
MERCURY: Distributed
Incremental Attribute Grammar Evaluation

Gail E. Kaiser
Josephine Micallef

Columbia University
Department of Computer Science

New York, NY 10027

Simon M. Kaplan
University of TIIinois

Department of Computer Science
Urbana,IL 61801

December 1987

Abstract

CUCS-280-87

This technical report consists of the two most recent papers from the MERCURY project
Multiuser, Distributed Language-Based Environments explains the application of incremental at­
tribute grammar evaluation algorithms to generation of distributed programming environments
and describes the implementation of the MERCURY system. Version and Configuration Control
in Distributed Language-Based Environments presents new algorithms that permit MERCURY to
support multiple versions and configurations of modules and to more efficiently propagate
changes to aggregate attributes.

Prof. Kaiser is supported in pan by grants from AT&T Foundation, Siemens Research and Tech­
nology Laboratories, and the New York State Center of Advanced Technology - Computer &
Infonnation Systems, and in pan by a Digital Equipment Corporation Faculty Award. Ms.
Micallef was an IBM Fellow when this research project began. Prof. Kaplan is supported in pan
by a grant from AT&T Corporation.

__ , WI" E G RAT E 0 II--l 0: I§
f . . ,'. _E tj '! , RON MEN T S
~ \ --

i 1

.-

Multiuser, Distributed
Language-Based

Environments

How do you keep teams
of programmers

infonned of system
changes without

burying them In mall
messages? Make the

environment
responsible fot'

propagating changes.

58

G~II E. K~/ • .,. ColumbIa Unn'erstty
Simon M. K.pl.n. University of Illinois
JO • .""IM Itflullef. ColumbIa Uni~'ersity

L arge ;oft are projects Involve
teams 01 programmers ho coop­
erate In de\ elopment and main­

tenance. Each programmer tYPIcally IS
responSIble ior part oi the system. one or
more module~. Each module e'ports cer­
taIn facilities to other modules and Impons
certain facilities from other modules.
CommunIcation problems arISe hen
module Interfaces .:hange or do not meet
..... hat programmers Imagine their speCIfi­
cations 10 be. ~et orks of work~tations
ag.g.ra\ ate I h" problem as per~onnel

be.:ome dIstributed.
On.: .:ommon ,olutlon IS 10 pass mes­

' ges Jmong Ihe programmers. When a
programmer modIfies a module Interface.
he ,c!nds eledroOlc mad descrtblng the
.;hange 10 all olher programmers ho use
the module. Ho e\ er. In real- orld soft­
..... are proJects. the Itst of programmers
uSIng a particular module changes fre­
quently because of concurrent modifica­
tions by other programmers to their mod­
u les. So t he programmer sends a message

to the entire team to be sure of reaching
everyone ho may be affected by the
change.

The result IS a mall deluge. Some
programmers spend hours reading mall
and consequently get little ork done.
while others ignore their mail and get lots
of work done. Unfortunately. sometimes
this work must later be undone or redone
because oi incorrect assumptions about
module Interfaces.

\Ve propose a better ~olution: me~"ag.e
passing among the programming en\ Iron­
menls used by the programmers. ThIS .;an
easily be accomplished using language­
based environments that automallcall~
identify interdependenCies among pro­
gram parts and immediately ,"IOrm

programmers of static semantic error~ In
one part of a program caused by change,
to another part. Such em iron men! ~ are
language-based because the determinatIon
oi Interdependencies and errors 1\ \ pc!": I t k

to the particular programming Ian!1uJ~c!

IEEE Software

,

I

l

Overcoming limitations
Use of language-based environments

has been limited primarily to novice
programmers working alone on relatively
small programs. This is due in part to dis­
,atisfaction with the structure-oriented
user interface and in part because these
environments could not support multiple
progralT'mers working simultaneously on
a large software system.

There are several promising approaches
[0 solving the first problem, most of them
involving a text-oriented rather than a
structure-oriented interface. Incremental
parsing technology I makes it possible for
changes to the text to be reflected immedi­
ately in the program's underlying struc­
tural representation.

We solve the second problem with "'fer­
-:ury. our prototype of a multiuser. dis­
tributed language-based programming
environment, where the environment IS
re.-.ponsible for propagating .:hanges.
Wheneler an imported module .:hanges in
a way chat I~ In.:ompaClble II uh ICS u~e In
an imporCing. module. \Jercury aucomat­
I.:ally notl fie<; each programmer of errors
In hiS o\\n module introduced by che
.:hange m the Imported module. The pro­
grammer -:an go about his business know­
Ing thac he II ill be Informed of e'(accly
chmc .:hanges that Jffe.:t him.

\\ <: g.:nc:ratc.: ':;h:h IJnguage-ba<;ed envi­
runrnt:nt from J lormJI 'DCl:llil:atlon - an
.1[[rJt'luce grJrnmar - of the lieslreu pro­
;:r.lmmmg 1..lI1~uJ!?e. :~([ribute gramman
.1t[Jc·h .lItrlbIHt:' 10 each program part to
'11111 Jl1Jrl/t: I he Ifl(erdepcndencle~ and
1111 t:ri J':':, rec \I t:.:n It and other parts of the
rro~rJm. Jnu chey rerml! rapid re..:akula­
!I\'n 01 the,e 'IIrnmJrleS as Ihe program
,hJnge\. fhe bo\ 0n pp. 6-1-65 <!\plalos
..lltrtbu(e! !?rammars.

.-\nnbutes atta..:hed co ea..:h module
Jc:s.:nbe liS InterfaCe!. Ea..:h interfa.:e hJS
! II 0 parts: (I) c he factliCles e'(ported by the
module and (~) che names of other mod­
uks In che <;yqem and che fa.:tiicies

November 1987

e.xported by these modules that are avail­
able for import. These attributes provide
enough information to check if any inter­
module inconsistencies are introduced by
a particular change to an exported facility.
If a change does not involve an exported
facility. no intermodule propagation is
required and none takes place.

The advantage of attribute grammars ,
over other mechanisms is that there are !

aiready incremental attribute-evaluation
algorithms that support automatic propa- .
gation to exactly those attributes that are
affected by a particular change. The:
propagation occurs as soon as the change !

occurs.
We have extended the best-known of

chese algorithms; to a parallel form. :
which makes it possible to propagate

We generate each
environment from a

formal specification -
an attribute grammar -
of the desired language.

among multiple users. Ifl eicher a single­
machine or a dillnbuced programming
environmenl. We have added:1O attribute­
propagation layer that ~uppom many pro­
gramming em Ironment fa.:ilicies and relia­
bility of the distrlbuced enl Ironment
during net\lork Jnd ma..:hlne fatlures.

\lercury ,upporcs .:hange ~Imulatlon \
in Judillon 10 change: propagallon.
Change Simulation lets a programmer ask
II hat-if qUe!SIlOnl about \I hecher a partic­
ular change 10 hIS module', mterface
\I ould ..:ause error~ In hiS 0,"" n or other
modules, l\Jthoul making the .:hange v isi­
ble to other programmers. ThiS is done by
performing the actrlbute propagation on
a .:opy of each relelant module.

We are not advocatmg that program­
mers cease to In form each oc her \\ hen t he~'

chanll:e module interfaces. They must do
so t; explain the moti\ ation for their
changes. since the environment cannot
determine this automatically. Howe\ a,

the environment could prompt the pro­
grammer for this information after ea.:h
change to a module interface or . less JOtru­
sively, at the end of every session. The
environment could treat these explana­
tions as special attributes of the modi ned
program parts. to be propagated with the
attribute-evaluation algorithm, or it could
simply mail them to the appropriate
programmers.

We are also not advocating that the pro­
grammer be noti fied of every error in his
module immediately after every change.
We describe the mechanisms to do this.
but it is not necessary to take full advan­
tage of these capabilities. Instead. each
programmer could inform the environ­
ment whether he wants to be notified of
inconsistencies immediately. only at the:
end of a session. only on check-in to the
I ersion-control system. only on user com­
mand. and so on. Mercury can separate:
intramodule and intermodule propaga­
tion. so static semantic errors due to the
programmer's own changes can be
detected at one granularity and those due
(0 other programmers' changes at another.

Incremental interface
checking

I ncremental interface checking among
module~ can be achieved in traditional
\i ngle-user, language-based environments.
like the Cornell Synthesizer Generator."
Consider the program in Figure I. Mod­
ule.\1 exports facility x (which could be a
procedure or a type, for example) for use
In olher modules and imports facility .I'
from module N. \-10dule N exports y and
imports x. The bodies of the two module\
are omitted.

:"low suppose che programmer, u~ing a
language-based environment. remO\ e~
facility x from the e,'(pon list of module .\/

59

\IODULE \1:
EXPORT.x:
FRO\I :-J I\IPORT y:

E:-iD: f· \1 -/

MODeLE:-i :
EXPORT y :
FROM .\1 I\IPORT ... :

E:-;D; I, ~ '1

Fieure 1. Skeleton of a program
with two modules.

Because the omitted portion of the pro­
gram may cOlier many screens, the pro­
grammer may not remember that module
,V imports facility x and so may nO! real­
ize that his edit causes an error in .'Ii due to
the use of a now undefined facility.

However, the environment does remem­
ber and immediately warns the user that
this small change caused an error else­
where in the program. The notice can be
done unobtrusively. such as by displaying
"error" in the corner of the screen. The
programmer is free to Ignore thiS error
indicator and deal \\ it h II laler. \\ hen he
gl\ e~ 3 command to ~crollio the error. The
en\ Ironment would then 1.II~plaj module
..... ;I, Figure 2 ,hov.s. Be,au~e the error
\\ a, Jetc:clcd and presented 10 -:ontex!.
\\ hlle he \\3, remo\lOg x from the export
II,t of mouule \1, the programmer is
ImmeuI,Jtely lv.are Of \\hat :aused the
prllt>km Jnu can re,lore ror fix the prob­
km 'ume other \\J\

(Jlle \\J\ Ihe .:n\lronmc:nt :an detect
'II- h .:rror, " 10 recompile the enure pro-

\IODULE \1 :
FROM:-J 1\IPORT y;

\IODULE:-J :
EXPORT y:

gram after ea:h edit. However, the result
\\ould be Intolerably poor response time
for all except the tiniest programs. Instead,
a language-based environment, in effect.
recompiles only those pans of the program
affected by the edit.

The environment stores the information
it needs to check for errors in attributes
associated with certain program parts. In
particular, the facilities exported by, and
available for import into, a module are
represented as attributes of the module.
Allributes are defined in terms of other
attributes, thus capturing interdependen­
cies in the program.

After an edit, those amibutes associated
with the program part that changed and
any other pam that depend on them must
be reevaluated. Using the dependency
information among the attributes. the
environment evaluates the minimum num­
ber of attributes necessary to detect and
report any errors caused by the change.
The environment uses an incremental
allrlbute-e\ aluation algorithm to perform
this minimal recalculation.

The algorithm works by propagating
Information along dependency links in the
program', Internal representation. Figure
3 Illustrates the flow of informauon along
the dependency links of the program
,hov. n in Figure I. One attribute
a~soCiated '.I.lth the entIre program con­
tains all the faclhues exported by all the
modules: Intermodule propagauon to
ched the conSlSlenq between e'(ported
and imported fact/lues passes through this
a!!rlbute.

T\\ 0 dependcnc~ links cut across a mod-

FROM M I\IPORT '(; < -- cannot import this identifier

E~D; I, ~ ,1

Fllure 2. Error notIficatIon after program change.

60

u/e's boundary: The iirst ..:onnect, :he
allrlbute associated v. ith the module·.­
export st~tement to the attribute
associated with the entire program: :h~
second connects the program attribute
with the module's imporHtatement attri­
bute. In a module. there are dependen,;\
links from the imporHtatement attribute
to the attribute for the statements In :h.:
module's body (to check that the Imported
variable is used correctly), and from :he
attribute for the module's local declara­
tions to the export-statement attrtbute (to
check that the exported vartable IS
declared). If a program edit changes an~
attribute value, all attributes that depend
on this value are recalculated.

To perform this recalculation. the algo­
rithm first constructs a model, a special
dependency graph of the attributes
associated with the part of the program
that was changed. The model contains a
directed arc from each attribute to every
other attribute that depends (directly or
indirectly) on its value.

