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Abstract—Content delivery networks play a crucial role in
today’s Internet. They serve a large portion of the multimedia
on the Internet and solve problems of scalability and indirectly
network congestion (at a price). However, most content delivery
networks rely on a statically deployed configuration of nodes
and network topology that makes it hard to grow and scale
dynamically. We present ActiveCDN, a novel CDN architecture
that allows a content publisher to dynamically scale their content
delivery services using network virtualization and cloud comput-
ing techniques.

I. INTRODUCTION

Content delivery networks (CDNs) have proved to be crucial
for the Internet to scale with the current boom of multimedia-
rich content consumption [1]. CDNs allow for content to
be distributed at nodes distributed around the world, and
played back from nodes that are closest to the user requesting
content. This allows CDNs to serve content much faster
to the end user, and at the same time, alleviate network
load by pushing content closer to the edges. Today’s CDNs,
however, are statically deployed and centralized redirection
mechanisms which impede dynamic deployability and result
in performance penalties.

Despite this dramatic growth in CDN technology and use,
most CDN operators and networks still rely on heavily static
deployments and pre-configured network topologies to operate
and serve content. This results in sometimes dramatic over- or
under-provisioning, and can result in too many CDN nodes
in an area that sees few request for content, or too few CDN
nodes in an area that has a lot of demand for content. When
such scenarios occur, it is hard for CDN service operators to
dynamically migrate and instantiate new nodes, resulting in a
lack of quick responsiveness to user demand and viral content.

We present ActiveCDN, a novel solution for this prob-
lem that utilizes cloud computing and network virtualization
techniques to enhance CDN instantiation. ActiveCDN enables
content publishers to dynamically deploy and instantiate CDN
modules on participating nodes (such as core and edge routers
with programming functionality) based on user requests, and
to position and balance the location of these CDN nodes on an
as-needed basis. Content publishers can thus choose to serve
the content directly themselves, or instantiate new CDN nodes
at locations closest to the users as more and more requests
come in. In addition, the CDN modules can be set up to ”time
out” after a certain period of time if no new requests are seen
at an ActiveCDN node, thus freeing up computing and space
resources on that node.

We describe our motivation in more detail in section II. In
sections III and IV, we describe our current implementations,
one of which was highlighted and chosen as an alpha project
for the National Science Foundation’s (NSF) GENI next-
generation networking project [2]. In sections VII and VIII,
we present our future work and conclusion.

II. MOTIVATION

The Internet has seen an explosive growth in traffic carrying
multimedia content in recent years. Today, content providers
either host their high-bandwidth multimedia content them-
selves, or more commonly host their content on content deliv-
ery network (CDN) providers such as Akamai and Limelight
Networks which then deliver the content. When content is
hosted on a CDN, a user request is usually redirected to a
server closer to the user. Application-specific mechanisms are
used for this, such as domain name resolution using DNS [3]
or request redirection using HTTP [4]. CDNs are statically
deployed and scaling them to adapt to sudden changes, such
as unexpected flash crowds, is currently difficult to do with-
out manual intervention and advanced over-provisioning. An
example of such a flash crowd event was the inauguration of
President Barack Obama in January 2009, which ”generated
massive Web traffic”, leading to site slowdowns. [5]

CDN technology results in reduced traffic for the provider
and the network. Pallis and Vakali [6] show that CDNs can
bypass ”traffic jams on the Web, since data is closer to
user and there is no need to traverse all of the congested
pipes and peering points.” Pallis states that CDN costs are
high (the paper cites costs from 2004), but CDN pricing has
decreased recently. For example, Amazon’s CDN services,
such as Amazon S3 [7] and Amazon CloudFront [8], have
been estimated to reduce hosting costs for low-bandwidth sites
up to 75% [9]. Hosangar et al [10] present an analysis of how
as CPU, infrastructure and traffic costs reduce, the pricing of
CDNs will reduce further over time.

While cloud computing is delivering on the promise of
elastic and flexible compute cycles in the cloud, we have yet
to see it fulfill its promise and potential in the CDN space.
While Amazon’s S3 and CloudFront services allow for CDN
functionality, it does not allow for dynamic deployment of
nodes, and also relies on a highly static and pre-configured
network topology.

We can see there is a need for being able to dynamically
instantiate and deploy nodes at required places in the network.



