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ABSTRACT 

A robotic system for object recognition is described that uses both active exploratory 

tactile sensing and passive stereo vision. The complementary nature of these sensing 

modalities allows the system to discover the underlying three dimensional structure of 

the objects to be recognized. This structure is embodied in rich, hierarchicaL 

viewpoint independent 3-D models of the objects which include curved surfaces, con

cavities and holes. The vision processing provides sparse 3-D data about regions of 

interest that are then actively explored by the tactile sensor which is mounted on the 

end of a six degree of freedom manipulator. A robust hierarchical procedure has 

been developed to integrate the visual and tactile data into accurate three dimensional 

surface and feature primitives. This integration of vision and touch provides 

geometric measures of the surfaces and features that are used in a matching phase to 

find model objects that are consistent with the sensory data. Methods for verification 

of the hypothesis are presented, including the sensing of visually occluded areas with 

the tactile sensor. A number of experiments have been performed using real sensors 

and real, noisy data to demonstrate the utility of these methods and the ability of 

such a system to recognize objects that would be difficult for a system using vision 

alone. 
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CHAPTER 1 

INTRODUCTION 

1.1. OVERVIEW 

This dissertation is an attempt to improve robotic system performance for the 

task of object recognition. The central idea of this research is that the use of active 

tactile sensory feedback in conjunction with traditional machine vision processing 

will allow a robotic system to discover the underlying three dimensional structure of 

the objects to be recognized. This structure is embodied in rich, hierarchical, 

viewpoint independent 3-D models of the objects which include curved surfaces, con

cavities and holes. The vision processing provides sparse 3-D data about regions of 

interest that are then actively explored by the tactile sensor. A robust hierarchical 

procedure has been developed to integrate the visual and tactile data into accurate 

three dimensional surface and feature primitives. This integration of vision and touch 

provides geometric measures of the surfaces and features that are used in a matching 

phase to fmd model objects that are consistent with the sensory data. Finally, 

methods for verification of the hypothesis are presented, including the sensing of 

visually occluded areas with the tactile sensor. A number of experiments have been 

performed using real sensors and real, noisy data to demonstrate the utility of these 
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methods and the ability of such a system to recognize objects that would be difficult 

for a system using vision alone. 

This chapter outlines the present state of robotic performance for object recogni

tion. A number of improvements in robotic performance are discussed which have 

been incorporated into the design of the system described here. An overview of the 

system hardware and software is included with succeeding chapters describing the 

system and its performance in detail. 

1.2. THE PROMISE OF ROBOTICS 

Robots have fascinated man for many years. The idea of an "intelligent" 

machine that can do tasks similar to humans has been proposed by science fiction 

writers and futurists and embodied in movies and toys. Over the last ten years, great 

strides have been made towards this goal. The decreasing cost of computing power 

coupled with the drive for higher productivity has led to the introduction of many 

robots onto factory floors. There has also been an increase in the publicity and 

expectations about the capabilities of these machines, which I call the promise of 

robotics. The promise of robotics is twofold: to create machines that can perform 

tasks that are currently infeasible for humans and to perform tasks that humans 

presently perform with greater accuracy, lower cost and resulting higher productivity. 

The class of tasks that robots are well suited for includes dangerous tasks in 

unpleasant environments (undersea, outer space), boring and repetitive tasks that 

humans fmd unstimulating, and tasks requiring high precision and accuracy. 

However, the promise of robotics has yet to be fulfilled. Tasks which we as 

humans fmd simple and trivial are complex and difficult for a robot to perform. A 
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human can fmd an arbitrary object visually in a cluttered environment and proceed to 

grasp the object and move it at will, "avoiding obstacles along the way and not 

damaging the obstacle if it is fragile. This task is beyond the capability of most 

robots in use today. The majority of robot tasks currently being performed consist of 

pick and place type operations in fully known and constrained environments, where 

total knowledge of the relevant objects to be manipulated is assumed. These robots 

have no way of dealing with uncertainty and in fact are subject to failure should the 

environment change in any way. To become more flexible and useful, robotic sys

tems 1 need to be able to adapt to different environments and be able to reason about 

their environments in a precise and controlled way. Without this reasoning ability, 

robots simply are nothing more than fancy machine tools, hard wired for a specific 

application but certainly not flexible or adaptable. 

