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ABSTRACT

Essays on Climatic Risks and Vulnerability-Reduction Strategies

Marta Vicarelli

This dissertation analyzes three different dimensions of climate risk: (i) impacts and
responses to climate change in physical and biological systems; (ii) socio-economic
consequences of climatic variability in human systems; and (iii) the design of for-
mal insurance instruments to reduce socio-economic vulnerability to climatic risk, as
adaptation strategies. Each part represents an independent study.
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Chapter 1

Introduction

My doctoral research is motivated by the need to better understand climatic risk

and its environmental and socio-economic implications for sustainability. Climatic

change and climatic variability can affect human beings both directly (e.g. increase

in mortality associated to heat waves) and indirectly through their environment (e.g.

reductions in agricultural yields). My work investigates the dynamic interaction be-

tween climate, men and the environment. Climate-induced environmental changes

will have long-term socio-economics consequences on health, food security and water

availability, especially in developing countries. Three examples: (i) changes in natural

ecosystems associated with warmer temperatures are increasing the geographic habi-

tat of vector diseases such as mosquitoes and rodents; (ii) increasing temperatures

and weather extremes are expected to reduce productivity of agricultural systems

(also referred to as managed ecosystems), which in turn will lead to malnutrition and

micronutrient deficiencies; (iii) changes in physical systems such as the retreat of Hi-

malayan glaciers threatens water supply and the lives of tens of millions of people

(IPCC, 2007).

When I started my doctoral degree there were no studies linking global changes in

physical and biological systems to anthropogenic climate change. Documenting and

1
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understanding this relationship was a necessary step toward an informed analysis of

the socio-economic consequences of climatic risk, and eventually the design of adap-

tation strategies. These three areas of investigation also define the three parts that

compose my dissertation: (i) impacts and responses to climate change in physical and

biological systems; (ii) socio-economic consequences of climatic variability in human

systems; and (iii) the design of formal insurance instruments to reduce socio-economic

vulnerability to climatic risk, as adaptation strategies. Each part represents an inde-

pendent study.

The first study formally links for the first time observed global changes in physical

and biological systems to human induced climate change. By surveying a vast liter-

ature, my co-authors and I, demonstrated that changes in physical (i.e. cryosphere

and hydrologic systems) and biological systems (i.e. terrestrial, marine and fresh-

water biological systems; agriculture; and forestry) are pervasive and that they lie

predominantly in directions consistent with warming.

In order to perform this spatial meta-analysis I co-designed and built the Observed

Climate Change Impacts Database, which includes about 80,000 data series from 577

peer-reviewed studies, and represents the first exercise in aggregating global data from

different systems, both biological and physical; previous studies had looked mainly

at single phenomena (e.g. plant physiological changes), or smaller areas.

We then analyzed the spatial correlation of temperature trends over the past 30

years with changes in physical and biological systems and showed that they are likely

to be caused by anthropogenic climate change. We adopted the joint-attribution

approach1. Joint attribution involves attribution of significant changes in a natural

or managed system to regional temperature changes, and attribution of a significant

fraction of the regional temperature change to human activities (Rosenzweig et al.

1Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability, chapter 1.
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(2007)).

The conclusions of this study, published in Nature in May 2008, and recipient of

the NASA-GISS Best Publication Award 2008 – provide evidence that for the past

30 years, in regions affected by warming temperature trends, significant changes in

physical and biological systems have been occurring on all continents and in most

oceans.

Our analysis contributed also to the IPCC 4th Assessment Report: Climate Change

2007, recipient of the 2007 Nobel Peace Prize. In the first chapter in volume II of the

4th Assessment Report, evidence is assessed regarding observed changes (across sys-

tems and geographical regions) related to anthropogenic climate forcing. Also, using

observations of the Observed Climate Change Impacts Database we developed the

first global map of physical and biological impacts and changes2 (IPCC 2007, WGII

SPM and 1.4, figure 1.8).

Observed changes may vastly contribute to the study of adaptation and vulner-

ability. However, we found that there is a notable lack of geographical balance in

the data and literature on observed changes in natural and managed systems, with

a marked scarcity in the tropics and more generally in developing countries (IPCC

2007, Rosenzweig et al. 2008). This is unfortunate and ironic given that develop-

ing countries are expected to be particularly vulnerable in the face of climatic risk

(IPCC, 2007). Risk management techniques requires information about not only im-

pacts resulting from the most likely climate scenarios, but also impacts arising from

lower-probability but higher-consequence events and the consequences of proposed

2Locations of significant changes in observations of physical systems (snow, ice and frozen ground;
hydrology; coastal processes) and biological systems (terrestrial, marine and freshwater biological
systems), are shown together with surface air temperature changes over the period 1970 to 2004
(from the GHCN-ERSST datatset). The data series met the following criteria: (1) ending in 1990 or
later; (2) spanning a period of at least 20 years; (3) showing a significant change in either direction,
as assessed by individual studies.
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policies and measures (IPCC 2007, WG III 3.5, 3.6).

Weather shocks are already the self-reported most important risk faced by rural

households3 and extreme weather events (i.e. droughts, heat waves and floods) are

projected to become more frequent in a warming climate (Allan, 2008). Due to

limited socio-economic data series, there are few studies documenting observed effects

of warming and weather extremes in subsistence agricultural systems, among rural

populations, in developing countries. Policy needs a better understanding of the

magnitude of impacts on rural households, their distribution across income groups,

and the copying strategies available.

The second study in my dissertation explores vulnerability and adaptation to

extreme weather events in subsistence agricultural systems using Mexican rural-

household survey data. Mexico represents a useful case study having undergone

diverse degrees of climatic variability across regions in the late 1990s; furthermore,

in the same years the Mexican government collected an exceptional socio-economic

longitudinal dataset from 506 villages and 24,000 households, in areas where 92% of

households work in agriculture, and 90% of parcels are rainfed. I spatially joined

gridded precipitation data with the longitudinal rural household survey dataset to in-

vestigate the vulnerability of rural households to different weather shocks (i.e. drought

and extreme rainfall events). First, by using changes in post-shock consumption as a

metric, I estimated the vulnerability of different income groups to persistent droughts

and extreme rainfall; then, I exploited a randomized poverty reduction program (i.e.

the public cash transfer program Progresa) to measure the benefits of this intervention

in reducing vulnerability to weather shocks; and lastly, I studied migration decisions

as a form of risk-management (with potentially extensive domestic and international

3In rural surveys from developing countries, respondents invariably cite weather extremes as the
single most important risk faced by the household. Chapter 2 will describe these studies.
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socio-political consequences).

My estimates indicate stronger post-shock contraction in non-food compared to

non-food consumption, with extreme rainfall associated with stronger food contrac-

tion than droughts. These results seem to suggest intra-household reallocation of

resources from food to non-food consumption, and adoption of adaptation strate-

gies to persistent droughts. My estimates also show a dishomogeneous distribution

of impacts across income groups, with poor households more vulnerable to extreme

rainfall shock. This study rises important policy questions concerning the design and

targeting of poverty reduction programs: my results show that Progresa interacted

with weather shocks, reduced vulnerability of poor households but also increased do-

mestic and international migration of family members. This study also highlights the

importance of addressing risk and adaptation as a complement to poverty reduction

programs.

Regional efforts are a necessity of effective risk management and adaptation plan-

ning, and require both national and supranational coordination. The African Union,

for instance, is currently supporting efforts towards enhancing national and regional

capacities to mitigate exposure to disaster risk though the institution of contingency

funds and risk sharing strategies across regions. Innovative insurance instruments

to spread weather risk across regions are particularly beneficial in developing coun-

tries where incomes are volatile due to the important role of agriculture, and where

insurance and credit markets are still weak or inexistent.

In my last paper, I explore design options for weather-indexed insurance contracts

that take into account regional climatic patters in Eastern-Central and Southern

Africa. El Nino Southern Oscillation (ENSO) is an important component in mod-

ulating rainfall in this region. ENSO produces opposite climatic patterns: la Niña
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events are associated with dry climate in Eastern Africa and wet climate in Southern

Africa; during El Niño years this precipitation dipole is inverted. I analyze payouts

of weather-indexed insurance contract with respect to climate variability resulting

from ENSO. In particular, I simulate and study the distribution of possible payouts

using historical precipitation data. In this study, I argue that climate science (e.g.

ENSO forecasts) could provide robust tools to design efficient weather-indexed in-

surance instruments at a regional scale; and I discuss opportunities for re-insurance

at a sub-continental scale by pooling together contracts from regions with recurrent

opposite climatic patterns.



Chapter 2

Attributing physical and biological
impacts to anthropogenic climate
change

Abstract.1 Significant changes in physical and biological systems are occurring on all

continents and in most oceans, with a concentration of available data in Europe and

North America. Most of these changes are in the direction expected with warming

temperature. Here we show that these changes in natural systems since at least 1970

are occurring in regions of observed temperature increases, and that these tempera-

ture increases at continental scales cannot be explained by natural climate variations

alone. Given the conclusions from the Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report that most of the observed increase in global av-

erage temperatures since the mid-twentieth century is very likely to be due to the

observed increase in anthropogenic greenhouse gas concentrations, and furthermore

that it is likely that there has been significant anthropogenic warming over the past 50

years averaged over each continent except Antarctica, we conclude that anthropogenic

1This study has been published: Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G.
Casassa, A. Menzel, T.L. Root, N. Estrella, B. Seguin, P. Tryjanowski, C. Liu, S. Rawlins, and A.
Imeson. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature,
453, 353-357.

Our analysis also contributed to the IPCC Fourth Assessment Report Climate Change 2007:
Working Group II, summary for policy makers and chapter 1.

7
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climate change is having a significant impact on physical and biological systems glob-

ally and in some continents.

2.1 Introduction

The IPCC Working Group II Fourth Assessment Report found, with very high con-

fidence, that observational evidence from all continents and most oceans shows that

many natural systems are being affected by regional climate changes, particularly

temperature increases (IPCC (2007), Rosenzweig et al. (2007)). The Working Group

II further concluded that a global assessment of data since 1970 shows that anthro-

pogenic warming is likely (66 − 90% probability of occurrence) to have had a dis-

cernible influence on many physical and biological systems. Here we expand this

assessment with a larger database of observed changes and extend the attribution

from the global to the continental scale using multiple statistical tests. We also con-

sider the part that other driving forces, especially land-use change, might have played

at the study locations.

The rest of the chapter is organized as follows: section 2 presents a short survey

of observed responses to climate change in natural systems; section 3 introduces and

discusses the joint attribution approach adopted in this study; section 4 describes the

methodology used; section 5 presents our results; and section 6 concludes.

2.2 Survey of observed responses to climate change

Observed responses to climate change are found across a wide range of systems as

well as regions. Changes related to regional warming have been documented primar-

ily in terrestrial biological systems, the cryosphere and hydrologic systems; significant
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Figure 2.1: Data series of observed changes in physical and biological systems. Length
of the data series and types of observed changes in physical and biological systems.
COST725 data series of terrestrial biological changes (∼ 28, 000 European phenolog-
ical time series (Menzel et al. (2006)) were measured over 30 years (1971-2000; not
displayed).

changes related to warming have also been studied in coastal processes, marine and

freshwater biological systems, and agriculture and forestry (Fig. 2.1). In each cate-

gory, many of the data series are over 35 years in length.

Responses in physical systems include shrinking glaciers in every continent (Dyugerov

et al. (2005), Oerlemans (2005)), melting permafrost (Frauenfeld et al. (2004),

Yoshikawa and Hinzman (2003)), shifts in the spring peak of river discharge associ-

ated with earlier snowmelt (Cayan et al. (2001) Mote et al. (2005)), lake and river

warming with effects on thermal stratification, chemistry and freshwater organisms

(O’Reilly et al. (2003), Sorvari et al. (2002), Daufresne et al. (2004)), and increases

in coastal erosion (Beaulieu and Allard (2003), Forbes et al. (2004), Orviku et al.

(2003)). In biological systems, changes include shifts in spring events (for example,
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leaf unfolding, blooming date, migration and time of reproduction), species distri-

butions and community structure (Root et al. (2003), Parmesan and Yohe (2003),

Menzel et al. (2006)). Additionally, studies have demonstrated changes in marine-

ecosystem functioning and productivity, including shifts from cold-adapted to warm

adapted communities, phenological changes and alterations in species interactions

(Richardson and Schoeman (2004), Edwards and Richardson (2004), Beaugrand and

Reid (2003), Atkinson et al. (2004)).

2.3 Detection and attribution in natural systems

Following the definition of attribution of observed changes in the climate system

(Mitchell et al. (2001)), changes in physical and biological systems are attributed

to regional climate change based on documented statistical analyses confirmed by

process-level understanding in the interpretation of results. For example, a statistical

association between poleward expansion of species ranges and warming temperatures

is expected when temperatures exceed physiological thresholds. The observed changes

in both climate and the natural system are demonstrated to be: unlikely to be en-

tirely due to natural variability; consistent with the estimated responses of either

physical or biological systems to a given regional climate change; and not consistent

with alternative, plausible explanations of the observed change that exclude regional

climate change.

Attribution of changes in natural systems to anthropogenic warming requires fur-

ther analysis because the observed regional climate changes must be attributed to

anthropogenic causes. Combining these two types of attribution, called “joint attri-

bution” (Rosenzweig et al. (2007)), has lower statistical confidence than either of the

individual attribution steps alone.

One approach to joint attribution, which uses what may be called an “end-to-



11

end” method, has already been conducted in several studies of specific physical and

biological systems. This approach involves linking climate models with process-based

or statistical models to simulate changes in natural systems caused by different cli-

mate forcing factors, and comparing these directly with observed changes in natural

systems. When temperature data from the HadCM3 global climate model were used

to examine the likely cause for changes in the timing of spring events of Northern

Hemisphere wild animals and plants, results show the strongest agreement when the

modeled temperatures were derived from simulations incorporating anthropogenic

forcings (Root et al. (2005)). Other similar studies have shown that the retreat of

two glaciers in Switzerland and Norway cannot be explained by natural variability

of climate and glacier mass balance (Reichert et al. (2002)), that observed global

and Arctic patterns of changes in streamflow are consistent with the response to an-

thropogenic climate change (Milly et al. (2005), Wu et al. (2005)), and that the

observed increase in the area of forests burned in Canada over the last four decades

is consistent with the response caused by anthropogenic climate change (Gillet et al.

(2004)).

Here we conduct a joint attribution study across multiple physical and biological

systems at both the global and the continental scale. We demonstrate statistical con-

sistency of observed changes (which are very unlikely to be caused by natural internal

variability of the systems themselves or other driving forces) in natural systems with

warming and conduct spatial analyses that show that the agreement between the

patterns of observed significant changes in natural systems and temperature changes

is very unlikely to be caused by the natural variability of the climate. Combined

with the attribution of global and continental-scale warming to anthropogenic cli-

mate forcing demonstrated by IPCC Working Group I Fourth Assessment Report,

this analysis provides strong support for joint attribution of observed impacts.
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2.4 Methods

We developed a database of observed changes in natural systems from peer reviewed

papers, demonstrating a statistically significant trend in change in either direction re-

lated to temperature and containing data for at least 20 years between 1970 and 2004.

Observations in the studies were characterized as a “change consistent with warming”

or a “change not consistent with warming”. The databases of the observed significant

changes in the natural systems were overlaid with two gridded observed temperature

data sets and the spatial patterns of the observed system changes were compared with

the observed temperature trends using two different pattern-comparison measures.

Database of observed changes. We developed a database of observations from

peer-reviewed papers (primarily published since the IPCC Third Assessment Report

(2001)), specifically documenting the data series in terms of system, region, longitude

and latitude, dates and duration, statistical significance, type of impact, and whether

or not land use was identified as a driving factor. Data for the system changes were

taken from ∼ 80 studies (of which ∼ 75 are new since the Third Assessment Report)

containing 29,500 data series. Studies were selected that demonstrate a statistically

significant trend in change in either direction in systems related to temperature or to

other climate change variables as described by the authors, and that contain data for

at least 20 years between 1970 and 2004 (although study periods may extend earlier

or later). Observations in the studies were characterized as a “change consistent with

warming” or a “change not consistent with warming”.

Spatial analysis. Databases of the observed significant changes in the natural

systems and the regional temperature trends over the period 1970-2004 were overlaid

in a geographical information system. For Europe, even though there were very
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large numbers of observed response data series in some cells, these were counted as

single cells in the spatial analysis. Two different gridded observed temperature data

sets were used: HadCRUT3 (Brohan et al. (2006)) and GHCN-ERSST (Smith and

Reynolds (2005)), both of which were used in the IPCC Fourth Assessment Report.

In each 5◦ × 5◦ grid cell, the observed system responses were assessed as consistent

with warming or not consistent with warming-based on a decision rule of 80% or

more of data series consistent with warming within a cell-providing a binary pattern

of 183 (HadCRUT3) and 203 (GHCN-ERSST) cells across the globe. There are fewer

cells with temperature data in the HadCRUT3 data set because it does not use any

infilling of data from adjacent cells, unlike GHCN-ERSST. All cells with observed

temperature data are included from each of the data sets, irrespective of the sign of

the temperature trend.

The spatial patterns of the observed system changes were compared with the ob-

served temperature trends using two different pattern-comparison measures. To assess

the significance of these observed measures of pattern agreement, global temperature

trend data were obtained from long control simulations with seven different climate

models from the WCRP CMIP3 multi-model database at PCMDI, to represent the

range of 35-year temperature trends across the globe resulting from natural climate

variations. The global temperature trend fields from the climate models represent the

spatial coherence and decadal variability of natural internal temperature variations.

Two different pattern-comparison measures were used: a binary pattern congruence

(uncentred pattern correlation) between the gridded binary field of system responses

consistent (or not consistent) with warming and the gridded field of positive (or nega-

tive) temperature trends; and a pattern congruence between the gridded binary field

of system responses and the gridded field of standardized temperature trends (the

35-year temperature trends divided by the standard deviation of 35-year temperature
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trends caused by natural internal climate variations). For each of these measures,

the observed values for the two different observed temperature-trend data sets were

compared with the distributions obtained using temperature trends caused by nat-

ural internal climate variability, as represented by the climate models. Significant

attribution was assigned when both spatial statistics methods and both temperature

data sets showed significant results.

2.5 Results

2.5.1 Consistency with warming

Based on a database of documented responses in physical and biological systems from

1970 to 2004, temperature-related changes have been observed in all continents. Each

documented response is a “statistically significant” signal that is beyond the natural

internal variability of those systems. The largest numbers of entries in the database

are for Europe and North America, followed by North Central Asia (Fig. 2.2). Sparse

evidence of responses related to temperature changes exists in Latin America, Africa

and Australia. Physical and biological systems in regions without data series may

or may not be changing, but are not documented in peer-reviewed literature. Most

(about 90% of the > 29, 500 data series, P � 0.001) changes in these systems at the

global scale have been in the direction expected as a response to warming. Ninety-five

per cent of the 829 documented physical changes have been in directions consistent

with warming, such as glacier wastage and an earlier spring peak of river discharge.

For biological systems, 90% of the ∼ 28, 800 documented changes in plants and ani-

mals are responding consistently to temperature changes (mostly by means of earlier

blooming, leaf unfolding and spring arrival). Warming in oceans, lakes and rivers

is also affecting marine and freshwater biological systems (for example, changes in
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phenology, migration and community composition in algae, plankton and fish).

An evaluation of possible publication bias has been undertaken using compre-

hensive phenological network data in Europe (Menzel et al. (2006)), in which a

systematic analysis of all available records (for example, leafing and flowering) docu-

mented the percentages of data series that are not changing and of significant changes

in both directions (for example, in spring, in 66% there is no significant change, in

31% the onset dates are significantly advanced, and in 3% the onset dates are signifi-

cantly delayed)(Menzel et al. (2006)). The percentage of data series with significant

changes consistent with warming found in Europe (∼ 90%) is close to that found in

North America and Asia, providing an indication that the database may represent an

unbiased sample of changes in both directions in those continents.

2.5.2 Spatial analyses at global and continental scales

The IPCC Working Group I Fourth Assessment Report concluded that most of the

observed increase in global average temperatures since the mid-twentieth century is

very likely (> 90% probability of occurrence) to be due to the observed increase

in anthropogenic greenhouse gas concentrations (IPCC, Climate Change 2007). It

is very likely that the observed warming patterns cannot be explained by changes

in natural external forcing factors, such as changes in solar irradiance or volcanic

aerosols; the latter is likely to have had a cooling influence during this period.

At the global scale, agreement between the pattern of observed changes in phys-

ical and biological systems and the pattern of observed temperature change holds

for two different gridded temperature data sets and two different pattern-comparison

methods, and is exceptionally unlikely (P � 0.01) to be explained by natural internal

climate variability or natural variability of the systems; the latter is determined in
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Figure 2.2: Location and consistency of observed changes with warming. Locations of
significant changes in physical systems (snow, ice and frozen ground as well as hydrol-
ogy and coastal processes) and biological systems (terrestrial, marine and freshwater
biological systems), and linear trends of surface air temperature (HadCRUT3; ref.
35) between 1970 and 2004. Regions are based on data in Giorgi (2002) and Stott
(2003). White areas do not contain sufficient climate data to estimate a trend. Note
that there are overlapping symbols in some locations; Africa includes parts of the
Middle East.
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the individual studies (Fig. 2.3). The spatial coherence of temperature trends across

the globe is taken into account in these pattern comparisons using more than 3,000

years of climate model simulation data. The prevalence of observed statistically sig-

nificant changes in physical and biological systems in expected directions consistent

with anthropogenic warming in every continent and in most oceans means that an-

thropogenic climate change is having a discernible effect on physical and biological

systems at the global scale.

