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ABSTRACT

A robotic system for object recognition is described that uses both active exploratory
tactile sensing and passive stereo vision. The complementary nature of these sensing
modalities allows the system to discover the underlying three dimensional structure of
the objects to be recognized. This structure is embodied in rich, hierarchical,
viewpoint independent 3-D models of the objects which include curved surfaces, con-
cavities and holes. The vision processing provides sparse 3-D data about regions of
interest that are then actively explored by the tactile sensor which is mounted on the
end of a six degree of freedom manipulator. A robust hierarchical procedure has
been developed to integrate the visual and tactile data into accurate three dimensional
surface and feature primitives. This integration of vision and touch provides
geometric measures of the surfaces and features that are used in a matching phase to
find model objects that are consistent with the sensory data. Methods for verification
of the hypothesis are presented, including the sensing of visually occluded areas with
the tactile sensor. A number of experiments have been performed using real sensors
and real, noisy data to demonstrate the utility of these methods and the ability of
such a system to recognize objects that would be difficult for a system using vision

alone.
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CHAPTER 1

INTRODUCTION

1.1. OVERVIEW

This dissertation is an attempt to improve robotic system performance for the
task of object recognition. The central idea of this research is that the use of active
tactile sensory feedback in conjunction with traditional machine vision processing
will allow a robotic system to discover the underlying three dimensional structure of
the objects to be recognized. This structure is embodied in rich, hierarchical,
viewpoint independent 3-D models of the objects which include curved surfaces, con-
cavities and holes. The vision processing provides sparse 3-D data about regions of
interest that are then actively explored by the tactile sensor. A robust hierarchical
procedure has been developed to integrate the visual and tactile data into accurate
three dimensional surface and feature primitives. This integration of vision and touch
provides geometric measures of the surfaces and features that are used in a matching
phase to find model objects that are consistent with the sensory data. Finally,
methods for verification of the hypothesis are presented, including the sensing of
visually occluded areas with the tactile sensor. A number of experiments have been

performed using real sensors and real, noisy data to demonstrate the utility of these
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methods and the ability of such a system to recognize objects that would be difficult

for a system using vision alone.

This chapter outlines the present state of robotic performance for object recogni-
ton. A number of improvements in robotic performance are discussed which have
been incorporated into the design of the system described here. An overview of the
system hardware and software is included with succeeding chapters describing the

system and its performance in detail.

12. THE PROMISE OF ROBOTICS

Rbbots have fascinated man for many years. The idea of an ‘‘intelligent’
machine that can do tasks similar to humans has been proposed by science fiction
writers aﬁd futurists and embodied in movies and toys. Over the last ten yéars, great
strides have been made towards this goal. The decreasing cost of computing power
coupled with the drive for higher productivity has led to the introduction of many
robots onto factory floors. There has also been an increase in the publicity and
expectations about the capabilities of these machines, which I call the promise of
robotics. The promise of robotics is twofold: to create machines that can perform
tasks that are currently infeasible for humans and to perform tasks that humans
presently perform with greater accuracy, lower cost and resulting higher productivity.
The class of tasks that robots are well suited for includes dangerous tasks in
unpleasant environments (undersea, outer space), boring and repetitive tasks that

humans find unstimulating, and tasks requiring high precision and accuracy.

However, the promise of robotics has yet to be fulfilled. Tasks which we as

humans find simple and trivial are complex and difficult for a robot to perform. A



human can find an arbitrary object visually in a cluttered environment and proceed to
grasp the object and move it at will, avoiding obstacles along the way and not
damaging the obstacle if it is fragile. This task is beyond the capability of most
robots in use today. The majority of robot tasks currently being performed consist of
pick and place type operations in fully known and constrained environments, where
total knowledge of the relevant objects to be manipulated is assumed. These robots
have no way of dealing with uncertainty and in fact are subject to failure should the
environment change in any way. To become more flexible and useful, robotic sys-
tems! need to be able to adapt to different environments and be able to reason about
their environments in a precise and controlled way. Wir.houf this reasoning ability,
robots simply are nothing more than fancy machine tools, hard wired for a specific

application but certainly not flexible or adaptable.

1.3. PRESENT DAY ROBOTICS

Most robots are used in industrial applications. Typical robotic tasks are pick
and place movements, paint spraying, welding and generalized handling tasks. The
majority of these robots are pretaught a series of movements by humans that
correspond to the task at hand. The movements assume no change in the real work
environment from the teaching sequences. Elaborate schemes are used to recreate
this static environment. In handling operations, jigs and bowl feeders are used to
insure that objects to be manipulated are always presented in the same location and
orientation as in the teaching sequence. Many machine vision systems require

! The term robotic system is used o emphasize the system nature of robots. Typically,
more than one computer and computing environment is needed for a complex robotc task.



special lighting and orientation of known objects to work successfully. Systems such
as these are doomed if the object arrives in a different position or orientation or if the

object is defective or a different object appears.

1.4. IMPROVING ROBOTIC SYSTEM PERFORMANCE

There are many reasons why robot performance is well below humans. One of
the most obvious ones is that robotic sensors are nowhere near as capable as human
sensors. A small error in a digital image can have alarming consequences; human
vision, on the other hand, is extremely robust, able to tolerate noise, distortion and
changes in illumination, reflectance and viewing angle. Robots are controiled by
deterministic computer programs that are not able to anticipate and deal with the
wide range of new and unforeseen situations that may be encountered. Robots have
difficulty recognizing error situations let alone coping with them. The knowledge
base of a robot is usually nothing more than a series of labeled points, precluding

even rudimentary reasoning ability about the objects and tasks in its environment.

Robotic systems need to progress beyond the limited capabilities described
above. The promise of robotics means that robots can work in unconstrained environ-
ments. Robots need to be able to operate outside of a specific assembly line; they
need to be able to function in the home and office as well, environments that cannot
be as tightly constrained as a factory. As tasks become more complex, a robotic sys-
tem needs to be able to understand a changing dynamic world, and to understand it
through a mixture of powerful sensory processing and high level reasoning about the
world. Some of the complex tasks robots are being asked to do are object recogni-

tion, grasping, manipulaton and collision avoidance. Much research is presently



being directed at discovering the underlying principles that guide humans in these
tasks so we may improve robotic performance. While many of the specifics for each
task are still not well understood, there are many ways in which perforrnance can be
improved. The intent of this research is to explore the task of object recognition and
attempt to implement these improvements into a system to recognize common objects
found in a kitchen domain such as plates, bowls, mugs, pitchers and utensils, extend-

ing the robot’s workplace to the home environment.

1.4.1. SENSORY FEEDBACK

The first proposed improvement in robotic performance is to include sensory
feedback. Many robotic tasks are attempted without sensing, assuming an absolute
world model that never changes. For example, in many pick and place operations, the
objects are always in a previously known absolute position and orientation. This
approach offers little flexibility. Robotic systems need the ability to use sensory
feedback to understand their environment. Work environments are not static and
cannot always be adequately constrained. There is much uncertainty in the world,
and we as humans are equipped with powerful sensors to deal with this uncertainty.
Robots need to have this ability also. Incorporating sensory feedback into robotic
systems allows nondeterminism to creep into the deterministic control of a robot.
There is at present much work going on in the area of sensor design for robotics.
Range finders, tactile sensors, force/torque sensors, and other Sensors are actively
being developed. The challenge to the robotic system builder is to incorporate these
sensors into a system and to make use of the data provided by them. The sensors

used in this research are passive stereo vision and active, exploratory tactile sensing.




The use of an active, exploratory sensor demands a degree of control not found in
passive sensors. The sensory feedback from the touch sensor must be used to guide
the sensor over the surfaces of the object to be recognized. Chapter 5 discusses the
use of such an active sensor in detail, describing algorithms for exploring surfaces,

holes and cavities.

14.2. INTEGRATION OF MULTIPLE SENSORS

" Much of the sensor related work in robotics has tried to use a single sensor to
determine environmental properties [1, 11, 18,24,30,51,50,63,69]. This can be diffi-
. cult as not all sensors are able to determine many of the properties of the environ-
ment that are deemed important. For example, a vision system using 2-D projections
has difficulty deterﬁli:ﬁngﬁ-D shape. The approach taken here is to use multiple
sensors. Multiple sensors can be used in a complementary fashion to extract more
information from an environment than a single sensor [64,47]. A common strategy
in computer vision is to try to use a single sensor to determine shape properties.
Many different ‘‘shape’ operators have been defined by various researchers trying to
isolate separate parts of the visual system that produce depth and surface information.
Examples of these are shape from texture [37,6], shape from shading [32], shape
from contour [67,72,31] and shape from sterco [44,23]. A potentally promising
idea is to use all of these separate shape operators together in a system that will
integrate their results. Unfortunately, the operators all have different sets of con-
straints on the object’s structure, reflectance, and illumination. The integration of
these many visual operators is still not well understood. A much more promising

approach is to supplement the vision information with other sensory inputs that




directly measure the properties of shape we desire. The strategy of trying to obtain
enough shape information from a single sensor may fail due to the limitations of that
sensor as is typically the case with machine vision. If this vision sensing can be sup-
plemented with tactile information that directly measures shape, more robust and

error free descriptions of object structure can result.

If multiple sensors are to be used, then the problem of control and coordination
arises. It is difficult enough at present to control and coordinate the activities of a
single sensor system, let alone multiple sensors. Each sensor is a distributed system
with different bandwidth, resolution, accuracy and response time that must be
integrated into a coherent system. Multiple sensing also raises the question of stra-
tegies for intelh'gent use of powerful sensors. With many ways to obtain data, some
may be preferable to others and yield better results. Defining these sensing strategies
is an open problem. Chapter 7 discusses strategies that are used in this research and
also proposes a rule based approach to strategy formulation that will allow the
knowledge base to grow incrementally as new sensors with new c‘apabilities are

added to the system.

1.4.3. COMPLEX WORLD MODELS

If robots are to use sensory data, they have to know how this data re}ates to the
perceived enviromﬁent. Sensory data is useful only up to a point. Higher level
knowledge about the world needs to be invoked to put the lower level sensory data
into context. Model based object recognition is a paradigm that allows higher level
knowledge about a domain to be encoded and assist the recognition process. Recog-

nition has two components, a data driven or bottom up component that supplies low



level sensing primitives and a high level that utilizes these primitives to understand a
scene. At some point, low level processing is too lacking in knowledge of what is
being perceived to reliably continue the recognition process. It is at this point that
higher level knowledge about the domain can be effectively utilized to put the lower
level information into context. In object recognitdon systems, this information is usu-
ally contained in models that are used to relate the observables to the actual objects.
The models are abstractions of the real physical objects that try to encode important
information about the objcct in relation to the primitives and sensing environment
being used. In some sense, the model information must be computable from the sen-
sors. It is not enough to build descriptions of objects for realistic display; the models
must contain criteria that are easily accessible to facilitate efficient matching of the

model to a sensed object.

Chapter 2 contains a description of a hierarchical surface and feature based
model for solid objects that is well suited to the object recognition task. The model
encodes rich descriptions of the geometry and topology of the objects to be recog-
nized and is organized in a hierarchical manner to allow quick and easy access to its
information. It is also structured so that matching between model and sensed obser-
vations can be done on multiple levels depending upon the requirements of the recog-

nition process.

1.4.4. REASONING ABOUT THE WORLD

It is still not enough to have complex models and sensors that are robust. Rea-
soning about a complex world is necessary to be able to understand spatial relation-

ships and geometry. This reasoning can be extremély difficult, especially if many



sensors and complex models are involved. Robots cannot yet possess the deep rea-
soning shown by humans, which is also not well understood. However, simple rea-
soning about spatial and geometric relationships can help. An important component
of this reasoning is to allow it to be modified easily. As new sensors and models are
added, the reasoning process should be extensible to include these. This reasoning
ability is perhaps the most difficult of the improvements to effect. Chapter 7
discusses the methods that are used to match the low level sensory data with the
objects in the model data base and discusses approaches to verification sensing that

entail high level reasoning about the object’s structure encoded in the models.

1.5. SYSTEM DESCRIPTION

This section describes the object recognition system’s components and the sens-
ing environment being used. The objects to be recognized are common kitchen
items; mués, plates, bowls, pitchers, and utensils. The objects are planar as well as
volumetric, contain holes and have concave and convex surfaces. These are fairly
complex objects which test the modeling and recognition abilities of most existing
systems. The objects are homogeneous in color, with no discernible textures. The
lack of surface detail on these objects poses serious problems for many visual recog-
nition systems, since there is a lack of potential features that can be used for match-
ing and depth analysis. Chapter 8 repbrts results from experiments that were per-
formed to test the ability of vision and touch together to succeed in recognizing these

objects.

The experimental hardware is shown in figure 1.1. The objects to be recognized

are rigidly placed on the worktable and imaged by a pair of CCD cameras. The
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tactile sensor is mounted on a 6 degree of freedom PUMA manipulator that receives
feedback from the tactile sensor. Figure 1.2 is an overview of the software of the
system. It consists of five distinct modules: the control module, the vision module,

the tactile module, the model data base and the matcher.

The control module is the overall supervisor of the recognition process. The
control module’s task is to perform the recognition cycle outlined in figure 1.3. It is
instructive to keep this cycle in mind as the other modules in the system are
described. It defines the control flow of the sensing and higher level reasoning tak-
ing place in the system. Curmrently, step 5 of the cycle is not fully implemented.
Chapter 7 discusses approaches to step 5 and chapter 8 contains an experiment that

uses verification sensing to sense visually occluded areas.

1.6. SUMMARY

The use of multple sensors in a robotics environment to recognize objects
entails the integration of many different technologies and processes. The whole area
of robotics research is interdisciplinary in nature, with computer scientists, mechani-
cal engineers, electrical engineers and systems engineers bringing their different
expertise to the problem. The research reported in this dissertation is in this vein. It
_ represents the integration of many different ideas and technologies into a working
system for object recognition. Some of the ideas are new and some of them are old
but all of them are being used in a novel way in this system. The progress that this
dissertation reports in the recognition problem represents a merging of rapidly

developing technology into a useful system that is synergistic in nature.
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Figure 1.1. Experimental hardware.

MODEL DATA
BASE
I
ISION CONTROL TACTILE
SYSTEM F-----1 SYSTEM SYSTE
I | I
STEREO MATCHER [PUMA 580
PAIR VAL-II
i
FINGER | [POSITION
SENSOR _|-{CONTROL

Figure 1.2. System overview.
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1. The control module asks the vision system to image the scene
and analyze all identifiable regions of interest.

2. The control module asks the tactile module to explore each
region identified from vision.

3. The results of the tactile and visual sensing are
integrated into surface and feature descriptions.

4. The surface and feature descriptions are matched against
the model data base, trying to invoke a model consistent
with the sensory information. )

5. The invoked model is verified by further sensing to see if
it is correct.

Figure 1.3. Recognition Cycle.

The goal of thlS research is to make robots more flexible and adaptable, able to
cope with ever changing environments. This research extends the present capabilities
of robotic systems and moves them closer to elementary reasoning about their
environment. The main contributions of this research are an understanding of the
key problems that need to be solved to make robots smarter, and a set of solutions

for these problems in the particular task of object recognition.

Robotics is a new and changing discipline. Basic research in many areas is stll
underway as we try to increase our understanding of how machines may be used for
complex tasks. There is an ever growing body of theory pertaining to robotics,
theory that needs to be put to use in real environments. Robotics has reached the
stage where concrete examples of what robots can and cannot do are needed. There
is a continuing need for a theoretical investigation of some of the difficult problems

in robotic percepton. However, it is also time for experimenting and implementing
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techniques in real, noisy, and unconstrained environments. There is at present a large
disparity between what is possible in a simulated robotics environment and the actual
3-D environment a robot will work in. This dissertation is an attempt to bridge the
gap between theoretical robotics and working systems that perform object recognition

tasks in noisy, unconstrained environments.



CHAPTER 2

MODEL DATABASE

2.1. INTRODUCTION

The model data base encodes the high level knowledge about the objects which
is needed for recognition. The global structure of the objects which is encoded in the
rnpdels is used to understand and place in context the low level sensing information.
The design of the object models was influenced both by the object domain and the
task of object recognition. The object domain is standard kitchen items that contain
curved surfaces, holes and cavities, adding a degree of complexity to standard model-
ing techniques. The task of recognition employiﬁg sensors that see and touch sur-
faces argues for a surface based modeling approach. The complexity of the objects
allows an explicit designation of features such as holes and cavities which have pro-
ven to be powerful matching tools. The models are organized in a hierarchical
manner which allows matching to proceed at different levels of detail, allowing for
coarse or fine matching depending upon the object’s complexity and the resolution of
the sensing devices. The models are viewpoint indépendent and contain relational

information that further constrains matches between sensed and model objects.

- 14 -
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This chapter reviews previous efforts in 3-D modeling and describes criteria for
object recognition models. The models and the modeling procedure are described in

detail along with the techniques used to compute model attributes.

2.2. OBJECT MODELS FOR RECOGNITION

Computer graphics, computer aided design (CAD) and computer vision are three
areas that have made extensive use of object models. Many of the techniques are
shared among these disciplines; however, the requirements of each modeling task
tend to be quite different. Computer graphics is mainly concerned with the realistic
display of objects from arbitrary viewpoints and under a variety of lighting condi-
tions. The concern is for the final visual result rather than the underlying model’s
internal stmctﬁre. The main goal of CAD systems is synthesis, to adeduau:ly create
an object for design and manufacturing purposes. Therefore, it tends to be
volumetric based as an aid to the designer. Typical of this are Constructive Solid
Geometry (CSG) systems such as PADL [56] and GMSOLID [12]. These systems
are used to design three dimensional objects by combining sets of solid primitives
(cubes, cylinders, wedges etc.) with boolean operators. Computer vision, on the other
hand, tries to analyze objects for recognition. What is seen is a collection of sur-
faces, not necessarily a set of intersecting volumetric entities. A major goal in robot-
ics is to automate the entire design and manufacturing process within one integrated
system [28]. This implies the need for either an object model data base that is used -
for both design and recognition, or a set of robust and efficient transformations
between the different representations used. At present, no single model suffices for

both tasks.



- 16 -

Many primitives have been suggested and used for modeling three dimensional
objects. Badler and Bajcsy [4] and Requicha [56] provide good overviews of the dif-
ferent representation schemes .used for three dimensional objects. The choice of
primitive for a model is based upon a careful analysis of the task requirements and
object domain. No single representation appears to be able to adequately model all

objects in all task domains.

2.2.1. IMAGE SPACE MODELS

Most recognition systems depend on understanding an object in terms of its
geometry and topology and a number of models have been built [62, 15,50, 46, 11]
that include geometric, topological and relational information about the objects. The
richer the models, the more basis for discrimination among the different objects.
Vision systems are faced with a choice of trying to match their sensory data (two
dimensional projections) with either a 2-D model or a 3-D model. Image space sys-
tems are recognition systems that try to do recognition on image properties (two
dimensional projective properties) rather than three dimensional properties. These
systems are not viewpoint independent but depend on a number of stored views of
image properties. Recognition occurs when one of these characteristic views is
recognized, based on matching within image space. Examples of this are the work of
Oshima and Shirai '[49, 50] who used image space predictions about polyhedra and
cylinders to do recognition. Multiple learning views are computed from an object
that are stored for later use. Image space curves and regions are then identified and
matched with one of these views. Their system also tried to recognize multiple

objects in a scene. Fisher [18] used an approach where certain weak constraints
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about a surface’s images over different viewpoints were computed to aid in determin-
ing the object’s position and orientation. York [75] used bicubic spline surfaces as a
modeling primitive and tried to compute two dimensional projective features to be

used for instantiating a model.

Image space matching is not powerful because it loses the inherent sense of the
three dimensional object to be recognized. If we are trying to recognize underlying
structure, then it makes sense to model this explicitly. The projective space approach
fails to maintain the consistent structure of an object across the many possible visual
interpretations. The question of how many ‘‘characteristic views’’ of an object are
sufficient is open, but clearly the answer is many. Establishing a metric on this kind
of matching is difficult, especially if the sensed view is in between two stored views.
Two dimensional projective invariants are weak, ‘'and are not robust enough to sup-
port consistent matching over all viewpoints. Koenderink [39] has developed the idea
of an aspect graph that relates object geometry to viewpoint but the creation of such
a graph is difficult for complex objects. What is needed is a true three dimensional
approach to modeling and matching, using the much stronger class of three dimen-

sional invariants.

22.2. THREE DIMENSIONAL MODELS

The systems that use three space matching are viewpoint independent in that
matching is based upon three dimensional geometric, topological and relational pro-
perties expressed in the model. This requires computing a transformation from the
sensed world coordinate system to the model coordinate system. This transformation

can be viewed as a matrix operation with 6 degrees of freedom if the model and the
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imaged object are identical in size and rigid. These 6 degrees of freedom are three
translational degrees to bring the origin of the model coordinate system into registra-
tion with the sensed coordinate system and an additional 3 degrees representing rota-
tions around each of the three axes in space. These can be reduced further if the
object is known to have a unique upright position, in which case 2 degrees of free-
dom are no longer required and a simple rotation about an upright axis is required.
If scaled models are being used, then three scaling factors may also have to be com-
puted.

Roberts [57] created one of the first model representations for vision by model-
ing blocks world objects with a surface, vertex, edge model. Later, as researchers
explored shape classification the generalized cylinder or cone [1,46] was used as a
primitive. ACRONYM [15] is the most complete example of this kind of system.
ACRONYM uses generalized cylinders to model objects as volumetric entities. The
model contains a powerful constraint maintenance system that allows dimensions to
be represented as ranges, helping to model generic objects. The reasoning is sym-
bolic rather than numeric and this also adds to the power of the system. By carefully
combining constraints, false hypotheses are culled and what is left are consistent
interpretations. The model is viewpoint independent and uses the three dimensional
structure of the object for matching. Input to ACRONYM is an aerial image of an
airfield with the task recognition of airplanes. The model contains slots that are filled
as generalized cylinders are identified, with occlusion tests to make sure a surface
that is postulated as visible is not occluded. Verification is done by filling slots for a

model and reaching a consistent set of postulated cylinders.
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Shapiro and Haralick [62] have proposed a rich world model of a complex man
made object. This model is to be used in conjunction with vision and tactile sensors
to do inspection tasks. While the model is rich and encodes large amounts of infor-
mation about the object, it is not clear how to vcfﬁciently navigate through this
hierarchical model. There is a cost in using extremely complicated and complete
geometric models. At some point, algorithms need to be written to ask questions of
a geometric and relational nature about these models. As the complexity of the
model grows, with alternative representations, the ability to efficiently and accurately

compute these algorithms declines.

23. CRITERIA FOR A RECOGNITION MODEL

As the previous section suggests, there is 2 wide range of primitives and organi- .

zations in three dimensional recognition models. Because no one model is neces-
sarily best, it is important to establish good criteria in deciding upon the structure of
an object recognition model. The following criteria have been established and are

the basis for the design of the object models used in this research.

2.3.1. COMPUTABILITY FROM SENSORS

A model must be in some way computable from the sensory information pro-
vided by the low level sensors. If the model primitives are very diﬁcrcﬂt from the
sensory information, then transformations which may not be information preserving
are necessary. These transformations also may make the recognition process slow
and inefficient. A better situation is where the model primitives are directly related

to the low level sensing primidves.
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2.3.2. PRESERVING STRUCTURE AND RELATIONS

Models of complex objects need to be broken down into manageable parts, and
maintaining relationships between these parts in the model is important. In the
matching process, relational information becomes a powerful constraint [63, 15, 46].
As thc;. object is decomposed, it should retain its ‘‘natural’’ segmentation. This is

important in establishing partial matches of an object.

2.3.3. EXPLICIT SPECIFICATION OF FEATURES

Feature based matching has been a useful paradigm in recognition tasks. If
features of objects are computable, then they need to be modeled explicitly as an aid
in the recognition process. The more features that are modeled, the better the

chances of a correct interpretation.