1.3. PRESENT DAY ROBOTICS 

Most robots are used in industrial applications. Typical robotic tasks are pick 

and place movements, paint spraying, welding and generalized handling tasks. The 

majority of these robots are pretaught a series of movements by humans that 

correspond to the task at hand. The movements assume no change in the real work 

environment from the teaching sequences. Elaborate schemes are used [0 recreate 

this static environment In handling operations, jigs and bowl feeders are used to 

insure that objects to be manipulated are always presented in the same location and 

orientation as in the teaching sequence. Many machine vision systems require 

1 The term robotic system is used to emphasize the system nature of robots. Typically. 
more than one computer and computing environment is needed for a complex robotic task. 
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special lighting and orientation of known objects to work successfully. Systems such 

as these are doomed if the object arrives in a different position or orientation or if the 

object is defective or a different object appears. 

IA. ThtPROVING ROBOTIC SYSTEM PERFORMAI'lCE 

There are many reasons why robot perfonnance is well below humans. One of 

the most obvious ones is that robotic sensors are nowhere near as capable as human 

sensors. A small error in a digital image can have alarming consequences; human 

vision, on the other hand, is extremely robust, able to tolerate noise, distortion and 

changes in illumination, reflectance and viewing angle. Robots are controlled by 

deterministic computer programs that are not able to anticipate and deal with the 

wide range of new and unforeseen situations that may be encountered. Robots have 

difficulty recognizing error situations let alone coping with them. The knowledge 

base of a robot is usually nothing more than a series of labeled points, precluding 

even rudimentary reasoning ability about the objects and tasks in its environment 

Robotic systems need to progress beyond the limited capabilities described 

above. The promise of robotics means that robots can work in unconstrained environ

ments. Robots need to be able to operate outside of a specific assembly line; they 

need to be able to function in the home and office as well, environments that cannot 

be as tightly constrained as a factory. As tasks become more complex, a robotic sys

tem needs to be able to understand a changing dynamic world, and to understand it 

through a mixture of powerful sensory processing and high level reasoning about the 

world. Some of the complex tasks robots are being asked to do are object recogni

tion, grasping, manipUlation and collision avoidance. Much research is presently 
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being directed at discovering the underlying principles that guide humans in these 

tasks so we may improve robotic performance. While many of the specifics for each 

task are still not well understood, there are many ways in which performance can be 

improved. The intent of this research is to explore the task of object recognition and 

attempt to implement these improvements into a system to recognize common objects 

found in a kitchen domain such as plates, bowls, mugs, pitchers and utensils, extend

ing the robot's workplace to the home environment 

1.4.1. SENSORY FEEDBACK 

The first proposed improvement in robotic performance is to include sensory 

feedback. Many robotic tasks are attempted without sensing, assuming an absolute 

world model that never changes. For example, in many pick and place operations, the 

objects are always in a previously known absolute position and orientation. This 

approach offers little flexibility. Robotic systems need the ability to use sensory 

feedback to understand their environment Work environments are not static and 

cannot always be adequately constrained. There is much uncertainty in the world, 

and we as humans are equipped with powerful sensors to deal with this uncertainty. 

Robots need to have this ability also. Incorporating sensory feedback into robotic 

systems allows nondeterrninism to creep into the detenninistic control of a robot 

There is at present much work going on in the area of sensor design for robotics. 

Range fmders, tactile sensors, force/torque sensors, and other sensors are actively 

being developed. The challenge to the robotic system builder is to incorporate these 

sensors into a system and to make use of the data provided by them. The. sensors 

used in this research are passive stereo vision and active, exploratory tactile sensing. 
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The use of an active, exploratory sensor demands a degree of control not found in 

passive sensors. The sensory feedback from the touch sensor must be used to guide 

the sensor over the surfaces of the object to be recognized- Chapter 5 discusses the 

use of such an active sensor in detail, describing algorithms for exploring surfaces, 

holes and cavities. 

1.4.2. INTEGRATION OF MULTIPLE SENSORS 

Much of the sensor related work in robotics has tried to use a single sensor to 

detennine environmental properties [1, 11, 18,24,30,51,50,63,69]. This can be diffi

cult as not all sensors are able to determine many of the properties of the environ

ment that are deemed important For example, a vision system using 2-D projections 

has difficulty determining 3-D shape. The approach taken here is to use multiple 

sensors. Multiple sensors can be used in a complementary fashion to extract more 

information from an environment than a single sensor [64,47]. A common strategy 

in computer vision is to try to use a single sensor to detennine shape properties. 