For the first time, IPCC Working Group I Fourth Assessment Report extended its

attribution of temperature trends to the continental scale, concluding that it is likely

that there has been significant anthropogenic warming over the past 50 years averaged

over each continent except Antarctica (Hegerl et al. (2007)). Similarly, a discernible

anthropogenic influence is found in changes in natural systems in some continents

where there is sufficient spatial coverage of responses in natural systems, including

Asia and North America, and marginally in Europe. In these continents, there is

a much greater probability of finding coincident significant warming and observed

responses in the expected direction. Despite the presence of strong climate variability

related to the North Atlantic Oscillation in Europe as well as its relatively small size,

which makes it harder to distinguish signal from noise (Hegerl et al. (2007)), the

plethora of evidence allows a signal to be detected, primarily in biological systems.

The statistical agreement between the locations and directions of observed significant

changes in natural systems and observed significant warming across Asia and North

America (P < 0.05) and across Europe (P ∼ 0.1) is very unlikely to be due to natural

variability alone Fig. 2.3. Responses not consistent with warming observed in 5◦×5◦

grid cells with warming temperature may be due to those systems responding to

seasonal rather than recorded annual changes or to local cooling not represented in

average cell temperatures; biological variation across species may also have a role
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Figure 2.3: Distribution of cells with temperature changes and significant observed
changes. Expected and observed distributions of cells with significant responses con-
sistent with warming and distributions of cells with significant responses not consis-
tent with warming for 5◦×5◦ grid cells of temperature change between 1970 and 2004
(HadCRUT3). The global total includes polar regions and marine systems. Shown
is the number of cells (n) with observed impacts and temperature data, the pattern
congruence between locations of significant responses and standardized temperature
trends (Cz), and the probability (P) that pattern agreement could be explained by
natural internal variability of temperature fields. Abbreviations: AFR, Africa; ANZ,
Australia and New Zealand; AS, Asia; EUR, Europe; LA, Latin America; NAM,
North America; NS, not significant.
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(for example, late flowering species tend to be less affected by warming than earlier

flowering ones). For the other continents, the sparse coverage of observed response

studies makes it difficult to separate the observed responses related to anthropogenic

temperature rise from those possibly caused by large-scale natural climate variations.

2.6 Discussion and conclusions

The wide variety of observed responses to regional climate trends in expected di-

rections combined with the attribution of climate trends to anthropogenic causes at

both global and continental scales (IPCC Climate Change 2007) demonstrates that

anthropogenic climate change is already having a significant impact on multiple sys-

tems globally and in some continents. Most observed system changes are found in

the cryosphere and in terrestrial biological systems and are consistent with the func-

tional understanding and modelled predictions of climate change impacts. The far

fewer data series in Africa, Australia and Latin America are closely co-located with

warming, but these cannot yet be attributed to anthropogenic climate forcing.

The issues of other climate and non-climate driving forces are important. In

considering other drivers of change for phenology, much of the evidence in plants

comes from changes observed in the spring. Even though day length can have a

modulating effect on spring phenology depending on the plant species, it is not a

factor in these studies because species remain in situ for the length of the time series,

during which day length has not changed. There is also the possibility that increasing

CO2 is directly influencing plant phenology; however, experimental results show no

consistent direction of response (that is, an advance or delay) (Ashoff et al. (2006)).

Concerning trees, older trees tend to unfold leaves in spring later than younger ones,

so with longer time series on one specific object, the onset dates should become later

with time owing to ageing, not earlier as observed owing to warming. Finally, some
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of the plant data, especially in Europe, come from phenological gardens that have

been protected from the direct effects of land-use change for decades.

Land-use change, management practices, pollution and human demography shifts

are all-along with climate-drivers of environmental change. Explicit consideration of

these factors in observed change studies strengthens the robustness of the conclusions.

To determine the role of other driving forces in the data series used in this analysis,

we assessed the likelihood of their having a direct effect on the observed system Out

of the ∼ 29, 500 data series documented in ∼ 80 studies included in the database,

effects documented in only 3 studies (9 data series in 4 cells) were likely to have been

caused by a driving force other than climate change (for example, habitat destruction,

pollution or fishery by-catch disposal). Removing these data series from the statistical

analyses does not change the results significantly.

Land-use change can affect physical and biological systems indirectly through its

effects on climate. Yet, for recent climate trends on a global scale, the effect of land-

use change is small (Hegerl et al. (2007)). In addition, because these effects may

result in warming in some regions and cooling in others (for example, agricultural

expansion tends to warm the Amazon and cool the mid-latitudes) (Bounoua et al.

(2002), Brohan et al. (2006)), they are very unlikely to explain the coherent responses

that have been found across the diverse range of systems and across the continental

and global scales considered Cooling in temperate regions occurs because the clearing

of forests for agriculture may increase albedo during periods of snow cover, although

recent afforestation may be dampening this effect.

Documentation of observed changes in physical and biological systems in tropical

and subtropical regions is still sparse. These areas include Africa, South America,

Australia, Southeast Asia, the Indian Ocean and some regions of the Pacific. One

reason for this lack of documentation might be that some of these areas do not have
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pronounced temperature seasons, making events such as the advance of spring phe-

nology less relevant. Other possible reasons for this imbalance are a lack of data

and published studies, lag effects in responses, and resilience in systems. Improved

observation networks are urgently needed to enhance data sets and to document sen-

sitivity of physical and biological systems to warming in tropical and subtropical

regions, where many developing countries are located.
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Chapter 3

Socio-economic impacts of weather
extremes in rural Mexico

Abstract Weather shocks are the self-reported most important risk faced by rural

households in developing countries. Policy needs a better understanding of magnitude

and distribution of impacts across income groups and the copying strategies adopted

by rural households. This study estimates the vulnerability of different income groups

to persistent droughts and extreme rainfall by using changes in post-shock consump-

tion as a metric. By joining precipitation data from Mexico with rural household

survey data I find higher vulnerability to severe rainfall for poor households than

high income households, with a reduction in food consumption of about 18% ver-

sus 12.8%. My data allows me to use a randomized public cash transfer program

to measure the benefits of this intervention in reducing vulnerability. My estimates

indicate that after severe rainfall treated households were able to partially smooth

their food consumption by 5%. Migration is a risk-management strategy frequently

adopted in rainfed agricultural regions in response to weather extremes. I find that

public cash transfers increased the domestic and international migration of members

of households hit by weather shocks. These findings about Mexico are significant from

a global perspective given that extreme weather events are projected to become more

frequent in a warming climate and many subtropical and semi-arid tropical regions

23
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will experience decreasing agricultural yields associated to climate change.

3.1 Introduction

”Most of the people in the world are poor, so if we knew the economics of being poor

we would know much of the economics that really matters. Most of the world’s poor

people earn their living from agriculture, so if we knew the economics of agriculture

we would know much of the economics of being poor.” (Theodore Shultz, acceptance

speech for the 1979 Nobel Memorial Prize in Economics).

Recent research suggest that the picture depicted by Schultz more than 30 years

ago has not changed: most of the poor still live in rural areas, a large share of them

depend on agriculture for a living, and the incidence of poverty tends to be higher

in agricultural and rural populations than elsewhere (World Bank, 2008; Ravallion

and Chen, 2007). Moreover, the recent pace of urbanization and current forecasts for

urban population growth imply that a majority of the world’s poor will still live in

rural areas for many decades to come (Ravallion and Chen, 2007).

Vulnerability to income-shocks (e.g, illness, famine, war, drought) is an important

dimension of poverty. In rural-household surveys in developing countries, respondents

invariably cite weather extremes as the single most important risk1. Vulnerability to

weather shocks has vast implications2, it affects food security and growth, and it is

likely to worsen in the 21st century; climate models predict that extreme weather

events will become more frequent due to anthropogenic climate change.

Weather shocks can differ in duration (e.g. persistent droughts versus sudden

1PROGRESA dataset from Mexico (1998-1999); Ethiopian Rural Household Survey (1999-2004),
Dercon and Krishnan, (2000); an Indian survey described in Gine Townsend and Vickery, (2008)

2Considering also that rainfed agriculture is practiced in about 80% of the world total agricultural
area and generates 62% of the world’s staple food (FAOSTAT, 2008).
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floods) and intensity. In order to optimize the targeting and efficiency of risk man-

agement and poverty reduction interventions, policy needs a better understanding of

the magnitude and distribution of impacts across different income groups, as well as

the copying strategies available to rural households.

By spatially joining physical precipitation data with household survey data, this

paper studies the vulnerability to weather shocks in different income groups. I focus

on two different weather shocks, persistent droughts and extreme rainfall. Post-shock

consumption is used as a metric for vulnerability. This paper also investigates the im-

pact of weather shocks on migration of family members, a common risk management

strategy that may generate important socio-economic consequences both nationally

and internationally.

Much of the literature investigating the role of income shocks on household welfare

has focused on three main aspects: the informal insurance mechanisms available at

the households and village level to smooth post-shock consumption; the magnitude

of short-term changes in household food and non-food consumption in response to

uninsured shocks; and the long-term impacts on socioeconomic welfare.

In the wake of Townsend’s (1994) seminal paper, much empirical research has

focused on testing informal insurance and perfect risk-sharing in rural villages3. In

poor rural areas, insurance and credit markets are weak or missing and household

insure their income and consumption using informal strategies. Results have failed to

find perfect consumption smoothing in the face of idiosyncratic (i.e. household-level)

shocks but did find evidence of partial risk-sharing (e.g. private food and monetary

3If communities perfectly pool their incomes to share risks, the consumption level of a given
household should be only a function of the total community income. The household own’s income
should then not affect consumption patterns, and all idiosyncratic (i.e. household-level) shocks
should be eliminated (Morduch, 1999).
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transfers)4.

Empirical results indicate that when gifts and private transfers are not sufficient to

absorb income shocks, households adopt a variety of informal insurance mechanisms.

Most of these mechanisms are costly adjustments for the household; they include

dissaving (e.g. Paxson, (1992)), depleting assets (e.g. Fafchamps et al. (1998);

Kazianga and Udry, (2006)), and child labor with consequent reduction in school

attendance (Jacoby and Skoufias, (1997))5.

Evidence suggests that, even despite these adjustments, rural households remain

significantly underinsured in the face of a variety of idiosyncratic and covariate (i.e.

village-level) shocks. Skoufias and Quisumbing (2005) and Dercon et al. (2005) found

a significant short-term contraction in food and non-food consumption generated

by a variety of underinsured income shocks that include health risks (e.g. illness,

malnutrition, famine), social risks (e.g. crime), economic risks (e.g unemployment,

financial crisis) and natural risks (e.g. drought, pests)6.

Exposure to uninsured risk may also have long-term welfare impacts. There is a

growing body of literature showing the long-term impacts of income shocks on hu-

man capital formation, namely health status and educational attainments. Two main

groups of studies have emerged: one focusing on the impacts of armed conflicts (Al-

derman, Hoddinot and Kinsey (2006) for Zimbabwe; Akresh and Vewimp (2006) for

Rwanda; Bundervoet et al (2009) for Burundi; Miguel and Roland (2010) for Viet-

nam), the other group on rainfall shocks. Using household data from rural Ethiopia,

4Townsend (1995) and Murdoch (1995, 1999) review the literature testing perfect risk-sharing.
5Murdoch (1995, 1999) and Dercon (2004) provided detailed reviews of income and consumption

smoothing mechanisms.
6Skoufias and Quisumbing (2005) synthesize results from studies in five countries describing

changes in food and non-food consumption associated to income oscillations (in Mexico), self-
reported health shocks (in Mali, Bangladesh and Ethiopia), loss of livestock (theft or death) and
wage and unemployment shocks (in Russia). Dercon et al. (2005) investigate changes in household
consumption caused by a variety of self-reported shocks in rural Ethiopia (drought, pests, crime,
illness or death of household members).
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Dercon (2004) finds that rainfall shocks in 1984-5 had a a persistent effect on house-

holds consumption growth in the 1990s. Hoddinot and Kinsey (2001) and Alderman,

Hoddinott, and Kinsey (2006) show that droughts are causally related to reduced hu-

man capital formation in Zimbabwe. Using Indonesian data for females, Maccini and

Yang (2009) find similar results; their estimates indicate that local rainfall variations

around the time of birth significantly affect schooling, health and socio-economic sta-

tus in adulthood.

This paper contributes to the literature studying the magnitude of short-term

changes in household consumption in response to uninsured weather shocks. I will

measure changes in food and non-food consumption in different income groups, after

different weather shocks. The methodology used is new: I spatially join gridded pre-

cipitation data with longitudinal household data collected to evaluate a randomized

poverty reduction intervention (i.e. the conditional cash transfer Progresa). This

dataset simulates a natural experiment and allows me to also investigate the effects

of the interaction between a randomized government program and weather shocks.

My results will have bearing also on the analysis of impacts of future climate change.

Climatic factors may play an increasingly important role in the lives of the rural poor

especially in the subtropics (e.g. Central America). There is a broad consensus among

climate models that the subtropics will dry in the 21st century and that the transi-

tion toward a more arid climate is already under way (Seager et al. 2007). Moreover,

climate models suggest that extreme precipitation will become more common in a

warmer climate (Allan, 2008). The scenario emerging for the subtropics is therefore

a more arid climate punctuated by more frequent rainfall extremes7.

Mexico represents a useful case study, having undergone diverse degrees of cli-

7Furthermore, the amplification of rainfall extremes currently observed is found to be larger than
predicted by models, implying that projections of future changes in rainfall extremes in response to
global warming might be underestimated (Allan, 2008).
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matic variability (e.g. extreme rainfall and droughts) across regions in the late 1990s.

I use precipitation data from 1998 and 1999, two years of strong weather variabil-

ity induced by a combination of three climatic phenomena: the 1994-2004 decadal

drought called Mexican 21-st century drought and two cyclical events, the 1997-8 El

Niño (the strongest El Niño event of the past century) and the 1999 La Niña. I

join precipitation data with rural household survey data from 506 villages and about

24,000 households. About 92% of households work in agriculture, and 95% of parcels

owned or used for agriculture are rainfed. I use variations in post-shock food and

non-food consumption as a metric for vulnerability. My analyses lead to the follow-

ing findings. First, as expected, household total consumption was negatively affected

by both acute rainfall and persistent droughts, with contractions of about 10% and

17% respectively. Second, households seemed to trade off non-food for food con-

sumption; non-food consumption was reduced by about 25-30% after weather shocks

while the effect on food consumption was smaller (5-13%). Third, food-consumption

seemed more severely affected by acute rainfall (-13%) then persistent droughts (-5%).

A possible explanation, that will be further explored in this paper, is the ability to

adapt to persistent conditions. Fifth, the impact of weather shocks differ by income

groups, and low-income households seem more vulnerable than high-income house-

holds to intense rains: in absence of treatment, poor households are associated to

an 18% contraction (vs 13% for non-eligible households), which is larger in both ab-

solute and relative terms than the contraction experienced by non-eligible households.

Recent empirical work has demonstrated the many benefits of conditional cash

transfers on various socio-economic welfare outcomes such as health, education and

poverty (e.g. Skoufias et al. (2001), Handa and Davis (2006)). I exploit the Progresa

randomized experiment that provided cash transfers to households in rural Mexico
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starting in 1998, and I use a longitudinal dataset over two years to measure the

benefits of the public cash transfer in mitigating vulnerability to shocks. To my

knowledge, this is the first study that combines historical precipitation data with

a randomized public intervention to measure its ability in mitigating vulnerability

to weather shocks. The Progresa transfers were randomized at the village level, in

treated villages only eligible8 households were entitled to the benefits. My estimates

lead to the following conclusions. First, the monthly transfers (equivalent to about

20% of low income households’ monthly total consumption) reduced vulnerability of

poor households particularly in case of acute rains by partially smoothing, by about

5%, the contraction in food consumption. The transfer did not help smooth non-food

consumption. Second, I use the randomized public cash transfer program to also test

for the presence of risk sharing arrangements at the village level. I found two posi-

tive spillover effects of Progresa. First, immediately after weather shocks, Progresa

had a mitigating effect; households receiving the cash transfer were less vulnerable

to extreme rainfall events (unexpected/acute shocks) and able to partially smooth

post-shock consumption (∼ +5%). Second, in treated villages, one year after the

beginning of the intervention (in 1999), Progresa benefits had spread to non-eligible

households (∼ +11− 12% in food consumption) except for villages that experienced

a drought in 1998. This seem to indicate that inter-household transfers and partial

risk sharing at the village level are less likely in correspondence to persistent shocks

(drought), and more likely when acute shock (extreme rainfall events) or no shocks

occur.

A major consequence of large weather shocks is migration, Feng et al. (2010)

and Pugatch and Yang (2010) find increased migratory movements from Mexican

8Eligibility was determined by the value of a poverty index that incorporate income and assets
levels (Skoufias, 2001).
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states hit by droughts. Migration can be an important risk management strategy for

households but unmanaged and unexpected climate-related domestic or international

migration can represent a major socio-political concern. Poverty reduction interven-

tions in rural areas may also affect migration. Angelucci (2004) shows that the Pro-

gresa cash transfer program is associated with an increase in international migration,

and the possible explanation is that the grant may loosen financial constraints. This

paper complements Angelucci’s study by investigating the effect of the interaction

between weather shocks and the randomized cash transfer on the decision to migrate

for different income groups. Droughts and acute rains increase by respectively 2 and

3 percentage points the likelihood that a household member migrates abroad or to a

different state in search of work. My estimates confirm Angelucci’s results, the cash

transfer seems to have increased mobility from treated villages in general, and espe-

cially for women from richer households after droughts. My estimates also show that

after extreme rainfall shocks (acute shocks that may compromise the harvest at the

end of the agricultural season), women’s mobility increased by 2 percentage points.

Women emerge as possible temporary migrants in times of unexpected financial needs.

The remainder of this paper is organized as follows. The next section presents the

Progresa program and descriptive statistics. Section 3 provides an overview of the

hydro-climatic conditions in Central Mexico during the 1990s. Section 4 outlines the

empirical methodology, Section 5 presents the results, and Section 6 concludes.
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3.2 Description of the Progresa program

This section presents a brief history and overview of the functioning of the Conditional

Cash Transfer (CCT) program Progresa. It draws extensively from Skoufias, (2005)9.

In 1997, the Mexican government started the first nationwide controlled random-

ized anti-poverty program. Progresa, now called Oportunitades, is a Conditional

Cash Transfer (CCT) program to promote human capital development: families re-

ceived transfers conditional on their participation in health programs and on children’s

school attendance. Over the last ten years, CCT programs have come to dominate

the social protection sector in Latin America and the Caribbean, in part also because

of Progresa’s success.

The Progresa pilot phase (1998-2000) included a robust monitoring system to

conduct independent post-intervention impact evaluations in 506 villages located in

7 Mexican states: San Luis Potosi, Veracruz, Queretaro, Hidalgo, Puebla, Michoa-

can de Ocampo and Guerrero. Progresa’s monthly CCTs started in May 1998 and

corresponded to about 20% of households’ monthly pre-intervention consumption.

The program design included 5 post-intervention socio-economic household evalua-

tion surveys (called Encuesta de Evaluacion de los Hogares or ENCEL), aimed at

assessing the program’s direct and indirect impacts. The surveys were carried out

on November 1998, March and November 1999, and March and November 2000. In

December 1999, all households in the control group started receiving the transfers.

The 24,000 households in the Progresa dataset fall in four different categories with

respect to the transfer program: in 320 locations there are households that received

the CCT and in the 186 control villages nobody received the benefits; however, in

both treatment and control villages there are about 20% of households that were not

eligible for the CCT.

9Skoufias (2005) provides detailed discussion of Progresa, the evaluation design and the estimated
impacts of the program.



32

Because of its robust impact evaluation design, Progresa’s direct and indirect im-

pacts have been widely investigated. All primary indicators of direct impacts (e.g.

school enrollment, preventive health check-ups for growth monitoring and vaccina-

tions, pre-natal care, food availability and nutritional status) on beneficiary house-

holds compared with control households have shown significant increases in the ex-

pected direction (Behrman and Hoddinott, (2005); Skoufias, (2001); Hoddinott and

Skoufias, (2004); Handa and Davis, (2006)). Progresa seems also to have produced

positive spillover effects on non-beneficiary households (Handa et al., (2001)).

Several indirect significant impacts have also been documented such as: improve-

ments in women’s status and women’s empowerment in intra-household decision-

making (Adato et al., (2000)); and increase in the value of consumption (per person

per month)10 among treatment households by approximately 14.53% (Hoddinott et

al., (2000)). Recent studies have focused on the role of networks (Angelucci et al. 2009

and 2010). Angelucci et al. (2010) find that Progresa only raises secondary enroll-

ment among households that are embedded in a family network. Eligible but isolated

households do not respond. Their study suggests that the mechanism through which

the extended family influences household schooling choices is the redistribution of

resources within the family network from eligibles that receive de facto unconditional

cash transfers from Progresa, towards eligibles on the margin of enrolling children

into secondary school.

