals, F (L) =

F (µ − 1.8σ) = 0.036, so that, by (11), w = p(1−F (L))−F (L)h0
1−F (L)+F (L)(α−α) = p−0.037h0

1+0.037(α−α) . In

other words, either the MIFR property holds on the complete feasible range [0, p],

or it does so unless the retailer’s profit margin is exceedingly low, in the Normal

case resulting in a fill rate of 3.6%!

The marginal equilibrium profit function for the supplier is given by:

Π′s(y|w) = (w − c)(1− F (y))− (wα+ h0 − (p− w)(
1

F (y)
− 1))F (y)− (p− w)

h(y)f(y)

F 2(y)

= (p− c)(1− F (y))− (wα+ h0)F (y)− (p− w)
h(y)f(y)

F 2(y)
(2.12)

Let y0 = inf{L ≤ y : Π′s(y|w) ≤ 0} denote the smallest base-stock level for

which the supplier’s marginal equilibrium profit is negative. (L ≤ y0 < ∞ since



33

limy→∞Π′s(y|w) = −(wα + h0) − (p − w) limy→∞ h(y)f(y) ≤ −(wα + h0).) In

Theorem 2.2, we show that the optimal base-stock level y∗w ≡ argmax
y≤y≤y

Πs(y|w) and

the associated optimal ECCR β∗g (w) ≡ βg(w, y
∗
w) are obtained by the projection of

y0 onto [y, y], i.e., by determining the point in [y, y] which is closest to y0.

Theorem 2.2 (Stackelberg game under given wholesale price) Fix w and assume

the demand distribution is MIFR on the feasible range [y, y].

(a) The supplier’s equilibrium profit function Πs(·|w) is quasi-concave, with y0

as its unique maximum on [L,∞).

(b) If y0 < y, y∗w = y and β∗g (w) = βg(w, y) = α.

If y ≤ y0 ≤ y, y∗w = y0 and α < β∗g (w) = βg(w, y
∗
w) < α.

If y0 > y, y∗w = y and β∗g (w) = βg(w, y) = α.

(c) The supplier’s profit Π̂s(·|w), viewed as a function of βg, is quasi-concave on

[α, α].

As mentioned in §1.2, Anupindi and Bassok (1999) address this Stackelberg

game as well, under the assumption that the supplier’s equilibrium profit function

Π̂s(·|w) is quasi-concave. (The authors verified numerically that the assumption

holds for Normal demands when substituting their cdf with the above approximation

in Nahmias (1993).) We prove that the exact function is quasi-concave under all

Normal demand distributions, as well as under the much broader MIFR class. We

are not aware of any other Stackelberg game models in which the supplier selects a

credit rate or inventory subsidy, under a given wholesale price.

2.4.2 Comparative Statics and the Full Stackelberg Game

We now characterize how the optimal base-stock level, the associated ECCR and the

supplier’s profit value vary with the wholesale price. We start with a characterization

of the impact the wholesale price has on the unconstrained optimal base-stock level

y0(w) = argmaxy≥L Πs(y|w). Rewrite (2.12) as:

Π′s(y|w) = (p− c)− (p− c+ pα+ h0)F (y) + (p− w)F (y)(α− κ(y)) (2.13)
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where κ(y) ≡ h(y)f(y)
F 3(y)

. In general, y0(w) cannot be obtained in closed form except

when the wholesale price w = p. It is easily verified from (2.13) that y0(p) = yp

where

yp ≡ max{L,F−1(
p− c

p− c+ pα+ h0
)}. (2.14)

The following theorem shows that y0(·) always varies monotonically with the

wholesale price, approaching y0(p) as w ↑ p. Interestingly, this unconstrained opti-

mal base-stock level may be increasing in the wholesale price; indeed, as substanti-

ated by Proposition 2.1 below, this is the prevalent case for most common demand

distributions.

Theorem 2.3 Assume the demand distribution is MIFR. (a) y0(·) is a continuous

function.

(b) Exactly one of the following four scenarios arises:

(b-i) L < yp, κ(yp) > α and the function y0(·) increases on [0, p] until reaching

the level yp = y0(p).

(b-ii) L < yp, κ(yp) = α and y0(w) = yp for all w ∈ [0, p].

(b-iii) L < yp, κ(yp) < α and y0(·) decreases on [0, p] until reaching the level

yp = y0(p).

(b-iv) L = yp and y0(·) decreases on [0, p] until it reaches the level L = yp.

Observe that it is possible to determine which of the four patterns (b-i) - (b-iv)

applies on the basis of a single comparison of the value κ(yp) and α (, unless L = yp

in which case pattern (b-iv) applies unequivocally).

While Theorem 2.3 allows for the unconstrained optimal base-stock level to be

either increasing or decreasing in the wholesale price, the former case prevails for

almost all MIFR distributions. This counterintuitive result is explained as follows.

An increase in the wholesale price impacts the retailer’s base-stock level/sales in

two ways. As long as the inventory cost subsidy/interest rate reduction remains the

same, the retailer’s base-stock level/sales decreases as the wholesale price increases.

We refer to this as a direct negative effect. On the other hand, an increase in

the wholesale price induces an increase in the inventory cost subsidy/interest rate
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reduction, which results in an increase in the retailer’s base-stock level/sales. This

is an indirect positive effect. Proposition 2.1 shows that for most MIFR distributions

the indirect positive effect dominates the direct negative effect, i.e., an increase in

the wholesale price results in an increase in the retailer’s base-stock level.

Proposition 2.1 (a) If the demand distribution is uniform, y0(·) increases on [0, p].

(b) If the demand distribution is exponential, p ≤ 4c and α ≤ 0.77, y0(·) increases

on [0, p].

(c) If the demand distribution is Normal, y0(·) increases on [0, p].

We are now ready to characterize how the wholesale price impacts the supplier’s

equilibrium profits as well as the constrained base-stock level y∗w = argmax
y(w)≤y≤y(w)

Πs(y|w)

and his chosen ECCR. For any continuous function H(w), we define w0 to be a mode

or a local maximum if H(w0) ≥ H(w) on some interval including w0, with strict

inequality to the left or right of w0.

Theorem 2.4 (Comparative Statics and Full Stackelberg Game) Assume the de-

mand distribution has both the IFR and MIFR properties on the feasible range

[y(w), y(w)] for w ∈ [0, w].

The supplier’s equilibrium profits

(a1) The supplier’s equilibrium profit function Π∗s(·) is continuously differentiable.

(a2) The supplier’s equilibrium profit function Π∗s(·) is unimodal or bimodal where

the two potential modes are w∗α, w∗α, or w. Moreover, when w = p, the two

potential modes are w∗α and w∗α.

The optimal base-stock level and ECCR

(b1) Assume y0(·) is increasing, i.e., pattern (b-i) or (b-ii) in Theorem 2.3 applies.

There exist two critical wholesale prices 0 < w1 ≤ w2 ≤ w, such that

(1) The optimal base-stock level y∗w equals y when w ≤ w1, y when w < w2

and increases continuously from y(w1) to y(w2) when w1 < w ≤ w2.

(2) The supplier’s optimal effective capital rate β∗g equals α when w ≤ w1, α

when w > w2 and increases continuously from α to α when w1 < w ≤ w2.
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(b2) Assume y0(·) is decreasing, i.e., pattern (b-iii) or (b-iv) in Theorem 2.3 ap-

plies. The optimal base stock level y∗w is continuously decreasing on [0, w].

The full Stackelberg Game

(c) The optimal solution of the full Stackelberg game is (w∗α, α), (w∗α, α), or (w, β∗g (w)).

Moreover, when w = p, it is either (w∗α, α) or (w∗α, α).

The monotonicity results in part (b1) for the prevalent case where y0(·) is in-

creasing are exhibited graphically in Figure 2.1 below.

Figure 2.1: Monotonicity of the optimal ECCR and base-stock level when y0(·) is

increasing.

Note: Demand follows a Normal distribution with µ = 100 and µ/σ = 3. p = 130, c = 100, h = 5, αr =

0.1, αs = 0.03.

In view of part (c), to solve the full Stackelberg game, it suffices to compute

w∗α and w∗α as the unique maximum of the quasi-concave functions Π̂s(w|βg = α)

and Π̂s(w|βg = α) respectively, as well as β∗g (w) as the unique maximum of the

quasi-concave function Π̂s(βg|w = w) when w < p.

Theorem 2.4 exhibits the possibility of the supplier’s equilibrium profit function

Π∗s(·) being bimodal. Indeed, we have observed such instances, with a Normal

demand distribution, however, only when the coefficient of variation is high (σµ ≥ 1)

and the chain-wide profit margin p−c
c is small (≤ 0.1). These instances combine a

high degree of demand risk with low potential to achieve variable profit margins,

thus enticing the supplier to offer a low wholesale price under which only a minimal

amount of supplier financing can be justified, this as an alternative to the usual mode
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(w∗α, α) representing a maximal degree of supplier financing and a commensurately

higher wholesale price. For the three classes of distributions discussed above (, see

Proposition 2.1), the following proposition identifies generally satisfied conditions

under which Π∗s(·) is unimodal with a unique local maximum at w = w∗α, or w = w.

Proposition 2.2 In the full Stackelberg game, the optimal solution is

(a-UNI) (w∗α, α) when the demand distribution is uniform.

(b-EXP) (w∗α, α) when the demand distribution is exponential and the condition

in Proposition 2.1(b) is satisfied, i.e., p−c
c ≤ 3 and α ≤ 0.77.

(c-NORM) either (w∗α, α) or (w, β∗g (w)) when the demand distribution is Nor-

mal with coefficient of variation σ
µ ≤ 0.45, the profit margin p−c

c ≥ 7.7% and

pmax{αr, αs}+ h0 ≤ p.

The conclusions in Proposition 2.2 are, thus, guaranteed for uniform distribu-

tions. For exponential and Normals they hold almost invariably: single period

interest rate almost never exceeds 77%, end-to-end profit margins are, invariably,

above 7.7% and below 300%, while the single period total inventory carrying cost of

an item is, typically, below its retail price. Normal distributions are generally not

employed when the coefficient of variation is above 0.5; the upper bound in part

(c) is 0.45, and, therefore, is hardly restrictive. We confine ourselves, henceforth, to

the above three classes of problem instances addressed in Proposition 2.2 (, except

where results hold unconditionally):

(C): The problem instance belongs to the class (UNI), (EXP) or

(NORM).

As mentioned in §1.2 and shown in §2.6, we show that the relative magnitude of

various performance measures of interest across different supplier financing mech-

anisms, IF, IS and TC, depend largely on the capital cost rates, αr and αs. We

therefore complete this section with characterizations of how these capital cost rates

impact on the full Stackelberg game equilibrium.

Proposition 2.3 (a) Under TC, there exists a critical value 0 ≤ αcs ≤ ∞, such

that, as αs increases up to αcs, w
∗ increases with αs while the retailer’s trade credit
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interest rate α∗ = 0; as αs increases beyond αcs, w
∗ is kept constant at the level w

and α∗ is increasing in αs.

(b) Under IS, there exist a critical value 0 ≤ αcr ≤ ∞, such that, as αr increases

up to αcr, the supplier provides the maximum subsidy β∗ = αr while increasing the

wholesale price w∗; as αr increases beyond αcr, the supplier maintains the maximum

wholesale price w while increasing retailer’s effective capital coast rate (αr − β∗).

2.5 Summary of the Three Games

In the Stackelberg game that arises under a given supplier’s ECCR βg, we have

shown that, as long as the demand distribution is IFR, the supplier’s equilibrium

profit varies as a quasi-concave function of the targeted base-stock level, or, as a

quasi-concave function of the selected wholesale price. The optimal wholesale price

is an interior point of the feasible price range.

Conversely, assume that the wholesale price is exogenously given and the sup-

plier selects his ECCR. Under a slight variant of the IFR condition (MIFR), the

supplier’s equilibrium profit, again, first increases with the selected ECCR and, af-

ter reaching a peak, declines ever thereafter. How does the wholesale price impacts

on the various performance measures? A key determinant is how, in the absence

of any ECCR bounds, the unconstrained equilibrium base-stock level y0(·) varies

with the wholesale price. Here, we show that y0(·) is either continuously increas-

ing or decreasing, with a single closed form test determining which case prevails.

Surprisingly, the former case is guaranteed under many classes of (MIFR) demand

distributions (, e.g., Normals, exponentials and uniform distributions), and this is

explained by the fact that the direct negative effect associated with a higher pur-

chase price is dominated by the improved financing terms offered by the supplier in

response to a higher wholesale price. When y0(·) is increasing, the wholesale price

interval can be partitioned into three parts: in the lower range, the optimal ECCR

equals to the lowest possible value α; In the middle range it continuously increases

to α and stays there in the upper range. The equilibrium base-stock level and hence
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the associated expected sales volume decrease with the wholesale price in the lower

and upper range, but increase with the latter in the middle range. It is only in the

far rarer case where y0(·) is decreasing that the equilibrium base-stock level and the

expected sales volume decrease monotonically with the wholesale price.

As far as the supplier’s expected profit is concerned, it is, in general, a unimodal

or bimodal function of w, where the potential mode(s) are w∗α or w∗α (corresponding

to the ECCR equaling the lowest or highest possible value), or the highest feasible

wholesale price w. This also characterizes the solution of the full Stackelberg game.

For the three classes of distributions discussed above, we show that under minor

parameter conditions, only the price wα or w solves the full Stackelberg game.

2.6 Comparison of Different Financing Mechanisms

We systematically compare the equilibrium results of various performance measures

across the different financing mechasnisms. In §2.6.1, we compare the IS and TC

arrangements. In §2.6.2, we assume that the chain initially operates under IF, i.e.,

without any supplier financing, and investigate whether and when both chain mem-

bers are better off when switching to TC or IS. Beyond the many theoretic rankings

obtained in §2.6.1 and §2.6.2, reported in §2.6.3 is a numerical study identifying

many other such rankings.

2.6.1 Comparing IS and TC

This subsection is devoted to the comparison of the supply chain performance under

the two supplier financing schemes IS and TC . In the remainder of the section, we

append a superscript “TC” or “IS” to any one of the parameters or performance

measures. We first show the supplier’s preference for the TC or the IS mechanism

hinges entirely on a comparison of his capital cost rate with that of the retailer.

Indeed, unlike the characterization of the equilibria in the various Stackelberg games,

these comparison results apply under any demand distribution.
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Theorem 2.5 (The supplier’s profits) (a) For any wholesale price w ∈ [0, p], the

supplier prefers TC (IS) if αs ≤ (>)αr.

(b) In the full Stackelberg game where the supplier chooses both the wholesale

price and the trade credit interest/inventory subsidy, the supplier prefers TC (IS) if

αs ≤ (>)αr.

As far as ranking the retailer’s profits and other performance measures is con-

cerned, we show that, at least under condition (C) these rankings, too, depend solely

on the relationship of the capital cost rates. Moreover, the retailer’s preference is

perfectly aligned with that of the supplier. Recall that the TC and IS models em-

ploy different parameters: αIS = 0 and αTC = αs − αr; αIS = αr and αTC = αs.

Note αIS − αIS = αTC − αTC = αr. Thus, by (2.10), y and y are the same under

both TC and IS, and so is w by (2.11).

Theorem 2.6 (The remaining performance measures) Assume condition (C).

For any given wholesale price w ∈ [0, w], if αs ≤ (>)αr,

(A-1) The retailer prefers TC (IS);

(A-2) The optimal base-stock level and the expected sales volume are higher

under TC (IS).

In the full Stackelberg game, if αs ≤ (>)αr,

(B-1) The retailer prefers TC (IS).

(B-2) The optimal wholesale price is lower under TC (IS).

(B-3) The optimal base-stock level and the expected sales volume are higher

under TC (IS).

2.6.2 Comparing the Two Supplier Financing Mechanisms with IF

Under any given wholesale price, both chain members are clearly better off going

from IF to the Stackelberg equilibrium IS arrangement: under IS, the supplier has

an additional term of trade to choose from and any selected subsidy rate results
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in a point-wise larger profit function for the retailer. By Theorem 2.5 and 2.6(a),

additional profit improvements are enjoyed by both when adopting the equilibrium

TC arrangement, as long as αs < αr. We summarize:

Proposition 2.4 For any w ∈ [0, w],

(i) both chain members are better off under the Stackelberg equilibrium IS arrange-

ment as opposed to IF;

(ii) assuming αs < αr, the supplier gains even more benefit when switching to the

Stackelberg equilibrium TC arrangement. The same is true for the retailer

under condition (C).

In other words, Proposition 2.4 shows that, under a given wholesale price, both

chain members are better off under the Stackelberg equilibrium IS arrangement.

This result holds for arbitrary demand distributions. When the supplier’s cost of

capital is lower than that of the retailer, the equilibrium TC arrangement results

in even greater benefit for both chain members, albeit that the retailer’s additional

benefit has only been shown under Condition (C).

However, if αs > αr and the choice is restricted to the IF and TC arrangements,

both chain members may prefer IF. As an example, assume the wholesale price w

is selected in the interval [0, wIS1 ]. Since αs > αr, by Theorems 2.5 and 2.6, we

know that both chain members earn a lower profit under TC as opposed to IS under

which arrangement their profits equal those under IF, since β∗ISg (w) = αIS = 0 for

w ∈ [0, wIS1 ].

Now suppose that, after switching to one of the two supplier financing mecha-

nisms, the supplier could deviate from the wholesale price under IF and choose the

one that yields the maximal profit for him, i.e., the optimal wholesale price in the

full Stackelberg game, w∗. It follows immediately from the above Proposition that

the supplier always prefers IS over IF, and, by Theorem 2.5, prefers TC even more,

the latter as long as αs < αr. However, if the supplier may change the wholesale

price, the retailer may not necessarily be better off under either of the supplier
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financing schemes. Indeed, in our extensive numerical study, we found that the sup-

plier’s ability to select the wholesale price in an unrestricted manner almost always

reduces the retailer’s profit below its level under IF.

In order to induce the retailer to accept either IS or TC as a risk-sharing mech-

anism, it is thus more realistic to respecify the full Stackelberg game with a par-

ticipation constraint that ensures the retailer’s profit is no less than Π∗IFr . Refer

to Appendix A.2 for an efficient algorithm to solve this version of full Stackelberg

game.

2.6.3 Numerical Study: Additional Comparison Results

Theorems 2.5 and 2.6 and Proposition 2.4 establish a large number of comparison

results among important equilibrium performance measures in the full Stackelberg

game under the IF-, IS- and TC- arrangements. We have focused on the follow-

ing five performance measures: (i) the supplier’s expected profit, (ii) the retailer’s

expected profit, (iii) the expected chain-wide profit, (iv) the equilibrium wholesale

price and (v) the expected sales volume. Indeed, beyond the above mentioned the-

oretical results, a complete ranking of almost all of the five performance measures

under the three financing schemes appears to prevail, depending only on whether

the supplier’s cost of capital is higher or lower than that of the retailer. These rank-

ings have been identified and verified in a numerical study including 1080 problem

instances and are reported in Table 1.1 in §1.2. In this numerical study, we use Nor-

mal and Exponential demand distributions. Note that, without loss of generality,

one of the cost or revenue parameters can be chosen arbitrarily, for example, the

unit price p. Similarly, under a Normal demand distribution with a given coefficient

of variation σ/µ, both the retailer’s and the supplier’s equilibrium profit function

are proportional with µ, so that, again without loss of generality, the latter can

be chosen at an arbitrary level as well. For exponential demand distributions, the

coefficient of variation is, of course, equal to one, but the equilibrium profit values

fail to be proportional with the mean demand.

The various parameters are selected from the following lists:
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p = 50, h0/p ∈ {0.1%, 1%}, c/p ∈ {50%, 70%, 90%},

αs ∈ {0.5%, 1%, 3%, 6%, 9%, 12%}, αr − αs = {−6%,−3%,−1%, 1%, 3%, 6%}.

(Only instances with non-negative pairs (αr, αs) have been considered.)

For Normal demand distributions, the mean µ = 100 and µ/σ ∈ {2, 3, 4}. For

Exponential demand distributions, the mean is selected from the list {50, 100, 150}.

We highlight a few of the perhaps unexpected rankings: the supplier financing

schemes result in higher wholesale prices; nevertheless, they also result in a higher

expected sales volume. This means that the improved credit terms offered under

the supplier financing schemes provide a sales stimulus which exceeds the restrictive

effect resulting from an increased wholesale price. Second, while the retailer’s profit

in the unconstrained full Stackelberg game is higher under IF as opposed to either

of the supplier financing schemes (TC or IS), the aggregate profits in the chain are

always lower under IF. This implies that both chain members can be made to benefit

from a switch to one of the supplier financing schemes, as under the constrained

full Stackelberg game described in §2.6.2 and Appendix A.2, with a participation

constraint ensuring the retailer a profit level at least equal to her equilibrium profit

under IF.

2.7 Generalizations with Default Risk

In this section, we discuss two generalizations of the base model that explicitly

account for the possibility of the retailer defaulting. For the sake of brevity, we

confine ourselves to the setting where, under IS, the retailer finances her inventory

while loans from a third-party bank. The case of self-financing can be handled

analogously. In the first default risk model, we assume that the supplier is exposed

to default risks under a TC arrangement while the bank, under IS, has senior credit

status or has secured its loans, alternatively, with adequate collateral. In the second

default risk model, both the supplier and the bank are exposed to the same default

risks.

The financial literature has developed two types of models for a firm’s defaults
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and reorganizations: structural models posit a stochastic process for the firm’s ag-

gregate cash flows, with defaults occurring when the wealth position of the firm falls

below a critical threshold. This stochastic process is an exogenous primitive of the

model, often of a standardized type, e.g., a diffusion process, which is independent

of any of the firm’s operational strategies. If the retailer’s business activities were

confined to the single item at the single market considered here, the equilibrium

cash flow process resulting from the Stackelberg games could, in principle, be used

as an endogenously determined alternative. However, most firms sell many products

in multiple markets, and a structural model would continue to require an up-front

assumption of a stochastic process for the firm’s aggregate cash flows.

The second type of credit risk models is usually referred to as “statistical” or

“reduced form” (RF). RF models assume that defaults are not directly based on

the firm’s cash flows. Instead, defaults occur at a given rate or intensity, either

deterministically specified or randomly fluctuating as a function of an underlying

state variable, for example the firm’s ratings by standard credit agencies and general

industry and economic indices. The state variable ω is usually assumed to fluctuate

according to a Markov chain, see, e.g., chapters 5 and 6 in Lando (2004). In practice,

RF models are used more frequently than their structural counterparts and typically

generate more accurate predictions, see, for instance, Leland (2006, p9) .

We adopt a similar RF model in which relatively long periods of solvency are

interrupted by defaults resulting in a reorganization prompted, in the U.S., for ex-

ample, by a Chapter 11 filing. While representing the firm as alternating between in-

tervals of solvency and reorganization, a realistic choice of model parameters should

reflect the fact that for an A-rated firm, the average probability of a single default

in a 10-year period, is no more than 1.65%, and for a Baa-rated firm 4.56%, see

Leland (2009, p29). Thus even for a Baa-rated firm, the likelihood of two defaults

occurring in a 20-year period is approximately 0.2%. The state of the firm is de-

scribed by a triple (r, l, ω) where r = 1(0) indicates that the firm is solvent ( in

reorganization), l denotes the number of periods since the beginning of the current

solvency (reorganization) interval and ω the above mentioned world state variable.
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The firm’s state (r, l, ω) evolves according to some irreducible Markov chain with

transitions from S1 ≡ {(1, l, ω)} into S0 ≡ {(0, l, ω)} representing defaults and those

from S0 to S1 the completion of a reorganization. Let π(1, l, ω) denote the steady-

state probability of being in state (1, l, ω) and θ(l, ω) the likelihood of transitioning

into S0, i.e, of a default, from this state. A default arises after a random interval of

distress ∆ in which the retailer’s payments to some or all its creditors’ are deferred.

The distress interval is the last part of the solvency interval preceding the current

default. During the reorganization, the creditors with less than senior status receive

a random recovery rate ρ of the payables that are outstanding at its start. The

joint distribution of (∆, ρ) may depend on the firm’s state immediately preceding

the default.

2.7.1 Model with Default Risks for the Supplier

As mentioned, we first consider a model where, under TC, the supplier is exposed to

default risks, but payments to the bank under IS are secured by proper collateral or

because the bank retains senior creditor status. Thus, under IS and IF, the profits of

the supplier and the retailer remain unaltered. As to TC, the optimal replenishment

policy for the retailer is a state-dependent base-stock policy. However, we assume the

retailer confines herself to simple base-stock policies only. We charge the expected

losses due to partial recovery of outstanding payables in a distress interval to its last

period(, after which the default occurs). If the default occurs following a period in

which the firm is in state (1, l, ω), this expected loss equals E(∆(1−ρ)|s = (1, l, ω)).

This implies that the unconditional expected loss fraction of any payable amount to

the supplier equals:

γ =
∑
(l,ω)

π(1, l, ω)θ(l, w)E(∆(1− ρ)|s = (1, l, ω)). (2.15)

(It is easily verified that 0 < γ < 1. For A- or Baa-rated firms, the value of γ is

less than 0.001: for a Baa-rated company, the one-year default probability is, on

average, 0.14%, see Leland (2009, p29), while the median reorganization duration

is approximately 1.5 years, see Denis and Rodgers (2007). Assume, further, that
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the typical distress interval resulting in a default extends to 6 months, and the

recovery rate ρ = 0.5. Employing a simple two state Markov chain to describe the

firm’s dynamics and fitting in transition probabilities to these statistics, we conclude

that under these parameter assumptions, γ = 0.0004.) We obtain that the profit

functions under TC are given by:

πTCr (w,α, y) = (p− w(1− γ))s(y)− (αw(1− γ) + h0)h(y),

πTCs (w,α, y) = (w(1− γ)− c)s(y) + (α(1− γ)− αs)wh(y).

Replacing the normal wholesale price w by the expected net wholesale price

wn = w(1 − γ) and αs by αns = αs/(1 − γ), we derive that the TC model with

default risks is equivalent to one without default risks and the supplier’s capital cost

rate αns . Let w∗n and β∗ng denote the equilibrium wholesale price and ECCR in the

equivalent (no-default) model. The following theorem follows as a corollary of the

results obtained for the base model.

Theorem 2.7 (Model with default risks for the supplier) (a) All of the charac-

terizations of the equilibrium behavior in the three Stackelberg games obtained

for the base model in Theorems 2.1-2.4 and Propositions 2.1-2.3 apply both to

the IS and TC contracts, under this default risk model. Moreover, the equilib-

ria under TC are given by (w∗βg |βg = β0) = (w∗nβg /(1 − γ)|βg = β0) [β∗g (w =

w0) = β∗ng (w = w0(1−γ)) and (w∗, β∗g ) = (w∗n/(1−γ), β∗g ) ] in the first [second

and full] Stackelberg games, respectively.

(b) All of the comparison results in Theorems 2.5 and 2.6 and Proposition 2.4

continue to apply with relative rankings based on the comparison of αs/(1−γ)

and αr.

(c) Under TC, there exists a critical value 0 ≤ γc <∞ such that, as γ increases up

to γc, even the net equilibrium price w∗n increases with γ, while the retailer’s

trade credit interest rate α∗ = 0; as γ increases beyond γc, w∗n = w∗(1− γ) is

kept constant while α∗ is increasing in αs.
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Part (c) shows that as long as the loss fraction increases but remains below a

critical level, the supplier chooses to increase his net wholesale price to compensate

for the increasingly large default risks but maintains a zero trade credit interest rate.

Beyond the critical loss fraction, the supplier maintains a constant net wholesale

price but charges increasingly large trade credit interest rates instead.

2.7.2 Model with Default Risks for the Supplier and the Bank

If the bank is exposed to the same default risks as the supplier experiences under TC,

this affects the profit function of the retailer under IF and IS. At the same time, the

supplier being paid by the bank upon delivery is, under this arrangement, immune

to the default risks unless the bank pays him only part upfront and the remainder

if and when payment is received from the retailer. (In a factoring arrangement,

for example, the percentage paid upfront is referred to as the advance a and the

remainder as the reserve 1 − a.) Recovery losses, now, reduce the net payment of

the payables to the bank by a factor of 1 − γ. Net payments to the supplier are

reduced by a factor φ(γ) ≤ 1 with φ(0) = 1; for example, in the factoring case with

an advance percentage a, φ(γ) = a+ (1−γ)(1−a). In response to the default risks,

the bank may adjust the bank loan rate αr as an increasing function of the loss

fraction γ, see the discussion in Section 2.2. The profit functions are now given by:

πISr (w, β, y) = (p− w(1− γ))s(y)− [(αr(γ)(1− γ)− β)w + h0]h(y),

πISs (w, β, y) = (φ(γ)w − c)s(y)− βwh(y).

In this case, the model under IF and IS is no longer equivalent to one without

default risks and modified parameters; indeed, it may no longer viewed as a special

case of the general model described in (2.1) and (2.2). Nevertheless, we show in

Appendix A.3:

Theorem 2.8 (Model with default risks for the supplier and the bank) All the

structural results for the three Stackelberg games, i.e., Theorems 2.1-2.4 and Propo-

sitions 2.1 and 2.2 continue to apply, both under IS and TC. Under TC, Proposition

2.3 continues to apply as well.
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As to the comparison results among the three financing schemes, they can no

longer be proven on the basis of a simple comparison of two indices, (e.g., αs and

αr or αr/(1− γ),) but need to be evaluated numerically.

2.8 Conclusions

In this paper, we have characterized and compared the performance of a supply

chain under three fundamental financing schemes: IF, IS and TC. The comparisons

between these schemes have been enabled by showing that all of them can be embed-

ded as special cases of a general model. Under each of these contracts, a wholesale

price as well as a supplier’s effective capital cost rate (ECCR) has to be selected.

We have characterized the equilibrium behavior of the supply chain, assuming either

the wholesale price is exogenously given and the ECCR is selected by the supplier in

a Stackelberg setting, or, vice versa, the wholesale price is selected by the supplier

under an exogenously given ECCR, as well as settings where both strategic param-

eters are determined endogenously (the full Stackelberg game). As an example, we

have proven, see Theorem 2.4(c), that if the demand distribution is IFR and MIFR

and the full wholesale price range is [0, p] it is optimal in the full Stackelberg game

for the supplier to select either the maximal or minimal feasible ECCR value. For

uniform, exponential and Normal distributions, under minor parameter conditions,

see Condition (C), it is, in fact, always optimal to engage in a maximal degree of

supplier financing. We have shown that both the supplier and the retailer prefer

TC over IS if and only if the supplier’s cost of capital is lower than that of the

retailer. This robust comparison result holds, in full generality, for the supplier, and

for the retailer under the above Condition (C). Such robust results also prevail for

the equilibrium wholesale price, the base-stock level and the expected sales volume.

As a final highlight of our results, we have shown that a supplier financing scheme

of either the IS or TC type, exists under which the supplier fares better than under

IF. The same holds for the retailer, but only if the wholesale price is left unaltered.

If the wholesale price can be varied by the supplier, the retailer invariably loses
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when switching from IF to the optimal TC or IS contract, but a mutually beneficial

IS or TC contract can be designed by imposing a participation contract. We refer

to §2.6.3 as well as §1.2 for a summary of the remainder of the comparison results

that have been obtained on the basis of a numerical study. Appendix A.4 estab-

lishes similar comparison results to settings where the contract terms are specified

to generate a perfect coordination scheme, with aggregate profits split according to

a Nash bargaining solution.

All of the above results have been obtained, first, in a base model without default

risks. They have been extended to two generalized models with a general stochastic

default and reorganization process. In the first such model, only the supplier is

exposed to default risks, and in the second, both the supplier and the bank.

Future work should expand the comparisons among the three fundamental fi-

nancing mechanisms to other alternatives. The Advance Purchase Discount (APD)

contracts, for example, represent a hybrid combination of TC and IF mechanisms.

The supplier offers the retailer two procurement options. In addition to traditional

commitment orders at a given discounted price, the supplier makes available ad-

ditional consignment inventory from which the retailer can draw, at a higher per

unit price, to satisfy additional customer sales if and when they arise. Depending

on who pays for the associated inventory carrying costs, the consignment inventory

level may be selected by the supplier or by the retailer. More specifically, assume

that at the beginning of each period, the retailer has access to two inventory pools.

