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A NET\VORK ARCHITECTURE FOR 
RELIABLE DISTRIBUTED COMPUTING 

Wenwey Hseush Gail E. Kaiser 

Columbia University 
Deparunent of Computer Science 

New York. NY 10027 

Abstract 

The compleltity of message passing in loosely-coupled dis· 
oibuted systems is dnmatically increasing. panially due to the 
movement towards large scale distributed systems and intel· 
ligent disaibuted applications. Traditional approaches such as 
the client-server model are no lonler appropriate. We propose 
a reJiabl. distribuud eflvir01VMIII (ROE) based on an efficient 
and reliable extension to dalagram communications that 
provides reliable communication and configuration services. 
We introduce the coupud r~lariofl to measure the degree of 
reliability of distributed environments. We also present v;­
uctUJfls. which proccct against changes in node s~tus 
(available or unavaiable) ill the same sense that crillctJi 
uctioflS protect aaamlt chanaes to slated memory. as suppon 
for distributed communiutions Wks. We give simulation 
results for coupled relations based on different algorithms. 
node failun: ralel. recovery' times and mesule arrival rates. 
and to illustrate the behavior of disoibutcd systems con­
structed using our view section model on top of ROE. 

1. Introduction 
A R~liabu Distribuud £flvirONMIII (ROE) is a collection ot 

loosely-coupled disD"lbuted nodes w~ the environment en­

sures r~liabl. commwUcario" and clOI. virw. Reliable com­

munication llUnl1tees messa,es are received by the destina­

uon nodes if the destination nodes are functionally workinl at 

the moment of mesulc arrival. thus proc.ectinl allinst link 

fAIlures. C10se view prov;da I snap&hoC of the environment 

to procut alaiMt nodi railW'ell ijIroceu dcaW. machine 

fAllun:s I. or any cempanry f\&nction&l failuta on noaa). 

Close view implies pnciIe pndictioIl of node ~'us. Wc use 
the tenn "node" to ret. 10 • _proccsaM in the trJlUport ~yer Il\ 

order to distinluuh m.. "hoi(' ill the netWOrk layer and the 
tenn "vll'tlW cirl:uit" 10 reter fO III cnd-!O-Cnd communiauon 

channel in the IntIspott layer. 

It wOI.lId be unneecuuy ror III to propoIC RDE if the com­

plexity of maulc puain, had remained u simple u in mo&l 

tradjtion&l distributed appljcations. 10 which the client-SCf"Ier' 

modd2. I tw been applied su.cca5fuUy. The client-SCf"Ier 
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model implies end-to-end communications between two dif· 
ferent nodes which need not know the status of any nodes ell.' 

ccpt each other. The notion of close view is becoming Impor· 
tam since the complexity of message passing is dramaucally 
increasing in cases like large scale anellor intelligent dIS' 
oibuted systems. which both require more complicated com· 
munications patterns. The client-server relationship no longer 
holds and failun: to predict network-wide node status results in 
severe degradation of performance. 

We propose a prosramming framework, the vit!W secriofl 

mod.d, in which to construct reliable disoibut.ed computing 
tasks on top of RDE. View sections protect against the clange 
of the Jlobal view u cririctJi ucrio~ protect against the 
change of slated memory. A vi_ ucriofl defines a period of 

time and a sequence of instructions during which the global 

view should remain the ume to maintain the correctness of 

the compu~tion performed by the instructions. The fact is, 

however. that the global view changes from time to time as 
node1 fail and are restored, even during view sections. We 
handle this by involrinl an application-specific com{Hfl.Saliofl 

flUlCrWfI via an immediace notification generated by RDE 

when it senses a change of the global view. The compensation 

function decides what to do to preserve the view section. Fur­

ther won: is required to construct a full transaction 

mechanism"" based on the view section: noce therefore that 

we are no( concerned here with the issues of reliable dis­

tributed databasa. 

•• 0 ••• 0 •• 0' • --...... I." I-....a "' ..... _.,. ..... ~ea...-. 



1.1 Simple Communication Patterns 
In most loosely-coupled disoibuted systems6, typical com­
munication patterns are limited to the following cases so that 

the existing transport layer protocols (e.g., TCp7) can perform 
efficiently and reliably. We use the term "communication 
taSk" to refer to a collection of message passing interactions 

between two or more nodes. 
I. Client-server model: A temporal and reliable virtual circuit 

or an end-to-end da~gram link is built between two nodes, say 

nodes C and S, at the beginning of a communication task and 

is disconnected when the task is finished in order to permit 

following communication tasks, associated with either node C 

or S, to be processed. 

2. Complete COMections in small domains: Node domains, 

which specify nodes in distributed systems, are so small and 

fued tlw a complete set of virtual circuits can be built for 

message communications durina system initialization, and the 

virtlW circuiu can be closed upon the termination of the dis· 

tributed system. 

l.l CompUcattd Communication PattUDI 
In lMJc scalc and inlClli,CIlt distributed syswns, communica­

tion paucma are much mote compLiul.ed than these conven­
tional models can handle. Consider !be foUowin, casa: 
I. Sinale·interxtioa communication wa: Sin,.. com­
munic:uions randomly and frequently !Me place lIftOn, the 
pouiblc pain of DOda. Typic&11y, ins&ad of lllin, da&qram, 

viraW circuill are applied 10 end·lO-CDd comtDWlicaboM be­
cause of the necaaity of reliable man .. delivery. The 
da~ prococoi neither ,1W'IlI1eCI tha& mauaa are wely 

received by lbe ~ DOdc ncr aoc:ifia!be acndcr whac hap­
pened on the remotI DOdt. UIlIOftI&DIII1y. it is iMppopria_ 
to U$O vU1lW circuits for eftd-tlHDd ~ in Ihia 
cue, beca\&le the COlt of ~tiJl. re1.iab&. vin1&aI cimUts it 
comparatively bavy apiaIt dIM 01 pIIIift. maaalCl. The 
pcrt'omww::c delflda dnm'ricaJly_ 

2. Complct.e connecaoea ia • IMp domaia: LIrp IUlc dis­

tnbuted IYS&cml. willa & vwy IIrtI ....., 01 noda, usually 

run in I dyumic~. Noda comI and 10 without 

afTectin, the rest 01 l1li.,...... Apia. it is inappropria.le 10 

uSC vinIW cil'cwCl ill dUI c-. because !hi c~lity d 
nwnbcr of 110 pans. O(N), compjcaICI each node. The c0m­

plexity of O(N) \oob reasonably aood. but in flCt it is bad 
unu 110 reIOW'Ca are limiled in IDOI& ~n, systems. FClI' 
example, in BcrUley UIliA 1'111 the number of file dacriptoft 

whicll Wl be .1Oci_ with 110 potU (i.6., saam 

sockets9. 10) is quite small. For each file opened as an [/0 

channel, the kernel reserves a memory buffer for stonng In­

coming da~ packets and pays attention (CPU time) to detect­

ing the failures of connections and nodes. These costs are ex­
pensive. 

3. Multicast transport services: Some distributed systems in­
itiate and complete communication taSks through multicasting. 

Grouping, reliable message delivery and exception control are 
important to build a reliable distributed system. Cnfor­
tunately, in most existina transport layer network environ­

ments, multicast transport services are not supported. Even 

when supponed in a network environment, unreliability IS 
usually a problem. 

1.3 Usinl DatalralD FOI' Compllc:ated Communication 
Pattems 
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Oataaram eljmjnlta the problems of hiah I/O ports com­
plexity and expcDlive virnW circuit connections. so it ~ 
10 be I bcUIIr apprcKb for Wp suIe lOOlCly~pled dis­
tributed S)'I1ema. 1'be disadvafttqel and advantlaes of usin, 

d.manm have 110 be pointed out to explain our design of RDE 
usin, cWqnm. For molt cxi&tin, c1afa&ram transport servicca 
( •. ,., User DaJaaram PrococoI). wueliability is the major 
proOJem. Duqnm pKketI may be delivered multiple ti.meI 
or out of seqaence. or not delivered It all. A Kndc:r neither 

knows the statui of the clatin.acion nodes, nor W\ it be assured 
thai the me:uap piCkell have been safely received. A posi­
tive ICknowledammt scheme is often used to ensure we 
delivery of mcuqa. 1'be molt pleasant aspcl of datap-am is 
thal only OM 110 pan iI needed for each node 10 send and 

receive IMIUpI, which is plfticWarly impcnant when I/O 
~ .. limited. Thlnfcn. it maka more 5CIlIC 10 im­
pIcmaI • PIaeocol ~ lOp fA cWqrIm 10 ensure reliable 

delivery 01 ........ cbIIl to implcmeftt I protocol on Ul9 of 
virWl circuit to Ieduce 1M Dumber of peru used. 

n.limpUcity 01 OM 110 pert ill very convincin, reason for 
1arp tcaIe diltriboled syuImI to \&Ie datqram. Thil results 
in IbI !read far iJleeDipnc dilUibuted applications 10 handle 
inc:IaIlD&'J COCftI'IU p&IMmI 01 meuqc communications 

-. OM IJO part fOIl elICit nodi. wbidllist.enl to or talks 10 

all oct. nodII wi**' buiJdin. end·co-end connections and 
expec:cint • amaJJ depee of unreliability. 



2. A Reliable Distributed Environment Using 
Data2ram 

The go.tl of a reliable disaibuted environment is to extend the 
reliability between a pair of nodes, which has been promised 
with vinu.a..l circuit. to the reliability among a group of nodes. 
As mentioned above, a reliable disaibuted environment is 
defined as a collection of loosely-coupled distributed nodes 
that ensures reliable communication and close view. Each dis· 
aibuted node hu a static view, called local view, to reflect the 
status of the environment (i.e. which node is up and which 
node is down). Reliable communication and close view are 
not mutually independent Reliable communications together 
with the effect of close view ensures highly reliable delivery 
of mes~geJ. Also, close view with the effect of reliable com· 
munications ensures precise prediction of node status and im· 
mediate notification of exceptionl. 

Reliable delivery muns two things: i) reliable transmission of 
mesu.aeJ and ii) mcuaaCi wely received by the destination 
nodes. ~member Uw 1()()C5 reliahle delivery, even throuah a 
l~ reliable communication channel, is impoIsible. because 

the l~ view can reflect at best the environment status in the 

near past due to the raturc of meuqe PUsinl, and there is no 
way to luarant.ee Uw mesules will be wely received by the 

destination oodeI at the moment of transmission. Our simula· 
tions, which we descnbe Wer, demonstrate that the closer the 

relation amonl nodes, the more reliable is meu1ae delivery. 
That il. the more pn:cisely & node can predict its locaJ vi_ of 

the statui of all the odIer noda. the leu excepc:ions due to un· 

expected events reaardina meSlale deliveries. 

Consider, (Of eumple, Uw the poiitive acknowlcdlmcnts re­
qullCd to ensure we atrivals when muJticutinl a mesu,e lie 

ex pec led at a very hip probaOili ty bew&M of precilC predic­
tion of the lloOaJ view. l'he baUc rason why multicat r&. 

quires wluin, fOf all acknowlcd,maul. or unU! timeout. is 10 
know wtw is ,oLllI on WIth the da&ination nodes, even 

thou,h the result cornea out &I.moIc &be WDI u LIw pRdicted 

at the be,innin, of maJtic&ltina. It il ~lc to thus 

~cntice perfonNnCe iI the ucrcmcly sm&1l probability of ex­

cepuons can be compenuilld (or in some wly. Hi,JUy r,{jabl. 

