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Abstract 

This paper proves that the complexity class Ef)P, parity polynomial time 
[PZ83], contains the class of languages accepted by NP machines with few ac­
cepting paths. Indeed, Ef)P contains a. broad class of languages accepted by 
path-restricted nondeterministic machines. 

In particular, Ef)P contains the polynomial accepting path versions of NP, of 
the counting hierarchy, and of ModmNP for m > 1. 

We further prove that the class of nondeterministic path-restricted languages 
is closed under bounded truth-table reductions. 

1 Introduction and Overview 

One of the goals of computational complexity theory is to classify the inclusions and 

separations of complexity classes. Though nontrivial separation of complexity classes is 

often a challenging problem (e.g. P i: NP?), the inclusion structure of complexity classes 

is progressively becoming clearer [Sim77,Lau83,Zac86,Sch87]. This paper proves that Ef)P 

contains a broad range of complexity classes. 

1.1 Parity Polynomial Time 

The class Ef)P, parity polynomial time, was defined and studied by Papadimitriou and 

. Zachos as a "moderate version" of Valiant's counting class #P . 

• Research supported by NSF grant CCR-8709818. 
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Definition 1.1 [PZS3] 61P = {L I there is a nondeterministic polynomial-time Turing 

machine N such that x E L if and only if N( x) has an odd number of accepting paths}. 

Papadimitriou and Zachos presented a natural complete language and proved that 61pEllP = 
61P, thus showing that 61P seems to behave differently than NP. They left as an open 

problem the relationship between EBP and ~P. Though the problem remains open, this 

paper shows that 61P contains broad subclasses of NP as well as classes that are thought 

not to be contained in NP. 

More recently, 61P has become intimately connected with the theory of near-testable 

sets-sets A for which one can test in polynomial time whether (x E A) $ (x+ E A), 

where x+ indicates the lexicographical successor of x [GJYS7]. Over the last year, the 

class of near-testable sets, NT, has been proven to share the polynomial many-one degree 

of 61P [GHJY87], and it follows from this and the work of Bennett and Gill [BGSl] that 

p A :f: NTA with probability one relative to a random oracle A [Hem87a,GHJY87). 

1.2 Classes with at Most Polynomially Many Accepting Paths 

Valiant first introduced the notion of nondeterministic polynomial-time Turing machines 

with bounded numbers of accepting computations [VaI76]-he defined UP, unique polyno­

mial time, to be the class of languages accepted by nondeterministic polynomial-time Turing 

machines that never have more than one accepting path. Grollmann and Selman showed 

that P :f: UP if and only if one-way functions exist, thus UP is a class central to cryptog­

raphy [GS84]. Recently, the possibility has been raised that UP lacks complete languages 

[HH86], and it has been conjectured [JY85] and refuted in relativized worlds [HH87] that 

P = UP if and only if all NP-complete sets are p-isomorphic. 

Allender's class FewNP, a class that contains UP, has the property that P = FewNP if 

and only if all sparse sets in Pare P-printable [A1l86]. FewNP is also related to the existence 

and invertibility of poly-to-one one-way functions [AllS5,AlIS6]. 

More generally, we define the class Few to capture the general notion of polynomial-path 

nondeterminism. 

Definition 1.2 Few is the class of all languages L such that there is a nondeterministic 

polynomial-time Turing machine N, a. polynomial-time computable predicate Q(., .), and a 

polynomial q(.), such that: 

1. x E L if a.nd only if Q(x, IIN(x )11) and 
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2. ('Ix) [IIN(x)11 ~ q(lxl)], 

where IIN(x)11 denotes the number of accepting paths of N(x). 

In words, a language L is in Few if there is a nondeterministic polynomial-time Turing 

machine N that never has many accepting paths, and a polynomial-time computable pred­

icate Q, such that on each input x, Q can look at x and the number of accepting paths of 

N (x) and determine if x E L. 

It is immediate that the class Few contains the common path-restricted classes. In 

particular Few contains Few NP, UP, and FewCR -the polynomial accepting path version 

of the counting hierarchy [Wec85,CGH*86,GW87]. Indeed, FewCR is the subclass of Few 

such that for some finite or cofinite set S, Q(x, k) is true exactly when k E S. Note that in 

the general case Q(x, k) may depend on x. 

Section 2 presents a proof that EaP ;2 Few, from which it follows that EaP contains 

FewNP and FewCR. 