2.3.4. ABILITY TO MODEL CURVED SURFACES

Some domains may be constrained enough to allow blocks world polyhed:ral
models or simple cylindrical objects; however, most domains need the ability to
model curved surface objects. The models must be rich enough to handle doubly
curved surfaces as well as cyliqdrical and planar surfaces. This complexity precludes
many primitives, particularly polygonal networks which have simple computational

properties but become difficult to work with as the number of faces increases.
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23.5. MODELING EASE

Very rich, complicated models of objects are desired. However, unless these
models can be built using a simple, efficient and accurate procedure, it may be prohi-
bitive to build large data bases of objects. Modeling is done once, so there is an
acceptable amount of effort that can be expended in the modeling effort. However,
as designs change and different versions of .an object are created, incremental
changes are desired, not a new modeling effort. If models are simple and easy to

build, more complexity can be included in them and used for recognition.

23.6. ATTRIBUTES EASILY COMPUTED

Whatever representation is used, it is important that major geometric and topo-
logical measures can be easily and accurately computed. For surfaces, this means
measures such as area, surface normal and curvature. For holes and cavities this
means axes, boundary curves and cross sections. Analytical surface representations

such as bicubic surfaces are well suited for computing these measures.

24. A HIERARCHICAL MODEL DATA BASE

The criteria discussed above has been used to build a set of models of objects
for recognition tasks. Objects are modeled as collections of surfaces, features and
relations, organized into four distinct hierarchic levels. A hierarchic model allows us
to do matching on many different levels, providing support or inhibition for a match
from lower and higher levels. It also allows us to separate the low level or bottom

up kinds of sensing from the top down or knowledge driven sensing.
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The four levels of the model are the object level, the component/feature level,
the surface level, and the patch level. The basic primitive that is used is the bicubic
surface patch whose properties (discussed below) are well suited to the criteria esta-
blished above. Features such as holes and cavities which are prevalent in the object
domain are explicitly modeled as is relational information between the different parts
of the object that are modeled. Figure 2.1 shows the hierarchical model structure for
a coffee mug, outlining the decomposition and structure of the models. The details
of the model are described below.

24.1. OBJECT LEVEL

The top level of the hierarchy is composed of a list of all object nodes in the
data base. An object node corresponds to an instance of a single rigid object. Asso-
ciated with this node is a list of all the components (subparts) and features of this
object which make up the next level of the hierarchy. For gross shape classification,
a bounding box volumetric description of the object is included. The bounding box
is a rectangular parallelepiped whose size is determined by the maximum extents of
the object in the X, Y and Z directions of the model coordinate system. A complex-
ity attribute is also included for each object. This is a measure of the number of
features and components that comprise an object and it is used by the matching rules

to distinguish competing matches.
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2.4.2. COMPONENT/FEATURE LEVEL

The next level of the hierarchy contains two independent sets of nodes. The
first set is the components (subparts) that comprise the surfaces of the object. The
second set are the features (hole and cavities) that are used in recognition of the
object. Each of these nodes is modeled differently, but they are given equal pre-
cedence in f.he hierarchy. They are described in detail below.

24.2.1. COMPONENTS

Each object consists of a number of component (subpart) nodes that are the
result of a functional and geometric decomposition of an object. The components of
a coffee mug are the body of the mug, the bottom of the mug, and the handle. A
teapot consists of a body, bottom, spout, handle and lid. They are the major subdivi-
sions of an object, able to be recognized both geometrically and functionally. Each
component has an attribute list consisting of its bounding box, surface area, and
priority. The priority field is an aid for recognition in which the components are
ordered as to their likelihood of being sensed. In the matching phase, there may be
no way to distinguish between two local matches of sensed and model components.
However, if priorities are included, then we have a useful way of showing a prefer-
ence for one match over another. High priorities are assigned large components or
isolated components in space that protrude (handles, spouts). The protruding pafts
may show up as outliers from the vision analysis. Obscured components, such as a
coffee mug bottom when in a normal pose, are assigned lower priorities. The prior-
ity is an attempt to aid the matching probabilistically. If the object is in a regular

pose, then certain parts of the object are more prominent which can aid the matching



process. Each component node contains a list of one or more surfaces that make up

this functional component and that constitute the next level of the hierarchy.

The subdivision of an object by function as well as geometry is important. In
some sense what determines a coffee mug is that it holds a hot liquid as well as hav-
ing some familiar geometric shape. While no explicit attempt has been made Hhere ‘to
exploit the semantic structure of objects, the model maintains a node level in the
hierarchy should this be attempted. Semantic attributes as well can be hung off this
node in the future to try to marry the geometric based approach with the ‘‘natural’
segmentation so familiar to human beings. In most cases, the objects of the data
base have a ‘‘natural’’ segmentation that corresponds directly with the geometry of
the object. As more complex objects are modeled, this blend of functional aﬁd

geometric segmentation may not be as precise.

2.4.2.2. FEATURES

Rock (58] has shown that features are important in recognition tasks for
humans. If features can be recognized by sensing and matched against model
features, robust recognition is possible. The features modeled in the database are
holes and cavities. Holes are modeled as right cylinders with constant arbitrary cross
section occupying a negative volume. Holes can be thought of as having an
approach axis which is perpendicular to the hole’s planar cross section. Modeling
holes as a negative volumetric entity has implications in matching. Volumetric ele-
ments have an object centered coordinate system that contains an invariant set of
orthogonal axes (inertial axes). If the sensors can discover these axes, a transforma-

ton between model and world coordinates is defined which is a requirement of
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viewpoint independent matching. Each hole node contains a coordinate frame that
defines the hole. This frame contains a set of orthogonal axes which are the basis
vectors for the frame. The hole coordinate frame is defined by the homogeneous
matrix H:

Py Py, Py, C;

Piy Pay P3y Gy

Py Py Py, C, @
0 0 0 1

H =

P, is the axis of maximum inertia of the hole’s planar cross section.
P, is the axis of minimum inertia of the hole’s planar cross section.
P; is the normal to the hole’s planar cross section.

C is the centroid of the hole’s planar cross section.

Besides the coordinate frame, each feature has a set of moments of order 2 that are

used for matching. The computation of these moments is described in section 2.8.

Cavities are features that are similar to holes but may only be entered from one
direction while holes can be entered from either end along their axis. An example is
the well of the coffee mug where the liquid is poured. Cavities are modeled simi-
larly to holes with a defining coordinate frame and moment set defined by the planar
cross section of the cavity’s opening. Cavities have the additional attribute of depth,
which is the distance along the cavity’s approach axis from the cavity’s opening to

the surface below.
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2.4.3. SURFACE LEVEL

The surface level consists of surface nodes that embody the constituent surfaces
of a component of the object. The objects are modeled as collections of surfaces.
Each surface contains as attributes its bounding box, surface area, a flag indicating
whether the surface is closed or not and a symbolic description of the surface as
either planar, cylindrical or curved. For planaf surfaces, a partial coordinate frame is
described which consists of the centroid of the plane and the plane’s outward facing
unit normal vector. For a cylinder, the partial frame consists of the cylinder’s axis.
The object’s surfaces are decomposed according to continuity constraints. Each sur-
face is a smooth entity containing no surface discontinuities, and contains a list of the

actual surface patches that comprise it.

The particular form of bicubic surface patch that is being used in this research
was originally studied by S.A. Coons and is known as a Coons’ patch. Appendix A
contains a complete description of this primitive and it is discussed in detail in Faux
and Pratt [17). These patches have been used extensively in computer graphics and
computer aided design. The patches are constructive in that they are built up from
known data and are interpolants of sets of three dimensional data defined on a rec-
tangular parametric mesh. This gives them the advantage of axis independence,
which is important in both modeling and synthesizing these patches from sensory
data. Being interpolating patches, they are able to be built from sparse data which
aids the modeling process. The most important property possessed by these patches
is their ability to form composite surfaces with C? (curvature continuous) continuity.
The object domain contains many curved surfaces which are difficult or impossible to

model using polygonal networks or quadric surfaces. A bicubic patch is the lowest
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order patch that can contain twisted space curves on its boundaries. A complex
smooth surface may be modeled as collections of bicubic patches that maintain C?
continuity. In the models, each surface node contains a list of the bicubic patches

which comprises the composite surface.

2.4.4. PATCH LEVEL

Each surface is a smooth entity represented by a grid of bicubic spline surfaces
that retain C2 continuity on the composite surface. Each patch contains its parametric
description as well as an attribute list for the patch. Patch attributes include surface
area, mean normal vector [54], symbolic form (planar, cylindrical, curved) and
bounding box. Patches constitute the lowest local matching level in the system. The
bicubic patches are an analytic representation that allows simple and efficient compu-
tation of surface patch attributes. They are easily transformed from one coordinate

-system to another by a simple matrix operation.

2.4.5. RELATIONAL CONSTRAINTS

It is not enough to model an object as a collection of geometric attributes. One
of the more powerful approaches to recognition is the ability to model relationships
between object components and to successfully sense them. The relational con-
straints between geometric entities place strong bounds on potential matches. The
matching process is in many ways a search for consistency between the sensed data
and the model data. Relational consistency enforces a firm criteria that allows
incorrect matches to be rejected. This is especially true when the relational criteria is

based on three dimensional entities which exist in the physical scene as opposed to
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two diménsional projective relationships which vary with viewpoint.

In keeping with the hierarchical nature of the model, relationships exist on many
levels of the model. At present, there are no modeled relationships between objects
since single objects only are being recognized. However, the inclusion of object rela-
tionships is an important next step in understanding more complex multiple object
scenes. In particular, it should be possible to model the relation between articulated

parts, although no attempt has been made to do this.

The first level at which relatonal information is included is the component
level. Each component contains a list of adjacent components, where adjacency is
simple physical adjacency between components. The features (holes and cavities)
also contain a list of. the components that comprise their cross sectional boundary
curves. Thus, a surface sensed near a hole wiﬁ be related to it from low level sens-
ing, and in a search for model consistency, this relatonship should also hold in the

model.

At the surface level each surface contains a list of physically adjacent surfaces
that can be used to constrain surface matching. These relations are all built by hand,
as the geometric modeling system being used has no way of computing or under-
standing this relationship. For the objects being modeled in the data base, this is
presently simple to implement. However, a useful extension to this work would be

to have these relations computed automatically by the modeling system itself.

The patch relations are implicit in the structure of the composite surface patch
decomposition being used. Each patch is part of an ordered composite surface that
contains relational adjacency automatically. Thus, each patch’s neighbors are directly

available from an inspection of the composite surface’s defining knot grid.
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2.5. CREATING THE MODELS

The models have been created by a combination of hand and computer model-
ing techniques. Initially, each object was digitized by a POLHEMUS 3D digitizer.
Each surface of the object was sampled as coarsely as necessary to allow the spline
surfaces to be built accurately. The spline surfaces themselves were built by using
the sparse surface data as input to a CAD/CAM surface modeler that produced a
modified form of Coons’ patch. The coefficients produced by this system were then
scaled to reflect the true geometry of the surface being modeled. The output of the
surface modeling for a particular surface is a knot set that defines a series of rec-
tangular grids. Each of the grids contains coefficients for a single patch, and C? con-
tinuity is maintained across the patches that comprise a single surface. (Coons’
patches are described in detail in Appendix A). Figure 2.2 shows the surfaces that
were generated from modeling a plate, a pitcher and a coffee mug. The plate con-
sists of one surface containing 25 patches. The pitcher is made from 24 patches on
the handle and 18 on the body. The mug has 4 patches on the body and 24 on the
handle.

2.6. COMPUTING SURFACE ATTRIBUTES

Once the surface patches are built, attributes of the patches must be calculated.
A feature of the bicubic patches is that they are a true analytic representation of a
surface, which allows simple calculation of the necessary attributes. The patches are

parameterized in two dimensions « and v and can be represented in matrix form as

P(u,v) UAV (2.2)

P(u,v)

[1 u u? u3] [4] [1 v 2 @]T (2.3)
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Figure 2.2. Modeled surfaces of 2 plate, coffee mug and pitcher.
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where A is a matrix of coefficients described in appendix A. The area of the surface
can be calculated as:

11

Area = H{ G * du av (2.4
where G is the first fundamental form matrix defined as:
3P 2P 3P 3P
ou'du Ju ov
G= | o opap @
ov du ov 9dv)]

The unit normal n at a point on the surface can be calculated as the cross product of

the tangent vectors in each of the parametric directions:

P
=_MV ‘ (2‘6)
@, P
ou ov

The bounding box of a patch can be found analytically by finding the maxima
and minima of the patch extents and subdividing the patch until it becomes planar
[40]). However, this requires solving a series of equations that are cubic in one
parameter and quadratic in the other, requiring numerical solution. For the purposes
of this research, the surfaces were sampled at small intervals in parameter space and

maximum and minimum extents computed.
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2.7. CLASSIFYING SURFACES

Differential geometry is a study of surface shape in the small, focusing on local
properties of surfaces. It also provides a method of classification of surfaces by their
curvature properties that can be used for matching. The Coons’ patch formulation is
excellent for this approach since it is an analytical form that can readily compute
these curvature measures; computing such measures from point sets or polygonal

approximations is difficult and error prone.

The measure that we need to compute is the surface curvature on the patch. For

a curve, curvature is well defined as
x = lr 2.7

where r is the radius of curvature. For a surface, matters are less clear. At a single
point, the curvature changes as a function of the direction moved on the surface.
Limiting our discussion to so called regular surfaces where there is a well defined
tangent plane at every point on the surface, the normal sections on a surface are the
curves formed by the intersection of the surface with planes containing the surface
normal. The curvature measured on these curves is the normal curvature or X,. As
the planes containing the normal are rotated around it, forming different normal sec-
tions, different values of x, are defined. The directions on the surface (measured in
the tangent plane) at which x, takes on its minimum and maximum values are
referred to as the principal directions on the surface and define the maximum and

minimum normal curvature, X, and Kp;;. The Gaussian curvature X is defined as

K = Xpay * Kmin . @23

The Gaussian curvature is a measure which describes the local surface changes by
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means of a scalar (figure 2.3). Of particular importance is the sign of K. If K=0,
then the curvature in one of the principal directions is zero, implying a flat surface
with no curvature in this direction. It can be shown that any surface with zero Gaus-

sian curvature can be formed by a smooth bending of the plane [29]. Planes have

Kmax = Kmin =0 everywhere on their surface. Cylinders also have K=0 as one of their

principal curvatures is zero. A point on a surface with K>0 is referred to as an ellip-
tic point. At this point the surface lies cntirely on one side of the tangent plane since
both normal curvatures are of the same sign. A hyperbolic point has K<0 and the
surface at this point both rises above and falls below the tangent plane. By analyzing
the surfacc’s.Gaussian curvature everywhere, a surface can be classified as planar,
cylindrical, or curved. The procedure to do this iterates over the parametric surface

- at a specified sampling increment, computing K., Xmn and K at each point. The

normal curvatures Kp,, and Kg;, are computed by solving the quadratic equation

| G2 - (gudn + dyigm — 2812d12) K, +| D] = O 2.9

where G is the first fundamental from matrix defined in equation (2.5) and D is the

second fundamental form matrix

@
ou? dudv
D = 2p 2p 2.10)

n-

n._

dvou v
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2.8. COMPUTING HOLE AND CAVITY ATTRIBUTES

Features such as holes and cavities are created from the output of the surface
modeler. A hole or cavity is surrounded by a series of surfaces and these boundary
curves are obtained from the patch descriptions. Once the boundary points on the
CTOSS scc;ion of a hole are computed, a series of programs are run to compute inertial
axes of the planar cross sections. The inertial axes are computed by finding the

eigenvectors of the following matrix [59]:

My My,

My My, (2.11)
where My, M), Mg are the central moments of the enclosed planar cross section.

The moments for a planar area are defined as:

M; = J J' Xy dx dy (2.12)

region
Central moments are moments taken around the centroid of the object, where

the centroid of a planar region is defined as:

X= — (2.13)

y_= — (2.14)

These moments are computed by transforming the 3-D planar points into a 2-D
plane and then using line integrals around the boundary of the cross section to com-
pute area and moments. To transform a set of 3-D planar points into the XY plane,

we have to first define the coordinate frame T that describes the planar set of points
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in 3-D:

N

Ay P,
Ay P?
A, P,

01

(2.15)

O

~

o 2 2 2
B

o

where N, O, A represent the frame’s basis vectors in the reference frame and P
represents the location of the new origin in the reference frame. We can take the
planar points normal vector as A, and N is found by taking the vector between any
two points on the plane. O is simply Ax N. P is chosen as any point in the planar
point set. To transform this frame into the XY plane we calculate its inverse, defined

as.
N, N, N, PN
. lo= 0, 0, PO
T = a, 4 4, P4 (2.16)
000 1

Applying this transformation to the 3-D points will bring them into the XY
plane. This will give us a set of planar points from which we can now compute cen-

tral moments and principal axes.

Since we have boundary information enclosing a hole or cavity, we can use line
integrals around the contour of the point set to calculate the moments. This contour
is formed by linking the boundary points in a series of line segments. To find the

appropriate line integral, we use Green’s theorem in the plane [10]:

§ [de+Qdy]=J'J'—aa%dx—%:dy 2.17)

contour region



" lae:

.38 -

Using Green'’s theorem yields the following centroid formula using line integrals:

-x y dx
M
— _ Contour _ 10
X = = Mog (2.18)
f -
contour
§ xydy y
— contour 0l
= = 2.19
y Mog (2.19)

f

Similarly, the moments of the enclosed area are found by the following formu-

My,

§ ‘—"Zﬁdx= J'xydxdy (2.20)
contour * region

§ -‘;—dy=J .xzdxdy (2.21)
contour region

f Fue[[ran
contour . region

Once the eigenvectors of the matrix in (2.11) are calculated, the principal axes

of the cross section are found. These axes are in the plane and they must be

transformed back to three space by frame T. The cross product of these transformed

principal axes vectors is the hole’s approach axis vector and is the normal to the set

of planar contour points. Once the principal axes have been transformed to three
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space, a frame can be created with the principal axes, their cross product, and the
centroid as the embedded coordinate frame of the hole or cavity. This frame can

then be stored in the data base and used for calculating the transformation from the

sensed coordinates to model coordinates.

29. EXAMPLE MODEL

The models have been implemented as a series of PROLOG [16] facts. The
choice of PROLOG for the data base was motivated by two concemns. The first wa's
the desire to have rich relational information about adjacent parts of the model and
the ability to index into the data base in many different ways. The low level sensing
provides many pathways and avenues into the data base, and it is advantageous to
have the model indexed on many different levels and kinds of features and attributes.
A key insight into the recognition process is that it cannot be ordered ahead of time
[3]. The sensors are capable of providing different surface or feature information
depending upon viewpoint. Therefore, all recognition avenues should be open at all
times. Secondly, the strategies for recognizing objects are subject to change and
modification. Implementing these strategies as rules is important so that the recogni-
tion behavior can be followed and modified easily. PROLOG’s major drawback is
efficiency. For the size of the data base used in this research this posed no serious
problems. However, as the number of objects 'mcrcascs_, more powerful and faster
indexing methods will be needed, but this is beyond the scope of this research. Fig-
ure 2.4 is a set of PROLOG facts that constitute the data base for a coffee mug. The

facts include the attributes of each level as well as the relational information between

_ entities. Rules for matching against these facts are discussed in chapter 7.
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2.10. SUMMARY

The higher level knowledge about the objects to be recognized is encoded in
three dimensional viewpoint independent models. The particular task and object
domain has helped to define criteria for the design of the models. The models are
hierarchic and contain surface, feature and relational information. The bicubic surface
patch primitive is well suited for modeling the curved surface objects in the domain,
computing attributes of the objects and deriving representations from the low level
sensors. The database of object models is implemented as a set of PROLOG facts
that facilitate indexing and defining new sensing strategies during the matching phase

of recognition.
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Object data structure:

obj(id,bound_box,list of cavs.,list of holes,list of components,complexity)
Component data structure:

comp(id, bound_box, surface area, priority, list of surfaces).
Surface data structure: :

surf(id,bound_box,surface area, priority,closed surface,

kind of surface,transform).

Cavity data structure:

cav(id,area,moment set,depth,priority, transform
Hole data structure:

hole(id,area,moment set,priority,transform)
Relations for adjacency:

rel(object,element1,element2)
/‘..“.““““t“‘.“““““‘t‘tt‘*#‘*#‘#ti#“#““““t“#t‘t‘/
obj(mug,bbox(83,121,87),{ca_mug_01],(ho_mug_01],

[co_mug_handle,co_mug_body,co_mug_bottom},complex(5)).
cav(ca_mug_01,area(4758),mom(1802083,1802083),depth(87),pri(0.166),
[vec(4,3,40,294),vec(3,3,40,293)]).

bole(tho_mug_01,area(1296),mom(187673,148729),pri(0.25),

(vec(4,3,-16,249),vec(1,3,-16,249),vec(2,3,-17,249),vec(3,4,-16,249)]).

comp(co_mug_handle,bbox(18,36,74),area(4458),pri(0.25),[s_mug_handle 01]).
comp(co_mug_body,bbax(83,83,87),area(22078),pri(0.3),{s_mug_body_01]).
comp(co_mug_bottom,bbox(83,83,0),area(5024),pri(0.033),[s_mug_bottom_01]).

surf(s_mug_handle_01,bbox(18,36,74),area(4458),pri(0.25),closed,curved,[]).

surf(s_mug_body_01,bbox(83,83,87),area(22078),pri(0.3),closed.cylinder,
[vec(4,2.5,39.5,250.5),vec(3,2.5,39.5,251.5))).

surf(s_mug_bottom_01,bbox(83,83,0),area(5024),pri(0.033),0pen, planar,
[vec(4,2.5,39.5,207), vec(3,2.5,39.5,206))).

rel(mug.co_mug_handle,co_mug_body).
rel(mug,co_mug_body,co_mug_bottom).
rel(mug,ca_mug_01,co_mug_body).
rel(mug,ho_mug_Ol,co_mug_handle).
rel(mug,ho_mug_01,co_mug_body).
rel(mug,s_mug_handle_01,s_mug_body_01).
rel(mug,s mug_body_01,s_mug_bottom_01).
rel(mug,ca_mug_01,s_mug_body_01).
rel(mug,ho_mug_01,s_mug_handle_01).
rel(mug,ho_mug _01,s_mug_body_01).

Figure 2.4. PROLOG facts for model of a coffee mug.




CHAPTER 3

2-D VISION PROCESSING

3.1. INTRODUCTION

Machine vision research has been spurred by the ease with which biological sys-
tems process visual inputs. Unfortunately, the task of understanding a scene from
vision alone has proved to be difficult. The analogy of an image matrix to a human
retina has only served to illuminate the powerful kinds of processing taking place in
the visual cortex, processing that is poorly understood at present. The research of
David Marr and others has tried to isolate those parts of human visual information
processing that seem to operate independently, such as stereopsis, and to apply this
knowledge to machine vision systems. While some progress has been made, the state
of machine vision is still primitive. At present, most commercial machine vision sys-
tems are binary systems that use simple template matching of 2-D silhouettes. If the
object is presented in a different pose or the lighting is such that a specularity or
reflection upsets the silhouette algorithms, recognition becomes impossible. What
these systems lack is a way of inferring and understanding the three dimensional
structure of the objects to be recognized. The human visual system has little trouble

performing such tasks. We can understand and recognize the objects in a scene in
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the presence of noise and distortion and under a variety of different lighting condi-
tions. We can even perceive three dimensions from photographs and paintings which
are inherently two dimensional. The goal of machine vision systems is to to perceive
as we humans can and it remains an unaccomplished goal.

The vision processing described here is an attempt to take what is useful and
reliable from machine vision and to supplement it with active, exploratory tactile
sensing. There is no attempt to try to understand the full structure of an object from
vision alone, but to use low and medium level vision processing to guide further tac-
tile exploration, thereby invoking consistent hypotheses about the object to be recog-
nized. The vision processing consists of two distinct phases. The first phase is a
series of two dimensional vision routines that are performed on each of the stereo
images. The second phase is a stereo matching process that yields sparse depth
measurements about the object. The output of these modules is combined with active
exploratory tactile sensing to produce hypothesis about objects. This chapter
describes the 2-D vision processing routines in detail and discusses their -pcrformancc
on the images of the objects to be recognized. The next chapter discusses the stereo

matching based on the output of the 2-D image processing algorithms.