Reevaluation starts with attributes that
ha\e no incoming arcs. For those attrt­
butes that change in value, the model IS
expanded to include all attributes that
depend on these attributes directly,
together with arcs between these attributes
and those already \0 the model to represent
all direct and indirect dependencies. Then
the original attribute and all its arcs are
removed, leaving a new sel of attributes
WIth no incoming arcs. The process repeats
until the model is emply. This approach
works whenever the attribute grammar IS
nonclrcular, which is normally the -:ase.

In our example, there is a chain 01
dependency links from the export­
statement attribute of M to the import­
statement attribute of N. If .W's export
statement is changed. the model will e\en­
tually expand to include ,"""s import attrib­
ule. When x is removed from the e.xport
IiSl in module .W. lhe export attribute ior
.W changes accordingly. This lriggers recal­
culalion of all dependent attributes,
including the import attribute for ,'I. ThiS
calculation detecls an inconsistency
belween N's import attribute and .V,
actual import list, which comains a facil­
ity not included in the import attrtbute
The result is the error message in Figure .:.

IEEE Software

Parallel interface
checking

We ha\'e developed a parallel version;
of this algorithm. Our \ersion spawns a
new process ior every attribute in the
model that has no incoming arcs, so they
can be e\ aluated in parallel. When an
attribute's "alue changes. its process
e,xpands the model, removes the attribute
and all its arcs from the model. finds all the
attributes previously at the ends of these
arcs that now have no incoming arcs, and
spawns new processes to evaluate these
amibutes. This manipulation of the model
must be atomic, so synchronization
among the concurrent processes is done by
locking the model. It is not necessary to
lock attributes, because either there is one
writer and no readers (during reevalua­
tion) or no IHiters and perhaps multiple
readers (after reevaluation).

Multiuser interface
checking

We expand the traditional
programmlng-m-the-small, language­
based c:n\lronme:nt paradigm (a ,ingle user
.:dltlng monolithi.: programq to
programmmg-in-the-many (many user,
~'dlllng the: 'Jme: program J,~n­

-.:hronou,l~ /. \\ e: J"ume that t o
programmers -.:annot e:dllthe same part of
r he: program: thatl\, there i'i ,ome division
olthe program among programmers. The

obvious division is for each programmer
to be: responsible for one or more modules.
Therefore, we propose a model of editing
where many programmers access a com­
mon, internal representation of the pro­
gram, but are each gi\en an area vf this
representation that only they can modify.

Suppose Dick and Jane are editing our
sample program. Dick can edit module.H
only and Jane can edit ,"only. Suppose
that Dick deletes x from the export list of
.14. An error message appears immediately
on Jane's screen, and she can scroll to the
actual location of the error in module N.

It might seem that this could be accom­
plished with the parallel version of the
algorithm. However, consider what hap­
pens when the attributes affected by Dick's
change are being propagated and at the
same time Jane deletes y from the export
list of .V. setting off a new set of propaga­
tions. The internal representation of the
program IS now being asynchronously
modified by two processes.

Previous algofllhms for inl:remental
evaluation either assume a single change to
the program (where exactly one point in
the program has inconsistent auributes) or
require that multiple changes be
,ynchronized6 (a model consisung of the
unton of the dependenq graphs of those
program parts with InconslSlent Jllrlbutes
IS formed before e\'aluation begins). The
laller algorithm is useful for effiCiently
recalculating allflbute values when a sm-

Fllure 3. Logrcal representation of a program.

November 1987

gle editing operation causes multiple nodes
of the program to have inconsistent attrib­
utes but is not applicable to mUltiple, asyn­
~hronou, editing operations.

Our algorithm~ performs incremental
attribute evalual10n for multiple. asyn­
-:hronous edits. Our algoflthm associates
a single model ith each program segment
(in our example. with each module). Whe:n
there is more than one user, an asyn­
chronous change by one programmer In a
module can propagate into another mod­
ule through a dependency link that crosses
module boundaries. This adds a new com­
ponent to the model of the second module.

These IWO components can be vertex­
disjoint if the intermodule propagation
and the original propagation affected
different areas of the module. Two dis­
joint components of the model may
become joined if an expansion of one com­
ponent adds an attribute that is already'
part of the other component. At this point.
it is ne~essary to add arcs from this attri­
bute to all direct and indirect dependenCies
in the combined piece.

:\. difficulty arises if module M is modi­
fied and the I:hange is propagated to mod­
ule .'1 at just the moment that .V is itself
being edited (while the internal data struc­
ture is bemg modified). Our algorithm
.:annot permit an attribute propagation 10
arri\e in .v when the syntactic structure of
the module is .:hanging.

To mhe this problem. we introduce fire

61

'I;

\~alls. A fire wall is a barrier that shelters
a program segment while it is being modi­
fied. A fire wall can be ··up." in which case
any attribute propagation attempting to
cross the boundary IS delayed. or "down."
in which case the fire wall is entirely invisi­
ble. The fire wall need be up only when the
internal representation of the program seg­
ment is actually being changed. This is a
minimal amount of time compared 10 the
time spent by the environment performing
attribute evaluations and the time the
programmers spend browsing the
program.

Distributed interface
checking

Once we allow multiple edits on a pro­
gram using fire walls. the next step is to
split the programs across machines. since
the advent of inexpensive workstations is
rapidly making distributed program devel­
opment with cooperation among the
programmers the preferred mode of soft­
ware development.

We split a program so each fire wall­

protected segment (in most cases this is a
module) is assigned to a workstation. One
workstation may be the home of many
modules. tYPically those under develop­
ment by the same programmer. In Figure
J. modules ,'.I and IV would be assigned to
different workstatlons. To avoid the need
for .:entralized storage. the part of the pro­
grJm representing the root of the
lO[ormatlon·now tree IS replicated on
<:\ery \Ioorksratlon. However. certain root
Information IS impossible to replicate in a

di,tnbuted em Ironment and must be han­
Jled differently. as explained below.

EJ..:h ma..:hine handles attribute propa·
!!atlon as If it were the only machine in the
net\\ ark - as long as the propagation

remalOs \10 IthlO the bounds of the fire wall.
and thus Within its model. When an attrt­
bute rea..:hes the fire \10 all. it must deal with

remote ma..:hines. This is handled by an
attrtbute-propagatlon layer. The APL
.:onstru..:ts a pa..:ket containing the attrtb­
ute's \ alue and sends it across the network
to the other modules. The APL \\allS until
the target module's fire wall is down and
t hen propagates the attribute into the mod­
ule by simulating an edit at its fire wall.

62

Attribute propagation then proceeds in the
target module.

Thus. the eKport attribute from I,,! is
bundled and passed across the network to
.'Ii. where it is unpacked and inspected. If
different from its previous value. the
export attribute is propagated into N as
soon as the fire wall is down.

The APL performs the packing.
unpacking. and dissemination of attribute
packets to the target modules. It also main­
:ains a cache of the attribute values that
have arrived from each remote module.
The cache is assumed to be up to date on
the grounds that if more recent informa­
tion was available it would have arrived.
When a new attribute arrives. the APL
compares the attribute to its cached value.
If the two values are different. the new
value is copied into the cache.

In the resl world,
me e. can arrive late

and out of ord.,.;
networks and machine.

ean filII.

The APL also supports dormant mod­
ules. those not currently being edited.
Atlrlbute propagations are stored in the
cache until that module is nex.t edited. This
strategy allows a simple optimization that
is implemented in our prototype: When a

module reawakens. II is passed only the
most recent \ alues of ..:hanged atlrlbutes.
Alternatively. attribute propagatlons to
dormant modules ..:ould be performed in
a ba..:kground process. With the environ·
ment mading any error messages to the

responSible programmer.
Certain kinds of static semantics check·

109. such as duplicate module names.
depend on an ordering of the modules: If
a program ..:ontalOS twO modules with the
~ame name. the one that comes later in the
program is /lagged. This works fine in a
slngle.user. nondislrlbuted enVironment.
.... here only one programmer can add
(delete) modules to (from) the program. In

that case. the em·ironment..:an maintain an
internal representation of the program

that renects [he correct ordering of the
modules.

However. if multiple programmers ..:an
create modules independently. the en\ \­
ronment cannot guarantee that all
programmers see the same ordering. For
example. suppose the program has a 510-

gle module • . 'vI. and Dick and Jane at the
same moment create modules .v and O.
respectively. Dick may thmk the program
is made up of modules M. N. and 0 in that
order while Jane may think it is ordered .\t.
O. and N. Moreover. if Dick and Jane
happen to create modules with the same
name simultaneously. say N. it is unclear
which module should be considered the
original and which the erroneous
duplicate.

We solve this problem by restricting
programs to consist of an unordered set of
modules. Programmers create modules
independently. Ifa module with the same
name as an existing module is created.
both are flagged with the error "module

name declared twice." Duplicate modules
are not considered part of the program.
and no propagations are sent to or received

from such modules.
The APL keeps track of all the modules

in the program and stores two pieces of
information for each: (I) if the module
resides on that machine and (2) if the mod·
ule is uniquely identified. If a new module
is created with the same name as an ex.ist·
ing module. the APL adds the name
(again) to the list of modules in the system.

marks both as erroneous. and propagates

an error message to both.

The real world
Our discussion has assumed that all

interface changes are propagated to all
modules instantaneously. This is unrealis·

tic: In the real world. messages can arrive
late and out of order; networks and

machines can fail.

\tessa,e passin,. Fortunately .Iate and
out.of.order messages are not a problem
because of the nature of incremental

attribute evaluation. I n particular. [he
time a message arrives does not mailer -
once it does arrive and propagation ter­
minates. the result is the same. I f twO meso

IEEE Software

sages arrive irom distinct modules. the
order of arrival also does not ma!!er - the
tinal result is again the same.

\Iultiple messages from [he same mod­
ule that arrive out of order are handled by
comparing time stamps. Every message
contains an attribute's name, its new
value. and a time stamp indicating when
the new value was calculated. The time
stamp could be taken from the clock of [he
machine where the \'alue was calculated.
or it could be an integer incremented each
time [he reevaluation algorithm assigns the
attribute a new value (making it possible
to move the module among machines).
When a message arrives from an APL, its
time stamp is compared to the time stamp
of the corresponding attribute in the
cache, If the time stamp of the message is
earlier, the message is discarded; if later.
the cached time stamp is updated and the
two values compared. I f the values differ.
the new value overwrites the cached value
and is propagated to the target module.
triggering attribute reevaluation. A global
clock is not necessary - only time stamps
of attributes originating from the sam:
module are compared.

failures. we have developed a special
algorithm - to deal with failures. Our algo­
rithm repropagates changes to those mod­
ules that did not receive the original
propagation because they ~ere inaccessi­
ble due to machine or network failure.
Programmers can continue working on
machines that are separated from part or
all of the net\l.ork. ~nowtng that local
~hange~ \I. ill be propagated and remote
.hanges WIll be re\:ei\ed as soon as the net·
\\ ork IS re~tored, Because late and out-of­
order messages eIther do not mailer or are
handled by tIme stamps. this approach
\u fficiently guarantees availability and
reliabIlity.

The easiest \l.ay 10 e'(plain this algonthm
1\ Ihrough an e,ample. Suppose Dick.
Jane. and Sally are working together on a
'iystem. editing modules f. N. and 0,
respecti\'e1y. Figure 4 shows the interfaces
among the modules. Dick's machine is
currently unreachable from the rest of the
network. Sally changes module 0 to
remo\'e the e'(port of ~. This change is
broadcast throughout the net\l.ork, and is

November 1987

received by the APL for Jane's worksta­
tion. where the cache for module 0 is
updated. However. since Jane's module N
does nOl import O. Sally's change does not
introduce any errors into module .V,

:-low Sally's workstation crashes and
Dick's is restored to the network. Dick's
APL broadcasts a special update signal,
indicating that network-wide consistency
must be reestablished. This prompts
Jane's APL to send all the information in
its caches for M, N. and 0 to Dick's APL.
The new cache for Nis quickly discarded.
since the time stamps are the same. The
new information for 0 replaces the old.
aild Sally's change is propagated into
module 1. causing the appropriate error
message :0 be displayed. This happens
even though Sally's machine is not cur­
rentlyaccessible.

What if Dick had made several changes
while in isolation? These would be
reflected by updated time stamps in the
local cache for module M. When the older
cache M arrives from Jane's APL. a com­
parison of the time stamps causes Dick's
APL to send Jane's APL the new cache.
Sally's APL will be updated similarly when
it eventually broadcasts an update signal.