3.2.1 Socio-Economic Data and Descriptive Statistics

Data used in this paper are drawn from the November 1998 (ENCEL98O) and Novem-

ber 1999 (ENCEL99N) surveys where comparable consumption information across

10This increase in value of consumption is concentrated mainly among two food groups: fruits and
vegetables, and animal products.
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rounds was collected. All the variables used in this empirical analysis are available

at the household level. The main socio-economic variables used include two binary

variables indicating eligibility to receive treatment E, and treatment T ; and three

continuous consumption variables: total consumption, food consumed, non-food ex-

penditures. As explained above eligibility was determined by the value of a poverty

index that incorporate income and assets levels (Skoufias, 2001). Villages are ran-

domly selected for treatment (T = 1). Within treated villages only eligible households

(E = 1) actually receive the cash transfer. For treated households E ∗ T = 1.

The value of food consumed was calculated including both food produced and

purchased; the variable food consumption is the sum of the value of consumption on

fruits and vegetables, cereals and grains, meats and animal products, and industrial

foods (e.g. sugar and beverages). Food consumption is expressed in pesos per month

and is divided by the value of adult equivalents for each household11. Non-food

expenditures do not include durable goods (e.g. appliances, motor vehicles etc.) and

other luxury goods; and are expressed as pesos per capita, per month. Both food and

non-food expenditures are expressed in October 1998 prices.12

Other variables included in this study are binary variables for self-reported losses

such as loss of harvest, soil damage (thus, unsuitable for cultivation), loss of animals.

Table 3.1 provides summary statistics for the main variables.

11The formula I used to calculate the parameter Adult Equivalent for each household is available
in Deaton (2002): AE = (adults + (α ∗ kids))θ, where adults indicates the number of individuals
of age above 10 year-old in the household; the variable kids indicates the number of children of age
below 10 year-old in the household; α = 0.3, and θ = 0.9.

12For more details on the constructions of the consumption variables see the report by Hoddinott
et al. (2000).
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3.3 Hydro-climatic conditions in central Mexico

Climatic factors, namely drying trends and weather extremes, are expected to play

increasingly important role in the lives of the rural poor, especially in the subtropics

(e.g. Central America) (Seager et al., 2007; Allan, 2008). Mexico represents a use-

ful case study: its agricultural production is mainly rainfed, and in the late 1990s,

Mexico has undergone diverse degrees of climate variability (e.g. extreme rainfall and

droughts) across regions.

In the late 90s rainfed agriculture accounted for about 75% of Mexican cultivated

land, with irrigation concentrated in the remaining 25% (CONABIO, 1998)13. Rainfed

agriculture dominates in the mountainous regions associated to the Progresa interven-

tion (Central Mexico). In the socio-economic dataset used in this study about 92%

of households work in agriculture, and 95% of parcels owned or used for agriculture

are rainfed.

In this study, I use precipitation data from 1998 and 1999, two years of extreme

precipitation events induced by a combination of three climatic phenomena: the 1994-

2004 decadal drought and two cyclical events, the 1997-8 El Niño (the strongest El

Niño event of the past century), and the 1999 La Niña.

In this section: first, I will provide a brief overview of the Central Mexican hy-

droclimate; second, I will describe the anomalous weather conditions observed during

the 1990s; and third, I will present descriptive statistics for lages under exam.

The Mexican seasonal cycle of rainfall is affected by the combination of unique

geographic conditions: latitudinal orientation, proximity to major bodies of water

and complex topography.14 These geographic features contribute to create diverse

1393.8% of indigenous ejido (government land) and community lands were not non-irrigated
(CONABIO, 1998)

14Mexico is a narrow strip of land extending in the north-south direction between two oceans: the
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local climates within the region: from semi-arid climates in the North to tropical

climates in the South. Most of the Progresa villages under examination are located

in Central Mexico in the Sierra Nevada, between 25 and 17 degrees North. Maize is

the primary crop in more than 90% of the villages in the Progresa dataset.

The annual cycle of precipitation in Central Mexico exhibits a bimodal distribu-

tion: the rainy season starts in late May, early June, and lasts through October;

the dry season starts at the end of October until the following April (Curtis, (2002)).

Rainy season and main agricultural season coincide; the planting phase starts in April-

May and farmers harvest in September-November. In this region, called the maize

belt of Mexico, precipitation maxima occur during May-June and September-October.

The rainy season is characterized by a relative minimum during July-August, known

as the midsummer drought (MSD), Canicula or Veranillo (Magaña et al., (1999);

Curtis, (2002); Curtis and Gamble (2008).15 The timing of the MSD coincides with

the phase in the maize agricultural cycle that is the most sensitive to moisture (i.e.

development phase). This means that a stronger than usual MSD can compromise

the entire harvest.16

Dry episodes are not rare events. Short-term summer droughts and severe multi-

decadal droughts with vastly negative socio-economic implications punctuate Mexican

history (Peña and Douglas (2002)). Pavia et al. (2006) and Seager et al. (2007) have

studied the variability of Mexican hydroclimate, with special attention to persistent

Pacific Ocean to the east, and to the west the Caribbean Sea, Gulf of Mexico and Atlantic Ocean. The
Mexican topography results from the intersection of four mountain ranges. The territory is crossed
meridionally by the Sierra Madre Oriental and the Sierra Madre Occidental; and longitudinally by
the Sierra Nevada (also known as Trans-Mexican Volcanic Belt) in the central part of the country,
and the Sierra Madre del Sur in the south.

15A bimodal precipitation structure is observed in other parts of the globe but never at these
latitudes. The MSD is, therefore, a unique feature of the annual cycle of precipitations over Mexico
and Central America.

16The region where the most dramatic changes in precipitation occur corresponds to the western
coast of Mexico, while on the Atlantic side of the Mexican central mountain ranges the MSD signal
is the weakest, confirming the crucial role of orographic structures (Magaña, (1999).



36

droughts; their results suggest that drought occurrence is caused by a strong natural

atmosphere-ocean variability associated with El Niño Southern Oscillation (ENSO)

events. In Central America, El Niño is historically associated with lower than average

rains between April and November, which coincides with the main growing season in

Mexico.

In the mid 1990s Mexico experienced a severe drought that continued through the

first few years of the current century, known as the 21-st Century Drought (Staehle,

2010). The central part of Mexico (that includes the Progresa villages) was exposed,

more or less intensely, to the dry signal all along the 1990s. The Climate Report for

1998 published by the American Meteorological Society (Bell et al., (1999)) indicates

that the period July 1997 through June 1998, was the driest in the historical record

for Mexico dating back to 1945, with below-normal rainfall observed in every month

except November 1997. During this period rainfall totals averaged 20%-60% of nor-

mal over much of the country. During March-June 1998 this dryness, in combination

with prolonged periods of extreme heat, led to an intensification of drought conditions

which culminated in widespread forest fires. The Mexican drought were also linked

to the 1997-98 El Niño, the strongest El Niño event of the past century (Bell et al.

(1999)).

Precipitation anomalies during the 1997-1999 main agricultural seasons are shown

in figure 3.1. The 1997 El Niño drought was exceptional not only for its intensity but

also for its timing and duration. The event manifested itself only in late June, with

a two month delay with respect to historical El Niño episodes. The other unusual

aspect of the drought was the continuation of substantially below-normal rainfall

during December-January-February 1997-98 across most of the country, despite the
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continuation of strong El Niño conditions. Historically, above-normal winter rainfall

is observed across central and northern Mexico during these episodes (Ropelewski and

Halpert (1986)), which helps to alleviate the rainfall deficits that typically develop

during the previous summer and fall (Bell et al. (1999)). Because of its abnormal

persistence, the El Niño drought affected the summer harvests of both 1997 and 1998.

This paper studies variations in consumption measured in November 1998 and

1999, at the end of the main agricultural season. Early droughts in 1998 suggested the

beginning of a new dry season but the outcome did not confirm this anticipation. A

2-year La Niña event suddenly started in the summer 1998. As a consequence, during

the harvest season in both 1998 (September) and 1999 (October), some areas experi-

enced unexpectedly intense rains and even floods (Figure 3.1 and 3.2). October 1999

rainfall were particularly devastating. Harvesting of the important spring/summer

maize crop had just started when above-normal rainfall across the central plateau

created flood conditions and damaged crops, particularly in the states of Puebla, Ve-

racruz, Hidalgo, Tabasco and Chiapas.17 Severe damages and casualties in Jalisco,

Michoacan, Puebla, and Tabasco prompted the Government of Mexico to designate

these states as zones of disaster (FAS-USDA, 1998). The Progresa dataset includes

villages in the zones of disaster (i.e. Puebla, Michoacan) as well as in Veracruz and

Hidalgo, two states were precipitation were extremely abundant.

17Along the east and west coastlines, grain growing fields were touched by the overflow from
swollen riverbeds prevalent in states. In the central plateau the abundant precipitation damaged
the crops as plants were moving from maturation into the drydown phase.
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3.3.1 Hydro-climatic Data and Descriptive Statistics

In this paper I use monthly precipitation data available from the University of East

Anglia Climate Research Unit (UEA CRU -TS2p1) (Mitchell, (2005)) to measure

the presence of rainfall shocks in the region under analysis. The monthly series are

available as interpolated gridded data with a spatial resolution of 0.5 x 0.5 degrees.

I use the standardized precipitation anomaly as regressor to analyze the impact of

weather shocks on consumption. The variable was constructed in three steps: first, I

calculated the monthly climatology for each gridcell (i.e. average precipitation over 30

years, from 1961 to 1999); second, I estimated the monthly gridcell (pixel) anomaly

by subtracting the climatology from the precipitation level for each month in 1998-

1999; and third, I divided the anomaly by the standard deviation in each gridcell to

obtain the standardized precipitation anomaly.

The 506 progresa villages are distributed over 67 gridcells (pixels). The number

of villages per gridcell varies, from a minimum of 1 to a maximum of 35. Dry and

wet spells were not uniform in the region under analysis. Some areas were hit only by

droughts early in the growing season, others only by intense rains during the harvest

season and some areas experience both phenomena. I created two binary variables:

drought and extreme rainfall. Drought equals 1 when the average standardized pre-

cipitation anomaly in April-May is below the median(-0.35). Extreme rainfall equals

1 when the standardized precipitation anomaly in September or October is above 1.

Table 3.2 presents the distribution of the two weather shocks in control vs treatment

villages, the figures suggest that there were no significant differences.
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3.4 Effect of Exogenous Income Shocks on House-

hold Consumption.

3.4.1 Empirical Specification

The empirical analysis is based on investigating the relationship between weather

shocks and household consumption. The analysis is structured in five parts: first,

assessing the correspondence between gridded precipitation signals and household

self-reported impacts/losses; second, investigating the relationship between weather

shocks and household consumption; third, comparing the magnitude of consumption

contractions in poor and non-poor households; fourth, exploring if Progresa benefits

affected the consumption patterns of households facing adverse income shocks; and

lastly testing if climatic shocks have protracted negative effect on consumption.

First, I try to assess whether and to what extent we can observe a correspondence

between gridded precipitation signals and household self reported losses. I regress

responses about losses for household h, in village v, in pixel p and time t (Lhpt)

(e.g. loss of harvest, loss of land, loss of animals) on droughts (Dpt) and extreme

rainfall(Rpt) in the previous 6 months, their interactions, a year-fixed effect (δt) and

an error term (εhvpt):

Lhvpt = α + β1Dpt + β2Rpt + ξ(Dpt ∗Rpt) + δt + εhvpt (3.1)

The estimation of equation (3.1) revealed that the coefficient of the interaction

term ξ was not significant and did not affect the other coefficients, therefore subse-

quent models do not include the interaction. Equation (3.1) has been expanded to

include additional independent variables: income group (Ehvp), residence in a treated

village (Tvp) and all their interactions. Ehvp is a binary variable equal to 1 when house-
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hold h is eligible for treatment. Tvp is again a binary variable equal to 1 if village v

has been randomly selected for treatment. Hence, the interaction term Ehvp ∗ Tvp is

equal to 1 for households that actually receiving treatment. Estimates are reported

in table 3.3 and discussed in Section 4.2.

Lhvpt = α + β1Dpt + β2Rpt + β3Ehvp + β4Tvp + φ4(Ehvp ∗ Tvp) (3.2)

+γ1(Dpt ∗ Ehvp) + γ2(Dpt ∗ Tvp) + γ3(Dpt ∗ Ehvp ∗ Tvp)

+θ1(Rpt ∗ Ehvp) + θ2(Rpt ∗ Tvp) + θ3(Rpt ∗ Ehvp ∗ Tvp)

+δt + εhvpt

As a second step of my empirical analysis, I study the impact of adverse weather

shocks on consumption using a variation of equations (3.1) and (3.2) where the de-

pendent variable is the logarithm of consumption of household h, in village v, pixel p

and year t. Consumption is measured at the end of the harvest season:

lnChvpt = α + β1Dpt + β2Rpt + δt + εhvpt (3.3)

Equation (3.3) is further expanded into the model specification corresponding to

equation (3.4) in order to compare the magnitude of consumption contractions in

poor and non-poor households, and to explore if and how Progresa benefits affected

the consumption patterns of households facing adverse income shocks:
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lnChvpt = α + β1Dpt + β2Rpt + β3Ehvp + β4Tvp + φ4(Ehvp ∗ Tvp) (3.4)

+γ1(Dpt ∗ Ehvp) + γ2(Dpt ∗ Tvp) + γ3(Dpt ∗ Ehvp ∗ Tvp)

+θ1(Rpt ∗ Ehvp) + θ2(Rpt ∗ Tvp) + θ3(Rpt ∗ Ehvp ∗ Tvp)

+δt + εhvpt

Lastly, climatic shocks that occurred in period (t − 1) are included as regressors

to test if the shocks had a protracted negative effect on consumption across the two

periods studied (1998 and 1999).

lnChvpt = α + β3Ehvp + β4Tvp + φ4(Ehvp ∗ Tvp) (3.5)

+ψ0Dpt−1 + ϑ0Rpt−1

+ψ1(Dpt−1 ∗ Ehvp) + ψ2(Dpt−1 ∗ Tvp) + ψ3(Dpt−1 ∗ Ehvp ∗ Tvp)

+ϑ1(Rpt−1 ∗ Ehvp) + ϑ2(Rpt−1 ∗ Tvp) + ϑ3(Rpt−1 ∗ Ehvp ∗ Tvp)

+δt + εhvpt

An estimation detail worth noting is that all standard errors are clustered by pixel

to adjust for heteroskedasticity and within-pixel correlation over time.



42

3.5 Results

3.5.1 Consumption Patterns

Self-reported Agricultural Losses. The first step in my analysis has been to

explore the relationship between self-reported losses and weather shocks. Although

self-reported losses are a questionable measure of actual losses, this preliminary test

allows us to map possible channels through which weather shocks might have affected

household consumption. I expect weather shocks in 1998 and 1999 to have caused

losses in harvest, cultivable land (i.e. damaged soil), animals and hardware. Table

3.3 reports numerical results from estimating versions of equation (3.2), with stan-

dard errors clustered by pixel18. The negative coefficient associated to low-income

households (i.e. Eligible) suggests that households with fewer resources are less likely

to report losses of cultivable land, harvest, and animals. Possible explanations are

that poor households might be more prone to plant despite adverse soil conditions,

might be more likely to harvest whatever they can for subsistence, and tend not to

have assets such as animals.

Table 3.4 allows us to compare self-reported losses for eligible and non-eligible

households under different weather conditions: no shocks, drought and extreme rain-

fall. Coefficients in the fours lines are obtained by combining linearly estimated

coefficients in table 3.3, columns (2), (5), (8) and (11) respectively. The baseline in

each of the two groups (i.e. eligible and non-eligible) corresponds to households that

did not experience any shock. The coefficient 0.105 in the first line, column (B),

indicates that among non eligible households, the probability to report harvest losses

is 10.5 percentage points higher for households that experienced a drought during

the planting season compared to the baseline (i.e. non-eligible households that did

18The coupled effect of dry spells and intense rains occurring during the same harvest season (not
included in table 3.3) did not provide significant results and did not affect the other coefficients.
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not experience any shock). The occurrence of a drought seems to be associated to

higher probability of reporting harvest losses for both non-eligible and eligible house-

holds (respectively 10.5 and 15.6 percentage points higher). Coefficients in columns B

and E are not significant with respect to soil damages and loss of hardware. Among

households experiencing a drought, only richer households (i.e. non-eligible) are more

likely to report a loss of animals (by about 2 percentage points).

The scenario is darker in case of extreme rainfall: all coefficients in columns (C)

and (F) are positive; and the likelihood of reporting losses is significantly higher for

harvest, soil and hardware. In particular, extreme rainfall seems to be associated

to higher probability of reporting harvest losses for both non-eligible and eligible

households (about 18 percentage points higher).

Contraction in Consumption. A decline in agricultural productivity and asset

losses induced by climatic shocks is expected to create liquidity constraints and even-

tually a contraction in households’ consumption.

Table 3.5 reports results from estimating equation (3.4). Estimates present changes

in the logarithm of total, food and non-food consumption associated to dry spell and

intense rains controlling also for low-income group (E) and treatment (T). As ex-

pected, even in the absence of shocks, low-income households are characterized by

lower consumption levels, in the saturated model (columns (6) and (9)) the coeffi-

cients associated to low income households corresponds to -9% in food consumption

and -54% in non-food consumption. The interaction between low-income and treated

(Ehvp∗Tvp) is a categorical variable equal to 1 for low-income households that actually

received Progresa benefits.

Given the high number of interaction terms in table 3.5, in order to facilitate the

interpretation of my estimates, I have linearly combined the coefficients in columns

(6) and (9). Results are presented in table 3.6, and allow to compare differences in



44

post-shock food and non-food consumption for eligible and non eligible households,

in treated and non-treated villages. Each coefficient represents the difference in log

consumption with respect to the baseline (column (A)), for instance: the coefficient

in column (B), first row, refers to eligible households in non-treated villages and

represents the difference in log food consumption between households affected by

a drought and the baseline (households that did not experience any shock). The

general picture emerging from table 3.6 is that droughts and extreme rainfall events

are associated with contractions in both food and non-food consumption for both

eligible and non-eligible households.

I have performed robustness checks using absolute precipitation in the spring

and fall as independent variables, including a village fixed-effect and with standard

errors clustered by pixel. Results show that: (i) spring precipitation has no effect on

consumption; (ii) fall precipitation has positive effect on food consumption; and (iii)

fall precipitation has negative effect on non-food consumption for poor-non-treated

households. The positive impact on food consumption might suggest non-linearities in

the effect of precipitation which is otherwise captured by the model including binary

variables for shocks.

A closer look at the results in table 3.6 shows that there are differences in impacts

across income groups. Let’s focus first on food consumption. Food consumption

of poor households (i.e. eligible) does not seem significantly affected by droughts,

while for non-eligible households the estimated contraction in food consumption is

about 5-9%. The coefficients associated to extreme rainfall events (columns (C) and

(F)) are all negative; however, poor and treated households (i.e. eligible in treated

villages) do not present a significant contraction in food consumption. In absence

of treatment, poor households are associated to an 18% contraction, which is larger

in both absolute and relative terms than the contraction experienced by non-eligible
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households. Among non-eligible households extreme rainfall is associated to a 8-12%

contractions in food consumption compared to households that did not experience

shocks.

Non-food consumption is strongly and significantly affected for all households with

contractions of 21-36%. It is worth noting that contractions in food consumption are

always smaller compared to non-food consumption. This is not surprising, households

facing severe income shocks are more likely to smooth food consumption first while

reducing non-food consumption.

Extreme rainfall events seem to have stronger negative impacts compared to dry

spells, except for eligible and treated households. There are several possible explana-

tions: (i) the first is timing, droughts in 1998 and 1999 started before the beginning of

the agricultural season, thus households could plan ahead and diversify their income

generating activities; (ii) the second is the duration of the shock, droughts usually

persist multiple months, and rural households could make long-term decisions to ad-

just (e.g. seasonal migration of household members to other states); (iii) the third is

experience, Mexico is historically prone to persistent droughts and households might

have developed strategies to adjust during dry spells.

Conditional Cash Transfer Table 3.7 allows us to interpret the role of the ran-

domized conditional cash transfer Progresa in absence of shocks. Coefficients in

columns (3) represent the difference in log food and log non-food consumption be-

tween eligible and non-eligible households in treated and control villages. The only

significant coefficient is the difference in food consumption for eligible households;

Progresa seem to increase food consumption of eligible households by 9.47%, but

it does not seem to affect their non-food consumption. This confirms that treat-

ment achieved one of Progresa’s goals by successfully increasing food consumption

for low-income households. The government intervention does not seem to change
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consumption of non-eligible households, which suggests that there are no spillover

effects or transfers between eligible and non-eligible households.

The interaction between the conditional cash transfer and weather shocks repre-

sents an additional level of analysis. Table 3.8 shows differences in post-shock food

consumption between eligible and non-eligible households in treated and control vil-

lages, after droughts (in column (6)) and extreme rainfall (in column (9))19. Progresa

seems to have benefited only eligible households affected by rainfall: the difference in

food consumption between treated and non-treated households is about 15%. There

are no significant differences associated to droughts. Non-eligible households facing

weather shocks do not benefit from Progresa, which suggests that there are no intra-

village transfers. Results for non-food consumption are similar (Table 3.8, columns

(6) and (9)): the difference in non-food consumption between treated and non-treated

households after extreme rainfall events is about 15%.

Low-income households appear to be more vulnerable to intense rains than higher

income groups, the coefficient associated to the interaction of intense rain and poor

(Rpt ∗Ehvp) is a significant -5% in food consumption. An important result is that this

negative impact is perfectly compensated by eligible households receiving treatment.