Many different "shape" operators have been defmed by various researchers trying to 

isolate separate parts of the visual system that produce depth and surface information. 

Examples of these are shape from texture [37,6], shape from shading [32], shape 

from contour [67,72,31] and shape from stereo [44,23]. A potentially promising 

idea is to use all of these separate shape operators together in a system that will 

integrate their results. Unfortunately, the operators all have different sets of con

straints on the object's structure, reflectance, and illumination. The integration of 

these many visual operators is still not well understood. A much more promising 

approach is to supplement the vision information with other sensory inputs that 
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directly measure the properties of shape we desire. The strategy of trying to obtain 

enough shape information from a single sensor may fail due to the limitations of tha:t 

sensor as is typically the case with machine vision. If this vision sensing can be sup

plemented with tactile information that directly measures shape, more robust and 

error free descriptions of object structure can result 

If multiple sensors are to be used, then the problem of control and coordination 

arises. It is difficult enough at present to control and coordinate the activities of a 

single sensor system, let alone multiple sensors. Each sensor is a distributed system 

with different bandwidth, resolution, accuracy and response time that must be 

integrated into a coherent system. Multiple sensing also raises the question of stra

tegies for intelligent use of powerful sensors. With many ways to obtain data, some 

may be preferable to others and yield better results. Defining these sensing strategies 

is an open problem. Chapter 7 discusses strategies that are used in this research and 

also proposes a rule based approach to strategy formulation that will allow the 

knowledge base to grow incrementally as new sensors with new capabilities are 

added to the system. 

1.4.3. COMPLEX WORLD MODELS 

If robots are to use sensory data, they have to know how this data relates to the 

perceived environment. Sensory data is useful only up to a point. Higher level 

knowledge about the world needs to be invoked to put the lower level sensory data 

into context. Model based object recognition is a paradigm that allows higher level 

knowledge about a domain to be encoded and assist the recognition process. Recog

nition has two components, a data driven or bottom up component that supplies low 
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level sensing primitives and a high level that utilizes these primitives to understand a 

scene. At some point, low level processing is too lacking in knowledge of what is 

being perceived to reliably continue the recognition process. It is at this point that 

higher level knowledge about the domain can be effectively utilized to put the lower 

level infonnation into context. In object recognition systems, this infonnation is usu

ally contained in models that are used to relate the observables to the actual objects. 

The models are abstractions of the real physical objects that try to encode important 

information about the object in relation to the primitives and sensing environment 

being used. In some sense, the model information must be computable from the sen

sors. It is not enough to build descriptions of objects for realistic display; the models 

must contain criteria that are easily accessible to facilitate efficient matching of the 

model to a sensed object. 

Chapter 2 contains a description of a hierarchical surface and feature based 

model for solid objects that is well suited to the object recognition task. The model 

encodes rich descriptions of the geometry and topology of the objects to be recog

nized and is organized in a hierarchical manner to allow quick and easy access to its 

information. It is also structured so that matching between model and sensed obser

vations can be done on multiple levels depending upon the requirements of the recog

nition process. 

1.4.4. REASONING ABOUT THE WORLD 

It is still not enough to have complex models and sensors that are robust. Rea

soning about a complex world is necessary to be able to understand spatial relation

ships and geometry. This reasoning can be extremely difficult, especially if many 

- -.:------
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sensors and complex models are involved. Robots cannot yet possess the deep rea

soning shown by humans, which is also not well understood. However, simple rea

soning about spatial and geometric relationships can help. An important component 

of this reasoning is to allow it to be modified easily. As new sensors and models are 

added, the reasoning process should be extensible to include these. This reasoning 

ability is perhaps the most difficult of the improvements to effect Chapter 7 

discusses the methods that are used to match the low level sensory data with the 

objects in the model data base and discusses approaches to verification sensing that 

entail high level reasoning about the object's structure encoded in the models. 