Mercury
\fercury is implemented in C and runs

under 4.3 BSD Unix. It provides a dis­
tnbuted editing environment for an arbi­
trary number of Digital Equipment Corp.
V AX computers connected by an Ethernet
network. We have generated environ­
ments for subsets of Modula-2 and Ada.

\lercury has two parts, an editor gener­
ator and an APL. The editor generator
takes as Input an 3t1rabute grammar for the
desired language and produces a language­
based editor tailored to that language,
Copies of this editor are installed on each
machine. Each Invocation IS known as a
local editor; the entire system of all local
editors and the APL is called the dis­
trabuted editor.

The APL is responSIble for propagating
changes in attribute information among
the local editors. It is language­
independent: Distributed editors for
se\eral languages can be sImultaneously
supported by the same APL. The current
Implementallon. however. does not han-

MODULE , ,;
EXPORT x;
FROM N IMPORT y : FROM

o l\lPORT z;

END; I. M ·1

MODULE N;
EXPORTy;
FROM M IMPORT l(;

END; I. N ·1

MODULE 0 :
EXPORT z;
FROM M IMPORT x ;

END; I. 0·1

F1aun 4. Skeleton of a program with
three modules.

die the transmission of changes between
modules written in different languages,
The APL is implemented as a special pro­
cess on each machine. and each is called a
local APL.

Figure 5 shows the structure of a local
editor, A local editor is generated in twO
phases: (1) translation of the attribute
grammar and (2) linking the language
tables produced in the first phase with a
language-independent editor kernel to
produce an editor for a specific language.

Our editor generator is built on top of
the Cornell Synthesizer Generator. which
generates language-based editors for
single-user environments. We reused 'all
the code common to both multiuser and
single-user cases. including pretty-printing
the program on the screen and interpret­
ing user commands. Our major modifica­
tions were to extend the attribute-grammar
notation with new classes of attributes that
specify interface information and to add
our new incremental allribute-evaluation
algorithm to handle asynchronous edits.

We designate cenain attributes - those
that capture the flow of information
among modules - as interface attributes.
These attributes are defined by semantic
equations in the language specification. as
described in the box on pp. 64-65.

We provide a union operator for deiin­
ing attributes at the root oi the program

63

Background on attribute grammars
An attribute grammar is a set of rules giving the contect.free

syntax of the language. like YACC speCifications. EaCh rule is
associated with a set of semantic equations that soeclfy
context·sensitive information. Such as symbOl resolution and
type checking, which cannot be expressed directly In the syn.
tax part of the rules. These equations are similar to simultane.
ous equations in algebra. and their variables are called
attributes. thus the name attribute grammars. Attribute gram.
mars were first proposed by Knuth 1 and the technology for
generating language·based environments from attribute gram·
mars was developed by Reps et al.z

Figure A contains a small attribute grammar for a simple
module·interface language. The example language is meant to
illustrate attribute grammars and is not intended to be realistic.
Real attribute grammars can be very large; our attribute gram·
mar for only a small subset of Modula·2 is 1063 lines.

In our example language, a program consists of several mod·
ules. each of which can import and export exactly one variable.
A module can import any variable that has been exported by any
other module. To check that imported variables are used cor·
rectly, the attributes exportsin and exportsout are used to build
a list of all exported variables. This global exported variables list
is passed to the import statement in each module using the
attribute allimports.

The attribute grammar in Figure A conSists of five rules:

Rule 1. The first rule states that a program consists of mod·
ules. It is followed by three semantic equations for program: The
first defines the values of the allexports attribute of program to
be equal to the exportsout attribute of modules (exportsout is
Itself defined later on in the figure); the second initializes the
exportsin attribute of modules to empty, and the third defines
the all imports attribute of modules to be the same value as
all exports.

Rule 2. This rule speCifies that modules is an ordered list of
zero or more components. each of which IS a module. ExpOr1Sln

program :: = modules
{program.al/uports = modu/~s.expo"sout;
modu/~s.exporrsin = Nul/;
modu/~. al!imports = program. al/uports; I

modules, :: =/oEmpty production·/
{modu/~sl.~xportsoul ,.

modules,.aportsin; I
module modules,

contains the exported '/anables of all mOdules prer:edl"g :~IS
one, and exportsout containS the exported van abies of all moe
ules up to and inCluding this one. The a,l,mports attribute '5

passed to both components of modules.

Rule 3. This rule states that a module has an Identifier and
export, import, declaratIons, and statements components. (In
the figure, MODULE. IS, eND, and; are reserved words or symbOlS In
the programming language and must be placed as Indicated by
the rule.) This rule is followed by five semantic equations.

The first defines an error attribute aSSOCiated With each mod·
ule. The error attribute specifies what text string to display. In
this case, the possible error is that the identifier used to name
the module is the name of some other module. If the mOdule
name is in fact unique, the error string is null. The namesof func·
tion extracts the set of module names from the list of faCIlities
available for import so this check can be made.

The second equation defines the exportsout attribute of the
module as the union of the exports in attribute of that module
and an entry composed of the idname attribute of the mOdule
name and the exportid attribute of the export list. If the name
of the module is not unique, however, the exportsout attribute
is assigned the exportsin value.

The third equation passes declarationS.locals, the list of varl'
abies declared in this module, to the possibleexports attribute
of the export statement. One of these variables may be exported
by this module. .

The fourth equation equates the allimpor1s attribute of the
module's import list to the value of the module's own allimports
attribute.

The fifth equation assigns to statements.variables the union
of the imported variable and the local declarations, specified by
the attributes impor1id and locals respectively. This attribute
indicates the variables that can be used in the statements part
of a module.

tben
union (module.exportsin,
efltry(id. idname, export.exportid))

else module.exportsifl;
export.possibleexports = declarations. locals;
import. aI/imports = modu/~.al/imports,·
stat~meflts.yar;ables= union(import.importid,

declarations. locals); }

{modu/~.txpOTISilf - modu/~, .uporfsin; export ::,. EXPORT id
{export. exportid = id. idflame;
~xport.error = If idJd1lQ/Tlle in

export.possibftxporcs

modules,.uponsilf - modu/~.aporuoul;
moduks,.uponstJ&ll- modules,.cqxH1SOut;
modu/~.allimports - modules,. allimporrs;
moduJes,.allimpol'tS,. modu/~l.al/imporfs;}

module :: .. MODULE id [S export; import; declarations;
swemmu; END:
{modult.~rror - import

If id.idnamt .041.
flam60/ (modu/~.uporrsi")

11M." "
elM" < --modul, flam,

d«la~ t.",;et";
modu/~.exporrsout a

If ;d.idnam~ nol I.
flamtso/ (modul,. ~xportsin)

tt.a""
ebe " <--cannot export this

id~rllifter ";}

:: = FROM id, IMPORT id,
{ imponjmponid-id~namt;
import6T'Ol'-

If (id,JdNJl1V .. Mmeso/(importAilimporCS))
aad (idl.;dflam~ =

exports!rom(import,allimports,
id,.idnamt))

tbeD" "
elM" < --canflot import this idtnt;fi~r";}

rI-_ A An example attribute "rammar. The rules stating the prOQram syntax are in plain text, reserved words are in small cap',
.. '.-.. • .. . tics The "rammar's form has been modlfleel tals, the attrrbut&-grammar syntax IS In bOldface, and semantic eQualions are on I a I. ..
slightly to aid reaelability.

IEEE Software

-y-

I
I

Rule •. The export rule Indicates the variable that IS exported
by the module and IS followed by two semantic equations. The
first equation assigns the exported variable name to the export·
.d attribute: this is used to bUild the export list of the module,
as mentioned above. If the exported variable has not been
declared (and therefore it is not in possibleexports), the second
equation assigns the error attribute an appropriate message.

Rule 5. The import rule indicates a module (id,) from which a
variable is imported (idv and is also followed by two semantic
equations. The first copies the variable's name to the Importid
attribute, from where it can be propagated for use in the mod·
ule's statements. The second equation defines the error attrib·
ute; it states Ihat the module id, must exist and must actually
export the variable id2, or the indicated error message is dis·
played. The function exportsfrom takes the list of available
imports and the name of a module as arguments and returns the
identifier, if any, exported by that module. The rules for decla·
rations and statements are omitted for the sake of brevity.

Decorated tree •. Besides being a formal way of describing
program constraints, attribute grammars can be seen as deco·
rated trees: The rules make up the structure of a tree, and the
attributes are the decorations at the nodes of the tree. Each
attribute in an attribute grammar is attached to a symbol in the
rules; when a grammar is used to construct a tree, the symbols
in the rules become the nodes, the components of the symbols
(the bodies of the rules) become children nodes. and the attri·
butes are decorations of the nodes corresponding to the sym·
boiS to which they are attached in the grammar. This tree
structure is the internal representation for programs in
language·based editors.

Figure B shows the tree representation of the example pro­
gram in Figure 1 in the main article. This program has two mod·
ules, M and N. M exports a variable)(, and N exports a variable
y. Each module imports the other's exported variable. The tree

,

<::>
• I

o
F1cw'e .. A tree representation of a program.

November 1987

In Figure B represents the complete structure for module .'A. and
represents the module node for module N. The syntactic struc­
tures are shown as ellipses; the attribute Instances aSSOCiated
with them are shown as rectangles. To conserve space we omit
the terminals of the grammar in the diagram of the tree (such
as the keywords .,.OOULE and IS) and the diagram for module N.

which is similar to that for module M.
Now suppose the user removes facility)(from the export list

of module M, thus mOdifying the internal tree representation of
the program. The semantiC equations must now be reapplied so
that the decorations remain consistent with the tree.

The edit is at a point specified by the fourth syntax rule in Fig·
ure A - export - so we first consider the semantic equations
associated With this rule. The value of id.idname becomes null
and this new value is copied to export.exportid. This causes the
second equation under module (Rule 3) to propagate this change
by recalculating the attribute module.exportsout for M to con·
tain only a null identifier in the exported variable field. In turn,
this causes a recalculation of the exportsout attribute in mod·
ules (Rule 2) and the allexports attribute in program (Rule I), so
the entry for module M contains no exported variable.

The new list of variables that can be imported is passed to
each of the modules, including N. by the attribute allimports.ln
N. the fourth equation for module (Rule 3) reassigns
import,allimports, and then import's (Aule 5) second equation
finds that the imported variable Is no longer available and the
error attribute is changed from the null string to the error meso
sage "- cannot import this identifier."

A similar series of recalculations is also done in module M,
but because there are no errors there the effect will be invisible
to the user. This attribute reevaluation in response to program
changes is the basis for incremental interlace checking in
language-based environments.

Figure C illustrates how an attribute grammar is translated
into an editor, An editor generator (a program similar in concept
to the YACC parser generating system) takes as input an attri·
bute grammar specification of a language. This specification
is translated into intermediate language tables that. when com·

piled together with an editor kernel. produce an editor
tailored to the specific language. In this figure, the rec·
tangles represent data and the ellipses the processing
functions. The editor kernel consists of several parts,
including a user interface, the incremental attribute·
evaluation engine, a tree·manipulation engine. and
systems·support utilities.

Reference.
1. D.E. Knuth, "Semantics 01 Context·FrN Languages."

M,,".mf/IC" Syst.ms Theory, June 1968, pp. 121·145.

2- T ~.ps. T. Tellelbaum. and A. Demers. "Incremental
Context·Dependenl Analysis for Language·Based Edi·
tOIS:' ACM Tr,ns. Programmmg unguages and Systems,
July 1983. pp. «90471 .

F1cwe Co A diagram of the generator.

65

I

, I

, I

! I

1
'I'

I'
I"
I ,

jl,

l'
I
I
I
i

To/trom nelwork rte ... ·ace lln
systemlbrafles

~ t
•

Al!flcute·propagatlon
4 ~ System sunpon

layer
\f e 1'0 etc I

~ t 1 Internal grammar·

"
'aole handler

Tree'manlpulatlon

1 /
engine

t ncremental attribute·

I I evaluallon engine

FiSure 5. Internal structure of editor.

from interface attributes of each module.
(The current implementation does not sup­
port defining attributes at the root of the
program that are arbitrary functions of the
interface attributes of the modules. but
this has not been a problem in practice
since union is sufficient for interface
attributes used for change propagation.
notably the external symbol table.)