Progresa represents a sort of insurance mechanisms that allowed low income house-

holds to smooth consumption in case of unexpected punctual income shocks (extreme

rainfall events).

Prolonged Effects of Exogenous Shocks. The next empirical exercise tests the

hypothesis that the liquidity constraints induced by income shocks might have pro-

tracted consequences over the next agricultural season. Table 3.9 reports results

from estimating equation (3.5) for total, food and non-food consumption. Even in

the absence of shocks, low-income households are characterized by lower consumption

19coefficients are obtained by combining linearly estimates in table 3.5 (columns(6) and (9))
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levels20.

Linear combinations of estimates are presented in table 3.10. Non-food consump-

tion levels of households hit by weather shocks are still significantly contracted, for

both eligible and non-eligible households, even in treated villages.

Results for food consumption are less homogeneous. Let’s focus first on food con-

sumption of eligible households (first row). We observe three interesting results. First,

non-treated households present persistent negative effects one year after extreme rain-

fall shocks (column (C)). Second, treated households that did not face weather shocks

in 1998 (column (D)) are associated to a 17% higher food consumption compared to

the baseline (i.e. non-treated households that did not experience weather shocks in

1998). Third, food consumption of households that did face a drought in 1998 is

7% higher compared to the baseline (i.e. non-treated households that did not ex-

perience weather shocks in 1998). From these results emerges that extreme rainfall

events, unlike droughts, have a protracted negative impact on food consumption of

eligible households, and that Progresa was successful in improving food consumption

in eligible households even if affected by weather shocks in 1998.

Let’s now look at food consumption of non-eligible households. In non-treated

villages, households affected by a drought in 1998 were able to smooth consumption

while households hit by extreme rainfall events in 1998 present a persistent contraction

of about 13% compared to households that did not experience shocks. This suggests

that extreme rainfall events in 1998 generated persistent impacts. In treated villages,

there are two very interesting results: first, extreme rainfall events did not generate

persistent impacts; and second, food consumption of households that did not face

shocks in 1998 is actually 12% higher compared to non-treated households. These

20The coefficient associated to Eligible corresponds to −8% for food consumption and −49% for
non-food consumption
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results seem to suggest the occurrence of Progresa spillover effects (inter-household

transfers) associated to food consumption to non-eligible households.

The beneficial effect of Progresa on food consumption of all households in treated

villages is confirmed by coefficients in table 3.11. Column (3) presents the difference

in food consumption between treated and non-treated villages (without considering

possible interactions between treatment and weather shocks). The two coefficients in

column (3) suggest that there is a significantly positive difference in food-consumption

between households in treated and control villages; this difference in consumption

associated to Progresa corresponds to +17% for eligible households and +12% for

non-eligible households. There seem to be no differences in non-food consumption

between households in treated and control villages. Progresa benefits seem to have

been canalized toward food consumption.

Table 3.12 shows the effect of the interaction between treatment and weather

shocks. Let’s look first at households that experienced a drought in 1998: eligible

households in treated villages have a 7% higher food consumption than comparable

households in non-treated villages; for non-eligible households the difference in food

consumption between treated and non-treated villages is not significant.

The interaction between Progresa and extreme rainfall events presents different

outcomes. Both eligible and non-eligible households in treated villages affected by

extreme rainfall in 1998 benefited from Progresa. The difference in food consumption

between households in treated and non-treated villages is 21% for eligible households

and 11.42% for non-eligible households. Sharing of Progresa benefits seem to have

occurred after extreme rainfall shocks .

There are not significant differences in non-food consumption between treated and
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non-treated villages, with one exception: eligible households in treated villages con-

sume about 13% more than comparable households in control villages.

From the results just described we can conclude that, one year after the beginning

of the Progresa pilot, the program seem to have generated two positive outcomes:(i)

it has improved food consumption of eligible treated households; and (ii) it has also

indirectly benefited food consumption of non-eligible households in treated villages

that in 1998 where not affected by weather shocks or that experienced extreme rainfall

events. We do not observe positive spillovers in villages affected by droughts in 1998.

These results will be further discussed in section 3.5.2.

Vulnerability and Resilience of Low-income Households. From the above

discussion on the results in Tables 3.6 and 3.10 emerges that low income household

are more vulnerable to income shocks. In particular, coefficients in table 3.6 (column

(C)) show that immediately after intense rains occurred, eligible (i.e. poor) house-

holds experienced an -18% contraction (first row) in food consumption compared to

the baseline (i.e. poor households that did not face any shocks), while non-eligible

households experience a -13% contraction compared to the baseline (i.e. non-eligible

households that did not face any shocks). The difference in food consumption asso-

ciated to poor households is larger in both absolute and relative terms than the one

experienced by non-eligible households.

Impacts of sudden extreme rainfall events may be more severe for poor households

for a variety of possible reasons. First, poorly built housing units are more likely

to be damaged by heavy precipitation. Second, poor households in mountainous

regions usually have access to lower-value land (e.g. poor soils on steep slopes) and

consequently their harvest is more likely to be compromised by intense surface runoff.

Third, poor households in rural areas are more likely to rely almost exclusively on
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agriculture instead of diversifying their income-generating activities; a sudden weather

shock during harvest season does not allow them to adapt and might translate into a

major perhaps even insurmountable loss for the household.

In absence of treatment poor households appear to be also less resilient to extreme

precipitation. Table 3.10 is analogous to 3.6 and provides insights about impacts on

food and non food consumption one year after weather shocks occurred. Coefficients

in this table provide us with a measure of resilience to shocks, small or insignificant

coefficients indicating that households were able to overcome the shock and adjust

their consumption to levels comparable to the baseline (i.e. households that did not

experience any shock). Column (C) shows that one year after extreme rainfall events

occurred, in non-treated villages, eligible (i.e. poor) households were still associated to

a -17% difference (first row) in food consumption compared to the baseline (i.e. poor

households that did not face any shocks), while non-eligible households experienced

a -13% difference compared to the baseline (i.e. non-eligible households that did not

face any shocks). The difference of food consumption associated to poor households

is still larger in both absolute and relative terms than the one experienced by non-

eligible households.

3.5.2 Mitigation by Progresa

Progresa was designed to reduce poverty by targeting nutrition, health, and educa-

tional attainment. Results in table 3.7 suggest that in the absence of climatic shocks,

treated households reported higher food consumption (about 9% more) than non-

treated families of comparable income. Such results are consistent with the literature

on Progresa evaluations (Skoufias et al, 2001). Two more important results emerge

from my analysis and will be further discussed below.
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Partial Consumption Smoothing. In 1998 and 1999 the months of September

and October were characterized by abnormally intense rainfall. According to the Pro-

gresa survey schedule, households consumption was measured at the end of October.

My estimates for food consumption (table 3.5, column (6), coefficient R×E) suggest

that low-income household were more vulnerable to intense rains than higher income

groups. However, the almost-immediate negative impact (-5%) of intense rains on

food consumption of low-income households seem to have been completely smoothed

by treatment for beneficiary households (table 3.6, columns (C) and (F)). Progresa

cash transfers appear to have reduced the vulnerability of poor beneficiary households

acting as a partial insurance mechanism by smoothing food consumption.

Informal Insurance at the village level. Progresa benefits started being dis-

tributed in May 1998. In villages randomly selected for treatment and untouched by

the 1998 climatic shocks, by November 1999 Progresa had increased food-consumption

for all households, including non-eligible households. The beneficial effect of treat-

ment can be seen in table 3.11, column (3)21, where the coefficients associated to food

consumption in treated villages are positive and significant and correspond to an in-

crease of 17% and 12% for eligible and non-eligible households respectively (compared

to households in non-treated villages). In treated villages Progresa benefits combined

with informal insurance mechanisms (such as inter-household food or monetary trans-

fers) seem to have generated an increase in wealth with positive externalities on food

consumption at the village level. Non-food consumption was not affected (Table 3.11,

column (6)).

In treated villages affected by weather shocks in 1998, Progresa’s benefits on food-

consumption depend on the nature of the shock:

21As well as table 3.10, column (D)
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• after droughts, only eligible households in treated villages present a food con-

sumption level significantly higher 7% than comparable households in non-

treated villages. There does not seem to be any spillover effect to non-eligible

households (Table 3.12 column (6)).

• after extreme rainfall events, both eligible and non-eligible households in treated

villages present a level of food consumption significantly higher (respectively,

22% and 11%) than comparable households in non-treated villages (Table 3.12

column (9)).

These results seem to suggest that after extreme rainfall events inter-household

transfers effectively increased food consumption at the village level. One pos-

sible explanation is the unexpected nature of the shock, which might trigger

solidarity at the village level. Droughts are progressive, persistent events and

households might have time to adapt. Another element to take into account is

timing: droughts occurred at the beginning of the agricultural season, during

the planting phase, when households still had time to find alternative income

generating activities. Floods, on the other hand, occurred at the end of the

agricultural season leaving to when harvest losses were inevitable and there was

no time to adjust. Another dimension differing between the two types of shock

is their distribution: floods might affect households of the same village in a

different way, while droughts are a covariate shock. Inter-household transfers as

informal insurance mechanisms are less likely to occur when the whole village

is affected by the shock. The perception of damages incurred are also different,

impacts of floods might be more sudden but also more visually startling and

prompt households to share with neighbors.
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3.5.3 Migration

When inter-household transfers and other informal insurance strategies (e.g. crop

diversification and asset depletion) are not sufficient to protect consumption, tem-

porary or permanent migration of household members can be a possible solution.

Migration of family members allows geographic diversification of incomes and might

help protecting consumption at the household level. This section will explore the

determinants of the decision to migrate.

Timing and Destination The Progresa 1998 and 1999 surveys contain detailed

questions about emigration of household members, including month of departure and

destination. Figure 3.3 (top) shows the distribution of migrants in the 1990s. The

number of migrants increased dramatically in 1997 and then even more in 1998.

Recent literature has found strong correlation between rainfall shocks (i.e. droughts)

and Mexican migration (Yang and Pugatch (2010); Feng et al. (2010)). Figure 3.3

(middle and bottom) shows the month of departure of migrants who left to look for

work in 1998 and 1999 and did not return. Bars of different colors indicate if the

migrant departed from a region that: (i) did not experience any climatic shocks,

(ii) experienced a drought in April May, (iii) experienced severe rainfall. The peak

of migration in May corresponds with the end of the planting season. A possible

explanation might be that seasonal workers who usually leave their communities in

May, instead of coming home at the end of the season chose to work in a different

location, due to economic hardship in their home villages. It is also worth noting that

there is large percentage of migrants leaving in September and October 1998 from

regions hit by extreme rainfalls. Figure 3.4 presents the destinations of migrants.

Bars of different colors indicate the shocks experienced in their communities of origin.

The majority of migrants from villages hit by droughts moved to a different state or
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abroad, in localities that were probably distant enough not to be affected by the

climatic shock.

Effect of Progresa on Migration of a Family Member. I created a binary

variable equal to 1 if the household reported that one member migrated and did not

return in the previous 12 months (Mhvp). I considered only migrants who left to other

Mexican states or moved abroad for professional and economic reasons. Unfortunately

the available data could not provide information on migration of entire households. I

expected climatic shocks to increase the probability to migrate. Migration to distant

destinations requires itself an initial investment. Are poor and non-poor equally

likely to migrate? Citing a theoretical contribution by Banerjee and Newman (1998),

Murdoch (1999) observes that lack of informal insurance social network in urban

areas may inhibit mobility from villages. More specifically, only relatively rich and

relatively poor (who never had much group based insurance to start with) will migrate.

Poor households that rely heavily (and predominantly) on their social network as

source of informal insurance might be less likely to migrate. To explore if climatic

shocks, income, and Progresa transfers affect migration decisions at the household

level equation (3.6) is estimated:

Mhvpt = α + β1Dpt + β2Rpt + β3Ehvp + β4Tvp + φ4(Ehvp ∗ Tvp) (3.6)

+γ1(Dpt ∗ Ehvp) + γ2(Dpt ∗ Tvp) + γ3(Dpt ∗ Ehvp ∗ Tvp)

+θ1(Rpt ∗ Ehvp) + θ2(Rpt ∗ Tvp) + θ3(Rpt ∗ Ehvp ∗ Tvp) + δt + εhvpt

The model reproduces the main equation (3.4). The event that an household

member migrates is regressed on the occurrence of climatic shocks (Dpt and Rpt),

income group (Ehvp), residence in a treated village (Tvp) and their interactions.
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Table 3.13 reports the results for equation (3.6): all migrants (columns 1-3), fe-

males (columns 3-6) and males (columns (6-9). In table 3.13 (column (3)) show

estimates for the model where men and women are aggregated. We find that the

coefficient associated to treatment T is positive and corresponds to ∼ 0.04. These

results are consistent with a recent study by Angelucci (2010). Angelucci used the

Progresa dataset to estimate the effect of the potential grant size on migration. Her

estimates suggest that the program is associated with an increase in international

migration, which is also a positive function of size of the transfer.

In order to facilitate the interpretation of estimates in table 3.13 linear combina-

tions of coefficients in columns (6) and (9), considering separately men and women,

are provided in table 3.14. The main findings are outlined below.

First, extreme rainfall shocks seem to be associated to higher likelihood of migra-

tion for women in both eligible and non-eligible households, in both treatment and

non-treated villages (columns (C) and (F)). This difference in probability of migration

is consistently about 2 percentage points higher than the baseline for each category

(i.e households that did not experience shocks, column (A)). Treated households are

prevented from migrating by Progresa itself, in order to keep receiving the transfer

eligible households must reside in the treated village. However, this would not prevent

household members from engaging in temporary or permanent migration in times of

need.

Second, in absence of shocks, Progresa by itself seems to affect the decision to mi-

grate of family members. More particularly, in treated villages women in non-eligible

households seem more likely to leave, with a probability that is 2 percentage points

higher compared to non treated villages (table 3.15 column (3)). Why are non-eligible

women and not eligible women more likely to migrate? One hypothesis could be that
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Progresa triggers some redistributive mechanism within the village, that in turn re-

duce financial constraints of non-eligible households, while eligible households are still

too poor to leave. Because of Progresa, in treated villages richer households might re-

duce their transfers to poor households, this might in turn loosen financial constraints

of non-poor households and favor migration of a household member, particularly in

case of drought.

Women are significantly affected by rainfall shocks. What does gender tell us

about migration decisions? Why is migration of women and not men affected by

weather shocks (particularly extreme rainfall events) in our dataset? Women might

be temporary migrants, who leave temporarily to provide as secondary earners in

times of financial need. Also, rainfall shocks occurred at end of the agricultural

season (beginning of the summer) and it is possible that women are more likely to

find non-agricultural positions (e.g. maids, domestic help in urban areas). Another

possibility is that men “predisposed” to leave might have already left earlier in the

1990s in response to dry conditions. A broader investigation considering a longer

time frame, differencing between men and women, and studying permanent versus

temporary migration patterns might shed light on these results and on deepen our

understanding of the motives and determinants of migration.
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3.6 Conclusion

At the end of the 1990s, intense climatic shocks in parts of central Mexico imposed

substantial liquidity constraints to rural households. As expected, in communities

hit by major non-idiosyncratic income shocks, informal insurance mechanisms and

inter-household transfers appeared to be ineffective. My estimates show that in these

villages, low-income households were more vulnerable and less resilient to unexpected

exogenous shocks (extreme rainfall) than higher-income households. Possible expla-

nations are low assets and inability to diversify income-generating activities.

This paper exploits the randomized poverty-reduction program Progresa to mea-

sure the benefits of the public cash transfer in mitigating vulnerability to weather

shocks. Poor households receiving Progresa benefits were able to at least partially

smooth their food-consumption after extreme rainfall (unexpected/acute shocks).

I found two positive spillover effects of Progresa. First, immediately after weather

shocks, Progresa had a mitigating effect; households receiving the cash transfer were

less vulnerable to extreme rainfall events (unexpected/acute shocks) and able to par-

tially smooth post-shock consumption. Second, in treated villages, one year after the

beginning of the intervention (in 1999), Progresa benefits had spread to non-eligible

households except for villages that experienced a drought in 1998. This seem to in-

dicate that inter-household transfers and partial risk sharing at the village level are

less likely in correspondence to persistent shocks (drought), and more likeley when

acute shock (extreme rainfall events) or no shocks occur.

Another contribution of this paper is that it looks at the linkages between weather

shocks and the decision to migrate of family members for different income groups,

considering also the role played by the randomized cash transfer. My estimates show

that after extreme rainfall shocks women’s mobility increased. Also, the cash trans-

fer seems to have increased mobility from treated villages in general, and especially
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women from richer households after droughts. These results require further investiga-

tion and might have important policy implications given the current climate projec-

tions; unmanaged and unexpected climate-related domestic or international migration

can represent a major socio-political concern.

These findings about Mexico are significant from a global perspective given that

subtropical regions are projected to experience increasing weather extremes and de-

creasing agricultural yields with climate change. This study also highlights that

addressing risk can be an important complement to poverty-reduction programs. Fur-

ther research on the design of vulnerability-reduction measures would benefit regions

in Africa or Latin America that are strongly influenced by cyclical extreme climatic

patterns (i.e. recurrent ENSO-related droughts and severe rainfall).
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Figure 3.1: Monthly precipitation standardized anomalies (UEA-CRU-TS2p1, Uni-
versity of East Anglia Climate Research Unit) associated to the 506 Progresa villages
during the agricultural season (April to November) of the years 1997-1999. The values
on the vertical axis indicate the number of standard deviations from the climatology
(i.e. the average precipitation in a given month in a given location over about 40 years
(1960 - 1999)). April, May and June (A, M, J), correspond to the planting phase;
July and August (JJ, A) correspond to the maturation phase; September, October
and November (S, O, N) correspond to the harvest phase.
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Figure 3.2: Precipitation standardized anomalies (UEA-CRU-TS2p1, University of
East Anglia Climate Research Unit) associated to the 506 Progresa villages, for April-
May (top), September (bottom-left) and October (bottom-right), from 1990 to 1999.
The values on the vertical axis indicate the number of standard deviations from the
climatology (i.e. the average precipitation in a given month in a given location over
about 40 years (1960 - 1999)).
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Table 3.1: Summary Statistics

Mean St. Dev. Min Max

self reported losses:
i. harvest .3097054 .4623772 0 1
ii. land (soil damages) .0412023 .1987602 0 1
iii. animals .0252379 .1568485 0 1
iv. hardware .0039766 .0629354 0 1

drought (D) .2546993 .4356967 0 1
extreme rain (R) .5656819 .4956725 0 1

low-income households (E) .5374076 .4986043 0 1
households in treated villages (T) .6089086 .488 0 1

logarithm of:
i. total consumption (per capita) 5.457258 .4989914 4.216136 6.921283
ii. food consumpt. (per Adults Equivalents) 5.234673 .5001911 1.496156 6.893197
iii. non-food consumpt. (per capita) 3.54429 .9543056 -2.302585 6.777045

D = 1 if the precipitation anomaly in April-May is < −0.35(median)
R = 1 if the precipitation anomaly in Sept-Oct is > 1

Table 3.2: Prevalence of weather shocks in control vs treatment villages. Villages were
randomly selected to receive treatment (i.e. the conditional cash transfer Progresa).
The occurrence of weather shocks (drought (D) during the planting phase and extreme
rain (R) during the harvest phase is indicated by a binary variable calculated using the
precipitation dataset UEA-CRU-TS2p1 (University of East Anglia Climate Research
Unit).

Control Treatment p-value

D drought in 1998 45.7 42.2 0.4433
D drought in 1999 9.7 9.5 0.94

R extreme rain in 1998 60.2 60.6 0.9277
R extreme rain in 1999 51.3 47.3 0.3828

D = 1 if the precipitation anomaly in April-May is < −0.35 (median)
R = 1 if the precipitation anomaly in Sept-Oct is > 1
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Table 3.4: Relationship between weather shocks and self-reported agricultural losses.
Coefficients in each row are obtained by linearly combining coefficients in table 3.3,
in columns 2, 5, 8 and 11 respectively.

Non-Eligible Eligible

No Shock Drought Extreme Rain No Shock Drought Extreme Rain
(A) (B) (C) (D) (E) (F)

Loss of Harvest - 0.105 0.177 - 0.1558 0.1802
(mean=0.31) [-] [0.028] [0.000] [-] [0.010] [0.000]

Soil Damages - 0.0157 0.0252 - 0.009 0.0289
(mean=0.042) [-] [0.158] [0.003] [-] [0.317] [0.000]

Loss of Animals - 0.0188 0.011 - 0.008 0.0048
(mean=0.025) [-] [0.036] [0.118] [-] [0.339] [0.493]

Loss of Hardware - -0.001 0.004 - -0.001 0.004
(mean=0.004) [-] [0.545] [0.097] [-] [0.511] [0.034]

[P-Values in brakets]
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Table 3.6: Linear combination of coefficients in table 3.5, columns (6) and (9).