The primary pool is of size y1 and consists of units the retailer has committed to and

is charged a basic wholesale price w1. A second inventory pool of size y2 is available

in case the demand exceeds the first inventory pool. The second inventory pool is

made available when needed, at a unit wholesale price w2 along with an interest rate

charge α for any unit in stock at the end of a period. A double base-stock policy is

implemented to ensure that at the beginning of each period the inventory levels of

the pools equal y1 and y2 respectively. It is easily verified that the profit functions
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of the chain members are given by

πAPDr (w1, w2, α, y1, y2) = pmin{y1 + y2, D} − w1y1 − w2 min{y2, (D − y1)+}

−αw2(y2 − (D − y1)+)+ − (αrw1 + h0)(y1 −D)+

πAPDs (w1, w2, α, y1, y2) = w1y1 + w2 min{y2, (D − y1)+}

+(α− αs)w2(y2 − (D − y1)+)+ − c(y1 + y2)

Clearly, the wholesale prices w1 and w2 and the interest rate α are to be selected

by the supplier while the retailer determines y1. As mentioned, the level y2 may be

selected by the supplier or the retailer. Cachon (2004) and Dong and Zhu (2007)

consider the special case where α = 0 and y2 is selected by the supplier. Similar

supply contracts with two procurement options, one based on early commitments

at a lower price and the other based on last minute orders at a higher price, have

been analyzed under the name “periodic commitment with flexibility contracts” by

Anupindi and Bassok (1999) and Bassok and Anupindi (2008).

As explained in §2.2, bank loan rates are typically set as a spread over a common

interest index such as the 3-month LIBOR rate. In our models, we have assumed

that all parameters are stationary, the capital cost rates αs and αr included. This

effectively assumes that the underlying LIBOR rate remains flat over the course of

the planning horizon. A possible generalization would adopt one of the commonly

used stochastic processes to represent fluctuations in the LIBOR rate, see, e.g.,

Chapter 30 in Hull (2008). The discrete time representations of these processes

typically reduce to Markov chains. In this generalized model, the supplier may wish

to adjust the wholesale price and the ECCR as a function of the state of the Markov

chain. It can be easily shown that a state-dependent base-stock policy is optimal for

the retailer. It would be interesting to analyze whether similarly robust comparison

results among the three financing options (IF, IS and TC) can be obtained on the

basis of the relative ranking of the spreads (over the LIBOR rate) that the supplier

and the retailer obtain for their bank loans. We conjecture that these comparison

results carry over to this generalized model.
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Chapter 3

Inventory Models with Shelf

Age and Delay Dependent

Inventory Costs

We refer to Section 1.4 for an introduction of this chapter.

This chapter is organized as follows: we consider periodic review models with

full backlogging, lost sales or partial backlogging in §3.1 while continuous review

models with renewal demand processes or compound renewal demand processes are

studied in §3.2. When not stated in the main text, proofs are deferred to Appendix

B.1.

3.1 Periodic Review Models

In this section, we consider a general, single item periodic review inventory planning

problem with a finite or infinite horizon. As in standard inventory models, we assume

that demands in different periods are independent of each other. Orders arrive after

a leadtime of L periods. To simplify the exposition we will initially assume that the

leadtime L is deterministic. However, extensions to stochastic leadtime processes

that are exogenous and sequential are straightforward, see below. As in standard

inventory models, we assume the following sequence of events in each period:
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(i) at the beginning of the period, the ending inventory of the previous period

and all outstanding orders are observed, and a new order may be placed;

(ii) immediately thereafter, all units ordered L periods ago arrive and remain in

stock until sold;

(iii) the period’s demands occur thereafter.

(Assumption (ii) precludes inventory decreases resulting from factors other than

the demand process, for example, random order yields or perishable goods.)

The planning problem is meaningful only if it consists of at least L+ 1 periods.

It is therefore convenient to denote the length of the planning horizon by N + L,

with N <∞ or N =∞, depending upon whether a finite or infinite horizon problem

is considered. All costs are discounted with a discount factor ρ ≤ 1. We describe

the general shelf age dependent holding cost structure as follows: an item ordered

in period n, accrues an incremental carrying cost rate αn(j) when reaching a shelf

age of j periods, i.e., when still in stock at the end of period n + L + j − 1. We

assume that, at any point in time, the incremental carrying costs of any unit in

stock increases with its shelf age, i.e.,

(ODY - Old Dearer than Young): αn(j) ≥ αn+1(j − 1) for all n and j.

This condition ensures that it is optimal to deplete inventories on a FIFO basis.

It is equivalent to the m-monotonicity property assumed in Levi et al. (2006, 2008)

and Stauffer et al. (2011) in conjunction with other structural properties. Also, we

assume αn(0) = 0 for all n ≥ 1. Let

Dn = demand in period n,

D[t1, t2) = cumulative demand in periods t1, t1 + 1, · · · , t2 − 1, with t2 > t1.

Ibn = the beginning inventory level of period n(, after inclusion of any order

placed one leadtime earlier).

Ien = the ending inventory level of period n(, after demands in this period occur).

qn = order placed in period n.

qjn = the part of order qn, placed in period n, which reaches a shelf age of at

least j periods, i.e., which is still in in inventory at the end of period n+L+ j − 1,

j = 1, · · · , N − n+ 1.
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By the definitions of Ien and Ibn, qn = Ibn+L − Ien+L−1. It follows from the FIFO

rule that

qjn = (qn − (D[n+ L, n+ L+ j)− Ien+L−1)+)+. (3.1)

Since any order placed after period N does not arrive before the end of the

planning horizon, we confine ourselves, without loss of optimality, to polices with

qn = 0 for all n = N + 1, · · · , N + L. Similarly, since the first order q1 does not

arrive until period L+ 1, the costs in the first L periods cannot be controlled. We,

therefore, define

C = the total expected discounted carrying cost over periods from L + 1 to

L+N .

All carrying costs in C can be attributed to orders placed in periods n =

1, · · · , N , as well as those associated with s1, the vector comprised of outstand-

ing orders and the initial inventory at the beginning of the planning horizon. In

view of the FIFO procedure, these initial units are used before any of the units

ordered during the planning horizon. Their expected carrying costs are, therefore,

independent of any ordering decisions, and hence denoted by H0(s1).

Lemma 3.1 Assume (ODY). C may be represented as a separable convex function

of the sequence of beginning inventory levels {Ibn, n = L + 1, · · · , L + N}. More

specifically,

C =
N∑
n=1

ρnG̃n(Ibn+L) +A0 (3.2)

where

G̃n(Ibn+L) =

N−n+1∑
j=1

ρL+j [αn(j)−αn+1(j−1)]E(Ibn+L−D[n+L, n+L+ j))+. (3.3)

and A0 is a constant independent of any of the order decisions during the planning

horizon.

Proof: Fix n = 1, · · · , N . For any j = 1, · · · , N − n+ 1, note that

qjn = (Ibn+L − Ien+L−1 − (D[n+ L, n+ L+ j)− Ien+L−1)+)+

= (Ibn+L −D[n+ L, n+ L+ j))+ − (Ien+L−1 −D[n+ L, n+ L+ j))+

= (Ibn+L −D[n+ L, n+ L+ j))+ − (Ibn+L−1 −D[n+ L− 1, n+ L+ j))+,(3.4)
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where the first equality follows from (3.1), and the second equality can easily be

verified by considering three cases: Ien+L−1 ≥ D[n + L, n + L + j), Ibn+L ≤ D[n +

L, n + L + j) or Ibn+L > D[n + L, n + L + j) > Ien+L−1. As to the third equality,

note that regardless of whether all stockouts are backlogged, all result in lost sales,

or partial backlogging takes place, at any period m:

Ibm −Dm ≤ Iem ≤ (Ibm −Dm)+. (3.5)

The upper bound in (3.5) corresponds with the case where all stockouts are lost,

while the lower bound corresponds with the case where all are backlogged. Note

that when Iem > 0, Iem = Ibm − Dm, since in this case the lower and upper bounds

coincide. Applying this for m = n + L − 1, this verifies the equality in (3.4) when

Ien+L−1 > 0. Moreover, when Ien+L−1 ≤ 0, 0 = (Ien+L−1 −D[n + L, n + L + j))+ ≥

(Ibn+L−1−D[n+L−1, n+L+ j))+ ≥ 0 where the first inequality is due to the lower

bound in (3.5), thus verifying the equality in (3.4) for the case where Ien+L−1 ≤ 0,

as well.

The total expected shelf age dependent holding costs associated with order qn,

discounted back to period 1, is given by:

ρn
N−n+1∑
j=1

ρL+jαn(j)Eqjn

= ρn
N−n+1∑
j=1

ρL+jαn(j)E{(Ibn+L −D[n+ L, n+ L+ j))+

−(Ibn+L−1 −D[n+ L− 1, n+ L+ j))+}.

Thus, summing the expected holding costs associated with all orders placed in

periods n = 1, · · · , N , (as well as the costs associated with s1), we obtain:

C = H0(s1) +
N∑
n=1

ρn
N−n+1∑
j=1

ρL+jαn(j)E(Ibn+L −D[n+ L, n+ L+ j))+

−
N∑
n=1

ρn
N−n+1∑
j=1

ρL+jαn(j)E(Ibn+L−1 −D[n+ L− 1, n+ L+ j))+

= H0(s1) +
N∑
n=1

ρn
N−n+1∑
j=1

ρL+jαn(j)E(Ibn+L −D[n+ L, n+ L+ j))+
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−
N−1∑
n=0

ρn+1
N−n∑
j=1

ρL+jαn+1(j)E(Ibn+L −D[n+ L, n+ L+ j + 1))+ (shift n by − 1)

= H0(s1) +

N∑
n=1

ρn
N−n+1∑
j=1

ρL+jαn(j)E(Ibn+L −D[n+ L, n+ L+ j))+

−
N−1∑
n=0

ρn
N−n+1∑
j=2

ρL+jαn+1(j − 1)E(Ibn+L −D[n+ L, n+ L+ j))+ (shift j by + 1)

= H0(s1) +
N∑
n=1

ρn
N−n+1∑
j=1

ρL+jαn(j)E(Ibn+L −D[n+ L, n+ L+ j))+

−
N∑
n=0

ρn
N−n+1∑
j=1

ρL+jαn+1(j − 1)E(Ibn+L −D[n+ L, n+ L+ j))+

= H0(s1) +
N∑
n=1

ρn
N−n+1∑
j=1

ρL+j [αn(j)− αn+1(j − 1)]E(Ibn+L −D[n+ L, n+ L+ j))+

−
N+1∑
j=1

ρL+jα1(j − 1)E(IbL −D[L,L+ j))+ =

N∑
n=1

ρnG̃n(Ibn+L) +A0

where the fourth equality is obtained by adding zero terms with j = 1 and n =

1, · · · , N to the expression after the minus since, by our assumption, αn(0) = 0, and

where A0 ≡ H0(s1) −
∑N+1

j=1 ρL+jα1(j − 1)E(IbL −D[L,L + j))+. A0 only depends

on s1 since the inventory level at the beginning of period L, IbL, does not depend on

any order decisions. Since αn(j − n) − αn+1(j − n − 1) ≥ 0 by (ODY), and since

each of the terms E(Ibn+L −D[n + L, n + L + j))+ is convex in Ibn+L, we conclude

that G̃n(Ibn+L) is convex. �

3.1.1 Full Backlogging

As mentioned, under Assumption (ii) in a system with full backlogging, all inventory

information can be aggregated into the single inventory position measure. Thus, for

any n = 1, 2, · · · , let

yn = the inventory position at the beginning of period n, after ordering.

The full backlogging assumption guarantees the simple dynamic recursion:

Ibn+L = yn −D[n, n+ L). (3.6)

Using this identity, the following theorem follows from Lemma 3.1.
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Theorem 3.1 (Equivalence of shelf age and inventory level dependent inventory

carrying cost) Assume (ODY).

(a) The model with shelf age dependent inventory carrying costs is equivalent to

the one in which those costs are represented by the following convex cost functions

of the inventory positions in periods n = 1, · · · , N :

Gn(yn) =

N−n+1∑
j=1

ρL+j [αn(j)− αn+1(j − 1)]E(yn −D[n,L+ n+ j))+. (3.7)

(b) Let N =∞ and αn(·) = α(·) for all n = 1, 2, · · · . Assume h ≡
∑∞

j=0 ρ[α(j+

1) − α(j)] = ρ limt→∞ α(t) < ∞. Define a random leadtime Λ with the following

distribution:

P (Λ = j) =
ρ[α(j + 1)− α(j)]

h
, j = 0, 1, · · · . (3.8)

The model with shelf age dependent inventory carrying costs is equivalent to one with

linear holding costs at a constant rate h, but with an extended, stochastic leadtime

L+ Λ.

Proof: (a) follows from Lemma 3.1 and (3.6).

(b): Under the assumptions in this part, (3.7) can be written as

G(yn) =
∞∑
j=1

ρL+j [α(j)− α(j − 1)]E(yn −D[n,L+ n+ j))+

=

∞∑
j=0

ρL+j+1[α(j + 1)− α(j)]E(yn −D[n,L+ n+ j])+

= h

∞∑
j=0

ρL+jP (Λ = j)E(yn −D[n,L+ n+ j])+,

which proves the claim. �

Remark 1: When the nonlinear shelf age dependent cost structure arises be-

cause of trade credit arrangements (see Section 1.3), the function α(·) is typically

piecewise constant. A frequently used structure, referred to as a two-part credit

scheme(see Cuñat (2007)), has an interest-free grace period (F), followed by a con-

stant positive interest rate thereafter. In the infinite horizon model of Theorem

3.1(b), a piece-wise constant α(·) function is equivalent to linear holding costs with
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an additional leadtime component Λ which has support only on the period lengths

in which the function α(·) experiences an upward jump, see (3.8). In particular, in

the two-part contract scheme, Λ has a two point distribution, i.e., the support is

given by {0, F}.

Remark 2: More generally, order leadtimes may be characterized by a stochas-

tic process {L(n) : n ≥ 0} with L(n) the leadtime experienced by an order placed in

period n. We assume the process is exogenous, i.e., it is independent of the demand

process, as well as sequential, i.e., n + L(n) ≤ n′ + L(n′) for all n < n′, with prob-

ability one. Under sequential leadtime processes, orders do not cross. We refer to

Zipkin (1986) for an extensive discussion of such processes and their applications.

Assume the exogenous sequential leadtime process has a steady-state distribution

L. It is easily verified from the proof of Theorem 3.1 that the equivalency result in

part (a) continues to apply with the constant L replaced by the random variable L:

Gn(yn) = E

N−n+1∑
j=1

ρL+j(αn(j)− αn+1(j − 1))E(yn −D[n,L+ n+ j))+

 . (3.9)

Here, the expectation is taken both over the distribution of L and that of the

demand variables {Dn, Dn+1, · · · }. Part (b) can be generalized with the leadtime

distribution in the equivalent model with linear holding costs, now given by L⊕Λ.

(For any pair of random variables X and Y , X
⊕
Y denotes the convolution of X

and Y .)

Assume, now, that in addition to the shelf age dependent inventory costs, the

remaining inventory and backlogging costs may be represented by convex functions

Γn(yn) of the inventory position after ordering, n = 1, · · · , N + L. The following

theorem shows that the structural results pertaining to various standard models,

can therefore be generalized to allow for general shelf age dependent costs. (We

confine ourselves to a few basic models.)

Theorem 3.2 (Shelf age dependent costs: Structural results with backlogging) (a)

Assume N < ∞ and the ordering costs are proportional to the order sizes. A time

dependent base-stock policy is optimal, i.e., in each period, n = 1, · · · , N , there
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exists a base-stock level S∗n, such that it is optimal to raise the inventory position to

S∗n whenever it is below S∗n.

(b) Assume N < ∞, and in the model of part (a), assume all parameters are

stationary while any inventory at the end of the horizon can be returned at the

original purchase price. Then S∗1 ≤ S∗2 ≤ · · · ≤ S∗N .

(c) Assume N = ∞ and the model of part (a), with all parameters stationary.

Assume orders are subject to a capacity limit C(≤ ∞). Under both the discounted

and long-run average cost criteria, there exits a stationary modified base-stock policy

with base-stock level S∗ which is optimal: if the stationary inventory position in any

given period is below S∗, an order is placed which brings the inventory position as

close as possible to S∗.

(d) Assume an order in period n incurs a fixed cost Kn and a variable per unit

cost cn. If N < ∞, assume Kn ≥ ρKn+1 for all n = 1, · · · , N − 1. There exists

a time-dependent (sn, Sn)-policy which is optimal. If N = ∞, an (s∗, S∗) policy is

optimal both under the discounted total cost and the long-run average cost criteria.

(e) Let N =∞ and consider the model with fixed-plus-linear order costs. Assume

that all cost parameters, the cost functions Gn(·) and Γn(·), as well as the one-

period demand distribution depend on a state of the world variable ω which evolves

in accordance with a finite state irreducible Markov chain. Both under the total

discounted and the long-run average cost criteria, a state-dependent (s, S)-policy is

optimal.

(f) Let N <∞ and L = 0. Assume that the demand distribution in each period

depends on the sale price selected for that period, and that this price may be varied

arbitrarily. Assume, further, that the demand variable for period n is of the form:

Dn = dn(pn) + εn, where dn(pn) is a deterministic strictly decreasing function with

the expected revenue Rn(d) ≡ dd−1
n (d) a concave function. The sequence {εn} is a

sequence of independent random variables whose distribution is independent of the

selected prices. Under fixed-plus-linear ordering costs, a so-called (sn, Sn, pn) policy

is optimal, i.e., the inventory replenishment rules have an (sn, Sn)-structure and

price depends on the initial inventory level at the beginning of a period.
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Under linear ordering costs, it is optimal to use a base-stock/list price strategy,

i.e., the inventory replenishment strategy is of a base-stock type while the selected

price p∗n is a decreasing function of the inventory level of after ordering.

Remark 3: When L = 0, the equivalency results in Theorem 3.1 and the

structural results in Theorem 3.2 continue to apply in models with lost sales, as is

easily verified from the proof of Theorem 3.1. We address the case of a general,

positive, leadtime L in §3.1.2.

To our knowledge, the first and only structural result for models with general

shelf age dependent carrying costs, was obtained in a recent paper of Gupta and

Wang (2009). These authors proved part (a) of Theorem 3.2 for the case where

the α(·) function becomes flat after a certain period κ, i.e., α(j) = α(κ), and thus

permits a finite-dimensional state representation when disaggregating inventory lev-

els according the items’ shelf age. (The state of the system has dimension κ + L,

independent of the planning horizon N .) The equivalency result in Theorem 3.1

establishes that the problem can be formulated as a dynamic program with a one-

dimensional state space of a well-known structure, and this for arbitrary (increasing)

α(·) functions.

In their concluding section, Gupta and Wang (2009) question how the inclusion

of fixed costs would impact the structure of the optimal policy. This question

is resolved by part (d) of the above theorem, i.e., it is optimal to use an (s, S)-

policy acting on the inventory position(, under the same assumption for the time

dependence of the fixed costs that is required in the standard model with linear

holding costs). Maddah et al. (2004) consider the long-run average cost criterion

for the special case of a two-part credit scheme, see above, i.e., the α(·) function

adopts two distinct values. These authors restrict themselves to the class of (s, S)

policies and develop heuristics to compute the best parameter pair. However, the

equivalency result in Theorem 3.2 shows that this class of policies, in fact, contains

the optimal policy and that the exact algorithms by Veinott and Wagner (1965)

or Zheng and Federgruen (1992) can be used without modification, employing the

transformed cost functions G(·), as well as the function Γ(·). Robb and Silver (2004)
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address the same special case as Maddah et al. (2004), making an upfront restriction

to (R,S) policies, and proposing heuristics for this class. (Under an (R,S) policy,

the inventory position is increased to a level S every R time units.)

3.1.2 Systems with Lost Sales or Partial Backlogging

When all or some stockouts result in lost sales and orders get delivered after a

positive leadtime L, it is no longer possible to represent the state of the system via

the inventory position only. Instead, it is necessary to represent the system via a

(L+1)-dimensional state vector, consisting of the inventory level and the size of the

orders placed in the prior L periods. However, the result in Lemma 3.1 implies the

following Theorem:

Theorem 3.3 (Systems with lost sales or partial backlogging) Assume (ODY).

Consider an inventory system with lost sales or partial backlogging of stockouts.

The model with general shelf age dependent carrying costs is equivalent to one in

which, in each period n = 1, · · · , N , an inventory level dependent convex function

G̃n(Ibn+L) is charged for the carrying costs.

Consider, for example, the case of lost sales. The structure of the optimal policy

is complex, even under the simplest setting with linear order costs. The model

was first formulated and analyzed by Karlin and Scarf (1958) and Morton (1969).

Recently, Zipkin(2008a, 2008b) identified bounds and monotonicity properties of

the optimal order quantities. While the model in these references assumes that a

specific convex cost function of each period’s beginning inventory level is charged,

it can easily be verified that the above results apply to arbitrary convex functions.

This implies that all of bounds and monotonicity results for the standard model with

linear holding costs continue to apply under general shelf age dependent carrying

costs.

3.1.3 General Delay Dependent Backlogging Costs

As mentioned in Section 1.3, similar to the carrying costs, the backlogging costs

associated with a demand unit may increase in a general non-linear way with the
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amount of time that the unit has been delayed. Let β(j) denote the incremental

backlogging cost rate when a unit of demand waits for j periods. (See below for a

discussion of more general structures which differentiate according to the period in

which a backlogged demand unit arises.) Analogous to the (ODY)-assumption for

shelf-age dependent carrying costs, we assume

(ODY-B): β(j) ≥ β(j − 1) for all j ≥ 1,

i.e., older outstanding demands incur higher costs. Under the (ODY-B) assump-

tion, it is easily verified that demands are optimally filled on a FIFO basis. Also,

as in §3.1.1, we assume that, in addition to the delay dependent backlogging costs,

the remaining inventory and backlogging costs may be represented by convex func-

tions Γn(·) of the inventory position after ordering. Together, these assumptions

correspond with Assumption 1 in Huh et al. (2010).

As to the order leadtime L, we confine ourselves to the deterministic case, for

reasons explained below. Huh et al. (2010) have shown that a model with general de-

lay dependent backlogging costs is equivalent to one with traditional level-dependent

backlogging cost, albeit under certain restrictions and assumptions.

Define Nn+L,j as the number of backlogged demand units at the end of period

n+L that have been delayed for j periods, j = 1, · · · , n+L. Note that, for j ≤ L+1,

Nn+L,j = (Dn+L−j+1 − (yn −D[n, n+ L− j])+)+

= (D[n, n+ L− j + 1]− yn)+ − (D[n, n+ L− j]− yn)+, (3.10)

where the first equality follows from the FIFO rule and the second one may easily be

verified by distinguishing between the case where yn is greater than D[n, n+L− j]

and the the case where it is smaller. Thus, the part of the backlog at the end of

period n + L that has a delay duration j ≤ L + 1 may be expressed as a function

of yn, the inventory position after ordering at the beginning of period n, as well

as the demand variables, not yet observed at that time. This allows us to express

the expected (incremental) backlogging costs for all units with a delay of j ≤ L+ 1

periods, as a function of yn only:

β(j)E{(D[n, n+L−j+1]−yn)+−(D[n, n+L−j]−yn)+}, j = 1, · · · , L+1. (3.11)



62

Unfortunately, a similar expression can not be obtained for backlogged units with

a delay beyond (L + 1) periods. (Their magnitudes depend on demands preceding

period n, i.e., demands already observed by the beginning of period n, as well as

orders placed prior to period n.) Only their aggregate, i.e., all backlogs with a delay

beyond L+ 1 periods, can be written as a function of yn:

n+L∑
j=L+2

Nn+L,j = (yn)−. (3.12)

(If yn < 0, −yn units are already backlogged at the beginning of period n and will

not be filled by the end of period n + L; therefore, these −yn units will be part of

the backlog at the end of period n + L with a delay at least L + 2. At the same

time, if yn > 0, all units backlogged at the beginning of period n will be filled at

the end of period n + L, so that any backlog at the end of that period has a delay

at most equal to L + 1.) Thus, to enable the above mentioned equivalency with a

traditional level dependent cost structure, and hence to enable a one-dimensional

state space representation of the planning problem, requires one of the following two

assumptions:

Assumption (NIP) (Non-negative Inventory Position after ordering): yn ≥ 0

for n = 1, · · · , N .

Assumption (CBL) (Marginal Cost Rate is Constant Beyond Leadtime): β(n) =

β(L+ 2) for any n ≥ L+ 2.

Note, by (3.12), that Assumption (NIP) is equivalent to the assumption that no

demand is backlogged for more than L+ 1 periods.

Under Assumption (NIP), the total expected delay dependent backlogging costs

for backlogs at the end of period of n + L is obtained by summing (3.11) for j =

1, · · · , L+ 1:

G−n (yn) =
L+1∑
j=1

(β(j)− β(j − 1))E(D[n, n+ L− j + 1]− yn)+ (3.13)

with the convention β(0) = 0. Under Assumption (CBL), we have one additional

term:

G−n (yn) =

L+1∑
j=1

(β(j)−β(j−1))E(D[n, n+L− j+ 1]−yn)+ +β(L+ 2)(yn)−. (3.14)
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We conclude:

Lemma 3.2 (Huh et al. (2010)) Assume (ODY-B) and either Assumption (NIP)

or Assumption (CBL) holds. The model is equivalent to a traditional model with

convex, level dependent cost functions {G−n (·) + Γn(·), n = 1, · · · , N}, with G−n (·)

given by (3.13) or (3.14).

It should be noted that Assumptions (NIP) and (CBL) impose significant restric-

tions, either in terms of the shape of the backlogging cost rate function (Assumption

CBL) or by imposing a potentially restrictive constraint for the feasible order set

(Assumption NIP). All the structural results in Theorem 3.2 continue to prevail in

the presence of these delay dependent backlogging costs, either under Assumption

(CBL) or by imposing the upfront restriction that the inventory position after or-

dering must be non-negative. In non-stationary settings or under discounting the

latter assumption may be essentially restrictive.

The following Theorem shows that the equivalency results in Lemma 3.2 may be

employed to obtain the optimality of base-stock and (s, S)-policies in models with

independent and exogenously specified demands, and with linear and fixed-plus-

linear order costs respectively.

Theorem 3.4 (Delay Dependent Costs: Structural Results in Periodic Review

Systems) Assume Assumption (ODY-B) applies. Consider a model in which the

sequence of demand distributions {Dn} is independent, with exogenously specified

distributions.

(a) Let N ≤ ∞. Assume order costs are linear, with a stationary variable cost

rate c per unit ordered. Assume also that future costs are not discounted, i.e., ρ = 1.

(When N = ∞, we employ the long-run average cost criterion.) A possibly time

dependent base-stock policy is optimal.

(b) Assume order costs are linear, with arbitrary time-dependent order cost rates

{cn, n = 1, 2, · · · } and an arbitrary discount factor ρ ≤ 1. A time dependent base-

stock policy is optimal, under either the (NIP) or (CBL) assumption.

(c) Let N < ∞. Assume order costs are fixed-plus-linear with arbitrary time-
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dependent fixed order costs {Kn} that satisfy Kn ≥ ρKn+1 and arbitrary variable

per unit order cost rates {cn} and a general discount factor ρ ≤ 1. A time-dependent

(s, S)-policy is optimal, under the (NIP) or (CBL) assumption. The same applies

when N = ∞ and the parameters are stationary, both under the discounted and

long-run average cost criteria.

Part (a) of Theorem 3.4 was shown by Huh et al. (2010). (These authors present

this result in Remark 4, albeit for a model without any order costs; the generalization

to stationary linear order costs and ρ = 1 is straightforward.) For models with

fixed-plus-linear order costs, Huh et al. (2010) establish the optimality of (s, S)

policies but only under constraint (CBL) in combination with another assumption

which restricts the shape of the demand distributions. (This is their Assumption 2;

alternative (a) of this assumption, which restricts the class of demand distributions,

permits more general incremental cost rates β(·) that may be unimodal as opposed

to increasing; alternatives (b) and (c) allow for fixed costs in any period in which

a backlog prevails.) Using Lemma 3.2’s equivalency result, the structural results

of parts (b), (c), (e) and (f) in Theorem 3.2 can be shown for a model with delay

dependent backlogging costs, again under assumption (NIP) or (CBL).

Note also that, under Assumption (NIP), the above equivalency result, like that

in §3.1.1, continues to apply under random leadtimes. The only required modifica-

tion is that, in (3.13), the expectation needs to be taken over the leadtime, as well as

the demand distributions. Under Assumption (CBL), it is possible to differentiate

the incremental backlogging cost rate, not just as a function of the delay experi-

enced, but also as a function of the period in which a backlogged unit is demanded.

The required generalization of (CBL) calls for a uniform incremental backlogging

cost rate for all units delayed beyond L+ 1 periods irrespective of the time at which

the unit is demanded.
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3.2 Continuous Review Models

Stochastic continuous review inventory models with discrete demand epochs typi-

cally assume that demands are generated by a compound renewal process. As in

§3.1, we assume a sequential and exogenous leadtime process. Let L denote a random

variable whose distribution corresponds with the steady-state leadtime distribution.

In this continuous review model, α(t) now denotes the marginal inventory cost rate

incurred for an item that has a shelf age t and β(t) the marginal backlogging cost

rate when a unit of demand has been waiting for t time units. In accordance with

the stationary version of the (ODY) and (ODY-B) properties, the functions α(·) and

β(·) are, again, assumed to be increasing with β(0) > 0. In view of the monotonicity

of the α(·) and β(·) functions and the fact that orders do not cross, it continues to

be optimal to deplete inventories on a FIFO basis. To ensure that various expected

carrying and backlogging costs are finite, we assume that both rate functions α(·)

and β(·) are polynomially bounded, i.e., there exists a power l such that α(t) = O(tl)

and β(t) = O(tl), as t ↑ ∞.

We first, in §3.2.1, analyze simple renewal demand processes; in §3.2.2, we extend

our results to general compound renewal processes, adopting a different and slightly

more restrictive approach.

3.2.1 Renewal Demand Processes

Assume first that demands are generated by a renewal process, i.e., the interarrival

times between demand epochs are iid random variables X1, X2, · · · , distributed like

X with mean τ and EX l+1 <∞. A single unit is demanded at each demand epoch.

We assume that stockouts are backlogged. Our objective is to minimize long-run av-

erage costs. We show that this model is, again, equivalent to a standard continuous

review model with level dependent inventory costs, one of special structure, guaran-

teeing the optimality of procurement strategies of a specific, simple structure. We

show, in particular, that under fixed-plus-linear ordering costs, an (r, q) policy is op-

timal in the presence of our general shelf-age/delay dependent holding/backlogging



66

costs.

Following the single-unit decomposition approach, first introduced by Axsäter(1990,

1993), we associate every ordered unit with a specific demand unit. (The term

“single-unit decomposition approach” appears to have been coined by Muharremoglu

and Tsitsiklis (2008).) More specifically, assuming the system starts empty, i.e.,

without inventory, backlogs or outstanding orders, and since ordered units are used

on a FIFO basis, the j-th ordered unit (since time 0) is used to fill the j-th demand

unit(, again, since time 0). This implies that, if at a given demand epoch, an order

is placed that elevates the inventory position from x to y > x, the (y − x) units in

the order may be given an index j = x+ 1, x+ 2, · · · , y, such that the j-th item is

used to satisfy the j-th ((−j)-th) demand following (preceding) the order epoch if

j > (≤)0. Let Aj denote the difference between the arrival time of the demand unit

matched to ordered item j and that of item j. If Aj is positive, it represents the

shelf age of item j. If it is negative, the j-th item in the ordered batch arrives after

the associated demand epoch, so that this demand unit experiences a backlog time

equal to −Aj . By the definition of Aj , we have

Aj =



j∑
i=1

Xi − L when j > 0,

−
−j∑
i=1

Xi − L when j ≤ 0.