When an edit of a module changes the
value of an Interface attribute. the new
value is propagated by the APL to all the
workstations. The attribute at the root of
the program (which is replicated on all
workstations) is recomputed. and
propagated to the attributes of the mod­
ules that are dependent on it.

I n a multiuser en\lironment. a local edi­
tor can recel\le Input from two sources.
The programmer usina the local editor can
perform arbitrary editina operations on
the module being developed. The local edi­
tor might also receive a new value for an
attribute as a result of a chanae in some
other module. The second input (which
does not change the program itself) should
never happen while the proaram is beina
modified by the user. The fire-wall effect
is obtained by uSing the Select system caU
to check for pending requests. The local
editor performs these operations. one at a
time. as they occur. However. we do not
serialize the anribute evaluations because
that might result in repeated recalculation
of the same attribute.

66

User Interface

~ ,
Interaction
with users

Our implementation uses a single pro­
cess for the local editor and uses Unix soft­
ware signals to handle the attribute
evaluation of multiple. asynchronous
edits. The editor process is responsible for
performing the incremental attribute­
evaluation algorithm. Input from the user
or the APL causes the Sigio signal (which
indicates [/0 is possible on a file descrip­
tor) to be generated. This signal is trapped
and the Sigio signal handler we provide is

By s&flJl;JOri'tllw
t;OOJ»Iatlon .trtOIW nuny

1.,..",..e-IMHd
envlrDnmMb,

KhIfwe Pf'08ramml""
tM-nu1l)f.

invoked. The handler processes the input.
creates the model for this change. and
merges it with the current model - which
could be empty if no attribute propaption
IS in progress. After returning from the
handler. the editor process continues with
the attribute-evaluation algorithm at the
point it was interrupted. but the model
now also reflects the attributes that need
to be reevaluated as a result of the new
edit.

\1ercury does not maximize parallelism

by .;oncurrently evaluating independent
attributes in a local editor. There is no nice
mechanism for sharing data among Ber­
keley Unix's heavyweight processes. and
the advantages of such parallelism cannot
be realized on the V AX uniprocessor.
However. the fully parallel algorithm
described above would be suitable for a
multiprocessor with lightweight processes.

The distribution component of the
incremental attribute-evaluation algo­
rithm works as follows. When a module's
interface attribute gets a new value, [he
local editor sends a message containing
this new value to the local APL. The local
APL broadcasts this message to all other
machines on the network. The local AP L
on each of these remote machines updates
the corresponding attribute at the root and
sends it to all the local editors whose mod­
ules belong to the same program. thus
informing them of the change. Whenever
a new value is computed ior an interface
attribute. a time stamp derived from the
local clock is attached to the value, The
time stamp is used in reestablishing con­
sistency among the local APLs in the case
of machine or network failure.

The APL has two parts: (1) a transport
layer that handles the actual transmission
of messages, both among the local editor
and its APL and among local APLs. and
(2) an attribute cache that contains the
latest value of all auributes that passed
through the APL. The attribute cache is
identical on all machines. except when
some part of the network is down; then the
local APLs might temporarily have old
attribute information. but consistency will
eventually be reestablished.

The transport layer uses sockets for all
interprocess communication. We chose
datagram communication over stream
communication because the restriction on
the number of open streams would have
limited the number of local editOr! an APL
could support. Datagram communication
does not auarantee reliable trarumission of
messages - messages can be transmitted
out of order or may be lost. But old or out­
of -order messages are not a problem for
thiJ application. We prevent messages
from bein& lost by definin& a reliable dis­
tributed environment on top of the data­
gram that provides acknowledgments and
retransmission, among other things.'

IEEE Software

M ercury supports teams of
programmers collaborating on
the development and main­

tenance of large software systems. The
environment supports incremental check­
ing of interdependencies among modules.
whether the modules reside on the same
machine or are distributed among multi­
ple machines connected by a network.
Each module is edited in a language-based
programming environment. previously
suited only to programming-in-the-small.
By supporting cooperation among many
such environments. we achieve
programming-in-the-many.

Mercury has a serious limitation. how­
ever. with respect to programming-in-the­
large - it assumes there is only a single
version of each module and a single way of
composing the modules into a system. For
example. when a programmer changes an
interface of module .\1. this change is

Acknowledp1ents
W~nwey Hseush implemented the APL with

the help of Su-Chuan Tsai. Chen Yen. and
Bulent Yener. Joe Adipietro. Katherine Feld­
man, Luke ~cCormick. Linda ~ischel. and
\Iichael Tavis worked with Josephine \Iica.llef
on the implementation of the editor generator,
the Incremental a((fibute~valuallon alaorithm
for asynchronow edits, and other e:l:lenSlons to
the Cornell Synthesizer Generator. Rowan
\Iaclaren and \Iichal ~elamede developed the
.mnbute grammars for subsets of ~odula-2 and
Ada. respectively. ~ichael TaVIS also helped
\ticallef and Hseush With the demonstration for

Referenc ..

G.E. Kaiser and E. Kant. "Incrementa!
Parsing lIhout a Pancr." J. SysttMS and
So/twart. \Iay 198'. pp. 121-1".

, T.W. Reps. Gtntratin, Lanllla,~&W
En\JIronmtnli. ~IT Press. Cambndlc.
\.Iass .. 1984.

) G.E. Kaiser and DE. Perry. "WorkspacC$
olnd E'perimental Databases; Automated
Support for Software ~alntenance and
.E~olullon." Proc Can/. Soltwart .Walfl­
tenanct. CS Press. los Alamllos. Calif..
1987.

-'. T. Reps and T. Teitelbaum. "The Syn­
theSizer Generator." Proc. SIG­
Solt/ SIGPlan Salt wart En,. Symp.,
AC~. New York. 1984. pp. -'1-'8.

5 S.\1. KaplanandG.E. Kaacr. ··Incremen-

November 1987

propagated to all modules that import M,
even though some of the programmers

responsible for these modules prefer to
continue using some previous version of
M. We are working on system-modeling
and version-control facilities for Mercury.
One such facility will maintain a system
model that specifies the module intercon­

nections - which modules make up the
program and how they are ordered; this
will be replicated on every workstation. If
the model is changed, then the new model
will be broadcast throughout the APL.
suspending normal execution of the APL
algorithms until every machine has the new
model. A related facility will add a version
map for each module to its local APL. so
that change propagation (at the granular­
ity requested by the user) will be applied to
the version of each imported module
selected in the system model or by the pro­

grammer. -<>-

the Columbia University Industria! associatC$ in
February 1987. The Synthesizer Generator was
developed at Cornell University by Tom Reps
and Tim Teitelbaum; we acknowledge their
eHon In its development. and also thank Reps
for his assistance inconverllnathe aenerator to
run as deSCribed here.

Kaiser is supported in pan by granu from
AT&T Foundation, Siemens RC$Carch and
TechnolollY laboratoriC$, and New York Stlte
Center of Advanced TechnololY - Computer
and Information Systems. and in pan by a Oil­
Ita! Equipment Corp. faculty award. Kaplan is
lupponed in pan by a gram from AT elT Corp.

tal Attnbute Evaluation in Oillnbuted
languale-8&sed Environments." Proc.
Symp. Prant;. Distrrbuted Complltin"
AC~. New York. 1986. pp. 121·130.

6. T Reps. C. :o.tarceau. and T. Teitelbaum.
"Remote Allrlbute Updating for
lanluale·Based Editors," Proc. Symp.
Prlnc. Programml", Langua,n, ACM,
New York. 1986. pp. 1·13.

7. G.E. Kai~randS.M. Kaplan. "Reliability
In Distrtbuted Prolramminl Environ­
ments." PrO(. Symp. Rtliabllity in Dis­
trrbuted Soltwan and {)QtabQu Systtm3.
AC~, New York, 1987, pp. -'5-SS.

8. w. H seush and G. E. Kaiser •.. A Network
Architecture for Re\i.able Oistnbuted Com­
putlng," PrO(. Symp. Simulallon olCom­
puter .'IttWlorles. AC~. New York. 1987,
pp. 11·22.

Gail Kaber is an assistant professor of computer
science at Columbia U OIversity. where she
received a Digital Equipment Corp. faculty
award. Her research interests include program­
ming environments. evolullon of large software
systems, application of arllficial intelligence
technology to software development and main­
tenance, software reusability. object·oriented
languagC$ and databases. and distrtbuted
systems.

Kaiser received the MS and PhD in computer
science from Carnegie Mellon University. where
she was a Henz Fellow, and the SeB from the
:o.tassachwens Institute of Technology.

Simon KJipiu is an assistant professor of com­
puter science at the University of Illinois at
Urbana-Charnpaign. His research interests are
prollramming languages and programming
environments. with special interest in concur­
rent computation, distributed prollramminll
environments. and building suppon for the
design phase.

Kaplan received the PhD from the University
of Cape Town, South Africa. and is a member
of the AC~.

JowplliH Mlcsllef is a candidate for the PhD
in computer science at Columbia University.
where she was an IBM Fellow. Her research
interC$ts are software development environ­
ments. distributed computing. and attribute
grammars. Her thesis research combinC$ her
work in distributed proaramming environ­
menu. version control. and configuration man­
gagement.

~icaJlef received the SC (summa cum laude)
and MS in computer science from Columbia
University. She is a member of the Computer
Society of the IEEE. the AC~. and Phi Beta
Kappa.

Questions about this anicle can be addrC$sed
to the authors at the Depanment of Computer
Science. 450 Computer Science Buildinl,
Columbia University. New York. NY 10027.

67

THEME ARTICLES

6 Integrated Project Support with IStar
"'ark Dowso"

NOVEMBER 1987

Most Integrated environments are bUilt boltom-up, stanlng with language tools. But this
limits comprehensive proJ~ support. 1ST's system focuses on the o~eraJl proJ~ task
Instead.

16 Working in the Garden Environment for Conceptual Programminl
Steve" P. ReISS

Program developers use a variety of techmques when creating their systems. This automated
deSign system conforms to the programmer.

28 Pa~lIel Software Configuration Manaaement in I Network
EnVIronment
DaVId B. Leblan, and Ro~rt P Chau, Jr.

DSEE provides the best of networks and parallelism. It lets resources be shared flexibly.
and ~an reduce system bUild llme from ovemllht to over lunch.

36 The Symbollcs Genera Programming Environment
Ja"el H. Walker, David A .. "'0011, [)gmel L. We",~b, and Mikt McMaholl

ThiS Lisp-based system helps desilneTS let from prototype to product ruter. The key is an
open architecture and hlihly Integrated de\,elopment tools.

46 RPDEJ: A Framework for Intearatlng Tool Fra&ments
H- tlilam HarrlSO"

\10nohthlc tools Ihat can't be extended to handle new 11Inds of input. not Just new funcllon,
are hampertnl development. ThiS model seeks to chanle that.

58 !\ofultiuser. Dl.stributtd Lan&uale-Based Envlronmeats
Gall £. KaISer, S,mOll M. KQplQII, and JOS#phlll' MicQIlt/

How do you keep learns of proarammen informed of system chanies without buryinl them
In mati mess<lles' \-take the enVironment responsible for propapunl chanles.

70 Distributtd MuqemeDt of. Software Dst.base
Haric A L",tolt

The Allegro model demonstrates that communiullon amonl objects In different spaces can
be Implemented effiCiently 10 I $O(tware-<ie"leiopment database.

SPECIAL FEATURES

77 Uvial I. tile Next-GeaentJoa OpentJDI System
ROMnM &1116

A nrow ImerllioD of Opeflllni system. based on extended databases. will supplant the
onllnaJ pl\ase-sequmclDI and cuTTent Plpeilrunl prosram composlllon mechanism •. This
article descnbes a worlonl prototype.

110 Aa.uaJ IDdex
Author and subject indexes for IEEE Software Volume 4. 1917,

To appear in International Workshop on Software Version and Configuration Control.

Grassau, West Germany, January 1988.

Version and Configuration Control in
Distributed Language-Based Environments

Josephine Micallef
Gail E. Kaiser

Depanment of Computer Science
Columbia University

New York. NY

Abstract

We discuss a set of algorithms for supporting change propagation in distributed programming
environments. Our previous papers presented algorithms suitable only for the over-simplified
scenario of a single program made up of a collection of modules, each with only a current
version where every change to the interface of any module was propagated to all the other
modules. This paper describes new algorithms that handle realistic software development and
maintenance by large teams of programmers. using real programming languages that permit
nested modules. where each system evolves over time through multiple configurations
specifying a particular version of each module. Funhermore, the new algorithms are
dramatically more efficient in that they propagate exactly those changes that affect each
module version.