Section 3 proves that Few is closed under bounded truth-table reductions. This closure 

result shows behavior different from that of many standard complexity classes. 

2 EBP:J Few 

2.1 Results and Proof 

This section shows that EIlP ;2 Few. Given a language L E Few, our proof shows how 

to construct a EIlP machine that accepts L. The parity machine will be built using as 

components the machine N and the polynomial predicate Q that demonstrate (according 

to Definition 1.2) that L E Few. 

Theorem 2.1 EIlP ~ Few. 

The idea of the proof of Theorem 2.1 is that, given a language in Few, we can construct a 

EIlP machine that dynamically organizes its own actions to insure that it has an odd number 

of accepting paths exactly when the acceptance predicate of the Few machine demands 

acceptance. Since Few acceptance predicates are sensitive to the input string, the form of 

the computation tree that our EaP machine creates will vary depending on the input. 

Corollary 2.2 

1. EIlP ;2 FewNP. 
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2. (BP ~ FewCR. 

3. (BP ~ FewModmNP, for all m. l 

Corollary 2.2 follows from Theorem 2.1 and the fact that Few ~ FewNP, Few ~ FewCR, 

and Few ~ FewModmNP. 

Proof of Theorem 2.1 We wish to show that an arbitrary language L E Few is in 

(BP. Let N, Q(', .), and q(.) be the machine, predicate, and polynomial that, according 

to Definition 1.2, place L E Few. We will use these to construct a (BP machine Mffi (a 

nondeterministic machine with the parity accepting mechanism) that accepts L. 

On input x, Mffi will determine a sequence ao, aI, ... , aq(lrl) of numbers, each zero or one. 

We will specify later how to use Q to determine these numbers. Then, nondeterministically, 

Mffi will do the following for each 0 ~ j ~ q(lxl): 

if aj = 0: do nothing 

if aj = 1: nondeterministically for every j-tuple of computation paths of N(x) do: 

if all j paths in the tuple accept: accept 

otherwise: reject. 

Note that the "accept" and "reject" above refer only to a specific nondeterministic path 

of our (BP machine }rlffi. By convention we consider every machine to have exactly one 

O-tuple of accepting paths. That is, we take the convention that (g) = 1. 

How many accepting paths will Me have on input x? If N(x) has m accepting com­

putations, the above procedure insures that the number of accepting paths of MeC x) IS 

exactly: 

L ai(rr:). 
o~ i~q(lrl) % 

Define this sum to be sCm). We are done if we can effectively (i.e., in polynomial time) 

compute ao, ••. , aq(lrl) so that: 

('v'm: 0 ~ m ~ q(lxl» [sCm) is odd ~ Q(x, m) is true]. 

Let us see how to choose the {aj}. 

I ModmNP is the cla.ss of languages accepted by nondeterministic polynomial-time Turing machines that 

by definition accept if and only if their number of accepting paths is congruent to one mod m. "Few" 

indicates a polynomial bound on the number of accepting computations. 
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Step 0: Compute in polynomial time Q(x, 0). If Q(x, 0) is true, then set ao = 1, 

otherwise set ao = O. Note that if IIN(x)ll, the number of accepting paths of N(x), is zero, 

then our $P machine Me(x) will accept exactly when x E L. 

Step k (0 < k ~ q(lxl)): At this point, we have chosen ao, ...• ak-1 to insure that 

(\1m: 0 ~ m ~ k - 1) [sCm) is odd ¢::=> Q(x, m) is true]. That is, if the number of 

accepting paths of N(x) is at most k - 1, then Afe(x) will display the correct behavior. 

At this step, we will set ak to insure that Me( x) will act correctly when N (x) has 

exactly k accepting paths. 

By convention, we represent true by the value 1 and false by the value 0; thus, predicate 

Q(x, k) has value 0 or 1. Compute in polynomial time Q(x, k), and compute (easily in 

polynomial time) 

t =def L aj (~) . 
0~j~k-1 1 

Case 1: If Q(x, k) = t (mod 2), then set ak = O. We have assured that s(k) is odd if 

and only if Q( x, k) is true. 