~/jv"'1 in RDE 1eM11 10 hi&b pcrfOf1lW1CC for the Wleted 

dmnbuted computin, tub. One men: impcxw'lt service In 

RDE is collji,wario" uc6plio" COltlrol. whICh IS proposed to 
complement hi,hly reliable delJvery; tIus i$ discussed in the 

next subsectiOft. BuicaUy, the phiJoIopfty 0( the RDE model 
is hi&hly r&liabIc delivery plus conli&lU'Ition C.lception con­

trol. The pn:d.ictin,ll,oritAms lie llso discussed shortly. 
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Let's define some tenninology before we go on. 
Conjigurario,,-bits is defined as a bit saing which indicates 
the starus of nodes, active or inactive, in a designated order 
according to the nodes domain of the distributed environment. 
Each node has a local conjiglU'ariofl-bir.s as its local view to 
lceep track of its knowledge of the configuration of the dis­
tributed environment; each node is designated as active or 
inactive. LocaJ configlU'cuiofl.bir.s is a special representation 
of local view. Global confjglU'ariofl.bits, representing the 
global view, is an imagined cofljiglU'ario,,·bits constructed 
from the statui of all nodes in the same order as the locaJ 

configurarioll-birs. ConfjglU'ario,,-birs is the simplest vemon 
of local view. 

2.1 RDE Services 

Two important services are supported in ROE: i) 
COmnuuUCarioll trcuvporr service and ii) configuration service. 

Communication tnnspcxt service supportS reliable com­
munication. and confiauntion service is for close view. 

Communic:uion transport service uses the standMd 
mcchanisml of sequence number and timeout/retry to 

eliminate the poqibilitics of duplication, out of sequence and 

miuinl data packets in d.alaaram communications. It supports 
three typeI of operations: 

• Multicut send mesules to a group of nodes. Nodes in the 
domain can be arbitnrily grouped by setting different chan­

nels. Groupinl will be discussed with configuration service 
below. 

"End-1.OoCDd send: send mcuaae to one node. The two 

relevant function QUs for this t)1IC are sclldlo and reply. 

• MwtiJud: read mes&qcs from multiple inputs. Two or more 
00 paIU caa be craJed (Of dilferent cluses of communica­

tions. Eadt lJO pan correaponds to a donain. Two or more 

domains can be specified in • distributed environment Each 

domaiIl deftna a clua of communication. 

l'he major dift'en:ncc between RDE and traditional transport 

services is chaI the meualcslM wumed to be wely received 

by the daWwioo nodca at the moment o( sending mess.ges, 

and coarrol is immediuely retv.med to the caller. This is be­

cause mcuqa an: wely delivered with very high probabIl­

Ity, whidl we uplaiD in the section on simulation. The die· 

rlCwtia of hi&hly reliable delivery of meSla&eJ are solved by 

contiluruion ucepcion control 

Coniiauruion ~ suppocu!he (ollowing: 

• Conti,untion exuption control: The idu is whenever RDE 



senses changing of configuration or unexpected conditions of 
message delivery, it notifies the higher level layer with a con­
figuration exception. The service protocol gUirantees that the 
related nodes will be notified in time t after a message delivery 
is initiated if the related exception occurs. The notification 
procedure first enten exception events into a globaJ event 
queue, then generates a signal that invokes a handler routine. 

• Grouping: Nodes can be grouped by setting channels. One 
node might become a member of multiple groups by setting 

two or more channels. A node can release group membership 
by unsetting the channell. 

• Dynamic configuration: Nodes can come or go without af­
fecting the whole system. nus is very important in large scale 

distributed systems which disallow turning off all the nodes in 

order to reconfigure the environmenl 

2.2 Coupled Relation and Idealized RDE 
In order 10 measure the depee of reliability of I distributed 
environment, the coupWJ T~1azio1t is introduced as a function 

of how closely node$ must inrcncL The "more closely" the 
distributed DOda inrcncc, the more reliably the diwibured 

computinl taW are achieved. In ocher words, the coupled 

reWion is U$Cd 10 qlWllify the reliability of a mcuage·pasainl 
based discribured environment, where the reliability lia be­
tween clOlCly-coupled and Iooscly-coupled with rupeet 10 

messalc pasainll'l1her than eoncumnt proccuinl. That is we 
try 10 qlWllify the wuelilbility due 10 the deficiency of mes­
sage passin I. A clOlCly<oupled distribured environment, 

where nodes communicate with eadl other throuah shared 

memory, can be conSidered I~ reliable with rapcctlO mao 
sagc passinl. 

Two versions of coupled rcWioD IIave been defined: i) u !he 
coefficient 0( swiscical c.arrelaIioa bawea local 

coflji,wroMlI./n# and ,1obaI cOlt/ilWfJIiIJ,.-bCu, and ii) u the 
probability that l«4J CIHf/i,I1II'GIUM--bU:I mIlCh ,k*al 
cofl/i,IU'Q./iQ".bit.J. Thcaw is I moooeonically incrusinl rela­

tion between the cocmcient t:JI comlalioft and the proOabiliry. 
We simply use the MCIOIId vcnioft u our upcrimcnw coupled 

relation on the Slmlllllioa. llliI mans tha& the coupled rela­

tlon spccitiC$ how plWCisdy I node's IocaJ view preclicts the 
staNS of other nodes. If the coupMd rcWion is equal to I. we 
caJl it I closely coupled reWioft. In our ROE model. where the 
difficulties of hilhly reli&b\,t deli'+'CI'Y of rncsups ~ solved 
by contipruion excepcion concrol. I hiaher coupled relaOon 

thl' more precisely predicts node SWI&I will reduce the COIl 01 

eleepcion handlina. 
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~y parameten like meu&ge arrival rate, node faIlure rate, 

node recovery time. predicting algorithms and data missing 
rate affect coupled relation; these are discussed in the section 
on simuWion. 

An idealized RDE is a distributed environment with the fol­
lowing conditiona: 

• C/os~Iy-coup/~d Tc14lio1l: This is the most strong version of 
close view discussed above. The relation exists in distributed 
environments if alIloc:al colfjigurarioll·biu in active nodes are 
consistent with the globGJ colfjigurGrU)1I-biu at any time when 

meuaae deliveries ~ initi.ated during the life-time of an en­
vironmenL The clOlCly<oupled relation makes loosely­
coupled distributed S}'ltems look like they share a poroon of 
memory, conji,lU'tJlioll.biu, the major feature of closely. 
coupled diacributed systems. nus is the reason we call this the 
closely<oupied relation. 

./~ 4-cr. Immedi1ce effect auanntees that the status 

of the related nodes remain UDCbanaed during the transmission 
of menaaa ThiI lDCIDI tIW I1lCIUpS are received by the 
dcatinalioa nodeI instantaneously with sendi.na out the mcs­
saps. 
ldeall2ed RDB parIIl_ l~ reliab1e delivery of mesugca. 

It is imp:uible for idealized RDE to exW in a message pasa· 
inl SYlleM due 10 the naaue of meuaae paWna: transmission 
time is required. The aoal 0( this paper is not 10 achieve ideal­

ized RDE bill inatad to build I framework for distributed sys­
tcma baaed on III architecture of hiahly reliable delivery plus 

contipralion C1UpCiaft control; these services are supported 

in RDE. ThiI tramewart makes it pouiblc to achieve an aJ· 
mce& jdalized ROB. 

1.3 Distributed Predlcdn& A1aorithms For Local 
VlIWI 

A ~ pntIkrill, tJI,oritNrs is used in ROE in order to 
maiJlcaift local views. We pracnt three al,orithms: 
1. A1aaftdua A: 1bia is the aimp1cat alaorithm. Confiauntion 
bits 1ft updaled in the foUowifta cues: i) When a new node 

cocna IIP.i.cnd out conaol S*bu"1 am up" to all nodes. and 

thea wai& for ACIC withiD I timeout slice; this turns on thc 

ccaltpnDoa bits conapcndift.to the ftOda which the ACXs 
'MeR received from. DImiDa the real of the confiauralion bits 

off. u) Wbal I scndin. tww:tioa is invoked. send data packets 

to the dariMriM noda IDd lad control pKkets 10 all other 
noda. and wait for ACIC.a from all activc nodes within thc 
timeout Wee; IUtIl otr the CCGftpraDon bica correspondina to 



the nodes from which expected ACKs are not received and 
rum on the configuration bits corresponding to the nodes from 

which unexcepted ACKs are received (send out the data 

packet to these nodes if necessary). iii) When a packet is 

received, no nutter whether it is a data packet or a control 
packet, send back an ACK; if the configuration bit cor­
responding to the node that the packet is received from is off. 

tum it on. It would be unnecessary to send control packets to 

inactive nodes if the missing rate of packet transmission is 
equal to zero. where no unexpected ACKs which respond to 

control packets will possibly come back since all active nodes 

are noticed when one node comes up. 

2. Algorithm B: This algorithm is identical to algorithm A ex­
cept that the configuration bits is sent out with the packet 10 

active nodel. Each receiving node compares its configuration 

bits with those received, and then turns off its configuration 

bits where an inconsistency occurs. The reason for turning off 

the configuration bit ins~ of turning it on is because we as­
sume a reliable communication after k-retry/timeout is ap­
plied. A node changing from inactive to active can broadcast 

a control packet. but a node changing from active to inactive 

cannO( broadcut any more. The small probability of missin& 

data ensures that almo&t all inconsistent bits which are on cor­

respond to inactive nodes. 

3. Algorithm C: This algorithm is similar to algorithm B ex· 

cept that the node which turns the bits on wnen eventually 

receiving unexpected ACKs or turns the bits off when nO( 

receiving expected ACKs Within the timeout slice sends out its 

configuration bits to III active nodes after updating. That is. 

the flnt node which notica the failure or a node infonns all 

the o<hcr active nodn. An active node miaht receive a notice 
of the failure or itself due to packcU missing in tnIIsmiuion. 

The node Iw to immcdately bl"Oldcut a mesuge "I ilY\ suU 

alive!" to COCT'eCt the inconsistency bawecn I~ view and 

global view. 

J. Simulation 
The purpose of the sinwlalion is to obtain the coupled relation. 

which 11Idicatcs the reliability 01 messaac paSSlOg In a dis­

O"Ibuted environment based oe OW' uchitccwre. The perfor­

mance of disDibuted computinl w.b depends huvlly on the 

coupled relation of the environment disDibuted compuunl 

wU on a Ililher cou pled reatioa en vironment Incur lower ex­

ception Iandlinl COIlS. Clearly. coupled re~uon IS a mc.aJW'C­

ment or the perfOrTrWlCC or di~buced systems conStlUCt.ed 

~th our model since we require some level of reliability ach-
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ieved through exception handling. For distributed computing 
taSlcs running on a given distributed environment based on dlf· 
ferent parameters. we adjust the pcrfonnance to the hIghest 
end where any exception lwldling is incorporated. so the 
reliabilities of distributed computing taSks are decreaSing to 
the lowest end which is the reliability of the distributed en· 

vironmenL The coupled relation is thus designed 10 quantify 
the naked reliability consistent with the nature of the message 
passing. 

3_1 Environmental Factors 
The coupled relation is affected by some environmental fac· 
tors: 

1. Distributed predicting algorithms provide different degrees 

of consistency between local vieW1 and the global view. The 

more precisely distributed predicting algorithms can predict 

each node's local view. the more reliable the environmenL 

2. Node failure rate RIM is the number of nodes that fail in a 

time uNL Since a failed node can nO( broadcast a meu&le to 

announce its failure, the node failure rate directly affects the 

precision of view pru1iction. 

3. Node recovery time is the interval from the time that a node 

fails to the time it recovers. The reciprocal of node recovery 

time is node recovery rate R,... 

4. Mesuae arrival rate R_ is the number of message passing 

operations in a time uniL 

5. Missing rate of data tnnsmission is the probability that dau 

pal:ke1S are missinl or can nO( be delivered in a certain time 

slice. 

The simulation assumes a distributed computing taU running 

on ciabt noda. Eacb node interacts only through broadcuting 

rnauga. Three wwnpcions are made: 

• Poiuoa arrival rata for node failure, node recovery and 

meuqc two.dcuc. 