1. Introduction

No scene from prehistory is quite as vivid as that of
t~ morral StTUgg~s of gretll ~asts in t~ tar pits . ..
Large-system programming has over the past decade

~en such a tar pit . .. I as} the accunwlation of simultaneous
and interacting factors brings slower and slower motion.

- Frederick P. Brooks. Jr., The Mythical Man Month. 1982.

Building large software systems is hard. Several factors contribute to this, most of which are

directly related to the size and complexity of the system. The task of building a large system

is usually divided among several people, each working on a different pan of the system. Since

the pieces are interTelated. ensuring consistency of the software system requires interaction

among the programmers. This leads to a communication and coordination problem [29].

Another characteristic of large systems is that they evolve over time. At any point in time,

there are released versions of the system. experimental versions of the system, versions of the

system targeted for different hardware, and so on. This results in a proliferation of versions of

the components of the system. An additional burden is placed on the programmer - he must

select versions for each component in the configuration he is working in, and maintain

consistency within that configuration. We call this the versiOn/configuration control problem

In this paper, we describe a class of programming environments that assist programmers with

both problems. The environment is centered around a language-based editor. which allows

programmers to enter only syntactically correct constructs. More imponantly, the

environment is able to analyze the components of the system incrementally after each change

to check for static semantic errors, both within each component and among the components.

If a change results in errors in some of the components of the system. these components are

flagged with error messages. eode is generated for error-free components. The environments

described in this paper work with a version control system that stores, retrieves, protects and

merges different versions of each component, such as ReS [30] or sees [27].

The environments we describe are generated from an attribute grammar (AG) description of
the programming language for which the environment is tailored. Using attribute grammars as

the basis of programming environment generation offers many advantages, the most obvious

of which is the reduction in cost and time for developing a new environment than if the

environment was handcoded. In addition, optimal algorithms for incremental analysis are well

known, an undo mechanism is automatically supplied by the attribute evaluation algorithm,

and there is a large body of theory on the AG formalism.

Software development environments are adapting to a change in the hardware base from large

timesharing systems supporting the entire project team to computing environments consisting

of workstations connected by local area networks. This trend stems from the advantages

offered by personal workstations, including roore predictable response time, increased

reliability of the system as a whole, and incremental expandability. The programming

environments we describe accommodate distributed computing environments: The

programming environment is distributed among the workstations. Each programmer interacts

with a local programming environment running on his machine. The programming

environment handles all communication and coordination with the rest of the system.

We stan by introducing language-based environments in section 2. We present two new

ideas, both of which extend our previous results in distributed attribute evaluation algorithms

[14]. First, we describe algorithms that propagate changes only to modules that are affected

by the change; this is the topic of section 3. Second, in section 4, we describe modifications to

the algorithms to handle multiple versions of the system components. We conclude by

summarizing the contributions of this paper.

2. Background

2.1. Language-Based Environments
A programming environment is called language-based if the support it offers to a programmer

is specific to a particular programming language. The most ubiquitous example of language­

based environments are the strUcture-oriented editors. which allow programmers to enter only

syntactically correct program fragments. Several of these editors also check for static

semantic errors or anomalies in the programs being edited [28]. such as declaration of

\'ar1:lbles before use. type-checking. and use of uninitialized variables. Syntactic and semantic

analysis are dependent on the particular programming language; the pan of the environment

that deals with these aspectS must therefore be written anew for each programming language.

However, large parts of the environment are language-independent; this includes, for instance,

the user interface routines, the command interpreter, and interfaces to operating systems

utilities. One important contribution of the initial work in language-based environments was

the capability to generate such environments from a language specification and a language­

independent editor kernel. These environments are interactive, that is, the user is notified of

(syntactic or static semantic) errors in his program as soon as he enters an incorrect piece of

code. This places an additional requirement on these environments: The algorithms used to

analyze the program must be fast enough to be executed at every editing change.

An approach that has been used very successfully relies on an attribute grammar specification

of the programming language. An attribute grammar extends a context-free grammar (which

describes the syntax of the programming language) with attributes that give a "meaning" to

strings of that language [17]. Attribute grammars have been used in compiler-compilers to

describe the translation of programming languages [8, 6]. Reps et aI. pioneered the use of

attribute grammars for programming environments [23].

Attribute grammars are declarative specifications of the semantics of a programming

language. Attributes are associated with symbols of the underlying context-free grammar.

The value of an attribute associated with a symbol X is defined by a semantic equation on

other attributes associated with symbols in the two productions in which X appears, on the left

and right hand sides of the productions, respectively. Attributes are divided into two disjoint

classes: synthesized atttibutes and inherited attributes. A semantic equation defines a value

for a synthesized attribute of the left-hand side symbol of a production or an inherited attribute

of a right-hand side symbol.

The attributes associated with a symbol decorate the symbol's node in the parse tree

representing the program. If an attribute b appears in the semantic equation defining attribute

a, then a is depen.denl on b. An edit operation corresponds to a sub"ee replacement, which

replaces one subtree in the parse tree with another. After the replacement, the values of the

attributes associated with the symbol at the root of the new subtree may be inconsistent. These

attributes are reevaluated. and the chain of dependencies induced by the semantic equations is

used to reevaluate all those atttibutes whose value might be changed.

Reps [24] describes an optimal incremental attribute evaluation algorithm whose complexity

is proportional to JAFFECTEDI, where the set AFFECTED contains all attributes whose values

change as a result of the edit. The algorithm performs a topological son on a dependency

graph emanating from the point of the change, to ensure that an attribute is reevaluated only

after the attributes that it depends on have received their final value. This optimality result is

one of the main advantages of using attribute grammars as the formalism on which to base

incremental language-based environments.

2.2. Distributed Environments
The attribute evaluation algorithm described above was extended by Kaplan and Kaiser to

handle asynchronous edits [16]. The basic idea is that if the program is changed while attribute

evaluations from the previous change are still proceeding, the dependency chains resulting

from the previous change are merged with those due to the new change, and the eValuation

algorithm continues with the merged dependency graph. If the two changes initially affect

different parts of the program, the dependencies arising from the two changes stan out as

disjoint pieces and might or might not eventually overlap. While the two pieces are disjoint,

no transitive dependencies between the pieces are considered; this means an attribute might be

evaluated again if the pieces are merged after it has been evaluated in the context of its

previously separate piece. An improved algorithm by Gietz that maintains transitive

dependencies between the disjoint dependency graphs, thus avoiding this reevaluation, was
described to the authors by Reps [25].

This ability to handle asynchronous edits on a program provides the mechanism that allows

language-based environments to assist not simply an individual programmer but an entire

project team. Each programmer is responsible for a segment of the system under

development. When a programmer makes a change to his segment, the environment

propagates the changed attribute values resulting from the edit both to dependent attributes

within the same segment and also to other segments whose attributes depend on the changed

attributes.

The languages supponed by our distributed environments are modular languages. A modular

language provides a construct for structuring a program, typically called a module. Each

module explicitly specifies which facilities it impons from other modules and which facilities

it exports to make available for use by other modules. Examples of such languages include

AdaThi [1], Modula-2 [31] and Mesa [20]. These modules can be developed independently by

different programmers, and correspond to the segments supponed in our distributed

environments.

Extending the asynchronous attribute evaluation algorithm to work in a distributed computing

environment requires that the algorithms be robust enough to withstand machine and network

failure without bringing the entire environment to a standstill. The part of the distributed

environment that handles the actual transmission of information between the different

machines in the distributed environment is called the attribute propagation layer (APL). This

layer is a continuously-running process on each machine. When an edit in one program

segment affects other segments (detennined by the dependencies in the attribute grammar

specifications), the attribute evaluation algorithm passes control to the local APL, which

multicasts the information to the APLs running on the machines where the affected segments

reside. These APLs, in turn, propagate the information to the segments in question, where the

attribute evaluation algorithm takes over to perform the consistency analysis as usual.

Attributes that pass information between program segments are cached in each APL. The

reason for replicating this global information on each machine in the environment is to ensure

high availability and reliability. When a program segment needs an attribute value from a
remote machine, the value stored in the cache can be used. This must be the latest value

available for this attribute; if there was any newer value, it would have been propagated to this

machine and therefore replaced the cached value. This allows quick access of remote

infonnation, even if the other machine happens to be down or partitioned from the rest of the

network at the time the infonnation is needed. Algorithms for regaining consistency in the

caches after machine or network failure are described in Kaiser and Kaplan [15].

One common theme that recurs in our distributed algorithms (both the previously published

ones and the new ones presented here) is that we avoid any synchronization among the
programming environments running on each machine. The main reason for this bias is that

synchronization necessarily means waiting, antithetical to the interactive environments we are

addressing. Even without synchronization, we attain a level of consistency of the shared

attribute information sufficient for our application. This is an example of the principle

described by Cheriton as "problem-oriented shared memory" [4].

Our previously published algorithms for distributed language-based environments have two

serious limitations that make them impractical for supporting implementation of real software

systems. The first arises from how information is communicated between program segments.

Each segment expons facilities that can be used by others. such as types. variables. constants,

procedures and so on. The entire collection of exported facilities from all the segments in the

system is replicated on each workstation. This information is applied to checking the use of

imponed facilities within a segment - each imponed facility must have been exported by

some other segment, and its use must be consistent with the defurition in the segment that

exponed it This global information is stored as an aggr~gal~ attribute. An aggregate

attribute consists of many components; for instance, a symbol table is usually defmed by an

aggregat.e attribute where each component corresponds to an entry for one symbol.

A well-known problem with aggregate attributes is that a change to one component of the

aggregate results in the reevaluation of all attributes that depend on any component of the

aggregate. For instance. a new variable declaration results in reevaluation of all variable

references in the scope of the changed declaration. In the distributed environments, a change
to an exponed facility in one segment is propagated to all segments, including those that do

not impon the facility.

The second restriction imposed by our previous algorithms for distributed environments is that
they assume only one version of each program segment This is clearly inappropriate for large

software systems. We present solutions to these two problems in the following two sections.
The end result is a class of distributed language-based environments which are practical

candidates for real software development and maintenance.

3. Selective Propagation of Attributes
In this section we describe a refinement of the algorithms presented in section 2.2 where a

change in one program segment is propagated to a second segment only if the latter actually

uses the changed information. Our work is based on finite junctions, a new type for aggregate

attributes proposed by Hoover which, together with a modified attribute evaluation algorithm.

reduces the overhead caused by aggregate attributes in a single-user environment [9]. This is

one of several mechanisms proposed in the literature to solve the aggregate problem

[12. 13.5]. We base our approach on Hoover's work because. unlike the others, it solves the

problem in the single-user environment within the framework of the attribute grammar

formalism.

The asynchronous nature of changes in a distributed environment is the root of a fundamental

difference between our work and that of Hoover. We use finite relations! to represent inter­

segment aggregate attributes, rather than functions. The reason is that without

synchronization (which as we said before requires too high a price), it cannot be guaranteed

that the same component of the aggregate will not be deflned simultaneously by more than one

programmer. TItis is true in any multiple-user environment. whether running in a distributed

or time-sharing system. To simplify the exposition of the new ideas in this section, we discuss

only the changes to the attribute evaluation algorithm to handle attributes whose types are

fInite relations. Hoover's work can be applied directly to attributes whose propagation is fully

contained within a segment. and the combination of his work with ours to reduce the

aggregate overhead both within and among the segments is straightforward.

3.1. Dermition of Interface Aggregates
An interface aggregate attribute is a collection of components from various program segments.

These attributes capture the flow of information among the segments, and therefore among

machines in the network. We introduce a new attribute type for interface aggregates: the

finite binary relation. A binary relation on two sets D and R is a subset of D xR, read the

cross-product of D and R. Every finite relation type declaration must specify one element of R
as the bottom element. A binary relation is flnite if and only if the set

C = (d.r) I de D, re R, and r is not bottom} is finite.

We refer to finite binary relations simply as flnite relations. since all aggregate values of

interest in a programming environment are keyed lists that are binary mappings from a domain

(the type of the key) to a range (the information stored for this key). Typically, each module

that is pan of a (sub)system contributes one component to the aggregate attribute of its parent.