We believe that ActiveCDN solves this problem.
In the following two sections (sections III and IV), we

describe our current implementations of ActiveCDN, one of
which processes and handles content on the edge node, and
one of which processes metadata at the edge node while
defering content processing to the client itself.

III. ACTIVECDN ON THE EDGE NODE

ActiveCDN enables a next-generation content-delivery
mechanism using CDNs, and also allows for ”pop-up content
store” nodes that appear on an as-needed basis on the Internet
without having to be pre-deployed. Such a CDN architecture
would also be able to serve content more efficiently in discon-
nected, opportunistic networks. For instance, consider a highly
popular video that is in high demand at a certain location.
ActiveCDN can automatically pop-up a CDN content store at
nodes on some of the routes that the content traverses as it is
delivered to the end users, and that node is able to cache the
video on its local storage and serve the video directly to the
end user.

Our current implementation of ActiveCDN operates on top
of a network virtualization and cloud computing framework
called NetServ [11] [12], which allows for participating nodes
to dynamically instantiate and run modules signed by con-
tent publishers. ActiveCDN runs on top of NetServ’s service
virtualization framework.

Figure 1 shows how ActiveCDN works in a simple scenario
where users are downloading a video file from a content
provider. The content provider develops a ActiveCDN NetServ
module and makes it available for download. The content
provider’s server machines respond to the content requests as
usual.

When a content provider sees a request, it can - based on
a number of factors such as content popularity - choose to
use NetServ’s signaling capabilities to install a module on a
particular NetServ node along the path to the end user or users.

When a server notices the rate of requests from a network
location above a certain threshold, the server initiates on-path
signaling to tell the NetServ nodes in the path that they should
download and install the provider’s ActiveCDN module. The
signaling message contains the URL and other information
about the module, so that the NetServ nodes can determine if
the module is compatible with the node’s policy and capability,
and where to download it from.

Once the module is installed and verified, the content
provider can signal the ActiveCDN module to process the
video if necessary, and redirect requests for content to the
NetServ node that now holds the cached and processed video.
After a NetServ node successfully downloads the module, it
signals back the provider’s server to register itself as one of the
caching nodes. Now, the content requests originating from the
vicinity of that caching node can be redirected to the node. The
caching node will then fetch the requested content, sending
it to the user as it is being fetched, and cache it for future
requests.

Fig. 1. How on-demand content caching using ActiveCDN works.

The ActiveCDN module functionality was implemented us-
ing Java, Java Servlets API and OSGi, and a Java library called
Xuggler [13] was used for video processing functionality. The
ActiveCDN module itself processes the video and adds a
watermark video to the original video, and also serves the
processed video to the end user. (In our NSF GENI demos,
we added a watermark and local weather information as a text
overlay on top of the video.)

In our current implementation, the content server keeps
track of all the NetServ nodes that it has instantiated in a
database, and upon getting a request from a client, calculates
the closest NetServ node based on Euclidian distance between
the two nodes (based on IP address and geo-location). The
content server then redirects the request to the suitable NetServ
node, and if no such NetServ node exists, it triggers an on-
path installation of an ActiveCDN module that will install
ActiveCDN on a NetServ node closest to the user.

The ActiveCDN module caches the content based on the
request and serves the content, but also performs background
processing on the cached content. The processing is de-
termined by the functionality programmed by the content
provider, and could include anything from ad insertion to news
and weather overlay on top of the video. Subsequent requests
to the content result in ActiveCDN serving the localized,
cached content.

The ActiveCDN module will uninstall itself after a period
of inactivity. And, of course, it can be reinstalled when new
demands arise. The content provider controls the tunable pa-
rameters such as the inactivity time before module expiration.
In fact, since the ActiveCDN module is written by the content
provider specifically for the provider, the provider controls
every aspect of the module’s behavior, from the cache re-
placement policy to the algorithm to locate the nearest caching
node. The module can even modify the video content on the
fly, inserting watermarks or advertisements, for example. This



Fig. 2. A visual depiction of what happens in our ActiveCDN implementation. Our implemenation allows multiple users or clients to request video from
the content server. The content server is able to control which nodes ActiveCDN is instantiated on, and redirect users to the node of its choice.

Fig. 3. A screenshot of the original video playing on a user’s browser. This
is the video that is directly served by the origin server.

is indeed the biggest advantage of ActiveCDN compared to
the traditional content distribution network. Using ActiveCDN,
content providers can employ any distribution strategy that
satisfies their need, rather than being locked in by the mostly
static infrastructures of traditional CDN providers.