32. IMAGE ACQUISITION

The images in this research are acquired from two Fairchild CCD cameras,
mounted on a movable camera frame (figure 3.1). The camera frame has 4 degrees
of freedom (x, y, pan, tilt). The images used here are all generated from a static
camera position; no attempt was made to acquire images from multiple viewpoints.

A pair of images of the scene are digitized from the CCD cameras at a resolution of

T ——n = e e e s n e s - —— P



380 x 4838 pixels. The object to be recognized is known to be a single object and in
the field of view of each camera. To simplify determining ﬁgm from ground, The
objects are placed on a homogeneous black background. The lighting consists of the
overhead fluorescent room lights and a quartz photographic lamp to provide enough

illumination for the CCD elements.

33. THRESHOLDING

The first algorithm that is run on the images is a histogram of grey levels that is
used to separate out the background. Since the background is known to be somewhat
homogeneous, a peak in the histogram is found that corresponds to the background
grey level which predominates in the image. The picture is then thresholded at this
level, driving all background pixels to zero. This gain in contraét between back-

ground and figure is helpful in establishing gradients for the object’s contour.

34. EDGE DETECTION

Once the picture has been thresholded, an edge detection procedure is applied to
both images. The edge detector that is used is the Marr-Hildreth operator, described
in [43). This operator is a derivative based operator, secking to find intensity
changes in the image arfay. It is defined as the convolution of the original image

with the Laplacian of a Gaussian, defined as:

2+y?
V2 Gry) = é[i;ﬁ-z] e 2 G.1)

where o is the standard deviation of the Gaussian and is the space constant used to

determine over what scale the image should be blurred. The constant ¢ can be related
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Figure 3.1. Stereo cameras.
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to the image space by the formula

w
c = N (3.2)

where w is expressed as the width in pixels of the filter’s central region. The idea of
the Gaussian blur function is to smooth the image but not to destroy the underlying
intensity changes. The blur function destroys all changes at a scale smaller than o.
The Laplacian is used because it is an isotropic operator, allowing a single convolu-
tion to be used that will yield orientation information. The alternative to using this
operator is a series of directionally sensitive operators that will require more convolu-
tions. Determining the width of the filter becomes important in detecting changes at
different scales. A small value of w will isolate many edge elements, while a large
value of w acts as a low pass filter, allowing only large scale changes to be output.
In human vision processing, it appears that a number of spatially tuned filters are
present, isolating changes at different scales [23]). There are benefits to using filters
of different scales. Witkin [73] has shown that it is possible to track the zero-
crossings over scale by creating a scale space surface, thereby relating gross level
changcs to fine details in the image. Yuille and Poggio [76] have shown that these
zero-crossing maps from different scales form a ‘‘fingerprint’”’ or characteristic
description of the underlying signal, and can be recreated (up to a scaling factor and

a harmonic function) from the zero-crossings alone at different scales.

The idea of tracking image changes from fine to coarse detail is appealing.
However, it is burdensome computationally. Convolving each image with the Lapla-
cian of the Gaussian is an expensive operation, especially when performed at dif-

ferent scales. In this research, a single filter width was used for purposes of

ey — .
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convenience and processing time. In most cases, a small filter (w=3) was used to
isolate as many changes as possible, rather than miss some by using larger values of

w.

The edge detector (algorithm 3.1) outputs the location, magnitude and orienta-
tion of each detected edge element that corresponds to a zero-crossing of the filtered
image’s second derivative. In any discrete approximation to this zero-crossing, the
question of localization becomes important, especially if the zero-crossing locations
are to be used for stereo matching. If a sign change in the convolved image occurs
between two pixels in the x or y directions, a linear interpolation is used to isolate
the zero-&ossing to subpixelé. The algorithm will find zero-crossings of both edges
and noisc‘clemcnts in the image. A magnitude threshold is established to filter out
noise edges that are of small magnitude, leaving the edge elements related to phys-ical
effects in the image. It is important to note that these physical effects include sha-

dow, occlusions, and textures as well as surface geometry.

The results from the edge detector algorithm are shown in figure 3.2. The mag-
nitudes of n;xany of these zero-crossings are weak. Figure 3.3 shows a histogram of
zero-crossing magnitudes for the picture filtered with w=4 showing a definite peak at
a magnitude of 6. The thresholded zero-crossings are shown in ﬁgure 3.4.

3.5. SEGMENTATION

Segmentation is used to isolate and analyze groups of pixels that are bounded
by closed chains of edge pixels. The segmentation is used to guide the tactile sys-
tem. We do not want to blindly grope on the object with the tactile sensor; we want

to explore regions of interest that can be related to physical edge effects on the
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1. Convolve the original image P with the ViG operator,
yielding image L

2. Proceeding left to right, top to bottom in image I, determine if

a zero-crossing exists at pixel [x,y] by the following rules:

Given a pixel of value A at location [x,y] in image I
surrounded by 4-neighbors of value B, C, D, E.

1y y+
x-1 E
x D A C
x+1 B

a) If (A*B)<0 and (A*C)<0 then a zero-crossing exists at
[ x + interpolate(A,B) , y + interpolate(A,C) 1.

b) If (A*B)<0 and (A*C)>=0 then a zero-crossing exists at
[ x + interpolate(A,B) ,y 1.

c) If (A*B)>=0 and (A*C)<0 then a zero-crossing exists at
[ x,y + interpolate(A,C) ].

The function interpolate(a,b) where a and b differ in sign

returns a value between O and 1 based on the linear inter-

polation of the zero point between a and b.

3. The magnitude and orientation of the zero-crossing at [x,y] is:

dx = I(x+ly) - I(x~-1y)
dy = I(xy+1) - I(x,y~1)
Magnitude = W
Orientation = aran2(dy,dx)
4. If the magnitude is below threshold M, reject this edge.

Algorithm 3.1, Edge Detector.
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Figure 3.3. Histogram of zero-crossing magnitudes.
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Figure 3.4 Thresholded icro—crossings.

object. Segmentation accomplishes this goal, segmenting the object into closed con-
tour regions that can be explored independently by the tactile system. The importance
of these regions is that they are bounded by edge elements and in turn, do not con-
tain any edge elements in the interior of the region. This forms a segmentation of
the object that can be used to discover the object’s structure. The regions isolated on
the object are either surfaces, holes or cavities which the vision system cannot deter-
mine from the sparse daﬁ available. However, the tactile exploration will be able to

determine this when it begins the tactile portion of the sensing.
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3.5.1. FILLING IN THE GAPS

The goal of segmentation is to break the object up into regions bounded by
closed contours of zero-crossings. If the convolved V2G image is thought of as a
continuous two dimensional function, then the zero-crossings form a closed continu-
ous curve, segmenting the image. Due to the discrete nature of the convolution, the
zero-crossings do not always form closéd curves. Typically, small pixel gaps will
appear, preventing a closed contour chain of 8-connected zero-crossings. A two
stage procedure (algorithm 3.2) is used to close these gaps and form closed contours
of zero-crossings. The first stage is a modification of a procedure of Nevatia and
Babu [45] to find linear segments from edge contours. This procedure creates a
predecessor successor array (PS). A PS amray is created by designating the 8-
connected predecessor and successor neighbors for every directed zero-crossing edge
element. Edge elements that are at the beginning (end) of the 8-connected chain are
designated as having no predecessors (successors). Edge elements that branch off
with either two predecessors or two successors are also marked. From this array,
chains of 8-connected zero-crossings are created. The second stage is to take these
chains and to link them into longer chains, bridging gaps if needed. The second
stage is an iterative process where successively longer chains are built and more pix-
els are bridged depending upon the pixel distance to be bridged. Initially, pixel gaps
up to a distance of 2V2 are bridged, requiring only a single pixel to be added. This
stage repeats until only gaps of two pixels are left, at which point two pixel gaps are
iteratively filled. 'I'he‘algorithm will continue until the maximum designated gap dis-
tance is reached. In practice, filling in more than two pixel gaps is ambiguous. If a

small filter size w is used for the initial convolution, the zero-crossings are usually
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dense enough to fill the gaps accurately. Once the gaps are filled, the region analysis

can continue.

This algorithm succeeds in filling sméll pixel gaps. However, certain imaging
conditions will cause gaps greater than 3 pixels to be created. While the fill gaps
algorithm can span larger distances than 3 pixels, its performance degrades notice-
ably. For the zero-crossings in figure 3.4 the output of the Bridge Gaps algorithm
successfully filled small contour gaps but was unable to bridge the gap at the top left
corner where the surface tumns sharply. In this image and the image of the coffee
mug, small gaps that remained after the Bridge Gaps algorithm were filled by hand.
This part of the segmentation problem in vision remains unsolved. A possible
approach is to use scale space techniques and follow zero-crossings at many levels to
fill the gaps. Heeger [27] has proposed a parallel algorithm for filling in the gaps of
digital images that while computationally expensive, shows promise.

3.5.2. REGION GROWING

Region growing (algorithm 3.3) begins with the zero-crossing image which is
output by the bridge gaps algorithm. This is an image I containing zero-crossings
and added pixels from the bridge gaps algorithm. Region analysis will separate the
image into regions bounded by closed contours, and will then calculate measures for
each region. The algorithm to create each region from a closed contour is a recur-
sive growing operation on the image I that tries to grow a pixel’s 4-connected neigh-
bors until a border is found. As it grows these pixels, it colors them homogeneously,

thus defining a region.



-53-

Input: Zero-crossing image from Edge Detector algorithm
Maximum_Gap is maximum number of pixels to bridge

Output: Image with added pixels to create closed contours.

1. Form a predecessor successor array (PS) that denotes the
8-connected neighbors that are predecessors and successors
of directed zero-crossing elements. Mark beginning and ending
elements and clements with multiple predecessors or successors

2. Starting at all beginning, ending or branch elements, traverse

the connected chain and save it.

Set N=1.

3. -Compare beginning or end elements of the chains. If the gap is

less than N pixels, bridge the gap by adding the pixels and merging

the chains.

Repeat step 3 until no N pixel gaps remain.

N=N+1. '

IF N < Maximum_Gap goto step 3 else write out the image with added

w

(Il

pixels.

Algorithm 3.2. Bridge Gaps.

The algorithm uses two image arrays. Initially, the two arrays are identical with
the zero-crossing image. A seed pixel is used to start a growing operation that recur-
sively grows the 4-connected neighbors of every pixel that is not an edge element.
Each pixel that is grown is marked in the second array as visited with a particular
color. When the recursive growing finally fails, all 4-connected pixels are colored
homogeneously in the second array. By searching through the second array for an
uncolored, non-edge pixel, we generate a new seed pixel and continue the operation,
coloring grown pixels with a new color. This continues until all pixels in the second

image are cither colored or edge elements. The algorithm then examines each edge
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element in the colored image. The 8-connected neighbors of each edge element are
compared and if they are all the same color or other edge elements, then this edge
pixel is termed an isolared pixel, completely contained by a homogeneously colored

region. Isolated pixels are colored by their containing region’s color.

The final part of the region growing is to output a chain of pixels that deter-
mines the closed contour of the region. This algorithm (algorithm 3.4) outputs a
chain of 8-connected pixels that consists of the boundary contour of each region.
The algorithm is a modified version of Pavlidis’ contour tracer [53]. In Pavlidis’
algorithm, a connected closed contour of a homogeneous region R is found by walk-
ing along the extremities of the region and recording the members of R who have
neighbors not in R. The algorithm begins by finding a member of R with a neighbor
not in R and always ‘‘walks to the right’’ finding 8-connected neighbors that are in
region R with neighbors outside the region. This algprithm will output a chain of pix-
els that includes only members of the set R. ‘What is desired instead is the chain of
pixels not in R, but that have neighbors in R. In terms of the region picture from
algorithm 3.3, we want the chain of edge pixels that separate regions, not the set of
region points adjacent to the edges. The difference is important as the locations

along the contours will be used for stereo matching.

The output of the region grower is an array of colored regions separated by
closed contour edge chains. Figure 3.5 shows the closed contours formed for the

pitcher by the region growing and contour tracing algorithms.
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Figure 3.5. Closed contours from Region Grower and Contour Tracer algorithms.

3.5.3. REGION ANALYSIS

These regions need to be further analyzed so we may compute their centroids,
average gray value and 2-D area. The centroid will be used to find a beginning
exploration point on the region and the area measure is used to order the regions for

exploration.

An important piece of information about these regions is their adjacency. From
the region image, we can compute a region adjacency graph as defined by Pavlidis
[53]. This is a graph that contains nodes which are colored regions and arcs between
regions if they are adjacent These adjacency relations will be used later in matching
against the model data base. They are also used to determine if any regions are com-
pletely contained by another region. A completely contained region can be found by

finding a cut node in the region adjacency graph. The adjacent regions are found by
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Image I1 and I2 are identical zero-crossing image arrays,
globally defined, containing pixels of value O or pixels
of value 1 where an edge has been determined to exist.
Output is homogeneously colored regions in image 12.

region_grower()
{ reg_color=2; :
FOR ( i=0; i<PICSIZE; i=i+1 ) {
FOR ( j=0; j<PICSIZE; j<j+1) {
IF ( I1[i][j] == O and I2[i](j] == 0 ) {
grow(i,j,reg_color); /* non edge pixel, not visited */
} /™ end IF ¥/
reg_color = reg_color + 1;
}/* end FOR ¥
} /* end FOR */
FOR ( i=0; i<PICSIZE; i=i+1 ) { /* remove isolated pixels */
FOR ( j=0; j<PICSIZE; j<j+1) {
IF ( I1[i][j] == 1) { /* is it an edge element? */
homog(i,j); /* see if the edge is isolated */
}/*endIF ¥
} /* end FOR */
} /* end FOR */
} /* end region_grower */
grow (ij,color) /* grows 4-connected neighbors */
{ FOR (k= -1; k<= 1; k=k+2 ) {
FOR(m=0; m<2; m=m+1 ) {

p=k ; q=0;

IF ( 11[i+p]{j+q] == 0 and I2[i+p][j+q] == 0) {
I2[i+pl(j+q] = color; /* mark as visited */
grow(i+k,j,color);

p=0; a=k;

} /* end FOR ¥/
} /* end FOR #/
} /* end grow ¥/
homog (i,j) /* colors isolated edges */
{ IF ( all non-edge 8-neighbors of I2[i][j] are color K ) {
2[ilG] = K;
} ™ end IF ¥
} /* end homog */

Algorithm 3.3. Region Grower. .
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Input to this algorithm is the colored region array computed by

algorithm 3.3. Qutput is chains of pixels bordering a homogeneous

region. Define the 8-connected neighbors of a pixel as:
3121

4|1 |0

51617
start = pixel in region with edge as 4 neighbor
new = start; /* beginning edge element in chain */
first = TRUE; /* first time through switch */
s = 6; /* neighbor search direction */
WHILE ( ( start !=new ) or ( first ) ) { /* not closed yet */
found = FALSE; /* flag for new contour pixel */
cycles = 0; /¢ if 3 cycles: single pixel region */
WHILE ( found = FALSE and cycles <3 ) {
cycles = cycles + 1;
IF ( (s-1 mod 8) neighbor in region R ) {
S=(s-2) mod8;
found = TRUE;
}else {
new = (s-1 mod 8) neighbor , add new to chain;
first = FALSE; ’
IF ( s neighbor in region ) {
found = TRUE;
} else {
. new = 8 neighbar, add new to chain;
first = FALSE;
IF ( (s+1) mod 8 neighbor in region ) {
found = TRUE;
}else {
new = (3+1 mod 8) neighbor , add new to chain;
first = FALSE;
$ = (s+2) mod 8;
}rendF
}PendIF
}/PendIF %
} /* end WHILE */
} 7* end WHILE ¥/

Algorithm 3.4. Contour Tracer.

examining contour pixels that separate regions and looking at the colors of their 8-
neighbors. Algorithm 3.5 is used to compute region statistics and build the region

adjacency graph for the image. Figure 3.6 shows the region adjacency graph

e
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generated from the region analysis.

3.6. SUMMARY

The two dimensional vision processing routines create bounded regions that can
be used by the stereo matcher and tactile exploration algorithms. These algorithms
create regions of larger interest moving away from pixel based point properties to
token based contours and regions. As is the case in all vision processing, the tokens
are artifacts of the lighting, reflectance and geometry of the surfaces imaged. The
stereo algorithms in chapter 4 and the tactile exploraton discussed in chapter 5 are

intended to further classify these regions as surfaces, holes or cavities.




-59-

R is a region array containing homogeneously colored 4-connected

regions and boundary contours. Boundary contour pixels are
zero and regions are colored from 1 to MAXCOLOR. Array I
is the original gray value image.

/* all counters initialized to zero */
/* compute region statistics */

region_analyzer()
{
FOR ( i=0; i<PICSIZE; i=i+1) {
FOR ( j=0; j<PICSIZE; j<j+1 ) {

region = R [i][j]; /* region is pixel color */

IF ( region != 0 ) { /* not a boundary pixel */
sum(region] = sum(region] + I [i][j]; /* sum gray value */
xsum(region] = xsum(region] + i; /* sum x’s */
ysum(region] = ysum([region] + j; /* sum y’s */
area[region] = area[region] + 1; /* sum area */

}*end IF ¥

/* create region adjacency graph */

IF (R (i][j] == 0 ) { /* boundary pixel */
find non zero regions of 8-neighbors of pixel i,j;
IF (no arcs exist for these adjacent regions) {
add arcs for these regions in the graph;
}/* end IF */
}PeadIF ¥
} /* end FOR */
} /* end FOR %
FOR ( i=0; i<Num_regions; i=i+1 ) { /* compute centroids */
xcenter{i] = xsum(i] / area[i] ;
ycenter{i] = ysum(i] / area[i] ;
avg_gray_value = sum(i] /area[i];
} /™ end FOR */
} /* end region_analyzer */

Algorithm 3.5. Region Analyzer.

o fitie s o e
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Figure 3.6. Region adjacency graph for pitcher.




CHAPTER 4

3-D VISION PROCESSING

4.1. INTRODUCTION

This chapter discusses the use of binocular stereo as a method for obtaining
depth information from images. The experimental imaging system used is described
along with an analysis of its accuracy. The stereo matching algorithm based upon
the output of the two dimensional processing described in chapter 3 is presented
along with an analysis of its performance. Finally, the need for tactile sensing is
motivated by analyzing the inability of stereo to create dense and accurate depth

maps.

42. DETERMINING DEPTH

Machine vision research has centered on the problem of obtaining depth and
surface orientation from an image, creating what has been called by some authors the
‘2% D’ sketch [42]. Currently, there are several sensing systems that can derive
depth from a scene. Among these are laser rangers [69,41, 1], photometric stereo
[32] and binocular stereo [7). Determining which sensor to use is chiefly determined

‘by the task domain. Laser imaging is potentially hazardous and has difficulty with
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shiny metal reflective surfaces. At present, it is a more expensive depth sensing
technology than the other methods mentioned above. Photometric stereo puts great
demands on the illumination in the scene and on properly understanding the reflec-
tance properties of the objects to be viewed. Binocular stereo has the advantage of
low cost and ability to pcrform over a wide range of illuminations and object
domains. It is also a well understood and simple ranging method, which motivates
its use in a generalized robotics environment where many different task and object
domains may be in effect. Used as a single robotics sensing system, stereo has clear
deficiencies. If there is a lack of detail on the object, only sparse measurcments are
possible. If too much detail is present, the matching process between image events
can easily become confused. Detail also causes a marked degradation in performance
as the potential match space increases. The next sections cxamfnc the ﬁbility of

stereo to determine depth in our task and object domain.

43. COMPUTATIONAL STEREO

Stereo has been used in a variety of applications. A large body of work in
stereo has centered on aerial photogrammetry, trying to determine object structure
and depth from aerial images. Recently, interest in stereo for robotics has increased
as the underlying visual processes in humans have been revealed. Barnard and
Fischler [7] have broken down the computational stereo problem into a number of
separate steps that are needed to generate depth representations from images. This
chapter follows their paradigm and explains each step in the process in detail. The

steps in the stereo process are:

- rre—y
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¢ Image acquisition.

¢  Camera modeling.

e Camera calibration.
¢  Feature acquisition.
e  Image matching.

¢  Depth determination.

e Interpolation.

44. IMAGE ACQUISITION

The camera system used to acquire the images is described in section 3.2. An
important component of image acquisition is the domain of interest. In this research,
the domain consists of smoothly curved objects with large surfaces, cavities and
holes. The objects are not textured and are homogeneous in color, presenting a uni-
form albedo. The smooth nature of the objects and lack of textural detail are natural
impediments to stereo matching, since these objécts yield few match points.

4.5. CAMERA MODELING

In order to compute depth from stereo, a suitable camera model and camera
parameters must be understood. Figure 3.1 shows the cameras used in this research.
The two cameras are mounted with their focal points 12.7 cm. apart, defining what is
known as the stereo baseline. The objects to be imaged are at a distance of 4 feet.
In trying to find a correspondence between an event in one image and its counterpart,

a large search problem exists. For a image of size NxN pixels, each pixel event in
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the left image has potentially N? possible matches. A simple and effective way to
constrain this is to limit the search along epipolar lines. Epipolar lines (figure 4.1)
are defined as the lines in each camera’s focal plane caused by the intersection of the
focal plancs and the epipolar plane, which is a plane formed by a point in the scene
to be imaged and the two focal points of the cameras. A pixel event in one camera
can limit its search for the corresponding event in the other camera to searching
along the epipolar line in the comresponding camera. This effectively makes the
search for an event O(N) rather than ON?. In a digital system, an effective
approaf:h is to register the cameras so that the epipolar lines correspond to the scan
lines in the images. The procedure for registering the cameras was to take a test pat-
tern of black circles and calculate the center of gravity of each circle in each image.
The centers were compared and a&justmcnts were made to have. the centers
correspond. The accuracy reported by this procedure was correspondence within .5
pixels across scan lines. This is a painstaking procedure that is extremely critical to
the success of the stereo algorithms. The procedure is compounded by the additional
camera parameters of focus and zoom which must also be adjusted for spatial coher-

ence of the images.

4.6. CAMERA CALIBRATION

In order to determine depth, a transformation between the camera image coordi-

nates and the 3-D world coordinate system being used is needed. This can be done
in a number of ways. One method is to discover the actual camera model parameters
that relate the two coordinate systems [21]. The other method is to experimentally

obtain a calibration transform from a series of known data points in the scene and the
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Figure 4.1. Epipolar lines.



J
£

- 66 -

image [68]. This latter method is simpler and well suited to our problem. We can

define a point in homogeneous 3-D world coordinates as:
[X,Y,Z,W] 4.1)
and a homogeneous point in 2-D image space as:
[x y Y w] 4.2)
The transformation matrix that relates these two coordinate systems is:

;
Ty Ty Tis

[ | b g ro|=[er w]ewlov.1]
X,Y,Z,1 Ty Tap Ts| = x,y,w'-wU,V,l 4.3)

Ta1 Tz Ty

Here we have arbitrarily set the homogeneous scaling factor W =1. If we multiply

out these matrix equations, we get:

TuX + T21Y + T_«,lZ + T41 =wlU (4.4)
lex + TnY + Tazz + T42 =wV (4.5)
T X +TnY +T3Z + Ty = w (4.6)

If we substitute the value of w in (4.6) in (4.5) and (4.4) we get two new equations:

Tu-Ti3UX + Ty -TpU)Y + (T3-T33U)Z + (T4-Ty3U) = 0 4.7

Ti2-Ti3VIX + Ty TpWVY + (T32-T33VIZ + (Tgp-T3V) = 0 (4.8)

If we know a point X,Y,2Z) in 3-D world coordinate space and its
corresponding image coordinates (U, V) then we can view this as a seriesrof two

equations in 12 unknown transform parameters Tj;. Since we get 2 equations per pair
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of world and image points we need a minimum of 6 pairs of world and image points
to calculate the matrix. In practice, due to errors in the imaging system we will want
to use an overdetermined system and perform a least square fit of the data. The

technique used in solving an overdetermined system of equations
AX =B 4.9)
is to calculate the pseudo-inverse matrix and solve for X:

X = ATA) ! ATB (4.10)

This method requires a way of determining the 3-D world points and the
corresponding 2-D image points. The technique described here is due to Izaguirre, Pu
and Summers [35]. The PUMA manipulator contains an embedded world coordinate
system that is used to position the robot and is fixed to the robot’s base (figure 4.2).
An LED is mounted on the end effector at a known position relative to the robot
coordinate frame. The calibration procedure then moves the arm to one of a number
of predetermined points in the camera’s field of view. The LED is imaged in a dark
room and the center of gravity of the LED impulse function in the image is com-
puted, yielding suﬁ-pixel image space coordinates of the known 3-D world coordi-

nates.