The domain D of the relation is the set of module names. The range R is the set of symbol

tables for the modules' exponed facilities. needed to check consistency between the defmition

l11uuughout t.h.is paper. the !enn "relation" denotes the mathematical concept. and not the relations of the
database world. This point is noted to distinguish our work from previous research in programming
enviionmems where the attribute grammar formalism IS augmented with relational database constructs [10].

and uses of these facilities.

The following operations are defined on a fmite relation R:
• MAKENUU.(R): Makes a null aggregate value. A declaration of an attribute of

finite relation type implicitly calls this operation to initialize the attribute to the
null value. Typically used to initialize an empty symbol table for a new scope.

• ASSIGN(R, d, r, <.attribUle name>, <error string»: Assigns R u {(d,r)} to R. If
the number of components in the aggregate R whose key is equal to d becomes
greater than one, then the attribute instance denoted by <.anribUle name> for each
program segment defIning these duplicate components is set to <error string>. A
change in a segment's error attribute is propagated to the segment by the usual
propagation algorithm. The error string is displayed within the segment's text as
indicated in the language specification.2 Typically adds a new module to the
symbol table.

• COMPUTE(R, d): H (d,r) e R and there is only one component in R whose key is d,
returns r. H there is more than one component with the same key d, returns special
value multiple. H (d,r) 4! R, returns bottom. Typically looks up a module name
in the symbol table.

These are the only operations by which attributes of finite relation type may be manipulated.

The reason for this restriction is that the set of segments that use a particular component in an

interface aggregate, which is exactly the set of segments that should be informed of a change

in this component, is derived automatically from these operations. This is explained in the

next section.

Some new notation is needed for specifying distributed language-based environments. We

extend the attribute grammar notation as follows:

• Non-terminal symbols in the grammar that can derive segments of the program
for separate editing, on the same or different machines, are marked with the
keyword distributable.

• The "set of <non-terminal symbol>" construct is provided to allow a symbol (the
left-hand side of such a production) to derive an unordered set of elements. The
non-terminal symbol on the right-hand side of the production must be
distributable. This rule is more appropriate for describing lists whose elements
are distributed than the usual tail-recursive method.

Aggregate attributes whose types are finite relations can only be associated with symbols of

the grammar that derive productions by the set o(construct. If the attribute grammar contains

the production "X ::= set o(y", then an aggregate attribute associated with grammar symbol X

is constructed by means of the ASSIGN operation with two synthesized attributes (one attribute

for d and one for r) and one inherited attribute (for the error attribute) from each member of

the set derived from the grammar symbol Y.

Figure 3-1 gives an example of the specification of a simple modular language. A program in

::!'lole Lhal even Lhough Lhese segments have Lhe same name. the APt.. can distinguish between Lhem by means
of Lhe channel through which Lhe edita and APL communicate. which is unique for each executing editor.

this language consists of a set of modules. The exponed facilities of a module are stored in

the attribute exports associated with each module. The facilities exponed by all the modules

are collected in the interface aggregate attribute, allexporrs, associated with the entire

program. This is accomplished by means of the ASSIGN operation. A module references

facilities exponed by other modules through the impon statement An impon statement

names the module from which the facility is imponed, and the facility itself. The impon

statement creates a use of the component of the ailexpons aggregate identified by the

imponed module in the analysis to check: the legality of the impon statement (the imponed

module must exist and must be unique. and the imponed facility must be exponed). The

COMPUTE operation fmds the appropriate component

Interface aggregate attributes are cached in the APL layer on each machine. The structure of

the attribute cache follows the hierarchical relationships among segments. Aggregate

attributes are represented by A VL trees, ordered by the key of the components of the

aggregate. This is typically the module name. An A VL tree is a height-balanced binary tree

representation of a linear list that has 0 (Iogn) worst-case time complexity for list operations

(such as insen, delete, member) on a list of n items.

3.2. Construction of Use Lists
Other attribute instances refer to components of aggregates defined by finite relations by

means of the COMPUTE operation. The first argument of this operation indicates the aggregate

from which the component is to be selected; this aggregate is accessed via an upward remote

reference. An upward remote reference allows a non-local reference to an attribute of a

different production p that necessarily occurs above the production where the reference is

made in any parse tree derived from the grammar. The concept of "upward remote references"

originated in the Cornell Synthesizer Generator [26]. We use the same notation for upward

remote references: (id.attr). where ill is the name of a grammar symbol of the production p,

and atrr is an attribute name associated with this symbol. For example, the operation

COMPUTE«(X.a}, d) returns the value r of the component (d,r) in the aggregate a associated

with the non-terminal symbol X. This is typically used to access the symbol table associated

with the enclosing scope.

In each program segment. the set of references to interface aggregate components can be built

from the COMPUTE operations within that segment by the attribute evaluation algorithm. as

follows. If an attribute evaluation contains a COMPUTE operation, a demand is placed on the

component of the aggregate identified by the second argument As mentioned previously, the

entire aggregate is stored in the APL in each machine. It is not desirable to copy the entire

aggregate to each segment that has access to this aggregate (that is, the enclosed scopes)

because a change to a component in the aggregate would trigger an attribute evaluation for

each segment. independent of whether the segment references the changed component or not.

This is one of the shortcomings of our previous distributed evaluation algorithm described in

root program;
distributable module;

/****************** attribute declarations ******************/

Program synthesUed EXPORTAGG allexports;

Module synthesiud EXPORTTBL exports;
synthesUed 10 name;
mhuked STRING error;

b t and -e--ntl.'c equatl.'on- ************/ /********* a stract syn ax ~ .. ~ ~

Program : : - set o(Module:
((or each Module$i, where 1 <- i <- I set of Module I

asdgn($$.allexports, Module$i.name,
Module$i.exports, Module$i.error,
"<-- duplicate module");

Module ::- Name Export Import Oecl Body;
$$.name - Name.id:
$$. exports - '"

Import ::- ModuleId VarId
load STRING errorl, error2 - "";
load EXPORTENTRY single_module_exports;

single_module_exports -
compute ({program.allexports}, Moduleld.name);

if single_module_exports • bottom thea
errorl - "<-- imported module unknown"

else 11 single module exports - multiple thea
errorI - "<-= imported module duplicate"

else 11 varid.na.me DOt iD single module exports thea
error2 :- "<-- variable not exported":

/**************** attribute type definitions *****************/

EXPORTTBL : NULLEXPORTS()
I EXPORTPAIR(EXPORT ENTRY EXPORTTBL)

EXPORTENTRY : (10 TYPE ...)

EXPORTAGG: 10 a~ EXPORTTBL bottom NULLEXPORTS;

Figure 3-1: Specification of a simple modular language

section 2.2. Instead, we keep copies of only those components actually referenced by

COMPUTE operations within a particular segment in an attribute associated with that segment.

This is called the uses set of the segment.

Thus, the uses set of a segment is a subset of the aggregate. It is also organized as an A VL

tree. However. for each element in uses, there is a list of references to attribute instances

within the segment that use that particular component. There is also a pointer from each

attribute instance back to the uses set. This is needed by the propagate algorithm described in

the next subsection.

The uses set of each segment residing on a workstation is communicated to the local APL.

This information is used by the APL to determine which changes in component values to

propagate to each local segment. The information from each local segment's uses set is used

to build for each unique component in the aggregate the set of segments that should receive

propagations if the value of that component changes. This is called the used-lJy set of the

interface component. Thus, the APL indirectly links symbol definitions to their references and
vice versa.

For the example of figure 3-1, the components of the interface aggregate attribute allexports

are the exponed symbol tables of each mcxiule in the system. The used-lJy set of the

component for a module M is the set of modules that impon facilities from M. Whenever one

of the exponed facilities of M changes, the change is propagated to all modules in the used-by

set of the component of M. We can refme our notion of use-lists so that a used-lJy set is kept

for each facility exponed by M. This improves the efficiency of the attribute propagation

algorithm even funher since a change to an exponed facility results in propagations only to

those segments that reference the particular facility. This is accomplished in the general case

by extending the finite binary relations to lI-ary relations, and the key used by ASSIGN and

COMPUTE to 11- 1 prespeci.fied fields.

We give a simple calculation to compare the efficiency of the distributed attribute propagation

algorithm with and without selective propagation.

Let

m = the number of modules in the system,

e = the average number of exponed facilities per module,

i = the average number of imponed facilities per module,

p = the average number of imponed modules per module, and

c = the average number of changes to an exported facility throughout the lifetime of the
system.

In our previously published algorithms, where the interface aggregate problem had not yet

been solved, each module would receive mxexc propagations. Using finite relations for the

type of interface aggregate attributes, which associate used-lJy sets with each mcxiule's

exponed symbol table, results in p x e x c propagations per mcxiule. Note that p is usually much

smaller then m. With used-lJy sets associated with each exponed facility individually. this is

improved even further to i x c propagations to each rncxiule.

We now describe incremental algorithms to maintain the uses and used-by sets after each edit

operation.

: I

3.3. Algorithms to Maintain Use Lists
Figure 3-2 shows the physical representation of a software system. Y. whose modules are

distributed among several workstations. The distributable segments are X l' X 2' X 3' X4 and X 5'

where X I and X2 are edited on Machine 1 and X 3' X4 and X 5 on Machine 2. The interface

attributes of system Y and subsystem X2 are replicated in the APL at each workstation to

suppon the multiple-level uses sets of the interface attributes that are finite relations. The

APL associates each distributable segment with its own uses set, which is the appropriate

subset of the uses set for its parent segment, and so on.

Y ::= set of X;
distributable X;
X ::,. <module spec>

I ... set of X ... ;

(a) Language specification fragment

R
P
l

E
d
I
t
o
r
s

Machine 1

(b) Software system structure

Machine 2

(c) Physical representation

FilUre 3·2: Disaibution of interface attributes

An attribute that is defined by a COMPlJ1C operation depends on two other attributes: (1) the

aggregate (this is the fltSt argument) and (2) the key of the desired component of the aggregate

(the second argument). Figure 3-3 illustrates the dependency graph of an attribute defined by

a COMPlJ1E operation and associated with the pane tree node T in segment XJ'

3.3.1. Change to a Segment's Uses Set
A segment's uses set changes if (1) a new use site is added, (2) a use site is removed, or (3) the

key of a use site is changed. Removing a use site occurs if either (a) the parse tree node

containing the key ataibute identifying the component of that reference is deleted. or (b) the

subtree decorated with the ataibute instance that created the use is deleted. In our example

l:mguJge. these correspond to the module narne and the enclosing impon statement.

y 11I11tyjj/ja Interface aggregate attf/bute

uses set of segment X I

• COffIt:I4Jr~fined ,rrnbure

o key .ttribllte

Figure 3-3: Dependency graph for attribute defined by COMPUTE operation

respectively. In the fIrst case, deletion of the node containing the key leaves a null value for

the key, so this becomes the same as changing the key of a use site (case 3). We present two

algorithms for maintaining a segment's uses set, illustrated in fIgures 3-4 and 3-5 below.

The algorithm shown in figure 3-4 is a modified attribute evaluation algorithm that recognizes

a new use of an interface aggregate, either by addition (case 1) or by change in value of the

key of an already existing use (case 3).

A new algorithm for deleting a subtree, shown in fIgure 3-5, updates the set of interface

components used in a segment, the segment's uses set. If the subtree being deleted contains a

reference to an interface component. that reference is removed from the component. If the

component has no more references, it is removed from the segment's uses set; the APL is

notified so that the segment's name is removed from the used-by set of the component in the

APL.

3.3.2. Change to Component's Used-by Set
The used-by set for each aggregate component in the APL, indicating which local segments

use a panicular component of the aggregate, is affected by the two functions

ge~_value_from_apl(aggregate,key) and

remove _ use _ from _apl (aggregate, key) invoked in the algorithms of figures 3-4

and 3-5 above. The former adds the segment name of the segment that issued the call to the

used-by set of the component whose key is specified. The latter removes the segment name

from the used-by set. (Note that the name does not have to be an argument to the call since

each segment communicates with its local APL over a unique channel, which uniquely

identifies the segment.)