• No partitioc. 
• No duplicate. missinl or out of sequence data packets. The 

miss in I rate of data trlnsmiuioo is zero. Reliable trans mis­

sloe un be acllieved by the mechanisms of k-retry/timeout 

and sequence number. 

Three ~ are used in the simulation as foliows: 

I. Predictinl allorithma: al,orithm A. B and C as descnbed 

above. 

2. P •• :=. : the ratio or node recovery rate to message amval -



3. p, '" ~ : the ratio of node failure rate to node recovery rale 
'OC 

3.2 The Behavior or The Coupled Relation 
Two sets of da~ were collected for each predicting algorithm. 
one obtained by fixing p, and changing P ... the other by fixing 
p .. and changing p,. Figure 3 presents the graphs for coupled 
relation when p, is fllted and p .. clwlges from 0.0 to 2.0. 
Every curve in figure 3 has two phues. First, as P .. increases 
from zero. the coupled re~tion decreases dramatically to a 
minimum point Second. as P. continues increasing, the 
coupled relation increases smoothly. 

Three things ill'C helpful to underst.and this two-phase be­
havior: i) 2... is the number of menages broadcast during the 

'. 
period of node failure, and every node broadcasting a message 
can discover the fact of node (ailure and correct local views; 
ii) one control message "I am up" is broadust when a node 
COmet up II) end the period of node (ailure, forcing all local 

views to be corrected if the cWa mining rate is zero - the end 

o( node failure period is a check point that guaranteeS the cor­

rectness of local views during the period that no node (ails; iii) 

the coupled relation is imporW1t and effective only when cWa 
mesuges ill'C broadcast 

This is the way that the coupled relations were calculated in 
the simulation: Assume 2... is N and the number of broadcast-

p. 

ing nodes is M. For ease of explaining the two-ptwc behavior, 

we pick the case of algorithm C. In the flnl phase that P. is 
small (N » I), let us focus on the pcnoc1 of node failure sin« 

JlI loc~ views ill'C comet during the period that no node faill. 

Only the node broadcuting the tint rna...,. su(f'cn the incor­

rectness of its local view due to the node (ailure. and then 
br~asts a control message to corftICt the local vi~ of all 

other nodes. All nodes that broIdcu& the (oUowlnl N-I mes­
sages rUe Idvlnule 01 conect pndiccioft 01 local vicwt and 
~-I messages ill'C delivered wilbout ea.ccpcion. R dacnbcs the 

degree o( inconsistenCy bctweal 1oc&I views and the Ilobal 

View during the period 01 node (ailu.re. When N incruscs, the 
degree of inconsiscency dec:IaIa. 'The lower p. indica/a 

higher coupled relation in this pftasc. In the ~ond phase 
where p. is no, small (N < I), the ctTcct 01 the control mes­

sage "[ .un up" bro.dcu, when a node recovers from failure IS 

Significant, most likely causing the 1cx.a1 vieW$ of all activc 

nodes to be cometed be(ote any cWa is broadcUl The Inter­

v~ between two disunct broadcasts is lvJer than the Inc.erval 

of node failure. The number of control mesu,es "I 1m up" is 

more than the number of da~ messages. The smaller N causes 
the lower probability of incorrect local views. This results In a 
high probability of wely delivered messages. The higher P .. 
has the higher coupled relation. 

Coupled relations with the different distributed predicting al­
gorithms drop at different rata. This can be explained with S 
and M u mentioned above, when we focus on the penod of 
node failure. For algorithm A, every node from ~ suffe~ the 
incorrectness of its local view onec, and only N-M messages 
can be delivemi wlthout trouble; thus the probability of 
having incorrect local views (tlat is. active configuration-bits 
corresponding to ilw:tive nodes) is ; and the ponion that the 

environment predicts precisely is T For algorithm C, only 

the fmt node from M suffers income! view prediction and the 
following N-l maugea are delivered wlthout troubles; thus 
the probability of i.ncorrcc:t local vieWi is k and the ponion of 

precise pred.ictioo is ~ For algorithm B, the number of 

nodes Uw suffer the incacTectnal is between 1 and M. since 

the local v1cWS of a subset of nodes from M ill'C cOrTCCted 
throup comparing the loc4J coff/i,uralu",-biu with remote 

COff/i,IU'GlioIl-bUJ in pnvloua mauae broadcasts. The de­
gree of conectncu of local vieWl usinl algorithm B lies be­

tween that 01 usinl allorithma A and C. Generally speaking, 

algorithm C is bctla' than B and algorithm B is better than A 

whal the miuinl rate is zero. 

Fipre " pracnll the If1phs (or coupled relations where p. is 
f!.Xed aDd p, chula from 0.0 to 2.0. One phase is shown in 

moll cW"Yel ( p. ia unall): when p, increases from zero, the 

c~ relariOil decrc.ua. 1'biI behavior can be explained as 
(oUowt: 
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p, CM be CCftIidered .. the period of node failure. called 
T _ it .. fta die period Uw no node (ails to l. During this 

pcricd, alllcc.a1 views 1ft coosislCnt with the global view un­

der the uawnpcioa that the missinll'l1C is zero. All menagC$ 

sau dwinl cbiI period IboWd be safely delivered if the im­

medial cffect it applied. The probability of incorrect lou! 
T 

vicwl dull 10 DOdI faillll'l it -; thul when T _ in-I.' ..... 
~ die probability incraaa abo. When the probability 

01 wtrcrint incorrecmeu increacs. the coupled relation 

deaeaa. By coml*inl the two sets of pphs, we see thll 
the (actor 01 p. atrecu the coupled relation more than p, does. 

Incruainl P. bu • awdl moI'C lipificant effcct on dccrus­

in, the coupled relarion than increasing p,. 



.:oupled reiJoon 

I ~ _____ ~ ___ J_. _" '_J 01 

~'------- -.::-" ~I 
.,-_______ '~I 

9 ' .9 t 
J. "0 I 

J. " ")1 

J •• 01 

'1 -. 
P." O.S 

.3\' 
.7 

.8 p. - 0.' 

. 7 

.8 

6 . 6 ~ .6 

2 p. 

.9 

". - 0.01 COOIpied rcllGaa p •• 001 

1 ~========== p. - 0.1 
, 
"- p .. - 0.1 

".-0.$ .9 "- p .. -0.' 

----------
.9 

'\ p.·1.0 

.5 II. - 1.0 .4 ~ .5 

II. - ICI.O p. - 10.0 

• 7 .7 .7 

.6 .6 .6 

..... c 

c ........... ..,.... ..... 
• 1 C 

• A 
A 

.9 .f .f 

...-A 
.8 •• • • 
. 7 .7 .7 

.6 • •• 

1 .. 1 '. 

' •• CUI ' •• o.a , •• 0.' 

..... J:C OI~""" ___ ~A.~'_~C 

17 



~.--

Figure 5 shows the differences among coupled relations based 
on three algorithms. Algorithm C is clearly better than B. and 
algonthm B is clearly better than A. 

If the assumption of zero missing rate is no longer kept. algo­
nthm C might not be the best because a node rruSht receive 

\.IoTong information due to missing data. and then it broadcasts 
the wrong information. For example. a link between nodel 

and nodez is down for some reason. Node I broadcasts a mes­
sage. Clearly. it can not receive any response from nod~. 
Then node 1 assumes n~ is down and broadcasts a message 

"nod~ is down" to all other nodes. AgaIn. nod~ cannot 
receIve this message and never has a chance to correct this er­

ror. All other nodes update their local views that node2 is 
down. even though the hnks between nodez and other nodes 

are up. 

4. View Section for Constructina Distributed 
Computina Tasks 

Our view section model is a prolflZTUTUng framework for con­

structing disaibuted computing taSks on top of RDE. View 

secuons protect against c1angel to the imagined shared 

memOf)'. global view. in the ume way Utat critical sections 

protect against the change of real shared memOf)'. Cenain dif­
ferences exist: for critical section. shared variables can be 
locked against being funher accened until they are unlocked. 

In contraSt. the change of global view due to the failure of 

nodc1 II lOWly out of conaol. so theft is no way to prevent 

the global view from changIng. The philOlOphy is that a view 

secuon. which defines a penod of time and a sequence of ift­
structions. is declared as a proccclCd section during which the 

global view is ~ to rcnWD IM..... 1I the global view 

does change during the pI'OCCCred section. a compensation 

(unction. dclined in 1M bellnni" ... A!~ view section, is iD: . 
yoked by a notification pncnred from eM Ilndcrtying ROE. 
A Co,.nution NncDoa bdlaWII".liI*i&1 form of ca.ccp­
[Ion handler. The wnicc wppx'llld by che Ilnderlying RDE is 

COIl/i,lValWIl UC,,-OII ~ as mnDOnCd above. 

EJCh view section begins wilh the stalCment. 

8'gi,,_ Vi,.,., _SICriDA. and may end wilh the U~lCment 

ENi Vi,.,., S,eMII. Ott end wilhouc the S~lCment 

£Ni - Vi,.,., - S"I;OIl. We call them cloM·rypc vIew section and 

open~rype -view section respectively 10 distingUISh the suti.: 

chuaclCristics of prosramming SD'\ICt\Ite. In Nn time. I view 

section nay end wilh the statement EII4_Vi~_~CIIDIl Ott end 
in 1 liven time slice. We call them code-bound view section 

1nd time-bound view section respectively. An open-rypc view 
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section must be a time· bound view section. but a close·type 

view section does not have to be a code·bound VIew secuon -
it may end with code or with time. 
Open.Type View Secaon 

vs«::. 8qin_ View _ Section(naroup.tmslice,cfullC) 

C1~·Type View Section 

The statement, B,sin _Vi,.,., _Section. initializes a view sectlon. 

The fint parameter n&roup specifies a set of participant nodes. 

The second parameter tmslice is the maximum time penod 10 

which the wb execulCd in the view section are expected to 

be ICGOmplisbed. Programmcn CIJl set the time slice them­

selves. Ott usc a time estinwion (unction. provided by the un­

derlying RDE. to let the time slice. Alternatively. they can 

leave the problem to RDE by setting DEFAULT. The third 

P~. ctunc. is an exception handler for when exceptions 
arise during !he view secOoo. Bec:ause a computing wit may 

be involved in more than one view section at the same time. 

vsec acts u a handle that wriqucly identifies a partIcular vIew 

section. The handle vsec: is very irnporunt when nested view 

section. or overlapped view sections are allowed. For ex­

ample. an open-type view section can be inside a close· type 

view section. 

The swemcnt. EII4_VihI_S.ctioll. is a function call which 

enda 1M vWw scctiaa immedWdy. If the liven time penod is 

conswned before !he swcment EN( Vi ..... _S,Ctioll is execulCd. 

.. vw. .a.aa is forced to ead by implicitly invoking an 

RDE proc:edwe which cheeD the status of the disaibuted en-
-w~_ .. _ it~. invoka the compensation func-

tion. ".. the proaram continUCI to execulC the current S~te­

... it die view _tioa is open-type. or jumpl to the next 

s~lCmcnC ot £114_ ViIw _S«tio,. if close-rype. 

AnodIcr importanc swcmenc ia: 
u ..... _ Va _Sciaa(VIC, ~ cflaac) 

wltich reiniti.ali.za view sec:tioa VICe and changes the time 

sUc.e and the ~ function if necessary. (( proanm' 

men do not willt to clwlac the parameten. they can set the 

parametIn 10 SAME. PvameIcr npoup is unnecawy here. 

'This S"!cmcnt cu &lJo be !lied 10 end a view section if the 

time slice is ICC to z.cro. The pouible usale is that it is called 

from the compcnutioa Nnctioa to end the view secuon. when 

a fatal ac:epcion ariJa. 



One ryPICal panern of view seeuen is 
'sec:" Bej!tn_ View _Secoon(ngroup,[!TlSlice.dunc); 
mulocas[(ngroup. messaae); 
fonnode I III ngroup 15 ~tive) recelvetmessage); 
End_ View _Secuon(vsa:l; 

:-':ested view sections and overlapped view sections are per­
mitted in our model. 