The number of points needed is at least six. A better result is achieved with
more points to try to reduce the error due to any single point. Experimentation
showed 40 points yielded low errors and a subsequent increase in the number of cali-
bration points did not improve the accuracy. The errors in calibration were deter-
. mined by substituting the calculated transformation parameters T;; for each camera

into (4.7) and (4.8) along with the known image coordinates in each camera and
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solving for X, Y and Z. This also is an overdetermined system of 4 equations in 3
unknowns that is solved by a least square fit. The transformation of each 2-D image
point into 3-D is a line, and we are trying to find the intersection point in 3-D of the
two lines emanating from the cameras. Due to imaging errors, these lines are usually
skew, and the intersection point is the midpoint of the common perpendicular to
these lines. The errors in position from the known 3-D robot positions were then
computed. The largest error was in the X direction which relates directly to depth
since the camera centers were generally aligned along this axis. The results for a

typical calibration sequence of 40 points are in table 4.1.

4.7. FEATURE ACQUISITION

The correspondence problem for stereo is helped by isolating physical events in
each image that correspond to the same location in space. Edges found by derivative
based operators are good candidates for features. They suffer from the point nature of
the data which necessarily introduces small error in the correspondence process.
Researchers have sought to find larger groupings of pixels (tokens) in an attempt to
lessen the effects of a single pixel error. VVarious tokens have been used. From edge
detection algorithms lines and arcs have been isolated to try to match larger group-
ings of pixels with more accuracy. Gray level analysis has also tried to group

regions of pixels showing similar gray level properties such as variance measures.

The features to be matched are the edge elements determined by the Edge
Detector algorithm (algorithm 3.1). These features correspond to physical effects in
the image of geometry, lighting and reflectance. These edge elements are localized

to subpixels, and contain both magnitude and orientation information. A key element




Hrded e

-70 -

! . CALIBRATION ERRORS, mm. l

X .Y Z X Y yA
-1.108927 | -0.058305 | -0.301625 | -0.478541 | -0.073%06 | -0.123573
1.149862 | 0.081078 | 0.345332 | 0514949 | -0.017872 | 0.088030
0.812104 | -0.026641 | 0.307286 | -0.961732 | -0.200877 | -0.363145
-0.248319 | -0.174759 | -0.058981 | -0.698619. | 0.105659 | -0.280506
0.166807 | 0.050148 | 0.109394 | -0.189775 | 0.187463 | -0.093896
-0.902715 | -0.051679 | -0.375009 | -1.037003 | -0.049500 | -0.363201
0.627194 | 0.010328 | 0.280518 | 0543729 | 0.056435 | 0.168897
-1.137701 | -0.024076 | -0.377457 1347597 | <0.024106 | 0.492834
-0.148735 | 0.092887 | -0.070734 | 0.858068 | 0.004397 | 0.341967
1.095666 | -0.018231 | 0.511182 | -0.089491 | 0.164923 | -0.012673
'[0594617 | 0003411 | -0.310890 | -0.737822 | 0.069448 | -0.296553
0583711 | -0.013140 | 0.159542 | 0334448 | -0.014276 | 0.076215
-0.216956 | -0.043942 | -0.160494 | -0363198 | -0.060250 | -0.177463
0.409463 | -0.117902 | 0.151622 | 0.653874 | 0.095679 | 0.340519
0.995076 | 0.110545 | 0.517877 | 0.106311 | 0.080782 | 0.110672
0.024526 | 0.135637 | -0.048202 | -0.281059 | -0.074397 | -0.055166
0.392691 | -0.052172 | 0.182265 | -0.426613 | -0.220015 | -0.197387
-0.027173 | -0.003933 | -0.007781 1.031748 | -0.052976 | 0.323383
-0.177226 | -0.141485 | -0.074718 | -0.443750 | 0.023856 | -0.094611
-1.239145 | -0.017965 | -0.623783 | -0.010544 | 0.155523 | 0.037553

Table 4.1. Calibration errors. The X axis measures depth

from the the cameras.

of the algorithm is establishing a threshold value in magnitude for a zero-crossing.
Noise points which can cause problems for a stereo matcher are thinned out by this
process. An important point here is that this approach can err on the conservative
side and stll be successful. Most stereo systems have only vision to use; therefore

decreasing the data gives rise to problems of sparseness. The approach being
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followed here is that relatively sparse visual data ( and correspondingly more accu-
rate) is supplemented with active tactile exploration. Low confidence features are not

used, nor are they needed in this approach.

A further thinning algorithm is used to make the matcher more accurate. The
stereo matcher is only interested in matches along the closed contours of regions.
All isolated edge pixels determined by the Region Grower ( algorithm 3.3) are
excluded from consideration by the matcher. This will greatly decrease the number

of false matches seen by the matcher.

4.8. IMAGE MATCHING

. This is the most difficult part of the stereo process. The image matcher used

' was originally developed by Smitley [65] for use on aerial images. It has been modi-

fied for the task domain of robotic object recognition. Given a set of features from
each image, how do we match them? The initial matching criteria for two zero-

crossing elements to match is:

e  The zero-crossings must be on the same scan line.

e The zero-crossings must have a similar orientation.

¢  The zero-crossings must have the same contrast sign.

The initial constraint that helps here is the epipolar one: only features (zero-crossing
edge elements) on corresponding scan lines are matched. This is not a strong enough
constraint as there may be many edge elements in each scan line. The zero-crossings
themselves provide us not only locality of the features but also magnitude and orien-
tation information. If two edges match then their orientations should be similar in

each image. The similarity measure used is thirty degrees. A further requirement is
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that the contrast change across the edge be the same. Intuitively, this means that a
black to white edge as we move across the image should match with a black to white
edge in the other image, and vice versa for white to black edges. Requiring the edge
magnitudes to correspond within a tolerance level does not prove to be helpful,
although it is appealing to try to match edges by their ‘‘strength’’. |
Many edges in the scan line can satisfy the weak criteria for selecting matches
above. What is needed is a metric to measure the match after this initial matching
stage so the matches may be ordered probabilistically. To establish a metric, a corre-
lation is performed about windows centered on the matched pixels in each image.
The outpui of the correlation is a metric of the degree to which the areas surrounding
the matched pixels agree. By establishing large confidence levels (above 95%), only
those matches that are robust will survive. The correlation takes place over a win-
dow centered around the two matched pixels. Determining the size of the window is
an important part of the matching process. A small window will not include enough
detail to disambiguate potential matcht;,s and a large window may drown out the
effects of small local disambiguating features, at the cost of greatly increased pro-
cessing time. A reasonable choice for this window size can be made by relating its
size to the edge detector parameter w, defined in (3.2). The window over which
correlation proceeds should be proportional to the density of the zero-crossings

found. For a filter of size w, a window of size 2wx2w was used.

B o i e
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4.9. DEPTH DETERMINATION

Stereo vision has a number of serious problems which preclude it from being
capable of creating dense, reliable depth images. One of the more serious problems
is homogeneous areas within images that are lacking in detail. No edge features are
present in these regions and the matching algorithms have no basis for a match. On
the other hand, too much detail will confuse the matcher and cause false recognition.
This is especially true with periodic textures on surfaces that leave little basis for
local discrimination.

. Another serious problem related to the practical implementation of stereo algo-
rithms for depth determination is the inability of stereo to match edges whose orien-
tation approaches horizontal. As edges become horizontal, localization of feature
matches becomes ambiguous as is shown in figure 4.3. If we have a series of hor-
izontally oriented zero-crossings in both images, then it is not at all clear how to
match these points; they all satisfy the criteria of orientation and sign and within the
window have equally probable confidence levels from the correlation. Experimenta-
tion has shown that as zero-crossing orientations approach 90° from vertical, the
accuracy of the matches degrades seriously. Figure 4.4 shows the left and right
closed contours of a coffee mug and the resulﬁ;lg correctly matched zero-crossings
revealing the lack‘ of horizontal match data. The matches were made with zero-

crossings up to 70 ° from vertical; above 70°, the matches are unreliable.

Solina [66] has analyzed the quantization errors due to stereo for the cameras
used in this research. Figure 4.5 is taken from this work and graphically shows the
error in location of two matched pixels. Any point within the diamond shape region

will map to the same two pixéls in the images. The error is a function of depth and
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increases as the distance from the camera increases. For the camera model used in
this work, a one pixel error in disparity causes a change in absolute depth of approxi-

mately 4mm. By using subpixel accuracy, this error is reduced to 2mm.

Figure 4.3. Ambiguity of horizontal matches. Pixel A can match with
B, C, D, or E. The correlation windows will be identical

in these regions.

A further practical implementation problem for determining depth from stereo is
the effect of incorrect camera registration. A incorrect scan line registration of only
one scan line can cause large errors. Figure 4.6 demonstrates this error. Here the
two digital images of a curve are misaligned by one scan line, yet the resulting
change in disparity is 4 pixels. This can translate to 16 mm in depth for the cameras
being used. With vertically aligned edges the effect is minimized since the disparity
values will be similar. As a digital curve approaches horizontal, the disparity values

can change over a large range, causing ‘‘correct’’ matches but incorrect depth values.




-75 -

Figure 4.4. Closed contours and stereo matches up to 65 °.
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Figure 4.5. Stereo error. Points inside the diamonds have the same

digital image coordinates.

Figure 4.6. The two digital curves are incorrectly registered by one
scan line. Pixel A matches with B and not C, causing an

error in disparity of 4 pixels.
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4.10. INTERPOLATION

The last step in stereo vision processing is to interpolate the depth points calcu-
lated from stereo and try to create a 2 /2 D sketch of the imaged surface. Looking at
figure 4.4, it is obvious that the data is too sparse to accurately interpolate a surface.

Further, some of the regions are not surfaces but holes and cavities. If the system

were relying on stereo vision alone, this would be another serious drawback to under-

standing the object’s structure. However, the tactile algorithms can fill in nicely
what stereo cannot process. Multiple sensing allows a system to rely on each sensor
for the data it can provide efficiently and accurately, rather than being dependent on
a single modality. The intent of this work is to use those parts of vision systems that
work well and not to try to have vision alone understand the scene. In the context of
recognizing smooth objects without texture, stereo will be able to cfﬁciéntly compute
a sparse depth representation on the object’s contour. This sparse data can be used
to guide the active tactile exploration to fill out the surface and feature -descn;ptions

of the object to be recognized.

4.11. SUMMARY

This chapter has described stereo vision in a robotics environment. While stereo
appears to be a well understood visual process, its practical implementation in certain
object domains leaves much to be desired; it is not robust enough to build dense sur-
face descriptions for recognition purposes. However, it can provide sparse three
dimensional data about regions that can then be explored by the tactile sensor. The
matches provided by the stereo algorithms are reliable because they are based on

contour tokens as opposed to pixels. High confidence levels are established for the

e ST
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matches in order to reduce error. The sparse and conservatve matches produced are
adequate to allow tactile sensing to further explore the regions in space. Chapter 5
describes the nature of the tactile exploration algorithms and chapter 6 describes the

integration of these two modalities.




CHAPTER 5

TACTILE SENSING

5.1. INTRODUCTION

. Tactile sensing has for the most part been ignored in favor of other kinds of
robotic sensing, particularly vision. The ability that humans have to infer three
dimensional shape and structure from projected two dimensional images has led most
researchers to try and emulate this human information processing ability. However,
the task of vision by machine has proved to be much more complex than originally
thought. The very complicated interaction and coupling of surface reflectance, light-
ing, and occlusion yield intensity arrays that machines cannot understand well.
Vision researchers are now focusing on biological systems, hoping to be able to
understand functioning systems and apply this understanding to machine vision sys-
tems. While progress is being made, it is clear that the early promise of machine
vision has yet to be fulfilled. The approach taken here is that for tasks such as
object recognition, vision sensing is not enough. What is needed is extra sensory
information that can supplement the sparse and sometimes confusing visual data. In
this work, the extra data is supplied by a tactile sensor that is actively controlled and
is used in an exploratory manner.

-79 -
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This chapter traces the development of tactile sensing in robotics environments
with particular emphasis on the design and use of these sensors. It then describes the
tactile sensor being used in this research. Lastly, the active tactile exploration algo-

rithms that move the robotic arm using sensory feedback are described in detail.

§2. CAPABILITIES OF TACTILE SENSORS

While vision remains the primary sensing modality in robotics, interest in tactile
sensing is increasing. Harmon [26] has surveyed researchers in the field of robotics
and reports that 90% of those surveyed viewed tactile sensing as an essential con-
comitant of vision. A major reason for this was the inability of vision systems to deal
effectively with occlusion, uncontrolled illumination and reflectance properties.
These researchers felt that the present state of three dimensional scene analysis from
vision was ‘‘pre-stone age’’. They felt that tactile sensing systems would be part of
an overall sensing environment that included many different kinds of sensors. Tactile
sensing was felt to be important for recognition tasks, assembly and parts fitting
work and inspection tasks. Tasks that call for close tolerances or low absolute error
can benefit from a tactile approach. It seems clear that in a robotics environment

intelligent touch is useful.

Tactile sensors vary in their ability to sense a surface. At the lowest level, sim-
ple binary contact sensors such as microswitches report three dimensional coordinates
of a contact point. The next level of sensor reports gray values that are proportional
to the force or displacement on the sensor. The most capable of these sensors can
also sense surface orientation, returning a surface normal vector. Useful properties

that remain unexploited are temperature and hardness sensing. The geometries of
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these sensors vary from a single sensor to planar arrays of sensors to finger like
arrays covered with sensors. Much of the research in tactile sensing has centered on
the transduction technology. A number of technologies including microswitches,
strain gauges, piezoelectric materials and conductive elastomers have been utilized.

For a thorough review of these technologies see Harmon [25].

An early effort at pattern recognition with tactile sensors was the work of
Kinoshita, Aida and Mori [38]. They utilized a five fingered hand containing 22
binary sensors to discriminate between objects. Each object was grasped from a
number of different vantage points and the resulting binary pattern recorded. A
discriminating plane was calculated in the sensor space from these learning samples.
To perform object recognition, the object is picked up a number of times and its
membership in the discrimination space is computed. This work was able to distin-
guish a square pillar from a cylinder at 90% reliability. A similar approach was used
by Okada and Tsuchiya [48] who used an eleven degree of freedom three fingered

hand to grasp objects and form binary patterns with the hands contact sensors.

Another example of tactile recognition was the work of Ozaki et al [52]. In this
work objects were treated as containing parallel slices which were sensed by a spe-
cial gripper. The gripper consisted of 7 contact surfaces with tactile sensors (one
palmar segment and two three scgmeni fingers) which were wrapped around an
object’s contour and reported the unit normal distribution along the contour. This
distribution was then matched with a set of model distributions to try to discriminate
shapes. The system would not work well with objects that could not easily be

described as a series of slices.
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Overton [51] described a tactile sensor organized in a rectangular array capable
of yielding gray value information proportional to force exerted on each sensor in the
array (each scnsor is a forcel). Simple vision array operators were used to distin-
guish patterns of tools from static sensing. A similar effort was reported by Hillis
[30] who used a very high spatial resolution tactile sensor to distinguish small objects
(screws, clips, bolts etc.). His approach also was to use traditional gray level pro-
cessing techniques on the array values to find bumps and holes on the surface. He
also implemented a measure of the ease with which an object could be rolled.

Because the sensor was larger than the object, static sensing was used.

Work at Penn in touch sensing began with Wolfeld’s thesis [74] Wolfeld used a
sensor mounted on a XYZ positioner to dctcrmin_c shape, texture and hardness of
various objects. An attempt was made to interpret the sensor imagery over time and
integrate the results, a departure from the static sensing normally employed. The
sensor used was a flat pad array of conductive elastomer sensors manufactured by the
Lord Corporation. Bajcsy [5] and Allen [2] investigated one finger touch sensing
using the tactile sensor described below. This is a finger shaped array of sensing ele-

ments (figure 5.1.) that was mounted on an XYZ positioner under computer control.

53. SUMMARY OF TACTILE SENSING

| Tactile .sensing is still in its infancy. The approaches so far have emphasised
traditional pattern recognition paradigms on arrays of sensor data, similar to early
machine vision work. Most sensing has been static in that the sensor is larger than
the object and a single “‘touch’’ is used for recognition. Very little has been done on

dynamic sensing and integrating multiple ‘‘touch frames’’ into a single view of an
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Figure 5.1. Tactile Sensor.
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Figure 5.2. Surface normals on the tactile sensor.

object. Gray value processing to determine surface properties is also limited. It
appears that a fruitful approach to tactile sensing may be to follow the human para-
digm and identify human tactile sensing properties to be used in machine tactile sens-
ing (see Gordon [22] for an overview of human tactual perception). More exotic
sensors such as Raibert and Tanner’s VLSI based sensing array [55] may also help
by providing high resolution reliable tactile sensing.

Because tactile sensing is new and unexploited, major strides in many areas stll
need to be made. Among thcsé are more robust sensor design to increase spatial
resolution, eliminate nonlinearities and hysteresis and increase dynamic range and
bandwidth. Further, intelligent control of sensors is nccd§d at the software level as is

the integration of these sensors into a multi-sensor environment. Solution of these
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problems will allow tactile sensing to be an important part of robotics systems, espe-

cially since it is potentially low in cost.

54. EXPERIMENTAL TACTILE SENSOR

The experimental tactile sensor (figure 5.1) used in this research was developed
at L.A.A.S in Toulouse, France. It consists of a rigid plastic core covered with 133
conducting surfaces. The geometry of the sensor is an octagonal cylinder of length
228 mm. and radius 20 mm. On each of the eight sides of the cylinder there are 16
equally spaced conducting surfaces. The tip of the sensor contains one conducting
surface, and there are four other sensors located on alternate tapered sides leading to
the tip. The tip sensing element is referred to as the sip sensor, the tapered sensors
arc referred to as the zaper sensors and the sensors along each of the 8 vertical
columns are referred to as the side sensors. Figure 5.2 shows the range of surface
normal directions for each of the 133 sensing elements. The conducting surfaces are
covered by a conductive elastomeric foam. The foam is produced in different widths
from 2 mm. to 4 mm. which allows for a variation in compliance depending upon the
task. There is a cable exiting from the top of the sensor that carries the reference
signal and output wires from the sensors. This cable is connected to a A/D converter
that outputs the f&dings on all sensors in an eight bit gray value. The entire array of
sensors may be read in a few milliseconds. The digitized signal from the sensor A/D
unit is fed into a Z-80 microprocessor that is responsible for the low level tactile pro-

cessing.

The response characteristics of the sensor vary slightly over the 133 sensing ele-

ments. A representative sensing element and one that is in contact more often than
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any other is the tip element. Table 5.1 shows the contact forces necessary to have
initial, midrange and overload response for this sensing element. The repeatability of
the sensor can also be measured. Table 5.2 shows the X, Y, Z coordinates of contact
reported by the sensor during a test of repeatedly moving the sensor onto and off of a
rigid surface. The spatial resolution of the sensor is relatively poor. The side sensors
are approximately 8 mm. apart and the tip sensors 7 mm. Thus, localization of sig-

nal can cause an error of up to 4mm.

The sensor is mounted on the end effector of the PUMA 560 manipulator [70].
This is a commercial six degree of freedom robotic manipulator. The tactile sensor
is mounted with its long axis perpendicular to the mounting plate. This is called the
tool Z axis, There is a mechanical overload protector in the mounting plate of the
sensor which wﬂl allow the sensor to deflect 1f a forcé greater than approximately 5

pounds is exerted on the sensor, preventing it from being damaged by an accident.

55. ORGANIZATION OF TACTILE PROCESSING

The organization of tactile processing encompasses three distinct logical levels
which take place on three separate hardware levels. At the top level are- a set of
PROLOG and C language modules on a VAX/750 that integrate vision and touch
sensing. This level decides when and where a tactile exploration should be carried
out and upon its completion, interprets and integrates this information into a global
understanding of the scene. The intermediate level tactile processing consists of pro-
grams resident in the PUMA controller that coordinate the PUMA arm movements
based upon high level goals and low level tactile sensory feedback. The low level

consists of programs that reside in a Z-80 microprocessor that communicates directly
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Contact = | | Contact = 127 | Contact = 255
170 grams 453 grams 1100 grams

Table 5.1. Response characteristics at tip sensor, 2 mm. foam.

X y z

222.38 | 613.16 | -286.97
222.47 | 613.16 | -286.16
222,22 | 61291 | -286.81
22241 | 613.16 | -286.72
222.50 | 613.19 | -286.56
222,38 | 613.25 | -286.84
22238 | 613.22 | -287.13
222.47 | 613.03 | -286.75
222.47 | 613.00 | -286.47
222.50 | 613.19 | -287.19
222.38 | 613.06 | -287.00
222.38 | 613.09 | -286.75
222.34 | 612.97 | -286.75
222.41 | 613.06 | -286.41
222.47 | 613.03 | -286.91
222.38 | 613.25 | -287.25
222.34 | 613.03 | -286.63
222.22 | 612.91 | -286.88
222.50 | 613.16 | -286.63
222.22 | 612.94 | -286.88

Statistics
x y z
222.39 | 613.09 | -286.78
Oy a, o,
0.09 0.11 0.27

Table 5.2. Repeatability of Sensor Contact.
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with the tactile sensor. The low and intermediate levels will be explained in the next

sections. The high level is explained in chapter 6.

5.6. LOW LEVEL TACTILE PROCESSING

The low level tactile processing is a series of Z-80 programs that condition and
filter the data coming from the sensor. The low level routines on the Z-80 work in
conjunction with the intermediate level tactile routines in the PUMA controller that
move the PUMA arm with tactile sensory feedback.

The Z-80 executes a series of commands that are specified from the PUMA sys-
tem. The Z-80 maintains an internal array of the 133 contact sites most recent gray
value readings, and has the ability to take new readings from the sensor. The low
level routines that are performed c;n the Z-80 are explained below.

e SET GLOBAL THRESHOLD. This function establishes a threshold gray value.
Any contact that is below this value is ignored.

e SET LOCAL THRESHOLD. This allows a mask to be specified with varying
thresholds for each sensor. The main function of this command is to normalize
the signal response for all 133 of the sensors.

e SNAPSHOT. This command causes the Z-80 to poll all 133 sensor sites in
order and report back the gray values for each sensor. The command returns a

list of 133 ordered pairs consisting of sensor number and gray value.

¢ SORTED SNAPSHOT. This is the same as the SNAPSHOT command except
that the ordered pairs are presorted by gray value before being sent back to the
PUMA system.
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RETURN NUMBER OF OVER THRESHOLD SENSORS. This command
causes the Z-80 to interrogate the sensors and report back the number of sensors
over the global threshold gray value. This command is useful in comparing
changes over time (moving on to or off of a surface) and in ignoring spurious

responses.

RETURN N LOCATIONS OVER THRESHOLD. This command will return
the N locations and gray values that are over the global threshold value, sorted
by decreasing gray value. If N=1, then this will return the location and gray
value of the sensor with the maximum contact force applied. If N=133, then

this command functions identically to SORTED SNAPSHOT.

- GUARDED MOVE. This command will cause the Z-80 to continuously moni-

tor each of the 133 sites on the sensor and report back (via an interrupt to the
PUMA) the location and gray value of the sensor with the highest over thres-
hold gray value. This is the most useful primitive for surface following and

movement of the armn with feedback.

NEAREST NEIGHBORS. This command asks for the values of the 4 nearest
neighbors of a specific sensor. Once the maximum contact sensor is found,
establishing contact values at neighboring sites will allow better localization of

contact and determination of potential spurious signals.