There are two problematic situations: (1) the key specifies a multiply defIned component, or

(2) the key specifies an undefined component. If the call to get_value_from_apl

specifies a multiply defined component. then the segment name is added to the used-by set of

~ component with the specified key. Multiply defined components. as well as the program

/* Attribute in~tance~ defined by COMPUTE (aggregate, key) have an */
/* additional field, backptr, pointing back to the use~ set of */
/* the aggregate component specified by key argument to COMPUTE. */

function eva 1 (ai: attribute in~tance): attribute value;
begin
(1) it

(2)

(3)
(4)
(5)
(6)
(7)

(8)
(9)
(10)
(11)
(12)

(13)

(14)
(15)

(16)
(17)
(18)
(19)
(20)
(21)

(22)

ai is defined by compute (aggregate, key) then beem
/* Case (1): a new u~e ~ite not yet */
/* added to multiple-level u~e~ set */
it backptr of ai - nil then

/* fir~t reference to key within segment */
/* add entry for key to local aggregate */ .
it key not in local aggregate at root of ~egment then be&iD

entry - get_value_from_apl(aggregate,key);
add entry to local aggregate;
add ai to u~e~ ~et of entry;
~t backptr of ai W entry;

/* already reference~ to same key within ~egment */
/* reu~e entry for key in local aggregate *1
end else beam

entry - get_value_from_segment(aggregate,key)
add ai w u~e~ ~et of entry;
~t backptr of ai W entry;

end
/* Case~ (2a) and (3): an old u~e site *1
/* who~e key may have changed *1
ebebqbl

/* get previous entry from local aggregate */
entry - follow backptr of ai;
/* ~ame key *1
it key - key of entry then

do nothing;
/* different key */
/* remove from u~e~ ~et of previou~ entry */
/* add to u~e~ set of new entry */
else bePa

remow ai from u~e~ set of entry;
Mt backptr of ai - nil;
00 line~ (3) - (12);

end;
end;

/* evaluate attribute~ not defined by COMPUTE */
else beem
end;

end: /* of eval */

FilUre 3-4: Attribute evaluation algorithm

segments that define them, are treated as erroneous; the semantics of the ASSIGN operation

require the APL to effectively remove erroneous segments from the program until the conflict

is resolved. We describe below how to handle the deletion of a component such that the

correct action is taken when a key that was multiply defined becomes unique. If

remove_use_from_apl specified a multiply defIned key, then the used-by set of each

component with that key must be searched to delete the segment that invoked the function.

If get _val ue _ from _apl specifIes a key that is not defIned in the aggregate in the APL,

bottom is returned. A component is added to the APL aggregate with the specifIed key and

the value bottom (if such a component does not already exist), and a used-by set for it is

procedure delete subtree(r: treenode);
begin -

ror tach attribute instance, ai, associated with every
treen?de.i~ subt 7ee rooted at r, excluding r, dob~m

if a~ ~s def~ned by compute (aggregate, key) then begm
1* get entry for key and *1
1* remove attribute from uses set *1
entry - follow backptr of ai;
remove ai rrom uses set of entry;
1* last reference to key within segment *1
ir uses set of entry - nil then beaiD

remove entry rrom local aggregate;
remove_use_from_apl(aggregate, key);

end; 1* of IF *1
end; 1* of IF *1

end; 1* of FOR *1

1* free storage taken up by r *1

end; /* of delete-subtree */

Figure 3-5: Subtree deletion algorithm

created (if the component was already in the aggregate, the segment name is added to

used-by). This is necessary to handle the correct propagations if a component with that key is

defined later on. We mark such components as "demanded-but-undefined", and distinguish

them from regularly defined components. Typically, defined components correspond to

defined symbols, and the demanded-but-undefined ones are references to as yet undefined

symbols.

3.3.3. Change to Component's Value

A component is changed by an ASSIGN operation. according to the dependency graph

illustrated in figure 3-6.

IIIIIWIIIII II -- aggregate attribute

~ d -- key of component

r -- value of component

Figure 3-6: Dependency graph for attribute defined by ASSIGN operation

Since in the physical representation. d and r are attributes in the segment (the key and value of

(he component. respectively) and the aggregate a is stored in the local APL. a change to either

d or r results in a change to a component of the attribute instance a in the APL, which in rum

causes propagations to affected segments. The other way the component can change is if the

segment containing the attribute instances d and r is deleted. The following algorithms handle

changes in the definitions of aggregate components.
1. Change from r to r' in segment - The component (d, r') is transmitted from the

segment where the change occurred to its local APL, which then broadcasts it to
all other APLs. Each APL propagates the component with the changed value to
segments that use that key, indicated by the component's used-11y set. This
arises, for example, when the expons list of a module is modified.

2. Definition of new component - This happens when a new key is defined. i.e., a
new segment is created. The new component is broadcast to each APL.

• If the key is already in a defined component of that aggregate, then the
error attribute is set. and the component (key, bottom) is propagated to all
uses of that key.

• If there is a demanded-but-undefined component with the same key as the
newly defined component. then mark the component as defmed.
Propagate the value of the newly defmed component to all reference sites
as indicated by the components used-11y set.

• If no component with the specified key exists, then add the component to
the aggregate, initializing its used·11y set to empty.

3. Deletion of component from aggregate -

• If the component is removed because the key d became undefined, then
• If this was a duplicate component. concatenate used-11y set for this

component with the used-11y set of another component with the
same key. Then remove the component. If only one component is
left with the key of the deleted component. then propagate the
remaining component to the segments on the used-11y set. This is
appropriate. for example. when one instance of a multiply defined
module is removed.

• If the component was not a duplicate, then mark the component as
demanded-but-undefined. changing the r value to bottom, and
propagate to the used-11y set.

• If the program pan containing the attribute instances d and r is removed,
then the delete subtree algorithm operates similarly to how it handled
deleting a subtree containing a reference site. However. if d and r are
associated with the root of the distributable segment, they cannot be
deleted unless the entire segment is removed. In practice, this would
mean deleting the me containing the module from the me system. so it is
more complicated than the other case.

4. Dealing with Multiple Versions and Configurations
This section describes how the algorithms given in the previous section are augmented to cope

with more than one version of each program segment, and consequently, more than one

system configuration. In this context. program segments are almost invariably modules, so we

refer [0 them as such in this section. Controls are needed to reduce the chaos that can result if

--- - --

programmers were to work on versions and build systems without any communication and

coordination between them. Managerial controls, such as controls imposed by a chief

programmer on what the other team members can change, and when and how the system is

built, are insufficient [3]. The environments described here provide an automated approach
that can suppon and enforce managerial directives.

The attribute grammar specifications determine the exact functionality that a generated

environment supports, but the following is the kind of suppon we have in mind:
1. Static semantic analysis of the modules that comprise the software system. and

2. Code generation for error-free modules or fragments thereof.

The environment is capable of performing these functions after every edit operation. This is

the default mode of operation, and the hardest to suppon. However, the programmer can

select other modes of operation where the analysis and code generation are performed less

frequently. For example, the programmer can set environment options to request notification

of changes at the end of each editing session, or only when he issues a special "get changes"

command.

Code generation by a compiler generated from an attribute grammar is usually accomplished

by having a code attribute associated with the root of the parse tree, where this attribute

contains the generated code for the entire program. This is grossly inefficient in an

incremental environment, since an edit to the program necessarily requires recomputation of

code attributes all along the path from the point of modification to the rooL Incremental

generation of code can be performed efficiently if the code attributes containing fragments of

the generated code are dispersed throughout the tree and coalesced only when they are needed

for system build. This makes it feasible to update the code attributes after each (or a number

of) edit operation(s). The environment can evaluate the code attributes opponunistically, that

is, when it is not running the normal attribute evaluation algorithm. This delay in attribute

evaluation is acceptable because the results of these computations are not visible to the

programmer in the way that error messages resulting from semantic analysis are.

Since the modules of the system are distributed among different machines in the network, our

environments do not automatically link the code objects into one executable image. This

would require the remote copying of the code from other nodes in the network, a very

expensive operation, and therefore not suitable to be automatically invoked by the

environment. Pfreundschuh also makes use of attribute grammars for specifying system

builds [22]: her worle differs from ours because the system build is not applied incrementally,

but only at user command after the modules of the system have been analyzed. Pfreundshuh's

work relies on our previous algorithms for distribution capabilities.

4.1. Version and Configuration Control
Our environments utilize an external mechanism for storing the different versions of modules.

We use ReS, but there are other candidates such as sees, the History Manager of Apollo's

Domain'"" Software Engineering Environment (OSEE'"") [19], etc. RCS keeps track of

revisions of the modules by storing the differences (called deltas) between successive

revisions. Parallel lines of development require the revision relationship to form a tree, where

parallel versions are represented as paths in a subtree rooted at the common ancestor revision.

ReS and other source version control facilities provide additional services, notably a

reserve/replace mechanism that allows a programmer to work on a revision without

interference from other members of the team. Revisions are immutable; to make a change, the

programmer reserves the module. If this branch is not already reserved by another

programmer, he retrieves a copy of the latest revision of the module, makes any changes on

that copy, and when fInished puts the module back under control of ReS. Once checked in,

the revision can no longer be modified. While being edited using our environment, the copy is

called a working copy.

Another service is the naming of revisions. ReS provides a default naming of revisions:

1.2.3.1 means the fIrst revision on the third branch of the second revision of this module.

Alternatively. the user can give symbolic names to the revisions, and then use the symbolic

names to identify what he wants to reserve/replace.

Our distributed environments provide a configuration manager to control the activities needed

to "build" a software system from its modules. The facilities provided by the configuration

manager. similar to those provided by OSEE. require the following information to be

maintained by the environment:

• A system model [18] describing the structure of the software system, that is, (1)
which modules make up the system, and (2) the interdependencies among these
modules.

• A configuration thread for selecting particular versions of each module in the
system model. Options for version selection allow the selection of the latest
revision. a named revision, or a revision that satisfies cenain properties (e.g., the
latest revision targeted for a V AX).

The configuration manager guarantees that a consistent system is (incrementally) built: (1) the

modules are internally consistent, and (2) the interfaces between the modules are consistent.

We now describe how these version and configuration control facilities are integrated with our

distributed attribute grammar evaluation algorithm.

4.2. System Model
For our environments, a system model specifies the modules that comprise the software

system. The dependencies among the modules, which determine which modules must be

reanalyzed after a change to one of them. are captured by the used-by sets. Recall that each

component in an interface aggregate attribute has an associated used-by set that contains all

the modules that use that component. and therefore should receive propagations of changes to

that component Note that the system model does not contain infonnation about the

manufacturing process, that is, the commands that must be executed to go from a primitive

component (a source module written by a programmer) to a derived component (its object

code) [2]. In our environments, translation rules for going from primitive modules to derived

objects are given by the AG specification. These rules are effectively the same as

manufacturing steps, but incremental.

We provide the programmers with a system structwe editor (SSE) for describing a system

model, separate from the editor for constructing modules (that is, program segments). The

SSE is a language-based editor derived from the same language description, but all the pieces

in the grammar not dealing with distributable modules have been filtered out What remains is

an editor for describing the modular structure of the system. For example, figure 4-1

illustrates the system structure for a typical compiler as it is displayed by the SSE.

program Compiler is composed of {
module Lexical is composed of {

module Get Token is composed or
<module set>:

I

module <name> is composed 01
<module set>:

<module set>

module Analyzer is composed of
<module set>

I
module CodeGenerator is composed 01

<module set>

Figure 4-1: Example of system model

Editing a system model results in the creation of a new working copy of the system model.

This change is propagated to other programmers in exactly the same way as changes in a

module - the programmer might want to be notified whenever the current system model

changes, or he might want to continue using the original one. If he chooses the former, and

the change was an addition of a new module to the system, then he must select which version

of the new module he wants. We describe the mechanism for accomplishing this in the

following subsection.

We do not synchronize changes to the system model between the programmers. In practice,

each programmer may have his own distinct system model. However, conflicts among

separate system models are flagged with error messages using the same incremental attribute

evaluation algorithm as for consistency checking among modules (Le., program segments).

Here, a conflict is defined to mean any differences. rather than the direct contradictions

required for modules. A programmer can choose to continue using his own, or browse

through the competing models to select a new one. Access controls could be implemented on

top of this system restricting the changing of the system structure to a few "trusted" persons in

the team.

4.3. Configuration Thread
When there are multiple revisions of each module, each programmer must specify which

particular ones should be used in his configuration of the system. A programmer specifies a

configuration thread by a fill-in-the-blanks form provided by the environment, with the

collection of modules determined by the programmer's current system model. The following

possibilities for version selection are available:
• Latest working copy of a module; if there are multiple branches of development

of the module, the branch must be specified.