1.5. SYSTEM DESCRIPTION 

This section describes the object recognition system's components and the sens

ing environment being used. The objects to be recognized are common kitchen 

items; mugs, plates, bowls, pitchers, and utensils. The objects are planar as well as 

volumetric, contain holes and have concave and convex surfaces. These are fairly 

complex objects which test the modeling and recognition abilities of most existing 

systems. The objects are homogeneous in color, with no discernible textures. The 

lack of surface detail on these objects poses serious problems for many visual recog

nition systems, since there is a lack of potential features that can be used for match

ing and depth analysis. Chapter 8 reports results from experiments that were per

fonned to test the ability of vision and touch together to succeed in recognizing these 

objects. 

The experimental hardware is shown in figure 1.1. The objects to be recognized 

are rigidly placed on the worktable and imaged by a pair of CCD cameras. The 
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tactile sensor is mounted on a 6 degree of freedom PUNIA manipulator that receives 

feedback from the tactile sensor. Figure 1.2 is an overview of the software of the 

system. It consists of five distinct modules: the control module, the vision module, 

the tactile module, the model data base and the matcher. 

The control module is the overall supervisor of the recognition process. The 

control module's task is to perform the recognition cycle outlined in figure 1.3. It is 

instructive to keep this cycle in mind as the other modules in the system are 

described. It defines the control flow of the sensing and higher level reasoning tak

ing place in the system. Currently, step 5 of the cycle is not fully implemented. 

Chapter 7 discusses approaches to step 5 and chapter 8 contains an experiment that 

uses verification sensing to sense visually occluded areas. 

1.6. SUMMARY 

The use of multiple senso~ in a robotics environment to recognize objects 

entails the integration of many different technologies and processes. The whole area 

of robotics research is interdisciplinary in nature, with computer scientists, mechani

cal engineers, electrical engineers and systems engineers bringing their different 

expertise to the problem. The research reported in this dissertation is in this vein. It 

represents the integration of many different ideas and technologies into a working 

system for object recognition. Some of the ideas are new and some of them are old 

but all of them are being used in a novel way in this system. The progress that this 

dissertation reports in the recognition problem represents a merging of rapidly 

developing technology into a useful system that is synergistic in nature. 
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1. The control module asks the vision system to image the scene 
and analyze all identifiable regions of interest 

2. The control module asks the tactile module to explore each 
region identified from vision. 

3. The results of the tactile and visual sensing are 
integrated into surface and feature descriptions. 

4. The surface and feature descriptions are matched against 
the model data base, trying to invoke a model consistent 
with the sensory information. 

5. The invoked model is verified by further sensing to see if 
it is correct. 

Figure 1.3. Recognition Cycle. 

The goal of this research is to make robots more flexible and adaptable, able to 

cope with ever changing environments. This research extends the present capabilities 

of robotic systems and moves them closer to elementary reasoning about their 

environment The main contributions of this research are an understanding of the 

key problems that need to be solved to make robots smarter, and a set of solutions 

for these problems in the particular task of object recognition. 

Robotics is a new and changing discipline. Basic research in many areas is still 

underway as we try to increase our understanding of how machines may be used for 

complex tasks. There is an ever growing body of theory pertaining to robotics, 

theory that needs to be put to use in real environments. Robotics has reached the 

stage where concrete examples of what robots can and cannot do are needed. There 

is a continuing need for a theoretical investigation of some of the difficult problems 

in robotic perception. However, it is also time for experimenting and implementing 



- 13 -

techniques in real, noisy, and unconstrained environments. There is at present a large 

disparity between what is possible in a simulated robotics environment and the actual 

3-D environment a robot will work in. This dissertation is an attempt to bridge the 

gap between theoretical robotics and working systems that perform object recognition 

tasks in noisy, unconstrained environments. 



CHAPTER 2 

MODEL DATABASE 

2.1. INTRODUCfION 

The model data base encodes the high level knowledge about the objects which 

is needed for recognition. The global structure of the objects which is encoded in the 

models is used to understand and place in context the low level sensing information. 

The design of the object models was influenced both by the object domain and the 

task of object recognition. The object domain is standard kitchen items that contain 

curved surfaces, holes and cavities, adding a degree of complexity to standard model

ing techniques. The task of recognition employing sensors that see and touch sur

faces argues for a surface based modeling approach. The complexity of the objects 

allows an explicit designation of features such as holes and cavities which have pro

ven to be powerful matching tools. The models are organized in a hierarchical 

manner which allows matching to proceed at different levels of detail, allowing for 

coarse or fme matching depending upon the object's complexity and the resolution of 

the sensing devices. The models are viewpoint independent and contain relational 

information that further constrains matches between sensed and model objects. 