INTERMEDIATE LEVEL TACTILE PROCESSING

The intermediate level tactile processing takes place in the VAL-II system of the

PUMA. VAL-I (71] is a robot programming language developed for the PUMA

series of robots. A particularly useful feature of VAL-II is host control. This allows
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another computer to act as a controlling node for the VAL-II system. Using host
control, VAL-II commands can be issued on the host and transmitted over a serial
link to the PUMA where they are then executed. All program UO with the VAL-II
system is sent to and from the host machine. The effect of this is to allow the con-
trol module of the object recognition system to directly call the VAL-II commands to
perform arm movement with tactile feedback. This procedure has been simplified by
a set of C language subroutines written by Alberto Izaguirre [34] that duplicate the
VAL-II command set, allowing a C program on the host computer to use the VAL-II

command set and move the robotic arm.

The PUMA has an embedded world coordinate system that is shown in figure
42, A location in this space is speciﬁcd in VAL-II as a‘6-vcctor [ xy.2,0,a,2 ],
where x,y,z are the translational parameters and o,a,t are modified Euler angles used
to determine orientation. The special location HERE returns the 6-vector that
corresponds to the position and orientation of the end ;ﬁ'ecmr, measured at the center
of the tool mounting surface on the wrist. VAL-II allows the designation of arbitrary
coordinate frames by supplying a frame origin and two axes for the frame. This
allows representing locations in the coordinate frame of the tactile sensor, once the
frame that represents the sensor is defined. Each sensing element’s position in space
is then defined as a relative transform from the tool mounting plate, allowing compu-
tation of its absolute position in space. The orientation of each sensing element is
also known, allowing computation of the surface normal at the contact site within the

limits of the sensor’s orientation resolution.

VAL-II has commands to allow asynchronous interrupts on 16 binary sensor /O

lines. If the low level tactile processing determines that an over threshold contact

e e e e -
y
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has occurred, an interrupt can be sent to the VAL-II system. This interrupt will
cause the automatic invocation of an interrupt service routine which can communicate
with the arm movement programs via a shared memory location, causing the move-
ment of the arm to be modified based upon the position and orientation of the tactile

contact.

The intermediate level tactile processing is characterized by the need to
integrate the low level tactile sensor feedback with the coordinated movement of the
arm. The arm needs to be used as an exploratory device. It is guided by high level
knowledge about each region to be explored and the low level sensory feedback from

surface contact.

5.7.1. EXPLORING REGIONS

The high level tactile processing will determine a region to explore by touch.
Once a region is chosen to be explored, the intermediate level VAL-II exploration
program is remotely executed by the high level using VAL-II host control. This pro-
gram (algorithm 5.1) will establish if the region discovered by the vision algorithms
is a surface, hole or cavity. The program needs as input an approach vector towards
the region. Th; computation of this approach vector is important since it requires
specifying a starting position in space which the tactile sensor must be moved to and
also an orientation which represents the direction from which the sensor will
approach the region. The orientation of the sensor is computed by calculating the
least square plane Py, with unit normal Ny, from the matched 3-D stereo points that
form the contour of the region. N, then becomes’ the approach vector for the sen-

sor. The VAL-II routines will then orient the arm so that the tactile sensor’s long
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axis (tool Z axis in the sensor frame) is aligned with Nj,,. The starting point Cg,, to

- which the sensor is moved is calculated by intersecting plane Py, with the line L,

formed by back projecting the region’s 2-D centroid into the scene. Cgg, is then
modified by translating it back along Ny, so it is off any surface that might be in
that region.

The arm is then moved aiong the tool Z axis until contact with a surface or it
moves beyond plane Py, implying the presence of a hole or a cavity. If the sensor
is able to travel its full length beyond P, without contact, then a hole has been
found. If it travels beyond a specified cavity threshold Tc,;v before contact, then it is

a cavity.

5.7.2. SURFACE TRACING

Once the sensing routines have determined if the region is a surface or a hole or
a cavity, the region must be further explored. If the region is a surface, then a bicu-
bic surface patch must be built by integrating vision and touch. This procedure is
explained in chapter 6. What is required of the intermediate level routines is to trace
across the surface that has been discovered, reporting back points of contact along
the way. These contact points on the surface are then integrated by the high level
tactile processing into a surface patch describing the surface. The surface trace algo-
rithm (algorithm 5.2) takes as input the point CENTER defined in algorithm 5.1,
which is the 3-D point where contact with the surface was established. The trace
routines trace out from this point to edges of the region. The high level routines
choose 4 knot points on the regions boundary to serve as knot points for the bicubic

surface patch. These knots create four boundary curves around the region. By
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Algorithm to determine if a region is a surface, hole or cavity.
Inputs;
Pwa Equation of least square plane of 3-D points
of region’s contour with unit normal Ny,

Cooret Intersection point in 3-D between the line L,
from the camera back projected through the 2-D
centroid of the region and P,,q.

Outputs: Determination by algorithm if region is a surface,
hole or cavity.

BEGIN.

Build coordinate frame T1 with Ny, as Z axis

and C g, as origin of frame T1.

T2 = frame T1 translated to workspace bounds along N’&r
MOVE arm to T2, /* aligns sensor with plane normal */
Set global threshold for tactile sensor.
Set up guarded move interrupt.
DIST = 0. /* distance sensor tip has moved past Py, */
SENSOR_LEN= length of tactile sensor along its Z axis.
REPEAT
MOVE along positive Z axis of frame T2 1 mm.
IF ( sensor tip has moved beyond Py, ) {
DIST = distance between sensor tip and Pg,
}
UNTIL ( (tip contact established) or
(DIST > SENSOR_LEN ) ). /* contact a surface or hole found */
IF ( tip contact established and DIST < T,,) {
Set CENTER = tip contact point.
report "surface” to host.
} ELSE {

IF ( DIST >= T, and DIST < SENSOR_LEN ) {
CAVITY_DEPTH = DIST.
CAVITY_BOTTOM=HERE.
report "cavity” to host.

} ELSE {

HOLE_CENTER = HERE.
report "hole™ to host.

}/* end IF ¥/

}/*end IF %
END.

Algorithm 5.1. Explore region.
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tracing out from the CENTER point towards the midpoints of each of the regions
four boundary curves, a new kmot set and boundary curves are created. This pro-
cedure is explained in detail in chapter 6.

There are many paths between two points on a surface. The constraints that are
used in determining the path to traverse in this algorithm establishes a weighted
move vector in determining the next movement along the surface toward the goal
point

The movement vector M is determined by:

, |
M= Iw;G; (5.1)
=1

w; are the weights for each of the vectors G;.
G, is the unit vector in the direction of boundary curve midpoint.
G, is the unit vector formed from the previous two contact points.

G, is the unit vector that preserves equal parameterization.

The need for all three G; is easily established. G, is needed to make progress
towards the boundary edge. We will want to make progress towards the boundary
at each movement step. However, with concave and convex surfaces, cycles can
occur as the trace progresses. Gj is used to maintain a path’s directon. Once we
start moving in a certain direction we do not want to stray too far too fast from that
path. This vector is an ‘‘inertia’ vector helping the sensor stay on a steady course.
G is needed to keep the parameterization of the surface patches uniform, and this
vector moves the trace in the direction to preserve parameterization. This vector is

the unit resultant of the vectors from the present contact point on the surface to the
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endpoints of the boundary curve that the trace is approaching.

The surface trace begins by contacting the surface, determining the surface nor-
mal from the contact sensor element, and backing off in the negative surface normal
direction a short distance. M is then calculated and the arm is moved a short dis-
tance in that direction. The surface is then recontacted along the surface normal and
the cycle repeats. The trace is ended by incurring one of two conditions. The first
condition is determination of a surface discontinuity. The regions to be explored are
smooth from the vision analysis since they are lacking in zero-crossings in their inte-

rior. If an edge discontinuity appears (as signaled by side sensor contact) the trace

- will end since it has reached a surface geometry change. The other condition to end

the trace is when the surface contact points are within a threshold of the boundary
stereo match curve. Thus the trace will end on occlusion edges or discontinuity

edges.

5.7.3. HOLE/CAVITY TRACING

If the Explore Region algorithm' determines that the region is a hole or cavity, a
different tactile tracing routine is used. In the case of a hole or cavity, we want to

determine its cross sectional area, moments and boundary. This can be done by

_ moving the sensor around the hole or cavity’s boundary and recording the contact

points which are then sent to the high level routines for calculation of the properties
mentioned above. The Trace Hole/Cavity algorithm (algorithm 5.3) begins by mov-
ing .thc sensor just beyond the least square plane P, of a region’s contour points,
aligned with N;,. It then proceeds to move in a direction perpendicular to N, until

it contacts a surface. Once the surface is contacted, the sensor moves in a sawtooth



-96 -

Algorithm to perform 3-D surface tracing
with tactile sensory feedback

Inputs: CENTER is starting point on surface
Ny, is normal to Plsq
D is small movement distance
GOAL is goal point of trace

Output: Series of contact points on the surface

BEGIN
MOVE arm to CENTER.
ALIGN arm with tool Z axis along Ny,
set global threshold for tactile sensor.
surface_normal= tool Z axis.
REPEAT
REPEAT
MOVE along surface_normal D mm.
UNTIL ( surface contact established ).
report contact position to host.
calculate surface_normal from contact sensor orientation.
MOVE along negative surface_normal D mm. /* back off */
calculate M. /* from equation 5.1 */
MOVE in direcion M D mm.
UNTIL ( GOAL reached or contact by side sensors ).

END.

Algorithm 5.2. Trace Surface.

manner (figure 5.3) staying perpendicular to Ny, altemnately backing off and recon-
tacting the surface, recording the contact points. The distance that the sensor travels
between contacts is continually updated, and if it exceeds a threshold, the sensor will
return to the surface along the last contact normal, recontacting the surface. This
prevents the sensor from losing its way. When the sensor returns to the starting
point the trace is complete. The set of points recorded constitutes a boundary con-

tour for the hole or cavity, which is then processed by the high level routines.
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@ tactile sensor, top view

Figure 5.3. Movement of the tactile sensor inside a hole.
5.8. SUMMARY

The use of tactile sensing in robotics has been limited. Previous approaches
have emphasized static sensing using traditional pattern recognition techniques. The
approach mkcn here is to use active, dynamic sensing of surfaces and features to try
to uncover the undcﬂying three dimensional structure of the object. The tactile sen-
sor being used is a finger like device that is mounted on a robotic arm. The organi-
zation of tactile sensing is on three distinct hardware and software levels. The low
level is a series of programs that condition and sample the data coming from the sen-

sor. The intermediate level consists of programs that move the robotic arm based
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upon feedback from the tactile sensor. Algorithms exist to explore a region in space
and determine if it is a surface, hole or cavity. Once a region is identified, it can be
further explored by surface following algorithms that report contact points on sur-
faces and boundary contours of holes and cavities to a controlling host process. The
high level knowledge nceded'to perform these tactile explorations is described in the

next chapter.
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Program to trace a hole/cavity.

T1 is coordinate frame from Explore Region algorithm.

D1 is small movement distance.

D2 is threshold for moving without contact. If movement is
longer than D2, we need to recontact the surface.

BEGIN.
MOVE arm to frame T1.
MOVE arm along Z axis of T1 D1 mm. /* Z axis is long axis */
REPEAT
MOVE along X axis of T1 D1 mm. /* perpendicular to Z */
UNTIL (side contact established at point Pg,,,).
report coordinates of contact point P,,, to host.
P=Pge
REPEAT
distance_moved = 0. :
N1 = calculated surface normal at P.
N2 = projection of N1 onto XY plane of frame T1.
N3 = N2 rotated 45 ° about tool Z axis.
MOVE off surface along N3 D1 mm. /* back off in tool XY plane */
N4 = N3 rotated 90° about tool Z axis. /* approach in XY */
REPEAT
IF ( distance_moved < D2 mm. ) {
MOVE towards surface along N4 D1 mm.
distance_moved = distance_moved + D1.
} else { /* gone too far without contact */
MOVE along negative N1 D1 mm. /* recontact surface */
}
UNTIL (side contact established at P)
report coordinates of P to host.

* UNTIL ( distance from Py, to P < D).

END.

Algorithm 5.3. Trace Hole/Cavity.
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CHAPTER 6

INTEGRATING VISION AND TOUCH

6.1. INTRODUCTION

The vision and tactile processing described in the previous chapters needs to be

integrated to build descriptions of surfaces and features of objects that can be

~ matched against the models in the model data base. The procedures described in this

chapter use both sensing modalities, integrating the data from the sensors to build
high level descriptions of what is seen and felt. This chapter describes the methods
used to build high level surface and feature descriptions of the sensed objects. A
hierarchical procedure is presented for building curvature continuous composite sur-
faces from the vision and touch data. This procedure computes a Coons’ patch
representation which is the same primitive used in the model database which facili-
tates matching. A method for creating smoothed boundaries of hole and cavity cross

sections is also presented that facilitates matching.

- 100 -
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6.2. COMPOSITE BICUBIC SURFACES

The vision algorithms describe regions in space that are to be actively explored
by the tactile sensor. Once the Explore Region algorithm (algorithm 5.1) determines
that a region is a surface, a surface description must be built from both vision and
tactile data. The surface description will be a composite bicubic surface as described

in appendix A, which is the same primitive that exists in the model data base.

The information needed to create a series of curvature continuous patches on a
set of M x N data points P(u,v) defined on a rectangular parametric mesh is summar-
ized in figure 6.1.

To build an interpolating composite surface all that is needed besides the data
points themselves is tangential and twist vector information at the boundaries of the
mesh. The integration of vision and touch will compute the information in figure 6.1
to build surface descriptions.

63. BUILDING LEVEL 0 SURFACES

Level 0 surfaces are surfaces comprised of a single surface patch. They are
defined on 2 x 2 rectangular knot set (figure 6.2). The information needed besides
the 4 knot points are the tangents in each of the parametric directions and the twist
vectors at these knots. The choice of the knot points on the boundary of the surface
is important. If these points are not chosen wisely, the resulting surface will be a
poor approximation to the real surface. There are two considerations in choosing the
knot points. The first is that the points should be chosen at points of high curvature
on the boundary curve. If the parametric direction tangents coipcide with the lines of

curvature on the surface then the twist vectors will be zero, which will allow a

b i e e
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Puv(os N) Pv(or N) Pv(ls N) - - = PV(M: N) Puv(M’ N)
PO, N) PON) PN - PM,N) PWM,N)
P,0, N-1) PO, N-1) P(1, N-1) P(M, N-1) P (M, N-1)

P,(0,0) P(0,0) P(,0) - - PM,0) " PM0)
P,00) P 00 P10 --- PMO P M0

P(i,j) are the data points defined on the grid.
P, (iy) arc the tangents in the u direction.
P,(iy) are the tangents in the v direction.

P, (i) are the cross derivatives or twist vectors.

Figure 6.1. Information needed to build a composite surface.

simple compixtation of the surface. The second consideration is that the knots need
to be spaced uniformly in each of the parametric directions. Given a closed contour |
boundary of a region from the visién algorithms, we have to choose the four comer
knots that will be used to create a level 0 surface. The algorithm that does this
chooses these points according to curvature and parametrié spacing. The algorithm

(algorithm 6.1) for choosing points of high curvature on a contour is a modification
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of an algorithm originally proposed by Johnston and Rosenfeld [60]. Given a set of

contour boundary points P; the & vectors A and B, at P; are defined to be:

Ay = P;=Py (6.1)
By = P,-Py,
The kcosine at P; is:
AyBy

o e———— 6.2
‘= TaLTIBal 2

In this definition, ¢; is the cosine of the angle formed between the k vectors A; and
By Accordingly, points of high curvature will have a cosine of +1 (zero angle

between them) and points with no curvature will have a value of -1 (lying on a

straight segment). The algorit.b.m computes c;, for a range of k in the vicinity of P;.

It assigns a level h at each P; where h is the value of k that maximizes c;. This
yields a set of local maxima of curvatures that are then further thinned by retaining

only those local maxima ¢, that are greater than or equal to any other local maxima
within range -;— of P

This algorithm yields the curvature values at each point of the contour. Starting
with the maximum curvature value found, the four knots are successively chosen.
Any point of high curvature that is within a distance D of an already chosen point is
rejected to insure uniform spacing. The final knot creates a series of 4 boundary
curves on the contour. An important requirement of this method is that boundary
curves on opposite sides of the contour be approximately equal in length. Step 6 of

the algorithm reflects this constraint. Figure 6.3 shows the closed contours developed

Sl-s LSt
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P{1,0)

P11

P(0,0) P(1,0)

Figure 6.2. Level O, level 1 and level 2 composite surfaces.
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Algorithm to choose 4 knot points of high curvature uniformly
spaced on the contour.

Input: Digital 2-D closed curve C, consisting
of points P;.
D is a minimum knot separation distance along the curve.
L is a threshold for boundary curve length equality.
Output: Location on C of the 4 knot points. .

1. For every point i on C, compute ¢y for a range of
k in the neighborhood of P;, Compute the maximum of
these ¢ and store it as ¢; also storing the
range h where h is the neighborhood around pixel i where
the curvature maximum occurred.

2. For every point on the contour, if ¢; 2 ¢;

for all j in neighborhood -:- of P,

then save this ¢; as a local maximum.
3. Order the c; determined in step 2 by cosine value.

4. Let the initial knot be P; where j is the location on
the curve where the largest curvature was seen.

5. Continue choosing two more knots from the ordered list.
If any one of the chosen curvature maximums is within a
neighborhood D of an already chosen point, reject this point
as a knot.

6. Choose the final knot from the ordered list such that the
difference in lengths of the boundary curves on opposite
sides of the patch is less than L.

Algorithm 6.1. Choose Knot Points.
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Figure 6.3. Knot points chosen on pitcher surface.
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from the image of a pitcher and the chosen knot points on the contour.

63.. CALCULATING TANGENT VECTORS

Once the 4 knots that define the extremes of the rectangular defining grid are
" chosen, the tangent vectors in each of the parametric directions must be calculated.
The contour of the region contains a series of three dimensional data points obtained
from stereo matching that define four boundary curves on the surface. These curves
are approximated by a least square cubic polynomial parametrized by arc length
which is then differentiated and scaled to yield tangent vector values for the knots.
The scaling is necessary since the approximating curve and the defining parametric

grid usc different parameters.

6.3.2. CALCULATING TWIST VECTORS

The twist vectors are more difficult to estimate. In the non-parametric represen-

tation of a surface,

2 = Glxy) (6.3)

the cross derivative measures the rate of change in the x direction of the slope

&%z
oxdy
of the surface in the y direction, or the twist in the surface. The parametric cross
derivatives are related, but since the actual surface twist is found by ratios of the
parametric derivatives, they can be an artifact of the particular choice of parameters.

If the parametric directions on the surface are along the lines of curvature of the sur-

face, then there is no twist in the surface and the twist vectors are zero.
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In practice, if care is taken, these vectors can be set to zero with minor effects
on the surface. This assumes that the parametrization of the surface has been chosen
wisely, with corner knot points chosen at places of high curvature or discontinuity
along the boundary and spaced uniformly in both parametric directions. Attempts
have been made to estimate these vectors by sampling surface data at the cdmer
points with the tactile sensor but the results were not useful. As the number of
patches that interpolates the surface increases, the effect of these twists is reduced

since they only need be computed at the four comers of the knot grid.

Recently, Selesnick [61] has suggested a method for computing the twists from

surface data at the knots. His method relates the twist normal component to the

Gaussian curvature of the surface which can be computed locally. Once the Gaus-

sian curvature is computed, the component of the twist vector in the direction of the
surface normal may be computed. This leaves the surface tangential components of
the twist to be estimated, which can be done accurately with locally sampled data.

For the purposes of this research, the twists are assumed to be zero.

6.4. BUILDING HIGHER LEVEL SURFACES

A level 0 patch is built from vision data only and is not an accurate description
of the underlying surface. There are an infinite number of surfaces that can fit the
boundary contour that vision supplies. Further, the tangents which are estimated
from stereo match points are inaccurate along contours that are horizontal due to the
lack of stereo match points. What is needed is information in the interior of the
region to supplement the boundary information. - This information can be obtained by

the active tactile exploration algorithms described in chapter 5. From a level O



- 109 -

surface, a level 1 surface can be built that includes more surface information in the
interior. Figure 6.2 describes the method of building higher level surfaces. A level 1
surface is formed by adding a tactile trace across the single surface patch defined in
level O, and a level 2 surface is formed by adding tactile traces to each of the 4
paiches defined by level 1 creating a new surface with 16 patches. This method is
hierarchical and general, allowing surfaces of arbitrary level to be computed. The

only restriction is that the new composite surface is globally computed. This means

that given a knot set at resolution N x N, the new knot set will be at resolution 2N-1 .

x 2N-1, involving tactile traces in (N-1)-(N-1) patches. By using higher order poly-
nomial surfaces, local adjustments in the patches are possible; however the extra
computational burden is not warranted by using fifth degree or higher polynomials.
In practice, a level 1 patch containing a 3 x'?? knot set and 4 patches shows good
results.

Algorithm 6.2 describes the procedure for creating a level 1 surface from a level
0 surface. A level O surface has a 2 x 2 knot set and 1 paich, and a level 1 surface
.has a 3 x 3 knot set and 4 patches. The algorithm uses the Surface Trace algorithm
(algorithm 5.2) to generate interior surface information. The traces begin at the point
of surface contact found in the Explore Region algorithm (algorithm 5.1), which lies
in the interior of the surface. The algorithm then traces in the direction of the mid-
points of the level 0 boundary curves. The traces preserve the equal parametrization
on the surface by using the knot points at the boundary curve ends to calculate the
movement direction on the surface. The points reported during these traces are com-
bined into cubic least square polynomial curves that are differentiated and scaled to

calculate the tangential information needed at the boundaries. The boundary curves
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tangents computed from vision data are updated to include the new tactile informa-

tion, which fills in areas that lack horizontal detail from the stereo process.

Figure 6.4 shows a level one patch built from real stereo contours and active
tactile sensing of a pitcher. Further results from real data using active tactile sensing
are reported in chapter 8. The method is able to accurately interpolate planar,
cylindrical and curved surfaces.

It is important to note that the vision processes are supplying the justification
for building smooth curvature continuous surfaces from a region. If the region were
not a smooth surface, then zero-crossings would have appeared inside the region, pre-
cluding the assumption of smoothness. The lack of zero-crossings, or the ‘‘no news
is good news’’ criteria established by Grimson [23] supports this method and in fact
is the reason it succeeds in interpolating the surfaces well.

6.5. BUILDING HOLE AND CAVITY DESCRIPTIONS

The Trace Hole/Cavity algorithm (algorithm 5.3) describes the method for trac-
ing the contour of a hole or cavity with the tactile sensor. A hole or cavity is

described by its approach axis and a planar cross section. The sensor reports points

of contact as it moves on and off the surface surrounding the hole or cavity. This

can be a noisy procedure as many of the tactile sensor’s contacts become activated
in é small tight area such as the hole in the handle of a coffee mug. The poor spatial
resolution of the sensor contacts also contributes to this phenomena. The data is not
continuous, but is a set of ordered contact points. Linking these points with line seg-
ments yields a curve that needs to be smoothed. The smoothing of each boundary

curve is done by approximating the series of linked contour points with a smooth




- 111 -

-

Figure 6.4. Level 1 surface of a pitcher.
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Algorithm to create a new level 1 patch from a level 0 patch.
Input: Level O patch containing a 2 x 2 knot set.
Output: Level 1 patch containing a 3 x 3 expanded knot set.

L.

Move the sensor to the point of surface contact determined
by the Explore Region algorithm (algorithm 5.1).

Using the Trace Surface algorithm (algorithm 5.2) trace
from the surface contact point to the midpoint of each of
the boundary curves in the level 0 patch. The movement vector

~ M in the Trace Surface algorithm is computed using

the midpoint of each boundary curve as the goal point and
the knot points at the end of each curve as the equal parameter
spacing points.