Case 2: In this case, Q(x, k) ¢. t (mod 2), thus Q(x, k) - t = 1 (mod 2). Crucially, 

the coefficient of ak is (number kof paths). However, when there are exactly k paths, the 

coefficient is (Z) = 1. Thus, by choosing ak = 1, we change the sum by exactly one: 

t + 1 = ( L aj (~)) + 1 = L aj (~) = s(k). 
O~j~k-1 1 O~i~k 1 

Thus, by setting ak = 1, we have insured that Q(x, k) - s(k) = Q(x, k) - (t + 1) = 0 

(mod 2). So, again, s(k) is odd if and only if Q(x, k) is true. 

The above procedure for choosing the {aj} can be done in polynomial time. Each of the 

polynomial (q(lxl)) number of steps takes polynomial time as Q is a polynomial predicate 

and the binomial coefficients require a polynomial number of multiplications and divisions 

since we deal only with values of k ~ q(lxl). 

Thus, we have defined a $P machine, Me, that accepts L, an arbitrarily chosen language 

from Few. 0 

For many predicates Q corresponding to natural complexity classes, the set {aj} of the 

above proof has a simple form. For the case ofFewNP-Q(x, k) is true if and only if k > O­

we have ao = 0 and aj = 1 for i > O. This is clear as 0 is even and LO<i<k (~) = 2k - 1 - ) 
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is odd, k > O. US [BG82] is the class characterized by nondeterministic polynomial-time 

Turing machines that accept when they have exactly one accepting path (and reject if the 

number of accepting paths is zero or greater than one). For the polynomially-bounded 

accepting path version of US, FewUS, we have ai = i mod 2. 

2.2 Generalizations 

Note that at the crucial step in the proof of Theorem 2.1, a binomial coefficient collapsed 

to one, allowing us to change the parity at will. There is nothing special about the mod 2 

underlying EBP. If we choose our ai's from {O, 1. ... , m - I}, m ~ 2, we can show that 

ModmNP :2 Few by repeating the above proof with slight modifications. 

Theorem 2.3 For each m > 1, ModmNP :2 Few. 

It follows immediately from Theorem 2.1, Corollary 2.2, and the closure of (BP under 

Turing reductions [PZ83] that: 

Corollary 2.4 

1. EBP :2 pFew. 

2. EBP ~ pFewNP. 

3. EBP :2 pFewCH, where CH is the counting hierarchy (see page 3). 

4. EBP 2 pFewModmNP, for all m. 

3 Few Is Closed Under Bounded Truth-Table Reductions 

A ~j-tt B ("A j-truth-table reduces to B") if there is a polynomial-time machine M 

such that Af(x) answers the question "x E .4?" by printing a list of at most j questions 

to B, which are then simultaneously answered, after which M must determine if x E A 

with at most polynomially more computation time [LLS75]. We say that A bounded truth­

table reduces to B (A ~~tt) if there is a constant j such that A ~j-tt B. This notion of 

polynomial-time bounded truth-table reductions has been used by Ukkonen [Ukk83] and 

Yesha [Yes83] to strengthen Mahaney's Theorem [Mah82]. Throughout this paper, we con­

sider this polynomial time version of bounded truth-table reducibility, which is common in 

computational complexity theory, and simply refer to it as bounded truth-table reducibility. 

This section proves that Few is closed under bounded truth-table reductions. 
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Lemma 3.1 Uk pFew[kl = {L I L ~rtt Few}, where [k] indicates that on each input at 

most k oracle calls are made. 

Lemma 3.1 follows immediately from the fact that pFew[ml ~ {L I L ~~m_tt Few} ~ 

pFew[Zml, so these two bounded hierarchies are interleaved. 

Theorem 3.2 Few is closed under bounded truth-table reductions: 

Few = Uk pFew[kl. 

Corollary 3.3 Few is closed under union, intersection, and complementation. 

Corollary 3.3 follows immediately from Theorem 3.2, using appropriate truth tables. 

The work that remains in this section lies in the proof of Theorem 3.2. The proof's 

strategy is the following. Suppose we know that L ~htt AI and AI E Few. We use the 

bounded truth-table reduction to get a constant number of queries to M; we combine these 

queries into the action of a single new nondeterministic machine whose paths encode the 

information of all the component Few queries and whose accepting paths are guaranteed to 

be at most polynomial in number. Finally, we assert that this new machine in fact is a Few 

machine that accepts L, by constructing a polynomial-time acceptance predicate Q that 

decodes the information about the queries to ]0,1 encoded by our new machine's paths and 

then uses the acceptance predicate of M and the bounded truth-table reducer to correctly 

accept or reject. 