Sested View 5«:tion 

"see I;. Bej!in _ View _Sectian(g.roupl.time I ,function I I; 
vsa:2:. Beain _ View _Secuan(if'O\Ip2,time2.funcuon2); 
End _ View _ Secuon( vsa:2); 
End _ V~w _ Section(vsa: I); 

vsec 1:- Beain_ View _Sectian(if'O\Ipl.time I ,function I); 
vsec2:_ Beain_ View _ Secnal{JtOllp2.lime2.funcuon2); 
End_ View _Section(vsa:l); 
End_ View _ Section(vsec2); 

~any problems arise due to the time slices. but these are out­

side the scope of this paper. In the next subsecuons. we give 

two examples usina view sections. 

4.1 Eumple 1: SummatioD or Distributed Data 
This example doc1 no< illUJU'alC the feature of ~liabiJity when 

usina view section. It iUUSlTltes only how to use view section 

on top of RDE. Example 2 will describe how ~liability is ach" 

leved by usina the view section model. 

A system has ~ nodes which are exh randomly active or in­

Jctive. Each node has a variable X that chances in value (rom 

time to ume. A dcsi,nall:d node executes a (unction that 
retums the sum of the X valllCl for all a.::tive nodes. The mul­

ticast fWlCtion is ,u~ by RDE. Two (UrKtiona are 
presented below to solve the problem. One important assump­

non is that we illow !he &lobal view to chan,e durin, the 
process in, time in order to &et the sum from !he most recent 

group of active nodea. The maiIl fw¥tion is Slim. which 

br~asts a menace 10 all a.::tive noda and then waits to 

receive the X value from eadl a.::avc node. 

After it initializes the Ift'ly X. Sum bqina a view section by 

ex~uonl the statement Bqia_ View _Section. which defines a 

timeout slice, stinw. and a c.ompens.aoon (unction, 
Check_Sum. Then the Swn (uoction multiusts a request to 

.111 active nodes and waits (or the X valua (rom all acuve 

nodes. It adds each received X value to S unnl values have 

been received from all xtive nodes. Remember the lou! view 

might be updated by the compens.ation func:ion dunnc the 

process in •• 
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The compensalton function. CheCK_Sum, will be IO'O,,;:C a, 

an eltceptton handler roultne whenever the globai View IS 

changed. Function Get_Exception_~ode Will return the node 
whose status changed to cause the exception. Functton [n­
acuve will return true If the current status of node nd IS In­
active and function Active will return true if the status IS ac· 
tive. If the status of the excepuonal node nd changes from ac· 
tlve to inactive. then it Will i) subtract X's value or' node nd 

from the sum: il) set X's value of node nd to zero: 111) update 
view section. which maJces the following excepttons happen 
based on new view, old timeout slice and old compensatton 
function. If the starus of the excepuonal node (nd) changes 
from inactive to active. it will i) send a request message to the 
exceptional node; and ii) update the view section. which 

makes the following exceptions arise based on the new view, 
new timeout and old compensation function. 

Procedure Sum; 
bqin 

far(node nd in If'OIIP) XIndJ - 0; 
S;.O; 
~:-8epI_ View_~Check Sum); 
multiasl(Jroup." send back X value"); -
far( node nd in IlOUP is 1CIive) 

beJiD 
receivl(X); 
S:- S + X; 
X[ndl- X; 

end; 

End_View _s.:rioa(VSC); 
Sum:.S; 

end; 

~a.aSum; 
beaia -
1Id:.o._ElCapbaa NodII(); 
a1(lAcIiW(nd). nUc) Ita 
bet-

S :. S ' X(nd); 
X(nd);.O; 
U pda. _ VIn _ Sec1ioII(vsc.SAME.SAME); 

tad 
die ift~QW(Dd) • nu,IE) m. 
betia 
...s 11(-. '1II!d bet X v ... ·); 
U __ V .. _ScIiaII(vsc..awne.SAME); 

ed: 
end; 

4.1 Example 1: Rel1able Resource Redistribution 
A diJlributed envirocuncnt Iw N+I nodes, nodeoo node\. 

.• nodeN• wlUl;h may be active or Uuctive. Nodeo is the leader 

which wu ~ously elected by all the nodes. Each node has 

seven! resources thai rnipt be allocalCd by a local process. 
For nodej • the set 0( available resources is Ri. The leader. 



nodeo' invokes a task of resource redisaibution upon a request 
from another node that has consumed all its available 
resources. The leader broadcasts a message to ask other nodes 
to relinquish their available resources. After the leader 
receives all relinquished resources. R ,.Rz+ ... +RN• it reassigns 
resources so that the set of avaliable resources for node i is Qj. 

Then the leader sends Q,. Qz • .... ~ to node,. nod~ ..... 
nodeN• respectively. 

The problem is that every node, including the leader, might 
fail unexpectedly during the process of resource redisaibution. 
We do not want to lose or duplicate resources due to the 
failure of regular nodes (i.e., not the leader). We also do not 
want the leader to swallow resources due to the failure of the 
leader; this might block or dramatically slow down the whole 
system. We do not address the rcassianment problem. but we 
assume it takes time to complete this task. 

The main function is ResourceJ~e(futribution. which divides 
into Wee blocks. In the fllSt block, it initializes a view section 
with compensation function Check_ToW. It multicasts a mes­
saie REQUEST 10 ask all nodes 10 &ive up and send back 
their available resources Rjs, and then waits for all resourcea 
to be relinquished. After it reuives the available resources 

from all active nodes, it reinitializes the view section with 

compensation function Check_Fail and aces to the second 

block. In the second block. it reassill's resources into Qj. and 
sends the Qj 10 nodes. One important consideration is that the 
leader hu 10 uk nodes 10 lock the resources R j before they ,et 
Qj back and if a node faill before ,eainl Qj' it should consider 
R j as the available resource when it recovers from failure. 

This prevents the received ~ from pmIWW'e alloca­

tion 10 loc:&I procases !lnw the leader makes wn= thai the 

redistributed resources have been safely received by all nodes. 
If nodej fails dllt'inl the second bJoct. i) aU re.sourca which 

wen= alrady distributed have 10 be cancelled; ii) the ~ 

received from node; in the r"" b&oct have to be discarded so 
that nodej c:an consider Rj a ill aYlillbll raourc.a aitct il 

recovers from failllft; iii) ruailftJMDl oIresowces has 10 be 
done alain and tfa eM IadIr redisCribur.es the scts 01 
resources. The view __ cnda 1& chi end 01 the second 

block. In the t.Itird block. DOC inaick u. view section. it broId­
casts a messap OK 10 IU\Joct eM raourca. Mesu.ac OK in­
dicalC$ the leader knows al.I nodes have received the newlyas­
signed resources Q. 

Two compensation functions 1ft ued in the view section: 
Chec.k_ Tocal in the rtnt b&oct and Check_Fail in the second 
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block. Check_Total is almost the same as the compensation 
Cheek_Sum in the previous example "summation of dis· 
tributed data" except that resources are used here. In the 
second block. Check_Fail is the compensation function ...... hich. 
when some node j fails. asks all the nodes that already received 
resources Q 10 give them up, iIJld reswtS the second block 
again. Function Set_Resume is used to jump gracefully to the 
beginning of the second block. label REASSIGN. We don't 
care about the case that node1 are restored from prevIous 
failures. because it is too late 10 reassign the resources for the 
"comina up" node. It has to wait until the next round of 
resource redistribution. 

From the view point of a regular nodei' several rules are fol­
lowed: 

1. Nodei considers Rt as its available resources in the follow­
ina cases: 
• Node; does oot receive Qi within a given time slice. after it 
senda out Rt. When timeout occurs., the leader is assumed 10 

have failed. 

• Nodej fails after it &ives up Rt and before it reuives its 
newly auiped resources~. 

• Nodej doesn't receive 1ft OK mcuqe from the leader within 

a &iven time slli:e. The leader il asaumed 10 have failed. The 

OK mas.aae is sent OUI by the leIde:r, when the leader makcs 
sure all nodes received newly usiped resourccs QI' Q2' .... 

~. 
This is 10 proteCt resources from beinl swallowed by leader. if 
the leader node fails &ftcr it receives pan or all of the 

resourca. 
2. Nodet c:oaaide:n ~ U ill available resources. if it receives 

1ft OK meuap alter il received QI from the leader. 

3. Nodet c:orWden Rt aDd Q\ u its pouible available 

I'I::IoOUICCI. it it fails alter it recciva QI and before it reuives 

1ft OK IIIIIUIp. A chlckin, procedure, which checla 
wbcmlr Rt Ott Qa is ill available resources will be invoked 

wben nodet recoven tlom railwe. nw is the proceclun=: i) 

nodi i broedcull a maup 10 uk whether Qi is a valid 

raoun:c .. or not. where we can \lSC venion number of Qi 10 

verify it; ti) it ftOdeo. wNch \VII the leader when nodej failed, 

says "no". it \&Sea Rj u iliayaiJable raources: iii) if any node 
says "ya .. , it \&Sea Qa u ill available raourus; iv) otherwise. 

it waill lUUila node comes up. and repeatS the whole proce­
dure. This is to protect resourca from been dupUc:.ated or lOlL 

A Stall dialfUll is praenlld 10 describe the behavior of 
rqu1ar nodeI. 



procedure R~ -'~edi.stnbuuon; 

beilO 
vsec:.Bqin_ View _Section(i!'Oup.stime.Ched_ Tow); 
multicasltaroup.REQUEsn; 
for(node nd in irouP is active) 
reaive(R(ndJ); 

Update_View _ Section(vsec.stime.Checl: _Fail); 
REASSIGN: 
reassian resoun:es(Q[J); 
fort node-nd in group il active) 
send 1O(nd. Q[ndJ); 

End View Seclion(vsec); 
multicasC(Voup. OK); 

end; 

procedUR Check Toul; 
beam 

nd :. Gel Exception NcxlcO; 
if(lnaclive(nd) • TIttlE) then 
U pdaII_ View _ Seclion(vsc,SAME.SAME); 

else if(Aclivc(nd) • TItUE) U-
be&in 
send 1D(nd. REQUESl); 
U pdii. _ Virw _ Seclioa(YMC.stime.SAME); 

end; 

end; 

procedure Ched: _ F &&I; 
bqin 

nd :. Gee ElcepciaI NodII(); 
if(!n&:tive(nd) • TIttlE) u­
belia 

fot(node nd 10 which Q{ndl haa ~ sent) 
mulur;aC(&r0U9'olSCAJU»; 

U pduI_ Virw _ ScDon( YMC,SAME.SAM E); 
Set _ Raunw<REASSIGN): 

end; 
end; 
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5. Related Work 
Petet;On's cOllversariollS 1l is another £PC abstraction that at· 
templS to achieve reliability in distributed computing by Incor· 
porating a notion of view. In a convenation, however. a view 
is a cOfllat graph giving the partial ordering of all past meso 
sages. As with our RDE. the global view is the truth and the 
local view is what distributed nodes UlOW about the truth. 
Distributed nodes sense the truth through message passing. 
and the difference between the global view and a local view IS 

due to the unreliability of message passing. That is. a node 
may not be aware of the entire context due to missing or out of 

order messages. as weU as node failures or network partitions. 
Each message is passed with the entire context graph known 

by the sender, so the receiver has the opportunity to update lIS 

own and/or the sender's view of the truth with any messages 
included in one but not the other. 

Peterson's convenations and our RDE have the following fea­
tures in common: 

• Global view: There exists a global entity. the truth. which 

might change from time to time. In the conve~ation !PC 
abstraction. it is the context srapb. In our model, it is globaJ 

cofljiglUalwn-bics. 

• Local view: Every node has I view that represents Its 

\cnowledae about the global view. Local views are updated 

inaementally through message passing and are rebuilt after 

node failure or network partition. In convel'utions, it is par· 

ticipant p', view of the context gnph. In our model. it is local 

cofljiglUaJion-bics. 