Create a new knot set with the old knots as the comer knots
of a 3 x 3 knot set. The initial surface contact point will
become the knot in the center of the grid. The final contact
point of each trace becomes the new knots in between the old
2 x 2 knot set.

Adjust the tangents at the corners of this new knot set by
recomputing the cubic least square boundary curves between
the old knots to reflect the added tactile information on the
boundary curves. Differentiate the curves and scale the
tangents to reflect the change in parametrization.

Add the tangents at the new knots by forming cubic least
square polynomial curves from the tactile trace data.
Differentiate the curves and scale the tangents to reflect
the change in parametrization.

Algorithm 6.2, Create New Patch.
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periodic spline curve. The periodic spline matches derivatives at the endpoints which
is important in a creatiné smooth curves that are closed. Figure 6.5 shows a set of
noisy linked sample points of a circular boundary curve and the boundary curve
created by smoothing with splines. Once the curve is smoothed, a moment set is
computed for the cross section bounded by the curve using the methods of chapter 2.
The moments are imi:ortant in determining the transformation between sensed and

model coordinate systems.

6.6. SUMMARY

The integration of vision and touch is the cornerstone of the recognition process.
This method allows full three dimensional surfaces to be created from sparse vision
and active tactile sensing. The method requires the use of the active tactile algo-
rithms discussed in the previous chapter to control the movement of the arm and sen-
sor as it traces surfaces and features on.thc object. The surfaces that are built from
this method are smooth interpolants of the actual surface, able to be sensed at vary-
ing levels of resolution. The composite surfaces built from this method are
represented in an analytic form which allows simple computation of attributes for
matching. The smoothness constraint is an outcome of the vision analysis which
yields regions without interior zero-crossings to explore. Boundary curves that con-
tain the cross sections of holes and cavities are found through active tactile sensing
also. These curves are then smoothed to negate sensor noise effects and create an

accurate boundary description.
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Figure 6.5. Sampled and smoothed boundary curves for a circle.



CHAPTER 7

MATCHING

7.1. INTRODUCTION

The low level vision and tactile algorithms provide a set of three dimensional
surface and feature primitives that are used by the matching routines to determine
what the object is and to determine its orientation. The matching routines try to find
an object in the model data base that is consistent with the surface and feature infor-
mation discovered by the sensors. The intent is to invoke a uniquely consistent model
from the three dimensional surface and feature prfmitivcs discovered. If more than
one consistent object is found in the data base, a probabilistic measure is used to
order the interpretations. Once a consistent interpretation is found, a verification pro-
cedure is begun. This requires the matcher to calculate a transformation from the
model coordinate system to the sensed world coordinate system. This transformation
is then used to verify the model by reasoning about the slots in the model data base
that are not filled. The initial choice of a model is made easier by the three dimen-
sional nature of the primitives, allowing matching of higher level attributes rather
than sets of confusing and noise filled point data. The rules used for invoking a

model are such that no a priori choice of features or surfaces is needed; all the
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structural parts of the model are candidates for matching. The object recognition sys-
tem has no way of knowing what features or surfaces will be sensed from a particu-
lar viewpoint. It must be able to invoke a model based upon any identifiable part of
the model [3].

The matching phase is the most difficult of all the modules since it requires the
system to do high level reasoning about objects and their structure based upon

incomplete information. The approach taken here is to develop a set of rules that

will allow experimentation with different reasoning strategies to try to develop this |

capability in the system. The strategies and rules to be used are still under develop-

ment and will require further research and are an obvious extension to this work. At

present, a set of rules exist for the instantiation phase of matching. The verification

phase is currently not implemented as an integral part of the system. Programs that
carry out verification sensing have been developed and are demonstrated in chapter 8.

This chapter explains the strategies and techniques for matching developed so

far and proposes directions for future research. Chapter 8 discusses the experimental

results achicvéd with the rules and methods described below.

7.2. DESIGN OF THE MATCHER

An important design decision in building a matching system such as this is
when to invoke the higher level knowledge in the model. The information encoded
in the model is rich and useful, and it would be helpful to the low level modules to
have such information as early as possible. For example, if the first region explored
by vision and touch is a hole, a possible strategy might be to search the data base of

models and find all objects with holes that are consistent with the sensed hole. The
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reasoning modules could then try to find discriminating structures in the models with
holes to suggest the next level of sensing. While it appears that humans may be
capable of such reasoning, it clearly is beyond present machine capabilities to reason

this strongly. The approach taken here is to sense as much as possible initially to try

o limit the burden on the reasoning modules. If many primitives are found, the pro-

bability of a unique and consistent interpretation rises. The cost of this extra sensing
is minimal. The discrimination that must take place to distinguish similar objects
will no doubt cause most of the region sensing to occur anyway. By invoking the
model later in the recognition process many blind alleys caused by reasoning with
incomplete information are eliminated at the cost of sensing up front. If a unique
interpretation results from sensing all the regions then the probability of a correct

interpretation is increased. As Binford has stated in [9]

In machine perception, overwhelming verification of a correct hypothesis is
typically inexpensive compared to the computation required to get to the
correct hypothesis. These factors shift the utility balance toward getting
data needed for a highly constrained decision. Very strong, relevant data
are available if descriptive mechanisms can abstract them and interpretation
mechanisms use them.

The implementation of the matcher consists of a set of PROLOG goals that
match sensed regions with model nodes. The model data base is implemented as a
set of PROLOG facts that are indexed in a hierarchical manner. The data base con-
sists of eight kitchen objects: pitcher, mug, spoon, teapot, plate, bowl, drinking cup,
pot. Four of these objects (pitcher, mug, plate, bowl) were used in experiments to
test the matcher and its ability to correctly identify the objects. The other objects
were included in the data base to see if the discrimination would work in certain

selected cases discussed in chapter 8. The model data base is limited in size by the
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difficulty of the modeling effort and desire for efficiency in the matching routines.
The matching routines described below are intended to show strategies and methods
for model ‘instantiation, computation of transformations from model to sensed world
coordinates, and verification procedures. The discriminations produced by the
matcher are meaningful because the discriminations are based upon actual sensed 3-D

structure.

73. MODEL INSTANTIATION

The first phase of matching is to try to instantiate a model which is consistent
with the sensory data. The rules for instantiation are based upon the sensed attributes
of each region investigated by vision and touch. These regions may turn out to be
surfaces, holcé or cavities, and it is important fhat the instantiation rules not favor
one or more of these access routes into the data base. The hierarchical nature of the
model allows access to the model attributes at different levels depending upon the
kind of sensory data produced.

The matching of sensed data against the model data base can be prohibitively
expensive if all sensed regions must be matched against all model nodes. The instan-
tiation phase tries to limit the number of feasible models quickly using easily com-
puted criteria. Once the initial set of consistent interpretations is produced, more
detailed matching occurs to try to determine a transformation from model to sensed
coordinates. Finally, the verification will perform a new level of sensing to test the

hypothesized model for consistency.
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7.3.1. DISCRIMINATION BY SIZE

One of the benefits of using active tactile exploration is that physical size con-
straints can be used for global discrimination. Nevatia and Binford [46] and Brooks
[15] have shown the utility of using physical size constraints in recognition tasks.
The tactile sensor can be moved into the workspace to trace the global outline of the
object to determine its bounding box. This is done by aligning the sensor vertically
with the worktable and moving the sensor until it contacts the object. The sensor
then moves around the object until it returns to its starting position. The granularity
of the movement may be varied to obtain coarse measurements or produce finer
detail. This is a simple, fast and effective procedure for limiting the initial search
space of the object models. Any model whose bounding volume exceeds the sensed
volume is rejected. This procedure also puts coarse bounds on the location of the

object which can be used by the verification procédures later.

7.3.2. DISCRIMINATION BY GROSS SHAPE

Another simple discrimination test that is useful is discrimination by gross
shape. The three dimensional sensory data supplies information on features (holes
and cavities) and surfaces. If the low level sensing discovers N holes, all models
with N-1 holes can be rejected. This applies equally well to cavities. For surfaces,
the criteria is more strict. Because the sensors discover patches of possibly larger sur-
faces, the surface type classifier is less robust. A curved surface in the model may
have cylindrical regions, which may be sensed as a cylindrical partial patch. There-
fore, gross shape discrimination must be conservative in matching curved surfaces.

In the case of planar surfaces, discovery of a planar surface is a strong discriminant.
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The procedures used to classify surfaces are discussed in section 7.3.4.

73.3. FEATURE ATTRIBUTE MATCHING

Feature attributes are used as a discrimination tool to invoke a consistent model.
Holes and cavities are modeled as right cylinders with constant planar cross section
perpendicular to the cylinder’s axis, occupying a negative volume. The constant
cross section can be used to define a set of moments that can be used to match the
cross section with a sensed feature. Moment matching was first described by Hu [33]
who described a set of seven moment invariants involving moments of up to third
order. These moments are simple to compute using the methods described in chapter
2, At the instantiation level two matching criteria are used. The first matches the

moment My, which measures the area of the planar cross section. For a match to be

‘accepted, the sensed and model areas of the cross sections must be within a thres-

* hold. If this moment matches within the threshold, then the invariant Mgy + Myg-is

matched between sensed and model systems. This measure is scaled to reflect the
difference in My, when it is matched. In the case of cavities, an extra attribute of

depth is available as a matching criteria.

Each feature is defined by its planar boundary curve and axis. The methods of
moments was chosen for its simplicity of computation and matching. Other methods
may be used besides the method of moments to match the curves. Two dimensional
curve matching is a well studied problem. Other approaches are the curvature primal

sketch of Brady and Asada [13] and the methods of curve matching developed by

- Kalvin et al [36] and Faugeras and Bhanu [8].
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Once we have computed the moment set, the invariants can be used for match-
ing. At the model instantiation phase, matches are only rejected if a strong rejection
criteria exists since it is unlikely that a globally poor match will survive this culling.
This discrimination becomes more and more robust as multiple features and surfaces

are discovered.

7.3.4. SURFACE ATTRIBUTE MATCHING

The surfaces created from vision and touch need to be matched against the sur-
faces in the model data base. This problem is compounded by the fact that the sur-
faces created from vision and touch may be contained within or partially overlap the
surfaces to be matched against in the model data base. There are two levels at which
this matching takes place. In the instantiation phase, surfaces are matched according
to global criteria described belowf rThis phase tries to match surfaces by such attri-
butes as area and type of surface. After a model has been instantiated, finer level
matching is attempted to try to ascertain a transformation matrix between model and

sensed object.

The initial phase of matching surfaces tries to match on two attributes, area and
type of surface. The area criteria is useful in the context of posing initial consistent
matches between sensed and model objects. The sensor is not capable of sensing
accurately parts of the model with fine structure such as the handle of the mug. The
area criteria effectively culls out small feature matching and leaves the task of larger
shape correspondence. Any patch whose area is smaller than the sensed patch’s area

will be rejected as a match.
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7.3.5. CLASSIFYING SURFACES

As described in chapter 2, the Gaussian curvature K is a measure which
describes the local surface changes by means of a scalar. Using this measure, sensed
surfaces can be classified as planar, cylindrical, or curved. The procedure to do this
iterates over the parametric surface at a specified sampling increment, computing the
normal curvatures Kg,,,Kgis in the principal directions and computing X as the pro-

duct of these curvatures.

To classify a surface as planar, two criteria must be met. The Gaussian curva-
ture computed over the surface must be within a threshold of zero everywhere and
the surface must pass a planarity test. The test for planarity computes a least square
plane Ax + By + Cz+ D =0 from a set of points on the surf_acc. Residual distances

for each point ( x;, y; , z; ) in the set to the plane were computed from
R; = (Ax#By#+CzqD)? (7.1)

and a measure r of the planarity of the points was defined as:

r = '\/E— (7.2)

where R is the mean residual in (7.1). If r is below a threshold, then the surface is
classified as planar. Cylindrical surfaces are those with K=0 (within a threshold) and
having a non zero Kp,, Of Ky, Curved surfaces are computed similarly and have a
nonzero value of X.

A recent development by Koparkar and Muciur [40] also can test for planarity
directly from the surface patch equations. This result has related the planarity of a
bicubic surface patch to the boundary curves of the patch. The method can be

applied here to find out how planar a surface patch is. A Coons’ patch can be
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defined as
33
2 YA W) Bi(v) Qj (7.3)
=0/=0

where A; and B; are the blending functions of the patch and Q;; are coefficients com-
puted from patch data. If the blending functions are linear, and the patch corners are
coplanar, then the patch is planar. By establishing small tolerances for coplanarity
and linearity, the patch may easily be tested. This theorem states that the linearity of
the patch is a function of the linearity of its blending functions, which are readily
accessible and easily computed. Determining the linearity of the blending functions
is accomplished by finding the curve maxima or minima measured from the chord
joining the curve’s endpoints.

Surfaces will match at this stage if two criteria are met. The first is that the
sensed surface and matched model surface are of the same type as defined above.
The second is that the sensed patch’s area must be less than or equal to a model
surface’s area. If these criteria are met, then the surfaces are judged consistent in
this first level of discrimination. The surface matches must then be relationally con-

sistent as described below.

7.3.6. RELATIONAL CONSISTENCY

The set of possible consistent interpretations can be restricted further by main-
taining relational consistency between the sensed regions and the model nodes. The
relational constraint used is adjacency. If two sensed regions in space are physically
adjacent, then the model nodes that these regions match with must also be adjacent.

The list of potential matches generated from the surface and featﬁre matching is
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further reduced by this method. For example, if a planar surface that is the lid of a
teapot is sensed, it will match with both the bottom planar surface of the teapot and
the lid. If the hole in the handle of the teapot is also sensed, an adjacency relation
exists relating the two sensed regions (hole and lid). Sensing and matching the hole
will cause the planar surface match with the bottom of the teapot to be rejected. It
will be rejected because the model contains no adjacency relation between the hole
and the bottom of the teapot. There does exist a model relation between the hole and
the lid, and this is consistent with the sensed adjacency relation, causing this match

to be accepted.

73.7. ORDERING MATCHES

The initial search for consistency is done by'crcatin'g lists of all consistent
matches between a set of sensed regions and the nodes in the data base. The sensed
regions are described by a data structure that contains a list of cavities, a list of holes
and a list‘of surfaces that have been discovered. These lists are then compared with
cach object node, trying to match lower level surface and feature nodes with the
sensed data. The output of this matching is sets of consistent matches ordered by a
combined probability-complexity measure. If the particular view that is presented to
the sensors is rich in structure that can be sensed, then the matching described above
is strong enough to invoke a unique consistent interpretation. If the view does not
provide strong discriminating features and surfaces, then the consistent matches must

be ordered for later verification.

There are two cases to consider in ordering matches. The first is matches that

are consistent within the same model object. For example, consider an object with
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two cylindrical surfaces, equal in area. A sensed cylindrical patch may match either
of these model nodes. Both matches will be accepted, but a preference will be given
to the match of the model node containing the higher probability. The probability
measure is an aid for recognition in which the components are ordered as to their
likelihood of being sensed. High priorities are assigned large components or isolated
components in space that protrude (handles, spouts). Obscured components, such as
a support surface of an object are assigned lower priorities. The probabilities do not
preclude recognition but simply give a preference for one set of potential matches
over another. The probability measure is normalized across all objects so that each

object’s surface and feature probabilities sum to 1.

The second case is consistency across different model objects. Given a set of
consistent object matches a strategy for determining which object is present is
needed. The set of consistent interpretations needs to be partitioned in some manner.
In general, determining these partitions dynamically is very difficult. A possible
solution is to partition the objects a priori; however, the space of possible consistent
interpretations is too large for this to be an effective strategy. The strategy used here
is to search for object complexity. To implement this strategy, a complexity attribute
is attached to each object model which is the number of components and features in
the model of the object. The normalized probability' measure computed from
matches within each object is multiplied by the model complexity and the matches
are ordered by this measure. Given two matches of equal probability, the more com-
plex object will be preferred, and verified first. This choice was made for two rea-
sons. First, the sensors are more capable of finding the presence of a surface or

feature than the absence of one. Secondly, finding a surface or feature not only helps
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the discrimination but quantifies it through sensing the surface or feature attributes.

7.4. VERIFICATION

Verification can be viewed as slot filling, where the instantiated model’s nodes
are either filled, representing a sensed match, or unfilled. Verification becomes a
process of reasoning about unfilled slots. The first step in this process is to compute
a transformation between the model coordinates and sensed world coordinates. Once
this transformation is computed, verification sensing can be carried out, using the

sensors to discover unsensed or occluded structure.

74.1. COMPUTING MODEL TO SCENE TRANSFORMATIONS

Once a model is ihstantiated, a transformation between model coordinates and
sensed world coordinates must be computed. This transformation will allow the
knowledge embedded in the model coordinate frame to be used in the sensed world
frame. By transforming model surfaces and features to the sensed world frames,
verification of unrecognized slots in the model can proceed since their assumed loca-
tion is now computable with this transformation. This knowledge enables the sensors
to explore regions that were not seen in the initial sensing and to explore visually
occluded areas with tactile sensing. The transformation may be computed with
feature information or surface information. In some cases, a partial transformation

may be computed that will allow further sensing.

o e = gt e p—— - —
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7.4.2. MATCHING FEATURE FRAMES

Each feature in the data base is associated with a coordinate frame. This allows
the feature to be defined in object centered terms rather than arbitrary model coordi-
nates. Once the models and their frames are developed, mappings from one feature
frame to another are readily computable. Figure 7.1 shows the frames C,, and H,,
which are object centered frames defined for a coffee mug’s cavity and a hole in the
model coordinate system. The relative transform between the hole frame and the

cavity frame R, can be defined as:

Cn = Hp: Riem (7.4)

Ryn = H,!:C, (7.5)
Similarly, the transformation from modeled cavity to modeled hole R, is:
Rym = C;l:H, _ (7.6)

Because these are relative frames, discovering one of the model frames in the sensed
coordinate space will define the other feature in the sensed coordinate space. Assum-
ixig we know the match between the hole in sensed world coordinates with frame H,
and the model hole with frame H,, then the cavity in sensed world coordinates is

defined by frame Cg
Cs = Hy: Ry a.7

The determination of the new feature frame in sensed world coordinates is important
to the verification process. If an unfilled feature slot is seen, then the feature’s frame
in sensed coordinates is available through the relative frame mapping. The frame for

a feature defines the axis of the hole or cavity in sensed world coordinates which is
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then used as an approach vector to sense the unseen feature even if it is occluded.

as

Hen

Figure 7.1. Coordinate frames for the features of a mug.

In some cases, feature frames are only partially defined. This is the case with
rotationally symmetric features such as a circular cavity or hole. The approach axis
of these features is well defined, but the principal axes of 'incm'a are not. However,
the frame matching technique discussed above can still determine within this rota-
tional parameter the new sensed frame. If occlusion information is also included, the
new frame can be constraincd to lie within a certain rotational range around the

approach axis, allowing occlusion sensing to take place and find features that cannot
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be seen. An example of this is given in the next chapter, where the tactile sensor is

able to sense a visually occluded hole.

7.4.3. MATCHING SURFACE FRAMES

Matching of surfaces is more difficult because a unique surface; frame is not as
easily sensed as a feature frame. Planar and cylindrical surfaces have one well
defined frame vector which is the plane’s normal and the cylinder’s axis. Curved
surfaces in general do not have any such natural embedded frame. In the case of
planar and cylindrical surfaces, the one axis which is defined will allow defining the
transformation up to a rotational parameter about that axis and a translation. In the
case of the plane, the plane’s centroid is also computable and this will supply the
translational component of the transformation. This can be used in conjunction with

other feature and surface matches to constrain the sensed frame.

Curved surfaces have no embedded frame information that is unique that we
may exploit for arbitrary surface frame matching. Unlike a planar or cylindrical sur-
face, an arbitrary curved surface has fewer invariants such as a normal to the planar
surface or an axis of the cylinder that can be matched against. One approach, imple-
mented by Potmesil [54], is to generate point matches on the surface and try to
iteratively compute the transformation matrix. Potmesil matched bicubic patch
descriptions in order to build three dimensional models of objects from different
viewpoints. His method was to choose an initial set of point matches (four are
needed) and compute the transformation from one patch to another and then test for
correspondence. The method worked reasonably well but was slow and used an arbi-

trary evaluation function. No attempt was made to implement this method here due



———— e

- 130 -

to the excessive time of execution which precludes its use in a robotics environment.
Compounding this problem is the surface subset problem: the sensed surface is in
general a subset of the larger model surface. Therefore the point matches must be

chosen from a potentially larger set of points.

The analytic nature of the surfaces created from vision and touch allows compu-
tation of differential geometry measures such as lines of curvature, principal direc-
tions, and Gaussian curvature. Recently, Brady, Ponce, Asada and Yuille [14] have
suggested that certain lines of curvature that are planar might be significant in terms
of recognizing structure. For example, the only planar lines of curvature on an ellip-
soid are the lines formed by the intersection of the symmetry planes with the surface.
Discovery of -lincs such as these is feasible with the representation used, and may

lead to more robust recognition methods for curved surfaces.

7.4.4. VERIFICATION SENSING

Once the transformation relating the modeled to sensed coordinates is com-
puted, features and surfaces locations in the model can be related to the sensed world
coordinates. The location and approach axis of hc;lcs and cavities can be computed
from these transformations and used to guide the tactile sensor to verify the feature’s
existence. In particular, occluded features may be sensed and verified in this manner.
Because their approach axes and centroids are well defined by the transformation,

blind tactile search can succeed.

Tactile sensing of visually occluded surfaces is difficult. The integration of
vision and touch to build surfaces described in chapter 6 works precisely because

both modalities are being used. The vision guides the tactile tracing, establishing
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starting and ending conditions on the trace. Attempts to use touch alone to build sur-
faces that are visually occluded will not work without ‘the extra infoﬁnation supplied
by vision. Blind touch can only sense discontinuities and presence or absence of sur-
faces. Further, because the touch is blind, the relation of these surfaces to the object
structure is unclear. It is not possible to build a patch description as is done in the

visible parts of the scene.

Verification can be time consuming if all model slots are to be filled. The
hierarchic nature of the models supports different levels of verification sensing. If a
component slot is filled because a surface of that component was matched, we can
decide to accept the component as verified or do further sensing on any other sur-
facc_s that make up this component. If the model instantiated is unique, then lower
levels of sensing may not be necessary. If the instantiation is not unique, then going
deeper into the hierarchy of slots to perform more sensing may be called for. Confi-
dence levels for verification can be set up in this manner, suggesting different levels

of acceptance and further sensing to be carried out.

75. SUMMARY

Matching is the last step of the recognition process. It has two components
which are instantiation and verification. Instantiation tries to find consistent interpre-
tations from the sensed data using rules. Once a model is instantiated, verification
computes a transformation from model to scene, allowing further sensing to take
place and support or reject a hypothesis. Design decisions need to be made as to the
levels of sensing and matching criteria that need to be established for each phase of

the process. Matching is done at a coarse level to try to quickly reduce the number
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of feasible models. Matching is based upon attributes of surfaces and features
discovered by the integration of vision and touch. If the imaged scene is rich with
structure that can be sensed, instantiation of a unique model is likely. If a unique
instantiation is not possible, then the possible objects are ordered by probabilistic

and complexity measures.

The transformation from model to sensed coordinates may be computed from
either feature or surface information. Features have an embedded coordinate frame
that simplifies the computation of this transformation. Surfaces may only supply par-
tial information about the transformation. Partial transformations will still allow

further verification sensing to take place.




CHAPTER 8

EXPERIMENTAL RESULTS

8.1. INTRODUCTION

This chapter details the experiments that were conducted to test out the

approaches developed in the previous chapters. The results of integrating vision and

. touch are further presented as is the ability of correct matches to be made against the

model data base. The experiments are intended to show working approaches to
object recognition. The experiments show that integrating vision and touch is a
viable method for recognition, particularly when compared to standard vision pro-
cessing. The experiments reported are all run with real data from real noisy sensors;
no simulation results will be reported. The tactile sensor being used is relatively
crude in terms of spatial resolution compared to newer devices. Despite these
shortcomings, the approaches to matching discussed in the previous chapter work
well in a number of important cases. The main intent of these experiments is to
show 1) the utility of the methods presented and 2) the ability of touch and vision to

succeed in situations that vision alone would find difficult.
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Figure 8.1. Digital images and zero-crossings for the plate.
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Figure 8.2. Region analysis and stereo match points for the plate.
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Figure 8.3. Level 1 surface for the plate.
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Figure 8.4. Surface normals on the plate.
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Surface Analysis, plate
Surface | Area K max Kmin r
sensed | 29470 | .000896 | -.000053 | 4.71
model | 28496 | .000326 | -.000209 | 4.81264

Table 8.1. Surface analysis of the sensed and model plates.