(3.15)

The functions α(·) and β(·) are defined on R+. Extend their definitions to the

complete real line R as follows: α(s) = α(s) for s > 0 and α(s) = 0 for s ≤ 0;

β(s) = β(s) for s > 0 and β(s) = 0 for s ≤ 0. Note that the extended functions α(·)

and β(·) continue to be increasing. Let Ĝ(j) denote the total expected inventory and

backlogging costs associated with the j-th item. Ĝ(j) = EH(Aj) + EJ(Aj), where

H(t) =
∫ t

0 α(s) ds and J(t) =
∫ −t

0 β(s) ds. We first need the following Lemma:

Lemma 3.3 The function Ĝ(y) is finite and convex in y.

Optimality of an (r, q)-policy under fixed-plus-linear ordering costs

We now show that an (r, q)-policy is optimal under fixed-plus-linear ordering

costs. We first consider a semi-Markov decision process (SMDP), embedded on
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the demand epochs, with the same state space S = Z and the same action sets

A(x) = {y ≥ x : y is integer} as the original control problem, however with the

following one-step expected cost functions:

γ(x, y) = Kδ(y − x) + c(y − x) +

y∑
j=x+1

Ĝ(j), (3.16)

where K and c denote the fixed and linear order costs, as in Section 3.1, and

δ(x) =

 1 if x > 0,

0 if x ≤ 0.

The last term denotes the carrying and delay costs associated with an order that

elevates the inventory position from x to y ≥ x, according to the above described

matching scheme. Finally, the state dynamics in this SMDP are identical to those in

the original control problem, i.e., the state at the next decision epoch equals (y−1).

This SMDP is, strictly speaking, only a relaxation of the real control problem, in

that for policies with an average order rate below 1/E(X) = τ−1, the carrying and

backlogging costs associated with (infinitely) many demand units are unaccounted

for, since unmatched with any orders. However, we will construct a solution to the

long-run average optimality equation of the (approximating) SMDP and show that

the stationary policy that satisfies this optimality equation is optimal in the original

model. Moreover, this stationary policy will be shown to be of an (r, q)-type.

Theorem 3.5 (Renewal Demand Processes) (a) Under fixed-plus-linear ordering

costs, an (r, q)-policy is optimal. More specifically, the policy (r∗, q∗) which

is optimal in the periodic review model with one-step expected carrying and

shortage cost function Ĝ(·) is optimal in the continuous model as well.

(b) The long-run average cost under any (r, q) policy is given by

c(r, q) = cτ−1 +
K +

∑r+q
y=r+1 Ĝ(y)

qτ
. (3.17)

Proof: (a) The long-run average optimality equation in the approximate SMDP
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is given by

v(x) = min
y≥x
{γ(x, y)− gτ + v(y − 1)}

= min
y≥x
{Kδ(y − x) + c(y − x) +G(y)−G(x)− gτ + v(y − 1)}. (3.18)

where we define

G(y) ≡



y∑
j=1

Ĝ(j), if y > 0,

−
0∑

j=y+1

Ĝ(j), if y ≤ 0,

with the convention that
∑b

j=a u(j) = 0 when a > b for any sequence {u(j)}.(One

can easily verify that, with this definition, G(y)−G(x) =
∑y

j=x+1 Ĝ(j), regardless

of the signs of x and y.) Adding G(x) to both sides of equation (3.18) and defining

v̂(x) ≡ v(x)+G(x), we obtain the following equivalent optimality equation in terms

of {v̂(·), g}:

v̂(x) = min
y≥x
{Kδ(y − x) + c(y − x) +G(y)−G(y − 1)− gτ + v̂(y − 1)}

= min
y≥x
{Kδ(y − x) + c(y − x) + Ĝ(y)− gτ + v̂(y − 1)}. (3.19)

Equation (3.19) may be interpreted as the optimality equation in the classical pe-

riodic review inventory model with periods of constant length τ , fixed-plus-linear

ordering costs and immediate expected cost Ĝ(y) whenever the inventory position af-

ter ordering equals y. By Lemma 3.3, Ĝ(·) is convex. It follows from Iglehart(1963a,

1963b), based on Scarf (1960), that this optimality equation has a -in fact bounded-

solution {w∗(·), g∗}, see also Veinott (1965). Moreover, an (s, S)-policy achieves the

minimum in (3.19), for every state x ∈ S. (g∗ denotes the long-run average cost of

this (s, S) policy.) Finally, since at every demand epoch, a unit size demand occurs,

this (s, S) policy is of an (r, q) type, say with reorder level r∗ and fixed order size

q∗ = S∗ − s∗. Clearly the function v∗(x) = w∗(x) − G(x) is the solution to the

original optimality equation (3.18), in conjunction with the scalar g∗, and the same

(r∗, q∗) policy achieves the minimum in (3.18) for every state x ∈ S.

We now show that this (r∗, q∗) policy is optimal in the SMDP with optimality

equation (3.18). Let π = (f1, f2, · · · ) denote an arbitrary Markov strategy, i.e., on
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an arbitrary sequence of possibly randomized policies, such that policy ft is used

in period t. Given a specific starting state x1, let {xt : t > 1} denote the sequence

of states adopted under the policy π. Note that in period t, the inventory position

is raised from xt to yt ≡ xt+1 + 1. Since the (r∗, q∗) policy is optimal (among all

Markov strategies) in the transformed periodic review model, we have

g∗τ ≤ lim inf
T→∞

1

T

T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + Ĝ(yt)]

= lim inf
T→∞

1

T

T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + (G(yt)−G(yt − 1))]

= lim inf
T→∞

1

T

T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + (G(yt)−G(xt+1))]

= lim inf
T→∞

1

T
{
T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + (G(yt)−G(xt))]− EπG(xT+1)}

≤ lim inf
T→∞

1

T

T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + (G(yt)−G(xt))].

This establishes that the long-run average cost under any policy π is bounded

from below by that under the (r∗, q∗) policy. (To verify the last equality, note that

limT→∞
G(x1)
T = 0. To verify the last inequality, note that G(·) ≥ 0).

It remains to be shown that the (r∗, q∗) policy is optimal in the original model,

and not just in the SMDP. However, for any Markov policy π under which the

long-run average ordering rate is at or above the average demand rate τ−1, we

have that the entire cost sequence and, in particular, the long-run average cost in

the original model equal those in the SMDP. By the above argument, the latter is

therefore bounded from below by the long-run average cost of the (r∗, q∗) policy.

The remaining Markov policies π have a long run average ordering rate strictly

lower than the demand rate τ−1. Under such a policy, the state of the system {xt}

is almost surely below any value −M after a finite amount of time. This implies

that backlogging costs are incurred at a rate at least equal to Mβ(0) > 0. This

lower bound applies for all M > 0, thus establishing that any such policy π has

infinitely large long-run average costs, because of experiencing ever larger backlogs.

We conclude that the (r∗, q∗) policy is indeed optimal among all Markov polices in
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the original model.

(b) The proof of part (a) shows that the long-run average cost of any given (r, q)

policy is the same as that in the equivalent periodic review model. It is easily verified

that the steady-state inventory position after ordering is uniformly distributed on

the integers {r + 1, · · · , r + q}. It follows that the long-run average cost c(r, q) is

given by (3.17). �

Given the cost representation in (3.17) and since the function Ĝ is convex, see

Lemma 1, the optimal policy can be computed efficiently with the algorithm in

Federgruen and Zheng (1992). Finally it is of interest to characterize how various

model parameters such as the shape of the marginal inventory cost rate function α(·),

that of the marginal backlogging cost rate function β(·) and the leadtime distribution

impact the optimal policy parameters r∗ and R∗ ≡ r∗+q∗. To investigate the impact

of any of these model primitives θ, we write the one-step expected cost function

as Ĝ(y|θ). In the first two examples, θ is a real-valued function in the space Θ

of all increasing, non-negative functions, which we endow with the partial order

implied by point-wise dominance, i.e., θ1 � θ2 iff θ1(t) ≤ θ2(t) for all t ≥ 0; in

the last example, θ is an element of the space Θ of all distributions of non-negative

random variables, endowed with the ≤st partial order. We define the function Ĝ(·|θ)

to be supermodular (submodular) if it has increasing (decreasing) differences, i.e.,

G(y2|θ)−G(y1|θ) is increasing (decreasing) in θ ∈ Θ for all y1 < y2.

Proposition 3.1 (a) When the incremental inventory cost rate function α(·) is

replaced by a new function α̂(·) that is point-wise larger, i.e., α(s) ≤ α̂(s) for all

s ≥ 0, the optimal values r∗ and R∗ decrease.

(b) When the incremental backlogging cost rate function β(·) is replaced by a new

function β̂(·) that is point-wise larger, i.e., β(s) ≤ β̂(s) for all s ≥ 0, the optimal

values r∗ and R∗ increase.

(c) When the leadtime distribution L1 is replaced by L2 ≥st L1, the optimal

values r∗ and R∗ increase.

Proof: (a) By Theorem 4.2 from Chapter 4, it suffices to show that G(y|α(·)) is
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supermodular in (y, α(·)), or that EH(Ay|α(·)) is supermodular in (y, α(·)). Since

EH(Ay|α(·)) =

∫ ∞
0

∫ t

0
α(s) ds dFAy(t) =

∫ ∞
0

∫ ∞
s

α(s) dFAy(t) ds

=

∫ ∞
0

α(s)(1− FAy(s)) ds, (3.20)

We get

EH(Ay+1|α(·))− EH(Ay|α(·)) =

∫ ∞
0

α(s)(FAy(s)− FAy+1(s)) ds

≤
∫ ∞

0

ˆα(s)(FAy(s)− FAy+1(s)) ds

= EH(Ay+1|α̂(·))− EH(Ay|α̂(·))

where the inequality follows from the point-wise dominance α(·) ≤ α̂(·) and the

fact that the SIL property of Ay in y, see the proof of Lemma 3.3, implies that

Ay ≤st Ay+1.

(b) Analogous to (a), it suffices to show that EJ(Ay|β(·)) is submodular in

(y, β(·)). Since

EJ(Ay|β(·)) = E
∫ 0

−L

∫ −t
0

β(s) ds dFAy(t)

= E
∫ L

0

∫ −s
−L

β(s) dFAy(t) ds = E
∫ L

0
β(s)FAy(−s) ds,

similar to part (a), we have

EJ(Ay+1|β(·))− EJ(Ay|β(·)) = E
∫ L

0
β(s)(FAy+1(−s)− FAy(−s)) ds

≥
∫ ∞

0

ˆβ(s)(FAy+1(s)− FAy(s)) ds

= EJ(Ay+1|β̂(·))− EJ(Ay|β̂(·))

(c) Once again, it suffices to show that G(y|L) = EH(Ay|L) + EJ(Ay|L) is

submodular in (y, L). We prove this for the first term; the proof for the second term

is analogous. Note that

EH(Ay+1|L)−EH(Ay|L) = E

(∫ ∑y+1
i=1 Xi−L∑y
i=1Xi−L

ᾱ(s) ds

)
= E{Xi}

{
EL
∫ ∑y+1

i=1 Xi−L∑y
i=1Xi−L

ᾱ(s) ds

}
.
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Also, for any given realization of the renewal process of {Xi}, the function
∫∑y+1

i=1 Xi−L∑y
i=1Xi−L

ᾱ(s) ds

is decreasing in L, since the function ᾱ(s) is increasing in y. This implies that

EL2

∫ ∑y+1
i=1 Xi−L

2

∑y
i=1Xi−L2

ᾱ(s) ds ≤ EL1

∫ ∑y+1
i=1 Xi−L

1

∑y
i=1Xi−L1

ᾱ(s) ds

whenever L2 ≥st L1, thus implying that EH(Ay+1|L2)−EH(Ay|L2) ≤ EH(Ay+1|L1)−

EH(Ay|L1). �

3.2.2 Compound Renewal Processes

Assume now that the demands are generated by a compound renewal process, i.e., at

the renewal demand epochs, a random quantity is demanded as opposed to a single

unit. Let {Zn, n = 1, 2, · · · }, denote the sequence of demand quantities, assumed

to be i.i.d., and distributed as the random variable Z, assumed to have a finite

moment generating function in some interval around zero. Since the inventory path

experiences downward jumps, of random magnitude, at the demand epochs, the

system can no longer be governed by an (r, q) policy. Moreover, the above “single-

unit decomposition approach”, matching an ordered unit to a specific demand unit,

while still possible, fails to generate the structural insights that can be obtained

otherwise.

For this general class of demand processes, our analysis therefore returns to the

approach developed in §3.1. We will show that an (s, S) policy acting on the inven-

tory position is optimal under general shelf-age dependent carrying costs, as long

as the inter-demand distribution X has the New-Better-than-Used (NBU) property,

a property weaker than the Increasing Failure Rate (IFR) or even the Increasing

Failure Rate Average (IFRA) condition and therefore shared by most commonly

used distributions for inter-demand times; see below. Under Assumption 1, the

same applies when general delay dependent costs are added, indeed for completely

general compound processes. In both cases, the model is equivalent to a periodic

review model whose single period demand is distributed as Z, with a specific convex

one-step expected cost function of the inventory position.

In addition to the shelf age dependent inventory costs, assume the cost structure
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includes fixed-plus-linear order costs, specified by the parameters: K = the fixed

cost incurred for any order, and c = the variable per unit procurement cost. For the

sake of notational simplicity, we confine ourselves to the case where the leadtime

is deterministic. Extensions to stochastic leadtimes arising from exogenous and

sequential processes are straightforward.

3.2.2.1 General Shelf Age Dependent Carrying Costs

As in the periodic review model, note that every unit which resides in the system’s

inventory at some point in time, is part of a unique order. We therefore account for

all expected inventory costs by assigning to each order all the expected carrying costs

resulting from this order until all of its units are sold. These total expected carrying

costs are charged at the time that the order is placed. Consider therefore the n-th

demand epoch, for any n ≥ 1, at which the inventory position is increased from a

level xn to a level yn ≥ xn. The order arrives L time units later and is sequentially

depleted at subsequent demand epochs, depending on the prevailing inventory at

the time the order arrives and demand quantities at subsequent demand epochs.

The first demand epoch following the order’s arrival has a distribution

R(L) ≡ the excess renewal distribution at time L for a renewal process starting

at time 0.

All subsequent demand epochs follow this first epoch after an inter-renewal time

distributed like X. In other words, the demand epochs following the order arrival

represent a delayed renewal process and we define

S̃j ≡ the time between the order arrival and the j-th subsequent demand epoch

=

 R(L)
⊕∑j−1

i=1 Xi, j ≥ 1

R(L), j = 0

Upon delivery, the part of the order which remains after filling any prevailing

backlogs, is part of the system’s inventory, for at least R(L) time units; similarly,

the part of the order that is left after filling demands at the j-th demand epoch

following the order’s arrival, sees its shelf age increase from S̃j to S̃j+1. Each such

unit therefore incurs additional carrying costs between the j-th and (j+1)-st demand
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epochs, given by ∆Hj ≡ E[H(S̃j+1)−H(S̃j)] where H(t) =
∫ t

0 α(s)ds is defined in

§3.2.1, above Lemma 3.3.

To show that the total expected carrying cost associated with the order can be

represented as a convex function of yn(, only), we need to show that the sequence of

incremental carrying cost contributions {∆Hj , j ≥ 0} is finite and increasing. This

can be shown provided that the interrenewal time X is NBU, i.e., for all t ≥ 0,

(X − t|X > t) ≤st X.

Lemma 3.4 Assume the interrenewal distribution X has the NBU property. Then,

∆Hj−1 ≤ ∆Hj <∞ for j ≥ 1.

Finally, as in §3.1, assume that the remaining inventory and backlogging costs

may be represented by a convex functions Γ(yn) of the inventory position after or-

dering. The following theorem shows that this continuous review model is equivalent

to a period review model with convex, level dependent inventory and backlogging

costs only(, in addition to the order costs):

Periodic Review Model(PRM): This model has periods of constant length

τ = E(X), i.i.d. demands distributed as Z, the same fixed-plus-linear costs and one

step expected inventory costs expressed as a function of the inventory position after

ordering. More specifically, in addition to the cost function Γ(y), the remaining

expected shelf age dependent carrying costs are represented by

G(y) ≡
∞∑
j=1

(∆Hj −∆Hj−1)E(y −
N(L)+j∑
i=1

Zi)
+, (3.21)

where N(L) denotes the number of demand epochs in an interval of length L fol-

lowing a renewal epoch.

Theorem 3.6 (Compound renewal demand processes: shelf age dependent carrying

costs) Assume that the inter-demand distribution has the NBU property.

(a) The function G(·) is finite and convex.

(b) The above continuous review model is equivalent to the periodic review model

PRM in a sense that, for any Markov policy π in the continuous review model, the

long-run average cost C(π) is the same as that of the same policy π in the PRM
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model. In particular, the (s∗, S∗) policy that is optimal in the equivalent PRM model

is also optimal in the continuous model.

Proof: (a) Define Bj ≡ E(y −
∑N(L)+j

i=1 Zi)
+.

Note that Bj = E[(y−
∑N(L)+j

i=1 Zi)1{
∑N(L)+j

i=1 Zi < y}] ≤ yE1{
∑j

i=1 Zi < y} =

yProb[
∑j

i=1(−Zi) ≥ −y] = yProb[eθ(
∑N(j
i=1 −Zi) ≥ e−θy] ≤ yeθyψj(θ), where ψ(θ) =

Ee−θZ < 1 and where the last inequality follows from Markov’s inequality and the

fact that the sequence {Zi} is i.i.d. Since the coefficients ∆Hj are polynomially

bounded in j, this verifies that the infinite series in (3.21) converges. The convexity

of G(·) follows from Lemma 3.4.

(b) Similar to its definition in §3.1, we use q0
n to denote the part of the demand

epoch n’s order qn = yn − xn that remains in stock after the order’s arrival and

clearing any outstanding backlogs; similarly qjn, j ≥ 1, denotes the part that remains

in stock after the j-th subsequent demand epoch. It follows from the FIFO rule that,

for j ≥ 0,

qjn = (qn − (

N(L)+j∑
i=1

Zn+i − xn)+)+

= (yn −
N(L)+j∑
i=1

Zn+i)
+ − (xn −

N(L)+j∑
i=1

Zn+i)
+

= (yn −
N(L)+j∑
i=1

Zn+i)
+ − (yn−1 −

N(L)+j∑
i=0

Zn+i)
+. (3.22)

The second equality may be verified using the same arguments as those used to

derive (3.4) and the third one follows from the identity xn = yn−1 − Zn. As ar-

gued above, the total expected carrying costs associated with the order at the n-

th demand epoch, which, by our accounting scheme, is charged at that time, are∑∞
j=1 ∆HjEqj−1

n . (Since, for all j ≥ 0, the quantity qjn only depends on the process

{Zi, i ≥ 1} while each of its units incurs incremental carrying costs that depend on

the process {Xi, i ≥ 1}, these two quantities are independent so that the expectation

of their product equals the product of their expectations.)

Thus for any Markov policy π, the long-run average costs C(π) are

lim
T→∞

∑N(T )
n=1 {Kδ(yn) + c(yn − xn) + Γ(yn) +

∑∞
j=1 ∆HjE(qj−1

n |yn)}
T
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= lim
T→∞

∑N(T )
n=1 {Kδ(y) + c(yn − xn) + Γ(yn) +

∑∞
j=1 ∆HjE(qj−1

n |yn)}/N(T )

T/N(T )

= τ−1 lim
N→∞

∑N
n=1{Kδ(y) + c(yn − xn) + Γ(yn) +

∑∞
j=1 ∆HjE(qj−1

n |yn)}
N

= τ−1 lim
N→∞

1

N
{
N∑
n=1

{Kδ(y) + c(yn − xn) + Γ(yn)

+
∞∑
j=0

∆HjE[(yn −
N(L)+j−1∑

i=1

Zn+i)
+ − (yn−1 −

N(L)+j−1∑
i=0

Zn+i)
+]}}

= τ−1 lim
N→∞

N∑
n=1

{Kδ(y) + c(yn − xn) + Γ(yn) +
∞∑
j=1

(∆Hj −∆Hj−1)E(yn −
N(L)+j∑
i=1

Zn+i)
+

+[

∞∑
j=1

∆HjE(yN(T ) −
N(L)+j−1∑

i=1

Zi)
+ −

∞∑
j=1

∆HjE(x1 −
N(L)+j∑
i=1

Zi)
+]}/N

= τ−1 lim
N→∞

N∑
n=1

{Kδ(y) + c(yn − xn) + Γ(yn) +
∞∑
j=0

(∆Hj −∆Hj−1)G(yn))}.

Thus establishing the equivalency result. (The third equality follows is based on

limT→∞
N(T )
T = τ−1 a.s.-the basic renewal theorem- and limT→∞N(T ) = ∞ while

the fourth equality follows from (3.22); the last follows from the last two terms in

the expression between the square brackets to its left being bound in N .) Since both

Γ(·) and G(·) are convex, the optimality of an (s, S) policy follows immediately, as

in Theorem 3.2(d), see Iglehart(1963a, 1963b). �

3.2.2.2 General Delay Dependent Backlogging Costs

We now show that the equivalency result in Theorem 3.6 can be extended in the

presence of delay dependent backlogging cost represented by a general increasing

function β(·).

Let Sn ≡
∑n

j=1Xi denote the time of the n-th demand epoch. We account

for the delay dependent backlogging costs by charging at time Sn the expected

total backlogging costs incurred in the interval [Sn +L, Sn+1 +L] and showing that

these expected costs can be expressed as a convex function of yn, the inventory

position after ordering at the n-th demand epoch, Sn. As in the periodic review

models in §3.1 and unlike our treatment in §3.2.1 for simple renewal processes, this
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representation requires an assumption guaranteeing either that no demand unit is

delayed by more than L time units or, equivalently, the inventory position after

ordering is non-negative (Assumption NIP), or that the marginal backlogging cost

rate is constant for delays exceeding L (Assumption CBL). We confine ourselves to

Assumption (NIP).

Similar to its definition in §3.1.3, for all j ≥ 1, let Nn,j denote the number of

units demanded at time Sn+j that are filled at Sn+1 + L or later. (By Assumption

(NIP), all demands occurring at earlier demand epochs are filled at time Sn + L.)

All such units are not being filled at least until time Sn+1 +L; they therefore incur

delay dependent backlogging costs in the interval [Sn + L, Sn+1 + L), (unless the

demands are after the time Sn+1 + L). It follows from the FIFO rule that,

m∑
j=1

Nn,j = (

m∑
j=1

Zn+j − yn)+,m ≥ 1. (3.23)

During the interval [Sn−1 + L, Sn + L), every unit in Nn,j , since demanded at time

Sn+j , sees its delay value increase from [Sn + L − Sn+j ]
+ to Sn+1 + L − Sn+j and

therefore incurs incremental backlogging costs in the amount:

DJj ≡
∫ Sn+1+L−Sn+j

[Sn+L−Sn+j ]+
β̄(u)du = J(Sn+1 +L−Sn+j)− J([Sn +L−Sn+j ]

+), (3.24)

where the function J(t) =
∫ t

0 β̄(u) du is defined above Lemma 3.3, in §3.2.1. (For

j ≤ N(L), i.e., when Sn+j ≤ Sn + L, the units in Nn,j have been backlogged from

before the starting point of the interval [Sn−1 + L, Sn + L) but their backlogging

costs prior to reaching the delay value of (Sn + L − Sn+j) are charged to some

earlier demand epochs r < n. For demand epochs that occur after time Sn+1 + L,

no backlogging costs are incurred during the time window [Sn−1 + L, Sn + L), i.e.,

DJj = 0 =
∫ Sn+1+L−Sn+j

[Sn+L−Sn+j ]+ β̄(u)du, since β̄(·) = 0 on the negative half line.) For

j ≥ 1, let

∆Jj = EDJj = EJ(Sn+1 + L− Sn+j)− EJ([Sn + L− Sn+j ]
+). (3.25)
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The expected backlogging costs incurred during [Sn−1 +L, Sn +L) are given by

E

 ∞∑
j=1

DJjNn,j


=

∞∑
j=1

E(DJjNn,j) =
∞∑
j=1

E(∆Jj)ENn,j

=

∞∑
j=1

(∆Jj)E(

j∑
i=1

Nn,i −
j−1∑
k=1

Nn,i) = E

 ∞∑
j=1

(∆Jj −∆Jj+1)

j∑
k=1

Nn,k


= E

 ∞∑
j=1

(∆Jj −∆Jj+1)(

j∑
i=1

Zn+i − yn)+

 .
The first equality follows from the Monotone Convergence Theorem. The second

equality follows from DJi being a function of the process {Xi} while the quantity

Nn,j is a function of the process {Zi}, and these two processes being independent,

so that E(DJjNn,j) = E(∆Jj)ENn,j). The last equality follows from (3.23).

Following the proof of Theorem 3.6, we show that our continuous review model

with general delay-dependent backlogging costs is equivalent to the following peri-

odic review model:

Periodic Review Model(PRM): This model has periods of constant length

τ = E(X), i.i.d. demands distributed as Z, the same fixed-plus-linear costs and one

step expected inventory costs expressed as a function of the inventory position after

ordering. More specifically, in addition to the cost function Γ(y), the remaining

expected delay dependent backlogging costs are represented by

G(y) ≡
∞∑
j=1

(∆Jj −∆Jj+1)E(

j∑
i=1

Zn+i − yn)+. (3.26)

Theorem 3.7 (Compound renewal demand processes: delay dependent backlogging

costs) (a) The function G(·) is finite and convex.

(b) Assume Assumption (NIP) applies. The above continuous review model is

equivalent to the periodic review model PRM in the sense that, for any Markov policy

π in the continuous review model, the long-run average cost C(π) is the same as that

of the same policy π in the PRM model. In particular, the (s∗, S∗) policy that is

optimal in the equivalent PRM model is also optimal in the continuous model.
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Chapter 4

Monotonicity Properties of

Stochastic Inventory Systems

We refer to Section 1.4 for an introduction of this chapter. As mentioned in Section

1.4, the long-run average cost is of the following form, depending upon whether the

sample paths of the leadtime demand process are continuous or step functions:

c(r, q|θ) =
λK +

∫ r+q
r G(y|θ) dy
q

, (4.1)

or

c(r, q|θ) =
λK +

∑r+q
y=r+1G(y|θ)
q

. (4.2)

In both (4.1) and (4.2), λ and K represent the long-run average demand rate and

the fixed cost incurred for every order batch of size q respectively. All other model

primitives θ ∈ Θ impact the long-run average cost exclusively via the so-called

instantaneous expected cost function G(y|θ). When the long-run average cost of an

(r, q) or (r, nq) policy is given by (4.1)[(4.2)], we refer to the model as the continuous

[discrete] model. Since the representations in (4.1) and (4.2) are common under

(r, q) or (r, nq) policies, we henceforth confine ourselves to the former, without loss

of generality. In Section 1.4, we introduced (r∗, q∗) as the optimal (r, q)- policy and

R∗ ≡ r∗ + q∗ as the optimal order-up-to level.

This chapter is organized as follows. In §4.1, we review the relevant literature.

§4.2 specifies a variety of inventory models governed by (r, q) or (r, nq) policies



80

under which the long-run average cost is of the form given by (4.1) or (4.2). This

includes the standard inventory model as well as others, for example, those with shelf

age and delay dependent inventory costs. This section also reviews several known

properties of the optimal policy parameters, required in the subsequent analysis.

The monotonicity results of r∗ and R∗ and their various important applications

are derived in §4.3, and those pertaining to q∗, in §4.4. §4.5 is devoted to the

monotonicity results of the optimal cost value, while §4.6 completes the paper with

general conclusions.

4.1 Literature Review

The first studies of (r, q) policies in stochastic inventory systems go back to Whitin

(1953) and the influential textbook by Hadley and Whitin (1963). The latter two

focused on the case where the demand process is Poisson and the cost structure con-

sists of linear holding/backlogging costs as well as fixed and variable ordering costs.

This became the generally employed continuous review inventory model. Indeed,

with Poisson demands and this cost structure, (r, q) policies are easily shown to be

optimal, see Zipkin (2000). In practice, many inventory systems are, indeed, gov-

erned by an (optimal) (r, q)-policy, see, for example, Bagchi et al. (1986) reporting

on an air force system with more than 500,000 SKUs.

Various authors consider alternative specifications of the demand process. These

include Sahin (1979) modeling demands as a compound renewal process with a con-

tinuous batch size distribution, and Bather (1966) and Puterman (1975) addressing

the case where the demand process is a Brownian motion. Song and Zipkin (1993)

and Song and Zipkin (1996a) consider the case where the Poisson demand process

is modulated by an underlying state of the world, which evolves according to a

Markov process. (These authors confine themselves to the special case of base-stock

policies, where R = r + 1, albeit that the reorder level r may be state-dependent.)

A similar model with continuous demands and general (r, q) policies is analyzed in

Browne and Zipkin (1991). Here, inventory declines at a continuous demand rate,
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specified as a function of the “state of the world”, which evolves according to an

ergodic Markov process.

As mentioned in the Introduction, relatively little is known about how the opti-

mal policy parameters, r∗, R∗ and q∗, vary with the model primitives, even in the

above mentioned basic model (with Poisson demands and linear holding/backlogging

costs). Most of the literature has focused on heuristic and exact algorithms to com-

pute the optimal policy parameters, see, for example, Federgruen and Zheng (1992)

and Gallego (1998) and the references therein. The first qualitative properties were

derived by Zheng (1992). As mentioned, this author proved that the optimal pol-

icy parameters are monotone in the fixed cost K. In addition, he showed that the

optimal order quantity q∗ and the optimal cost value are always larger than their

deterministic counterparts in the EOQ model, also demonstrating that the optimal-

ity gap incurred when employing the economic order quantity, is bounded by 12.5%.

Axsäter (1996) and Gallego (1998) improved this optimality gap to (
√

5− 2)/2 and

6.07% respectively.

The study of monotonicity properties in elementary stochastic inventory models

has, for the most part, confined itself to investigations of the effect of leadtime

and/or demand uncertainties and this in newsvendor systems or systems governed

by base-stock policies. (As mentioned, the latter arise as a special case of (r, q)

policies with q = 1.) Examples include Gupta and Cooper (2005), Jemäı and

Karaesmen (2005) and the references therein. To our knowledge, other than Zheng

(1992) only two papers have addressed monotonicity properties in systems that are

governed by general (r, q) policies. Song and Zipkin (1996b) address systems with

i.i.d. leadtimes, assuming the optimal reorder level is selected in conjunction with

any exogenously specified order quantity. Since under i.i.d. leadtimes the long-

run average cost can only be approximated, these authors investigate the impact of

increased leadtime variability on the average backlog/inventory size by conducting

a numerical study. As in this paper, Song et al. (2010) consider systems governed

by the globally optimal (r, q) policy. They show that both r∗ and R∗ increase when

the steady-state leadtime or leadtime demand distribution becomes stochastically
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larger. We obtain this as a special corollary of our general monotonicity result under

submodular instantaneous expected cost functions G(y|θ). They also show that a

stochastically smaller leadtime or leadtime demand is not guaranteed to result in a

lower average cost, while the less variable leadtime or leadtime demand distribution

does. The remainder of Song et al. (2010) establishes monotonicity properties of the

policy parameters under increased (leadtime) demand variability, but only under

certain conditions on the model parameters.

4.2 Model and Preliminaries

We consider a single-item inventory system which is reviewed continuously and

where replenishment orders can be placed at any time. Leadtimes are characterized

by a stochastic process {L(t) : t ≥ 0} with L(t) the leadtime experienced by an

order placed at time t. We assume the process is exogenous, i.e., it is independent

of the demand process, as well as sequential, i.e., t+ L(t) ≤ t′ + L(t′) for all t < t′,

with probability one. Sequential order processes guarantee the well-known simple

relationship between the net inventory process {IN(t) : t ≥ 0} (the net inventory

equals stock on hand minus backorders) and the inventory position process {IP (t) :

t ≥ 0} (the inventory position equals the inventory level plus all outstanding orders):

IN(t+ L(t)) = IP (t)−D[t, t+ L(t)). (4.3)

Here D[t1, t2) represents the cumulative demand in the time interval [t1, t2). We

refer to Zipkin(2000,§7.4) for a survey of various exogenous and sequential leadtime

processes.