Eligible Households (Poor)

Non-Treated Treated

No Shock Drought Extreme Rain No Shock Drought Extreme Rain
(A) (B) (C) (D) (E) (F)

Food - -0.033 -0.178 0.09 0.001 -0.025
(mean=181.27*) [-] [0.340] [0.000] [0.000] [0.974] [0.450]

Non-Food - -0.253 -0.363 0.076 -0.272 -0.2078
(mean=27.11**) [-] [0.001] [0.000] [0.329] [0.004] [0.022]

Non-Eligible Households

Food - -0.059 -0.128 0.0336 -0.0945 -0.0873
(mean=200.34*) [-] [0.068] [0.001] [0.101] [0.003] [0.004]

Non-Food - -0.262 -0.292 -0.0175 -0.2923 -0.3274
(mean=44.70**) [-] [0.000] [0.000] [0.724] [0.001] [0.000]

[P-Values in brakets]; * Pesos per Adult Equivalents; ** Pesos per Capita

Table 3.7: Linear combination of coefficients in table 3.5, columns (6) and (9). Impact
of randomized conditional cash transfer Progresa: difference in log food and log non-
food consumption between eligible and non-eligible households in treated and control
villages. In this table weather shocks are not taken into account.

LOG FOOD CONSUMPTION LOG NON-FOOD CONSUMPTION

Non Treated Treated Difference Non Treated Treated Difference
Village Village [2− 1] Village Village [5− 4]

(1) (2) (3) (4) (5) (6)

Non Eligible (I) - 0.0336 0.0336 - -0.0175 -0.0175
[-] [0.101] [0.101] [-] [0.724] [0.724]

Eligible Households (II) -0.10 -0.0052 0.0947 -0.548 -0.471 0.0768
[0.000] [0.819] [0.000] [0.000] [0.000] [0.329]

Difference (I − II) 0.10 0.0388 0.548 0.454
[0.000] [0.009] [0.000] [0.000]

[P-Values in brakets]
Average Food Consumption: Eligible = 181.27 Pesos per Capita; Non-Eligible = 200.34 Pesos per Capita
Average Non-Food Consumption: Eligible = 27.11 Pesos per Capita; Non-Eligible = 44.70 Pesos per Capita
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Table 3.8: Linear combination of coefficients in table 3.5, columns (6) and (9). Dif-
ference in log food and log non-food consumption between eligible and non-eligible
households in treated and control villages after droughts and extreme rainfall.

LOG FOOD CONSUMPTION

Drought Extreme Rainfall

Non Treated Treated Difference Non Treated Treated Difference
Village Village [5− 4] Village Village [8− 7]

(1) (2) (3) (4) (5) (6)

Non Eligible (I) -0.059 -0.0945 -0.0346 -0.128 -0.0873 0.0406
[0.068] [0.003] [0.193] [0.001] [0.004] [0.202]

Eligible Households (II) -0.1332 -0.0989 0.0343 -0.2779 -0.1252 0.1527
[0.001] [0.004] [0.232] [0.000] [0.000] [0.000]

Difference (I − II) 0.0733 0.0044 0.1499 0.0378
[0.000] [0.794] [0.000] [0.067]

LOG NON-FOOD CONSUMPTION

Non Eligible (I) -0.262 -0.2923 -0.03 -0.292 -0.3274 -0.0316
[0.000] [0.001] [0.665] [0.000] [0.000] [0.597]

Eligible Households (II) -0.8007 -0.8191 -0.0184 -0.9104 -0.7555 0.155
[0.000] [0.000] [0.806] [0.000] [0.000] [0.006]

Difference (I − II) 0.5384 0.5268 0.6147 0.4281
[0.000] [0.000] [0.000] [0.000]

[P-Values in brakets]

Average Log Food Consumption = 5.2 Pesos per capita; Average Log Non-Food Consumption = 3.54 Pesos per capita
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Table 3.10: Linear combination of coefficients in table 3.9, columns (6) and (9).

Eligible Households (Poor)

Non-Treated Treated

No Shock Drought Extreme Rain No Shock Drought Extreme Rain
(A) (B) (C) (D) (E) (F)

Food - -0.0093 -0.173 0.17 0.066 0.043
(mean=164.02) [-] [0.844] [0.000] [0.000] [0.093] [0.304]

Non-Food - -0.284 -0.4468 0.0465 -0.157 -0.322
(mean=29.96) [-] [0.000] [0.000] [0.503] [0.034] [0.000]

Non-Eligible Households

Food - -0.0035 -0.1327 0.12 0.029 -0.0185
(mean=181.27) [-] [0.926] [0.001] [0.000] [0.941] [0.566]

Non-Food - -0.2684 -0.345 -0.048 -0.28 -0.398
(mean=49.40) [-] [0.000] [0.000] [0.257] [0.000] [0.000]

[P-Values in brakets]

Table 3.11: Linear combination of coefficients in table 3.9, columns (6) and (9).
Impact of randomized conditional cash transfer Progresa: difference in log food and
log non-food consumption between eligible and non-eligible households in treated and
control villages in 1999 (one year after beginning of cash transfer program). In this
table weather shocks are not taken into account.

LOG FOOD CONSUMPTION LOG NON-FOOD CONSUMPTION

Non Treated Treated Difference Non Treated Treated Difference
Village Village [2− 1] Village Village [5− 4]

(1) (2) (3) (4) (5) (6)

Non Eligible (I) - 0.12 0.12 - -0.048 -0.048
[-] [0.000] [0.000] [-] [0.257] [0.257]

Eligible Households (II) -0.108 0.0618 0.170 -0.487 -0.4405 0.0464
[0.000] [0.016] [0.000] [0.000] [0.000] [0.503]

Difference (I − II) 0.108 0.0586 0.048 0.3927
[0.000] [0.003] [0.257] [0.000]

[P-Values in brakets]

Average Food Consumption: Eligible = 164.02 Pesos per Adult Equivalents, Non-Eligible = 182.27 Pesos per Adult Equivalents
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Table 3.12: Linear combination of coefficients in table 3.9, columns (6) and (9). This
table shows the effect of the interaction between Progresa Treatment and weather
shocks. Column (3) and (6) present the difference in log food and log non-food
consumption between households in treated and control villages in 1999, one year
after droughts and extreme rainfall.

LOG FOOD CONSUMPTION

Drought Extreme Rainfall

Non Treated Treated Difference Non Treated Treated Difference
Village Village [5− 4] Village Village [8− 7]

(1) (2) (3) (4) (5) (6)

Non Eligible (I) -0.0035 0.0029 0.006 -0.1327 -0.0185 0.1142
[0.926] [0.941] [0.825] [0.001] [0.566] [0.001]

Eligible Households (II) -0.117 -0.0427 0.0751 -0.282 -0.066 0.216
[0.018] [0.260] [0.021] [0.000] [0.04] [0.000]

Difference (I − II) 0.1141 0.0456 0.149 0.0473
[0.000] [0.063] [0.000] [0.020]

LOG NON-FOOD CONSUMPTION

Non Eligible (I) -0.2684 -0.28 -0.0116 -0.345 -0.398 -0.033
[0.000] [0.000] [0.874] [0.000] [0.000] [0.559]

Eligible Households (II) -0.771 -0.6439 0.127 -0.934 -0.8087 0.1252
[0.000] [0.000] [0.122] [0.000] [0.000] [0.041]

Difference (I − II) 0.50 0.364 0.569 0.41
[0.000] [0.000] [0.000] [0.000]

[P-Values in brakets]; Average Monthly Log Food Consumption = 5.15 Pesos/AE (AE indicates Adult Equivalents).



70

0

5

10

15

20

25

30

35

40


1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999


Pe
rc

en
ta

ge



Migration Year


Migration


0


5


10


15


20


25


1
 2
 3
 4
 5
 6
 7
 8
 9
 10


pe
rc

en
ta

ge



migration month


1998


no shocks
 drought
 floods


0

5


10

15

20

25

30


1
 2
 3
 4
 5
 6
 7
 8
 9
 10


pe
rc

en
ta

ge



migration month


1999


no shocks
 drought
 floods


Figure 3.3: Top: reported migration of members of the households over 8 years (1992-
1999). The second and third figure from he top show the percentage of migrants by
month of departure in 1998 (middle) and 1999 (bottom). In these two figures bars
of different colors indicate if the migrant departed from a region that: (i) did not
experience any climatic shocks, (ii) experienced a drought, (iii) experienced only
severe rainfall. The peaks of migration in May (5) correspond with the end of the
planting season.
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Figure 3.4: Destinations of migrants who left for professional reasons or economic
problems in 1998-1999. Bars of different color indicate if the villages of origin were
affected by climatic shocks or not. Almost 50% of migrants who left villages hit by
extreme rain moved to a different state within Mexico. Legend for the x axis: 1 same
locality; 2 a proximal locality; 3 a different locality of the same municipality ; 4 a
locality in the same state; 5 a locality in a different state; 6 a foreign country.
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Table 3.14: Linear combination of coefficients in table 3.13.

Eligible Households (Poor)

Non-Treated Treated

No Shock Drought Extreme Rain No Shock Drought Extreme Rain
(A) (B) (C) (D) (E) (F)

Women - 0.0034 0.0211 0.0076 0.0149 0.0257
(mean=4.6%) [-] [0.709] [0.018] [0.386] [0.130] [0.009]

Men - 0.0011 0.0064 -0.027 0.0071 0.0072
(mean=4.6%) [-] [0.860] [0.482] [0.796] [0.489] [0.493]

Non-Eligible Households

Women - 0.0119 0.0207 0.0193 0.0307 0.0176
(mean=4.8%) [-] [0.108] [0.008] [0.000] [0.001] [0.018]

Men - 0.0172 0.0123 0.017 0.0205 0.0153
(mean=6.4%) [-] [0.118] [0.295] [0.145] [0.128] [0.189]

[P-Values in brakets]

Table 3.15: Linear combination of coefficients in table 3.13. This table shows the
impact of randomized conditional cash transfer Progresa on migration of a family
member, between eligible and non-eligible households, in treated and control villages.

Women (mean = 4.7%) Men (mean= 5.5%)

Non Treated Treated Difference Non Treated Treated Difference
Village Village [2− 1] Village Village [5− 4]

(1) (2) (3) (4) (5) (6)

Non Eligible (I) - 0.0193 0.0193 - 0.0176 0.00176
[-] [0.000] [0.000] [-] [0.145] [0.145]

Eligible Households (II) 0.0036 0.0112 0.008 0.003 -0.0057 -0.0027
[0.768] [0.119] [0.386] [0.808] [0.654] [0.796]

Difference (I − II) 0.0036 0.008 0.003 0.0229
[0.768] [0.248] [0.808] [0.002]

[P-Values in brakets]
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Table 3.16: Linear combination of coefficients in table 3.13. This table shows the
effect of the interaction between Progresa Treatment and weather shocks. Column
(6) and (9) present the difference migration of a family member between households
in treated and control villages.

Drought Extreme Rainfall

Non Treated Treated Difference Non Treated Treated Difference
Village Village [2− 1] Village Village [5− 4]

(1) (2) (3) (4) (5) (6)
Women (mean = 4.7%)

Non Eligible (I) 0.0119 0.0307 0.0188 0.0207 0.0176 -0.0031
[0.108] [0.001] [0.043] [0.008] [0.018] [0.563]

Eligible Households (II) 0.0071 0.0185 0.0115 0.0247 0.0292 0.0045
[0.536] [0.031] [0.274] [0.008] [0.000] [0.453]

Difference (I − II) 0.0049 0.0121 -0.004 -0 .0117
[0.597] [0.064] [0.581] [0.007]

Men (mean= 5.5%)

Non Eligible (I) 0.0172 0.0205 0.0035 0.0123 .0153 0.003
[0.118] [0.128] [0.833] [0.295] [0.189] [0.614]

Eligible Households (II) -0.0042 0.0041 0.0082 0.0033 0.0042 0.0009
[0.711] [0.750] [0.288] [0.790] [0.719] [0.913]

Difference (I − II) 0.0213 0.016 0.009 0.0111
[0.138] [0.043] [0.236] [0.026]

[P-Values in brakets]



Chapter 4

Is ENSO an opportunity? Sharing
risk across regions

Abstract1. This study explores the potential for re-insurance schemes built on re-

gional climatic variability, and it represents the first exercise in trying to include

El Niño Southern Oscillation (ENSO) in the design of rainfall insurance contracts.

ENSO is an important component in modulating precipitation patterns in tropical

Africa. The precipitation signals associated to cold and warm ENSO episodes in

Southern and Eastern Africa are opposite and forecastable. This study focuses on

micro-insurance contracts indexed on precipitation in 9 villages in Kenya, Tanzania

(Eastern Africa) and Malawi (Southern Africa), and analyzes the contract payouts

with respect to climate variability resulting from ENSO. In particular, (i) we simu-

lated possible payouts using historical precipitation data and analyzed the differences

between years with different ENSO states from 1961 to 2005; (ii) we applied Monte

Carlo methods to simulate precipitation distributions in each location and calculated

the mean and variance of payouts associated to different ENSO states. Our estimates

indicate that more abundant rainfall reduces payouts and the risk of loan default

during La Niña in southern Kenya and Malawi, and during El Niño in Tanzania. The

1This study was developed in collaboration with Alessandra Giannini (IRI, Columbia University)
and Dan Osgood (IRI, Columbia University).
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results of the Monte Carlo simulations go in the same direction.

4.1 Introduction

Climate change represents possibly the largest challenge in the history of the insurance

industry but also a vast potential of business opportunities through the development

of new financial instruments and practices. The chairman of Loyd’s of London stated

that climate change is the number-one issue for the insurance market; and Europe’s

largest insurer, Allianz, estimated that climate change will increase insured losses

from extreme events in an average year by 37% within just a decade, with potential

losses in a bad year of about $400 billions (Mills (2009)). UNEP has estimated the

value of average yearly losses to be $1 trillion by the year 2040 (Dlugolecki (2006)).

Insurance and reinsurance solvency might be at risk as a result of the projected higher

frequency in natural catastrophes.

In the last decade insurers’ perception of the risks posed by climate change has

rapidly evolved, and the insurance industry has been actively pursuing climate change

solutions to preserve private insurance markets and to expand to new markets in de-

veloping countries. Mills (2009) has documented an increasing number of actions

implemented by insurers to improve disaster resilience and adaptation to climate

change while mitigating climate risk; such actions include, for instance, programs

promoting energy-efficiency, incentives for low-emission or loss-resilient profiles, and

expansion of micro-insurance programs in developing countries.

The risk of insolvency and the issue of availability-affordability of insurance are

also redefining the roles of the public sector and insurers in managing risk. Sustained

increases in the frequency and/or intensity of extreme weather events will stress the
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government sector itself as a provider of insurance, and might also compromise the

ability of governments to provide humanitarian assistance domestically and inter-

nationally in the event of disasters. Governments in developing countries, where

insurance sector is weak or inexistent, are particularly vulnerable to weather-related

risks and rely heavily on external aid in emergency situations.

Private-public partnerships are emerging as mutually beneficial strategies: gov-

ernment regulations may help insurers increase market penetration and geographic

diversification, while reducing the likelihood that government will have to assume

more climate risks if the private sector recedes. In order to transition from managing

crisis to managing risks several governments are also engaging in the development

of regional disaster risk pool and contingency funds. The Caribbean Catastrophe

Risk Insurance Facility is the first regional disaster insurance facility and serves as

a model for other regional institutions aimed at sharing risk across regions such as,

for instance, the Pan African Disaster Risk Pool for Food Security2 currently under

development. National contingency funds and national weather indexed insurance

contracts, such as those pioneered in Ethiopia and Malawi, can be expensive propo-

sitions for a single government. Larger schemes involving several governments, using

a single instrument or a portfolio of instruments, and spreading risk across regions

would be more financially efficient.

Insurers are also engaging in collaborations with climate scientists to design new

products and improve existing instruments. A recent example is the partnership be-

tween the Earth Institute of Columbia University and Swiss Re to implement satellite-

based remote sensing in support of micro-insurance for small farmers in Africa. Com-

prehensive satellite remote sensing datasets and Climate and Earth Science models

2The Pan African Disaster Risk Pool for Food Security is currently under development with the
technical assistance of the UN World Food Programme, this institution would provide participating
member states readily available cash in the event of a natural disaster.
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are indispensable to complement information when ground data are insufficient to

properly calibrate the pricing of weather-indexed insurance contracts (Brown et al.

2011) and when CAT models do not suffice. Climate science can also prove crucial in

informing insurance on how to best integrate climate forecasts and spatial diversifica-

tion in index insurance design to both reduce climate risks and promote development.

The need for regional coordination, private-public partnership and product design

robustly rooted in scientific research are the three most important aspects emerging

from the case study presented in this paper. The study focuses on micro-insurance

contracts indexed on precipitation in 9 villages in Kenya, Tanzania (Southern Africa)

and Malawi (Eastern Africa), we analyze the precipitation patterns associated with

El Niño Southern Oscillation (ENSO) and we explore for the first time the potential

for re-insurance schemes built on forecastable regional climatic patterns. We will

argue that reinsurance schemes could be designed at the African continental scale

taking advantage of climatic patterns in different regions. This study represents an

exploratory framework that needs to be further refined and that can potentially be

applied to other regions (e.g. Central and Latin America).

Africa represents a useful case study for its high vulnerability levels and low in-

surance availability:

“New studies confirm that Africa is one of the most vulnerable continents to cli-

mate variability and change because of multiple stresses and low adaptive capacity.”

Intergovernmental Panel for Climate Change (IPCC), 20073.

3Intergovernmental Panel for Climate Change (IPCC), Working Group II (WGII), Summary for
Policy Makers (SPM), 2007
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The inability to manage future climatic risks could represent a“poverty trap” for

several African regions. Weather shocks can potentially destabilize not only house-

holds but entire countries. Government in drought-prone countries, donors and relief

agencies are becoming aware of the importance to develop an ex-ante risk manage-

ment framework for weather-risk. Joint efforts to develop innovative mechanisms

to spread and pool risk (e.g. microinsurance and microcredit) are currently being

designed in several African countries (Mills (2006), (2009)); however, insurance pen-

etration is still at its lowest levels in the continent, particularly in rural areas.

According to the IPCC, climate change is likely to adversely affect both water

availability and food security in the African continent; projections indicate that by

2020, between 75 and 250 million people are expected to be exposed to an increase

of water stress. Agricultural production, including access to food, in many African

regions is also projected to be severely compromised. In some countries, yields from

rain-fed agriculture could be reduced by up to 50% by 2020, the area suitable for

agriculture, the length of growing seasons and yield potential, particularly along the

margins of semi-arid and arid areas, are also expected to decrease (IPCC, WGII,

SPM, 2007). Besides climate change, climate variability associated with ENSO tele-

connections4 is another important factor to be considered in addressing issues of water

management and food security in Africa. The ENSO signal translates into rainfall

variability over Eastern Central and Southern Africa and it is strongly correlated

4Teleconnection patterns are crucial in determining climate variability over the African conti-
nent. The term ”teleconnection pattern” refers to a recurring and persistent, large-scale pattern of
pressure and circulation anomalies that span vast geographical areas. Teleconnection patterns are
also referred to as preferred modes of low-frequency (or long time scale) variability. Although these
patterns typically last for several weeks to several months, they can sometimes be prominent for
several consecutive years, thus reflecting an important part of both the interannual and interdecadal
variability of the atmospheric circulation. Teleconnection patterns influence temperature, rainfall,
storm tracks, and jet stream location/intensity over vast areas. Thus, they are often the culprit
responsible for abnormal weather patterns occurring simultaneously over seemingly vast distances.
(http://www.cpc.noaa.gov/data/teledoc/teleintro.shtml)
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with extreme weather events. In an anthropogenically warming climate ENSO-related

weather extremes might become more frequent and/or intense.

In an attempt to insure agricultural losses caused by weather extremes, the World

Bank and other donors have been involved in working on crop insurance projects in

the 1970s and 1980s. However, these efforts were soon abandoned as many of the

problems with introducing multiple peril crop insurance became insurmountable con-

straints in developing countries (Hess and Syroka, 2005). The major limitations of

traditional crop insurance relate to adverse selection and moral hazard issues. In order

to overcome such implementation problems, rainfall indexed insurance has emerged

as a preferred alternative. While conventional crop insurance is written against actual

losses, index-based weather insurance is written against an objective physical trigger,

such as cumulative rainfall during a certain period of time.

In this study we analyze index-based weather insurance contracts designed for

Malawi, Kenya and Tanzania. A drought insurance scheme is currently under way in

Malawi, while in Kenya and Tanzania similar weather-indexed insurance contracts are

being developed but have not been tested yet. First implemented in 2005, the Malawi

pilot scheme offers index-based weather insurance to smallholder groundnut farmers

coupled with a loan for seeds and fertilizer; the aim of the experiment is to improve

farmers’ credit worthiness and therefore their ability to access credit for investing in

higher-yield/higher return crops. Banks are not likely to be interested in lending to

rainfed farmers with no collateral, in a drought prone region. By coupling bank loans

with index-based weather insurance, farmers can receive the credit to purchase seeds

and other agricultural inputs, and they can expect a net gain after repayment of the

coupled loan-insurance contract (Osgood et al. 2007a).
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While ENSO is an important component in modulating the rainfall regime in

Southern Africa, the micro-insurance experiments currently under development to

address weather risk among smallholder farmers in this region do not take into account

forecastable ENSO climatic patterns yet. In the weather derivatives market climate,

predictions are receiving more and more attention (Jewson and Brix 2005), however

there is no available literature on the potential integration of seasonal forecasts in

weather-indexed crop insurance schemes.