- 14 -
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This chapter reviews previous efforts in 3-D modeling and describes criteria for 

object recognition models. The models and the modeling procedure are described in 

detail along with the techniques used to compute model attributes. 

2.2. OBJECf MODELS FOR RECOGNITION 

Computer graphics, computer aided design (CAD) and computer vision are three 

areas that have made extensive use of object models. Many of the techniques are 

shared among these disciplines; however, the requirements of each modeling task 

tend to be quite different. Computer graphics is mainly concerned with the realistic 

display of objects from arbitrary viewpoints and under a variety of lighting condi

tions. The concern is for the fInal visual result rather than the underlying model's 

internal structure. The main goal of CAD systems is synthesis, to adequately create 

an object for design and manufacturing purposes. Therefore, it tends to be 

volumetric based as an aid to the designer. Typical of this are Constructive Solid 

Geometry (CSG) systems such as PADL [56] and GMSOLID [12]. These systems 

are used to design three dimensional objects by combining sets of solid primitives 

(cubes, cylinders, wedges etc.) with boolean operators. Computer vision, on the other 

hand, tries to analyze objects for recognition. What is seen is a collection of sur

faces, not necessarily a set of intersecting volumetric entities. A major goal in robot

ics is to automate the entire design and manufacturing process within one integrated 

system [28]. This implies the need for either an object model data base that is used 

for both design and recognition, or a set of robust and efficient transformations 

between the different representations used. At present, no single model suffices for 

both tasks. 
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Many primitives have been suggested and used for modeling three dimensional 

objects. Badler and Bajcsy [4] and Requicha [56] provide good overviews of the dif-

ferent representation schemes .used for three dimensional objects. The choice of 

primitive for a model is based upon a careful analysis of the task requirements and 

object domain. No single representation appears to be able to adequately model all 

objects in all task domains. 

2.2.1. IMAGE SPACE MODELS 

Most recognition systems depend on understanding an object in terms of its 

geometry and topology and a number of models have been built [62,15,50,46,11] 

that include geometric, topological and relational information about the objects. The 
. . 

richer the models, the more basis for discrimination among the different objects. 

Vision systems are faced with a choice of trying to match their sensory data (two 

dimensional projections) with either a 2-D model or a 3-D model. Image space sys

tems are recognition systems that try to do recognition on image properties (two 

dimensional projective properties) rather than three dimensional properties. These 

systems are not viewpoint independent but depend on a number of stored views of 

image properties. Recognition occurs when one of these characteristic views is 

recognized, based on matching within image space. Examples of this are the work of 

Oshima and Shirai [49,50] who used image space predictions about polyhedra and 

cylinders to do recognition. Multiple learning views are computed from an object 

that are stored for later use. Image space curves and regions are then identified and 
. 

matched with one of these views. Their system also tried to recognize multiple 

objects in a scene. Fisher [18] used an approach where certain weak constraints 
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about a surface's images over different viewpoints were computed to aid in determin

ing the object's position and orientation. York [75] used bicubic spline surfaces as a 

modeling primitive and tried to compute two dimensional projective features to be 

used for instantiating a modeL 

Image space matching is not powerful because it loses the inherent sense of the 

three dimensional object to be recognized. If we are trying to recognize underlying 

structure, then it makes sense to model this explicitly. The projective space approach 

fails to maintain the consistent structure of an object across the many possible visual 

interpretations. The question of how many "characteristic views" of an object are 

sufficient is open, but clearly the answer is many. Establishing a metric on this kind 

of matching is difficult, especially if the sensed view is in between two stored views. 

Two dimensional projective invariants are weak, and are not robust enough to sup

port consistent matching over all viewpoints. Koenderink [39] has developed the idea 

of an aspect graph that relates object geometry to viewpoint but the creation of such 

a graph is difficult for complex objects. What is needed is a true three dimensional 

approach to modeling and matching. using the much stronger class of three dimen

sional invariants. 