Figures 3 and 4 show screenshots of the content as seen by

Fig. 4. A screenshot of the processed video playing from one of the
ActiveCDN nodes. The video, in addition to being cached and served from
the ActiveCDN node, has been processed with the local weather information
added.

the user, for a request that is served from the origin server and
by an intermediary ActiveCDN node respectively. As seen in
the second screenshot, the ActiveCDN node can also perform
content processing in addition to actively caching the content.



In this particular example, the ActiveCDN node retrieves the
weather information for that location and creates a text overlay
on top of the video.

Our current implementation gets the weather information
from NOAA’s web-based weather API service (weather.gov).
This uses a latitude and longitude information, which in turn
is obtained using MaxMind’s GeoIP library that resolves IP
addresses to a location. We use Xuggler to process the video
and create a new video that has the weather overlay on top of
the video.

IV. ACTIVECDN ON THE CLIENT

In addition to processing the content on the nodes, we
have also worked on a mechanism to have content processed
on the client, thus relieving the core or edge router from
doing most of the processing. In this model, the ActiveCDN
module would still do some processing, such as adding addi-
tional metadata and dynamic content information, but would
only be adding textual or markup information, with all the
heavyweight multimedia processing done on the client. This
would free up resources on an edge or core router thus
allowing it to handle a larger workload, while at the same
time being indistuiguishable to the client who is able to see the
same processed content. Finally, client-side processing using
markup at an intermediate node allows true localization of
content and information that is specific to the end user, while at
the same time allowing the local edge node to tag the content
with markup language that can be localized to a particular
region.

For our current implementation, we used the SMIL markup
language [14] to append content information which is sent
to the client. SMIL is a multimedia integration, HTML-like
language. It is typically used for multimedia presentations
which integrate audio, video with images, text or any other
media type. SMIL can be used to integrate different media
objects on a NetServ router. In the previously described
implementation Xuggler, a Java library, was used for content
processing and data overlay while in this implementation, we
generate a SMIL presentation file at the intermediate node
which integrates different media along with the original video
requested, and sends the SMIL markup to the end user.

The module which serves the SMIL file is implemented as
a Java servlet process, similar to the previous implementation.
It receives the video requests and serve a SMIL file, and also
fetches the video from the content server and caches it.

The main components for the client-side ActiveCDN mod-
ule are a content server, a NetServ node running the servlet
process, and the Ambulant plugin for the Firefox browser
which displays the SMIL presentation file to the user. Am-
bulant is an open source SMIL player which supports the
SMIL 3.0 standard. The NetServ node stores a repository
of text and video advertisements. For each video request, it
fetches the local weather information as well as the latest news
feed from a news source (BBC). A weather lookup (similar
to that described in the previous section) is also carried out.
We also include a video advertisement, which in our current

Fig. 5. Client processing: A screenshot of a video with a video advertisement
in the middle of content.

Fig. 6. Client processing: A screenshot of the video with a scrolling news
ticker on top of the video.

implementation is simply a random video chosen from all the
videos in a specified directory. All XML data are parsed with
SAXBuilder class of JDOM Java library.

When the first request for the video comes in, this video is
not in the NetServ node’s cache. The servlet process in this
case generates a SMIL file which points to the video on the
content server and responds to the user with the generated
SMIL file. The ActiveCDN module also downloads the video
from the content server and caches it at the node.

For subsequent requests for the video, if the requested video
is found in the cache, the servlet process generates a SMIL
file pointing to the video found in cache. Along with this,
it also fetches weather data, a video advertisement and latest
news feed and adds them to the SMIL presentation. The video
advertisement is randomly selected from a set of videos and
inserted at a particular position in the original video. NetServ
node runs a lighttpd server to serve the cached video when
the request comes from Ambulant.