The cost associated with any order batch has a fixed component K and a variable

component which is proportional with the order size. Since the long-run average

order size per unit of time equals the long-run average demand rate λ, this variable

cost component is invariant with respect to the chosen replenishment policy, and can

therefore be ignored. All other cost components are assumed to accrue continuously

at a rate which depends on the prevailing inventory position y. This gives rise to

the above mentioned instantaneous expected cost function G(y|θ), parameterized
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by θ ∈ Θ, which, in some applications, refers to a model parameter, and in others

to a distribution, stochastic process or cost rate function. We merely assume that

Θ has a partial order �.

As to the shape of G(·|θ), we assume the following structural properties:

(Q): G(·|θ) is strictly quasi-convex with y0(θ) as its (unique) minimum and

lim
|y|→∞

G(y|θ) =∞.

(Strict quasi-convexity of G(·|θ) means that G(·|θ) is strictly decreasing for

y < y0(θ) and strictly increasing for y > y0(θ).) See Veinott (1965) for a re-

view of many settings, other than the above basic linear holding and backlogging

cost structure, where quasi-convexity of the G(·|θ) function prevails. Rosling (2002)

considers settings where, in addition to the linear holding and backlogging costs,

there is a one-time cost for every demand that is backlogged and a fixed cost for

any time unit at which a backlog prevails. Such cost components arise, for example,

under Lagrangian relaxation, when a fill rate or ready-rate constraint is added to

the model, see the Introduction. Propositions 2.2 and 2.5 in Rosling (2002) identify

conditions under which G(·|θ) is quasi-convex.

In the main Sections 4.3 and 4.4, we assume, in addition, one of the following

properties:

(SP): G(y|θ) is supermodular in (y, θ) ∈ R×Θ, i.e., for any given θ1 � θ2 ∈ Θ

and y2 > y1

G(y2|θ1)−G(y1|θ1) ≤ G(y2|θ2)−G(y1|θ2). (4.4)

If the inequality in (4.4) is reversed, G(y|θ) is submodular in (y, θ), a property

referred to as (SB). If the inequality is strict, we refer to the condition as (SP+) or

(SB+), respectively.

Continuous Models

In the continuous model, we assume that the demand process has continuous

sample paths and stationary increments. Examples include demands generated by

a Brownian motion or those occurring at a continuous rate determined by an un-

derlying “state of the world” X(t) where {X(t) : t ≥ 0} evolves according to an

ergodic process, either a continuous-time Markov chain or a diffusion process. See
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Browne and Zipkin (1991) who state, for example, that many familiar forecasting

models can be represented in this way. Under any of these demand processes, there

exists a long-run average demand λ, i.e., limt→∞
D[0,t]
t = λ with probability one.

When the inventory position y varies continuously, we assume G(·|θ) is con-

tinuously differentiable. Also when G(·|θ) is quasi-convex, it is, for some demand

processes, well-known that an (r, q) policy is optimal. For example, Bather (1966)

and Puterman (1975) show that an (r, q) policy is optimal when the demand process

is a Brownian motion. In addition, even when an (r, q) policy fails to be optimal,

many modelers and practitioners like to restrict themselves to this class of policies.

Indeed, under any of the above demand processes, the inventory position process

{IP (t) : t > 0} has a unique steady-state distribution, which is the uniform distri-

bution on the interval (r, r + q], see, in particular, Browne and Zipkin (1991). The

long-run average cost under an (r, q) policy is thus given by (4.1).

We first establish that the cost function c(r, q) has a unique local (and global)

minimum (r∗, q∗). Zipkin (1986) proved this result in the special case of the standard

inventory model with linear holding and backlogging costs, by showing that the cost

function c(r, q) is jointly convex. (See Zhang (1998) for a shorter proof than that in

Zipkin (1986).)

As a first step, we show in Lemma 4.1 that, for any given quantity q, the function

c(r, q|θ) is strictly quasi-convex in r, therefore possessing a unique minimum r(q|θ) =

arg minr c(r, q|θ). Let R(q|θ) ≡ r(q|θ) + q denote the corresponding optimal order-

up-to level. Lemma 4.1, proved in Appendix C.1, also establishes several properties

of the r(q|θ) and R(q|θ) functions, as required in the subsequent analysis.

Lemma 4.1 (Continuous models with a given order quantity) Assume (Q).

(P0) For any given q, c(r, q|θ) is strictly quasi-convex in r achieving its minimum

at r(q|θ).

(P1) r(q|θ) is the unique root of the equation G(r|θ) = G(r + q|θ).

(P2) r(q|θ) < y0(θ) < R(q|θ).

(P3) r(q|θ) is decreasing and differentiable in q with limq→∞ r(q|θ) = −∞.
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(P4) R(q|θ) is increasing and differentiable in q with limq→∞R(q|θ) =∞.

Theorem 4.1, again proven in Appendix C.1, now show that just like there is

a unique reorder level r(q|θ) for any given order quantity q, there exists a unique

globally optimal order quantity q∗(θ) as well1. This result is established by showing

that the projected function c(q|θ) ≡ minr c(r, q|θ) is strictly quasi-convex as well.

Theorem 4.1 (Continuous models: optimal model parameters) Assume (Q). The

function c(q|θ) is strictly quasi-convex in q. In particular, there exists a unique pair

(r∗(θ), q∗(θ)), with r∗(θ) = r(q∗(θ)|θ), that minimizes the cost function c(r, q|θ).

Moreover,

(P5) q ≤ (=)q∗(θ) if and only if G(r(q|θ)|θ) ≤ (=)c(q|θ).

Define g(y|θ) ≡ ∂G(y|θ)/∂y. The optimal policy parameters r∗(θ) and q∗(θ) are

uniquely determined by:

G(r|θ) = G(R|θ), (4.5)∫ R

r
yg(y|θ)dy = Kλ. (4.6)

(4.5) follows from (P1) in Lemma 4.1 while (P5) in Theorem 4.1 implies that

G(r∗(θ)|θ) = c(r∗(θ), q∗(θ)|θ) =
Kλ+

∫ R∗(θ)
r∗(θ) G(y|θ)dy
q∗(θ)

=
Kλ+ q∗(θ)G(r∗(θ)|θ)−

∫ R∗(θ)
r∗(θ) yg(y|θ)dy

q∗(θ)
.

(The last equality is obtained by integration by parts, using (4.5); (4.6) follows by

subtracting G(r∗(θ)|θ) from both sides of the equation.)

Even more common than the above demand processes with continuous sample

paths, is the characterization of demands as a Poisson process. Under the above

cost structure, (r, q) policies continue to be optimal and their long-run average cost

value is given by (4.2), the discrete analogue of (4.1). More generally, if demand

1Rosling (1999) proves a related but distinct property of the function c(r, q), namely its pseudo-

convexity.
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is generated by a compound Poisson process, the reorder level r is likely to be

overshot, requiring an adaptation of the (r, q) policy structure. A frequently used

class of policies are so-called (r, nq) policies: here, a replenishment order is placed

whenever the inventory position drops to or below r. A sufficiently large multiple of

q units is ordered to bring the inventory position back to the (r, r+q] interval. If the

compounding distribution is continuous, the long-run average cost under an (r, nq)

policy is, again, given by (4.1). Alternatively, if the compounding distribution is

discrete, it is given by (4.2). (Under compound Poisson demands, (r, nq) policies

are suboptimal, but the best (r, nq) policy is typically close to optimal, see Zipkin

(2000, p.228).)

Discrete Models

In the discrete case, we assume the same structural properties (Q) of G(·|θ).

Here, we redefine r(q|θ) ≡ min{r : c(r, q|θ) = c(q|θ)} due to the possibility of

multiple minimizers2. Similarly, define c∗(θ) ≡ minq c(r(q|θ), q|θ)} and q∗(θ) ≡

min{q : c(r(q|θ), q|θ) = c∗(θ)}. Let Gl(θ) denote the l-th smallest value of G(·|θ)

function attained over all integers. (Clearly G1(θ) = G(y0|θ).) The following lemma,

proven in Appendix C.1 exhibits the discrete analogue of properties (P1)-(P5) of

the continuous model:

Lemma 4.2 (Properties of discrete models) Assume (Q). For any q > 0,

(P1’) r(q|θ) = min{r : G(r + 1 + q|θ) ≥ G(r + 1|θ)}.

(P2’) r(q|θ) < y0 ≤ R(q|θ).

(P3’) r(q|θ) is decreasing in q with limq→∞ r(q|θ) = −∞.

(P4’) R(q|θ) is increasing in q with limq→∞R(q|θ) =∞.

(P5’) q < q∗(θ) ⇐⇒ Gq+1(θ) < c(q|θ). Moreover, q∗(θ) = min{q : Gq+1(θ) ≥

c(q|θ)}.

2Unlike in the continuous case, even under assumption (Q), there may be two optimal r values

for a given value of q. For example, when y0 is an integer and G(y0 − d) = G(y0 + d) for all d > 0,

both r = y0 − d and r = y0 − d− 1 are optimal for q = 2d.
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As mentioned in the Introduction, the model primitives can be partitioned into

three categories, depending upon whether they impact (i) the first term in the

numerator of the cost objective (4.1) or (4.2), (ii) the second term in the objective,

or (iii) both terms:

(I) The fixed order cost K impacts only the first term. It is known that

r∗ is decreasing in K while R∗ and q∗ are increasing in K. (4.7)

See Zheng (1992) for proofs in the continuous model, and Federgruen and Zheng

(1992) for an easy verification of the results in the discrete model.

(II) The average demand rate λ: this parameter changes both terms of the nu-

merator of (4.1) and (4.2), and, as we shall see, the two changes sometimes impact

the optimal policy parameters in opposite ways.

(III) All other model primitives θ impact the second term of the numerator of

(4.1) and (4.2).

In the remainder of the paper, we focus on monotonicity properties of the policy

parameters with respect to all these model primitives θ. After deriving our general

results, we apply them to the primitives of the following special class of inventory

models:

The Standard Inventory Model.

In the standard inventory model the following assumptions are made: the item

is obtained at a given price per unit. Leadtimes are generated by a so-called exoge-

nous and sequential process, ensuring that consecutive orders do not cross and that

leadtimes are independent of the demand process. Inventory costs are accrued at a

rate h(·) which is a convex increasing function of the inventory level with h(0) = 0;

stockouts are backlogged where backlogging costs are, again, accrued at a rate b(·)

which is a convex increasing function of the backlog size with b(0) = 0; (The ba-

sic model introduced by Hadley and Whitin (1963) with inventory and backlogging

costs that are proportional with the inventory level and backlog size, respectively,

is a special case of the standard inventory model.) (4.3) is used to account for these

costs by assigning to epoch t the expected holding and backlogging costs to be in-

curred a leadtime L(t) later, thus representing these cost components as a function
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of the prevailing inventory position at time t. Here

G(y|θ) = Eh((y −DL)+) + Eb((DL − y)+) (4.8)

where DL has the steady-state leadtime demand distribution with pdf f(·), cdf F (·)

and ccdf F (·).

There are, clearly, several other classes of inventory models that are optimally

governed by an (r, q) or (r, nq) policy with the cost objective given by (4.1) or (4.2).

One example is

Inventory Models with Shelf Age and Delay Dependent Inventory Costs.

In some systems, inventory cost rates depend on the so-called shelf age of a unit,

i.e., the amount of time a unit has resided in a firm’s inventory. This situation is

prevalent under a variety of supplier financing schemes. One example is provided by

trade credit arrangements under which a supplier allows the firm to defer payments

of any given item until such time when it is sold to the consumer. The supplier may

offer an initial interest-free period (e.g., 30 days) after which interest accumulates.

Moreover, interest rates often increase as a function of the item’s shelf age. These

trade credit schemes have been considered in Gupta and Wang (2009) as well as

Chapter 2. We refer to the latter for a discussion of how prevalent this practice is.

Another setting with shelf age dependent inventory cost rates is when the supplier

subsidizes part of the inventory cost. For example, in the automobile industry

manufacturers pay the dealer so-called “holdbacks”, i.e., a given amount for each

month a car remains in the dealer’s inventory, up to a given time limit (see, e.g.,

Nagarajan and Rajagopalan (2008)). The resulting inventory cost rate for any

stocked item is, again, an increasing function of the item’s shelf age.

Similar to shelf age dependent holding costs, backlogging cost rates may also

depend on the amount of time by which delivery of a demand unit is delayed. This

may reflect the structure of contractually agreed upon penalties for late delivery or,

in case of implicit backlogging costs, the fact that customers become less or more

impatient as they wait longer for an item. See Huh et al. (2010).

Let α(t) denote the incremental inventory cost rate incurred for an item that

has a shelf age t and β(t) the incremental backlogging cost rate when a unit of
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demand has been waiting for t time units. Note that this class of inventory models

and the standard inventory models above are distinct: the only models that are

common to both classes have α(·) and β(·) as constant functions, or equivalently

h(·) and b(·) as linear functions. When the demand process is a renewal process, 3.5

has shown that the long-run average cost is of the form given by (4.2). Moreover,

when the functions α(·) and β(·) are general, merely assumed to be increasing, the

instantaneous expected cost function G(·) has been shown to be convex ibid.

4.3 Monotonicity of r∗ and R∗

In this section, we show that the supermodularity (submodularity) condition (SP)

[(SB)] suffices to establish that the optimal reorder level r∗ and order-up-to level

R∗ are decreasing [increasing] in θ ∈ Θ, both under an arbitrary order quantity and

under the optimal order quantity.

Theorem 4.2 (Monotonicity of r∗ and R∗) Consider both the continuous and dis-

crete models. Assume (Q).

(a) Under (SP) [(SB)], r(q|θ) and R(q|θ) are decreasing [increasing] in θ for any

fixed q > 0.

(b) Under (SP) [(SB)], r∗(·) and R∗(·) are decreasing (increasing) in θ.

Proof: The proof for the continuous model relies on the five properties (P1)-

(P5) in Lemma 4.1 and Theorem 4.1. We omit the proof for the discrete model since

it is analogous with each of the five properties replaced by its discrete counterpart

(P1’)-(P5’) listed in Lemma 4.2. We also confine ourselves to the case where G(y|θ)

is supermodular; the proof for the submodular case is similar.

(a) Fix q > 0. Apply (4.4) to y1 = r(q|θ1) and y2 = R(q|θ1) and use (P1) to

conclude that

0 = G(y2|θ1)−G(y1|θ1) ≤ G(y2|θ2)−G(y1|θ2). (4.9)

This implies that

r(q|θ1) ≥ r(q|θ2). (4.10)



90

(Assume to the contrary that r(q|θ1) < r(q|θ2), so that R(q|θ2) = r(q|θ2) + q > y2;

then G(r(q|θ2)|θ2) < G(y1|θ2) = G(y2|θ2) < G(R(q|θ2)|θ2) where the first and third

inequalities follow from (P2) and the strict quasi-convexity of G(·|θ) while the second

inequality follows from (4.9). However, this contradicts (P1) for θ = θ2.) It follows

immediately that R(q|θ) = r(q|θ) + q is also decreasing in θ.

(b) We first show that r∗(θ) is decreasing. Assume to the contrary that r∗(θ1) <

r∗(θ2). Then we must have q∗(θ1) > q∗(θ2) because, otherwise, r∗(θ1) = r(q∗(θ1)|θ1) ≥

r(q∗(θ2)|θ1) ≥ r(q∗(θ2)|θ2) = r∗(θ2) where the first inequality follows from (P3) and

the second from (4.10), which contradicts our assumption r∗(θ1) < r∗(θ2). In view

of (P3), let q̂ be the unique order quantity such that r(q̂|θ1) = r∗(θ2). Since, by

(4.10), r(q∗(θ2)|θ1) ≥ r(q∗(θ2)|θ2) = r∗(θ2) = r(q̂|θ1), (P3) implies:

q∗(θ2) ≤ q̂. (4.11)

On the other hand, since by our assumption, r(q̂|θ1) = r∗(θ2) > r∗(θ1) = r(q∗(θ1)|θ1),

it follows, again, from (P3) that

q∗(θ1) > q̂. (4.12)

By (P5), G(r∗(θ2)) = c∗(q∗(θ2)|θ2) =
Kλ+

∫ r∗(θ2)+q∗(θ2)
r∗(θ2)

G(y|θ2)dy

q∗(θ2) , or∫ r∗(θ2)+q∗(θ2)

r∗(θ2)
[G(r∗(θ2)|θ2)−G(y|θ2)]dy = λK. (4.13)

On the other hand, by (4.12) and (P5), G(r∗(θ2)|θ1) = G(r(q̂|θ1)|θ1) < c∗(q̂|θ1), or∫ r∗(θ2)+q̂

r∗(θ2)
[G(r∗(θ2)|θ1)−G(y|θ1)]dy < λK. (4.14)

Moreover,

0 ≤ G(r∗(θ2)|θ2)−G(y|θ2) ≤ G(r∗(θ2)|θ1)−G(y|θ1) (4.15)

for all r∗(θ2) ≤ y ≤ r∗(θ2) + q∗(θ2) where the first inequality follows from (P1) and

the quasi-convexity of G(·) and the second inequality from (4.4). Therefore,

λK =

∫ r∗(θ2)+q∗(θ2)

r∗(θ2)
[G(r∗(θ2)|θ2)−G(y|θ2)]dy

≤
∫ r∗(θ2)+q∗(θ2)

r∗(θ2)
[G(r∗(θ2)|θ1)−G(y|θ1)]dy

≤
∫ r∗(θ2)+q̂

r∗(θ2)
[G(r∗(θ2)|θ1)−G(y|θ1)]dy < λK,
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where the first equality follows from (4.13), the first inequality from (4.15), the

second from (4.15) as well as (4.11), and the last from (4.14). This contradicts our

assumption r∗(θ1) < r∗(θ2).

The proof that R∗(·) is decreasing also proceeds by contradiction. Assume,

therefore, that R∗(θ1) < R∗(θ2). By (P4), let q̃ be the unique order level such that

R(q̃|θ2) = R∗(θ1) < R∗(θ2). It follows from (P4) that q̃ < q∗(θ2). This, together with

(P5) and the definition of q̃, implies that G(R∗(θ1)|θ2) = G(R(q̃|θ2)|θ2) < c∗(q̃|θ2),

or ∫ R∗(θ1)

r(q̃|θ2)
[G(R∗(θ1)|θ2)−G(y|θ2)]dy < λK. (4.16)

On the other hand, using the definition of q̃ and part (a), R∗(θ1) = R(q̃|θ2) ≤

R(q̃|θ1). Hence, by (P4), q̃ ≥ q∗(θ1). This, by using the definition of q̃ once again,

implies that

r(q̃|θ2) = R(q̃|θ2)− q̃ = R∗(θ1)− q̃ ≤ R∗(θ1)− q∗(θ1) = r∗(θ1). (4.17)

Therefore,

λK =

∫ R∗(θ1)

r∗(θ1)
[G(R∗(θ1)|θ1)−G(y|θ1)]dy ≤

∫ R∗(θ1)

r∗(θ1)
[G(R∗(θ1)|θ2)−G(y|θ2)]dy

≤
∫ R∗(θ1)

r(q̃|θ2)
[G(R∗(θ1)|θ2)−G(y|θ2)]dy < λK (4.18)

Here the first equality follows from G(R∗(θ1)) = c∗(q∗(θ1)|θ1) =
Kλ+

∫R∗(θ1)
r∗(θ1)

G(y|θ1)dy

q∗(θ1)

using (P5). The first inequality is due to the supermodularity of G(y|θ) (see (4.4));

the second inequality uses (4.17) and the fact that G(R∗(θ1)|θ2) ≥ G(y|θ2) for

all r(q̃|θ2) ≤ y ≤ R(q̃|θ2) = R∗(θ1), applying (P1) with θ = θ2 and q = q̃ and

quasi-convexity of G(·|θ2); finally, the last inequality follows from (4.16). The con-

tradiction in (4.18) implies that our assumption R∗(θ1) < R∗(θ2) is false. �

Corollary 4.1 applies Theorem 4.2 to the standard inventory model.

Corollary 4.1 (Monotonicity properties of r∗ and R∗ in the standard inventory

model) Assume the instantaneous expected cost function G(·|θ) is of the form (4.8),

in both the continuous and the discrete model. Let Ξ denote the set of increasing
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convex and positive functions endowed with a partial order �. For any v1(·), v2(·) ∈

Ξ, v1(·) � v2(·) means v′1(y) ≤ v′2(y) for all y.

(a) r∗ and R∗ are decreasing in the holding cost rate function h(·) ∈ Ξ.

(b) r∗ and R∗ are increasing in the backlogging cost rate function b(·) ∈ Ξ.

(c) If, for any given y, the incremental holding cost rate h′(y) is an increasing

differentiable function of the purchase cost w, (e.g. h(y) = (α0w + h0)y with

α0 > 0 being the capital cost rate and h0 the physical inventory cost rate,) then

r∗ and R∗ are decreasing in w.

(d) Consider two stochastically ordered steady-state leadtime demand distributions

D1
L and D2

L with D1
L ≤st D2

L, however with the same average demand rate λ.

Then r∗ and R∗ are larger under D2
L than those under D1

L.

(e) Assume the demand process is compound Poisson. Consider two leadtime

processes {L1(t) : t ≥ 0} and {L2(t) : t ≥ 0} such that L1(t) ≤st L2(t) for all

t > 0. r∗ and R∗ are larger under the {L2(t) : t ≥ 0} process than those under

the {L1(t) : t ≥ 0} process.

(f) Consider a compound Poisson demand process. R∗ is increasing in the Poisson

rate ν.

(g) Consider two demand processes, both of which are compound Poisson with

Poisson rate ν, but with different compounding distributions Z1 and Z2 where

Z1 ≤st Z2. Then, R∗ is larger under the second demand process as compared

to the first.

Proof: Note that g(y|θ) ≡ ∂G(y|θ)/∂y = Eh′((y −DL)+)− Eb′((DL − y)+).

(a) Let θ = h(·). The result follows immediately from part (b) of Theorem 4.2

as g(y|h1(·)) ≤ g(y|h2(·)) for any h1(·), h2(·) ∈ Ξ with h1(·) � h2(·).

(b) Let θ = b(·). Similar to part (a), the result follows immediately from part (b)

of Theorem 4.2 as g(y|b1(·)) ≥ g(y|b2(·)) for any b1(·), b2(·) ∈ Ξ with b1(·) � b2(·).
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(c) Let θ = w. The result is easily verified by noting that ∂g(y|θ)/∂θ =

E
[
∂h′((y−DL)+)

∂w

]
≥ 0.

(d) Let θ = DL and h̃(x) = h(x+) + b(x−). Note that h̃(·) is convex and

differentiable for all x 6= 0 with h̃′(·) an increasing function. D1
L ≤st D2

L ⇐⇒

−D1
L ≥st −D2

L ⇒ g(y|D2
L) = Eh̃′(y − D2

L) ≤ Eh̃′(y − D1
L) = g(y|D1

L). Thus, the

result follows from part (b) of Theorem 4.2.

(e) Song (1994) showed that the leadtime demand under {L2(t) : t ≥ 0} is

stochastically greater than that under {L1(t) : t ≥ 0} when L1(t) ≤st L2(t). The

result follows from part (d).

(f) Note that the average demand rate is

λ = νE(Z) (4.19)

where Z denotes the compounding distribution. While the parameters λ and ν are

tied together by (4.19), consider for an arbitrary parameter pair (λ, ν) ∈ R2
+, the

expanded family of long-run average cost functions:

c(r, q|λ, ν) =
λK +

∫ r+q
r G(y|ν) dy

q
, and c(r, q|λ, ν) =

λK +
∑r+q

y=r+1G(y|ν)

q
,

(4.20)

in the continuous and discrete model respectively. It follows from (4.7) that an

independent increase in λ, with ν fixed, results in an increase in R∗. Similarly,

by part (d), an independent increase of ν, with λ fixed, also results in an increase

of R∗ since DL is stochastically increasing in ν by Theorem 1.A.5 of Shaked and

Shanthikumar (2007), using the fact that a Poisson random variable is stochastically

increasing in its mean. The same therefore applies as (λ, ν) are increased along the

line described by (4.19), i.e., R∗ is increasing in the Poisson rate ν.

(g) Similar to part (f), consider the expanded family of long-run average cost

function c(r, q|λ, Z). Since λ1 = νE(Z1) ≤ νE(Z2) = λ2 and, again, by Theorem

1.A.5 of Shaked and Shanthikumar (2007) D1
L ≤st D2

L, the result follows from (4.7)

and part (d). �

To our knowledge, parts (a)-(c), (f) and (g) are new results. For the case of

compound Poisson demand process, parts (d)-(e) are shown in Song et al. (2010),
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see Lemma 4, Theorem 2 and discussions in§5.1 there. We include these parts to

provide a comprehensive treatment of various primitives in the standard inventory

model and to show that these monotonicity properties as well as those covered in

(a)-(c), (f) and (g) all follow as direct corollaries of the general result in Theorem

4.2.

Summarizing parts (e)-(g), there are three ways in which the leadtime demand

distribution under a compound Poisson demand process may increase (stochasti-

cally): (i) a stochastic increase in the leadtime distribution, (ii) an increase in the

rate of the Poisson process and (iii) a stochastic increase in the compounding dis-

tribution. In the first case (i), both r∗ and R∗ increase. In the remaining cases,

Corollary 4.1 shows the same monotonicity property for R∗. As to the impact on

r∗, consider the cost representation given by (4.20) above. Following the proof of

Corollary 4.1(f), an increase of ν results in increase of r∗; an increase of λ results

in an decrease of r∗, similar to the impact of an increase in K, see (4.7). Since λ

and ν are tied together by equation (4.19), the stochastic increase in the demand

process has two opposing effects. Our numerical explorations reveal that the net

effect consists of an increase of r∗(, similar to the proven increase in R∗), but a

formal proof is outstanding.

Finally, the following result has been shown in Proposition 3.1, addressing inven-

tory models with general shelf age and delay dependent inventory cost rate functions,

as described in Section 4.2.

Proposition 4.1 (Shelf age and delay dependent inventory costs) Consider the shelf

age and delay dependent inventory cost model of Section 4.2.

(a) When the incremental inventory cost rate function α(·) is replaced by a new

function α̂(·) that is point-wise larger, i.e., α(s) ≤ α̂(s) for all s ≥ 0, the optimal

values r∗ and R∗ decrease.

(b) When the incremental backlogging cost rate function β(·) is replaced by a new

function β̂(·) that is point-wise larger, i.e., β(s) ≤ β̂(s) for all s ≥ 0, the optimal

values r∗ and R∗ increase.
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4.4 Monotonicity of q∗

In this section, we identify monotonicity properties of the remaining policy param-

eter q∗, i.e., the optimal order quantity, with respect to various model parameters.

These results require an additional property of the instantaneous expected cost

function G(y|θ) beyond the simple supermodularity (SP) or submodularity prop-

erty (SB) guaranteeing the monotonicity of r∗ and R∗, see Theorem 4.2. To begin

with, we confine ourselves to monotonicity properties with respect to a scalar model

parameter θ, as opposed to more complex entities (demand distributions, leadtime

distributions, cost rate functions etc.) addressed in§4.3. (In other words, in this sec-

tion, we assume Θ ⊆ R.) We confine ourselves to the case where the function G(y|θ)

is supermodular, i.e., (SP) prevails without giving explicit treatment to the parallel

case (SB). Note that if the function G(y|θ) is submodular in (y, θ), a supermodular

structure is obtained by replacing the parameter θ by any decreasing transformation

thereof, for instance, θ′ = −θ or θ′ = θ−1. As explained in the Introduction, the

monotonicity properties of q∗ differ between the continuous and discrete model. In

subsection 4.4.1, we devote ourselves to the continuous model, while the discrete

model is addressed in subsection 4.4.2.

4.4.1 The Continuous Model

In the continuous model, we henceforth assume that the function G(y|θ) is twice

differentiable in (y, θ). Thus let g(y|θ) ≡ ∂G(y|θ)
∂y , gy(y|θ) ≡ ∂g(y|θ)

∂y , and gθ(y|θ) ≡
∂g(y|θ)
∂θ .

We first derive a necessary and sufficient condition for q∗ to be increasing or

decreasing in θ, the proof of which is given in Appendix C.1.

Theorem 4.3 (Monotonicity properties of q∗ in the continuous model) Assume (Q)

with G(·|·) a twice differentiable function. q∗(θ) is decreasing (increasing) at θ = θ0

if and only if∫ R∗(θ0)

r∗(θ0)
ygy(y|θ0)dy

∫ R∗(θ0)

r∗(θ0)
gθ(y|θ0)dy ≤ (>)

∫ R∗(θ0)

r∗(θ0)
gy(y|θ0)dy

∫ R∗(θ0)

r∗(θ0)
ygθ(y|θ0)dy.

(4.21)



96

In some cases, the necessary and sufficient condition (4.21) for q∗ to be increasing

or decreasing at any given θ may be verified directly. In other cases, it may be

difficult or impossible to compute the integrals in a closed form. We therefore

derive a sufficient condition, in Theorem 4.4 below, which is both more transparent

and can be verified by computing the partial derivatives of the function g(y|θ) only.

First we need the following lemma.

Lemma 4.3 Let u(·) and v(·) be two continuous functions defined on the closed

interval [a, b] ⊂ R, with a < b and v(y) 6= 0 for any y ∈ [a, b]. Assume ρ(y) ≡

u(y)/v(y) is decreasing (increasing) in y ∈ [a, b]. Then
∫ b
a yv(y)dy

∫ b
a u(y)dy ≥

(≤)
∫ b
a v(y)dy

∫ b
a yu(y)dy. The inequality is strict unless the ratio function ρ(·) is

constant.

Proof: We give the proof for the case where ρ(·) is decreasing and v(y) > 0 for

all y ∈ [a, b]; the proof for the three alternative cases is similar. Since v(y) ∈ R+,∫ b

a
yv(y)dy

∫ b

a
u(y)dy ≥

∫ b

a
v(y)dy

∫ b

a
yu(y)dy

⇐⇒
∫ b
a yv(y)dy∫ b
a v(y)dy

∫ b

a
ρ(y)v(y)dy ≥

∫ b

a
yρ(y)v(y)dy

⇐⇒
∫ b

a
ρ(y)δ(y)v(y)dy ≥ 0 (4.22)

where δ(y) =
∫ b
a yv(y)dy∫ b
a v(y)dy

− y. It is thus equivalent to show (4.22). Note that δ(·) is a

decreasing linear function of y. Moreover,∫ b

a
δ(y)v(y)dy = 0, (4.23)

precluding the case that δ(y) is uniformly positive or uniformly negative on [a, b].

In other words, δ(y) = 0 has a unique root c ∈ [a, b] with δ(y) ≥ 0 for y ∈ [a, c] and

δ(y) ≤ 0 for y ∈ [c, b]. As v(y) ≥ 0 for all y ∈ [a, b],

δ(y)v(y) ≥ 0 on [a, c] and ≤ 0 on [c, b]. (4.24)
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Hence, ∫ b

a
ρ(y)δ(y)v(y)dy =

∫ c

a
ρ(y)δ(y)v(y)dy +

∫ b

c
ρ(y)δ(y)v(y)dy

≥ ρ(c)

∫ c

a
δ(y)v(y)dy + ρ(c)

∫ b

c
δ(y)v(y)dy

= ρ(c)

∫ b

a
δ(y)v(y)dy = 0, (4.25)

verifying (4.22). (The inequality uses the fact that ρ(y) is decreasing along with

(4.24). The last equality follows from (4.23).) Note that the inequality in (4.25) is

strict unless ρ(·) is constant. �

Theorem 4.4 (Monotonicity of q∗ in the continuous model: a simple sufficient

condition) Assume (Q) with G(·|·) a twice differentiable function. Let (SP+) hold

on a rectangle [m,M ] × [θ1, θ2] with θ1 < θ2 and m ≤ r∗(θ) < R∗(θ) ≤ M for all

θ ∈ [θ1, θ2]. q∗(·) is decreasing (increasing) on [θ1, θ2] if gy(y|θ)/gθ(y|θ) is decreasing

(increasing) in y ∈ [m,M ].

Proof: Fix θ0 ∈ [θ1, θ2]. Apply Lemma 4.3 with [a, b] = [r∗(θ0), R∗(θ0)], v(y) =

gθ(y|θ0) and u(y) = gy(y|θ0). v(y) > 0 since G(y|θ0) is strictly supermodular.