• Knowlcd,e buis: Dilaibuted node$ behave according to 

their Ioc:aJ views. and local vieW1 and operations are mutually 

affected. In ea1venaOOIlI, the operation, are the standard 

send() and receive(). O\u model also provides sendto() and 

multicut(). 

Petenon anempcs 10 achieve ora.rinl of nussages (or group 

commwtic:ation. whcreu we try to attain saf~ iUlivery of 

"I~U4'U for poup communication. This difference in goals 

ellpwllI the ditferenca between vieW1. The dynamic views 

used In conven.ations preserve contellt information, while the 

(concepaWly) static vieWl used in RDE prnerve configura­

uon lniorm&tion. Conversations support ordered broadcast 

while RDE procectS against node failure. 

Thus. converulions and OW' model are really complementary. 

It wou14 be nice to implement conversations on tOP of ROE • 
ulin, vlew sections to build the component of conversations 

that procectS ap.1nst node failure. This would solve certain 



problems of conversations. such as nodes expecting an ac­
knowledge from a failed process and laclt of reliable broad­
casts. [t would also be usy to use view sections to rebuild the 
:ontext graph when the system recovers from node failure or 
networlc partition. 

6. Conclusion 
We propose a reliable distributed environment (ROE) among 
large groups of nodes to ensure the reliability of complicated 
communication patterns as virtual circuits are already applied 
to pairs of nodes to ensure the reliability of simple com­
munications. RDE serves as a basic communication environ­
ment to handle large scale and/or intelligent distributed sys­
tems. RDE provides relUble communication services and 
configuration services which do nO( exist in traditional com­

munication environments. 

We characterize the reliability of a distribulCd environment by 

its coupl6d Tll4rioll, which is based on different predictina al­
gorithms, P .. and p,. Our simuJuion results clearly illustlalle 

how the coupled relation affects the perfonnance of a dis­
tributed environment. 

We have demonscrated the utility 01 our"'~ UCMII tMd.f1 by 
our reliable resource red.islribur1oa eumpie. We believe Ibis 
model, which supporu a hiah lcvcl 0( absnction (~hancllina 

low level environmental chanaa. will prove to be a aood pro­
grammina framework (~ consrructina reliable d1mbuced 

computina wks. 

We expect out network architectu.re, with view section u Ihc 

top layer, RDE in the middle and daIqram communication OIl 

the bottom. to become iDcraIinaJy impxunt due to die 
movement towardl Iarp sale disa'ibulCd Sysl2mS and inlCl­

Ii gent distributed syStems. 
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Abstract 

Programmers generally want to be sure that the systems they are building are 
consistent, both with respect to source code versions used, and with respect to type 
safety. Most modern high-level language systems enforce this consistency upon the 
system instances they build. However, in a large system this can lead to very large 
recompilation costs after small changes. Therefore, programmers often circumvent 
enforcement mechanisms in order to get their jobs done. The CONMAN configuration 
management project explores the premise that some degree of inconsistency is inevitable 
in software object bases, and that programming tools should be designed to analyze and 
accomodate it, rather than to abhor it. The CONrviAN programming environment will 
help the programmer contend with inconsistency by automatically identifying and 
tracking six distinct kinds of inconsistencies, without requiring that they be removed; by 
reducing the cost of restoring type safety after a change, through a technique called 
smarter recompilation; and by supplying the debugger and testing tools with 
inconsistency information, so that they can protect the programmer from flaws in the 
code. 



1. Introduction 

Every programmer remembers wasting large amounts of time looking for a bug caused 

by changing and recompiling one source file and failing to recompile a related file. This 

kind of problem has made the Unix™ make tool [31 very popular; when invoked after a 

change to a source file, make rebuilds every file derived (directly or indirectly) from the 

changed file. 

Programmers generally want to ensure that the systems they are building are 

con8i8tent. For example, they want to know that the object code they are running was 

built from the exact source code they are looking at, rather than from some previous 

version of the source code. They also want to ensure that the executable program is 

type 8afe; that is, that it satisfies the type rules of the programming language. Most 

modern high-level language systems enforce this consistency upon the system instances 

they build. In a large system, however, this can lead to very large recompilation costs 

even after small changes. Therefore, .programmers often circumvent enforcement 

mechanisms in order to get their jobs done. 

This practice is not only commonplace; it is commendable! The programmer can do it 

successfully by using design knowledge to decide which inconsistencies are harmless and 

which are dangerous. Allowing inconsistency can speed up the edit-compile-debug cycle, 

and can also reduce the coordination needed between programmers. Both benefits 

improve productivity dramatically. 

The CONrviAN contiguration management project is exploring the premise that some 

degree of inconsistency is inevitable in software databases, and that programming tools 

should be designed 

to analyze and accomodate it, rather than to abhor it. The CONMAN programming 

environment helps the programmer contend with inconsistency by: 

• Automatically identifying and tracking inconsistencies: CONMAN classifies 
each inconsistency into one of six categories, and tracks it for the 
programmer, without requiring her to remove it right away. 
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• Reducing the cost of type safety: CONi\lAN"s type safety is based on a 
constraint called link consistency, which is less stringent than in 
conventional systems. This permits use of a technique called smarter 
recompilation to reduce the cost of restoring type safety after a change [151· 

• Supporting debugging and testing: The debugger automatically stops 
execution upon reaching inconsistent code, thus helping to prevent crashes. 
The test coverage analyzer tells the programmer which tests can be executed 
in <the presence of an inconsistency. 

This paper begins by presenting several scenarios in which allowing inconsistency is 

more cost-effective than removing it. Then it describes the six kinds of consistency that 

CONMAN recognizes automatically. Next, it explains how smarter recompilation uses 

link consistency to decide which modules really must be recompiled after a source code 

change. Finally, it describes how the CONMAN programming environment uses 

consistency analysis to help the programmer build, debug and test inconsistent systems. 

2. Beneficial Inconsistency 

Inconsistency is commonplace in software project libraries. A project library typically 

contains many system configurations, where each configuration might contain 

requirements, specifications, code, test data and documentation. Informally, a project 

library is inconsistent if it contains direct contradictions. For example, if a global data 

type is somehow defined differently in different parts of a configuration, this constitutes 

a contradiction (because most languages permit only one definition of each global 

identifier). On the other hand, two distinct system configurations may define the type 

differently, and that would not be a contradiction. 

Inconsistency is likely to occur when permitting it is more cost effective than 

forbidding it. For example: 

• Debugging and testing under deadline pressure. On fixing a bug, the 
programmer should recompile the minimum amount of code necessary to 
continue testing. She can wait to recompile the rest of the system until she 
goes home for the night. 

• Debugging an incomplete implementation. In a language such as Ada(R), 
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with specifications separated from package bodies. an early version of a 
package body might not contain all of the procedures. The programmer 
should not be distracted from her creative task by the tedium of writing 
stubs. (Wolf studies this form of incompleteness [181.) 

• Changing requirements after implementation is under way. 'When 
requirements change, it may be easier to start by combining the new 
requirements with the old implementation -- even though they contradict 
each other -- rather than keeping them in separate system configurations 
until they agree. 

• Handling "software rot". Sometimes a bug fix introduces new bugs. Until 
the new bugs are resolved. debugging may be easier if some parts of the 
system use the old version of the code, while others use the new version. 

• Large teams debugging related changes. During large system maintenance, a 
single change request often involves several modules and the interfaces 
between them. Each team member would debug her changes independently, 
before integrating them with the work of others. To do so she should build 
an executable system instance with whatever versions of others' modules she 
deems appropriate, even if some of them still use obsolete, incompatible 
interface specifications. 

This last example, when elaborated, provides many clues as to how a programming 

environment should support programming with inconsistency. Consider a typical 

operating system maintenance project, having [51 

• 1,000,000 lines of source code, 

• 300 programmers, 

• a new release about once per year, 

• 300,000 lines of new or changed code per release, 

Suppose there were one bug for every 30 lines of changed code, the syntax is correct but 

before any debugging or testing. That would add up to about 10,000 bugs per release. 

Many module changes include modified interfaces. Suppose that each programmer has 

been assigned to modify a different module. Because tasks progress at different rates. 

and because some tasks must be redone, several new versions of each module will be 

-------- -



produced. Each programmer is responsible for debugging and· testing her own code as 

well as she can before releasing it to others. To do so, she selects the versions of other 

modules that she thinks will work best with her module. However, the ones she wants 

to use may not be ready yet. She might choose not to simulate them with a test 

harness, because test harnesses are often too expensive for early debugging and unit 

testing. They must be updated whenever the interface changes, which requires both 

manpower and calendar time. Therefore, programmers often build inconsistent 

configurations of the real system to use for debugging. In fact, large projects often 

assign their best analysts to figure out workable, albeit inconsistent, configurations for 

debugging and testing. 

To build, debug and test inconsistent systems, programmers need tools that 

• Identify and evaluate the severity of inconsistencies. 

• Display the inconsistency information in a useful way, such as by 
incorporating it in a browser or by using it to compare several alternative 
module versions, none of which is completely compatible with the rest of the 
system. 

• Protect the programmer from system crashes due to known inconsistencies, 
by placing firewalls around dangerous code. 

3. Kinds or Consistency 

CONMAN formalizes the concept of inconsistency by defining six distinct kinds of 

consistency, to use for classifying inconsistencies it discovers in programs. 

We use the term system instance to mean an executable representation of a program, 

typically created by compiling numerous separate program units and linking them 

together. We assume that the programming language specifies some form of static type 

checking, and that the programming environment provides a way of uniquely 

identifying versions of both source code flies and derived flIes (such as object code files). 

The six kinds of consistency are: 

• Full consistency: A system instance satisfies the rules that the programming 
language specifies for legal programs, insofar as they can be checked prior to 
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execution. It also must be version consistent, as defined below. 

• Type consistency. The system instance satisfies the static type checking 
rules of the programming language. 

• Version consistency. The system instance is built using exactly one version 
of each logical source code file. 

• Derivation consistency. The system instance is operationally equivalent to 
some version consistent system instance (which need not have actually been 
built ). 

• Link consistency. Each compilation unit is free of static type errors, and 
each symbolic reference between compilation units is type safe according to 
the rules of the programming language . 

• Reachable consistency. All code and data that could be accessed or executed 
by invoking the system through one of its entry points are type safe. 

The definitions above have the following partial ordering: 

~version ---:..,~derivation 

rUIl~ ~ Iink--->,reachable 

type 

3.1. Full Consistency 

The strongest form of consistency is full consistency. The definition tries to capture 

the ideal world. For example, a system written in Ada is consistent when it is built 

with exactly one version of each compilation unit, and the units have all been compiled 

without error in an order compatible with the inter-package dependencies, and then 

linked. 

3.2. Type COIl!l~tency 

Type consistency depends only on those language rules that deal with the types of 

identifiers. Operationally, a system instance is type consistent if the compiler reports no 

type errors for any separately compiled component, and if each identifier whose scope 

spans more than one compilation unit has the same type in every such unit. (For the C 
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language, the rules checked by the Unix lint tool [61 define type consistency across 

boundaries of separately-compiled modules.) 

3.3. Version Consistency 

Version consistency is the system property enforced by Unix make. For example, if a 

system written in C contains a source file named "symtab.h", then make ensures that 

all files that 1nclude it (incorporate its text) are compiled with the latest version. 

Version consistency is also important because it provides a practical means of ensuring 

(or circumventing!) type consistency. Many language systems implement type checking 

across separately com piled modules by using a file of definitions, called an "incl ude 

file It, to define the types of the identifiers exported from a compilation unit. If the 

same version of the include file is used to compile the exporting module and every 

importing module, then the exported identifiers will have the same type throughout 

their scopes. Conversely, one can trick a compiler into generating code for a module 

that is not type consistent with other modules, by using different versions of the include 

file when compiling different modules. 