The final presentation to the end user in this implementation
appears as follows:
1. Original video, with localized weather information as a
text overlay
2. Advertisement video plays in middle of the original video
3. Rest of the original video has news ticker overlay on top
of the video

V. IMPLEMENTATION

For the ActiveCDN server implemenation, we implemented
and tested in on seven virtual machines, which were Fedora
or Ubuntu Linux images running on VMWare. The seven
machines consisted of one content server, two NetServ edge
nodes and four clients. The networking and routing tables were
set up so that the clients always connected through the NetServ
nodes (the gateway) to the content server. We used Fedora for
the content server and the NetServ nodes since we also ran
the same experiment/setup on the NSF GENI Alpha testbed
(which all ran Fedora). Our above-described implementation
ran on the virtual machine topology, as well as the real-world
GENI topology that spanned several states and timezones
across the United States (particularly, Massachusetss, Kansas,
South Carolina and Utah.)

We implemented ActiveCDN client (the
”SMIL”implementation) on 1 physical machine running
Ubuntu 10.04 and 2 virtual machines (on VirtualBox) running
the same version of Ubuntu. The physical machine was used
as the user machine running Ambulant plugin on Firefox
browser. One of the virtual machines hosted the content
server and the other virtual machine hosted the NetServ node
running the servlet process.

The screenshots in the previous section were taken from
running these implementations on top of the GENI topology
and our local testbed respectively.

VI. RELATED WORK

Traditional CDNs, such as Akamai [1] and Limelight Net-
works [15], started gaining traction in the late 1990s as large
content providers resorted to using CDN services in lieu of
their own hosting to save costs and increase efficient content
delivery. In the early 2000s, large-scale ISPs (such as AT&T)
started to build their own CDN functionality. While most of
the early CDNs served large content providers (due to the
costs involved in using a CDN), in recent years, services
such as Amazon S3 [7] and Amazon CloudFront [8] have
introduced the concept of pay-as-you-go CDN services which
allow smaller websites to use CDN services for their content.
There have been several studies of how commercial content-
delivery networks operate, mostly through reverse-engineering
[16], as well as research-oriented CDN services, particularly
those such as CoDeeN [17] that run on PlanetLab. Static
CDNs mostly comprise of statically deployed nodes placed
at strategic positions and a tradeoff between cost and network
efficiency. ActiveCDN introduces a new CDN paradigm by

allowing the content publisher to create ”pop-up” CDN nodes
on-the-fly, dynamically.

Content-centric networking (CCN) [18] has gotten a lot
of attention recently, and for good reason. Content-centric
networking, which envisions computer networking based on
content names rather than host names, allows for multiple,
signed copies of content that can be fetched or placed at any
location on the network, with requests for content being served
from the closest location. However, while CCN discovery
services such as flooding and broadcasting work well in
local networks, it is hard to see how they scale to wide-area
networks. None of the existing CCN implementations have
yet been able to address this issue, thus making wide-area
deployment and implementation of CCN applications difficult
in the real-world. CCNx is one of the most complete archi-
tectures and implementations of content-centric networking
today. There are other projects aimed at developing similar
content-centric networking models, such as Nebula [19] and
eXpressive Internet Architecture (XIA) [20], but they are
still in their infancy and it remains to be seen how they
fundamentally differ from the seminal CCNx work and what
additional features they would have in comparison to CCNx.

ActiveCDN differs from CCNx significantly. In ActiveCDN,
the publisher is able to instantiate nodes, as well as revoke
node privileges, as necessary, while in CCNx, once content is
published, it is free to be disseminated on any node. Naming in
ActiveCDN is accomplished by the user typing in the regular
URL to the content (which may be redirected as necessary),
while CCN has a new naming architecuture. Routing in
ActiveCDN is performed through redirection from the central
content publisher to the node of the publisher’s choice (usually
determined by network location and geographic proximity),
whereas in CCNx, routing in the local network is done
through broadcast announcements for Interest packets till a
corresponding Data packet is received in response. Routing
on a wide-area network in CCNx is not clearly described yet.
Finally, the most important feature, load-balancing, is done
dynamically in ActiveCDN based on the number of requests
and the density of requests coming from a particular area. In
CCNx, the content is distributed all throughout the network,
allowing for an infinite number of copies on all nodes.

CoralCDN [21] is probably the most prominent peer-to-
peer, decentralized CDN, where content is served from P2P
nodes that join and leave the network. Users, upon requesting
content, have their DNS requests is resolved through a Coral
DNS server which checks for DNS and HTTP proxies near the
client’s resolver. The user is then redirected to a Coral node
near him with the content. The content publisher has no control
over the location of the content, and in fact, no control over the
quality of the network since the P2P nodes join and leave the
network at frequent intervals. CoralCDN relies on a peer-to-
peer network for content delivery, which may be unreliable as
shown in the recent massive failure of Skype due to a bug that
led to cascading failures [22]. ActiveCDN, in contrast, allows
the content provider to dynamically control the instantiation
of nodes as well as the positioning and location of nodes.