2.2.2. THREE DIMENSIONAL MODELS 

The systems that use three space matching arC viewpoint independent in that 

matching is based upon three dimensional geometric, topological and relational pro

perties expressed in the model. This requires computing a transformation from the 

sensed world coordinate system to the model coordinate system. This transformation 

can be viewed as a matrix operation with 6 degrees of freedom if the model and the 
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imaged object are identical in size and rigid. These 6 degrees of freedom are three 

translational degrees to bring the origin of the model coordinate system into registra

tion with the sensed coordinate system and an additional 3 degrees representing rota

tions around each of the three axes in space. These can be reduced further if the 

object is known to have a unique upright position, in which case 2 degrees of free

dom are no longer required and a simple rotation about an upright axis is required. 

If scaled models are being used. then three scaling factors may also have to be com

puted. 

Roberts [57] created one of the fIrst model representations for vision by model

ing blocks world objects with a surface, vertex, edge modeL Later, as researchers 

explored shape classification the generalized. cylinder or cone [1,46] was used as a 

primitive. ACRONYM [15] is the most complete example of this kind of system. 

ACRONYM uses generalized cylinders to model objects as volumetric entities. The 

model contains a powerful constraint maintenance system that allows dimensions to 

be represented as ranges, helping to model generic objects. The reasoning is sym

bolic rather than numeric and this also adds to the power of the system. By carefully 

combining constraints, false hypotheses are culled and what is left are consistent 

interpretations. The model is viewpoint independent and uses the three dimensional 

structure of the object for matching. Input to ACRONYM is an aerial image of an 

airfield with the task recognition of airplanes. The model contains slots that are filled 

as generalized cylinders are identifIed, with occlusion tests to make sure a surface 

that is postulated as visible is not occluded. VerifIcation is done by filling slots for a 

model and reaching a consistent set of postulated cylinders. 
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Shapiro and Haralick [62] have proposed a rich world model of a complex man 

made object. This model is to be used in conjunction with vision and tactile sensors 

to do inspection tasks. While the model is rich and encodes large amounts of infor

mation about the object, it is not clear how to efficiently navigate through this 

hierarchical model There is a cost in using extremely complicated and complete 

geometric models. At some point, algorithms need to be written to ask questions of 

a geometric and relational nature about these models. As the complexity of the 

model grows, with alternative representations, the ability to efficiently and accurately 

compute these algorithms declines. 

2.3. CRITERIA FOR A RECOGNITION MODEL 

As the previous section suggests, there is a wide range of primitives and organi- . 

zations in three dimensional recognition models. Because no one model is neces

sarily best, it is important to establish good criteria in deciding upon the structure of 

an object recognition model The following criteria have been established and are 

the basis for the design of the object models used in this research. 

2.3.1. COMPUTABILITY FROM SENSORS 

A model must be in some way computable from the sensory information pro

vided by the low level sensors. If the model primitives are very different from the 

sensory information, then transformations which may not be infonnation preserving 

are necessary. These transformations also may make the recognition process slow 

and inefficient A better situation is where the model primitives are directly related 

to the low level sensing primitives. 
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2.3.2. PRESERVING STRUCTURE AND RELATIONS 

Models of complex objects need to be broken down into manageable parts, and 

maintaining relationships between these parts in the model is important In the 

matching process, relational information becomes a powerful constraint [63,15,46]. 

As the object is decomposed, it should retain its "natural" segmentation. This is 

important in establishing partial matches of an object 

2.3.3. EXPLICIT SPECIFICATION OF FEATURES 

Feature based matching has been a useful paradigm in recognition tasks. If 

features of objects are computable, then they need to be modeled explicitly as an aid 

in the recognition process. The more features that are modeled, the better the 

chances of a correct interpretation. 

2.3.4. ABILITY TO MODEL CURVED SURFACES 

Some domains may be constrained enough to allow blocks world polyhedral 

models or simple cylindrical objects; however, most domains need the ability to 

model curved surface objects. The models must be rich enough to handle doubly 

curved surfaces as well as cylindrical and planar surfaces. This complexity precludes 

many primitives, particularly polygonal networks which have ·simple computational 

properties but become difficult to work with as the number of faces increases. 
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2.3.5. MODELING EASE 

Very rich, complicated models of objects are desired. However, unless these 

models can be built using a simple, efficient and accurate procedure, it may be prohi

bitive to build large data bases of objects. Modeling is done once, so there is an 

acceptable amount of effort that can be expended in the modeling effort. However, 

as designs change and different versions of an object are created, incremental 

changes are desired, not a new modeling effort. If models are simple and easy to 

build, more complexity can be included in them and used for recognition. 