The definition of version consistency includes the word "logical It to cover a special 

class of systems in which two or more versions of a module are included by design. For 

example, a test configuration might be created to compare the behavior of two versions 

of a module. Its system construction model (cf. DSEE [gl, Cedar [8]) would treat the 

two versions as separate logical entities during compilation and linking. A version 

consistent instance of this system could still use two different versions of the module, 

because the versions would implement two different logical modules. 

3.4. Derivation Consistency 

Derivation consistency includes the class of systems that one can build by foregoing 

unnecessary recompilations, and then use as if they were version consistent. For 

example, when a type is changed in an include file, only the mo<;iules that use the 

changed type need to be recompiled. Other modules that include the changed file, but 

do not use the type that was changed, need not be recompiled. Linking the object 
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modules together produces a system that is equivalent to one where all modules were 

recompiled to use the new version of the changed include file. 

3.5. Link Consistency 

Link consistency is weaker than type consistency, because it enforces type safety 

pairwise between compilation units, rather than requiring types to be defined and used 

consistently system-wide. Nonetheless, this definition is sufficient to support debugging, 

because the actual executable code is all type safe according to the rules of the 

language. If each object module is internally type safe, and every data path between 

modules is type safe, then there is no place in the system where machine code that 

expects data of one type can operate on data of some other type. 

Link consistency can be achieved without type consistency by using different versions 

of include files with different compilation units. Two units need to use equivalent 

versions of an included definition only if the link-time interface between them is 

affected (directly or indirectly) by that definition .. 

Link consistency describes some situations where a widely-used definition has been 

changed, but only some of the places where it is used have been rewritten to 

accomodate the change. Consider a system in which one module defines the type 

linked list, and two other subsystems each use linked lists internally, but do not pass 

linked lists between subsystems. This example is depicted in figure 3-1. 

Suppose it is decided to change the implementation from singly-linked lists to doubly­

linked lists, to enable sequencing in both directions. The programmer would like to try 

out the doubly-linked implementation in a limited context, before rewriting all of the 

places it is used. It she rewrites and recompiles the linked list module and just one of 

the subsystems that uses it, the system instance will be link consistent (because every 

module and every link is type safe), but not type consistent (because some modules were 

compiled with the singly-linked implementation, and some with the doubly-linked 

implementation). Assuming that the list representation is directly manipulated by the 

subsystems that use it (to increase efficiency), the programmer cannot compile the 



Subsystem A 

D 
Q 

Subsystem B 

Object Modules 

Modules that use type 
linked list 

Links that depend on 
type linked llst 

Other 1ink.s 

Figure 3-1: Cluster.J That Use a Type Independently 

second subsystem with the doubly-linked implementation until she rewrites it. 

Recompiling without rewriting would give lots or error messages, and probably no 

object code. 

Such independent uses or a global type are consistent with sound design principles. A 

large system is frequently layered into levels, where each level uses services provided by 

the levels below it, and provides services to the levels above it. In a system that 
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provides a broad range of end-user services, it is not unusual for the middle layers of 

the system to contain several subsystems that do not call each other at all. In that 

situation a service type defined by a lower level could be used independently by the 

subsystems at the next level. 

Besides global types, several other language constructs permit multiple coexisting 

definitions without sacrificing link consistency. For example, Ada's inline procedures 

and generics both cause a definition to be instantiated separately at each place where it 

is used. Usually, separate instances of a generic package are treated as unrelated at run 

time, even though they were derived from a common definition. (Of course, Ada's rules 

currently forbid version inconsistency.) 

3.6. Reachable Consistency 

Reachable consistency is useful during development when service routines are written 

before the external interfaces that use them are ready. Any type errors in unused 

routines can not interfere with debugging the code that is reachable. 

3.7. Automatic Checking 

CONMAN checks all six kinds of consistency automatically. Version consistency is 

checked by straightforward configuration management methods. Type consistency and 

derivation consistency are checked by the methods used in smart recompilation [17]. 

(Full consistency simply means version consistency and no compilation errors.) Link 

consistency is checked by a simple method described in the next section. Reachability is 

checked by incremental, interprocedural data now analysis, recently made efficient by 

Ryder and Carroll [14]. 

4. Reducing the Cost of Consistency 

The Unix make tool restores version consistency by rederiving any output files that 

are older than the current versions of the input files from which they are supposed to be 

built. This can cause many recompilations after only a small change. 

Toolpack [12] and smart recompilation reduce the cost of restoring consistency by 
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restoring only derivation consistency. Both systems maintain a single. consistent 

version list of the "latest versions" of each file. They reduce recompilation costs by not 

rederiving a file when the existing derived file is operationally equivalent to what would 

be created by rederiving it with the new source file versions. 

Toolpack defines "operationally equivalent" to mean "identical contents"; it permits 

certain attributes such as timestamps to be different. Toolpack uses the same "older 

than" rule as make to trigger recompilation, but avoids some processing steps by 

noticing when a certain step produces an output file with contents identical to the one 

it is replacing. This means that using the new output file in a subsequent translation 

step would be equivalent to using the old version, so the next step is avoided unless 

other inputs have changed. 

Smart recompilation determines equivalence by extracting, from the inputs to a 

compilation, the set of d~clarations that actually affect the output files; two output files 

are equivalent if they are derived from equivalent extracted inputs. (The output files 

are also allowed to include unused code that differs.) Smart recompilation preprocesses 

each changed file to identify the declarations that have changed in it. The method then 

recompiles only the files that actually contain or use the changed declarations. 

Smart recompilation succeeds because it performs only local semantic analysis, which 

it can do cheaply. Local semantic analysis examines each source file in isolation. Any 

identifiers occurring free in that file are assumed to be declared in some compatible 

way; they are typically bound by include statements to other files. The analysis 

produces a dependency file listing the identifiers exported by that file, and the free 

identifiers on which they depend. The details of smart recompilation are thoroughly 

explained in [171. 
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4.1. Checking Link Consistency 

To simplify the following sections, we limit our discussion to a simple Pascal 

programming system, such as provided by the Berkeley Pascal compiler running on 

Berkeley Unix 4.2. This environment provides a version of Pascal that has been 

augmented with a separate compilation facility. Procedure headers can be separated 

from procedure bodies. Typically, the interface to a module is placed in a separate 

"include" file, which is included in the module that provides the interface and in every 

module that uses the interface. In the remainder of this paper, we use the term 

"module" to refer to a normal compilation unit, and "file" to refer to a module or an 

include file. Our discussion does not cover overloading nor identifiers that are moved 

between modules during a change. These extensions can be handled analogously to the 

way smart recompilation handles them. 

Link consistency is defined on links between object modules. A link is a 

(definition, use) pair consisting of an identifier declared global in the object module that 

defines it, and external in the object module that uses it. A link is consistent if the 

definition and the use were compiled using equivalent declarations of the identifier's 

type. For example, if a procedure P with one parameter of type T is exported by one 

module and imported by another, then the two modules must agree that P has only one 

parameter, that its type is T, and that T's type is equivalent in both modules. 

To check link consistency, we first identify the source code constructs that produce 

global and external references. Then, we use preprocessing methods derived from smart 

recompilation to analyze dependencies involving these constructs. 

The only two kinds of object module links in Pascal are variables and procedures. 

\Vhere Pascal programs define enumerations, records, constants, etc., the compiler 

translates them directly into object code, without leaving any links to external 

identifiers. We know, therefore, that a link exists only where a procedure or variable is 

exported from one module and imported by another. 

To check link consistency, we augment the smart recompilation preprocessor in two 
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ways: 

• \Ve divide dependencies into inter face dependencies and implementation 
dependencies. For example, 

ext.ern 
procedure P(a:T); 

var b:V; 

This procedure has an interface dependency on type T, and an 
implementation dependency on type V . 

• For each exported procedure and variable, we record its type signature, in 
which bound type names are replaced by their definitions, but free type 
names are treated as primitive. For example, 

(import. t.ype R) 
type Q is integer; 
type T is record 

a: Q; 

b: R 
end 

ext.ern var v: T; 
In this case, v's type signature would be reeord(integer,R). (This kind of 
type signature defines type salety by structural equivalence. It can be easily 
modified to use name equivalence instead.) 

To test whether a link is consistent, we compare the versions of the identifiers that 

affect the definition site and the use site. We do so in the following steps: 

1. Determine which source file versions t'o associate with the definition site, and 
which to associate with the use site. These can either be the files that were 
actually used, or files that are proposed to be used. 

2. For both the definition and use sites, locate the source file version that 
defines the identifier's type. 

3. Compare the two definitions for equivalence, as follows: 

a. If the version numbers are different, compare the type signatures. If 
they are different, the definitions are not equivalent. 

b. For each free identifier in the type signature, compare its two 
definitions (in the "definition site" versions and the "use site" 
versions) for equivalence, using this same algorithm recursively. 
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c. If all the free identifiers III the type signature are equivalent. the 
definitions are equivalent. 

4. (The results of every comparison should be saved for re-use should the type 
appear again elsewhere in the signature, or in the signature of another link 
between the same pair of modules.) 

4.2. Smarter Recompilation 

Smarter recompilation works by finding clusters of modules that must agree on certain 

identifier definitions in order to be link consistent. Specifically, clusters are defined 

with respect to a specific set of global identifiers. Two modules are in the same cluster 

if and only if they are connected by a link that depends on any of those identifiers. 

(Modules whose interfaces don't depend on the identifiers at all are not placed in any 

cluster.) Smarter recompilation saves processing time and programming time whenever 

a system contains two or more clusters with respect to a set of changed identifiers. The 

method reduces to smart recompilation when this definition causes all modules to be in 

the same cluster. It starts with the files that have changed, and at least one module 

that must be recompiled to test the changes. It then "grows" a cluster of modules that 

are transitively connected to the starting module via links affected by the changes. 

These are the other modules that must be recompiled. The algorithm proceeds as 

follows: 

1. Begin with a previous system instance. all relevant source file versions, and 
the results of preprocessing each of the source files. These results are 
collected in a data structure that indexes all links, so that it is easy to find 
which links to check when deciding to recompile a module. The data 
structure is updated incrementally each time the system instance is modified. 

2. Ask the programmer to select a set of file versions she wishes to debug or 
test. There can be at most one version of each logical module in the system, 
but the programmer need not choose versions of modules she does not care 
about. 

3. Use smart recompilation to select a set of build candidate8. Smart 
recompilation requires there to be a set of "new" file versions and a set of 
"old ~ file versions. For this purpose, the versions chosen by the 
programmer are the new ones, and any conflicting versions are the old ones. 



4. Ask the programmer to select an initial build set from the candidates. These 
modules define the context in which she wants to debug or test her change. 

5. For each new member of the build set, 

a. Determine which versions of the source files will be included when it is 
recompiled. Use heuristics to select versions that the user left 
unspecified, such as "latest" , It whatever was used before" , or 
"whatever has already been used in the build set It. 

b. If the module's source code has changed, update the link index to 
reflect any changes. 

c. Using the proposed version bindings, check the consistency of each link 
between the new member and other modules. 

d. Augment the build set with any candidates that have become link­
inconsistent with it. 

The total time to check consistency is proportional to B ,. I" T, where B is the size . 
of the build set, I is the average number of identifiers imported and exported from a 

module, and T is the average number of identifiers that must be tested for equivalence 

in the course of validating a link. 

Smarter recompilation can be generalized to more complicated translation tools, and 

additional kinds of derived files. For example, consider a system written in Ada. The 

Ada compiler would generate interface files (.1nt files, containing complied 

specifications) and object code files (. obj files, containing package bodies); the compiler 

would read in interface files when compiling modules that depended on them. Suppose 

main subprogram X depends on package specifications Y and Z, and package 

specification Y depends on Z. Compiling X requires a consistency check between Y 

and Z, to ensure that Y was compiled with a compatible version of Z. This processing 

model is diagrammed in figure 4-1. 