Orientation Analysis, plate
actual normal vector (0.734507 , 0.007877 , 0.67855)
sensed normal vector (0.751346 , 0.030944 , 0.659182)
angular difference 6.25 degrees

Table 8.2. Orientation analysis for the plate.

8.2. EXPERIMENT 1

The first experiment tried to recognize a salad plate which is a regular planar
object. The digital images and zero-crossings are shown in figure 8.1 and the region
analysis and stereo matches in figure 8.2 . The images yielded few feature points
that could be matched to determine depth as expected with a smooth homogeneous
surface. The stereo matcher was only accurate in matching zero-crossings up to 65°
from vertical, yielding sparse and incomplete depth information. An image such as
this would pose large problems for a vision system alone; the data is too sparse to
support a consistent visual hypothesis. The region analysis revealed only a single
region to be explored which was the central area of the plate. The tactile system
explored the plate and built the surface description shown in figure 8.3 by integrating

the touch and vision data into a level one surface description. The surface was
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sampled at small intervals in parameter space calculating the maximum and minimum
Gaussian curvatures (Kpae » Kmin), the area of the surface and the root mean residual
r which tests for planarity. Table 8.1 shows this analysis along with the analysis of
the modeled salad plate’s surface. 2

An analysis of the surfaces in the model database established a threshold value
of £.001 for determining zero Gaussian curvature. The surface patch’s Gaussian cur-
vature was within this threshold implying a planar or cylindrical surface. The value
of the residual measure r was small confirming a planar surface. All of the objects
in the data base except the cereal bowl have at least one planar surface, and are
potential matches; however, when the areas were compared, the matcher was able to
discriminate among these objects and choose the plate. If the areas of the planar
model surfaces had been similar further techniques to discriminatc‘planar shapes
would be necessary. The techniques used for discrimination of features (moments)
could be used here, but in general the surface subset problem may preclude this. The
planar sensed area being matched may not be the entire planar model surface. If the
planar surface on the bottom of one of the objects mentioned above was similar to
the plate, the matcher would have ordered the objects by complexity and tried to use
verification sensing to discover hidden occluded structure. Figure 8.4 shows the com-

puted surface normals on the plate, verifying its planar appearance.

The normal of the least square plane fitted to the surface was the estimate for
the orientation of the object. No other orientation parameters were available since

2 All surfaces shown from integrating vision and touch are shown orthographically project-
ed, with no hidden lines removed. The lines on the surfaces are lines of constant parameteriza-
tion, computed by holding one parameter of the surface constant and iterating over the other
parameter,
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the plate was symmetric about its planar axis. Table 8.2 shows the accuracy of the
orientation estimate, which was formed by taking the dot product between the orien-
tation vectors and calculating the angle between them, yielding an angular difference
of approximately 6°.

The use of touch in this experiment verified the planar nature of a surface. The
sparse visual cues were not dense enough to support the conclusion from vision
alone. Determining if a surface is planar is a strong constraint. It allows determina-
tion of an orientation in space and constrains the surface in ways that facilitate

matching in 2-D rather than 3-D.

8.3. EXPERIMENT 2

The second object imaged was a cereal bowl. The digital images and zero-
crossings are shown in figure 8.5 and the region analysis and stereo matches in figure
8.6 . The images are similar to the plate in experiment 1. The only depth cues are
monocular, where small shading gradients exist but which elude the zero-crossing
edge detector. If surface reflectance and lighting were known a possible method of
shape reconstruction would be shape from shading. However, these constraints are
unknown in our case. This is an excellent example of the discriminatory power
when tactile sensing is added to vision. The region analysis yields one region to
explore with the tactile sensor. Upon exploration, a level one surface of the bowl
was computed and is shown in figure 8.7 . Figure 8.8 is a cross section through the
level one surface showing the surface normals. The tactile sensor did not find a sur-
face until it had passed 40mm. beyond the plane of the région’s contour determined

from vision. This prompted a cavity trace in addition to the surface trace.
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Figure 8.6. Region analysis and stereo matches for the cereal bowl.
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Figure 8.7. Level 1 surface for the cereal bowl.

i

Figure 8.8. Cross section of bow! surface showing surface normals.
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Surface Analysis, cereal bowl
Surface | Area Kinax K r
sensed | 41218 | 0.000949 | -0.003550 | 14.9788
model | 60616 | 0.001290 | 0.000432 | 17.2152

Table 8.3. Surface analysis of the sensed and model bowls.

Moments, cereal bowl cavity

cavity My | My My, MytMe,
sensed 17068 | 21927264 | 24656910 | 46584174
model 19378 | 29882396 | 29882396 | 59764792
scaled sensed 19378 | 28263552 | 31781979 | 60045532

Table 8.4. Moments for sensed and model bowl cavity

Orientation Analysis, cereal bowl
actual cavity axis (0.810766, -0.001906, 0.585368)
sensed cavity axis (0.765278, 0.041297, 0.642374)
angular difference 5.08 degrees

Table 8.5. Orientation analysis for the cereal bowl.

The matcher tried to match the surface and the cavity with an object in the data-

base. The surface is not planar or cylindrical since its Gaussian curvature is above

the established zero threshold. Table 8.3 shows the results of the surface analysis of
sensed and model bowls. The cavity had a sensed depth of 40mm. and a moment set

which is shown in table 8.4 . The pitcher surface was a potential match along with
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the bowl in this example but the cavity depth and moments only matched the bowl.
The model cavity depth is 45mm, and the depth from sensing was 40mm. The cavity
sensing yielded an estimate of the cavity’s axis vector that was determined by the
normal to the cavity cross section and is shown in table 8.5 . The angular difference

between the actual cavity axis and the sensed axis was approximately 5 °.

The initial visual data for experiments 1 and 2 were almost identical. Only by
using touch sensing did the surface’s depth become apparent. The discovery of a
cavity allowe& the system to discriminate between two potential surface matches.
The combination of surface and feature information reduces the likelihood of multiple

consistent models being found.

'84. EXPERIMENT 3

The third experiment imaged a coffee mug. In this image the hole, cavity , han-
dle and body of the mug were all visible. The digital images and zero-crossings are
shown in figure 8.9 and the region analysis and stereo matches in figure 8.10 . The
region analysis yielded 4 separate regions to explore. The first region explored was
the cavity. Figure 8.11 shows the tactile sensor ;cing the cavity of the mug, figure
8.12 shows the smoothed boundary curve computed from the tactile trace of the cav-
ity, and table 8.6 shows the computed moment set for the planar cross section of the
sensed cavity. The second region explored is the mug’s main body for which a sur-
face patch was built and is shown in figure 8.13 . This surface patch is a level one
patch built from vision and touch and very closely approximates the cylindrical sur-
face of the mug. The geometric analysis of the patch is shown in table 8.7 . The

analysis of the patch shows its Gaussian curvature to be within the specified
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threshold of zero Gaussian curvature. The patch is not planar since its residual value
from the fitted plane is too large. This leaves the choice of the surface to be a
cylinder. If the model database contained parabolic or elliptic cylinders, then further
geometric analysis of the surface is needed. If the sensed surface is a circular
cylinder, then planes perpehdicular to the cylinder’s axis will form circles of intersec-
tion on the surface. The cylinder’s axis can be determined by finding the lines of
minimum curvature on the surface. The lines of minimum curvature are one of the
principal directions on the surface. They are uniquely defined except in the case of
umbilic points which are points on the surface where the curvature in each of the
principal directions are equal (spheres and planes are entirely composed of umbilics).
Using the lines of curvature, the cylinder’s axis may be computed and by intersecting
the surface with planes perpendicular to the axis, a set of intersection curves can be
created which will be circles if the surface is a circular cylinder. Figure 8.14 shows
the surface normals computed for the patch.

The hole was found after the Explore Region algorithm penctrated the region
defined fror{1 vision processing and did not contact a surface (figure 8.15 ). The
Trace Hole/Cavity algorithm traced the hole and the smoothed boundary curve shown
in figure 8.16 was computed from the contact points on the holes boundary. Table

8.8 shows the computed moment set for the traced hole.

The matcher was presented with an abundance of sensed region information to
try to instantiate a model. The cylindrical surface that was computed matched a
number of objects in the database (pot, coffee mug, drinking glass) as did the cavity
(drinking glass, coffee mug). The hol¢ was not found in the drinking glass (an

identical object in the database to the mug but without a hole or a handle) but
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Figure 8.10. Region analysis and stereo matches for the coffee mug
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Figure 8.12. Smoothed boundary curve for coffee mug cavity.
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Figure 8.13. Level 1 surface for the coffee mug body.
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Figure 8.14. Surface normals for the coffee mug body.
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Figure 8.15. Exploring and tracing the coffee mug hole.

Figure 8.16. Smoothed béuhd;ry curve for coffee mug hole.
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Moments, coffee mug cavity
cavity My My, My Myg+tMp,
sensed 4383 | 1485060 1583911 | 3068972
model 4758 | 1802083 1802083 | 3604167
sensed scaled 4758 | 1750112 18666606 | 3616718

Table 8.6. Moments for sensed and model coffee mug cavity.

Surface Analysis, coffee mug body
Surface | Area Kpax K r
sensed 9598 | 0.000492 | -0.00062 | 11.18
model | 22078 | 0.00 0.00 9.73

Table 8.7. Surface analysis of the sensed and model coffee mug bodies.

Moments, coffee mug hole
hole My My, My Myg+My,
sensed 1011 | 152109 44729 196839
model 1296 | 187673 | 148729 | 336402
sensed scaled 1296 | 249843 73470 | 323313

Table 8.8. Moments for sensed and model coffee mug hole.

Orientation Analysis, coffee mug

actual cylinder axis

0.0, 0.0, 1.0)

actual cavity axis

0.0, 00, 1.0

sensed cylinder axis

(-0.005972, 0.010281, 0.999929)

sensed cavity axis

(-0.054294, -0.056377, -0.996932)

maximum angular difference

4.75 degrees

Table 8.9. Orientation analysis for the coffee mug.




e ot

4

- 152 -

matched with the coffee mug, yielding a unique choice of object.

This particular view was rich with information. Not only did it provide a
unique instantiation, but it also allowed a check on the orientation of the mug. The
cylindrical surface axis and the cavity axis are parallel in the model and Table 8.9
shows the agreement between these two axes and the actual orientation. The agree-
ment is quite close, showing the ability to determine orientation from both surfaces

and features.

The handle of the mug is too small and fine for the sensor to adequately build a
patch description. It can be verified as a surface with the sensor, but attempts at
building a patch description failed due to the sensor’s much larger size. This experi-
ment shows the many ways an object can be recognized. Holes, cavities and surfaces
are all able to bc.uscd to both recognize and correctly identify orientation p&metem
for the objects. This is important in that certain viewing angles may present a
confusing region that cannot be sensed accurately. However, if one of the regions is
able to be sensed accurately, then a partial match can be established leading to later

recognition.

8.5. EXPERIMENT 4

The purpose of experiment 4 was to see if the system could determine if the
mug »was cavity side up or bottom side up. Visually these two positions are very
similar. Only by exploring the region with the tactile sensor can the surface or cav-
ity be distinguished. The objects in these experiments are rigidly fastened to the sup-
port surface. The sensor is too massive and the arm control too slow in response to

prevent the objects from moving when being sensed. To perform this experiment,

b e e e S e e e o
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Figure 8.17. Level 1 surface for coffee mug bottom.

Figure 8.18. Surface normals for coffee mug bottom.
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Surface Analysis, mug bottom
Surface | Area Kpax Koin r
sensed | 4790 | 0.000534 | 0.000299 | 0.577
model 5024 | 0.00 0.00 0.00

Table 8.10. Surface analysis of the sensed and model mug bottom surfaces.

Orientation Analysis, Coffee Mug
actual plane axis (0.0, 0.0, 1.0)
sensed plane axis (0.050760, -0.04268, .998702)
angular difference 3.0°

Table 8.11. Orientation analysis for the coffee mug, experiment 4.

the mug was actually in the same upright position as in experiment 3. The visual

analysis was the same as for experiment 3, but a thin plate conforming to the bottom
surface of the mug was placed over the cavity opening during the tactile sensing.
The tactile sensor reported a surface rather than a cavity. The surface is shown in
ﬁgufe 8.17 and the surface analysi‘s is in table 8.10 , revealing a surface with zero
Gaussian curvature and a small value of r, confirming its planar shape. Figure 8.18
shows the surface normals verifying the planar analysis. The orientation analysis is
in table 8.11 and it compares the sensed plane’s normal vector with the actual plane

normal vector, showing an agreement within 3°,

8.6. EXPERIMENT 5§

The next object imaged was a pitcher. The digital images and zero-crossings
are in figure 8.19 and the region analysis and stereo matches in figure 8.20 . The

first region explored is the cavity which is found by moving the probe along the
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normal to the cavity’s contour plane and finding no contact within a specified dis-
tance of movement beyond the contour plane. The contour reported from this sens-
ing was not accurate due to the shape of the cavity and the resolution of the sensor.
The pitcher cavity has a variable cross section along its axis; it is not constant as the
model expects. This prevents the Trace Hole/Cavity algorithm from properly tracing
the cavity. The trace underestimated the cavity area by being below the plane of the
wide mouth opening by a small amount of distance which yielded a different boun-
dary curve. A solution to this problem is to modify the trace hole algorithm to fol-
low edge discontinuities; however the sensor being used has difficulty following fine

changes in surface structure such as this due to its poor spatial resolution. A more

accurate sensor would allow cavities such as this to be traced, extending the range of

the objects that can be modeled and recognized.

The next region sensed is the main body surface of the pitcher. This surface is
a very complex surface to build a description from, with concavities and twisted
space curves for boundaries. However, the vision and touch routines were able to
build a quite accurate level one surface which is shown in figure 8.21 . The Gaus-
sian curvature (table 8.12 )ranges from positive to negative on this surface describing
a surface with hyperbolic and elliptic points. Figure 8.22 shows the surface normals
computed from the surface and figure 8.23 shows thé principal directions on the sur-
face. The Gaussian curvature analysis rules out all planar and cylindrical patch
matches. Thus the pitcher body is matched in the model when the further constraint

of surface area is considered.

The hole is an excellent discriminating feature between the pitcher and the mug.

The tactile routines were able to sense the hole and compute its moment set (table

ey s
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Figure 8.20. Region analysis and stereo matches for the pitcher, side view.
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Figure 8.21. Level 1 surface for the pitcher body, side view.

Figure 8.22. Surface normals for the pitcher body, side view.
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Figure 8.23. Principal directions, pitcher body, side view.

Figure 8.24. Smoothed boundary curve for pitcher hole.
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8.13 ). A problem due to sensor size is its inability to accurately sense the point of
the handle. The sensor is physically too large to fit into this space, and it is unable
to sense the point of the handle. The area of the cross section is underestimated
because of this but is still within a threshold of the model area. The smoothed

sensed boundary contour of the hole is shown in figure 8.24

Surface Analysis, pitcher body
Surface | Area Kax Kin r
sensed | 26469 | 0.000841 | -0.001439 | 16.335
model | 59427 | 0.001908 | -0.004580 | 40.67

Table 8.12. Surface analysis of the sensed and model pitcher bodies.

Moments, pitcher hole ,
cavity Moo My My | MygtMy,
sensed 2353 343564 | 611903 955467
model 2565 | 1083210 | 283496 | 1366706
scaled sensed 2565 408236 | 727086 | 1135322

Table 8.13. Moments for sensed and model pitcher hole.

The system was able to discriminate in this experiment based upon surface
differences and feature differences. The recognition was able to be done even though
the cavity tréce was unsuccessful. This is due to the fact that three dimensional
structure is being sensed and partial matches of this structure are strong. The
discovery of the curved surface and the hole allowed the matcher to uniquely instan-

tiate the pitcher model.
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Figure 8.25. Digital images and zero-crossings for the pitcher, front view.
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Figure 8.26. Region analysis and stereo matches for the pitcher, front view.
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Figure 8.27. Level 1 surface for the pitcher body, front view.
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Figure 8.28. Surface normals for the pitcher body, front view.
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Figure 8.29. Principal directions, pitcher body, front view.

Surface Analysis, Pitcher body, front view.
Surface | Area K pax Kmin
sensed | 26747 | 0.000962 | -0.001033 | 16.77
- modsl | 59427 | 0.001908 | -0.004580 | 40.67

r

Table 8.14. Surface analysis of the sensed and model pitcher bodies.

8.7. EXPERIMENT 6

In this experiment the pitcher was imaged from the front, with no cavity or hole
in the scene The digital images and zero-crossings are in figure 8.25 and the region
analysis and stereo matches in figure 8.26 . The single region of the pitcher was
traced with the sensor under active control of the system and the surface that was
built is shown in figure 8.27 . Figure 8.28 shows the dx'n‘:ctions of the surface nor-
mals on the patch and figure 8.29 shows the principal directions on the surface.

Table 8.14 contains the surface analysis. This surface had negative Gaussian

P ——— oy~ e e — o
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curvature which precluded it from being cylindrical or planar. Matching of this sur-
face was much more difficult than any of the others and was not entirely successful.
The only surface of equivalent area and surface type was the pitcher. However,
computing the transformation from model to sensed coordinates was not successful.
Unlike a planar or cylindrical surface, an arbitrary curved surface has fewer invari-
ants such as the normal to a planar surface or an axis for a cylinder that can be
matched against. Compounding this problem is the surface subset problem: even
though we may match correctly, the transformation may not be easily computed since
it is unclear which subset of the surface is matching which part of the larger surface.
The result of this experiment is that there is too little information to effectively know
the object’s structure. Therefore a new visual view is needed and this can be
reported to the camera system. A slight change in viewing angle will reveal the cav-
ity or the hole which can be used to compute the transformation matrix. Even
though full recognition was not accomplished in this éase, the ability to do partial
matching is an improvement over vision systems that must have a global match or
none at all. The discovery and quantification of a three dimensional surface is useful

and as the new view is taken this information can be used to build on the description.

8.8. EXPERIMENT 7

In this experiment, the coffee mug was imaged with the handle occluded. The
digital images and zero-crossings are in figure 8.30 and the region analysis and stereo
matches in figure 8.31 . The first region probed by tactile sensing was the cavity and
the moment set in table 8.15 was computed. The second region probed was the body

of the mug and a level one surface description was computed from vision and touch,

. — —————
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shown in figure 8.32 along with the surface normals in figure 8.33 . The objects in
the data base that will match with these two regions are a drinking glass without a
handle and a mug with a handle. From this visual angle there is no way that the two
objects can be distinguished. The instantiation module will pick both objects to be
verified. The matcher will order these objects by complexity, causing the coffee mug
to be verified. The mug is the more complex object and its only unfilled slots are
the handle, hole and bottom surface. All regions from the vision analysis are
matched, leaving visually occluded parts only.

It is possible to reason about and sense occluded features. It can be determined

that the object is a mug by verifying the occluded hole, From the analysis so far

there is no way to determine where the hole lies. If it is a mug the hole lies in the

occluded area which is shown in figure 8.34 . The bounds on this volume are known

- from the vision and touch sensing that has already been performed. The cavity and

the hole each have an internal frame associated with them. In a rigid object, once
tﬂcsc frames are defined, then knowing one frame determines the other through a
series of transformations described in chapter 7. The problem can be solved uniquely
if the cavity has a unique internal frame. Knowing this internal frame and the relative
transform from the model frame to the hole will allow us to compute the hole frame
in the sensed coordinate system. The cavity does not possess a unique frame; it is
rotationally symmetric, leaving a degree of freedom in its internal frame which is the
rotation about its approach axis. This degree of freedom can be exploited to reason
about the hole. The fixing of the cavity’s approach axis in space means that the hole
centroid is confined to lie in a circle centered at the cavity and swept out about the

cavity’s axis. Computing this circle gives a set of three dimensional points which
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represent possible locations of the hole’s centroid. Intersecting this circle with the
known occluded volume yields a possible set of locations of the hole. Each of these
locations is associated with a particular fixing of the rotationally symmetric axes
about the cavity’s axis. The approach is to fix the cavity’s rotationally symmetric
axes at an angle of rotation that is midway between the angles that bring the hole
into occlusion and bring it out. Once this is defined, this yields an approach axis for
the hole which the sensor can then use to actually sense the hole. In the experiment,
the hole was found this way, rejecting the drinking glass match and accepting the
mug match., Figure 8.35 shows the sensor searching for and finding the hole in the

visually occluded area.

This last experiment shows the power of this approach to object recognition.
Multiple sensors were used synergistically to invoke a possible set of objects. High
level reasoning about the object’s structure that is encoded in three dimensional
models allowed further verification sensing to successfully discriminate between the
objects. The knowledge about the three dimensional world (the occluded volume)
and the object’s geometry (which is encoded in the model) can be used to perform

active sensing in occluded areas.

8.9. SUMMARY

The experiments reported here show the ability of vision and touch sensing to
sense and recognize objects that would be difficult for vision alone. The three
dimensional surface and feature primitives provide strong matching criteria that can
lead to unique instantiations based upon a combination of surface and feature attri-

butes. In cases of multiple consistent objects, verification sensing and high level
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reasoning can discriminate by sensing occluded areas. In some cases the system is
unable to accurately sense features due to the sensor’s poor spatial resolution and
physical size. The feature matching provides strong discriminating evidence in
choosing a possible object. The surface information is also able to constrain the set

of possible matches. The combination of both provides strong recognition criteria.




Figure 8.30. Digital images and zero-crossings for coffee mug.
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Figure 8.31. Region analysis and stereo matches for the coffee mug.
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Figure 8.32. Level 1 surface for the coffee mug body.
Figure 8.33. Surface normals for the coffee mug body.
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Figure 8.35. Tactile sensor verifying the visually occluded hole.
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Moments, coffeec mug cavity

cavity Mgy My, My My+Mo,
sensed 4948 | 1872094 | 2114266 | 3986360
model 4758 | 1802083 | 1802083 | 3604167
sensed scaled 4758 | 1731206 | 1955153 | 3686359

Table 8.15. Moments for sensed and model coffee mug cavity.




CHAPTER 9

CONCLUSIONS

9.1. INTRODUCTION

This chapter is a summary of what has been learned from this work. A system

for recognizing objects based upon discovering their three dimensional structure

through vision and touch has been presented. The paradigm of model based recogni-

tion was used, where the models are hierarchical, three dimensional and viewpoint
independent. The models use a simple surface primitive and include nodes for expli-
cit specifications of features such as holes and cavities. The models also include spa-
tial relationships between the model components which constrains matching. Algo-
rithms have been developed to analyze and segment two dimensional images into
regions of interest. Stereo matching on the contours of these regions provides sparse
three dimensional information that can be used to guide a tactile sensor to perform
active exploratory tracings of surfaces and features. This entailed developing three
dimensional surface following and feature discovery algorithms for the tactile sensor
that coordinate the movement of the robotic arm with tactile feedback. A robust,
hierarchical procedure was then developed to integrate the vision and touch informa-

tion into surface and feature primitives that could be used in a matching phase.

- 174 -
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Matching of these surface and feature primitives was accomplished by an analysis of
the geometry of the computed surfaces and features and development of rules that
can be used to discriminate among the model objects. The three dimensional struc-
ture of these objects was also used to compute transformations that determined an
object’s orientation in space. Finally, a series of experiments were run to test the
utility of such procedures, and to show that these methods could succeed in recogniz-
ing objects that vision alone would have difficulty with. This chapter is an attempt
to put this work into context by discussing what was successful and what qeeds
further development. Ideas for extensions to this work and possible future
approaches are also presented.