Lemma 4.3 shows that the necessary and sufficient condition in Theorem 4.3 for q∗(θ)

to be increasing (decreasing) at θ0 is satisfied when gy(y|θ0)/gθ(y|θ0) is increasing

(decreasing) in y. �

Remark 1. The following provides an alternative sufficient condition, the proof

of which is analogous to that of Theorem 4.4: Assume G(·|θ) is strictly convex in y

on an interval [m,M ] with m ≤ r∗(θ) < R∗(θ) ≤M . q∗(θ) is decreasing (increasing)

if gθ(y|θ)/gy(y|θ) is increasing (decreasing) in y ∈ [m,M ].

We now apply the general monotonicity results in Theorems 4.3 and 4.4 to the

standard inventory model with G(y|θ) specified in (4.8). We focus on the case of

linear holding and backlogging costs. Corollary 4.1 showed that r∗ and R∗ are

monotone in the holding cost rate function h(·) and backlogging cost rate function

b(·), irrespective of the shape of the leadtime demand distribution. Corollary 4.2

below shows, inter alia, that, as far as the optimal order quantity q∗ is concerned,

its dependency on, say the backlogging cost rate b, does depend on the shape of the
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leadtime demand distribution. q∗ decreases in b when the complementary cdf of the

leadtime distribution is log-concave, i.e., the logarithm of this function is concave,

or equivalently when the distribution is IFR (Increasing Failure Rate); conversely,

when the distribution is DFR (Decreasing Failure Rate), q∗ is increasing in b.

Corollary 4.2 (Monotonicity properties of q∗ in the continuous standard inventory

model) Assume the instantaneous expected cost function G(·|θ) is of the form (4.8)

with constant marginal inventory and backlogging cost rates h and b. The continuous

leadtime demand DL has support [dl, dh] where −∞ ≤ dl < dh ≤ ∞.

(a) q∗ is decreasing in h if F (y) is log-concave on [dl, dh]; q∗ is increasing in h

if F (y) is log-convex on [dl, dh] with dh =∞.

(b) q∗ is decreasing in b if F (y) is log-concave on [dl, dh]; q∗ is increasing in b if

F (y) is log-convex with r∗(b) ≥ dl.

(c) Assume DL is Normal with mean µL and standard deviation σL. q∗ is in-

variant with respect to µL (assuming λ and σL remain constant).

(d) Assume DL is Normal with mean µL and standard deviation σL. q∗ is

increasing in σL.

(e) Assume the demand process is a Brownian motion with drift µ and volatility

σ while orders incur a constant leadtime L. q∗ is increasing in µ, σ and the leadtime

L.

Proof: We write r∗(θ), R∗(θ) and q∗(θ) as r∗, R∗ and q∗, without ambiguity.

For parts (a) and (b), we have g(y|θ) = (h+b)F (y)−b and gy(y|θ) = (h+b)f(y).

(a) Choose θ = h. Thus gθ(y|θ) = F (y) > 0 on [dl, dh]. Note first that (4.21),

the necessary and sufficient condition for q∗ to be decreasing (increasing) in θ may

be replaced by ∫ R∗

max{dl,r∗}
ygy(y|θ)dy

∫ R∗

max{dl,r∗}
gθ(y|θ)dy

≤ (>)

∫ R∗

max{dl,r∗}
gy(y|θ)dy

∫ R∗

max{dl,r∗}
ygθ(y|θ)dy, (4.26)

since all integrands are zero on [r∗,max{dl, r∗}). If F (y) is log-concave on [dl, dh],

i.e., f(y)/F (y) is decreasing on [dl, dh], it is log-concave on [dl,∞) since f(y)/F (y) =
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0 for all y > dh. Thus
gy(y|θ)
gθ(y|θ) = (h+b) f(y)

F (y) is decreasing on [dl,∞). Apply the result

in Remark 1 with [m,M ] = [max{dl, r∗}, R∗] to verify that (4.26) holds with the

≤-sign.

The proof of the second statement in part (a) is analogous since dh =∞.

(b) Choose θ = b. Thus gθ(y|θ) = −F (y) < 0 on [dl, dh]. Note first that (4.21),

the necessary and sufficient condition for q∗ to be decreasing (increasing) in θ may

be replaced by ∫ min{dh,R∗}

r∗
ygy(y|θ)dy

∫ min{dh,R∗}

r∗
gθ(y|θ)dy

≤ (>)

∫ min{dh,R∗}

r∗
gy(y|θ)dy

∫ min{dh,R∗}

r∗
ygθ(y|θ)dy, (4.27)

since all integrands are zero on [min{dh, R∗}, R∗). If F (y) is log-concave on [dl, dh],

i.e., −f(y)/F (y) is decreasing on [dl, dh], it is log-concave on (−∞, dh] since−f(y)/F (y) =

0 for all y < dl. Thus
gy(y|θ)
gθ(y|θ) = −(h + b) f(y)

F (y)
is decreasing on (−∞, dh]. Apply the

result in Remark 1 with [m,M ] = [r∗,min{dh, R∗}] to verify that (4.27) holds with

the ≤-sign.

The proof of the second statement in part (b) is analogous since dl ≤ r∗(b).

For parts (c)-(d) where the leadtime demand is Normal, let φ(·) and Φ(·) denote

the pdf and cdf of the standard Normal distribution and zy = (y − µL)/σL. In this

case, G(y|θ) = h(y−µL) +σL(h+ b)
∫∞
zy

(1−Φ(x))dx. Thus g(y|θ) = h− (h+ b)(1−

Φ(zy)), and gy(y|θ) = h+b
σL
φ(zy) > 0.

(c) Let θ = µL. gθ(y|θ) = −gy(y|µ). Thus, the sufficient and necessary condition

(4.21) holds as an equality, which implies that q∗ is invariant with respect to µL.

(d) Let θ = σL. gθ(y|θ) = −(h + b)(y − µL)φ(zy)/(σL)2. gθ(y|θ)
gy(y|θ) = −y−µL

σL
is

decreasing in y. By Remark 1 of Theorem 4.4, q∗ is increasing in σL.

(e) Since DL is Normal with µL = µL and σ2
L = σ2L, the monotonicity with

respect to σ and L follow from parts (c)-(d). When µ increases, it causes increases

of µL as well as the demand rate λ = µ. The first increase has no impact on q∗

while the increase of λ results in an increase in q∗, see (4.7). This implies that the

combined effect amounts to an increase of q∗. (See the proofs of parts (f)-(g) of

Corollary 4.1 for a precise development.) �
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Thus, monotonicity of q∗ with respect to h and b hinges on whether the cdf of

the leadtime demand F (·) or the complementary cdf F (·) are log-concave or log-

convex. For some distributions such as the Uniform and Power distributions, it is

straightforward to verify that they have log-concave distribution and complementary

distribution functions. However, many popular distributions such as the Normals

lack a closed-form cdf. The following proposition proven by Bagnoli and Bergstrom

(2005) provides sufficient conditions to determine log-concavity (log-convexity) of

F (·) and F (·) by verifying specific properties of the density function f(·). Several

recent papers on inventory models have identified log-convexity or log-concavity

of the demand distribution as the key condition guaranteeing various structural

properties, see Huh et al. (2010), Levi et al. (2011) and Rosling (2002).

Proposition 4.2 (Bagnoli and Bergstrom (2005)) Suppose the probability density

function f(y) has support (d, e).

(a) If f(·) is continuously differentiable and log-concave on (d, e), then F (·) and

F (·) are also log-concave on (d, e).

(b) If f(·) is monotone increasing, then F (·) and F (·) are log-concave.

(c) If f(·) is continuously differentiable and log-convex on (d, e) and f(d) = 0,

then F (·) is also log-convex on (d, e).

(d) If f(·) is continuously differentiable and log-convex on (d, e) and f(e) = 0,

then F (·) is also log-convex on (d, e).

Table 4.1 summarizes the monotonicity results with respect to the parameters h

and b under some of the most common demand distributions.

4.4.2 The Discrete Model

In this subsection, we turn our attention to monotonicity properties of the optimal

order quantity q∗ in the discrete model. As in the case of the continuous model, we

confine ourselves to monotonicity properties with respect to a scalar parameter θ,

i.e., Θ ⊆ R. In Section 4.3, we showed that under the broad supermodularity con-
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Table 4.1: Monotonicity results of q∗ under some common demand distributions

Name of Distribution F (y) F (y) q∗(h) q∗(b)

Uniform, Normal, Expo-

nential, Gamma(k > 1),

Beta(α > 1, β > 1)

log-concave log-concave decreasing decreasing

Weibull(k < 1),

Gamma(k < 1), Pareto

log-concave log-convex decreasing increasing

Power, Lognormal log-concave neither decreasing unkown

dition (SP) for the function G(y|θ), both r∗ and R∗ are decreasing in θ3, i.e., r∗(θ)

and R∗(θ) are decreasing step functions. In other words, there exists a sequence of

break points {θ1, θ2, · · · } such that all three optimal policy parameters r∗, R∗ and

q∗ = R∗ − r∗ are constant in between break points; at break points, r∗ decreases or

R∗ decreases, where it is easily shown that, in view of the strict quasi-convexity of

G(y|θ), the decrease is by one unit exactly. Thus, at break points, q∗ decreases or

increases by 1 unit, or it stays constant. Even in the simplest applications, q∗ fails

to be uniformly monotone. However, in this section, we show that, under the same

structural conditions assumed in Theorem 4.4, q∗ is either roughly decreasing or

roughly increasing. Here we define an integer valued function to be roughly decreas-

ing (increasing) if the step function does not exhibit any pair of consecutive increases

(decreases). In other words, q∗(θ) is an increasing (decreasing) step function except

possibly for a few isolated unit step increases (decreases). The fact that q∗(θ) is

roughly decreasing [increasing] implies that q∗(θ′) ≤ q∗(θ) + 1 [q∗(θ′) ≥ q∗(θ) − 1]

for all θ < θ′. The following simple example shows that “rough monotonicity” is the

best one can hope for in general. While the monotonicity properties in the discrete

model and the conditions guaranteeing these properties are very similar to those in

the continuous model, the required analysis is fundamentally different.

Example 1 : Consider the standard inventory model with Poisson demands and

a constant leadtime. The instantaneous expected cost function is given by (4.8)

3Recall that when G(y|θ) is submodular, both r∗ and R∗ are increasing in θ.
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with h(y) = hy and b(y) = by. We have shown in Section 4.3 that r∗ and R∗ are

increasing in b. The following graph exhibits q∗ as a function of b, where the Poisson

rate λ = 20,K = 64, L = 1, h = 1. Note that q∗ is roughly decreasing in b under

Poisson demands, a property we will prove in Corollary 4.3(b).

Figure 4.1: q∗ is roughly decreasing with respect to backlogging cost rate b

In the discrete model, we define g(y|θ) ≡ G(y + 1|θ) − G(y|θ). Similarly,

gy(y|θ) ≡ g(y + 1|θ) − g(y|θ) and gθ(y|θ) ≡ ∂g(y|θ)
∂θ . The next theorem, proven

in the Appendix, establishes sufficient conditions for q(θ) to be roughly increasing

or roughly decreasing.

Theorem 4.5 (Monotonicity of q∗ in the discrete model) Assume (Q) and (SP+)

holds on a rectangle [m,M ] × [θ′, θ′′] with θ′ < θ′′ and m ≤ r∗(θ) < R∗(θ) ≤ M

for all θ ∈ [θ′, θ′′]. q∗(·) is decreasing (increasing) on [θ′, θ′′] if gy(y|θ1)/gθ(y|θ0) is

decreasing (increasing) in y ∈ [m,M ] for any θ0, θ1 ∈ [θ′, θ′′] with θ0 ≥ θ1 and is not

constant.

We now apply Theorem 4.5 to derive the rough monotonicity property of q∗ with

respect to several parameters in the discrete standard inventory model. Similar to

the continuous model, we obtain these properties for leadtime demand distributions

that are log-concave or log-convex. See Corollary 4.3 below with its proof in the

Appendix. Here, a non-negative discrete function p(·) : Z → R+ is defined to be

strictly log-concave (log-convex) on some interval [a, b], with 0 < a < b ≤ ∞ if
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log p(n) is strictly concave (convex), i.e., for all n ∈ [a, b]

log p(n+ 1)− log p(n) < (>) log p(n)− log p(n− 1) ⇐⇒ p(n+ 1)

p(n)
< (>)

p(n)

p(n− 1)
.

(4.28)

Corollary 4.3 (Monotonicity properties of q∗ in the discrete standard inventory

model) Assume the instantaneous expected cost function G(·|θ) is of the form (4.8)

with constant marginal inventory and backlogging cost rates h and b. The continuous

leadtime demand DL has support [dl, dh] where −∞ ≤ dl < dh ≤ ∞.

(a) q∗ is roughly decreasing in h if F (y) is log-concave on [dl, dh]; q∗ is roughly

increasing in h if F (y) is log-convex on [dl, dh] with dh =∞.

(b) q∗ is roughly decreasing in b if F (y) is log-concave on [dl, dh]; q∗ is roughly

increasing in b if F (y) is log-convex with r∗(b) ≥ dl.

Many common discrete probability density distributions are log-concave, includ-

ing the discrete uniform distribution, the Poisson, the binomial, the hypergeometric,

and the negative binomial. Lemma 4.4 below imply that their cdf and ccdf are log-

concave as well. As a specific example, recall Example 1, displaying q∗ as a roughly

decreasing function of b when the leadtime demand distribution is Poisson. We

first need the following properties for strictly log-concave (log-convex) functions,

the proofs of which is in the Appendix.

Lemma 4.4 (Properties of discrete log-concave and log-convex functions) Assume

the function p(·) is log-concave (log-convex) on some interval [a, b].

(a) P (n) =
∑n

i=a p(i) is log-concave (log-convex) on [a, b].

(b) If b = ∞ and limn→∞ p(n) = 0, then P (n) =
∑∞

n p(i) is log-concave (log-

convex) on [a,∞).

4.5 Monotonicity of the Optimal Cost Value

In this section, we briefly discuss monotonicity properties of the optimal cost value.

Theorem 4.2 shows that a general sufficient condition for monotonicity of r∗ and R∗

with respect to the model primitives θ ∈ Θ relates to the second-order properties
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of the instantaneous expected cost function G(·) (, in particular supermodularity

or submodularity which, for twice differentiable functions, is equivalent to the cross

partial derivative with respective to y and θ being nonnegative or nonpositive). In a

similar vein, a broad sufficient condition for monotonicity of the optimal cost value

c∗(θ) ≡ min(r,q) c(r, q|θ) is obtained from a first-order property of the instantaneous

expected cost function G(·).

Proposition 4.3 (Monotonicity of c∗(θ)) c∗(θ) is increasing [decreasing] if the func-

tion G(y|θ) is increasing [decreasing] in θ ∈ Θ for all y.

Proof: We provide the proof for the continuous model. The proof for the

discrete model is analogous. Let θ1 � θ2 ∈ Θ, c∗(θ1) = min(r,q)
λK+

∫ r+q
r G(y|θ1) dy

q ≤

min(r,q)
λK+

∫ r+q
r G(y|θ2) dy

q = c∗(θ2) where the inequality follows from the minimand

to the left being dominated by the minimand to the right for every pair (r, q). (The

latter is immediate from G(·|θ) being pair-wise increasing in θ.) �

In the standard inventory model, Proposition 4.3 implies that the optimal cost

value is increasing in the holding cost rate function h(·), backlogging cost rate func-

tion b(·) and the wholesale price w. Moreover, in the standard inventory model,

G(y|θ) = Eh((y−DL)+) +Eb((DL− y)+). Since h(·) and b(·) are convex functions,

it follows that, when comparing two leadtime demand distributions D1
L and D2

L that

are convexly ordered, i.e., D1
L ≤cx D2

L, the corresponding instantaneous expected

cost functions G1(·) and G2(·) are pointwise ordered as well, i.e., G1(y) ≤ G2(y)

for all y. (For any pair of random variables X and Y , X ≤cx Y if Ef(x) ≤ Ef(Y )

for any convex function f(·).) By Proposition 4.3, the optimal cost value under

D2
L is larger than that under D1

L. The convex ordering D1
L ≤cx D2

L implies that

ED1
L = ED2

L and var(D1
L) ≤ var(D2

L). The monotonicity of c∗(θ) under convexly

ordered leadtime demand distributions was proved by Song (1994), for the case of

compound Poisson demands. Song (1994) also introduced a stronger, so-called vari-

ability ordering ≤var, which is easier to verify, but still includes many commonly

used classes of distributions, including gamma, uniform, Normal and truncated Nor-

mal distributions. See also Lemmas 5 and 6 and Theorem 5 in Song et. al (2010).

Finally, Song (1994) showed that, under a Poisson demand process, for two lead-
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time demand distributions to be convexly ordered it is sufficient that the leadtime

distributions L1 and L2 are ordered according to this order, i.e., L1 ≤cx L2.

One might conjecture that a (stochastically) longer leadtime also results in a

larger optimal cost value. However, if L1 ≤st L2 and demands are generated by a

Poisson process, it is easily seen that the corresponding instantaneous expected cost

rate functions G1(·) and G2(·) may fail to be pointwise ordered, i.e., the sufficient

condition of Proposition 4.3 fails to apply. Indeed, Song (1994) and Song et al.

(2010) exhibit examples where a stochastically larger leadtime results in a lower

optimal cost value. In general, to our knowledge, all established monotonicity results

pertaining to the optimal cost value c∗(·) reflect settings where there is pointwise

dominance of the instantaneous expected cost functions.

4.6 Conclusions and Future Work

In this paper, we have addressed stochastic inventory systems which are governed by

(r, q) or (r, nq) policies. For this class of models, we have provided general sufficient

conditions under which each of the three optimal policy parameters (r∗, R∗, q∗) as

well as the optimal cost value vary monotonically with various model primitives. The

monotonicity properties for c∗, r∗ and R∗ are common to the continuous and discrete

models and allow for common analyses. As far as the order quantity q∗ is concerned,

the continuous model, similarly, allows for broadly satisfied conditions under which

q∗ is purely monotone. However, in the discrete model, only a somewhat weaker form

of monotonicity can be hoped for, where isolated unit step increases (decreases) may

interrupt an otherwise purely decreasing (increasing) pattern. (We have referred to

this as “rough monotonicity”.) After establishing sufficient conditions for the general

model, we have derived various applications for the standard inventory model where

the instantaneous expected cost function is of the form (4.8). The implications in

Corollaries 4.1-4.3 are meant to be illustrative only.

Future work should attempt to investigate the monotonicity properties in other

commonly used models, for example, those governed by an (s, S) policy (e.g., Por-
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teus (2002) and Zipkin (2000)) or an (R, T ) policy (e.g., Rao (2003)). Under an

(s, S) policy, the inventory position is increased to a constant level S whenever if

falls below s. Under an (R, T ) policy, the inventory position is reviewed every T

periods and increased to a constant level R. As far as the former class of policies

is concerned, preliminary results indicate that the same full monotonicity proper-

ties for the optimal policy parameters may not (always) prevail, see the following

example.

Example 2: Consider a periodic review inventory system. Demands in each

period are independent and Poisson distributed with mean λ = 25. G(y|D) =

hE(y − D)+ + bE(D − y)+ with h = 1 and b = 9 while K = 64. Consider two

random leadtimes L1 and L2, where P (L1 = 1) = 0.7 and P (L1 = 2) = 0.3 while

P (L2 = 1) = 0.1 and P (L2 = 2) = 0.9. We have D1
L ≤st D2

L. However, the

optimal (s, S) policy we found using the algorithm in Zheng and Federgruen (1992)

has (s1, S1) = (28, 86) and (s2, S2) = (43, 82). In other words, contrary to Corollary

(4.1)(d), the order-up-to level is decreased as we move to a stochastically larger

leadtime distribution.
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Appendix A

Appendices for Chapter 2

A.1 Proofs for Sections 1-7 of Chapter 2

Proof of Theorem 2.1.

Part (a): Rewrite (2.4)

w(y) =
p− (p+ h0)F (y)

1− (1− δ)F (y)
=

1

1− δ

(
p+ h0 −

pδ + h0

1− (1− δ)F (y)

)
, (A.1)

so that

w′(y) = − (pδ + h0)f(y)

(1− (1− δ)F (y))2
≤ 0. (A.2)

Differentiating (2.5) yields

Π′s(y|βg) = w(y)ξ′(y) + ξ(y)w′(y)− c(1− F (y))

= w(y)ξ′(y)g(y) (A.3)

where

g(y) = 1− c 1− F (y)

w(y)ξ′(y)
− −ξ(y)w′(y)

ξ′(y)w(y)
(A.4)

for y < ymax. We prove that g(y) is decreasing on [0, ymax) by showing that each

term on the right of (A.4) is decreasing, i.e.,

1− F (y)

w(y)ξ′(y)
is increasing, (A.5)

and
−ξ(y)w′(y)

w(y)ξ′(y)
is increasing. (A.6)
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1−F (y)
ξ′(y) = 1−F (y)

1−(1+βg)F (y) = 1 +
βgF (y)

1−(1+βg)F (y) is positive and increasing on [0, ymax)

since ξ′(y) > 0 by (2.6). Thus (A.5) follows from the fact that w(y) is positive and

decreasing.

To show (A.6), note that ξ(y) is a positive and increasing function on [0, ymax)

since ξ′(y) > 0 by (2.6) and ξ(0) = 0. Again by (2.6), ξ′(y) is a decreasing function.

Hence ξ(y)
ξ′(y) is positive and increasing. Thus, we only need to show that −w

′(y)
w(y) is

positive and increasing. It is positive because −w′(y) ≥ 0, see (A.2). Combining

(2.4) and (A.2) we obtain that:

−w′(y)

w(y)
=

(pδ + h0)f(y)

(1− (1− δ)F (y))(p− (p+ h0)F (y))
,

=
(δ + h0/p)f(y)

(1− (1− δ)F (y))(1− (1 + h0/p)F (y))
.

Since δ = α − βg ∈ [0, 1], 1 − (1 − δ)F (y) is positive and decreasing. Therefore,

it suffices to show that f(y)
1−(1+h0/p)F (y) = f(y)

1−F (y)

(
1 + F (y)h0/p

1−(1+h0/p)F (y)

)
is positive and

increasing. It is positive since 1 − (1 + h0/p)F (y) ≥ 0 on [0, ymax) as F (y) <

F (ymax) = 1
1+max{h0/p, βg} . Finally, it is increasing as the product of two positive

and increasing functions, using the fact that the demand distribution is IFR.

We next show that g(0) > 0 and lim
y↑ymax

g(y) < 0. Since g(·) is decreasing on

[0, ymax), this implies g(·) has a unique root y∗βg . By (A.3) and ξ′(y) > 0, it follows

that Πs(·|βg) is increasing for y ≤ y∗βg and decreasing for y > y∗βg , thus establishing

the theorem.

To verify the sign of the g(·) function at the boundaries of [0, ymax), note that

g(0) = 1 − c/p > 0 since F (0) = 0 , w(0) = p, ξ(0) = 0 and ξ′(0) = 1. If ymax =

ys, by (2.6) and ξ′(ymax) = 0, Π′s(ymax) = ξ(ymax)w′(ymax) − c(1 − F (ymax)) <

0 since w′(·) ≤ 0 and ξ(·) ≥ 0. This implies that lim
y↑ymax

g(y) < 0. Finally if

ymax = F−1
(

1
1+h0/p

)
, then the profit value Πs(ymax|βg) itself is negative by (2.5)

as w(ymax) = 0. This, however, implies that Πs(y|βg) is decreasing at some point

y0 < ymax, so that g(y0) < 0. By the monotonicity of g(·) , lim
y↑ymax

g(y) < 0 in this

case as well.

Part (b): limw↑p Π̂s(w|βg) = 0 since limw↑p y(w, βg) = 0. The remainder of part

(b) is immediate from part (a). �
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Proof of Lemma 2.1.

Part (a): It is sufficient to show that
∫ y
0 F (u)du

F 2(y)
is an increasing function, i.e., its

derivative
F 3(y)−2F (y)f(y)

∫ y
0 F (u)du

F 4(y)
≥ 0 ⇐⇒ F 2(y) − 2f(y)

∫ y
0 F (u)du ≥ 0 for all

y ≥ L = 0. However, the last inequality holds for y = 0 and the derivative of the

function on the left side is −2f ′(y)
∫ y

0 F (u)du ≥ 0 for all y ≥ 0.

Part (b): Normal: ζ(y) = b(x) ≡ xΦ(x)+φ(x)
Φ2(x)

φ(x)
1−Φ(x) where x = y−µ

σ . It follows

from the proof in part (a) that the first factor is increasing if and only if Φ2(x) −

2φ(x)
∫ x
−∞Φ(u) du = Φ2(x) − 2φ(x)(xΦ(x) + φ(x)) ≥ 0. Since the left hand side

of the inequality is increasing when φ(x) is decreasing, i.e., x ≥ 0, and it already

equals 0.026 at x = 0.6, it is increasing for x ≥ 0.6, and so is the second factor since

all Normal distributions have the IFR property. We conclude that b(x) is increasing

for all x > 0.6.

To show b(x) is increasing on [−1.8, 0.6], it suffices to prove that log b(x) =

log(xΦ(x) + φ(x)) − 2 log Φ(x) + log φ(x) − log(1 − Φ(x)) is increasing on this in-

terval, i.e., (log b(x))′ ≥ 0 where (log b(x))′ = Φ(x)
xΦ(x)+φ(x) −

2φ(x)
Φ(x) − x + φ(x)

1−Φ(x) . Let

m ≡ minx∈[−1.8,0.6] log b(x). Thus the proof of MIFR properties for all Normal dis-

tributions is reduced to verify that the single number m is positive. The single

number can be evaluated by plotting the minimand function on [−1.8, 0.6] or by

applying a global minimization problem to the single variable function. Below we

show the verification of m ≥ 0 can be achieved by evaluating a related single variable

function at a finite number of points. We distinguish between the intervals [-1.8, 0]

and [0, 0.6], the first of which is divided into 900 subintervals and the latter into 13

subintervals. We prove the inequality (log b(x))′ on each of the subintervals.

(I) −1.8 ≤ x ≤ 0: Divide the interval into subintervals of length 0.0002. For

any subinterval [x1, x2 = x1 + 0.0002], we have for all x1 ≤ x ≤ x2, (log b(x))′ ≥
Φ(x1)

x2Φ(x2)+φ(x2) −
2φ(x2)
Φ(x1) − x2 + φ(x1)

1−Φ(x1) > 0, where the last inequality can be verified

for all 900 starting points x1 = −1.8 + 0.0002k, k = 0, · · · , 899.

(II) 0 < x ≤ 0.6: Divide the interval into subintervals of length 0.05. For any

such subinterval [x1, x2 = x1 + 0.05], we have for all x1 ≤ x ≤ x2, (log b(x))′ ≥
Φ(x1)

x2Φ(x2)+φ(x2) −
2φ(x1)
Φ(x1) − x2 + φ(x2)

1−Φ(x1) > 0, where the last inequality can be verified
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for all 13 starting points x1 = 0.05k, k = 0, · · · , 12. �

Proof of Theorem 2.2.

Parts (b) and (c) are immediate from part (a).

Part (a): Using (2.12), write

Π′s(y|w) = (1− F (y))n(y)− (wα+ h0), (A.7)

where n(y) = (p− c+wα+ h0)− (p−w)ζ(y). Note that n(y) is decreasing in view

of the (MIFR) property. Thus define yw ≡ inf{L ≤ y : n(y) ≤ 0}, unless n(·) > 0

for all y ≥ L, in which case we define yw ≡ ∞. Note that, in either case, n(·) ≥ 0

for all L ≤ y < yw. Thus, for all L ≤ y < yw, Π′s(·|w) is a decreasing function

of y as a translation of the product of two positive and decreasing functions. In

other words, Πs(·|w) is concave on [L, yw]. Moreover, n(y) ≤ 0 and Π′s(·|w) < 0 for

y > yw, i.e., Πs(·|w) is decreasing for y > yw. This implies that the function Πs(·|w)

is quasi-concave in [L,∞), achieving its maximum for some L ≤ y0 < yw. �

Proof of Theorem 2.3.

Part (a): Note that y0(w) = argmaxg(w,y)≥0 Πs(y|w) where g(w, y) = y − L.

The function Πs(·|w) is twice continuously differentiable, see (2.12), given that the

demand distribution has a continuously differentiable pdf. Similarly, the constraint

function g(w, y) is a twice differentiable function as well. Since the constraint is

linear in the decision variable y, the Karush-Kuhn-Tucker conditions necessarily

hold at the optimal solution y0(w) for all w ∈ [0, p]. Continuity of y0(·) follows from

Theorem 4.1 of Fiacco and Kyparisis (1985), by verifying that the so-called SSOSC

condition ibid is satisfied. When applied to a mathematical program with a single

variable and linear constraints, the SSOSC condition is reduced to verifying that the

second derivative of the objective function is strictly negative in the optimal solution

unless one of the constraints is binding and the constraint gradient is nonzero. In

our case, when L < y0(w), Π′′s(y0(w)|w) < 0 follows from Theorem 2.2.

Part (b): Consider first the case where L < y0(w). It follows from the differen-

tiability of Π′s(·|w), see (2.13), and its quasi-concavity, see Theorem 2.2, that

Π′s(y0(w)|w) = 0 for all w ∈ [0, p] with y0(w) > L. (A.8)
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Since ∂2Πs(y0|w)
∂2y

and ∂2Πs(y0|w)
∂y∂w both exist and are continuous functions, it fol-

lows from the Implicit Function Theorem that y0(·) is a continuously differentiable

function with y′0(w) = ∂2Πs(y0|w)
∂y∂w /∂

2Πs(y0|w)
∂y2

, where ∂2Πs(y0|w)
∂y2

< 0 by Theorem 2.2

(a). Thus, by (2.13), y′0(w) ≥ 0 ⇐⇒ ∂2Πs(y0|w)
∂y∂w = −F (y0(w))(α − κ(y0(w))) ≥

0 ⇐⇒ κ(y0(w)) ≥ α. On the other hand, since Π′s(y0(w)|w) = 0, we obtain from

(2.13) that for any wholesale price w < p with y0(w) > L, κ(y0(w)) ≥ α ⇐⇒

(p − c) − (p − c + pα + h0)F (y0(w)) ≥ 0 ⇐⇒ F (y0(w)) ≤ p−c
p−c+pα+h0

⇐⇒

y0(w) ≤ F−1( p−c
p−c+pα+h0

) ≤ max{L,F−1( p−c
p−c+pα+h0

)} = yp. Thus, for any w < p

and y0(w) > L,

y0(w) is increasing in w ⇐⇒ ∂2Πs(y0|w)

∂y∂w
≥ 0 ⇐⇒ κ(y0(w)) ≥ α ⇐⇒ y0(w) ≤ yp.

(A.9)

The equivalent conditions for y0(·) being strictly increasing are obtained by making

all inequalities above strict.

In view of the continuity of y0(·) on the complete interval [0, p], only the following

four situations can occur.

(i) y0(w) = L for all w ∈ [0, p]; (ii) y0(w) = yp > L for all w ∈ [0, p]; (iii) there

exists a value w0 such that L < y0(w0) < yp; (iv) there exists a value w0 such that

yp < y0(w0).

Case (i) can only occur when yp = L since y0(p) = yp, where it corresponds

with a special case of (b-iv). In case (ii), L < yp = y0(w) for all w ∈ [0, p], which

corresponds with part (b-ii). Fix a wholesale price w, with 0 ≤ w < p. Since

L < y0(w), it follows from (A.8) that Π′s(y0(w)|w) = Π′s(y
p|w) = 0, and by (2.13),

κ(yp) = α.