2.3.6. ATIRIBUTES EASILY COMPUTED 

Whatever representation is used, it is important that major geometric and topo

logical measures can be easily and accurately computed. For surfaces, this means 

measures such as area. surface normal and curvature. For holes and cavities this 

means axes, boundary curves and cross sections. Analytical surface representations 

such as bicubic surfaces are well suited for computing these measures. 

2.4. A HIERARCHICAL MODEL DATA BASE 

The criteria discussed above has been used to build a set of models of objects 

for recognition tasks. Objects arc modeled as collections of surfaces, features and 

relations, organized into four distinct hierarchic levels. A hierarchic model allows us 

to do matching on many different levels, providing support or inhibition for a match 

from lower and higher levels. It also allows us to separate the low level or bottom 

up kinds of sensing from the top down or knowledge driven sensing. 
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The four levels of the model are the object level, the component/feature level, 

the surface level, and the patch level. The basic primitive that is used is the bicubic 

surface patch whose properties (discussed below) are well suited to the criteria esta

blished above. Features such as holes and cavities which are prevalent in the object 

domain are explicitly modeled as is relational information between the different parts 

of the object that are modeled. Figure 2.1 shows the hierarchical model structure for 

a coffee mug, outlining the decomposition and structure of the models. The details 

of the model are described below. 

2.4.1. OBJECT LEVEL 

The top level of the hierarchy is composed of a list of all object nodes in the 

data base. An object node corresponds to an instance of a single rigid object. Asso

ciated with this node is a list of all the components (subparts) and features of this 

object which make up the next level of the hierarchy. For gross shape classification, 

a bounding box volumetric description of the object is included. The bounding box 

is a rectangular parallelepiped whose size is determined by the maximum extents of 

the object in the X, Y and Z directions of the model coordinate system. A complex

ity attribute is also included for each object. This is a measure of the number of 

features and components that comprise an object and it is used by the matching rules 

to distinguish competing matches. 
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2.4.2. COMPONENTIFEATURE LEVEL 

The next level of the hierarchy contains two independent sets of nodes. The 

first set is the components (subparts) that comprise the surfaces of the object The 

second set are the features (hole and cavities) that are used in recognition of the 

object Each of these nodes is modeled differently, but they are given equal pre

cedence in the hierarchy. They are described in detail below. 

2.4.2.1. COMPONENTS 

Each object consists of a number of component (subpart) nodes that are the 

result of a functional and geometric decomposition of an object The components of 

a coffee mug are the body of the mug, the bottom of the mug, and the handle. A 

teapot consists of a body, bottom, spout, handle and lid. They are the major subdivi

sions of an object, able to be recognized both geometrically and functionally. Each 

component has an attribute list consisting of its bounding box, surface area, and 

priority. The priority field is an aid for recognition in which the components are 

ordered as to their likelihood of being sensed. In the matching phase, there may be 

no way to distinguish between two local matches of sensed and model components. 

However, if priorities are included, then we have a useful way of showing a prefer

ence for one match over another. High priorities are assigned large components or 

isolated components in space that protrude (handles, spouts). The protruding parts 

may show up as outliers from the vision analysis. Obscured components, such as a 

coffee mug bottom when in a nonnal pose, are assigned lower priorities. The prior

ity is an attempt to aid the matching probabilistically. If the object is in a regular 

pose, then certain parts of the object are more prominent which can aid the matching 
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process. Each component node contains. a list of one or more surfaces that make up 

this functional component and that constitute ~e next level of the hierarchy. 

The subdivision of an object by function as well as geometry is important In 

some sense what determines a coffee mug is that it holds a hot liquid as well as hav

ing some familiar geometric shape. While no explicit attempt has been made -here 'to 

exploit the semantic structure of objects, the model maintains a node level in the 

hierarchy should this be attempted. Semantic attributes as well can be hung off this 

node in the future to try to many the geometric based approach with the "natural" 

segmentation so familiar to human beings. In most cases, the objects of the data 

base have a "natural" segmentation that corresponds directly with the geometry of 

the object As more complex objects are modeled, this blend of functional and 

geometric segmentation may not be as precise. 