Proof of Theorem 3.2 It suffices to show that Few ;2 U k pFew[kl. Given a set L that 

(for some constant m) m-tt reduces to a set M E Few, we wish to show that L E Few. 

The bounded truth-table reduction starts by translating an input into m queries to M 

in polynomial time. Each query represents a nondeterministic Turing machine computation 

that has a polynomially bounded number of accepting paths. Papadimitriou and Zachos 

[PZ83] showed that we can encode a polynomial list of NP questions into a single question 

to a #P (counting) oracle. Cai and Hemachandra [CH86j noted that their technique allows 

you to recover the number of accepting paths of the original NP questions. Intuitively, one 

duplicates computation paths to insure that the lowest order bits answer the first question, 

the next lowest order bits answer the second question, etc. 

Using these techniques [PZ83,CH86j, the m queries to a Few set could be turned into a 

single question about the number of accepting paths of a new nondeterministic computation 

whose number of accepting paths encodes the number of accepting paths of each of the m 
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queries. However, this new nondeterministic computation might have many solutions. We 

now describe an improvement on the methods of [PZ83,CH86] that, taking advantage of the 

fact that the underlying m queries have few accepting paths, allows us to combine them into 

a single computation tree that has few paths-and that implicitly describes the number of 

accepting paths of each of the m queries. 

Fix a nondeterministic machine M for .'vI. Let ql, q2, ... , qm be the m queries to .M E 

Few. W.I.o.g., each qi has at most Iq;jl accepting paths on this machine. Let p(.) be the 

polynomial bound on the run time of the btt reduction of L to M. Let us construct a new 

machine N, which on input x constructs the m queries to M and nondeterministically for 

each i, 1 ~ i ~ m, does: 

1. Clone the current state 2(i-l)(1+nogp(lxl)ll) times. 

2. Run M(qi). 

Let IIN(x)11 denote the number of accepting paths of N on input x. Note that the lowest 

order 1 + 1l0gP(lxl)ll bits of IIN(x)11 contain IIM(ql)ll. The next block of 1 + llogP(lxlYl 

bits of IIN(x)11 contains IIM(q2)11, and so on. 

So IIN(x)11 encodes the number of solutions to each of the m queries. Furthermore, on 

any x, IIN(x)11 is less than 2m(1+nogP(lxi)'l) ~ 22mp(lxl)l (recall that m is fixed). Thus, N 
is in fact a machine that never has more than polynomially many paths. 

\Ve now argue that L E Few, by showing that there is a polynomial-time computable 

predicate Q that causes machine N to accept L in the sense of Definition 1.2. Q(x, k) does 

the following. Q(x, k) decodes the set of answers to the constituent queries-ql, ... , qm­

that k indicates. For each of the m constituent queries, Q use Q M to determine whether M 

(the underlying Few set we are reducing to) accepts when we have that number of paths. 

Since L ~!:'_II M, Q(x, k) can simlua.te the polynomial-time truth-table evaluator using 

the answers Q now knows to the m queries to M. Thus, Q(x, k) can choose to accept if 

and only if the evaluator sa.ys to accept. 0 

4 Conclusions and Open Problems 

This paper has shown that the parity acceptance mechanism is flexible enough to accept 

any language in Few. In particular, EBP contains the polynomial accepting path versions of 

NP, of the counting hierarchy, and of ModmNP, m > 1. 

We also noted that Few is closed under bounded truth-table reductions. 
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It is an open question whether Few has complete languages. We suspect that Few 

may lack complete languages for essentially the same reasons that UP may lack complete 

languages [HH86]-enumeration of path-restricted machines is troublesome. 

The central open question remaining is whether EBP ;2 NP, or NP ;2 EBP, or neither. We 

conjecture that EBP and NP are incomparable ($P ~ NP and NP ~ $P), and thus that 

our inclusion $P ;2 FewNP will not be strengthened to EBP ;2 NP. 

However, even to display an oracle A for which $pA ~ NpA seems difficult. By the 

result of this paper, such an oracle would have to create a language in NpA that is complex 

enough not to be in FewNpA. It is possible, though, to construct an oracle A for which 

$pA ~ NpA (either by direct diagonalization, or as a corollary of the results of [Ya085] and 

[Cai86]). 
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