Case (iii): It follows from (A.9) that, when decreasing w downwards from w0,

the {y0(·)}-curve continues to decrease, possibly on the entire interval [0, w0] or until

the level L is reached for some 0 ≤ wL ≤ w0. In the latter case, y0(w) = L for all

0 ≤ w ≤ wL, for, otherwise, 0 < w1 ≡ sup{0 < w < wL : y0(w) > L}. However,

the latter case implies that as w ↑ w1, L < y0(w) < yp and y′0(w) < 0, which is

contradicted by (A.9). Similarly, it follows from (A.9) that, when increasing w from

w0, the y0(·)-curve continues to increase until hitting the level yp, either for w = p
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or for some w0 < wU < p. It remains to be shown that the latter case cannot

occur: after all, since y0(·) is differentiable at wU as L < y0(wU ) < y(0), we have

limw↑wU y
′
0(w) = limw↑wU y

′
0(w) > 0; In other words, the {y0(·)}-curve crosses the

level y = yp at w = wU from below. By the continuous differentiability of y0(·) on

the interior of [L, y(0)], there exists an interval [w′, w′′] with w′ < wU < w′′ such

that (i) L < y0(w) < y(0) for all w ∈ [w′, w′′], (ii) y′0(w) > 0 for all w ∈ [w′, w′′] and

(iii) y0(w) > yp for wU < w < w′′. But (A.9) shows that y0(·) is decreasing when

y0(w) > yp, contradicting the assumption that the function y0(·) crosses the level

yc from below. Therefore y0(·) is increasing and approaches yp at w = p.

We have shown that in case (iii) the function behaves as in part (b-i), since for

all w ↑ p, L < y0(w) < yp while y0(·) is strictly increasing; By (A.9), this implies

that κ(yp) > α. Therefore limw↑p κ(y0(w)) = κ(y0(p)) ≥ α by the continuity of the

functions κ(·) and y0(·), see part (a). Finally, the possibility of κ(yp) = α can be

excluded since it implies Π′s(y
p|w) = 0 for all c ≤ w ≤ p, i.e., y0(w) = yp for all

0 ≤ w ≤ p , contradicting the assumption of case (iii).

Case (iv): Since L ≤ yp < y0(w0), it follows from (A.9) that as w is decreased

downward from w0, the y0(·)-curve increases on the entire interval [0, w0] since

y0(w) > yp for all w ∈ [0, w0]. Similarly it follows from (A.9) that when w is

increased from w0, the y0(·) curve decreases either on the entire interval [w0, p] or

until hitting the level y = yp at some point w0 < w2 < p. However, the latter case

cannot occur for yp > L as can be shown with arguments analogous to those used in

case (iii). Therefore, the function y0(·) behaves as in part (b-iii) while the proof of

κ(y0) < α is analogous to that of κ(y0) > α in case (iii). When yp = L, it is possible

for the y0(·)-curve to hit the line y = yp = L at some wholesale price w2 < p, but

with arguments analogous to those employed in case (iii) when the y0(·)-curve hits

the level y = L, we can show that, in this case, y0 = yp for all w ∈ [w2, p], i.e., the

function y0(·) behaves as in part (b-iv). �

Proof of Proposition 2.1.

We first show that under the three families of distributions,

κ(·) is strictly decreasing for y ≥ L, κ(M) > 1− c/p and κ(M) > α (A.10)
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where M denotes the median of the distribution.

Uniform on an interval [a, b]: F (y) = y−a
b−a , f(y) = 1

b−a , h(y) = (y−a)2

2(b−a) . Thus

κ(y) = b−a
2(y−a) is strictly decreasing for all y ∈ (a, b]. Moreover, M = (b + a)/2 and

κ(M) = 1 > 1− c/p as well as κ(M) = 1 > α.

Exponential with rate λ: For y > 0, F (y) = 1 − e−λy, f(y) = λe−λy, h(y) =

y − 1−e−λy
λ . κ(y) = (λy−1)e−λy+e−2λy

(1−e−λy)3
. We now show that κ(y) is strictly decreasing

in y. This is equivalent to showing that c(x) ≡ (lnx−1)x2+x
(x−1)3

is strictly decreasing in

x ≡ eλy ≥ 1, i.e., c′(x) = c̄(x)
(x−1)4

< 0 where c̄(x) = x2(2− lnx)− 2x lnx− x− 1. To

show that c̄(x) ≤ 0 for all x ≥ 1, note that since c̄(1) = 0, it is sufficient to show

that c̄′(x) = 3(x− 1)− 2(x+ 1) lnx < 0 for all x > 1. Similarly, to verify the latter,

it suffices to show c̄′′(x) = 1 − 2/x − 2 lnx < 0 for all x > 1 as c̄′(1) = 0. Since

c̄′′(1) = −1, this follows from c̄′′′(x) = 2(1−x)
x2

< 0 for all x > 1.

Since M = ln 2/λ, κ(M) = 4(ln 2 − 0.5) = 0.773 > 1 − c/p since we assume

p ≤ 4c. Finally, κ(M) = 0.773 > α by assumption.

Normal with mean µ and standard deviation σ: We show that κ(y) is strictly

decreasing for y ≥ µ − 1.8σ where κ(y) = a(x) ≡ φ(x)(xΦ(x)+φ(x))
Φ3(x)

and x = y−µ
σ , it

suffices to show that log a(x) = log φ(x)+log(xΦ(x)+φ(x))−3 log Φ(x) is decreasing

on the interval [−1.8,∞). However,

(log a(x))′ = −x+
Φ(x)

xΦ(x) + φ(x)
− 3

φ(x)

Φ(x)

=
−xΦ(x)(xΦ(x) + φ(x)) + Φ2(x)− 3φ(x)(xΦ(x) + φ(x))

Φ(x)(xΦ(x) + φ(x))

=
−(x2 − 1)Φ2(x)− 4xφ(x)Φ(x)− 3φ2(x)

Φ(x)(xΦ(x) + φ(x))
. (A.11)

It is easy to verify that (log a(x))′ < 0, where x > 1, since all three terms in the

numerator of (A.11) are negative components when x ≥ 1. Thus we only need

to show that (log a(x))′ < 0 on [−1.8, 1]. Divide the interval into subintervals of

length 0.1. In any subinterval [x1, x2 = x1 + 0.1] with x2 ≤ 0, we have for any

x1 ≤ x ≤ x2, (log b(x))′ ≤ −x1 + Φ(x2)
x1Φ(x1)+φ(x1) − 3 φ(x1)

Φ(x2) < 0, which can be verified

for all 18 starting points x1 = −1.8 + 0.1k, k = 0, · · · , 17. Similarly, (log b(x))′ ≤

−x1 + Φ(x2)
x1Φ(x1)+φ(x1) − 3 φ(x2)

Φ(x2) < 0 for any x1 ≤ x ≤ x2 and x1 = 0.1k, k = 0, · · · , 10.
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The mean µ of a normal distribution is also its median and κ(M) = κ(µ) =

a(0) = 1.27 > max{1− c/p, α}.

So far we have completed the proof of (A.10) for the three families of distribu-

tions considered in the Proposition. While κ(·) is decreasing, recall from the MIFR

property that ζ(y0) = κ(y0) F (y0)
1−F (y0) is increasing. These two functions therefore have

a unique intersection at the point where F (y) = 1/2, i.e., at the median M .

Assume to the contrary that y0 is decreasing in w. Then by (A.9) and also from

the proof of Theorem 2.3:

κ(y0) ≤ α. (A.12)

From (2.12), rewrite 0 = Π′s(y|w) as follows:

Π′s(y0|w) = (p− c)(1−F (y0))− pF (y0)κ(y0)−h0F (y0)−wF (y0)(α−κ(y)) (A.13)

Thus (p− c)(1− F (y0))− pF (y0)κ(y0) ≥ 0, i.e.,

ζ(y0) = κ(y0)
F (y0)

1− F (y0)
≤ 1− c/p < κ(M) = ζ(M). (A.14)

Since ζ(·) is increasing, y0 < M . Since κ(·) is strictly decreasing, κ(y0) > κ(M) > α,

contradicting (A.12) and hence the assumption that y0(w) is a decreasing. �

Proof of Theorem 2.4

(a1) Note that Π∗s(w) = max{Πs(y|w) : gi(w, y) ≥ 0} where g1(w, y) = y − y(w)

and g2(w, y) = y(w)− y. The function Πs(y|w) is twice continuously differentiable,

see (2.12), given that the demand distribution has a continuously differentiable pdf.

Similarly, the constraint functions g1(w, y) and g2(w, y) are both twice differentiable

functions as well. Since both constraints are linear in the decision variable y, the

Karush-Kuhn-Tucker conditions necessarily hold at the optimal solution y∗w for all

w ∈ [0, w]. The differentiability of the optimal value function Π∗s(·) follows from

Theorem 7.3 of Fiacco and Kyparisis (1985), by verifying that the so called (SSOSC)

condition ibid is satisfied. (The only other condition for the theorem is that in the

optimal solution of the mathematical program, the vectors of gradients of the binding

constraints are linearly independent; in our case, at most one constraint is binding

and its gradient is ± 1.) When applied to a mathematical program with a single
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variable and linear constraints, the SSOSC condition is reduced to verifying that the

second derivative of the objective function is strictly negative in the optimal solution,

unless one of the constrains is binding and the constraint gradient is nonzero. In

our case, when y(w) < y0(w) < y(w), y∗w = y0(w) and Π′′s(y0(w)|w) < 0 follows from

Theorem 2.2.

(a2) We distinguish between two cases:

Case 1: w = p

It follows from Theorem 2.2 that the wholesale price range [0, p] may be parti-

tioned into a sequence of consecutive (, possibly single point) intervals that are of

one of the following three types:

Type-1 interval: (β∗(w), y∗w) = (α, y(w)) on the whole interval.

Type-2 interval: (β∗(w), y∗w) = (βg(w, y0(w)), y0(w)) on the whole interval.

Type-3 interval: (β∗(w), y∗w) = (α, y(w)) on the whole interval.

When w = 0 the supplier’s loss is increasing in y, see (2.2), which prompts

him to set β∗g (0) = α so as to maximally suppress the base-stock level. Similarly,

When w = p the unconstrained optimal βg value is βg(p, y0(p)) = α + h0
p > α, see

(2.8); hence, the quasi-concavity of the supplier’s profit Π̂s(·|p) in βg implies that

β∗g (p) = α, see Theorem 2.2(c). In other words, [0, p] starts with a type-1 interval

[0, w1], for some 0 < w1 < p and ends with a type-3 interval [w2, p].

Consider first the interval [0, w1) or the interior of any other type-1 interval

(w′, w′′). On such intervals, Π∗s(·) = Π̂s(·|α). By Theorem 2.1(b), Π̂s(·|α) is quasi-

concave on the full interval [0, p] with an interior point w∗α as its unique local

maximum. This implies that only w∗α may arise as a local maximum of Π∗s(·), on

[0, w1) and the interior of any other type-1 interval. A similar argument shows that

only w∗α may arise as a local maximum of Π∗s(·), on (w2, p] and the interior of any

other type-3 interval.

It remains to be shown that, except for w∗α and w∗α, no other local maximum may

arise. As argued, any additional local maximum must be part of a type-2 interval.

(With the exceptions of w = 0 and w = p, boundary points of type-1 or type-3

intervals are also of a type-2 interval. This follows from the fact that if a type-1 or
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type-3 interval is adjacent to another interval, the adjacent interval must be type-2,

an observation following from the continuity of

y∗w = min{max{y0(w), y(w)}, y(w)} (A.15)

and the fact that y(w) > y(w). The continuity of y∗w(·) simply follows from that of

y0(·), y(·) and y(·), see Theorem 2.3(a) and (2.10); y(w) > y(w)is immediate from

(2.10).)

Consider first the special pattern of (b-ii) in Theorem 3 where y0(·) = yp is

constant. We show that the interval [w1, w2] is a single type-2 interval, i.e., it does

not contain type-1 or type-3 subintervals. Since w1 belongs to a type-1 and type-2

interval, y0(w1) = y(w1), so that y0(w) > y(w) for all w > w1 as y0(·) is constant

and y(·) is strictly decreasing, see (2.10). Thus no point in (w1, w2] is of type-1.

Similarly, since y0(w2) = y(w2), we have y0(w) < y(w) for all w < w2 as y0(·) is

constant and y(·) is strictly decreasing. Thus no point in [w1, w2) is of type-3 either.

We conclude that on [w1, w2] Π∗s(w) = Πs(y
∗
w|w) = Πs(y0(w)|w) = Πs(y

p|w); It

follows from (2.9) that Π∗s(·) is a linear function on [w1, w2]. If this linear function

fails to be constant, none of the points in [w1, w2] may arise as a local maximum

since w1 and w2 are interior points of [0, p]. The remaining case within the pattern

(b-ii) has Π∗s(·) constant on the entire interval [w1, w2]. In this case, only w1 and w2

may arise as the local maxima, but w1 = w∗α and w2 = w∗α. To verify that latter,

note that since Π∗s(·) is differentiable everywhere,

0 = Π∗s
′(w1) = Π̂′s(w1|α)

0 = Π∗s
′(w2) = Π̂′s(w2|α)

where the second equality in each of the above equations follows from the fact that

Π∗s(·) coincides with Π̂s(w1|α)[Π̂s(w1|α)] to the left [right] of w1[w2]. Thus if w1

is a local maximum of the quasi-concave function Π̂s(·|α) and, by Theorem 1(b)

w1 = w∗α; By the same argument, w2 = w∗α if it is a local maximum.

To complete the proof, it suffices to show that under the remaining patterns

(b-i), (b-iii) and (b-iv) no point in a type-2 interval [w′, w′′] may arise as a local
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maximum. On such an interval, Π∗s(·) = Πu
s (·) ≡ maxy≥L Πs(y|w). We will show

that Πu
s (·) is twice differentiable with Πu

s
′′(·) > 0, precluding any of the points

in this interval from being a local maximum. (The conclusion is immediate for

the interior of [w′, w′′]; Since Πu
s (·) is differentiable, if w′ were a local maximum,

Π∗s
′(w′) = Πu

s
′(w′) = 0 and the strict convexity of Πu

s (·) on [w′, w′′] implies that

Π∗s(·) is strictly increasing to the right of w′, so that w′ fails to be a local maximum;

Similar arguments preclude w′′ from being a local maximum.

We complete the proof by showing that Πu
s (·) is twice differentiable with Πu

s
′′(·) >

0. It follows from the above mentioned envelope Theorem 7.3 in Fiacco and Kyparisis

(1985) that Πu
s (w) is continuously differentiable with Πu

s
′(w) = ∂Πs(y0(w)|w)

∂w . (The

conditions for Theorem 7.3 in Fiacco and Kyparisis (1985) are the same as those

in Theorem 4.1 there. The latter were verified in the proof of Theorem 2.3(a).)

Employing (2.9) for any w ≤ w2, we get

Πu
s
′(w) =

∂Πs(y0(w)|w)

∂w

= s(y0(w))−
(
α+

1

F (y0(w))
− 1

)
h(y0(w))

= y0(w)−
(
α+

1

F (y0(w))

)
h(y0(w)). (A.16)

Any point w in a type-2 interval has

y0(w) ≥ y(w) > y(w) = L (A.17)

where the second inequality follows from the fact that y(·) is strictly decreasing and

w ≤ w2 < w = p. The proof of Theorem 2.3(b) shows that since y0(w) ≥ L, y0(w)

is continuously differentiable at w. Differentiating both sides of (A.16), we get

Πu
s
′′(w) = F (y0(w))[−α+ κ(y0(w))]y′0(w) > 0

where the inequality follows from the fact that, under patterns (b-i), (b-iii) and (b-

iv), y′0(w) 6= 0 and always has the same sign as −α+κ(y0(w)) whenever y0(w) > L,

see Theorem 2.3(b) and its proof.

Case 2: w < p
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As in the proof of case 1, the interval [0, w] is divided into a sequence of type-1,

type-2 or type-3 intervals. This proof has also verified that neither w = 0 nor w = p

may arise as a local maximum; However, when w < p, this end point of the feasible

range [0, w] may be a local maximum. It remains to be shown which points in (0, w)

are candidates for a local maximum.

Following the proof of case 1, the only points in the interior of type-1 and type-3

interval that may arise as a local maximum are w∗α and w∗α respectively. All other

points in (0, w) either belong to a type-2 interval or are end points of a type-1 or

type-3 interval. However, as shown in the proof of case 1, all such end points of

type-1 or type-3 intervals all belong to a type-2 interval, and all points in a type-2

interval that belong to (0, w) can be eliminated as a potential local maximum. Thus,

we conclude that only w∗α and w∗α as well as w may arise as a local maximum.

It remains to be shown that Π∗s(·) is at most bimodal. Assume, to the contrary,

that the function has three local maxima w1 < w2 < w with w1 and w2 being either

w∗α or w∗α. As shown above, w2 is an interior point of a type-1 or type-3 interval

[w′, w′′], on which Π∗s(·) coincides with the quasi-concave function Π̂s(·|α) or Π̂s(·|α),

so that Π∗s
′(w′) > 0 and Π∗

′
s (w′′) < 0, see Theorem 2.1. This implies that w′′ < w,

so that [w′, w′′] is succeeded by a type-2 interval. The presence of a smaller local

maximum w1 < w2 reveals that [w′, w′′] is also preceded by a type-2 interval. As

shown in the proof of case 1, Π∗s(·) coincides with the convex, differentiable function

Πu
s (·) on a type-2 interval, that is Πu

s
′(w′) = Π∗

′
s (w′) > 0 > Π∗

′
s (w′′) = Πu

s
′(w′′),

contradicting the convexity of Πu
s (·) and hence the possibility of three local maxima.

(b1-1) In part (a2) we have shown that the interval [w1, w2] is a single type-2

interval under pattern (b-ii) where y0(·) is constant. The same arguments apply

when y0(·) is decreasing, except that y0(w2) ≤ y(w2) as opposed to y0(w2) = y(w2)

there (, where the strict inequality may occur when w2 = w).

(b1-2) It follows from the proof of part (a2) that β∗g (w) = βg(w, y(w)) = α when

w ≤ w1 and β∗g (w) = βg(y(w)) = α when w ≥ w2. For w1 < w < w2, β∗g (w) < α.

Thus, by (2.8), α − β∗g (w) = α − βg(w, y0(w)) = (p−w)(1−F (y0(w)))−h0F (y0(w))
wF (y0(w)) > 0.

Moreover, since y0(·) is an increasing function, α− β∗g (w) is decreasing as the ratio
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of a positive decreasing function and a positive increasing function. Hence β∗g (w) is

increasing for all w1 < w < w2.

(b2) It follows immediately from (A.15) and the fact that y0(·), y(·) and y(·) are

all decreasing functions of w ∈ [0, w].

(c) It follows immediately from part (a2). �

Proof of Proposition 2.2.

It follows from Proposition 2.1 and Theorem 2.4(b1) that two threshold points

0 < w1 ≤ w2 ≤ w exist such that (i) [0, w1] is of type-1, (ii) (w1, w2] is of type-2 and

(iii) (w2, w] is of type-3. We first show that under the specified parameter conditions,

w1 < w2, i.e., a complete type-2 interval exists. For the classes of uniform and

exponential distributions, this follows from the proof of Theorem 2.4(a2) since w = p.

For the Normals, it suffices to show that y0(w) > L = y(w) where L = µ − 1.8σ

and w = p(1−F (L))−F (L)h0
1−F (L)+F (L)(α−α) , which implies that w belongs to a type-2 or a type-3

interval. (Recall from the proof of Theorem 2.4(a2) that a type-1 interval can not

be followed by a type-3 interval unless a type-2 interval is adjacent to it.) Since the

function Πs(·|w) is quasi-concave, see Theorem 2.2, y0(w) > L = y(w) follows by

showing that

Π′s(L|w) = (p− c)(1− F (L))− (wα+ h0)F (L)− (p− w)
h(L)f(L)

F 2(L)

> (p− c)(1− F (L))− pF (L)− p F (L)

1− F (L)

h(L)f(L)

F 2(L)

= (p− c)(1− 0.036)− 0.036p(1 + 0.906)

= 0.895p− 0.964c

= 0.895(p− 1.077c) ≥ 0.

The first equality follows from (2.12) and the first inequality follows from wα+h0 ≤

p (since α ≤ max{αr, αs}) and p − w = (p(α−α)+h0)F (L)
1−F (L)+F (L)(α−α) < (p(α−α)+h0)F (L)

1−F (L) ≤
pF (L)

1−F (L) (since α−α ≤ max{αr, αs}); The second equality follows from F (L) = 0.036

and h(L)f(L)
F 2(L)(1−F (L))

= (lΦ(l)+φ(l))φ(l)
Φ2(l)(1−Φ(l))

= 0.906 with l = L−µ
σ = −1.8; Finally the last

inequality follows from p−c
c ≥ 7.7%.

Since, in all parts (a)-(c), the initial type-1 interval is followed by a full type-2

interval (w1, w2], the conclusions in these parts follow by showing that Π∗s
′(·) > 0
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on this type-2 interval. (Since Π∗s(·) is quasi-concave on the type-1 interval [0, w1],

among the points in [0, w2], only w = w2 may arise as a local optimum and this

only when w2 = w. If w2 < w, all local maxima are restricted to the last, type-3,

interval (w2, w], where only w or w∗α arises as the (unique) local maximum.) On

type-2 intervals Π∗s(·) = Πu
s (·), and, by (A.16),

Πu
s
′(w) = ω(y0(w)) (A.18)

where ω(y) = y −
(
α+ 1

F (y)

)
h(y) is strictly increasing in y ∈ [L, y0(w1)), since

ω′(y) = 1− (α+ 1
F (y))F (y) + h(y)f(y)

F 2(y)
= F (y)(κ(y)− α) > F (y)(κ(y0(w1))− α) ≥ 0.

(The first inequality holds since κ(·) is strictly decreasing in y ≥ L for all three classes

of distributions considered here, see (A.10); the second inequality follows from (A.9)

since y0(·) is increasing, see Proposition 2.1(c).) Therefore, since y0(w1) > L, see

(A.17), we have, for any w ∈ [w1, w2], that ω(L) < ω(y0(w1)) = Πu
s
′(w1) ≤ Πu

s
′(w)

where the second inequality follows from the convexity of Πu
s
′(·). It remains to

be shown that ω(L) ≥ 0. For the uniform and exponential distributions, it is

immediate from the facts that these distributions have L = 0 and a support on

the non-negative half line, as well as limy→0 ω(y) = limy→0
h(y)
F (y) = 0 (To verify the

second limit, note that 0 ≤ h(y)
F (y) =

∫ y
0 F (t)dt

F (y) ≤ y.) For the Normal distributions,

recall that l = L−µ
σ = −1.8, φ(l) = 0.079 and Φ(l) = 0.036.

ω(L) = L−
(
α+

1

F (L)

)
h(L)

= µ+ lσ −
(
α+

1

Φ(l)

)
σ[lΦ(l) + φ(l)]

= σ

[
µ

σ
− φ(l)

Φ(l)
− α(lΦ(l) + φ(l))

]
= σ

(µ
σ
− 2.197− 0.014αg

)
≥ σ

(µ
σ
− 2.211

)
> 0

when σ
µ ≤

1
2.211 ≈ 0.45 where the first inequality uses the fact that αg ≤ 1. �

Proof of Proposition 2.3.

Recall from Proposition 2.2 and its proof that w∗ = w∗α or w, and that the

wholesale price range [0, w] is partitioned into type-1, type-2 and type-3 intervals,

at most one of each. We first prove the following claims:
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Claim 1: If, for α = α1, w∗α1
is in the type-3 interval, then w∗α is increasing at

the point α = α1.

Claim 2: w is continuous and decreasing in α.

Claim 3: If w is the optimal wholesale price at α = α1, then it remains optimal

for any α > α1.

Proof of claim 1: By (2.3), under the special case βg = α, we have that

y∗α = F−1
(

1− h0
p−w∗α+h0

)
. It is thus equivalent to show that y∗α is decreasing at

α = α1. Note that

y∗α = argmax
y≥0

Πs(y|α) (A.19)

where Πs(y|α) = w(y)(s(y)−αh(y))−cs(y) and w(y) = p−(p+h0)F (y)
1−F (y) = p−h0

F (y)
1−F (y) ,

see (2.4) and (2.5). Since it follows from Theorem 2.1 that Π′s(y
∗
α|α) = 0 and

Π′′s(y
∗
α|α) < 0, by the Implicit Function Theorem, it is sufficient to show that

∂Π′s(y|βg = α)

∂α
= −w(y)F (y)− w′(y)h(y))

= −
(
p− h0

F (y)

1− F (y)

)
F (y) +

h0f(y)

(1− F (y))2
h(y)

=
pF 2(y)

1− F (y)

(
−1− F (y)

F (y)
+
h0

p
(ζ(y) + 1)

)
≤ 0 (A.20)

at y∗α1
. (The first equality follows from the fact that

∂Π′s(y|βg=α)
∂α = −(w(y)h(y))′

since
∂Πs(y|βg=α)

∂α = −w(y)h(y).) However, (A.20) holds at y∗α1
since, in the second

Stackelberg game with w = w∗α1
,

0 ≤ Π′s(y
∗
α1
|w = w∗α1

)

= (p− c)(1− F (y∗α1
))− (w∗α1

α1 + h0)F (y∗α1
)− (p− w∗α1

)
h(y∗α1

)f(y∗α1
)

F 2(y∗α1
)

= (p− c)(1− F (y∗α1
))− (w∗α1

α1 + h0)F (y∗α1
)−

h0F (y∗α1
)

1− F (y∗α1
)

h(y∗α1
)f(y∗α1

)

F 2(y∗α1
)

= (p− c)(1− F (y∗α1
))− (w∗α1

α1 + h0)F (y∗α1
)− h0F (y∗α1

)ζ(y∗α1
)

= pF (y∗α1
)

(
−
c(1− F (y∗α1

))

pF (y∗α1
)
−
w∗α1

α1

p
+

1− F (y∗α1
)

F (y∗α1
)
− h0

p
(1 + ζ(y∗α1

))

)
≤ pF (y∗α1

)

(
1− F (y∗α1

)

F (y∗α1
)
− h0

p
(1 + ζ(y∗α1

))

)
⇐⇒ −

1− F (y∗α1
)

F (y∗α1
)

+
h0

p
(1 + ζ(y∗α1

)) ≤ 0.
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(The first inequality follows from Πs(·|w∗α1
) being quasi-concave and reaching its

maximum at y0(w∗α1
), see Theorem 2.2, as well as the fact that y∗α1

= y(w∗α1
, α1) =

y(w∗α1
) < y0(w∗α1

) since w∗α1
is part of the type-3 interval. The first equality follows

from (2.12). The second equality is due to the fact that (p − w∗α1
)(1 − F (y∗α1

)) =

h0F (y∗α1
), by applying (2.3) with βg = α1.)

Proof of claim 2:

The claim follows from (2.11) and the fact that y(·) is point-wise decreasing in

α, see (2.10), and continuous in (α,w).

Proof of claim 3:

We attach a subscript α1 to w for its values when α = α1 and write y0(w|α = α1)

to reflect the dependency of y0(w) on α, when necessary. Let α0 = inf{α ≥ α1 : wα

is of type 2}, if wα is of type-2 for some value of α; otherwise, α0 = ∞. We first

prove the claim for α ∈ [α1, α0) with α0 > α1. Since it follows from the proof of

Proposition 2.2 that w is either of type-2 or type-3, wα is part of the type-3 interval

for all α ∈ [α1, α0). Since wα1 is in the type-3 interval and since it is optimal for

α = α1, wα1 ≤ w∗α1
. (For α = α1, in the type-3 interval, Π∗s(·) = Π̂s(·|βg = α = α1)

has a unique local maximum of w∗α1
, see the proof of Proposition 2.2; therefore, if

wα1 > w∗α1
, w∗α1

would be optimal for α = α1, contradicting the fact that wα1 is

the optimal wholesale price.) As α is increased continuously from α1 to α0, wα

decreases while remains in the type-3 interval, by Claim 2 and the definition of α0.

This, together with Claim 1, implies that w∗α increases on [α1, α0) while remaining

in the type-3 interval as well. In other words, for all α ∈ [α1, α0), wα ≤ w∗α so that

wα is the optimal wholesale price.

To complete the proof of Claim 3, it remains to be shown that wα is optimal

for all α ≥ α0 and α0 < ∞. By the definition of α0, there exists a sequence of

{αn} ↓ α0, such that the values wαn are of type-2, i.e.,

y0(wαn |α = αn) < y(wαn). (A.21)

y0 is a continuous function of the wholesale price w and also of α and y(·) is con-

tinuous as well. It follows from Claim 2 that both the left and right hand sides of
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(A.21) are continuous in α. Thus letting n→∞, we conclude that

y0(wα0 |α = α0) ≤ y(wα0). (A.22)

It follows that for any α2 > α0:

y0(wα2 |α = α2) ≤ y0(wα2 |α = α0) ≤ y0(wα0 |α = α0) ≤ y(wα0) ≤ y(wα2), (A.23)

so that wα2 is of type-2 and, by the proof of Proposition 2.2, optimal for α = α2. (To

verify the first inequality of (A.23), note that, by (2.12), ∂Π′s(y|w)/∂α = −wF (y) <

0. Theorem 2.2 implies that Π′s(y0(w)|w) = 0 and Π′′s(y0(w)|w) ≤ 0. Hence, by the

Implicit Function Theorem, for any given w,

y0(w) is decreasing in α. (A.24)

The second inequality follows from the fact that

y0(·) is increasing in w, (A.25)

see Proposition 2.1 while wα2 ≤ wα0 , see Claim 2. The third inequality is given by

(A.22) and the last one bye the fact that y(·) is decreasing and wα2 ≤ wα0 .)

We are now ready to prove the statements in parts (a) and (b).

Part (a): Recall that, under TC, α = αs. The monotonicity properties of w∗ are

immediate from Claims 1 and 3. Since α = αs−αr so that α−α = αr is independent

of α = αs, and the function y(·) and hence w are constant in α. w∗ = w for some

αs = αcs, and w∗ remains constant, see (2.11). Clearly, for αs ≤ αcs, β
∗
g = α;

Similarly, for αcs ≤ α = αs ≤ α0, wα is the optimal wholesale price and is of

type-3 so that on this interval, as well, β∗g = α. In other words, for all αs ≤ α0,

α∗ = β∗g = α. Moreover, for α ≥ α0, w is of type-2 so that α∗ = α − β∗g =

α−βg(w, y0(w)) =
( p
w − 1

) (
1

F (y0(w)) − 1
)
− h0

w = (p−w)(1−F (y0(w)))−h0F (y0(w))
wF (y0(w)) where

the third equality follows from (2.8). It is easily verified that the numerator of this

expression is decreasing in w as well as y0(w), while the denominator is increasing

in both quantities. Therefore α∗ is decreasing in w and y0(w). Since both of these

quantities are decreasing in α by Claim 2 and (A.24) as well as (A.25), it follows

that α∗ is increasing in α = αs.

Part (b): Under IS, α = αr. The proof is analogous to that of part (a). �
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Proof of Theorem 2.5.

Part (a): Recall that δTC = αTC − βTCg and δIS = αIS − βISg . Similarly let

δ∗TC(w) = αTC − β∗TCg (w) and δ∗IS(w) = αIS − β∗ISg (w). We first prove the

following claim:

πTCs (w, βTCg , y(w, βTCg )) ≥ πISs (w, βISg , y(w, βISg )) for βISg and βTCg such that δTC = δIS .

(A.26)

(A.26) holds because the equality δTC = δIS , by (2.3), implies that y(w, βTCg ) =

y(w, βISg ). δTC = δIS also implies that βISg ≥ βTCg since αIS ≥ αTC . The claim

thus follows immediately from (2.2).

Choose βTCg such that δTC = αTC − βTCg = δ∗IS(w). (This is achievable since

δ∗IS(w) ∈ [0, αr] and δTC continuously decreases from αr to 0 as βTCg varies from

αTC to αTC .) Thus by (A.26),

πTCs (w, β∗TCg (w), y(w, β∗TCg (w))) ≥ πTCs (w, βTCg , y(w, βTCg ))

≥ πISs (w, β∗ISg (w), y(w, β∗ISg (w))).

Part (b): Since the above inequality implies that

max
w∈[0,p]

πTCs (w, β∗TCg (w), y(w, β∗TCg (w))) ≥ max
w∈[0,p]

πISs (w, β∗ISg (w), y(w, β∗ISg (w))),

part (b) follows immediately. �

The following lemma is used in the proof of Theorem 2.6.

Lemma A.1 Both wTC1 and wTC2 are smaller than or equal to (greater than) wIS1

and wIS2 , respectively, if αs ≤ (>)αr.

Proof of Lemma A.1.