ActiveCDN allows for localization and processing of content.
Also, it runs on NetServ-enabled nodes at edge routers that
would be more reliable in real-world scenarios and backed by
service guarantees.

Among the traditional CDN approaches that come closest
to solving the CDN problem through a dynamic method are
those that are optimized for handling flash crowds. A formal
study by Yoshida [23] compares some of the state-of-the-art
solutions for these in research, and I will contrast ActiveCDN
with three of them. DotSlash [24] and FCAN [25] allow
websites to deal with flash crowds through a pool of servers
that are designed to handle flash crowds for websites. DotSlash
allows several web sites (and their servers) to work with each
other, using spare capacity to offset flash crowds to any of the
participating sites. FCAN uses an overlay of caching proxies
to store files and deliver them to users, and invokes this overlay
when there are flash crowds. Globule [26], works in a manner
similar to DotSlash and FCAN, and allows any web server to
join the pool of available servers through the installation of
an Apache module. These solutions require prior configuration
of servers as well as spare processing power to handle flash
crowd traffic. ActiveCDN is able to instantiate CDN nodes
dynamically, based on demand.

CoopNet [27], DCDN (Distributed Content Delivery Net-
work) [28] and SCAN (Scalable Content Access Network)
[29] are hybrid CDN frameworks that combine both the in-
frastructure CDNs with peer-to-peer. DCDN uses the concept
of ”surrogates” (Internet users with high bandwidth, similar to
the ”supernode” concept in Skype) which handle content re-
quests redirected from master or local DCDN nodes. CoopNet
uses cached data at the clients to offload the central server,
with a central server handling the redirects. These solutions
require modification on the client-side in order to support the
peer-to-peer mode of operation. ActiveCDN requires NetServ
functionality at the edge routers, and does not require any
modification on the client side.

MetaCDN [30] offers a ”mashup” service, allowing content
providers to use cloud services such as Amazon CloudFront
and others, through a single interface. MetaCDN takes care of
replicating content and looking up the best location for each
request. While MetaCDN is able to dynamically use cloud
services APIs to store content in the ”cloud,” it is still restricted
by the server locations of these cloud services since it does
not actually provide any server functionality or control the
location of the servers. ActiveCDN allows the content provider
to install nodes at precise locations and points along the path.

Perhaps the feature that is most unique about ActiveCDN
is its ability to do local processing, with the processing
functionality completely controlled by the content publisher.
While there is some existing work on video/content processing
for networking applications, most of the work relates to the
processing of the video in relationship to the video format
itself [31] [32] or of text-based content [33], and not in
regards to the content delivery network. Some recent patents
[34] do discuss customized advertisement mechanisms, but
assume the functionality is already installed, and focus more

on the specifics of delivering customized ads, not on module
placement and dynamic installation. ActiveCDN appears to
be the first content delivery framework that allows the content
provider to push custom content processing power into the
delivery or service network.

VII. FUTURE WORK

We are hoping to expand ActiveCDN to allow for more ad-
vanced functionality. One of our current projects, an offshoot
of ActiveCDN, is called

The ActiveCDN module could be used for more intelligent
functionality in addition to caching and watermarking. They
could provide the following features or services:
- Language translation: the content stores could have content
translated into local languages using locale information.
- Content bridging: content stores could bridge wireless and
wired networks, allowing for one content item to be streamed
or played on multiple devices on a single wireless network.
This would allow for video to be delivered on the local wire-
less network in a much smoother way, with less interference
and less duplicate requests to the origin server for the same
content.

VIII. CONCLUSION

In this paper, we described ActiveCDN, a novel approach
to dynamic content distribution networks that can be deployed
using network virtualization and cloud computing techniques.
We believe that ActiveCDN is one of the first pieces of work
to truly bridge the two disparate worlds of content delivery
networks (CDNs) and cloud computing models. In addition
to the dynamic cloud deployability features, we have also
presented how ActiveCDN can perform processing and media
transformation as required by the publisher, thus adding true
CDN service virtualization and presenting it as an in-network
functionality.
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