9.2. TACTILE SENSING

The first success of this research was the use of active, exploratory tactile sens-
ing to obtain robust shape data. Touch has been looked upon as a poor stepchild to
vision» processing in robotics. This is due in part to the fact the previous researchers
have not tried to use active controlled touch but rather static touch. Static touch is
too local in nature to succeed. Active touch sensing provides powerful shape infor-
mation but it extracts its price for this information in demanding powerful control of
this active medium. An important conclusion about touch is that it cannot succeed
blindly. Tactile sensing needs to be driven from the high level. Blindly groping on
a surface of an object is a poor and inefficient way to perform recognition. It also
can be error prone given the state of present day sensors. What makes tactile sensing
succeed in this work is the cues that vision provides; where to sense, at what orienta-

tion, in what direction. Without this higher level guidance, the touch is too difficult
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to control and the signals too conflicting to succeed. When a surface is traced, the
sensor knows the smooth nature of the surface from the vision analysis. These con-

straints are combined to allow touch to actively probe and trace surfaces.

A clear advantage of tactile sensing over vision is that touch can deal with
occlusion. As the experiment with the occluded mug handle showed, touch can ver-
ify visually obscured parts of the object. It was only able to do this by using higher
level reasoning about the object’s structure and guide the tactile sensor to a probable
location for the hole. A strategy of sending the sensor into the occluded area and
reporting back contacts would be doomed to failure. The knowledge to interpret the

contacts must be available.

9.3. INTEGRATING VISION AND TOUCH

The next success was being able to build accurate and robust surface and feature
primitives using the combined vision and tactile sensing. The idea that two sensors
are better than one was easily proven. Neither of the sensors alone are capable of
building true three dimensional primitives that are more than point based. Point
based methods tend to be weak and intolerant of error. No matter how good a sensor
is, it produces error. Relying on single pixel or point values is inherently unstable.
The data needs to be abstracted and smoothed into larger more robust measures. In
this research, the stereo matches are pixel based but the pixels to be matched are
found on contours of related pixel chains, thus eliminating many possible spurious
point matches. The three dimensional data from these matches is not used as isolated
sets of points, but grouped into curves in space, broken at discontinuities in curva-

ture. The same is true for the tactile trace points. They are also grouped into curves,

—_— e ir
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smoothing out the small discontinuities due to noise and resolution error. Finally,
these curves are combined into surfaces. Surfaces are large, stable entities as
opposed to points. The surfaces are built using techniques that interpolate the known
data that is found from the smoothed sensing above. The method is recursive in that
the surfaces can be sampled and interpolated to a prespecified accuracy, depending
upon the level of sensing desired. Point based methods are too sensitive to succeed
with noisy sensors. The matching is done on larger scales using surfaces and planar

cross sections that are more robust amidst sensor error. The surface matching is

based upon local properties of surfaces (differential geometry) analyzed over the

whole surface. These measures are sensitive to small changes. The reason that the
analysis is correct in the experiments is that the surfaces are built to be curvature
continuous. Small local discontinuities due to sensor error are reduced with this

method, making the differential geometry measures accurate.

9.4. UNDERSTANDING 3-D STRUCTURE

Object recognition in this work is predicated upon discovering three dimensional
structure of objects. It may seem obvious that understanding three dimensional struc-
ture is a necessary first step to a host of important robotic tasks, including recogni-
tion, grasping, manipulation and inspection. However, this has not been the primary
approach of much previous work. Instead of being the primary initial focus, three
dimensional structure was an outcome of the model matching phase. Only by
correctly invoking a model (determined through a variety of viewpoint dependent and
two dimensional projective analysis) was the actual three dimensional structure

uncovered. By using active sensors, three dimensional structure can be discovered
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initially. The reasons why this is important are listed below:

The sensed primitives need to be related to the model components in model
based recognition. The models can be easily and efficiently structured as three
dimensional surfaces and features. The discovery of three dimensional surfaces
and features facilitates this matching effort. The models in this work use the
same surface primitive that the sensors together compute. This eliminates

expensive transformations of the data and possible information loss.

Viewpoint independent recognition assumes no characteristic views of the
object. The orientation in space of the object needs to be computed from the
combination of sensing and high level reasoning. Uncovering the three dimen-
sional structure makes this computation possible, especially with 3-D volumetric

primitives containing embedded axes.

There is a limit to the amount of recognition that can be done at the low level.
Reasoning about three dimensional objects at a higher level implies understand-
ing the three dimensional structure. Spatial relationships in three dimensions
involve three dimensional entities. Only by uncovering these entities can higher

level reasoning be invoked.
Tasks beyond recognition also imply an.understanding of three dimensional

structure. Grasping, inspection and manipulation all involve understanding and

reasoning about the three dimensional structure.
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9.5. PARTIAL MATCHING

Partial matching is important because it allows the system t6 succeed amidst
failure. Certain regions of the object may not be easily sensed either due to their
complexity or the inability of the vision to understand a region. Partial matching of
three dimensional entities allows recognition to continue, searching for structure that
can be accurately sensed. Three dimensional objects can be complex; however the
experiments have shown that if this complexity can be sensed, even partially, it can
lead to full recognition. The holes and cavities discovered by sensing are complexi-
ties of the object that once sensed are extremely useful in deciding what object it is.
This has important ramifications in discovering objects other than those known to be
in the data‘basc. Suppose a coffee mug with two holes for the fingers is imaged
and is not in the databﬁsc of models. Structurally, the object is similar to the mug
used in the experiments and the sensing would be similar except for the quantity of
holes discovered. An object such as this can be compared to existing data base
objects based upon its decomposition into viewpoint invariant surface and feature
structure, which is what the models contain. In this manner new objects can be

sensed and classified even though they may not be members of the data base.

9.6. IMPORTANCE OF HIGH LEVEL REASONING

No matter how robust the low level sensing tasks are, they need context to
allow further analysis and understanding. This is especially trﬁe in the verification
phase where sensing is used to support or reject an hypothesis. Of particular impor-
tance is being able to understand and reason about three dimensional spatial relation-

ships. The system is able to find true three dimensional entities, and can determine
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some of their spatial relationships. However it is not powerful enough to reason
about why all slots aren’t filled in the models. Being able to reason from a 3-D
model and plan the next round of sensing would be valuable, particularly in being

able to discriminate between many possible consistent models.

9.7. WHAT HASN’T WORKED

The methods described in this work will not work for small surface structures.
As objects become more complex, these structures occur more often. Part of this
problem is due to sensor resolution. More powerful and higher resolution sensors can
conceivably deal with this problem, such as the inability to sense the handle of the
pitcher or mug. However, as objects become more complex, so do the object models
that define them. The models used in this work are organized by an obvious object
structure and segmentation. Mor-e complex objects may not show this structure, and
the models may prove inadequate as presently formulated. While this is a serious
problem, it still does not preclude partial matching which is one of the obvious
strengths of this method. Even though some structure may not be accurately sensed,
other parts will leaving partial conclusions that can be rectified and evaluated by

higher level reasoning modules.

Another problem with the method is that because it relies partially on vision, it
cannot totally be isolated from the unsolved problems of machine vision. The crea-
tion of closed contours from edge detection is still a problem in certain scenes.
Approaches to solving this problem have been mentioned in chapter 3 and appear to
show some success. A partial solution was implemented in this work but some of

the images still needed a small number of pixels filled in to create the contours. The
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scale space approach appears to be the most promising, and while time did not per-

mit its implementation, it is an area of further research that appears very promising.

Certain degenerate viewing points of the object yield confusing sets of informa-
tion that can cause problems at the tactile end. Typically these can be seen by notic-
ing small structure and responding to it, yielding partial matches as discussed above.
However, the higher level reasoning modules are not developed to try to reason about
this.

Homogeneous objects were used with a purposeful lack of detail. However in
real world robotics, objects will have a geometric structure as well as visual structure

encompassing texture, reflectivity changes on the surface and noisy surface gra-

. dients. (think of your favorite mug with a design on its surface that will totally con-

fuse vision). Tactile sensing can help in this case since surface structure can be
sensed independent of printing on the structure. What is not clear is how to integrate

the vision to tell the tactile where to look on a noisy, partitioned image.

The method of moments is a simple and useful way to classify planar shapes. It
is especially useful in determining transformation axes, and it does this quite accu-
rately. It is less clear how the moment measures themselves change as objects are
slightly distorted. The two moment measures used, Moy and Myg+My, are fairly
stable but the other invariants that have been proposed (third order) did not appear to
be as stable. They appeared to fluctuate even though shapes matched the measures
used. There is a large body of literature on 2-D shape matching and techniques other

than those used here may give better results on a large database of objects.

The models used in this research are independent objects, modeled as separate

instances even though they may differ slightly in a dimension. A stronger model is
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one that specifies classes of objects that can be grouped by structure and uses sym-
bolic attributes for differentiating objects in the class, similar to ACRONYM objects.
The database used here was small enough to ignore the indexing problem. As the

number of objects grows, this becomes a serious problem.

9.8. FUTURE DIRECTIONS

There are a number of directions in which this research leads. This work has
shown the utility of active sensing to reason about and understand three dimensional
structure. The sensing that is done is done serially, first using vision and then touch
to create a hypothesis and then using touch to verify. More tactile feedback could be
used to help support or reject visual hypotheses. The vision is relied upon presently
to create regions of interest. The tactile could in fact verify that these regions really
are regions that have physical meaning before a detaiicd surface or feature trace is
attempted. The closing of contours could be done with tactile feedback also.
Further, vision could reevaluate what it knows about the image based on the tactile
discovery. Many vision algorithms show markedly improved performance when they
are given constraints on a scene, such as region being cylindri-cal or planar. The tac-
tile can only make the vision more robust as it determines three dimensional struc-

ture.

The data base of models includes single objects. Extending this to multiple
objects in a scene and articulated parts would be a useful extension. Both of these
ideas could be implemented with the coordinate frame method, where object relation-
ships are described in terms of relative frames with variables instead of precomputed

constants. These variables can be discovered using the same techniques on single
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objects, which again is identifying three dimensional structure.

The experiments showed that there are many primitives that can lead to recogni-

ton. In some cases the discovery of both features and surfaces allowed multiple

methods to calculate orientation and object structure. If multiple visual views could

be used, then combining this data should make recognition even more robust.

The part of this work that is the least well developed is the higher level reason-
ing about solid objects. This is clearly a must for robotics to succeed in the future.
It requires efforts in 1) building automatic 3-D models of objects that capture their
complexity and 2) relating the spatial information contained in the model to goals
and further sensing. This is a formidable task, but the techniques being developed in

A.L research are pointed at just such problem domains.

Another avenue is the implementation of more multiple sensor systems. The
benefit of many sensors is shown in this work, and there is no reason to stop at two.
The control problems become much larger however, and distributed processing tech-
niques will need to be implemented at the low level while reasoning from many

(perhaps conflicting) sources is needed at the high level.

The sensor used here was a single finger, and robots will need multiple fingers
to do grasping and manipulation. Extending this work to multiple fingers is possible.
One method would be to use the other fingers to try to stabilize the object during tac-
tile sensing; the objects used now are rigidly attached to the support surface. The
other would be to have multiple parallel traces implemented, for which there may be
psychological evidence showing that this is an effective human strategy also. No
attempt was made in this research to try to emulate human tactile processing. Vision

research has shown that it can be helpful to study working biological systems for
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insights into machine problems.

9.9. SUMMARY

This research has attempted to improve robotic performance in a real noisy
object domain using multiple sensing. Tactile sensing has been shown to be a useful
tool in object recognition. The use of multiple sensors has provided more robust and
accurate sensory data that can be combined into three dimensional primitives that
facilitate matching and an understanding of the underlying structure of the objects.
The ability to sense actively demands higher levels of control than with passive sen-
sors, including the ability to reason at a high level about object structure. This rea-
soning capability needs to be further developed and is a natural extension of this
' work, allowing tasks beyond recognition to be attempted in a multi-sensor ex}viron-

ment.




APPENDIX A

BICUBIC SPLINE SURFACES

1. INTRODUCTION

The surfaces that are used in modeling the objects are represented as parametric
bicubic surface patches. The integration of vision and touch to build surface descrip-
tions also uses this representation. Therefore it is instructive to explore this represen-
tation fﬁlly. Faux and Pratt [17], Foley and Van Dam [19] and Forrest [20] contain a
more detailed discussion of bicubic patches, and this appendix draws from these

references.

2. PARAMETRIC CURVES AND SURFACES

The parametric form of a space curve P(u) parameterized by u is:
P) = (x(u), y(u) , z(w)) (A.1)

This representation is not unique, as there are a number of different parameterizations

that yield the same curve. The tangent vector of a parametric curve Pis:

_ dx dy dz A2)
Pu(u) - (du ’ du y du) (
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For a surface, two parameters are needed. The parametric representation is:
Puy) = @@v), y@v), 2(4,v)) (A3)

The tangents in each of the parametric directions on the surface are:

oz

P,(uy) = (%z-, %’ 3u (A.4)
P(uy) = (—gf, 2 ,%) (AS)

"I'hc unit surface normal n(u,v) at a point on the surface is formed by taking the cross

product of the the tangents in each of the parametric directions:

oP _dP
x—

ou v
oP oP

D —

ou v

(A.6)

3. COONS’ PATCHES

The particular form of bicubic surface patch that is being used in this research
was originally studied by S.A. Coons and is known as a Coons’ patch. Coons’ for-
mulation of this type of surface patch was somewhat more general and the restricted
form of Coons’ patch used here is sometimes referred to as a tensor product, Carte-
sian product or Fcrguson‘surfacc. These patches have been used extensively in com-
puter graphics and computer aided desigh. The patches are constructive in that they
are built up from known data and are interpolants of sets of three dimensional data
defined on a rectangular parametric mesh. This gives them the advantage of axis

independence, which is important in both modeling and synthesizing these patches

from sensory data.
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3.1. LINEARLY INTERPOLATED PATCHES

The surface interpolation problem that is being considered here is to define a

mapping from the unit parametric square plane into a surface defined on R:

P: [0,1]x[0,1] — R3 (A7)

such that the mapping interpolates the data points specified. To create such a map-

ping, we choose four points

P©0,0), PQO,1) , P(1,0), P(1,1) (A.8)

which form the vertices of the patch and are referred to as the knot points (figure

A.1). These points are defined on the parametric grid

0Su,vsil

If we form line segments between adjacent knots as the bounding contours of

the patch, we can create an interpolated surface patch bounded by the line segments:

POy) , P(x,0) , P(1,v) , P(w,1) (A.9)

To interpolate the interior of this patch, we can linearly interpolate between the
curves on opposite sides of the patch; between P(0,v) and P(1,v) in the u direction
and similarly between P(u,0) and P(1,1) in the v direction. The equation of the sur-

face then becomes:
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Figure A.1. Parametric surface patch.
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Rl = Py) = P(0,0) (1-u) (1-v) + P(0,1) (1-u) (V)
+ P(1,0) @) 1-v) + P(1,1) () (v) . (A.10)

Substituting values for u , v verifies that the boundary curves (A.9) are in fact the
line segments between the knot points. This kind of a patch is referred to as a bil-

inear patch.

Having built a bilinear surface P(u,v) that interpolates the data points, we want
to know if it'is the only such surface. The answer is clearly no, as there are an infin-
ite number of surfaces that will interpolate the sparse data at the boundaries. In con-
structing other surfaces, we can relax some of the above restrictions to form more
complex surfaces. In particular, we need not require linear boundary curves. If we
know more boundary‘data th.an just the knot points, we can form two cubic polyno-
mial space curves P(u,0) and P(x,1) which interpolate the boundary between adjacent
knots in the u direction which can then be linearly interpolated in the v direction to

obtain:
R2 = Pu,y) = P0) (1-v) + P(u,l) (v). (A.1D)

If \;ve know the other two boundary curves, P(0,v) and P(1,v), we can similarly form

another surface:
R3 = P(u,y) = PO,v) (1-w) + P(1,v) (w). (A.12)

R2 and R3 form ruled surfaces as they are linear in one of the parametric direc-
tions. To form a surface that has nonlinear boundary curves on all boundaries we
can sum surfaces R2 and R3. However, substituting values of u and v reveals that

the knot points will not be interpolated correctly nor will the boundary curves (A.9)
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be correct. This is due to the fact that summing these two ruled surfaces includes the
corner points twice. To negate this effect, we can subtract out the unwanted terms

by subtracting surface R1 to create a new surface:
R4 = Puy) = R2+ R3 - Rl (A.13)
= P(,0) (1-v) + P(u,1) (¥)
+ PO,v) (1-u) + P(1,v) (w)
- P(0,0) (1-4) (1-v) - P(0,1) (I-u) (v)
- P(1,0) (u) (1-v) — P(1,1) () (v) . (A.14)

Substitution of u , v verifies that the knot points are correctly interpolated as are

the boundary curves. This surface can also be written in matrix-form as:

P(O,v) J|1-v
P(u,v)=[(1—u) u] P(1,v) + [P(u,O) P{u,1) v
P(0,0) P(O,1)||1-v
- [‘1‘“) "][P(I,O) P(l,l)”v] (A.13)

3.2. HERMITE INTERPOLATION

From the matrix representation we can see that u,(1-u),v,(1-v) are functions that
blend together the 4 defined boundary curves and are appropriately known as blend-
ing funcrions. The blending functions in (A.15) are linear and by removing this res-
triction we are able to build more complex interpolating surfaces. In particular, we
can specify that the blending functions be cubic polynomials, such that the knot

points are still interpolated. However, by specifying boundary curve information
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only, we will only be able to have adjacent patches exhibit positional or C° con-
tinuity. Our goal is to build composite surfaces composed of many adjacent patches
that have higher levels of continuity. To obtain C! or derivative continuity, we need
to specify boundary tangent information. We must specify the positional constraint
embodied in the boundary curve as well as a tangential constraint along the entire
boundary curve to form a smooth join. A simple way to do this is to use Hermitian
interpolation between the knot points to form the boundary curves and the boundary
tangent criteria. Hermitian interpolétion interpolates a cubic polynomial space curve
between two known points, given the points and the tangents to the curve at the two
points. If the curve between the two points is parameterized by 4, 0 < u < 1

then the interpolating curve P(u4) between two points P(0) and P(1) with tangents

P,(0) and P,(1) is:

Pw) = UM, G, (A.16)
1 0 0 O]|PWO
0 0 1 O]IPQY)

=[1““2“3] 3 3 -2 -1||p,© (A-17)
2 =21 1]ip, )

where M, is the hermite matrix and G, is the hermite geometry matrix. Substitution
of u=0 and u=1 shows that the endpoints and end tangents are correctly interpolated
by this curve. Extending this to two dimensions, we need to specify the four boun-
dary curves of each patch to insure positional continuity, and we also need to specify
the cross boundary tangents to insure a smooth C! join between patches. Across the
u direction boundary curves, P(x,0) and P(4,1) , we need to express the tangents in

the v direction and vice versa for the v direction boundary curves P(0,v) and P(1,v).
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Specifying these tangents can also be done by using hermite interpolation. At each
knot point we specify tangents in each of thé parametric directions to create the
boundary curves using the hermite method. To create the tangent criteria along the
boundary curves, we can again use the hermite method. To create the tangent criteria
along the boundary curve P(0,v) we must interpolate tangents in the u direction along
this curve. We know the u direction tangents at the endpoints, P,(0,0) and P,(0,1).
This gives us two of the four pieces that hermite interpolation requires. The other
two pieces are the cross derivatives at the knots. These can be thought of as the rate
of change of the tangent in the v direction with respect to u, P,, or the rate of
change of the u direction tangent with respect to v, P,,, which can be shown to be
equivalent [17]. The equation for a surface with these characteristics can be built
analogously to (A.13). Tﬁc_ equation simplifies below bccau;se the cu‘bic blending '

functions are the same functions that are used to create the cubic hermite boundary

curves.
Puyv) = UM, QML V (A.18)
1 0 00
2?5 5 5 2
2 =21 1

POO) PO P00 PO o 3 2[4
P(1,00 P(1,1) P,(1,00 P(L,D(lo 0 3 —2{|v
P,(0,0) P,©0,1) P00 P, OD[lo 1 -2 1][,2 (A-19)
L1>,‘(1,0) P(1,1) P,(1,0) P(1,)|[0 O -1 1 |}3
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Matrix Q above is a matrix of coefficients contained on the boundaries of the
patch. The upper left 2 x 2 partition of Q is a matrix of the knot points. The upper
right and lower left 2 x 2 partitions are the tangents at the knot points in each of the
parametric directions. The lower right 2 x 2 partition contains the cross derivatives,
known as the twist vectors, at each of the knot points. In building a composite sur-
face with many adjoining patches, we can insure C' continuity across these patches

by imposing the following constraints on the coefficient matrices:

Given patch P1(u,v), with boundary curve P1(1,v), and an adjoining patch
P2(u,v), with shared boundary curve P2(0,v), the coefficient matrices must con-

form to the following:

- - = - dq10 911 4912 4913
910 911 912 913

or=1_ _ _ _|@= kqio kq31 kq3z kq33

930 931 932 933 - - - _

(A.20)

It can be seen that this reproduces the boundary curves on each patch and that
the tangents are maintained also across the join. The constant k in (A.20) is allowed
because the actual tangents are ratios of the parametric tangents, and the constant
drops out when taking these ratios. Similarly, for patches joined along a u direction
curve, we can replicate columns of the matrices to form a smooth join. In this casé,

for surface joined along P1(u,1) and P2(u,0), the constraint is:
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- 901 ~ 903 do1 — k403 ]
- qu - 4913 qu — kqi3 -

Q1 = 921 — 9 02 = 921 — kan - A2D)
= 951~ 93] 71~ kqs3 g

3.3. CURVATURE CONTINUOUS PATCHES

The patches above are joined with C! continuity. We would like to create
patches that have C2 or curvature continuity across their joins. In one dimension, we
can create curvature continuous composite curves from a set of points using the
method of cubic splines. Splines are functions that minimize the strain energy along
the curve. They are historically called splines from the long thin strips that early
builders used to approximate curves through a set of points. To create curvature con-
tinuous composite curves we will use hermite interpolation between the sets of
points, but we will specify positional, first derivative and second derivative continuity
conditions at the adjacent knot points. For a cubic polynomial curve, we need 4 con-
straints to compute the 4 coefficients. Given a set of N points, we can define N-1
spans between each pair of adjacent points. If we fit a cubic polynomial to each
span, we need a total of 4 * (N-1) constraints. Each of the N-1 curves has 2 posi-
tional cohstraints, for a total of 2 *(N-1) constraints. If we require continuity of first
derivatives at the curve joins, that yields N-2 further constraints. Requiring second
derivative continuity at the joins (which makes the curves curvature continuous)

yields N-2 constraints also. There remain

4x(N-1) — 2x(N-1) ~ (N-2) - (N-2) = 2 (A.22)
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two constraints before the set of composite curves is completely specified. Possible
constraints that may be added are knowledge of the first or second derivatives at the
first and last of the knots. If we can add these two extra constraints, then the compo-
site curves are completely specified. Extending this idea to two dimensions, we start
with a rectangular grid of knotpoints, P(m,n) m=0,1,...M n=0,1,...,N , that form M
x N) patches on the grid. We can create composite spline curves in each of the
parametric directions such that the curves joining the knot points are curvature con-
tinuous. The extra conditions we need to specify are the tangents at each of the end-
points of the composite splines on the grid. Since we are also requiring the (M x N)
patches to be curvature continuous across the joins, we need to interpolate the cross
boundary tangent curves using the splining method. The two extra conditions
imposed for this constraint are the cross derivatives (twists) at the corners of the knot
grid. The information needed to create a series of curvature continuous patches can

be summarized graphically as:

P,(ON) P,ON) P3N
PON) PON) P(N)
P,(0N-1) P(ON-1) P(1N-1)

P,(M,N) P, (MN)
PMN) P,MN)
P(M,N-1) P, (MN-1)

P00 P00 PO - - - PMO) PM0)
PW(O’O) PV(O,O) Pv(l,O) - - = PV(M:O) Puv(M’O)

The algorithm that computes these patches from the above data is summarized in

Faux and Pratt, pp. 224-225 [17].
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