In this situation, the concept of "link" generalizes to "name binding". Each 

compilation step resolves free names in some of its inputs by binding them to definitions 

exported by other inputs. Since any exported definition could be involved in a binding, 
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Figure 4-1: Compiling a Small Ada Program With Transitive Dependencies 

the preprocessor would keep type signatures for all exported identifiers. Because the 

inputs to a compilation step are sometimes produced by other compilation steps, there 

can be version conflicts between inputs to compiles as well as to the link step. The 

consistency checking algorithm must be augmented to account for such complications in 

the version selection lists. 

Smarter recompilation can be generalized further, to a broad class of translators and 

derived files, including program generators (such as Unix utilities lex and yacc), and 

distributed execution environments. "Compilation" generalizes to any translation step 

that produces an identifier definition or use based on input definitions and uses. For 

each "source code" language in the system, one would look for the kinds of identifier 

declarations that translate into unresolved references in derived files. For each such 

kind of identifier, a preprocessor would perform local semantic analysis to determine the 

equivalent of a type signature. Then, each tool that performs name binding can be 

preceded by an analysis step that uses version lists and type signatures to identify link 

inconsistencies. 

In summary, smarter recompilation reduces the cost of restoring consistency by 

enforcing only link consistency, rather than derivation consistency. It interacts with the 

programmer to choose versions relevant to the current task, then performs the least 

number of compilations necessary to construct a system instance that is link-consistent 

with those choices. 
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5. An Environment for Programming with Inconsistency 

CONMAL~ is a programming environment that helps the programmer interactively 

construct and debug inconsistent systems. The systems may contain different kinds of 

inconsistency in different places. The environment consists of an object base and a set 

of tools, consisting of a browser, a compiler, consistency analyzers, an incremental 

linker, a flow analyzer, a debugger, a test coverage analyzer, and an automated 

maintainer's assistant. Each is based on available technology, modified to handle 

inconsistent systems. 

The object base is an integrated database of software artifacts [U, I}. Each file is 

stored as an object, together with attributes and relations that represent its 

relationships to other parts of the system. The objects belong to a class hierarchy, with 

multiple inheritance. Tools in the system can be classified as either foreign tools or 

native tools. Foreign tools have no knowledge of the environment; they exchange data 

with the environment through an envelope that sets up an execution environment, calls 

the tool, and collects its results. Native tools can use the object base directly, such as 

to store dependencies between source files or to analyze inconsistencies in a desired 

system instance. 

The compiler and linker are augmented with preprocessors to collect type signatures, 

which the analyzers then use to detect inconsistencies. 

The browser helps the programmer construct a description to build. (We call t.his 

description a BCT for compatibility with the Domain Software Engineering 

Environment's (OSEE's) Bound Configuration Thread [9}.) A structure editor is a 

promising type of browser for this application. Through it, the programmer can not 

only construct the BCT itself, but can also examine its connections with the rest of the 

object base. 

The programmer starts by examining the BCT for some previous system build. The 

editor presents her with all the new module versions that have been created since the 

last system build, and asks her which ones she would like to use. The programmer 



17 

assigns new version bindings to the derived objects she wants rebuilt. As the 

programmer makes the version choices, the editor highlights version inconsistencies and 

schedules background tasks to classify them further. Zooming shows details of an 

inconsistency, including its severity and the specific identifiers involved. The 

programmer can respond to an inconsistency by: 

• Selecting modules to recompile. 

• Choosing different source versions. 

• Substituting previously compiled object files from the derived object pool 
(cr. DSEE). 

• Approving the inconsistency. 

A.s each part of the BCT is approved, its derivation begins. Any warning or error 

messages that result are presented to the programmer, who can further modify the BCT 

if she wishes. 

The linker and debugger cooperate to protect the programmer from link 

inconsistencies. The linker inserts a debugger hook at each inconsistent link, so that 

execution will stop before the code that uses the link is executed. The debugger then 

permits the programmer to either move the program counter to a safer place, or 

continue execution at her own risk. 

The BCT description language allows the programmer to permit two versions of an 

object module to coexist. The linker supports this by accepting multiple definitions of 

global identifiers, and linking each use to the definition with the correct type. 

The test coverage analyzer produces a database for each test indicating the code it 

covers. On request, it compares this data to the link inconsistencies in a system 

instance, and tells the programmer which tests are safe and which are not. 

The maintainer's assistant is facility for automating mundane programming tasks in a 

controlled way, called opportunistic processing. Whenever a programmer makes a 
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manual change to a source file, it schedules appropriate analysis and compilation tools 

to run in background, as resources permit. It monitors the costs of compilation and 

linking, and uses them to estimate the costs of rebuilding after a change. This 

information is fed back to the user through the browser. The analyzer performs the 

consistency analysis in background, so that the information is ready when the 

programmer is ready to edit her BCT. It also maintains an agenda of modules needing 

rewriting due to changed interfaces. 

This combination of tools helps the programmer keep track of inconsistencies, analyze 

their severity, estimate the cost of recompiling to remove them, and helps select test 

cases that avoid them. It also protects the programmer from inadvertently executing 

inconsistent code, while still allowing her to do so if she insists. 

6. Implementation 

Smarter recompilation has been implemented for the C language, as a Master's thesis 

at Columbia University [10]. It was constructed by making source code modifications to 

the portable C compiler and make. The prototype successfully handles such details as 

macros, structs, unions, and even bit field sizes and anonymous struct fields. Although 

it has not been tested on large systems, it demonstrates that the cost of adding the 

functionality to existing tools is reasonable. 

The CONMAN programming environment is being assembled from a collection of other 

systems being developed and/or used at Siemens RTL. The object base and controlled 

automation system are being designed in conjunction with the Marvel project [71. The 

browser is being implemented with the DOSE structure editor prototyping system [21. 

The system modeling language draws ideas from both DSEE and Cedar, but adds 

facilities for conveniently naming and manipulating derived objects, and for mapping 

source-language dependencies into build step input-output dependencies. For example, 

a system model could declare that one source file called procedures in another source 

file; the system builder would automatically link the second file into system instances 

that used the first. The debugger will be the Sun Unix dbxtool [161, which will be 
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primed with a set of breakpoint commands generated by the linker. Test coverage tools 

and methods will be drawn from the Asset project [13, 4]. Reachability analysis will be 

based on Ryder's methods, in a future version of the system. 

7. Conclusions 

Inconsistency is commonplace in real software projects. It is permitted to remain 

because it is often more cost-effective than consistency. 

Automatically recognizing several gradations of consistency permits the programmer 

to choose the level appropriate to her task. Better tools can reduce the cost of restoring 

consistency, but not the cost of rewriting all the code affected by a change. Smarter 

recompilation permits derivation inconsistency without sacrificing run-time type safety, 

and thereby permits some rewriting to be deferred, reducing the length of the edit­

compile-debug cycle and reducing the amount of synchronization needed between 

programmers. 

The CONMAN configuration management project is developing a programming 

environment that helps a programmer to select different degrees of consistency in 

different parts of her system. The tools will recognize and keep track of inconsistencies 

for her, and place firewalls around them during debugging, but will not force her to 

remove them. By this approach, CONMAN will help the programmer live with 

inconsistency. 
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1. Introduction 
A Very Large Software System (VLSS) is composed of a large number of interdependent modules that 
typically undergo numerous changes during their lifetime. By module. we mean a separately compilable 
syntactic unit. such as an Ada™ package. a Modula-2 module or a C source fIle. As such modules 
change. they often diverge from their specifications and the number of interface errors grows [12]. 
Change management tools are needed to coordinate programmers as they modify their modules. to 
propagate interface changes to dependent modules. and to enforce cooperation among programmers 
towards their goal of preventing interface errors. We describe a new algorithm that provides the basis for 
the INFUSE change management facility. 

The change process in VLSS is considerably more complex than for small systems. For instance, deter­
mining the extent of a change (what is affected by the change) and its implications (what is necessary for 
restoring consistency after the change) is complicated by the sheer number of the interdependencies 
among pieces of the system. Moreover. an apparently simple change can easily cascade in unpredictable 
ways. requiring several rounds of changes for restoring consistency. Other problems such as the handling 
of temporary inconsistencies or the support of the iterative process of propagating changes become much 
more complex as the size of the system increases. INFUSE handles all these problems for syntactic 
consistency. that is, those inconsistencies that can be detected by a standard compiler; we are inves­
tigating extending INFUSE to semantic inconsistencies [14]. 

Several other tools have addressed simple cases of these problems. Make [3) automates recompilation of 
all dependent modules after source changes; it determines the extent of changes, and restores consistency 
by recompiling everything which might be affected. rhus the first and fifth problems are solved in a rough 
way. Cedar's System MtXkller [9] and Apollo's Domain Software Engineering Environment [10) 
(DSEETM) give programmers more control over dependencies among distinct versions of modules, but 
provide little more help than Make with respect to coordination and cooperation. None of these tools 
directly monitor the change process; OSEE permits each programmer to set up his own monitors to cany 
out specified actions whenever certain events occur. such as adding a new version to the baseline system. 
In contrast. INFUSE does not wait for deposit into the baseline system to perform its actions. 

The NuMIL prototype [11] and Smile [6] are both much closer to INFUSE. The NuMD... prototype deter­
mines the impact of alterations based upon upward compatibility but provides analysis rather than control 
of the change process. Smile introduced the notion of an aperimeflUlJ database. which is a (virtual) copy 
of the baseline system that permits changes only to the subset of the system reserved by the user, isolating 
these changes from other programmers. INFUSE extends the notion of experimerual database to a 
multiple-level hierarchy. and. unlike Smile, gathers automatically the modules into databases. 

Previous papers on INFUSE have outlined its basic philosophy and discussed its automatic application of 
consistency-checking tools [IS, 7). In this paper. we briefly explain the INFUSE methodology and 
describe its use of a hierarchy of experimental databases for controlling and coordinating changes. We 
then present the algorithm INFUSE uses to automatically build and maintain this hierarchy. 

2. The Hierarchy of Experimental Databases 
INFUSE places all the modules involved in the change process in a distinguished experimerual database: 
the top level daUlbase. This change set is normally chosen manually by a system analyst to attempt to 
satisfy the particular group of modification requests (MRs) appropriate for the next patch or release. 
Since the more numerous the modules in the change set. the more difficult the determination of the 
implications and the extent of changes. the top level experimental database is divided into several subsets 
that are themselves experimental databases. 'The implications and extent of changes in these smaller 
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databases are easier to detennine than in the top level one. By iteratively dividing the experimental 
databases into smaller and smaller databases. INFUSE limits the interactions that the programmers must 
cope with at one time. The hierarchy of experimental databases is the result of this division. The root of 
the hierarchy is the top level database. and each hierarchy level. from coarse to fine. is a panition of the 
original experimental database; a leaf contains a single module (see figure 1). 

topolevel database 

SIngleton database. 

1. A hierarchy of experimental databases 

The actual changes are made by editing the modules within their singleton databases. Once a singleton 
database is self-consistent it can be deposited into its parent database. An analysis tool is applied to 
determine this self-consistency: everything both defined and used within the module is used correctly 
with respect to its definition and everything used but not defined within the module is always used in a 
compatible manner. Once a singleton database is deposited, INFUSE coordinates and manages the itera­
tion of changes by applying the following process recunively on every experimental database from the 
singletons to the top level (not included): 

• When all child databases have been deposited into their parent. INFUSE invokes an analysis tool for 
perfonning change propagations within this parent database and checking the consistency among its 
subset of the changed modules. An analysis tool such as Lint [S] can be applied to the modules 
after all changes are made, or errors can be detected incrementally as by Mercury [8]. 