A few studies have explored the implications of ENSO-based forecasts in the

context of common crop insurance contracts (Mjelde and Hill (1999), Cabrera et al

(2006)). Cabrera et al. studied the interactions between conventional crop insur-

ance and ENSO-based climate information for increasing farm income stability in a

hypothetical Florida farm, and concluded that for high risk-averse farmers the best

insurance strategy depends on the ENSO phase. A recent innovation in agricultural

finance is the ENSO insurance in Peru. Indexed on monthly sea surface temperature5,

this product was presented to the Peruvian insurance regulators in 2010 as a form

of business-interruption insurance designed to pay for consequential losses and extra

costs linked to extreme flooding, which is highly correlated with ENSO (Skees and

Collier (2010)). At this stage this product is not being offered to smallholder farmers,

however an important and novel aspect of the ENSO insurance is that it pays before

the catastrophe and it potentially represents also a mitigation strategy: educational

efforts have focused on helping people in the target markets understand how to use

the extra cash to mitigate the impending crisis.

This study describes a preliminary exercise in trying to include forecastable ENSO

climatic patterns in the contract design of micro-insurance for maize in 9 villages in

5The ENSO insurance uses the monthly sea surface temperature for ENSO Region 1.2 (0-10 deg
South, 80-90 deg West), measured and reported by the NOAA Climate Prediction Center.
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Kenya, Tanzania (Eastern Africa) and Malawi (Southern Africa), and analyzes the

contract payouts with respect to climate variability resulting from ENSO. In particu-

lar, (i) we simulated possible payouts using historical precipitation data and analyzed

the differences between years with different ENSO states from 1961 to 2005; (ii) we

applied Monte Carlo methods to simulate precipitation distributions in each location

and calculated the mean and variance of payouts associated to different ENSO states.

Our estimates indicate that more abundant rainfall reduces payouts and the risk of

loan default during La Niña in southern Kenya and Malawi, and during El Niño in

Tanzania. The results of the Monte Carlo simulations confirm the results for Kenya

and Tanzania.

The remainder of the paper is structured as follows: section 2 offers a short

description of the Malawi pilot scheme that combines micro-credit with weather index-

based insurance; section 3 presents an overview of climatology, climate variability

and seasonal climate forecasts in southern Africa and addresses the potential role of

climate forecasts in reducing risk; section 4 describes the methodology we adopted

in analyzing the contracts payouts with respect to climate variability. Section 5

concludes, discusses limitations, and presents challenges and perspectives.
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4.2 Pilot Weather-Indexed Insurance Scheme in

Malawi

In this section we provide background information for the Malawi pilot weather in-

dexed insurance contracts, which are the only contracts actually implemented and rep-

resent the template for analogous contracts developed for Tanzania and Kenya but not

implemented yet. The World Bank Commodity Risk Management Group (CRMG), in

collaboration with local stakeholders, designed a weather insurance scheme in Malawi

for the 2005/2006 crop season in order to enhance groundnut farmers’ ability to man-

age drought risk and, in turn, access loans for improved agricultural inputs. Malawi

was chosen for the insurance pilot project because it is one of the more drought-prone

countries in the region. The country has experienced chronic food crises associated

with droughts in 1991/92, 1994/95 and 1997/98. The general food security coun-

try context is as follows: the predominant staple food, maize, has very low yields;

stock-piling at private and even public levels are underdeveloped; the financial sys-

tem is weak and the government is preparing a new food security policy that seeks

to determine the appropriate levels of strategic grain reserves (Hess, 2005).

Smallholder productivity characterizes Malawi’s agricultural sector. Farmers often

cultivate maize for subsistence purposes. Any surplus maize sold on the market fetches

meager and unpredictable profits; therefore, smallholders tend to invest little in their

crops. This under-investment is worsened by the limited access that smallholders

often have to seed and fertilizer markets, particularly since fertilizer and chemicals

are sold at a premium. As a result of all this, input suppliers have little incentive

to cater to smallholders, especially in remote areas. Financial markets also fail rural

producers because smallholders have very limited access to input financing. Rural

financial services such as production credit for smallholders are virtually unavailable
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because of weather, government, moral risks, and high transaction costs in rural areas

(Hess, 2005).

To address the credit constraints discussed above, bundled loan and insurance

contracts were offered in four pilot areas: Kasungu, Nkhotakhota, Chitedze and Li-

longwe. These pilot areas were chosen because the National Smallholder Farmers

Association of Malawi (NASFAM), which was active supporting local farmers’ associ-

ations to engage in growing groundnuts, had farmer clubs located near meteorological

stations with reliable precipitation data. Additionally, the relatively good rain pat-

terns for Malawi standards made the pilot scheme more feasible there (Osgood et al.

2007).

In November 2005, through their NASFAM clubs, 892 smallholder farmers bought

the weather insurance that allowed them to access a loan package for 32 kilograms of

improved groundnut seed (enough for cultivating one acre). The mechanism could be

described as follows: before the rainy season, participating farmers receive improved

agricultural inputs through a contract that specifies (i) an index-based weather in-

surance component, in which the premium is calculated based on the probability of a

payout estimated using the entire available rainfall record (regardless of ENSO), and

(ii) a loan component (at the end of the season the farmer will owe the lending in-

stitutions an amount equal to the cost of agricultural inputs plus insurance premium

plus interest and taxes). If rains are good (as measured in a nearby weather sta-

tion operated by the meteorological service), then the insurance company keeps the

premium and farmers pay back the loan with proceeds from the (presumably good)

harvest. If measured rains are below certain trigger values (based on critical stages of

the groundnut growing season), then the insurance company pays part -or all- of the

loan to the bank6. Since the farmers targeted by this scheme typically do not have

legal title to their land, the insurance is used to guarantee the loan by requiring the

6For a more detailed description of the contract design, see UNDESA (2007).
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farmer to purchase insurance so that the maximum liability is equal to the loan size

including interest. The package is unitary, that is farmers cannot purchase partial

packages or multiple packages (Osgood et al. 2007a).

Even though there is a significant relationship between the ENSO phenomenon

and seasonal rainfall in Malawi, forecasts have not been integrated in the index-based

weather insurance contracts’ design for the first two years of piloting in Malawi.

Premiums, payouts and other insurance parameters are set independently of the in-

terannual variability in probability of drought occurrence. Similarly, the kinds and

amounts of agricultural inputs to be loaned to farmers through credit do not reflect

expected seasonal rainfall, even though they are given to farmers at a time when the

seasonal forecast is already available (Osgood et al. 2007a). More details about the

contract design are provided by (Osgood et al. 2007b).

4.3 Climatology, climate variability and forecasts

in Southern Eastern Africa

In this section we analyze the main factors affecting African climatology - which are

already part of the insurance contract design - and climate variability.

4.3.1 Monthly precipitation patterns and crop calendars

The climatology over a region - or the average weather over a period of about 30

years7- is determined by several dynamic and static factors depending on whether they

evolve over time or not. The static factors include: latitude, altitude, surrounding

orographic structure, proportion of land to water and proximity from water basins.

Dynamic factors may evolve over time and are represented by vegetation coverage,

7Time scale accepted by the World Meteorological Organization.
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podology (soil characteristics such as water retention), and marine currents. The

seasonal climatology of African precipitation manifests itself as a zonally8 symmetric

band. This band, also called rainbelt, is located above the Equator in April, it moves

northward in July then it moves back above the Equator in October and eventually

shifts southward in January. This meridional migration of the rainbelt produces

a single-peaked rainy season at the poleward edges of the tropical region while at

latitudes closer to the equator, the rainy season season is double-peaked, with a dry

season in winter, maxima in spring and fall, and a mid-summer break in between

(Giannini et al. 2007).

The 9 villages under observation are located at different latitudes, thus present

different yearly and monthly precipitation patterns. Fig 4.3 shows a map with the

exact location of the villages. The three villages in Kenya - Eldoret, Kitale and

Nakuru - are located on the Equator line, North-East of Lake Victoria, between

1300m and 2100m. The two villages in Tanzania, South-East of Lake Victoria are

Babati (1350m) and Mbulu (1750m). Finally the four villages in Malawi are located

at about -13 degrees south of the equator, at an altitude of about 1000m and include:

Lilongwe, Chitedze, Kasungu and Nkhotakota.

Since the villages present different climatological seasonal cycles, their agriculture

calendars also differ. Figures 4.4, 4.5, 4.6, and 4.7 present for each village (i) the

monthly precipitation in (mm/day) calculated using the precipitation data provided

by the Malawi, Kenya and Tanzania Meteorological Services; (ii) the agricultural

calendar.

Malawi is located in Southern Africa, a predominantly semi-arid region with higher

inter-annual rainfall variability and a pronounced seasonal cycle. The rainy season

extends from October (November) to April (May). Rainfall distribution during the

8Zonally means that the climatic feature is the same for all longitudes in the same latitudinal
band.
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rainy season is quite variable; it depends on the interplay between tropical and mid

latitude weather systems, as well as convective variability (Garanganga, 1998; Joubert

and Hewitson, 1997). Rainfall in parts of Southern Africa exhibits also a preference

for variability on the time scale of about two decades and it is related to variations

in the Southern Hemisphere upper air circulation (Hasternath, 1991). The Tanzania

villages present a similar precipitation bi-seasonal cycle with the rainy season that

extends from November to May. On the other side, in Kenya the rainfall activity

is concentrated in March-May and in September-December, the so-called long-rains

and short-rains respectively (Hasternath, 1991). This pattern is quite accentuated

for Kitale, while Eldoret present a precipitation peak in July-August.

Insurance contract calendars are based on information on crop growth phases. In

figures 4.4, 4.5, 4.6, and 4.7, we present the maize agricultural calendars for each

village, consistent with historical data and common planting schedules observed in

the field. The crop growing period starts at the end of the sowing window (when seeds

are cast over prepared ground) and it is structured in 3 growing phases: germination,

tasseling and maturation. The time unit is the dekad - that is a 10 days period. The

first dekad of each year goes from January 1st to January 10th 9, and each year is

composed of 36 dekads The sowing window (in blue in the graphs) ends when the

sowing conditions are met (in mm of precipitation/dekad), based on Famine Early

Warning System Network (FEWS NET) and FAO criteria (following CRMG 2005).

The sowing window for Kenya villages falls between March and April while for Malawi

and Tanzania it falls between November and January. The growing period for Malawi

lasts from January through Aril/May while for Kenya it lasts from March to August.

We explored the correlations between precipitation for the different growing sea-

sons in the each village (Figure 4.1), to do so we calculated the cumulative precipita-

9The time unit for insurance contracts is also the dekad, however in this case, the first dekad
corresponds to the first dekad of the first phase.
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tion for each village during the respective growing seasons: January, February, March,

April and May for Malawi and Tanzania; April, may June, July and August for Kenya.

Figure 4.1: Correlation between monthly precipitations for each village.

In figure 4.1 we distinguish chromatically the different regions: we use yellow for

villages in Malawi, green for villages in Tanzania, and orange for villages in Kenya.

Among the villages in Malawi, Chitedze presents a correlation of the order of 0.6

with Kasungu and Lilongwe, while Nkhotakota presents a very low correlation ( 0.2)

with the other villages. A possible explanation is that Nkhotakota is a bit closer to

Lake Malawi, thus it is likely to be characterized by higher humidity and different

precipitation patterns with respect to the other villages in Malawi. Among the villages

in Tanzania, Mbulu and Babati show a correlation of the order of 0.69. Among the

villages in Kenya, Kitale and Eldoret have a correlation of 0.6 while the correlation

between Nakuru, Kitale and Eldoret are lower, respectively 0.48 and 0.31. From the

table we can also examine the correlation between different regions: precipitation in

Tanzania and Malawi villages do not appear to be very strong (almost zero except

for Babati), with Nkhotakota showing the higher correlations; correlations between

Kenya and Malawi villages are very low and often negligeable; the same can be said

for correlations between Kenya and Tanzania villages.
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As we could have expected, correlations between villages within the same region

are positive (even if not particularly strong). The very low correlations (practically

zero) between most villages in Malawi and Tanzania, as well as between villages in

Malawi and Kenya might open opportunities for re-insurance schemes between these

regions. In the next section we will perform further analysis on precipitation patterns

by examining the signature of climate variability.

4.3.2 Climate variability and ENSO

Climate variability needs to be taken into account to understand the precipitation

patterns in the regions under examination; we will focus in particular on ENSO.

ENSO signals, generated in the Pacific basin, are an important factor in determining

inter-annual precipitation variability in Southern and Eastern Africa both directly via

an atmospheric bridge - atmospheric teleconnection - (Glantz et al. 1991; Wallace et

al. 1998) and indirectly, via the response of the Indian and the Atlantic Oceans (Klein

et al. 1999; Alexander et al. 2002). In this section (i) we examine the precipitation

associated to each village with respect to the results of a study by Giannini et al

(2007) investigating climate variability; and (ii) we inspect the rainfall patterns and

the correlations between villages for different ENSO states.

Principal Component Analysis

In order to relate the precipitation patterns in the villages under examination to more

global climatology patterns, we compare our data with the main components of the

PCA analysis performed at the continental scale by Giannini et al. (2007). Princi-

pal component analysis (PCA) involves a mathematical procedure that transforms

a number of (possibly) correlated variables into a (smaller) number of uncorrelated

variables called principal components. The first principal component accounts for
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as much of the variability in the data as possible, and each succeeding component

accounts for as much of the remaining variability as possible. By maximizing the

variance captured in the first pattern (component), and in subsequent orthogonal, or

independent, patterns, PCA identifies broad spatial features, allowing one to summa-

rize a large fraction of the information.

In their study, Giannini et al. use Principal Component Analysis (PCA) to identify

patterns of African climate variability at the continental scale, followed by linear re-

gression to connect these patterns to common, global-scale forcings. In their analysis,

PCA identifies spatial patterns that express co-variability in time across the trop-

ical African gridded precipitation dataset produced by the Climatic Research Unit

of the University of East Anglia (CRU, Hulme1992). They apply PCA to annual-

mean (July-June) precipitation anomalies, with respect to the long-term mean, in the

domain between 35◦S and 30◦N , 20◦W and 60◦E. They apply linear regression to

relate the temporal variability associated with the spatial patterns identified by PCA

to other aspects of the global ocean-atmosphere system.

We reproduce in figure 4.8 principal component analysis figures and caption from

Giannini et al. (2007), figure 4.8 (top row) presents the three main patterns - that

combined capture 37% of the total variance in precipitation over the tropical African

domain considered. The first pattern in the top row (the leading pattern, that we will

call pattern a) is a continent wide drying trend, followed by the two patterns that

capture the influence of the ENSO (second and third figure in the top row, we will

refer to them as pattern b and c respectively). Pattern a is statistically related to

the global SSTs, with the sign such that drying over Africa is associated with warmer

tropical Pacific, Indian and South Atlantic Oceans, and a cooler North Atlantic Basin

(Figure 4.8 g, first image in bottom row).

Pattern b represents the canonical ENSO influence, one that combines the effects
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of remote, or tropical Pacific, and local, especially Indian Ocean, surface tempera-

tures (Figure 4.8 h). It captures the wetter than average conditions over eastern

equatorial Africa known to be a maximum during the October-December short rains,

which coincide with mature warm ENSO conditions, as well as the drier than average

conditions over southern Africa known to be most prominent in the January-March

season immediately subsequent to the mature phase (Figure 4.8 b). The Indian Ocean

Seas Surface Temperature (SST) anomalies associated with the dipolar rainfall pat-

tern between eastern equatorial and southern Africa are related in part to ENSO.

Due to their thermal inertia, the remote tropical oceans warm in response to the

ENSO-induced changes in the tropospheric temperature with a lag of a few months

(see, e.g. Klein et al. 1999; Chiang and Sobel 2002; Sobel et al. 2002; Chiang and

Lintner 2005).

Pattern c (Figure 4.8 c) captures the pure atmospheric influence of ENSO and

it results stronger in eastern Africa. A warm ENSO can induce below-average pre-

cipitation in eastern equatorial Africa when the atmospheric bridge dominates (as

depicted in the third pattern) or it can result in above-average precipitation, when

the dynamically-induced Indian Ocean response overwhelms the remote atmospheric

effect (as in the second pattern). Eastern equatorial and southern African averages

are correlated with both drying and ENSO patterns (with correlations of the order

of 0.5). ENSO is found to be the dominant influence on the predictable component

of interannual rainfall variability in eastern equatorial and southern Africa (Giannini

et al. 2007).

We examined the correlation between the precipitation for each village and the

time series associated to the three main components detected by Giannini et al. in the

attempt to detect the main sources of climate variability affecting the precipitation

patterns for the 9 villages. The results reported in figure 4.9 indicate that: (i) the
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Malawi villages present a positive correlation of the order of about 0.4 with the third

component (pure atmospheric ENSO influence); (ii) the Tanzania villages show a

positive correlation with the first component, of the order of 0.5; (iii) the Kenya

villages also show a positive correlation with the first component, of the order of 0.6

for Kitale and Eldoret and only 0.26 for Nakuru. These results seem to suggest that

only the Malawi villages are primarily correlated with the ENSO signal.

ENSO-related variability (patterns b and c) is associated to events that recur every

2 to 7 years. The first component (pattern a) statistically related to the global SSTs

is associated to a longer time scale. For weather-index insurance and re-insurance it

is interesting to take into account both the general trend of increasing SST and the

shorter-term ENSO related variability. In the remaining part of this section we will

focus on the latter.

ENSO

Once developed in the Pacific Ocean, El Niño and La Niña shift temperature and

precipitation patterns in many different regions of the world. Weather patterns asso-

ciated to each ENSO states are quite consistent over time. Changes in atmospheric

circulation induced by El Niño (or La Niña) produce repeated climatic outcomes even

in regions remote from the Pacific, directly via atmospheric teleconnections and in-

directly affecting sea surface temperatures (SSTs) in other ocean basins10. In the

case of Eastern and Southern Africa, changes in rainfall are due to changes in the

Indian Ocean temperatures, which warm or cool consistently with the tropical Pacific

(El Niño/La Niña) (Goddard and Graham, 1999). These shifts, although varying

somewhat from one El Niño to the next, are fairly consistent in the regions shaded on

the map below. ENSO’s influence over Southern African rainfall is strongest in the

10The IRI ENSO online resources to provide a comprehensive overview of the ENSO phenomenon
and its global effects: http://iri.columbia.edu/climate/ENSO/globalimpact/
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peak austral summer months (December-March), when the event has reached matu-

rity and the Inter Tropical Convergence Zone is furthest south (Mason, 1996; Clay,

2003). Ropelewski and Halpert (1987, 1989) suggested two areas of ENSO related

precipitation effects: equatorial eastern Africa (which includes Kenya and Tanzania)

and south-eastern Africa (including Malawi).

Figure 4.211 clearly shows this bipolar precipitation pattern: la Niña events are

associated with dry climate in eastern Africa and wet climate in Southern Africa.

In other words, la Niña phase (also called Cold Episode) increases the likelihood for

stronger and more frequent storms in Southern Africa, and is thus associated with

an increased probability for above normal rainfall in that season. During El Niño (or

Warm Episode) the precipitation dipole is inverted (Halpert and Ropelewski, 1992).

Climate variability associated to ENSO

Given the important role played by ENSO in determining Eastern and Southern Africa

climate variability we further explore the relationship between precipitation patterns

and ENSO signature. We adopted the index NIÑO3.4 to attribute an ENSO state to

each year from 1960 to 2006; we then analyzed the precipitation patterns associated

to each village for different ENSO states (El Niño, La Niña and Neutral years). The

index NIÑO3.4 is defined as a three-month running average of sea surface temperature

(SST) departures from normal for a critical region of the equatorial Pacific. The Niño

3.4 region is delimited by the following latitude and longitudes: 120◦W − 170◦W ,

5◦N − 5◦S, this region is displayed in 4.10. El Niño event is then identified if the 3-

month running-average of the NIÑO 3.4 Index exceeds +0.5◦C (−0.5◦C for La Niña)

during the period October - December.

The SST data used to calculate he index NIÑO 3.4 is the NOAA Extended Re-

11Available at: http://iri.columbia.edu/climate/ENSO/globalimpact/temp precip/region elnino.html



94

Figure 4.2: Global teleconnections of (a) El Niño and (b) la Niña episodes Warm
Episode Relationship, Dec-Feb (Halpert and Ropelewski, 1992).

constructed Sea Surface Temperature (ERSST) version 212.

12The ERSST was constructed using the most recently available International Comprehensive
Ocean-Atmosphere Data Set (ICOADS) SST data and improved statistical methods that allow
stable reconstruction using sparse data. This monthly analysis begins January 1854, but because
of sparse data the analyzed signal is heavily damped before 1880. Afterwards the strength of
the signal is more consistent over time. The ERSST version 2 (ERSST.v2) is an improved ex-
tended reconstruction; this means that the high-frequency SST anomalies are reconstructed by
fitting to a set of spatial modes. Compared to the earlier reconstruction, version 1 (v1), the
improved reconstruction better resolves variations in weak-variance regions. It also uses sea-
ice concentrations to improve the high-latitude SST analysis, a modified historical bias correc-
tion for the 1939-1941 period, and it includes an improved error estimate. For more details:
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From now on, we will indicate the ENSO state associated to the period October-

December of the year before the harvest as ENSO−1 and the ENSO state associated

to the period October-December of the harvest year as ENSO0. We then calculated

the monthly average cumulative precipitation for each station differentiating years by

ENSO state; we used the ENSO−1 state for Malawi and Tanzania and the ENSO0

state for Kenya. The reason why we picked the signal in the previous year for Malawi

and Tanzania is that the growth period in these regions is December-April, which

is likely to be more affected by the ENSO state immediately preceding the sowing

phase. The results are presented in the histograms in figures 4.11, 4.12, and 4.13.