• Latest checked-in revision of a module; same as above for multiple branches.

• Specification of a particular revision of the module. The details about how a
particular revision is specified. for instance, by name or by revision number,
depends on the source version control system. For RCS, where revision names
are assigned only at check-in. this implies a checked-in revision.

The notification of changes in a module range from full notification after every change for the

fIrst possibility, changes done between last check-in and previous check-in all at once for the

second possibility, and no change notifIcation for the third possibility, since checked-in

revisions are immutable. For the first two, notification of changes can also be set by the

programmer to happen on command or at the end of each editing session. as described earlier.

The configuration thread is dynamic if it contains modules selected according to the first two

possibilities; the system configuration changes as the modules evolve. The environment can

suppon various levels of interaction between the programmers. During the initial

development effon, when 100 much interaction would be detrimental because everyone is

changing everything. each programmer can select null revisions for the other modules in the

system, effectively preventing notification of changes. Later on, when baseline revisions are

defined. he can select these to check consistency of his module only against "correct"

modules. During system integration. on the other hand. close interaction is required. and at

this time programmers might select latest working copies of the modules, or latest checked-in

revisions for the more cautious approach.

4.4. Attribute Propagation Algorithm
The attribute propagation algorithms described in section 3 are modified to take the

programmer's confIguration thread into account The change is in how the used-by sets are

computed. Now we have multiple revisions, and possible branches among the revisions, of

each module. This requires that the APL's attribute cache contain corresponding revisions of

the interface aggregate attributes. Figure 4-2 shows the APL cache organization for a system

with multiple versions of two modules, A and B. Module B has branched into two parallel

lines of development.

Version 1.1

Version 1.2

Module A's Module 8's
I nterface Component I nterface Components

Figure 4·2: APL cache organization

A used-by set is associated with each revision of an interface component. The revisions of the

interface attributes in the APL are also immutable. Working versions exist for each

component in the aggregate; changes to the interface attribute resulting from an edit operation

are made to these working versions. The operation of checking in a module to RCS also saves

the version of the interface component defined by that module. When there is no working

copy derived from a particular revision, the working version of its interface attributes is a copy

of the last checked-in revision.

Since code is generated for modules that have been (incrementally) analyzed and found error­

free, the environment must guarantee that the revisions of the modules that they have been

checked against exist. This is not as strange as it sounds; remember that one of the

possibilities for version selection is to receive notifications of changes after every change.

Consider the case where a module M is checked against the latest working copy of module N,

analyzed to be error-free. and checked in. Now N is changed in a way that causes an error in

module M, and then N is itself checked in. Thus, there is no checked-in version of module N

corresponding to the version that M was checked against. So the code generated for M is

useless. since it cannot be used to build the system without also having the code for the

transient version of N.

To solve this problem, the environment checks in the module after each edit that causes a

change in the module's interface component. This is done only for working versions that have

non-empty used-by sets. We call these revisions sysrem-induced, and distinguish them from

the revisions checked in by the programmers.

System-induced revisions can be garbage collected as follows. For each module, say module

X. the environment keeps track of the check-in times of all modules that use X's exported

facilities and that use the latest version of X. These modules are the ones in the used-by set of

some interface component for the latest version of X. We only need to keep a system-induced

revision if it corresponds to the state of X when one of these modules that use X was checked

in, or if one of these modules is a working copy (since this working copy may later be checked

in while it still uses this version of X). All such revisions are marked. and all unmarked
syste~-induced revisions of X discarded. This can be optimized by considering at each

garbage collection only the system-induced revisions of X created since the last garbage

collection, plus the system-induced revisions of X at that time with working copies of other

modules in their used-by sets.

The garbage collection algorithm assumes a reliable network; if a new module is created.

stans using the latest version of X, and becomes partitioned from the machine where X resides

before it is added to X's used-by se~ then a system-induced revision corresponding to the state

of X that this new module is using may be incorrectly discarded. The fossil collection
algorithm used by the Time Warp System [11] (a distributed simulation mechanism) for

recovering storage associated with simulation times so far in the past that they are no longer

relevant may be applicable to the unreliable case.

4.5. Space Optimization
The APL must keep a different revision of each interface attribute corresponding to every

checked-in version of each module, as well as the latest attribute value for each working

module. For a practical environmen~ it is crucial to store these revisions efficiently. We

represent interface attributes as applicative A VL trees [21]. An A VL tree is applicative if the

operations for manipulating the tree do not change the tree, but produce a new "copy" of the

tree that is changed. The algorithm does not copy the entire tree, only the part of the tree that

changed (delta from previous revision). Therefore, list operations on applicative A VL trees

have O(/ogn) space complexity, making them an attractive representation for storing multiple

revisions of interface attributes [7].

S. Conclusion
We have presenb:d algorithms that extend our previous work in distributed language-based

environments by making them appropriate for the real world. where efficiency matters and

there are multiple versions of modules and system configurations. The primary contributions

of this paper are:

• Significant improvement in the efficiency of the distributed attribute propagation
algorithm.

• Supporting multiple versions of the modules of the software system being
developed or maintained.

• Handling multiple versions of the system model, where each programmer can
select which system model should be in effect with respect to his effons.

The environments described in this paper suppon software systems composed of modules in a

hierarchical structure. where groups of modules form subsystems, which in turn form other

subsystems, and eventually the system itself. However, they do not solve the general case of

nesting. We are currently working on algorithms to fully suppon arbitrarily nested program

segments within block-structured constructs, such as internal packages in Ada.

Acknowledgements
Simon Kaplan worked with us on the development of the previously published algorithms

referred to here. Wenwey Hseush, Joe Adipietro, Katherine Feldman, Rowan Maclaren, Luke

McCormick, Michal Melamede, Linda Mischel, Michael Tavis, Su-OlUan Tsai. Chen Yen,

and Bulent Yener participated in their implementation as pan of the Mercury system. This

implementation is a modification of the Synthesizer Generator, which was developed at

Cornell University by Tom Reps and Tim Teitelbaum; we acknowledge their effon in its

development, and also wish to thank Tom Reps for his assistance in converting the Generator.

This research is supponed in pan by grants from AT&T Foundation, IBM. Siemens Research

and Technology Laboratories. and New York State Center of Advanced Technology -

Computer and Information Systems. and in pan by a Digital Equipment Corporation Faculty

Award.

References

[1] Rqerence Manual/or the Ada Programming Language
United States Department of Defense, 1983.
ANSI/Military standard MIL-SID-1815A.

[2] Ellen Borison.
A Model of Software Manufacture.
In Reidar Conradi. Tor M. Didriksen and Oag H. Wanvik (editors), Advanced

Programming EnvirofllMnlS. pages 197-220. Springer-Verlag. Berlin, 1986.

[3] Frederick P. Brooks. Jr.
The MytlUcai Man Molllh.
Addison Wesley, Reading, MA, 1982.

[4] David R. Cleriton.
Problem-oriented Shared Memory: A Decentralized Approach to Distributed System

Design.
In Proceedings o/the 6th buernarionai Conference on Distributed Computing Systems,

pages 190-197. IEEE Computer Society, May, 1986.

[5] Alan Demers, Anne Rogers and Frank Kenneth Zadeck.
Attribute Propagation by Message Passing.
In SIGPLAN 1985 Symposium on Language Issues in Programming Environments,

pages 48-59. Seattle, WA, June, 1985.
Proceedings published as SIGPLAN Notices, 20(7), July, 1985.

[6] Rodney Farrow.
Generating a Production Compiler from an Attribute Grammar.
IEEE Software. 1(4)October, 1984.

[7] Christopher W. Fraser and Eugene W. Myers.
An editor for Revision Control.
ACM Transactions on Programming Languages and Systems, 9(2):257-276, April,

1987.

[8] Harald Ganzinger, Knut Ripken and Reinhard Wilhelm.
Automatic Generation of Optimizing Multipass Compilers.
In In/ormation Processing 77, pages 535-540. Nonh-Holland Pub. Co., New York,

1977.

[9] Roger Hoover and Tim Teitelbaum.
Efficient Incremental Evaluation of Aggregate Values in Attribute Grammars.
In SIGPLAN '86 Symposium on Compiler ConstrUCtion, pages 39-50. Palo Alto, CA,

June, 1986.
Proceedings published as SIGPLAN Notices, 21(7), July, 1986.

[10] Susan Horwitz and Tim Teitelbaum.
Generating Editing Environments Based on Relations and Attributes.
ACM Transactions on Programming Languages and Systems, 8(4):577-608, October,

1986.

[11] David Jefferson.
Vinual Time.
ACM Transactions on Programming Languages and Systems, (3)July, 1985.

[12] Gregory F. Johnson.
An Approach To Incremental Semantics.
PhD thesis, University of Wisconsin at Madison, 1983.

[13] Gregory F. Johnson and C.N. Fischer.
A Meta-Language and System for Nonlocal Incremental Attribute Evaluation in

Language-Based Editors.
In Twelfth Annual ACM Symposium on Principles of Programming Languages, pages

141-151. January. 1985.

[14] Gail E. Kaiser, Simon M. Kaplan and Josephine Micallef.
Multiple-User Distributed Language-Based Environments.
IEEE Software, :58-67. November, 1987.

[15] Gail E. Kaiser and Simon M. Kaplan.
Reliability in Distributed Programming Environments.
In Sixth Symposium on Reliability in Distributed Software and Database Systems,

pages 45-55. Kingsmill-Williamsburg, VA, March, 1987.

[16] Simon M. Kaplan and Gail E. Kaiser.
Incremental Attribute Evaluation in Distributed Language-Based Environments.
In 5th ACM SIGACT·SIGOPS Symposium on Principles of Distributed Computing,

pages 121-130. Calgary, Alberta., Canada, August, 1986.

[17] Donald E. Knuth.
Semantics of Context-Free Languages.
Mathemo.ticai Systems Theory, 2(2): 127-145, June, 1968.

[18] Bulter W. Lampson and Eric E. Schmidt.
Organizing Software in a Distributed Environment.
In SIGPLAN '83 Symposium on Programming Language Issues in Software Systems,

pages 1-13. San Francisco, CA, June, 1983.
Proceedings published as SIGPLAN Notices, 18(6), June, 1983.

[19] David B. Leblang and Gordon D. McLean, Jr.
Configuration Management for Large-Scale Software Development Effons.
In GTE Workshop on Software Engineering EnvironmentSfor Programming in the

Large, pages 122-127. June, 1985.

[20] James G. Mitchell, William Maybury, and Richard Sweet
Mesa Language Manual, Version 5.0.
Technical Repon, Xerox Palo Alto Research Center, April, 1979.

[21] Eugene W. Myers.
Efficient Applicative Data Types.
In Eleventh ACM Symposium on Principles of Programming Languages. January,

1984.

[22] Mary Patricia Pfreundschuh.
A Model for Building Modular Systems Based on Attribute Grammars.
PhD thesis, University of Iowa. December, 1986.

[23] Thomas Reps, Tun Teitelbaum and Alan Demers.
Incremental Context-Dependent Analysis for Language-Based Editors.
ACM Transactions on Programming Languages and Systems, 5(3):449-477, July,

1983.

[24] Thomas Reps.
Generating Language-Based Enviro~ntS.
M.I.T. Press, Cambridge, MA, 1984.

[25] Thomas Reps.
Private communication.
June, 1986

[26] Thomas Reps and Tun Teitelbaum.
The Synthesiztr GeMrator Reference Manual
Cornell University, Ithaca, New Y mk, 1987.

[27] M. 1. Rochkind.
The Source Code Control System.
IEEE Transactions on Software Engineering, SE-l:364-370, 1975.

[28] Tim Teitelbaum and Thomas Reps.
The Cornell Program Synthesizer: A Syntax-Directed Programming Environment.
Communications of the ACM, 24(9)September, 1981.

[29] Walter F. Tichy.
Software Development Control Based on Module Interconnection.
In 4th International Conference on Software Engineering. September, 1979.

[30] Walter F. Tichy.
RCS - A System for Version Control.
Software - Practice and Experience, 15(7):637-654, July, 1985.

[31] Niklaus Wirth.
Programming in ModuJa-2.
Springer-Verlag, New York, 1982.

The authors can be contacted at Department of Computer Science, 450 Computer Science
Building, Columbia University, New York, NY 10027.