Assume αr > αs. (The other case can be argued analogously.) By (2.12),

∂Π′s(y|w)/∂α = −wF (y) < 0. Theorem 2.2 implies that Π′s(y|w) is decreasing at

y0. Hence, by the Implicit Function Theorem,

y0 is decreasing in α and yIS0 (w) ≤ yTC0 (w) for any w ∈ [0, w] (A.27)

since yIS0 (·) and yTC0 (·) differ only in the choice of α with αIS = αr ≥ αs = αTC .
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We prove first that wIS2 ≥ wTC2 . Recall that y(w) = F−1( p−w
p−w+h0

) under both

TC and IS, which is invariant with respect to α and decreasing in w. Only one of

the following two cases can occur.

(i) 0 < wTC2 < w: In this case wTC2 is the point of intersection of the functions

yTC0 (·) and y(·). It follows from (A.27) that yIS0 (wTC2 ) ≤ yTC0 (wTC2 ) = y(wTC2 ).

Thus, as w is decreased from wTC2 , the distance between the functions yIS0 (·) and

y(·) gets larger since the former decreases and the latter increases. Thus wIS2 ≥ wTC2 .

(ii) wTC2 = w: wIS2 = wTC2 = w since yIS0 (w) ≤ yTC0 (w) ≤ y(w) for any w ∈ [0, w]

by (A.27).

Next we show that wIS1 ≥ wTC1 . Assume to the contrary that wIS1 < wTC1 .

Recall that y(w) = F−1( p−w
p−w+wαr+h0

) under both the IS and TC arrangements.

The definition of w1 has the following implications: If w1 < w, w1 is the point of

intersection of the functions y(·) and y0(·); If w1 = w, y0(w) ≤ y(w) throughout the

entire [0, w] region with y0(w) < y(w) for w < w1 = w. Therefore

y0(w1) ≤ y(w1). (A.28)

Thus, as 0 < wIS1 < wTC1 ≤ w, we get yTC0 (wTC1 ) ≥ yIS0 (wTC1 ) ≥ yIS0 (wIS1 ) ≥

y(wIS1 ) > y(wTC1 ) while the first inequality follows from (A.27); the second is due

to the increasing property of y0(·); the third follows from (A.28) and the last is

due to the decreasing property of y(·). Thus yTC0 (wTC1 ) > y(wTC1 ), which, however,

contradicts (A.28). �

Proof of Theorem 2.6. Recall that under condition (C) the following prop-

erties apply: (P1) The demand distribution has IFR and MIFR properties. (P2)

y0(·) is increasing. (P3) Either (w∗α, α) or (w, β∗g (w)) is the (unique) equilibrium

solution of the full Stackelberg game. Consider the case αs ≤ αr. The proof for the

remaining case αs > αr is analogous.

Part (A-1): It follows from (2.1) that for any given wholesale price w and any

given base-stock level y, the retailer’s profit level πr(w, βg, y) depends on the credit

parameters α and βg only via their difference δ = α − βg, the effective capital cost

rate incurred by the retailer under the supplier’s selected ECCR. Moreover, πr is
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decreasing in δ for any given w and y. We first show that δ∗TC(w) = αTC−β∗TCg (w)

is smaller than δ∗IS(w) = αIS − β∗ISg (w) for any w ∈ [0, w]:

δ∗TC(w) ≤ δ∗IS(w). (A.29)

Thus for any w ∈ [0, w] and y ≥ 0, πr(w, y|δ∗TC(w)) ≥ πr(w, y|δ∗IS(w)) and

maxy≥0 πr(w, y|δ∗TC(w)) ≥ maxy≥0 πr(w, y|δ∗IS(w)), i.e., the retailer is better off

under TC, as opposed to IS.

We consider the following three cases, with the understanding that when wIS1 <

wTC2 the first two cases (i) and (ii) cover the whole range by themselves.

(i) w ∈ [0, wIS1 ]: δ∗IS(w) = α − β∗ISg (w) = α − α = αr. Since δTC(w) ∈

[αTC − αTC , αTC − αTC ] = [0, αr], (A.29) holds.

(ii) w ∈ (wTC2 , w]: δ∗TC(w) = αTC −αTC = 0. Since δIS(w) ∈ [αIS −αIS , αIS −

αIS ] = [0, αr], (A.29) holds.

(iii) w ∈ (wIS1 , wTC2 ]: By Lemma A.1, wTC1 ≤ wIS1 ≤ wTC2 ≤ wIS2 , so that

y∗w = y0(w) in this region under both mechanisms. Since αTC = αs < αIS = αr,

y∗ISw < y∗TCw follows from (A.27). On the other hand, by (2.8), δ∗(w) = α −

βg(w, y
∗
w) = ( pw − 1)

(
1

F (y∗w) − 1
)
− h0

w is decreasing in y∗w. Thus (A.29) holds.

Part (A-2): It follows from (2.3) that for any given wholesale price w ∈ [0, w],

the retailer’s optimal equilibrium base-stock level y(w, β∗g (w)) is strictly decreasing

in δ∗(w). The claim is thus a direct result of (A.29).

Part (B-1): Under either IS or TC, we distinguish between the following two

cases: (I) w2 < w; (II) w2 = w. It follows from the proof of Proposition 2.2 that the

optimal wholesale price/ECCR pair is (min{w∗α, w}, α) in case (I) and (w, β∗g (w)) in

case (II). (Π∗s(·) is increasing on [0, w2), immediately explaining the solution in case

(II). In case (I), Π∗s(·) achieves its maximum in the type-3 interval [w2, w] where the

function is quasi-concave and β∗g = α. ) Let δ∗ ≡ α − β∗g ≥ 0. Since, by Lemma

A.1, wTC2 ≤ wIS2 , we only need to consider the following three cases:

(a) wTC2 = wIS2 = w: w∗TC = w∗IS = w. Thus the retailer’s preference for TC

follows from part (a).

(b) wTC2 < wIS2 = w: w∗TC = min{w∗TCα , w} ≤ w∗IS = w and δ∗TC = αTC −

β∗TCg = 0 ≤ δ∗IS . Since πr(w, y|δ∗) is decreasing in both w and δ∗ for any given y,
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the retailer’s profit is higher under TC than IS for any given y, which remains true

when the profit values are maximized over all y ≥ 0.

(c) wTC2 ≤ wIS2 < w: Since β∗g = α for both TC and IS, by (2.1), for any

base-stock level y

πr(w
∗TC , β∗TCg , y) = (p− w∗TC)s(y)− h0h(y)

≥ (p− w∗IS)s(y)− h0h(y) = πr(w
∗IS , β∗ISg , y), (A.30)

provided w∗TC ≤ w∗IS . Maximizing the far left and far right expression in (A.30)

over all y ≥ 0, we conclude that the retailer is better off under TC as opposed to

IS, provided we can show w∗TC = min{w∗TC
αTC

, w} ≤ min{w∗IS
αIS

, w} = w∗IS . How-

ever, this follows from w∗TC
αTC

≤ w∗IS
αIS

which is implied by Claim 1 in the proof of

Proposition 2.2 since αTC = αs < αr = αIS .

Parts (B-2) and (B-3): It follows from the proof of cases (a)-(c) in part (B-1)

that w∗TC ≤ w∗IS and δ∗TC ≤ δ∗IS . (Note that in case (1), the latter follows from

part (a) since w∗TC = w∗IS .) Since y∗ = y(w∗, β∗g ) is decreasing in both w∗ and δ∗,

parts (B-2) and (B-3) follow. �
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A.2 Algorithm of the Full Stackelberg Game with Par-

ticipation Constraint

In this appendix we show how the full Stackelberg game with a participation con-

straint can be solved efficiently. The participation constraint has the form:

πr(w, βg, y} ≥ Π0
r (A.31)

for a given minimum retailer’s profit value Π0
r . We first solve the unconstrained full

Stackelberg game, see Theorem 2.4(c), and evaluate the associated retailer’s profit

value Π∗r . If Π∗r ≥ Π0
r , the unconstrained optimal contract also solves the problem

with the participation constraint; otherwise, (A.31) holds as an equality.

As before, the retailer’s best response function (2.3) may be written as βg =

βg(w, y), see (2.8). It is, again, advantageous to assume the supplier selects a whole-

sale price w and a targeted base-stock level y, which can be implemented by adopting

the associated ECCR βg = βg(w, y) assuming α ≤ βg ≤ α. Substituting (2.8) into

(A.31) - written as an equality - we obtain

(p− w)ŝ(y) = Π0
r (A.32)

where ŝ(y) ≡ s(y)−( 1
F (y)−1)h(y) = y− h(y)

F (y) is an increasing differentiable function,

since

ŝ′(y) = 1− F 2(y)− h(y)f(y)

F 2(y)
=
h(y)f(y)

F 2(y)
≥ 0, (A.33)

with ŝ(0) = 0 since limy↓0
h(y)
F (y) ≤ limy↓0

yF (y)
F (y) = 0, and

lim
y→∞

ŝ(y) = lim
y→∞

yF (y)− h(y)

F (y)
= lim

y→∞

yF (y)−
∫ y

0 F (t)dt

F (y)
= lim

y→∞

∫ y
0 tdF (t)

F (y)
= µ

. It follows that, for any given wholesale price w, any retailer profit value can be

achieved as long as Π0
r ≤ (p− w)µ, i.e., as long as w ≤ p− Π0

r
µ ≡ w0, and this with

the unique base-stock level

yt(w) ≡ ŝ−1

(
Π0
s

p− w

)
. (A.34)
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To verify whether this base-stock level can be feasibly implemented with an ECCR

βg ∈ [α, α], it suffices to verify that y(w) ≤ yt(w) ≤ y(w). Assume

yt(0) ≤ y(0) = F−1

(
p

p+ h0

)
= y(0). (A.35)

Since yt(·) is increasing (as the composition of two increasing functions, see (A.34))

with limw↑w0 yt(w) =∞, and y(·) is decreasing, there exists a unique value w2 < w0

such that yt(w
2) = y(w2) and yt(w) < y(w) for all w < w2. (When (A.35) is

violated, yt(w) > y(w) for all 0 ≤ w ≤ w0, i.e., there is no feasible solution for the

constrained Stackelberg game.) Also, define w1 as the unique point of intersection

of the increasing function yt(·) and the decreasing function y(·), which exists, under

(A.35). (Note, w1 ≤ w2 since y(·) ≤ y(·) pointwise.) Thus, yt(w) < y(w) for all

w ≤ w1, so that no feasible solution exists for any w < w1. These observations

substantiate the following algorithm:

Algorithm (Constrained Stackelberg Game):

Step 0: Compute the optimal solution (w∗, β∗) of the unconstrained Stackelberg game

and evaluate Π∗r . If Π∗r ≥ Π0
r , (w∗, β∗) solves the constrained problem; exit.

Step 1: If yt(0) > y(0), no feasible solution exists; exit.

Step 2: Calculate w1 (w2), the unique point of intersection of the function yt(·) and

y(·) [y(·)].

Step 3: Optimize the single variable supply chain profit function (p − c)s(yt(w)) −

(αw + h0)h(yt(w)) on the interval of [w1, w2].
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A.3 Proof for Section 8 of Chapter 2

In this appendix we prove that Theorems 2.1-2.4 and Propositions 2.1-2.2 hold for

the following profit functions in the second generalized model with default risks (see

§2.7.2):

πr(w, βg, y) = (p− (1− γ)w)s(y)− [((1− γ)α− βg)w + h0]h(y)

πs(w, βg, y) = (φ(γ)w − c)s(y)− βwh(y)

with 0 ≤ βg ≤ (1−γ)α and 0 ≤ w ≤ p/(1−γ). To simplify the exposition, we apply

the following transformation of variables: wn = wφ(γ) and βn = βg/φ(γ). Thus the

above profit functions become:

πr(w
n, βng , y) = (p− γ̃wn)s(y)− [(

1− γ
φ(γ)

α− βng )wn + h0]h(y) (A.36)

πs(w
n, βng , y) = (wn − c)s(y)− βngwnh(y) (A.37)

with 0 ≤ βng ≤ αd ≡ γ̃α and 0 ≤ wn ≤ pd ≡ p/γ̃ where γ̃ ≡ 1−γ
φ(γ) . Without loss of

clarity, we henceforth suppress the superscript “n” in wn and βn, while appending

a subscript “d” to differentiate a quantity in the model with default risks from its

counterpart in the base model.

The Stackelberg Game under a Given ECCR

Proof of Theorem 2.1

(a) The retailer’s optimal base-stock level y(w, βg) in response to given trade

terms (w, βg) is given by a specific fractile of the demand distribution. More specif-

ically, y(w, βg) is the fractile that satisfies

F (y) = 1− (γ̃α− βg)w + h0

p− γ̃w + (γ̃α− βg)w + h0
. (A.38)

Let wd(y) be the inverse demand function. wd(y) = p−(p+h0)F (y)
γ̃(1−(1−δd)F (y)) with δd =

α− βg/γ̃. The supplier’s equilibrium profit as a function of y can be written as

Πs(y|βg) = wd(y)(s(y)− βgh(y))− cs(y),

= wd(y)ξ(y)− cs(y). (A.39)
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where ξ(y) ≡ y − (1 + βg)h(y). Differentiating (A.39) yields

Π′s(y|βg) = wd(y)ξ′(y) + ξ(y)w′d(y)− c(1− F (y))

= wd(y)ξ′(y)gd(y) (A.40)

where

gd(y) = 1− c 1− F (y)

wd(y)ξ′(y)
−
−ξ(y)w′d(y)

ξ′(y)wd(y)
(A.41)

for y < ymax (, see (2.7) for the definition of ymax). We show that gd(y) is decreasing

on [0, ymax) by applying the similar arguments as in the proof of Theorem 2.1 for

the base model. gd(y) is the same as its counterpart g(y) in the original proof

except that w(y) is replaced by wd(y). The only properties of w(y) employed in

the original proof are that w(y) is positive and decreasing (see the proof of (A.5))

and that −w
′(y)

w(y) is positive and increasing (see the proof of (A.6)). We show these

properties hold for wd(y) too. wd(y) ≥ 0, and is clearly decreasing since

w′d(y) = − (pδd + h0)f(y)

γ̃(1− (1− δd)F (y))2
≤ 0.

It follows from the decreasing property of wd(·) that
−w′d(y)

wd(y) ≥ 0. Finally,

−w′d(y)

wd(y)
=

(pδd + h0)f(y)

(1− (1− δ)F (y))(p− (p+ h0)F (y))
,

=
(δd + h0/p)f(y)

(1− (1− δd)F (y))(1− (1 + h0/p)F (y))
.

Since δd = α− βg/γ̃ ∈ [0, 1], 1− (1− δd)F (y) is positive and decreasing. Therefore,

it suffices to show that f(y)
1−(1+h0/p)F (y) = f(y)

1−F (y)

(
1 + F (y)h0/p

1−(1+h0/p)F (y)

)
is positive and

increasing: both properties have been proved in the original proof of Theorem 2.1.

It is left to show that gd(0) > 0 and lim
y↑ymax

gd(y) < 0. gd(0) = 1 − γ̃c
p > 0 since

F (0) = 0 , w(0) = p/γ̃, ξ(0) = 0 and ξ′(0) = 1. If ymax = ys, (see (2.6) for the

definition of ys,) by (2.6) and ξ′(ymax) = 0, Π′s(ymax) = ξ(ymax)w′d(ymax) − c(1 −

F (ymax)) < 0 since w′d(·) ≤ 0 and ξ(·) ≥ 0. This implies that lim
y↑ymax

gd(y) < 0.

Finally if ymax = F−1
(

1
1+h0/p

)
, then the profit value Πs(ymax|βg) itself is negative

by (2.5) as wd(ymax) = 0. This, however, implies that Πs(y|βg) is decreasing at some

point y0 < ymax, so that gd(y
0) < 0. By the monotonicity of gd(·) , lim

y↑ymax
gd(y) < 0

in this case as well.
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Part (b): limw↑p/γ̃ Π̂s(w|βg) = 0 since limw↑p/γ̃ y(w, βg) = 0. The remainder of

part (b) is immediate from part (a).

The Stackelberg Game under Given Wholesale Price

There exists a one-to-one mapping between the ECCR βg and the resulting base-

stock level y selected by the retailer. Indeed, it is apparent from (A.38) that βg can

be written as a closed-form function of y (the immediate generalization of (2.8)):

βg(w, y) ≡ γ̃α−
( p
w
− γ̃
)( 1

F (y)
− 1

)
+
h0

w
(A.42)

Since the ECCR must be selected in the interval [α, γ̃α], this implies that the

targeted base-stock level y satisfies the bounds, y ≤ y ≤ y where

y ≡ F−1

(
p− γ̃w

p− γ̃w + w(γ̃α− α) + h0

)
and y ≡ F−1

(
p− γ̃w

p− γ̃w + h0

)
. (A.43)

Substituting (A.42) into (A.37), we obtain the desired representation of the sup-

plier’s equilibrium profits as a function of the targeted base-stock level:

Πs(y|w) = (w − c)s(y)−
(
wγ̃α− (p− γ̃w)

(
1

F (y)
− 1

)
+ h0

)
h(y). (A.44)

The supplier’s problem is maxy≤y≤y Πs(y|w). The marginal equilibrium profit func-

tion for the supplier is given by

Π′s(y|w) = (w − c)(1− F (y))− [wγ̃α+ h0 − (p− γ̃w)(
1

F (y)
− 1)]F (y)− (p− γ̃w)

h(y)f(y)

F 2(y)

= (p− c)(1− F (y))− (wγ̃α+ h0)F (y)− (p− γ̃w)
h(y)f(y)

F 2(y)

+w(1− γ̃)(1− F (y)) (A.45)

Proof of Theorem 2.2 (with αd replacing α in the statement of the theorem.)

Parts (b) and (c) are immediate from part (a).

Part (a): Using (A.45), write

Π′s(y|w) = (1− F (y))n(y)− (wγ̃α+ h0), (A.46)

where n(y) = (p− c+ wγ̃α+ h0)− (p− γ̃w)ζ(y) + w(1− γ̃). The remainder of the

proof is the same as in the base model: Note that n(y) is decreasing in view of the

(MIFR) property. Thus define yw ≡ inf{L ≤ y : n(y) ≤ 0}, unless n(·) > 0 for
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all y ≥ L, in which case we define yw ≡ ∞. Note that, in either case, n(·) ≥ 0

for all L ≤ y < yw. Thus, for all L ≤ y < yw, Π′s(·|w) is a decreasing function

of y as a translation of the product of two positive and decreasing functions. In

other words, Πs(·|w) is concave on [L, yw]. Moreover, n(y) ≤ 0 and Π′s(·|w) < 0 for

y > yw, i.e., Πs(·|w) is decreasing for y > yw. This implies that the function Πs(·|w)

is quasi-concave in [L,∞), achieving its maximum for some L ≤ y0 < yw. �

Comparative Statics and Full Stackelberg Game

We start with a characterization of the impact the wholesale price has on the

unconstrained optimal base-stock level y0(w) = argmaxy≥L Πs(y|w). Rewrite (A.45)

as:

Π′s(y|w) = (p− c)(1− F (y)) + α(p− wγ̃)F (y)− (pα+ h0)F (y)− (p− γ̃w)
h(y)f(y)

F 2(y)

−1− γ̃
γ̃

(p− γ̃w)(1− F (y)) +
1− γ̃
γ̃

p(1− F (y))

=

(
p

γ̃
− c
)
−
(
p

γ̃
− c+ pα+ h0

)
F (y)

+(p− γ̃w)F (y) (α− κd(y)) (A.47)

where κd(y) ≡ h(y)f(y)
F 3(y)

+ 1−γ̃
γ̃

1−F (y)
F (y) . In general, y0(w) cannot be obtained in closed

form except when the wholesale price w = pd. For this maximal wholesale price

value, it is easily verified from (A.47) that y0(p/γ̃) = yp where

ypd ≡ max{L,F−1(
p/γ̃ − c

p/γ̃ − c+ pα+ h0
)}. (A.48)

Proof of Theorem 2.3 (with κd(·), ypd and pd replacing their counterparts κ(·),

yp and p in the statement of the theorem)

It can be easily verified that the proof for the base model applies here as well.

Proof of Proposition 2.1 (with pd replacing p in the statement of the propo-

sition)

Since κd(y) = κ(y) + 1−γ̃
γ̃

1−F (y)
F (y) ≥ κ(y) and 1−F (y)

F (y) is increasing in y, the prop-

erties listed in (A.10) also hold for κd(·), i.e.,

κd(·) is strictly decreasing for y ≥ L, κd(M) > 1− c/p and κd(M) > α (A.49)

where M denotes the median of the distribution. Since
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Assume to the contrary that y0 is decreasing in w. Then by (A.9) and also from

the proof of Theorem 2.3:

κd(y0) ≤ α. (A.50)

From (A.45), rewrite 0 = Π′s(y|w) as follows:

Π′s(y0|w) = (p−c)(1−F (y0))−pF (y0)κ(y0)−h0F (y0)−γ̃wF (y0)(α−κd(y)) (A.51)

Thus (p− c)(1− F (y0))− pF (y0)κ(y0) ≥ 0, i.e.,

ζ(y0) = κ(y0)
F (y0)

1− F (y0)
≤ 1− c/p < κ(M) = ζ(M). (A.52)

Since ζ(·) is increasing, y0 < M . Since κd(·) is strictly decreasing, κd(y0) > κd(M) >

α, contradicting (A.50) and hence the assumption that y0(w) is a decreasing. �

Theorem 2.4 (with pd and αd replacing p and α in the statement of parts (b1)

and (c))

(a1) The same proof applies to this model with default risk.

(a2) We distinguish between two cases:

Case 1: w = p/γ̃ = pd

All the arguments in the original proof still apply up to (A.16), which is used to

show Πu
s
′′(·) > 0), These arguments simply rely on the results on Theorems 2.2 and

2.3 as well as Proposition 2.1. The following completes the proof for this case:

Employing (A.44) for any w ≤ w2, we get

Πu
s
′(w) =

∂Πs(y0(w)|w)

∂w

= s(y0(w))− γ̃
(
α+

1

F (y0(w))
− 1

)
h(y0(w)) (A.53)

= y0(w)− γ̃
(
α+

1

F (y0(w))

)
h(y0(w))− γh(y0(w)). (A.54)

Any point w in a type-2 interval has

y0(w) ≥ y(w) > y(w) = L (A.55)

where the second inequality follows from the fact that y(·) is strictly decreasing and

w ≤ w2 < w = p. The proof of Theorem 2.3(b) shows that since y0(w) ≥ L, y0(w)
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is continuously differentiable at w. Differentiating both sides of (A.54), we get

Πu
s
′′(w) =

{
1− γ̃

(
αF (y0(w)) + 1− f(y0(w))h(y0(w))

F 2(y0(w))

)
− γF (y0(w))

}
y′0(w)

=

{
γ(1− F (y0(w)))− γ̃

(
αF (y0(w))− f(y0(w))h(y0(w))

F 2(y0(w))

)}
y′0(w)

= γ̃F (y0(w))[−α+ κd(y0(w))]y′0(w) > 0

where the inequality follows from the fact that, under patterns (b-i), (b-iii) and

(b-iv), y′0(w) 6= 0 always has the same sign as −α+ κd(y0(w)) whenever y0(w) > L,

see Theorem 2.3(b) and its proof.

Case 2: w < p/γ̃ = pd

The proof for Case 2 is identical to that in the base model.

(b)-(c) Only the proof of (b1-2) needs to be adjusted, as follows:

It follows from the proof of part (a2) that β∗g (w) = βg(w, y(w)) = α when w ≤ w1

and β∗g (w) = βg(y(w)) = α when w ≥ w2. For w1 < w < w2, β∗g (w) < α. Thus,

by (A.42), γ̃α − β∗g (w) = γ̃α − βg(w, y0(w)) = (p−γ̃w)(1−F (y0(w)))−h0F (y0(w))
wF (y0(w)) > 0.

Moreover, since y0(·) is an increasing function, γ̃α−β∗g (w) is decreasing as the ratio

of a positive decreasing function and a positive increasing function. Hence β∗g (w) is

increasing for all w1 < w < w2.

Proposition 2.2

It follows from Proposition 2.1 and Theorem 2.4(b1) that two threshold points

0 < w1 ≤ w2 ≤ w exist such that (i) [0, w1] is of type-1, (ii) (w1, w2] is of type-

2 and (iii) (w2, w] is of type-3. We first show that under the specified parame-

ter conditions, w1 < w2, i.e., a complete type-2 interval exists. For the classes

of uniform and exponential distributions, this follows from the proof of Theorem

2.4(a2) since w = pd. For the Normals, it suffices to show that Π′s(L|w) ≥ 0 where

w = p(1−F (L)−F (L)h0
γ̃(1−F (L))+F (L)(γ̃α−α) , (see the proof for the base model in Appendix I).
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Π′s(L|w) = (p− c)(1− F (L))− (wγ̃α+ h0)F (L)− (p− γ̃w)
h(L)f(L)

F 2(L)

+w(1− γ̃)(1− F (L))

> (p− c)(1− F (L))− (wγ̃α+ h0)F (L)− (p− γ̃w)
h(L)f(L)

F 2(L)

> (p− c)(1− F (L))− pF (L)− p F (L)

1− F (L)

h(L)f(L)

F 2(L)

= (p− c)(1− 0.036)− 0.036p(1 + 0.906)

= 0.895p− 0.964c

= 0.895(p− 1.077c) ≥ 0.

The first equality follows from (A.45) and the second inequality follows from wγ̃α+

h0 ≤ pγ̃max{αr, αs}+h0 ≤ pmax{αr, αs}+h0 ≤ p and p−γ̃w = (p(γ̃α−α)+γ̃h0)F (L)
γ̃(1−F (L))+F (L)(γ̃α−α) <

γ̃(p(α−α)+h0)F (L)
γ̃(1−F (L)) ≤ pF (L)

1−F (L) (since α−α ≤ max{αr, αs}); The second equality follows

from F (L) = 0.036 and h(L)f(L)
F 2(L)(1−F (L))

= (lΦ(l)+φ(l))φ(l)
Φ2(l)(1−Φ(l))

= 0.906 with l = L−µ
σ = −1.8;

Finally the last inequality follows from p−c
c ≥ 7.7%.

Since, in all parts (a)-(c), the initial type-1 interval is followed by a full type-2

interval (w1, w2], the conclusions in these parts follow by showing that Π∗s
′(·) > 0

on this type-2 interval. On type-2 intervals Π∗s(·) = Πu
s (·), and, by (A.53),

Πu
s
′(w) = ωd(y0(w)) (A.56)

where ωd(y) = s(y)− γ̃
(
α+ 1

F (y) − 1
)
h(y) is decreasing in γ̃ since α+ 1

F (y) −1 ≥ 0,

and strictly increasing in y ∈ [L, y0(w1)) since ω′(y) = 1−γ̃
[
(α+ 1

F (y))F (y) + h(y)f(y)
F 2(y)

]
+

(1− γ̃)F (y) = γ̃F (y)(κd(y)−α) > γ̃F (y)(κd(y0(w1))−α) ≥ 0. (The first inequality

holds since κd(·) is strictly decreasing in y ≥ L for all three classes of distributions

considered here, see (A.49); the second inequality follows from (A.9) since y0(·) is

increasing, see Proposition 2.1(c).) Therefore, since y0(w1) > L, see (A.17), we

have, for any w ∈ [w1, w2], that ω(L) < ωd(y0(w1)) = Πu
s
′(w1) ≤ Πu

s
′(w) where

the second inequality follows from the convexity of Πu
s
′(·). The proof is complete

since ωd(L) ≥ ω(L) ≥ 0, where the first inequality follows from the fact that ωd(y)

is decreasing γ̃ and it coincides with ω(y) (see the proof of the base model) when



137

γ̃ = 1−γ
φ(γ) |γ=0 = 1 and the second inequality can be found in the proof of the base

model.
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A.4 Comparisons under a Perfect Coordination Scheme

In this appendix, we consider the case where the chain members agree to implement

a perfect coordination scheme consisting of a combined wholesale price w and ECCR

βg that maximizes the aggregate profits, thereafter splitting these in accordance with

an agreed upon allocation rule such as a Nash bargaining solution. In this context,

we assume that all wholesale prices c ≤ w ≤ p and all nonnegative ECCR values of

βg are feasible.

In the general model, specified by (2.1) and (2.2), the aggregate profit function

Πagg(w, y) = (p− c)s(y)− (αw+h0)h(y), which is clearly optimized over c ≤ w ≤ p

by selecting w = c. The corresponding optimal base-stock level yagg satisfies

F (y) = 1− αc+ h0

p− c+ αc+ h0
. (A1)

The corresponding first-best aggregate profits Π∗agg can be achieved in a decentral-

ized supply chain with a (w, βg)− payment scheme. However the only such scheme

achieving perfect coordination has w = c and βg = 0. (As argued above, any choice

of w > c results in double marginalization and suboptimal aggregate profits; it fol-

lows from (2.3) that, for fixed w, the optimal base-stock level is strictly increasing

in βg, thus only βg = 0 induces the choice of y = yagg.)

Assume now that the chain members agree to split the chain profits according to

a Nash bargaining solution where the supplier (retailer) has a bargaining power index

γs (γr) and minimum profit expectation Π0
s (Π0

r). This means that the retailer’s and

the supplier’s expected profit value Π∗r and Π∗s are the unique optimal solution of

the optimization problem

max (Πs −Π0
s)
γs(Πr −Π0

r)
γr

s.t. Πr + Πs = Π∗agg.

Clearly, both Π∗s and Π∗r are increasing functions of Π∗agg, i.e., the larger the total

profit, the larger the share of each of the chain members. Since Πagg(w, y) is decreas-

ing in α, the same monotonicity property applies to Π∗agg. The following conclusions
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are immediate, employing equation (A1) and the fact that α = αs under TC while

α = αr under IS.

Corollary A.1 If αs ≤ (>)αr, the expected profit of the supplier and that of the

retailer, the base-stock level and the expected sales volume are all larger under TC

as opposed to IS.
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Appendix B

Proofs for Chapter 3

B.1 Proofs

Proof of Theorem 3.2: (a) Follows from Scarf (1960).

(b) Note that the total expected cost over the finite planning horizon may be

written as:

N∑
n=1

ρn{c(yn − xn) +Gn(yn) + Γn(yn)} − ρN+1cE(yN −D[N,N + L])

=
N∑
n=1

ρn{c(1− ρ)yn +Gn(yn) + Γn(yn)} − ρcx1 + c
N+1∑
n=1

(ρn + ρN+1)ED1

Let Ln(y) ≡ c(1 − ρ)y + Gn(y) + Γ(y), a convex function by Theorem 1 (a)

and our assumption about the Γ(·) function. Let S∗n = argminLn(y) defined as the

smallest minimizer of the function. We will show that S∗1 ≤ S∗2 ≤ · · · ≤ S∗N . This

implies the optimality of the following myopic policy in each period n: adopt the

base-stock policy with level S∗n. The ordering decisions prescribed by this policy

optimize each of the N terms separately, and therefore the aggregate expression, as

well. We provide the proof assuming inventory levels vary continuously; the case

where the demand distribution, and hence the inventory levels, are discrete, can be

handled in a similar way.

With continuous inventory levels, it suffices to show that L′n(·) ≥ L′n+1(·) for

all n, which is equivalent to showing that G′n(y) = E
∑N−n+1

j=1 ρL+j [α(j) − α(j −
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1)]Prob(D[1, L + j] ≤ y) ≥ E
∑N−n

j=1 ρL+j [α(j) − α(j − 1)]Prob(D[1, L + j] ≤ y) =

G′n+1(y), where the inequality follows from the fact that the right hand side equals

the left hand side plus one extra positive term.

(c) See Federgruen and Zipkin(1986a, 1986b);

(d) See Scarf (1960), Iglehart(1963a, 1963b) and Veinott (1965).

(e) See Sethi and Cheng (1997).

(f) See Chen and Simchi-Levi (2004) and Federgruen and Heching (1999).

�

Proof of Theorem 3.4: (a) In this case, it is easily verified that Assumption

(NIP) holds, without loss of optimality: backlogs must be cleared ultimately and

there is no incentive to delay the clearance of any previously backlogged demand at

the beginning of any period; thus yn ≥ 0, without loss of optimally. The optimality

of time-dependent base-stock policy follows immediately from Lemma 3.2.