Niño+ (Niña+) indicates a strong El Niño (La Niña) state with index NIÑO3.4 ≥

1◦C(≤ −1◦C). Niño (Niña) indicates El Niño (La Niña) state with NIÑO3.4≥ 0.5◦C

(≤ −0.5◦C). Based on the ENSO patterns presented in figure 4.2 described by Halpert

and Ropelewski, (1992):

• We expected higher (lower) precipitation in Malawi villages in years preceded

by ENSO-1 equal to La Niña (El Niño) both strong and regular - Niña+ and

Niña respectively. These patterns were confirmed by our results especially for

the first 4 moths of the year (January to April) that correspond to the growing

season. The village of Nkhotakota represents the only exception as it does not

show any clear pattern.

• For the Tanzanian villages we expected the opposite, that is: lower (higher)

precipitation in years preceded by ENSO−1 equal to La Niña (El Niño). Our

expectations for Tanzania villages are partially met: precipitation seem to be

higher in El Niño years, however we cannot detect a very clear pattern.

• For Kenya we expected lower precipitation when the ENSO=corresponds to La

Niña; unfortunately the results relative to the crops’ growing period (April to

http://www.ncdc.noaa.gov/oa/climate/research/sst/sst.html
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August) do not show a clear trend which suggests that ENSO is only one of the

factors affecting precipitation.

We estimated correlations between cumulative precipitation for each village dur-

ing the respective growing seasons: January, February, March, April and May for

Malawi and Tanzania; April, may June, July and August for Kenya. It is important

to stress that in some cases these correlations tables concern only 3 or 4 observa-

tions, thus we need to be cautious in our interpretation. It is interesting to note

that precipitation in villages in Malawi and Tanzania show, in general negative or

no correlation when ENSO−1 is neutral (SST anomaly between +/- 0.5 deg C), the

only exception is represented by Nkhotakota in Malawi, which shows atypical trends

and whose precipitation show positive correlations with the Tanzanian Villages. The

correlation becomes predominantly positive (neutral for Nkhotakota) if the ENSO−1

corresponds to strong La Niña. However, for years preceded by strong El Niño the

correlation patterns become more ambiguous.

Correlations between precipitation in Malawi and Kenya villages are not very

strong when we consider all years. Once we select years according to the ENSO state,

we observe:

• strong positive correlations if ENSO−1 is El Niño (except for Nkhotakota-

Malawi and Eldoret-Kenya)

• Nkhotakota and Eldoret show positive correlations with both Kenya and Malawi

villages if ENSO−1 is a La Niña.

Kenya and Tanzania villages do not present a very clear relationship, in general

we observe:

• positive correlations if ENSO−1 is La Niña.
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• negative correlation if ENSO−1 is El Niño.

The relationships just described suggest a high level of complexity in the precipitation

patterns with respect to ENSO.

4.3.3 Climate Forecasts

Models can now predict ENSO up to a year in advance; according to a study by

Mason (1998) by using ENSO, predictions for southern African rainfall may be made

for lead times of up to five months, with a high degree of confidence. Goddard and

Dilley (2004) note that during El Niño and La Niña events climate forecasts are

shown to be more accurate. Stronger ENSO events lead to greater predictability of

the climate and, potentially, the socioeconomic outcomes. Thus, the prudent use

of climate forecasts could mitigate adverse impacts and lead instead to increased

beneficial impacts, which could transform years of ENSO extremes into the least

costly to life and property.

4.4 Analyses of contracts

We want to study the statistical properties of the insurance contracts taking into

account climate variability and looking for opportunities for re-insurance schemes.

The question we are trying to answer is: are there possibilities for re-insurance using

geographic diversification? In this section: (i) we calculate the possible payouts that

we would obtain using historical precipitation data for each village; (ii) given the

relatively short precipitation time series available, we extrapolate precipitation dis-

tributions for each village using Monte Carlo simulation. More specifically, we model

precipitation by a gamma distribution the parameters of which are deducted from the

historical precipitation. The Monte Carlo approach allows us then to extract large



98

random samples from the precipitation distribution. The purpose of the exercise is to

analyze the statistical distribution of payouts using a larger sample of precipitation

data.

First, we use the historical precipitation data to calculate the payouts for rain-

fall patterns associated to different ENSO states. Then, while performing the Monte

Carlo simulations, we calculate mean and variance of contracts payouts for precipi-

tation distributions associated to different ENSO states.

Before presenting our analysis, it is important to point out a few caveats. First, in

the Monte Carlo simulation we adopt the gamma distribution to model precipitation

in the regions under examinations. The choice of gamma distribution is a strong

assumption supported by previous literature (Mearns, L.O. et al. 1997). Second,

the precipitation data used for the Monte Carlo simulations represent relatively short

time series (20 to 40 years depending on the village considered). Third, the contract

used in the Monte Carlo simulation have been slightly simplified with respect to the

real contracts: in order to perform the simulation, we assumed that the beginning of

the sowing season is the same every year, in reality the sowing phase varies according

to the sowing conditions (i.e. humidity in the ground). Finally, climatologist have

established a highly significant relationship between ENSO and inter-annual rainfall

variations in Southern Africa, however this relationship is quite complex: not every El

Niño event brings low rainfall, vice versa low precipitation are not necessarily related

to El Niño. In our simulation of historical payouts we try to capture interannual

variability based on the ENSO index Niño 3.4. More sophisticated forecasts need to

be developed and integrated to the insurance scheme in order to better reflect the

complexity of the climate system; this is part of our future research plan
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4.4.1 Historical payouts analysis and variability

For each village we perform the following three step analysis. First, we use the

historical rainfall data available during the period from 1960 to 2006 to calculate

the insurance payouts as if the 2006 maize contracts for each village were applied

over that period. The insurance contracts used in this exercise cover one acre of

hybrid maize production using the prices, parameters, and constraints agreed to by

the stakeholders during the 2006-07 season. The packages actually implemented in

the 2006 pilot scheme in Malawi included a bundle of groundnut and maize, however

in order to get non-ambiguous results, the contract used in this exercise covers only

one crop, maize. Maize was selected because it is highly sensitive to water stress, and

the varieties available in Malawi have been relatively well characterized for agronomic

modeling.

Second, using the formulas applied in the 2006 implementation we calculate the“historical

burn” insurance price appropriate for each ENSO phase. Historical burn pricing is

performed by relying entirely on payouts determined from historical data, without

attempting to characterize the underlying distributions13. The insurance price (the

premium) is equal to Average(payout) + Loading * (Value at Risk -Average(Payout)).

We apply here the pricing utilized in the design work of the 2006 insurance. We cal-

culate here two insurance prices with loading equal to 6% and 6.5%.

Third, we refine our analysis taking into account the different ENSO states. As

explained in the section 3 we define the ENSO state (El Niño, La Niña, and Neutral)

based on the index NIÑO3.4. As mentioned in our previous discussion, an important

constraint is represented by the small number of years available for analysis.

13Although this technique may be overly simplistic, it was utilized here for two reasons. First, it
is highly transparent, because it does not require specification of distributional assumptions (except
that the set of historical draws characterizes the entire distribution). Second, it was the pricing
method used for determining the official price of the Malawi insurance (Dan Osgood’s personal
communication).
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Results for this section are presented in figures 4.14, 4.15, and 4.16 which is

composed of three sections: figure 4.14 is preceded by a comprehensive legend and

presents the results for Malawi, figure 4.15 the results for Kenya, and figure 4.16 the

results for Tanzania. For each village we provide two tables and a graph. The first

table corresponds to the three-step analysis described above; the second table will

be discussed in section 5. The graphs underneath the tables show the magnitudes of

payouts for each year; in the graph the ENSO state corresponding to every payout is

indicated chromatically: pink for La Niña, blue for El Niño, green for neutral years.

ENSO impact for Malawi – The calculations for each village are presented in

figure 4.14. The average payouts in El Niño phases are substantially higher than

average. The average payouts in La Niña years are much lower than average (average

corresponds to the column“all”) for Lilongwe, Chitedze and Kasungu. Nkhotakota

does not show these dramatic differences, however the average payouts in El Niño

years is still higher than in La Niña years.

ENSO impact for Kenya – The villages of Eldoret and Kitale present responses

similar to the Malawi villages: lower average payouts and insurance rate in La Niña

years with respect to an average year (no distinction between ENSO states). The

village of Nakuru, surprisingly shows lower average payouts and insurance rate in

Neutral years ( Fig. 4.15).

ENSO impact for Tanzania – The contracts for Babati and Mbulu respond in the

opposite way with respect to the Malawi villages: we observe average payouts and

insurance rate in El Niño years substantially lower than average (Fig. 4.16).

4.4.2 Monte Carlo Simulations

Precipitation time series are surprisingly long for Malawi but they are still quite short

for our research purposes and might represent a serious shortcoming in our analysis.
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For this reason, we adopt Monte Carlo methods on the available precipitation data

to extrapolate the precipitation distributions. The Monte Carlo approach consists

in modeling a quantity of interest (here the precipitation) by a probability distribu-

tion (here a gamma distribution) and then performing random sampling from this

distribution14.

First, we separated the precipitation data for each growing season by phase15 and

by ENSO state. Second, we calculated the gamma distribution parameters for each

set of precipitation data. Third, we extracted samples of 1000 elements from the

precipitation pdf’s; since each growing season includes 3 phases we got 3 samples of

1000 elements per village. Fourth, for each sample, we calculated the corresponding

payouts and then we calculated the total payouts (sum of payouts of the three phases).

Fifth, we calculated mean and variance for each sample. The results are presented in

figures 4.17, 4.18, and 4.19. For each village, we provide a table showing: the mean

payouts by phase and the mean total payouts for different ENSO states. The results

are also summarized by histograms under each table.

Our calculations indicate that mean payouts are higher in El Niño years for villages

in Kenya while they are higher in la Niña years for villages in Tanzania. Malawi

villages present more ambiguous results. For Nhotakota we observe higher payouts

in la Niña years, for Chitedze higher payouts in El Niño years, and for Lilongwe and

Kasungu we observe higher payouts in neutral years. The Monte Carlo simulation

results confirm the historical payouts for Kenya and Tanzania but not for Malawi. One

possible explanation is that in calculating the historical payouts we took into account

the historical end of the crop sowing phase which corresponds to the“beginning of the

growing period” and varies from year to year, while in the Monte Carlo analysis we

simplified the contracts imposing the same starting date for all years. This reduced

14Random sampling from a probability distribution is always possible when the distribution func-
tion F is known: one can draw a number x uniformly at random in [0, 1] and output F−1(x).

15Each growing season is composed by 3 phases: germination, tasseling and maturation.
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flexibility of the starting date might have affected the final payouts for Malawi where

precipitation are scarcer than in Kenya and Tanzania.

4.5 Possibilities for re-insurance?

In this paper we presented the first steps of a broader research project whose goal is to

develop a re-insurance scheme built on climate forecasts, and based on anti-correlated

or independent precipitation patterns.

In sections 3, we analyzed the precipitation patterns of the regions under exam-

ination, at the village scale. In order to relate the precipitation patterns for each

village to more global climatological patterns we compared our data with the main

components of the PCA analysis performed at the continental scale by Giannini et

al. (2007). Correlation results seem to suggest that precipitation in Malawi villages

are affected by the ENSO signal, while precipitation in Kenya and Tanzania villages

are mostly associated to a continental drying trend related to global SST.

In sections 4, we studied the statistical properties of the insurance contracts taking

into account climate variability. First, we used the historical precipitation data to

calculate the payouts for rainfall patterns associated to different ENSO states. Then,

while performing the Monte Carlo simulations, we calculate mean and variance of

contracts payouts for precipitation distributions associated to different ENSO states.

The results obtained from historical precipitation data indicate that more abun-

dant rainfalls reduce payouts and the risk of loan default during La Niña in Kenya

and Malawi, during El Niño in Tanzania. The results of the Monte Carlo simulations

confirm our findings for Kenya and Tanzania but not for Malawi.
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4.5.1 Contract pricing and opportunities for reinsurance in-

tegrating the ENSO signal.

In the current Malawi scheme, price is independent from climate forecast (ENSO

state for instance), banks impose the constraint that the loan plus interest should

be equal to the maximum liability of the insurance, and farmers obtain a loan for

inputs that suffice just for cultivating one acre of land. This set-up is kept constant

across seasons regardless of what seasonal forecasts say. According to focus groups

and to a household survey, a majority of farmers were interested in larger loans; in

fact, most participating farmers own at least four acres (Osgood et al. 2007a). As

suggested by Phillips et al (2002), a rational mean of avoiding losses and benefiting

from opportunities would be to decrease the area planted in years with expected

rainfalls below normal, and to increase the area when rainfall is expected to be optimal

for yields.

An interesting experiment is to consider contracts whose price varies according

to the ENSO forecast. Note that the contract price is the sum of two terms: the

average expected payout, plus a term representing the value at risk (refer to section

4 for the formula). We calculated the contract prices for different ENSO states based

on historical precipitation data; both the mean payout and the value at risk can vary

with the ENSO state. The results are presented in figures 4.14, 4.15, and 4.16 (in

the first table for each village). For instance, the analysis for Malawi shows that as

the maximum liability (the limit of coverage provided by an insurance policy) of the

insurance remains constant (does not depend on the ENSO state) the insurance rate

decreases in La Niña years because of a decrease in premium (price of the insurance).

In other words: with a constant amount of money for premium, the maximum liability

of the insurance contract could be increased if the contract actually reflected the

changing nature of drought risk. This way the farmers could be allowed to cultivate
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larger areas in favorable years. Similar conclusions could be drown for Kenya (La

Niña years are favorable) and Tanzania (El Niño years are favorable). The insurance

rate can differ substantially across ENSO phases. For instance, for Malawi the prices

appropriate for La Niña phases are in general almost an order of magnitude lower

than the prices appropriate for El Niño phases.

Also, since ENSO patterns are forecastable, these insurance products could in-

clude also a mitigation component aimed at promoting land management practices

modulated on forecasts and aimed at reducing losses.

Osgood et al. (2007a, b) explore the potential for another scheme where: (i)

the input mix (proportion of high-yield maize seed and fertilizer) remains constant

across seasons, (ii) the insurance price (premium) remains also fixed in every ENSO

state, (iii) only the maximum liability changes adjusting insurance rate to ENSO

(Max Liability = Premium / Insurance rate). As a consequence, the respective loan

size and budget for inputs change too. In theory, modifying the loan would be like

modifying the total area cultivated with high-yield inputs provided by the bundled

loan-insurance contract. For instance, for Malawi when La Niña conditions anticipate

low chance of drought, farmers receive more inputs and can therefore cultivate more

land with the hybrid seeds and fertilizer provided by the scheme. When El Niño

indicates high risk of crop failure, the inputs given to farmers will be less.

We tested this scheme for all villages based on historical precipitation data. In

Figures 4.14, 4.15, 4.16 the second table for each village presents the results of this

exercise: the elements of a package where the insurance rate is adjusted according

to ENSO phase. The Input Budget (IB) is the budget available for inputs and the

Input Budget Weight is the ratio of IB in different ENSO phases to the IB of the

non-ENSO-adjusted package. In Malawi, holding the insurance price constant, the

changing ratio between price and insurance rate leads to a maximum liability in La
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Niña years that is much higher than in other years. The figures indicate a budget

available for inputs in a La Niña year larger (much larger for Kasungu and Chitedze)

than in the non-ENSO-adjusted package (4.14). We observe the same for two villages

in Kenya: Eldoret and Kitale. Nakuru in Kenya presents an anomalous response with

higher maximum liability and higher IB in“neutral years’ (4.15). Finally in Tanzania

maximum liability and IB are higher in El Niño years (4.16).

4.5.2 Limits and Perspectives

We based our analysis on a number of simplifying assumptions - such as using a fixed

contract starting date in the Monte Carlo approach - that will be reconsidered in fu-

ture work. Second, the model used a single-crop contract; future research should test

multi-crop contracts possibly combining crops with different responses to droughts.

Third, ENSO phenomenon is just one factor affecting seasonal rainfall in southern

Africa and more sophisticated seasonal forecasts should be integrated into the index

insurance scheme in order to improve the reliability of the model.

We have not explored in detail the possible combined effects of ENSO and climate

change on southern Africa (Mason, 2001). In particular, the role of the Indian Ocean

deserves further attention. In their analysis, Giannini et al. point out two possible

non mutually exclusive explanations for the drying signal (pattern a of the PCA) in

southeastern Africa: (i) the warming trend in the Indian Ocean (Hoerling et al. 2006),

which is understood to enhance the drying impact of warm ENSO events on this region

(Richard et al. 2000); (ii) global warming that is considered the cause for the recent

trend towards more frequent and persistent warm ENSO events (Timmermann et al.

1999, Trenberth and Hoar 1997), thus affecting Southern African rainfall indirectly.

There is still a large debate on this matter.

Despite these limitations, our preliminary results suggest that regional pooling of
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risk based on diverse climatic patterns seems to be a viable proposition. By inte-

grating forecasts in multi-year contracts, these insurance products might also include

forecast-based land-use guidelines to mitigate losses. From this case study three as-

pects emerge as precondition to possible regional insurance and reinsurance schemes:

the need for regional/supranational coordination; private-public partnership between

governments and insurance companies to maximize insurance penetration in rural

areas; and product design robustly rooted in scientific research.

The next step in our research plan will focus on possible re-insurance schemes

designed to exploit the anti-correlation patterns related to interannual climate vari-

ability for different regions in Africa. Re-insurance schemes based on forecasts could

have important implications for adaptation to climate change in Southern Africa by

reducing farmers’ long-term vulnerability to droughts. Also, they could be exported

to other regions where the ENSO signature is strong and shows diverse patterns, such

as Latin America.
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Figure 4.3: Village locations
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Figure 4.4: Agricultural Calendars and Precipitation Data for Villages in Malawi.
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Figure 4.5: Agricultural Calendars and Precipitation Data for Villages in Kenya.
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Figure 4.6: Agricultural Calendars and Precipitation Data for Villages in Kenya
(continued).



111

Figure 4.7: Agricultural Calendars and Precipitation Data for Villages in Tanzania.
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Figure 4.8: The three leading patterns of a Principal Component Analysis performed
by Giannini et al. (2007) on annual mean (July-June) precipitation over Africa during
1930-1995: Top row, figures a, b, c: The spatial patterns, obtained by linear regression
of the time series in d, e, f onto precipitation - anomalies are in color, in mm/month,
while the contours delimit regions where regression is statistically significant at the
5% level. Middle row, figures d, e, f: The associated time series (in units of standard
deviation). Note that the upward trend in (d) indicates increasingly stronger values
of the negative anomalies in the pattern in (a), i.e. a drying trend. Bottom row,
figures g, h, i: Regression patterns of the time series in d, e, f with sea surface
temperature (Kaplan et al. 1998). Anomalies are in contour, spaced every 0.05 deg
C, and dashed in the case of negative values; the presence of color represents their
statistical significance at a level of 5% or higher.
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Figure 4.9: Correlation between average cumulative yearly precipitations for each
village and the three main climate patterns (sdv1, sdv2, sdv3) obtained by Giannini
et al (2007) performing Principal Component Analysis (in fig.1 bottom row) over the
period 1930-1995. Data used by Giannini et al. (2007): UEA CRU Hulme Global
precipitation anomalies [mm/month] over the period 1930-1995. sdv 1 leading pat-
tern of annual-mean variability 1 (fig. 1, first column): “This pattern is statistically
related to global SSTs, with the sign such that drying over Africa is associated with
warmer tropical Pacific, Indian and South Atlantic Oceans, and a cooler North At-
lantic basin”. sdv 2 corresponds to the pattern 2 (fig. 1, second column): “canonical
ENSO influence, one that combines the effects of remote, or tropical Pacific, and local,
especially Indian Ocean, surface temperatures”. sdv 3 corresponds to the pattern
3 (fig. 1, third column): “pure atmospheric influence of ENSO, the entire tropical
troposphere warms during warm ENSO as a response to the warming of central and
eastern equatorial Pacific”. Malawi villages: chit Chitedze: kas Kasungu; lil Li-
longwe; nkh Nkhotakota. Tanzania villages: bab Babati; mbu Mbulu. Kenya villages:
kit Kitale; eld Eldoret; nak Nakuru.
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Figure 4.10: Graphical depiction of the four Nino regions (source: NOAA). Definition
of the ENSO index NINO 3.4: The index is defined as a three-month running average
of sea surface temperature (SST) departures from normal for a critical region of the
equatorial Pacific. The Niño 3.4 region is delimited by the following latitude and
longitudes: 120W-170W, 5N-5S. El NiÑo or La NiÑa event is then identified if the
3-month running-average of the NINO 3.4 Index exceeds +0.5 deg. C (for El NiÑo;
-0.5 deg. C for La NiÑa) during the period October-December.
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Figure 4.11: In the following graphs: Niño+ (Niña+) indicates a strong El Niño (La
Niña) state with index NINO3.4 ≥ 1 deg C (≤ −1 deg C). Niño (Niña) indicates El
Niño (La Niña) state with NINO3.4 ≥ 0.5 deg C (≤ −0.5 deg C).
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Figure 4.12: Histograms Kenya
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Figure 4.13: Histograms Tanzania
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FIGURES 4.14, 4.15, 4.16 PRESENT SIMULATION AND ANALYSIS OF HISTORICAL PAYOUTS.