• If the database is self-consistent. then it can be deposited into its own parent database. 
• If not. the local inconsistencies are detected and reponed to the responsible programmers, who then 

negotiate and agree on new modifications for resolving the conflicts. TIle database, or only the pan 
of it requiring further changes, is repartitioned into a subttee, and the singleton databases of that 
subtree are modified. 1be process above is reapplied to these experimental databases until the 
problematic database becomes self-consistent and can be deposited into its parent database. 

Finally. when all descendarus have been deposited into the top level and it is both self-consistent and 
consistent with the modules of the baseline system that do not appear in the top level. the top level is itself 
merged back into the baseline. 

The goal of this process is to suppan a widely accepted rule-of-thumb of software engineering: errors 
discovered early are much less costly to repair than those discovered late. TIle purpose of the hierarchy is 
to cluster together at the low levels those collections of modules where changes are most likely to lead to 
interface errors. ensuring early detection. and those collections of modules where the changes are unlikely 
to affect each other are not brought together until the high levels of the hierarchy. 

Thus we need a measure for gathering collections of modules where changes are more or less likely to 
lead to interface errors. Our measure is the illlerCOfIMcrion strength among pairs of modules, an ap­
proximation to the oracle that would tell us exactly how the future changes will effect other modules. Our 
approximation is based on the intuition that the probability of an interface error between modules M and 
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N is proportional to k. where module Muses i facilities imponed from N. N uses j facilities from M. and 
k is the sum of i and j. 

Consider three modules. A. B and C. importing and exporting items between each other. where an item is 
an importable syntactic unit of the programming language such as a procedure. a data type. etc. Since B 
and C are more strongly connected to each other than to A (see figure 2). they should be gathered in the 
same experimental database. A being added to them only at an upper level of the hierarchy. 

" X .-. Y (Y irnportl " ... front Xl 

2. Oustering according to the interconnection strength 

3. Building a Hierarchy of Experimental Databases 
There are two ways to build a hierarchy: top-down or bottom-up. The first way corresponds to 
partitioning methods and the second to clusttring. In the panitioning approach we recursively divide the 
top level experimental database until reaching the singleton databases. When dividing a database, we 
need to know a priori the number of subsets we want to obtain: this approach is TTUXUI-driven. Since the 
modules are available before beginning the construction of the hierarchy, we prefer the data·driven ap­
proach of clustering methods. 

There is a strong analogy between the construction of a hierarchy of experimental databases and the 
hierarchical clustering of a set of objects. Ousters are groups of objects whose members are "more 
similar" to each other than to members of anodler group. 'The similarity between two clusters is measlmd 
by a dissimilarity inda: the more similar any two clusters. the lower their dissimilarity index. There exist 
numerous hierarchical clustering algorithms [171 thal differ only by the choice of the measure of 
similarity between clusters. Experimental databases correspond to clusters of modules, where the 
measure of similarity between clusters is the interconnection strengths between modules. 

Hierarchical clustering is usually divided into two tasks: TIle first consists of applying the following 
general method [ 11 on the objects to be clustered. 

• Identify the two clusters (initially a single object) that are the most similar according to the 
dissimilarity index . 

• Merge them together into a single cluster . 

• Repeat this process iteratively until there is only one cluster. 

Every iteration in the clustering process forms a new level clusttring by adding a new cluster and remov­
ing the merged clusters. The fmal output of the clustering process is often pictured as a hierarchy whose 
levels are these successive level clusterings: the hierarchy arises because each new cluster merges its two 
children in the immediately preceding level. The second task consists of selecting from this hierarchy the 
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'meaningful' level clusterings according to the needs of the application. This is usually done by an 
analyst since it requires knowledge of the application domain. 

INFUSE expects a hierarchy where the arity of each experimental database is specific to the actUal inter­
connection strengths of the modules in the change set. Our proposed algorithm combines the two tasks 
described above, without recourse to a human analyst; in particular, only the 'meaningful' level cluster­
ings are actually generated, thus forming directly the hierarchy of experimental databases supported by 
INFUSE. 

4. The Arity Controlled Clustering Algorithm 
Unlike classical hierarchical clustering algorithms, our algorithm treats the level clusterings as temporary 
as long as they are not 'meaningful'. The temporary level clusterings are said to be prospective, whereas 
each level clustering that is selected is said to be frozen. The sequence of frozen level clusterings gives 
the hierarchy of experimental databases. To freeze level clusterings, the algorithm evaluates the 
similarity between the prospective level clusterings and an exemplar. We define the ariry of an ex­
perimental database as its number of immediate descendarus in the next level of the hierarchy. The 
similarity is computed by measuring the statistical dispersion of arities through a variance function 
defmed as follows: 

Let LC be a prospective level clustering and {Xl~" •• .xJ:} the sequence of the arities of its" experimen­

tal databases: Xj represents the number of descendants that the ,ib database of LC has in the previous 
frozen level clustering. 'The exemplar is defined by a single coefficient a. We define the measure va for 
evaluating the similarity between the LC and the exemplar by: 

1 J: 
va= -" L (Xj - a)2 

i=1 

The initial frozen level clustering is composed of the singleton databases. Given this initial level cluster­
ing and an example arity for all the databases of the next level. the algorithm computes all the successive 
prospective level clusterings and freezes the one that minimizes our variance measure in order to deter­
mine the next level of the hierarchy. However, it is too costly to compute all the forthcoming level 
clusterings and to backtrack to the absolute optimum. In practice, the algorithm instead finds a local 
optimum, where the degree of locality is defined by a lookahead coefficient - that is, how many 
prospective level clusterings to generate. 

The example arity is generalCd by the algorithm itself. It remembers past hierarchies involving the same 
software system, and uses previously successful values whenever possible. When not possible, such as in 
the early stages of the system's development when few changes have been made, the exemplar is chosen 
randomly or provided by an analyst. 

Controlling the arity of experimental databases is reminiscent of the model-driven partitioning approach 
we rejected, where each partition splits an experimental database in a number of sets decided a priori. 
The similarity is misleading. When our algorithm controls the clustering arity of every level clustering. it 
treats this level arity as an exemplar that it is not necessary to meet. It chooses among several prospective 
level clusterings the one closest to the exemplar but does not force the construction of a level clustering 
identical to the exemplar. 

We present a simplified version of our algorithm, with a lookahead equal to one, in figure 3. The overall 
time complexity of our algorithm is O(n210g(n», the same as the classical clustering algorithms [16], 
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even though we introduce supplementary computation by controlling the variance of the arities. 

Input: 

Output: 

The interconnection strength values between pairs of modules. 
The coefficients a,b,c.d for computing the interconnection strengths. 
The exemplar arity for every level clustering. 
A hierarchy of experimental databases. 

Start from the initial level clustering. 
L = {{md.{"'2}. ... ,{mil}}, 
whose elements are the 
singleton experimental databases reduced to a single module. Get 
the value of a for the next level. The current prospective level 
clustering is set to the previous frozen level clustering. The arity 
of each of its experimental databases is set to 1. 

While there are more than two experimental databases in the 
current level clustering do: 

l. Construct the next prospective level clustering, NLC, by merging together the two experimental 
databases of the current level clustering that maximize a (if there is more than one pair of clusters 
which realize this maximum, one of them is chosen arbitrarily. TIlis new experimental database is 
their ancestor in the hierarchy. 

2. Update the interconnection strength values. 
3. If the va of NLC is greater than that of the current level clustering, freeze the current level cluster­

ing. The arities of the experimental databases of the current level clustering are set to one. Get 
the value of a for the next frozen level. 

4. Else the NLC becomes the current level clustering. 
End While 

Meree together the last two clusters of the current level clustering. 
in order to form the last frozen level of the hierarchy. 

3. 'The arity controlled clustering algorithm 

The sequence of all the frozen level clusterings gives us the hierarchy of experimental databases. 

s. Maintaining the consistency of the hierarchy 
Changes made to modules may invalidate the hierarchy, in the sense that it no longer correctly reflects the 
interconnection strengths among modified modules. Two main classes of modifications can lead to in­
validation: 

1. Modifying the interface of a module, since the structure of the hierarchy is based on intercon­
nection strength. 

2. Adding a module to the hierarchy; a planned modification may involve creating a new module or 
conflict resolution may require modifying modules in the baseline but not in the original change 
sel 

It is possible to treat a module whose interface has been modified in the same way as a new module. The 
older version is removed from the hierarchy, and the new one added. Therefore. we focus on adding a 
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module to the hierarchy. The roughest way of updating the hierarchy is to recluster the entire change set, 
including the new module. This is too costly: Many experimental databases not affected by the modifica­
tion would also be reprocessed. and deposits to these databases would have to be repeated. However, if 
we reject full reclustering and instead make only local changes, we cannot guarantee the resulting hierar­
chy is as 'good' as the one produced by our clustering algorithm. Fortunately, most practical cases 
(where relatively few interfaces are changed) affect only a small portion of the hierarchy and only this 
portion may not be the same as had full reclustering been applied. 

In most cases, our incremenuU reclustering algorithm works as follows. The new module, M, is added to 
the top-level experimental database. Then it is merged into the next level experimental database with 
which it has the highest interconnection strength. This process is applied recursively until a singleton 
database is reached. The singleton is changed to contain two modules (the original and M) and has two 
new singleton children. 

11tis naive algorithm works very nicely except for special cases where M is only weakly connected to 
each of the children of an experimental database, which occurs most frequently with a brand new module 
that is empty. Such a module is called an outlier. To determine that the module M is an outlier among 
several databases, E1o£2, ••• o£k' our incremental algorithm computes the interconnection strength values 
between every pair of databases in the set: (E1o£2 •••• o£k'(M}}. If the maximum is realized by a pair 
that does not include {M}, it means that M is less connected to any Ej than the E j are interconnected 
among themselves. In this case. M is added as a new child of the parent experimental database. 

6. Some empirical results 
We selected Smile - a multiple-user programming environment for C developed as pan of the Gandalf 
project [4] - as our test case for this paper since it is a medium sized system where the change processes 
involve few enough modules to be illustrated nicely in figures. We have also applied our clustering 
algorithm to the 60 modules of ALOE [2], also from the Gandalf project, as well as to several much 
smaller systems. Our example assumes that two Smile modules. CMOS and CMDDATA, are to be 
modified extensively. 1berefore. the analyst also places the set of eleven modules related to them in the 
top-level experimental database, since these may also need to be modified. The interconnection strength 
values between these modules are automatically exaracted from the program text and given in the follow­
ing matrix (figure 4). Utility modules imported everywhere are not considered, since they are handled 
specially [15]. 
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CMDDUA x 
oms 27 x 
COMPILE 17 8 x 
CONCOR. 2 13 3 x 
DBLOGIC 31 23 31 • x 
DBIGN'l' 42 51 10 1 25 x 
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OPDA'l'Z 5 21 52 3 30 U 2 x 
OTILITY 27 21 28 2 0 6 0 31 x 
MSG 1 0 0 0 0 0 0 0 0 x 
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Given this data, our algorithm produces a hierarchy (see figure 5) similar to the one manually identified 
by a Smile 'expert'. When applied to the larger ALOE, the hierarchies obtained are still very similar but 
not identical to the ones computed by hand. 

7. Conclusion 
We have described INFUSE, a software development environment that supports change management in 
addition to recompilation and version control after changes. Unlike other tools, INFUSE assists program­
mers during rather than after the change process. Conflicts are detected early when they are relatively 
inexpensive to repair, rather than later after the entire change process has completed and recompilation 
and testing has begun. The major contribution of this paper is the presentation of a new clustering 
algorithm which makes such conflict detection and resolution possible. From the change set. INFUSE 
automatically builds a hierarchy of experimental databases where the most strongly connected modules 
are collected together into the 'natural' clusters specific to the VLSS and negotiation of module interface 
errors are enforced. INFUSE thus provides practical support for managing and coordinating changes in 
very large software systems. We are currently extending INFUSE with mechanisms to combine stubs and 
test drivers hand-constructed for unit testing to operate as test harnesses for the integration among 
strongly connected clusters of modules. 
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