(b) Under the (CBL) assumption, the proof of part (b) is identical to that of

part (a), with G−n (·) specified by (3.14) as opposed to (3.13). Under the (NIP) as-

sumption, the non-negative constraints for the action variable yn, may be handled as

follows: first consider the relaxed problem where the constraint yn ≥ 0 is relaxed. By

the equivalency result of Lemma 3.1, a time-dependent base-stock policy is optimal

in that “equivalent” model. If S∗n ≥ 0 for all n = 1, · · · , N , this policy satisfies the re-

laxed constraint and is therefore optimal in the original problem as well. Otherwise,

transform the one-step expected cost functions {G−n (·)} to functions {G−n (·|M)} de-

fined as follows: G−n (y|M) = G−n (y) for y ≥ 0 and G−n (y|M) = e−My + G(0) − 1

for y < 0. Note that the functions {G−n (·|M)} continue to be convex for M suffi-

ciently large, so that a time-dependent base-stock policy continues to be optimal.

Moreover, for M sufficiently large, say M ≥ M1, S∗n(M) ≥ 0 for all n ≥ 1. Finally,

S∗n(M) = S∗n(M1) for all M ≥M1 and all n = 1, · · · , N , since the value of the total

expected costs is independent of M as long as S∗n ≥ 0.

(c) The proof of part (c) is analogous to that of part (b). In the transformed

model, a level-dependent (s, S)- policy is optimal in view of the structural results

by Scarf (1960) and Iglehart(1963a, 1963b). �
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Proof of Lemma 3.3: The finiteness of Ĝ(·) follows from the fact that H(t) and

J(t) are both O(tl+1) while EX l+1 < ∞. The family of distributions {Ay : y ≥ 0}

is SIL (Stochastically Increasing Linear) in y, see Example 8.A.16 in Shaked and

Shanthikumar (2007). Similarly, we can easily verify that {Ay : y ∈ Z−} is SIL in y

using Example 8.B.7 and Theorem 8.B.9 there. This implies that EH(Ay) is a convex

function since H(·) is increasing and convex in view of the monotonicity property

of α(·), and see Definition 8.A.1(e) in Shaked and Shanthikumar (2007). Similarly,

EJ(Ay) = −E(−J(Ay)) is convex in y since E(−J(Ay)) is a concave function of y,

as −J(·) is increasing and concave in view of the monotonicity property of β(s).

�

Proof of Lemma 3.4: The fact that ∆Hj < ∞ follows, again, from the fact

that α(t) = O(tl) and E(X l+1) < ∞ while EXp+1 < ∞. For j = 1, ∆H1 =

E[H(R(L)
⊕
X)−H(R(L))] = ER(L){EX [H(r+X)−H(r)|R(L) = r]} ≥ ER(L)EX [H(X)−

H(0)] ≥ ER(L)EX [H(S̃1)−H(0)] = ∆H0, where the first inequality follows from the

convexity of the H(·) function, since α(·) is increasing, and where the second in-

equality follows from the fact that H(·) is increasing and X ≥st R(L); for the latter,

see Lemma 3.10 in Barlow and Proschan (1975).

For j ≥ 2,

∆Hj = E[H(S̃j−1
⊕
Xj−1

⊕
Xj)−H(S̃j−1

⊕
Xj−1)]

= ES̃j−1
EXj−1E[H(s+ x+Xj)−H(s+ x)|S̃j−1 = s,Xj−1 = x]

≥ ES̃j−1
EXj−1EXj [H(s+Xj)−H(s)|S̃j−1 = s]

= ES̃j−1
EXj [H(s+Xj)−H(s)|S̃j−1 = s]

= ES̃j−1
EXj−1E[H(s+Xj−1)−H(s)|S̃j−1 = s]

= E[H(S̃j−1
⊕
Xj−1)−H(S̃j−1)]

= E[H(S̃j)−H(S̃j−1)] = ∆Hj−1.

(The first inequality follows from the convexity of H(·) and Xj−1 ≥ 0 a.s., and the

third equality follows from Xj and Xj−1 being identically distributed.) �

Proof of Theorem 3.7: (a) The proof that G(·) is finite is analogous to that

in Theorem 3.6(a). To show its convexity, it suffices to show that for all j ≥ 1,
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∆Jj ≥ ∆Jj+1. We show, in fact, that almost surely, ∆Jj ≥ ∆Jj+1, i.e., J(Sn+1 +

L−Sn+j)− J([Sn +L−Sn+j ]
+) ≥ J(Sn+1 +L−Sn+j+1)− J([Sn +L−Sn+j+1]+).

Since the function J(·) is convex, it suffices to show:

(i) [Sn + L− Sn+j ]
+ ≥ [Sn + L− Sn+j+1]+,

(ii) Sn+1 + L − Sn+j − [Sn + L − Sn+j ]
+ ≥ Sn+1 + L − Sn+j+1 − [Sn + L −

Sn+j+1]+ ⇐⇒ Xn+j+1 + [Sn + L− Sn+j+1]+ ≥ [Sn + L− Sn+j ]
+.

The inequality in (i) is immediate, while the second inequality in (ii) follows from

Xn+j+1 + [Sn +L− Sn+j+1]+ ≥ [Xn+j+1 + Sn +L− Sn+j+1]+ = [Sn +L− Sn+j ]
+,

since Xn+j+1 ≥ 0, a.s.

(b) The proof of part (b) is analogous to that of Theorem 3.6, using part (a).

Because of Assumption 1, the equivalent PRM has the non-standard feasibility con-

straints yn ≥ 0 for its action space. However, these constraints may be relaxed as

in the proof of Theorem 3(b). This implies that an (s∗, S∗) policy continues to be

optimal. To be feasible, in terms of the constraints yn ≥ 0, s∗ ≥ 0 and the optimal

policy is the best among all (s, S)-policies, with s ≥ 0. �
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Appendix C

Proofs for Chapter 4

C.1 Proofs

Algorithm for Optimal r and q (see Federgruen and Zheng (1992))

Step 0 (Initialize): Determine y0. q := 1; r := y0 − 1. C∗ := λK +G(y0).

Step 1 (Determine next smallest G(·)-value): c∗ := min{G(r), G(r + q − 1)}.

Step 2 (Test for termination): If c∗ ≥ C∗, q∗ := q, r∗ := r. Stop

Step 3 (Update): q := q + 1, C∗ := C∗ − (C∗ − c∗)/q. If G(r) achieves the

minimum in Step 1, r := r − 1.

Go to Step 1.

Proof of Lemma 4.1. Since θ is irrelevant in this lemma, we omit it for the

sake of brevity.

Note that ∂c(r, q)/∂r = (G(r + q) − G(r))/q. By the strict quasi-convexity

and continuous differentiability of G(·), it follows that the function ∂c(r, q)/∂r is

continuous and increasing in r on the interval [y0− q, y0]. Moreover, ∂c(r, q)/∂r < 0

for all r ≤ y0 − q and ∂c(r, q)/∂r > 0 for all r ≥ y0. This implies that the function

∂c(r, q)/∂r has a unique root r′ on [y0 − q, y0] with ∂c(r, q)/∂r ≤ 0 for r ≤ r′ and

∂c(r, q)/∂r > 0 for r > r′. This establishes that the function c(·, q) is strictly quasi-

convex and achieves its minimum in a point r′ = r(q) < y0 with R(q) = r′+ q > y0.

Also, r(q) is the unique root of the equation ∂c(r, q)/∂r = 0, or G(r) = G(r + q).
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Thus (P0)-(P2) follow.

See parts (3)-(4) of Lemma 3 in Zheng (1992) for proofs of (P3)-(P4), observing

that the proof only relies on the strict quasi-convexity and differentiability of G(·).

�

Proof of Theorem 4.1. Since θ is irrelevant in this theorem as well, we omit

it from the notation.

As in Zheng (1992), define H(q) ≡ G(r(q)) and H(0) ≡ limq→0+ G(r(q)) =

G(y0). H ′(q) = G′(r(q))r′(q) > 0 since G′(r(q)) < 0 by (P2) and r′(q) < 0 by

(P3). c(q) =
λK+

∫ q
0 H(y)dy

q as shown in Zheng (1992). Applying L’ Hôpital’s rule,

we observe that limq→∞ c(q) = limq→∞H(q) = limq→∞G(r(q)) =∞, by properties

in (Q) and since limq→∞ r(q) = −∞ by (P3). (Note that the numerator of c(q) is

strictly increasing and convex, hence tends to infinity when q goes to infinity so that

the conditions for L’ Hôpital’s rule are satisfied.)

Moreover, c′(q) = A(q)−λK
q2

where A(q) ≡ H(q)q−
∫ q

0 H(y)dy with A(0) = 0 and

A′(q) = H ′(q)q > 0. Thus, define q0 as the unique root of the equation A(q) = λK.

(q0 must exist, for, otherwise, c′(q) < 0 for all q, so that q∗ = ∞. This, however,

contradicts limq→∞ c(q) =∞ as shown above.) Then c′(q) ≤ 0 for q ≤ q0, which is

equivalent to H(q)q−
∫ q

0 H(y)dy− λK < 0 ⇐⇒ H(q) = G(r(q)) ≤ c(q). Similarly,

c′(q) > 0 for q > q0, which is equivalent to H(q) = G(r(q)) ≥ c(q). This establishes

both the strict quasi-convexity of c(q) and (P5). �

Proof of Lemma 4.2. Since θ is irrelevant in this lemma, again, we omit it

from the notation.

Note that ∆rc(r, q) ≡ c(r, q|θ)−c(r−1, q|θ) = (G(r+q)−G(r))/q. It follows from

the quasi-convexity of G(·) that ∆rc(r, q) < 0 for all r ≤ y0 − q and ∆rc(r, q) > 0

for all r ≥ y0. Let r′ ≡ min{r : ∆rc(r, q) ≥ 0} = min{r : G(r + q) ≥ G(r)}. Thus

y0 − q < r′ ≤ y0. (C.1)

For any r′ < r < y0, ∆rc(r, q) > 0 since G(r + q) > G(r′ + q) ≥ G(r′) > G(r)

by the strict quasi-convexity of G(·). Therefore, ∆rc(r, q|θ) ≤ 0 for r ≤ r′ and

∆rc(r, q|θ) ≥ 0 for r ≥ r′, which implies that c(r, q) is quasi-convex in r achieving

its minimum at r′ − 1, establishing (P1’). (P2’) follows immediately from (C.1).
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Next we show that r(q) is decreasing in q. Let r0 ≡ r(q0). For any q1 > q0,

G(r0 + 1 + q1) > G(r0 + 1 + q0) ≥ G(r0 + 1) where the first inequality follows from

(P2’) and the strict quasi-convexity of G(·|θ) while the second inequality follows

from (P1’) with q = q0. Thus, by (P1’), r(q1) ≤ r0. To show that R(q) is increasing,

assume to the contrary that R(q0) = r(q0) + q0 > R(q1) = r(q1) + q1 for some

q0 < q1. Hence

r(q1) < r0 ≡ r(q1) + q1 − q0 < r(q0). (C.2)

Thus, G(r0 + 1) < G(r(q1) + 1) ≤ G(r(q1) + q1 + 1) = G(r0 + q0 + 1). (The first

inequality follows from the strict quasi-convexity of G(·) and r(q1) + 1 < r0 + 1 <

r(q0) + 1 ≤ y0. The second inequality is by applying (P1’) with q = q1.) This

implies that r(q0) ≤ r0, which contradicts (C.2). The proof of the limits in (P3’)

and (P4’) is analogous to that of Lemma 2, part (4) in Zheng (1992), using (P1’).

(P5’) follows from Lemma 2 and its proof in Federgruen and Zheng (1992). �

Proof of Theorem 4.3. We write r∗(θ), R∗(θ) and q∗(θ) as r∗, R∗ and q∗,

without ambiguity. It follows from the implicit function theorem applied to (4.5)

and (4.6) that H

dr
dq

+ bdθ = 0 where

H =

 g(r|θ)− g(R|θ) −g(R|θ)

Rg(R|θ)− rg(r|θ) Rg(R|θ)

 and b =

∂G(r|θ)
∂θ − ∂G(R|θ)

∂θ∫ R
r ygθ(y|θ) dy

 =

− ∫ Rr gθ(y|θ) dy∫ R
r ygθ(y|θ) dy

 .
Thus

dr∗/dθ
dq∗/dθ

 = −H−1b. We have

dq∗

dθ
=

(g(R∗|θ)− g(r∗|θ))
∫ R∗
r∗ ygθ(y|θ)dy − (R∗g(R∗|θ)− r∗g(r∗|θ))

∫ R∗
r∗ gθ(y|θ)dy

|H|

=

∫ R∗
r∗ gy(y|θ)dy

∫ R∗
r∗ ygθ(y|θ)dy −

∫ R∗
r∗ ygy(y|θ)dy

∫ R∗
r∗ gθ(y|θ)dy

|H|
(C.3)

since g(R∗|θ)−g(r∗|θ) =
∫ R∗
r∗ gy(y|θ)dy andR∗g(R∗|θ)−r∗g(r∗|θ) =

∫ R∗
r∗ ygy(y|θ)dy+∫ R∗

r∗ g(y|θ)dy =
∫ R∗
r∗ ygy(y|θ)dy + G(R∗|θ) − G(r∗|θ) =

∫ R∗
r∗ ygy(y|θ)dy where the

last equation follows from (4.5). |H| = q∗g(r∗|θ)g(R∗|θ) < 0 as g(R∗|θ) > 0 and

g(r∗|θ) < 0, by (P2) in Lemma 4.1 and the strict quasi-convexity of G(·|θ). The

theorem thus follows from (C.3). �
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Proof of Theorem 4.5. We provide proof for the case where gy(y|θ1)/gθ(y|θ0)

is decreasing. The other case can be proved analogously.

Recall from Federgruen and Zheng (1992), see also Zipkin (2000), that

r∗(θ) = r, q∗(θ) = q ⇐⇒ G(j) < (≥)c(r, q|θ) for any j ∈ ( 6∈){r + 1, · · · , r + q}.

(C.4)

Suppose q∗(θ) increases at θ = θ1. As explained above, the increase is by one

unit, say from q0 to q0 + 1. Since gθ(y|θ) is uniformly positive, i.e., G(y|θ) is

supermodular, both r∗(θ) and R∗(θ) are decreasing by Theorem 4.2. This implies

that r∗(θ) decreases by 1 unit at θ1, say from r0 to r0 − 1. Let ∆(θ) ≡ c(r0, q0|θ)−

c(r0 − 1, q0 + 1|θ) and note that limθ↑θ1 ∆(θ) ≤ 0 and limθ↓θ1 ∆(θ) ≥ 0. Since ∆(θ)

is a continuous function of θ, ∆(θ1) = 0, i.e.,

c(r0 − 1, q0 + 1|θ1) = c(r0, q0|θ1). (C.5)

(The continuity of ∆(·) follows from (4.2) and the continuity in θ of G(y|θ).) Hence

G(r0 + q0|θ1) < c(r0, q0|θ1) = c(r0 − 1, q0 + 1|θ1) = G(r0|θ1) < G(r0 − 1|θ1). (C.6)

The first inequality of (C.6) follows from the fact that (r0, q0) is the optimal policy

for θ = θ1 and (C.4), while the second inequality follows from the strict quasi-

convexity of G(·|θ). The first equality follows from (C.5), while the second equality

follows from (C.5) and

c(r0 − 1, q0 + 1|θ1) =
Kλ+

∑r0+q0

r0+1
G(j|θ1) +G(r0|θ1)

q0 + 1
=
q0c(r0, q0|θ1) +G(r0|θ1)

q0 + 1
.

Let θ2 ≡ inf{θ ≥ θ1 : G(r0 + q0|θ) ≥ c(r0 − 1, q0 + 1|θ)}. We will show that

c(r0 − 1, q0 + 1|θ) < G(r0 − 1|θ) for all θ1 ≤ θ ≤ θ2. (C.7)

This will allow us to conclude that the first change of q∗(θ) for θ > θ1, if any, involves

a decrease, thus proving rough monotonicity of q∗(·). Therefore, let θ3 denote the

first value of θ > θ1 at which q∗(θ) changes from its current value q0 + 1, if any.

If θ3 < θ2, assume by contradiction that q∗ increases at θ = θ3. Then, analogous
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to (C.6), we get c(r0 − 1, q0 + 1|θ3) = G(r0 − 1|θ3), contradicting (C.7). Thus, if

θ3 < θ2, q∗ decreases at θ3.

The remaining case has∞ > θ3 ≥ θ2. So, r∗, R∗ and q∗ remain constant between

θ1 and θ2, while by the definition of θ2 and the continuity in θ of the functions

G(r0 + q0|θ) and c(r0 − 1, q0 + 1|θ),

G(r0 + q0|θ2) = c(r0 − 1, q0 + 1|θ2). (C.8)

Note first that the parameter pair (r0− 1, q0 + 1) continues to be optimal at θ2: for

any pair (r, q), c(r0 − 1, q0 + 1|θ) ≤ c(r, q|θ) for all θ1 ≤ θ < θ2. This inequality

continues to hold when letting θ ↑ θ2 on both sides and using the continuity of the

functions on both sides of the inequality. Thus c(r0−1, q0 +1|θ2) = min(r,q) c(r, q|θ).

By (C.8) and

c(r0 − 1, q0|θ2) =

Kλ+

r0+q0∑
r0

G(j|θ2)−G(r0 + q0|θ2)

q0

=
(q0 + 1)c(r0 − 1, q0 + 1|θ2)−G(r0 + q0|θ2)

q0
,

we have c(r0 − 1, q0|θ2) = c(r0 − 1, q0 + 1|θ2) = min(r,q) c(r, q|θ), which proves that

q∗(θ2) ≤ q0. We conclude that, irrespective of whether θ3 < θ2 or ∞ ≥ θ3 ≥ θ2, if a

change in q∗(θ) occurs for some θ > θ1, the first change is a decrease, thus proving

the roughly decreasing property of q∗(·).

The remainder is to prove (C.7). Fix θ = θ′ with θ1 ≤ θ′ ≤ θ2. (C.7) is equivalent

to

0 < G(r0 − 1|θ′)− c(r0 − 1, q0 + 1|θ′)

= [G(r0 − 1|θ1)− c(r0 − 1, q0 + 1|θ1)]

+

∫ θ′

θ1

(G′θ(r − 1|θ)− c′θ(r − 1, q + 1|θ))dθ (C.9)
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Note that

a1 ≡ c(r0 − 1, q0 + 1|θ1)−G(r0 + q0|θ1)

=

∫ θ′

θ1

(G′θ(r
0 + q0|θ)− c′θ(r0 − 1, q0 + 1|θ))dθ + c(r0, q0|θ′)−G(r0 + q0|θ′)

≥
∫ θ′

θ1

(G′θ(r
0 + q0|θ)− c′θ(r0 − 1, q0 + 1|θ))dθ ≡ a2 ≥ 0

where the first inequality holds because c(r0, q0|θ′)−G(r0 + q0|θ′) ≥ 0 for all θ1 ≤

θ′ ≤ θ2 by the definition of θ2, and the second inequality holds because G′θ(r
0 +

q0|θ) − c′θ(r0 − 1, q0 + 1|θ) =
∑r+q

r (G′θ(r
0 + q0|θ) − G′θ(y|θ))/(q + 1) ≥ 0 for any θ

by the supermodularity of G(y|θ). Hence,

(C.9) ⇐⇒ b1 ≡ G(r0 − 1|θ1)− c(r0 − 1, q0 + 1|θ1)

>

∫ θ′

θ1

(c′θ(r
0 − 1, q0 + 1|θ)−G′θ(r0 − 1|θ))dθ ≡ b2

⇐ a1b2 < a2b1 ⇐⇒ (a1 + b1)b2 = a1b2 + b1b2 < a2b1 + b1b2 = b1(a2 + b2)

⇐⇒ [G(r0 − 1|θ1)−G(r0 + q0|θ1)]

∫ θ′

θ1

(c′θ(r
0 − 1, q0 + 1|θ)−G′θ(r0 − 1|θ))dθ

< [G(r0 − 1|θ1)− c(r0 − 1, q0 + 1|θ1)]

∫ θ′

θ1

(G′θ(r
0 + q0|θ)−G′θ(r0 − 1|θ))dθ

⇐ [G(r0 − 1|θ1)−G(r0 + q0|θ1)][c′θ(r
0 − 1, q0 + 1|θ0)−G′θ(r0 − 1|θ0))]

< [G(r0 − 1|θ1)− c(r0 − 1, q0 + 1|θ1)][G′θ(r
0 + q0|θ0)−G′θ(r0 − 1|θ0)]

for all θ1 ≤ θ0 ≤ θ′ (C.10)

Thus, to prove (C.7), it suffices to show (C.10). The first factor of the expression

to the left side of (C.10) can be written as:

G(r0 − 1|θ1)−G(r0 + q0|θ1) = −
r0+q0−1∑
t=r0−1

g(t|θ1). (C.11)
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The second factor to the left side of (C.10) can be written as

c′θ(r
0 − 1, q0 + 1|θ)−G′θ(r0 − 1|θ) =

r0+q0∑
y=r0

[G′θ(y|θ)−G′θ(r0 − 1|θ)]/(q0 + 1)

=

r0+q0∑
y=r0

y−1∑
s=r0−1

gθ(s|θ)/(q0 + 1) =

r0+q0−1∑
s=r0−1

r0+q0∑
y=s+1

gθ(s|θ)/(q0 + 1)

=

r0+q0−1∑
s=r0−1

(r0 + q0 − s)gθ(s|θ)/(q0 + 1). (C.12)

Similarly, the first and second factors to the right side of (C.10) can be written,

respectively, as:

G(r0−1|θ1)− c(r0−1, q0 +1|θ1) = G(r0−1|θ1)−G(r0|θ1) = −g(r0−1|θ1), (C.13)

where the first equality follows from c(r0 − 1, q0 + 1|θ1) = G(r0|θ1), see (C.6);

G′θ(r
0 + q0|θ)−G′θ(r0 − 1|θ) =

r0+q0−1∑
s=r0−1

gθ(s|θ). (C.14)

Substituting (C.11)-(C.14) into (C.10), multiplying both sides with q0 +1 and defin-

ing R0 ≡ r0 + q0, we get

(C.10)

⇐⇒ −
R0−1∑
t=r0−1

g(t|θ1)
R0−1∑
s=r0−1

(R0 − s)gθ(s|θ0) < −(q0 + 1)g(r0 − 1|θ1)
R0−1∑
s=r0−1

gθ(s|θ0)

⇐⇒ −
R0−1∑
t=r0−1

g(t|θ1)

R0−1∑
s=r0−1

sgθ(s|θ0)

>

(q0 + 1)g(r0 − 1|θ1)−R0
R0−1∑
t=r0−1

g(t|θ1)

 R0−1∑
s=r0−1

gθ(s|θ0)

Adding
∑R0

t=r0 g(t|θ1)
∑R0−1

s=r0−1 sgθ(s|θ0) to both sides of the inequality above, we
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obtain that (C.10) is equivalent to

[g(R0|θ1)− g(r0 − 1|θ1)]
R0−1∑
s=r0−1

sgθ(s|θ0) =
R0−1∑
t=r0−1

gy(t|θ1)
R0−1∑
s=r0−1

sgθ(s|θ0) ≡ A

>
R0∑
t=r0

g(t|θ1)
R0−1∑
s=r0−1

sgθ(s|θ0)

+

(q0 + 1)g(r0 − 1|θ1)−R0
R0−1∑
t=r0−1

g(t|θ1)

 R0−1∑
s=r0−1

gθ(s|θ0) ≡ B. (C.15)

To show (C.15), it is sufficient to prove the following:

A =
R0−1∑
t=r0−1

gy(t|θ1)
R0−1∑
s=r0−1

sgθ(s|θ0) >
R0−1∑
t=r0−1

tgy(t|θ1)
R0−1∑
s=r0−1

gθ(s|θ0) ≡ B′, (C.16)

since B′ ≥ B by Lemma C.1 below. However, (C.16) holds by applying Lemma 4.3

(the discrete version) as
gy(t|θ1)
gθ(t|θ0) is decreasing in t and is not constant.

Lemma C.1 B′ ≥ B.

Proof: Note first that, for any a ≤ b,

b∑
t=a

tgy(t|θ1) =

b∑
t=a

t(g(t+ 1|θ1)− g(t|θ1)) =

b∑
t=a

tg(t+ 1|θ1)−
b∑
t=a

tg(t|θ1))

=
b+1∑
t=a+1

(t− 1)g(t|θ1)−
b∑
t=a

tg(t|θ1))

=
b+1∑
t=a+1

tg(t|θ1)−
b+1∑
t=a+1

g(t|θ1)−
b∑
t=a

tg(t|θ1))

= (b+ 1)g(b+ 1|θ1)− ag(a|θ1)−
b+1∑
t=a+1

g(t|θ1)) (C.17)

Hence we have
∑R0−1

t=r0−1 tgy(t|θ1) = R0g(R0|θ1)−(r0−1)g(r0−1|θ1)−
∑R0

t=r0 g(t|θ1).
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Therefore,

B′ −B

=

R0g(R0|θ1)− (r0 − 1)g(r0 − 1|θ1)−
R0∑
t=r0

g(t|θ1)

 R0−1∑
s=r0−1

gθ(s|θ0)

−
R0∑
t=r0

g(t|θ1)

R0−1∑
s=r0−1

sgθ(s|θ0)

−

(q0 + 1)g(r0 − 1|θ1)−R0
R0−1∑
t=r0−1

g(t|θ1)

 R0−1∑
s=r0−1

gθ(s|θ0)

=

R0g(R0|θ1)−R0g(r0 − 1|θ1)−
R0∑
t=r0

g(t|θ1) +R0
R0−1∑
t=r0−1

g(t|θ1)


×

R0−1∑
s=r0−1

gθ(s|θ0)−
R0∑
t=r0

g(t|θ1)
R0−1∑
s=r0−1

sgθ(s|θ0)

= (R0 − 1)
R0∑
t=r0

g(t|θ1)
R0−1∑
s=r0−1

gθ(s|θ0)−
R0∑
t=r0

g(t|θ1)
R0−1∑
s=r0−1

sgθ(s|θ0)

=

R0∑
t=r0

g(t|θ1)

R0−1∑
s=r0−1

(R0 − 1− s)gθ(s|θ0)

= [G(R0 + 1|θ1)−G(r0|θ1)]
R0−1∑
s=r0−1

(R0 − 1− s)gθ(s|θ0)

≥ 0

where the inequality holds since gθ(s|θ0) > 0 by the strict supermodularity of G(y|θ)

and G(R0 +1|θ1)−G(r0|θ1) = G(R0 +1|θ1)−c(r0, q0|θ1) ≥ 0 where the equality fol-

lows from (C.6) and the inequality follows from (C.4) and (r∗(θ1), q∗(θ1)) = (r0, q0).

�

Proof of Corollary 4.3. Note that g(y|θ) = (h + b)F (y) − b and gy(y|θ) =

(h+ b)f(y) where f(y) ≡ F (y + 1)− F (y).

(a) Choose θ = h. Thus gθ(y|θ) = F (y) > 0 on [dl,∞]. It follows from (C.16) in

the proof of Theorem 4.5 that the following is the sufficient condition for q∗ to be

roughly decreasing: for any θ0 ≡ h0 > h1 ≡ θ1 with (r0 − 1, R0) being the optimal
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policy at θ1,

R0−1∑
t=r0−1

(h1 + b)f(t)
R0−1∑
s=r0−1

sF (s) >
R0−1∑
t=r0−1

t(h1 + b)f(t)
R0−1∑
s=r0−1

F (s). (C.18)

It may be replaced by

R0−1∑
t=max{dl,r0−1}

f(t)

R0−1∑
s=max{dl,r0−1}

sF (s) >

R0−1∑
t=max{dl,r0−1}

tf(t)

R0−1∑
s=max{dl,r0−1}

F (s).

(C.19)

since all integrands are zero on [r0 − 1,max{dl, r0 − 1}). If F (y) is log-concave on

[dl, dh], i.e., f(y)/F (y) is decreasing on [dl, dh], it is log-concave on [dl,∞) since

f(y)/F (y) = 0 for all y > dh. Thus
gy(y|θ1)
gθ(y|θ0) = (h1 + b) f(y)

F (y) is decreasing on [dl,∞)

and obviously not constant. The result follows from Theorem 4.5 with [m,M ] =

[max{dl, r0 − 1}, R0 − 1].

The proof of the second statement in part (a) is analogous since dh =∞.

(b) Choose θ = −b. for any θ0 ≡ −b0 > −b1 ≡ θ1 with (r0 − 1, R0) being the

optimal policy at θ1,

R0−1∑
t=r0−1

(h+ b1)f(t)
R0−1∑
s=r0−1

sF (s) >
R0−1∑
t=r0−1

t(h+ b1)f(t)
R0−1∑
s=r0−1

F (s). (C.20)

It may be replaced by

min{dh,R0−1}∑
t=r0−1

f(t)

min{dh,R0−1}∑
s=r0−1

sF (s) >

min{dh,R0−1}∑
t=r0−1

tf(t)

min{dh,R0−1}∑
s=r0−1

F (s). (C.21)

since all integrands are zero on [min{dh, R0 − 1}, R0 − 1). If F (y) is log-concave

on [dl, dh], i.e., f(y)/F (y) is decreasing on [dl, dh], it is log-concave on [dl,∞) since

f(y)/F (y) = 0 for all y > dh. Thus
gy(y|θ1)
gθ(y|θ0) = (h + b1) f(y)

F (y) is decreasing on [dl,∞)

and obviously not constant. The result follows from Theorem 4.5 with [m,M ] =

[r0 − 1,min{dh, R0 − 1}].

The proof of the second statement in part (b) is analogous since dl ≤ r∗(b). �

Proof of Lemma 4.4. We prove the lemma for p(n) being log-concave. The

proof for the other case where p(n) is log-convex is analogous. We have the following

property of p(n): for any t > 0 and n ≤ n′ with a ≤ n+ t < n′ + t ≤ b,

p(n+ t)/p(n) ≥ (≤)p(n′ + t)/p(n′), (C.22)
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since p(n+t)
p(n) =

∏t
i=1

p(n+i)
p(n+i−1) ≥

∏t
i=1

p(n′+i)
p(n′+i−1) = p(n′+t)

p(n′) where the inequality follows

from p(n+i)
p(n+i−1) ≥

p(n′+i)
p(n′+i−1) for all i ≥ 1 and a ≤ n+ i < n′ + i ≤ b by (4.28).

(a) By the non-negativity of P (·) and (4.28), it is equivalent to show that

P (n+ 1)P (n− 1) ≤ P 2(n)

⇐⇒ (P (n) + p(n+ 1))P (n− 1) ≤ (P (n− 1) + p(n))P (n)

⇐⇒ P (n− 1)p(n+ 1) ≤ P (n)p(n). (C.23)

However, (C.23) is satisfied since

P (n− 1)
p(n+ 1)

p(n)
=

n−1∑
s=0

p(s)p(n+ 1)

p(n)
≤

n∑
s=0

p(s+ 1) <

n∑
s=0

p(s) = P (n)

where the first inequality follows from p(n+1)
p(n) ≤

p(s+1)
p(s) for all s ≤ n− 1 by (C.22).

(b) There exists an integer N such that p(N+1)/p(N) < 1, for, otherwise, p(n+

1) ≥ p(n) ≥ · · · ≥ p(0) > 0 for all n. However, this implies limn→∞ p(n) ≥ p(0) > 0,

which contradicts our assumption. It follows from (4.28) that p(n+1)
p(n) ≤

p(N+1)
p(N) < 1

for all n ≥ N . Thus limn→∞
p(n+1)
p(n) < 1. Hence P (n) ≤ P (0) =

∑∞
0 p(i) < ∞. To

show that P (n) is log-concave, it is equivalent to show that

P (n+ 1)P (n− 1) ≤ P 2(n)

⇐⇒ (P (n)− p(n))P (n− 1) ≤ (P (n− 1)− p(n− 1))P (n)

⇐⇒ P (n)p(n− 1) ≤ P (n− 1)p(n). (C.24)

(C.24) holds since

P (n)
p(n− 1)

p(n)
=
∞∑
s=n

p(s)p(n− 1)

p(n)
≤
∞∑
s=n

p(s− 1) = P (n− 1)

where the first inequality follows from p(n)
p(n−1) ≥

p(s)
p(s−1) for all s ≥ n by (C.22). �
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