For each village we provide two tables (e.g. upper and lower table) and a chart showing the occurrence of payouts

between 1962 and 2005.

1. In the upper table:

Mean Pay is the average payouts that is the sum of payouts divided by the number of years.

VaR is the value at risk; it corresponds to the payout associated to the 99th percentile.

Insurance price (Premium) is calculated using this formula:

= Average(payout) + Loading * (Value at Risk -Average(Payout))

We apply here the pricing utilized in the design work of the 2006 insurance. We calculate here two insurance prices

once with loading equal to 6% and 6.5%.

Maximum liability is the limit of coverage provided by an insurance policy (maximum liability is fixed in this table).

Insurance rate is the ratio between insurance price and maximum liability.

Insurance rate = Insurance price / maximum liability

Number of payments indicates the total number of payouts for each ENSO state and for “all” states.

Number of years is the number of years corresponding to the ENSO state indicated as title of each column.

Pay frequency is number of years divided by the total number of years studied (that is number of years in col-

umn“all”).

2. In the lower table:

The maximum liability is allowed to change, while the insurance price is fixed. The insurance rate is the value calcu-

lated above (highlighted in green). Max Liability = Insurance price / Insurance rate

Loan is the loan received by the farmers after they sign the contract that bundle microcredit with microinsurance:

Loan = Max Liability/(1 + r)r = 0.275

Interest corresponds to the loan times the coefficient r: Interest = Loan× r

Input budget is the budget available for inputs (high-yield maize seed and fertilizer):

Input budget = MaxLiability − Interest− Premium

Input budget weight is the ratio of IB in different ENSO phases to the IB of the non-ENSO-adjusted package.

Input budget weight = Input budget / (Input budget for All)

3. In order to select years by ENSO state we used the index NINO3.4 corresponding to the period October -

December of the year previous to the harvest for Malawi and Tanzania; and the year of the harvest for Kenya.

4. In the payout graphs, different colors correspond to different ENSO states: Green - Neutral years; Blue - El

Nino years; Pink - La Nina years.
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Figure 4.14: Payouts using historical precipitations in Malawi villages.
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Figure 4.15: Payouts using historical precipitations in Kenya villages.
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Figure 4.16: Payouts using historical precipitations in Tanzania villages.
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Figure 4.17: Results of Monte Carlo Simulations for Malawi.
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Figure 4.18: Results of Monte Carlo Simulations for Kenya.
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Figure 4.19: Results of Monte Carlo Simulations for Tanzania.



Chapter 5

Perspectives

5.1 Linking Indigenous and Scientific Knowledge

of Climate Change

The paper “Attributing Physical and Biological Impacts to Anthropogenic Climate

Change”, presented in chapter 2, attributed for the first time physical and biological

changes across the globe to anthropogenic climate change. Our work contributed

also to the 2007 IPCC 4th Assessment Report (Working Group II). The underlying

meta-analyses and aggregation of data included only scientific studies selected under

very strict criteria: peer-reviewed papers, demonstrating significant trend in change

in either direction related to temperature and containing data for at least 20 years

between 1970 and 2004. The Observed Climate Change Impacts Database that we

constructed for this study contains a sheer number of observations: 80,000 data-series

from 577 peer-reviewed studies. However, we found a significant lack of geographi-

cal balance in the data and literature on observed changes in natural and managed

systems, with a marked scarcity in the sub-polar regions, in the tropics and in devel-

oping countries in general. In these regions indigenous knowledge could complement

scientific monitoring in assessing the effects of a changing climate.

125
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Climate change’s negative effects on indigenous communities include: disruption

of the food supply associated to temperature-driven migration of indigenous species

(Mustonen (2005), IPCC (2007), Diffenbaugh et al. (2007)); increased susceptibility

to diseases whose epidemiology is affected by environmental factors such as precipi-

tation and temperature (IPCC (2001), US Global Change Research Program (2001),

Green et al. (2009)); and cultural disturbances and losses (Sakakibara (2008) and

(2009)). Climate change is felt disproportionately by indigenous communities, par-

ticularly in the polar and sub-polar regions; and indigenous narratives provide long

time series of ecological and physical phenomena (e.g timing of migration of animals,

changes in indigenous species in a region, timing of seasonal ice melting in the po-

lar region). Indigenous narratives have never been included in scientific assessments

but they might represent an important source of information, particularly in areas

with marked data scarcity. Moreover, in remote areas that do not have temperature

records, indigenous knowledge narratives can serve as proxy data.

In 2008, I took part to a panel brought together by the Center for Biodiversity

and Conservation of the American Museum of Natural History (AMNH) as part of

a larger conference titled Sustaining Cultural and Biological Diversity in a Rapidly

Changing World. The goal of the panel, composed by scientist and indigenous people

leaders, was to explore the challenges posed by climate change to indigenous groups.

After the event, members of the panel kept working together to explore possible

ways to integrate indigenous knowledge and science. As part of this project, with

financial support from the AMNH, we developed a database of indigenous narratives

brought forward by the conference participants, and studied the spatial correlation

of these observations with documented temperature changes and peer-reviewed stud-

ies from the Observed Climate Change Impacts Database. A discussion of these
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exploratory analyses is presented in a study I co-authored with the other 12 mem-

bers of the panel, and just accepted for publication in BioScience (Alexander et al.

(2011)). We find that peer-reviewed observations and indigenous knowledge narra-

tives located in close proximity (less than 50km apart) are complementary in that

both are reporting system changes consistent with warming temperatures. The nar-

ratives contained in our still embryonic database show that global climate change is

already affecting integrated physical, biological, and human eco-systems, especially

in the northern high latitudes. As part of our study we also propose a framework to

foster linkages between indigenous narratives of observed climate change with global

scientific assessments. Such a process of inclusion would enhance the IPCC Fifth

Assessment (AR5) process, now underway.

5.2 Socio-economic Impacts of Weather Shocks

Chapter 3 studies the vulnerability of rural households to two types of weather shocks

(i.e. droughts and extreme rainfall events), using consumption as a metric, and

investigates post-shock decisions to migrate of family members. Two new research

projects have developed from this study and are currently underway. My coauthor1

and I will use the dataset that I constructed by joining weather data and the Progresa

longitudinal socio-economic dataset to explore longer-term impacts of ENSO-related

weather extremes (occurred in 1997, 1998 and 1999) on two different dimensions of

socio-economic development: child health and long-term migration. In both studies

my coauthor and I plan to use additional data collected in follow up surveys of the

Progresa datasets in 2003 and 2007.

1Arturo Aguilar, doctoral student in the Economics Department of Harvard University.
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5.2.1 Long-term impacts of weather extremes on child health

El Niño Southern Oscillation (ENSO) has a cycle of 5-7 years, and it affects precip-

itation and consequently agricultural yields in numerous developing countries (Cane

et al., 1994) from Latin America to Africa. However, little is known about the impact

of cyclical climatic events on long-term human capital accumulation. In rural areas,

dominated by rainfed subsistence farming, food-consumption can be strongly affected

by weather conditions. Malnutrition induced by a drought or an excess rain event

represents a major risk during the early stages of child development. Developmental

biology teaches that stressful conditions – such as malnutrition – in utero and/or

during the first years of life can have irreversible long-term negative consequences

on child health and cognitive development. In this project we will study the long-

term influence of ENSO-related weather extremes on human capital accumulation,

namely health, cognitive and educational attainments. Our household data allows

us to examine the impact of weather shocks occurred at two different stages of child

development, in utero, and in the first years of life after birth2. Also, we will ana-

lyze to what extent cash transfers from the Progresa poverty alleviation program aid

households to reduce their vulnerability to this kind of shocks.

For our research, we rely on and will contribute to two main strands of literature:

the growing body of literature studying the long-term impacts of exogenous shocks (in

particular, weather shocks) on child development and human capital accumulation;

and the vast literature on poverty-alleviation programs’ direct and indirect impacts.

The idea that stimuli or stressful conditions during critical or sensitive periods in

early life can have lifetime consequences is well established in developmental biology

and is known as fetal programming (Barker, 1998). Moreover, from a purely nutri-

2Weather shocks were not uniformly distributed in the region under exam, thus our control group
includes children in villages unaffected by shocks.
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tional point of view, the fetal origins hypothesis states that individuals born small

because of malnutrition are predisposed to adult diseases and reduced body size. Sev-

eral economic studies have documented the long term impacts of in-utero shocks (e.g.

Behrman and Rosenzweig (2004), Almond (2006) and Almond et al. (2010)).

Other studies suggest that shocks occurred in the first years after birth have

significant negative impacts on child development too. Hoddinot and Kinsey (2001)

and Alderman, Hoddinott, and Kinsey (2006) use data from Zimbabwe to show that

drought-induced malnutrition for children between one and two years of age is causally

related to reduced human capital formation. Similarly, Maccini and Yang (2009),

using Indonesian data for females, find that local rainfall variations around the time

of birth significantly affect schooling, health and socio-economic status in adulthood.

Our project builds on the study presented in Chapter 3 of this dissertation. Us-

ing the Progresa-survey dataset, I found strong contractions in food and non-food

consumption after extreme weather events occurred in 1998-1999. Weather-induced

contractions in food-consumption at the household level might have in turn caused

in utero and/or post-birth nutritional deprivation, with long term consequences on

health and educational achievements. In the first part of our study we will test this

hypothesis.

We will use a larger spectrum of health and cognitive development indicators:

birth-weight, anthropometric measures for older children (i.e. body mass index,

height and weight), level of hemoglobin in the blood, Peabody Test (a measure of

verbal ability), Woodcock Johnston Test3, McCarthy coordination test. We will use

the number of completed grades of schooling in 2007 as a measure for educational

attainment. Anthropometric measures and hemoglobin are objective measures col-

lected during visits at local clinics, used as standard indicators for stunting (defined

3The Woodcock Johnston Test measures: visual-spatial thinking, auditory processing, fluid rea-
soning, short-memory.
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as being two or more standard deviations below the age-sex standardized height of

a healthy (U.S.) reference population (World Health Organization, (1979)) and ane-

mia (defined as hemoglobin less than 11 g/dL adjusted for altitude). The Peabody,

Woodcock Johnston and McCarthy tests (performed when the child is 2 to 6-year old)

are used as predictors of cognitive development and future academic achievements.

In the second part of our study, we will examine the role of CCT/Progresa in mit-

igating the negative impacts of weather shocks. By design, the CCT/Progresa was

aimed at improving the educational, health and nutritional status of children living in

extreme poverty4. Because of its robust impact evaluation design, CCT/Progresa’s

direct and indirect impacts have been widely investigated. All primary indicators

of direct impacts (e.g. school enrollment, preventive health check-ups for growth

monitoring and vaccinations, pre-natal care, food availability and nutritional sta-

tus) on beneficiary households compared with control households have shown signifi-

cant increases in the expected direction (Skoufias, (2001)). CCT/Progresa seems to

have produced also several indirect significant impacts in beneficiary households (e.g.

improvements in women’s status and increase in monthly consumption per person)

(Adato et al., (2000); Hoddinott et al., (2000)) and positive spillover effects on non-

beneficiary households (Handa et al., (2001); Angelucci et al. (2010)). The study by

Gertler (2004) is particularly informative for our analysis: by using high, weight and

hemoglobin levels as dependent variables, he found positive health outcomes associ-

ated with Progresa for children of beneficiary households in 1998-2000. Our analysis

will expand Gertler’s study in several ways: first, we will not focus only on Progresa

4The cash transfer was addressed to mothers and conditional on participating in four sets of
activities to promote family health and nutrition: (i) Nutritional supplements for children age 0-
2 and for pregnant and lactating women; (ii) Growth monitoring from conception till 5 years of
age; (iii) Preventive medical care including prenatal care, baby care and immunizations, and adult
preventive visits to clinics; and (iv) Education programs on health, hygiene, and nutrition habits.
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but on the interaction between Progresa and weather shocks; second, our study will

cover a longer time period considering also long-term health effects measured in 2003

and 2007; and third, we will consider both health and cognitive development out-

comes.

5.2.2 Climate-driven migration

The second research project will focus on the relationship between weather shocks,

such as persistent droughts and extreme rainfall, and the decision to migrate of mem-

bers of Mexican rural households. In particular, the role of the extreme El Niño

events will be considered. Our study aims at deepening our understanding of the

motives to migrate when faced with climate-related shocks.

Seasonal, temporary or permanent migration can be an important risk manage-

ment strategy for rural households affected by weather shocks. However, little is

known about the impact of weather extremes on both temporary and permanent

migration from developing countries.

A puzzle emerged in the development economics literature is that the poor do not

migrate for long periods. Seasonal or temporary migration of a family member seems

to be common among rural households in the developing world, while permanent

migration is rare (Banerjee and Duflo, 2007). A possible explanation is related to

social networks. Munshi and Rosenzweig (2009) argue that the lack of long-term

migration reflects the value of remaining close to one’s social network, in a setting

where the social network might be the only source of (informal) insurance available

to people. Short-term migrants are able to maintain their social links through their

family that remains in the village of origin.

Our research project will investigate the dynamic behind permanent and tempo-
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rary migration of family members by exploiting the diverse weather patterns in the

region under exam. We will study the profiles of migrants who respond to weather

shocks and migrants under ”normal” conditions. Our dataset allows us to also explore

differences between domestic and international migration, and the role of gender in

migration decisions.

The Progresa database tracks each family member for 10 years. We will use 6

rounds of the dataset, 4 surveys between 1997 and 2000, and the 2 follow-up surveys

in 2003 and 2007. Every round of the Progresa survey includes a migration section

asking if any member of the household lives elsewhere, where (i.e. different locality,

different municipality, different state, or abroad), when the person leaved (i.e. month

and year), and for what reason (i.e. to attend school, for professional reasons, because

of economic problems, or because the person got married). Data about frequency and

amount of remittances are also included. Furthermore, the dataset allows us to ex-

plore additional factors that might be related to migration decisions: gender, age,

level of education, parents’ level of education, size of the household, household assets,

land-use practices at the household level, existing networks of migrants within the

same household, family or village.

This project will investigate several aspects of migration, and we expect to present

my results in a series of papers. First, we will explore seasonal, temporary (if the

household member is away for less than 10 years), and permanent migratory pat-

terns. we will study drivers and socio-economic characteristics associated to short-

term versus long-term migration. we will also explore drivers and characteristics

of short-distance versus long-distance migration (e.g. domestic versus international

migration).

Second, we will study the role of gender: in low-income households it is usually
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adult males who migrate and leave their family behind, we will test this hypothesis

comparing female migration from households affected by different weather shocks or

no shocks (i.e. my control group).

Third, we shall investigate the effect of the interaction between the government in-

tervention CCT/Progresa and weather shocks on migration decisions. CCT/Progresa

is designed to target children in poor households by providing cash payments to moth-

ers in exchange for regular school attendance, health clinic visits, and nutritional sup-

port. The impact of the conditional cash transfer on migration is uncertain: on one

side, the government intervention might help smooth consumption and reduce migra-

tion of family members (e.g. father, older brothers or sisters); on the other side, the

cash transfer might loosen financial constraints and facilitate the decision to migrate

of family members. We will test these two hypothesis by comparing migration deci-

sions in beneficiary versus non-beneficiary households in the event of weather shocks.

Our control group includes households that did not receive the government interven-

tion and that were not affected by weather shocks. In a recent paper, Angelucci (2010)

used the CCT/Progresa dataset to estimate the effect of the government transfers on

migration. Her estimates suggest that the program is associated with an increase in

international migration (but not domestic migration). Our study would complement

Angelucci’s analysis by taking into account weather shocks.

5.2.3 Forecasting social cost of adaptation to climate change

Our results from the two projects just described will also have bearing on the analy-

sis of impacts of future climate change. Climatic projections forecast more frequent

extreme weather events in several tropical and subtropical regions, coinciding geo-

graphically with developing countries. Our results will provide a test bed for studying

climate impacts on health and migration of future global climate change; in the final
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stage of the project, we plan to use our estimated models to predict future impacts

under different model-based probabilistic climate change scenarios provided from the

NASA-GISS Climate Impacts Group. Keeping in mind factors specific to Mexico, the

goal of this projection exercise will be to explore the potential magnitude of future

impacts on human capital and migration decisions. From a policy perspective, our

work will be informative about the social cost of weather extremes and adaptation to

climate change.
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and Global Warming. Polar Record 45(4): 289-303.

Seager, R., M. Ting, M. Davis, M. Cane (2007). Mexican drought: An observa-
tional, modeling and proxy reconstruction study of variability and climate change.
Working Paper, Lamont Doherty Earth Observatory, Columbia University.

Skees J. and B. Collier (2010). New Approaches for Index Insurance: ENSO
Insurance in Peru. Innovations in Rural and Agriculture Finance. IFPRI Focus 18,
11, July 2010.

Skoufias, E. (2001). PROGRESA and its Impacts on the Human Capital and
Welfare of Households in Rural Mexico: A Synthesis of the Results of an Evaluation
by IFPRI, International Food Policy Research Institute. IFPRI, Washington, DC.

Skoufias, E. (2001). PROGRESA and its Impacts on the Welfare of Rural House-
holds in Mexico, International Food Policy Research Institute Research Report No.
139. IFPRI, Washington, DC.

Skoufias, E. Susan W. Parker, Jere R. Behrman and Carola Pessino
(2001). Conditional Cash Transfers and Their Impact on Child Work and Schooling:
Evidence from the PROGRESA Program in Mexico [with Comments] Economia
2(1), 45-96.



147

Skoufias, E. (2001). Consumption Insurance and Vulnerability to Poverty: A Syn-
thesis of the Evidence from Bangladesh, Ethiopia, Mali, Mexico and Russia, The
European Journal of Development Research 1(17), 24-58.

Skoufias, E., A.R. Quisumbing (2007). Poverty Alleviation and Consumption
Insurance: Evidence from Progresa in Mexico. Journal of Socio-Economics 36(3),
630-649.

Sobel, A. H., Held, I. M. and Bretherton, C. S. (2002). The ENSO signal in
tropical tropospheric temperature. J. Climate, 15, 2702-2706.

Smith,T.M. and R.W. Reynolds (2005). A global merged land and sea surface
temperature reconstruction based on historical observations (1880-1997). J. Clim.
18, 2021-2036.

Sorvari, S., Korhola, A. and Thompson, R.(2002). Lake diatom response to
recent Arctic warming in Finnish Lapland. Glob. Change Biol. 8, 171-181.

Stahle, W., F. Diaz, D.J. Fye, R. Acuña Soto and R Seager (2009). Early
21st-century drought in Mexico. EOS 90(11).

Stecklov, G., P. Winters, M. Stampini and B., Davis (2007). Do Conditional
Cash Transfers Influence Immigration? A Study Using Experimental Data from the
Mexican Progresa Program. Demography 42(4), 769-790.

Stott, P.A. (2003). Attribution of regional-scale temperature changes to anthro-
pogenic and natural causes. Geophys. Res. Lett. 30, p. 1728.

Teruel, Graciela and Benjamin Davis (2000). An Evaluation of the Impacts
of the Progresa Cash Payments in Private Inter-household Transfers, International
Food Policy Research Institute Final Report. IFPRI, Washington, DC.

Timmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M. and
Roeckner, E. (1999). Increased El Niño frequency in a climate model forced by
future greenhouse warming. Nature, 398, 694-697.

Townsend, R. M. (1994). Risk and Insurance in Village India. Econometrica 62(3),
539-591.

Townsend, R. M. (1995). Consumption Insurance: An Evaluation of Risk-Bearing
Systems in Low-Income Economies. Journal of Economic Perspectives 9(3), 83.

Trenberth, K. E. and Hoar, T. J. (1997). El Niño and climate change. Geophys-
ical Research Letters, 23, 3057-3060.



148

Tucker, C. J., J. E. Pinzon, M. E. Brown et al. (2005). An Extended AVHRR
8-km NDVI Data Set Compatible with MODIS and SPOT Vegetation NDVI Data.
Int. J. Remote Sensing, 26, 4485-4498.

Udry, C. (1994). Risk and insurance in a rural credit market: An empirical investi-
gation in Northern Nigeria. Review of Economic Studies 61(208), 495.

UNDESA - United Nations Department of Economic and Social Affairs
(2007). Developing index-based insurance for agriculture in developing countries.
Sustainable Development Innovation Briefs Issue No. 2. New York: UNDESA.

U.S. Global Change Research Program.(2009). Global Climate Change Im-
pacts in the United States. Cambridge University Press, 188pp.

Yoshikawa, K. and Hinzman, L. D. (2005). Shrinking thermokarst ponds and
groundwater dynamics in discontinuous permafrost near Council, Alaska. Per-
mafrost Periglacial Process. 14, 151-160.

Walker, T. S. and J. G. Ryan (1990). Village and Household Economies in
India’s Semi-Arid Tropics. Baltimore, MD: Johns Hopkins 101(2), 223.

Wallace, J. M., Rasmusson, E. M., Mitchell, T. P., Kousky, V. E.,
Sarachik, E. S. and von Storch, H. (1998). On the structure and evolution
of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J.
Geophys. Res., 103(C7), 14241-14259.

World Bank (2008). World Development Report: Agriculture for Development, The
World Bank Group.

Wu, P., Wood, R. and P. Stott (2005). Human influence on increasing Arctic
river discharges. J. Geophys. Res. 32, L02703.