2.4.2.2. FEATURES 

Rock [58] has shown that features are important m recognition tasks for 

humans. If features can be recognized by sensing and matched against model 

features, robust recognition is possible. The features modeled in the database are 

holes and cavities. Holes are modeled as right cylinders with constant arbitrary cross 

section occupying a negative volume. Holes can be thought of as having an 

approach axis which is perpendicular to the hole's planar cross section. Modeling 

holes as a negative volumetric entity has implications in matching. Volumetric ele

ments have an object centered coordinate system that contains an invariant set of 

orthogonal axes (inertial axes). If the sensors can discover these axes, a transforma

tion between model and world coordinates is defined which is a requirement of 
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viewpoint independent matc~g. Each hole node contains a coordinate frame that 

defmes the hole. This frame contains a set of orthogonal axes which are the basis 

vectors for the frame. The hole coordinate frame is defmed by the homogeneous 

matrix H: 

Pu: P2:x P3J: Cx 

Ply P 2y P 3y Cy 
H = 

Plz P2z P 3z Cz 

0 0 0 1 

PI is the axis of maximum inertia of the hole's planar cross section. 

P2 is the axis of minimum inertia of the hole's planar cross section. 

P3 is the normal to the hole's planar cross section. 

C is the centroid of the hole's planar cross section. 

(2.1) 

Besides the coordinate frame, each feature has a set of moments of order 2 that are 

used for matching. The computation of these moments is described in section 2.8. 

Cavities are features that are similar to holes but may only be entered from one 

direction while holes can be entered from either end along their axis. An example is 

the well of the coffee mug where the liquid is poured. Cavities are modeled simi

larly to holes with a defming coordinate frame and moment set defmed by the planar 

cross section of the cavity's opening. Cavities have the additional attribute of depth, 

which is the distance along the cavity's approach axis from the cavity's opening to 

the surface below. 
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2.4.3. SURFACE LEVEL 

The surface level consists of surface nodes that embody the constituent surfaces 

of a component of the object The objects are modeled as collections of surfaces. 

Each surface contains as attributes its bounding box, surface area, a flag indicating 

whether the surface is closed or not and a symbolic description of the surface as 

either planar, cylindrical or curved. For planar surfaces, a partial coordinate frame is 

described which consists of the centroid of the plane and the plane's outward facing 

unit nonnal vector. For a cylinder, the partial frame consists of the cylinder's axis. 

The object's surfaces are decomposed according to continuity constraints. Each sur

face is a smooth entity containing no surface discontinuities, and contains a list of the 

actual surface patches that comprise it 

The particular form of bicubic surface patch that is being used in this research 

was originally studied by S.A. Coons and is known as a Coons' patch. Appendix A 

contains ~ complete description of this primitive and it is discussed in detail in Faux 

and Pratt [17]. These patches have been used extensively in computer graphics and 

computer aided design. The patches are constructive in that they are built up from 

known data and are interpolants of sets of three dimensional data defined on a rec

tangular parametric mesh. This gives them the advantage of axis independence, 

which is important in both modeling and synthesizing these patches from sensory 

data. Being interpolating patches, they are able to be built from sparse data which 

aids the modeling process. The most important property possessed by these patches 

is their ability to form composite surfaces with C2 (curvature continuous) continuity. 

The object domain contains many curved surfaces which are difficult or impossible to 

model using polygonal networks or quadric surfaces. A bicubic patch is the lowest 
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order patch that can contain twisted space curves. on its boundaries. A complex 

smooth surface may be modeled as collections of bicubic patches that maintain C2 

continuity. In the models, each surface node contains a list of the bicubic patches 

which comprises the composite surface. 

2.4.4. PATCH LEVEL 

Each surface is a smooth entity represented by a grid of bicubic spline surfaces 

that retain C2 continuity on the composite suiface. Each patch contains its parametric 

description as well as an attribute list for the patch. Patch attributes include surface 

area, mean normal vector [54], symbolic form (planar, cylindrical, curved) and 

bounding box. Patches constitute the lowest local matching level in the system. The 

bicubic patches are an analytic representation that allows simple and efficient compu

tation of surface patch attributes. They are easily transformed from one coordinate 

. system to another by a simple matrix operation. 

2.4.5. RELATIONAL CONSTRAINTS 

It is not enough to model an object as a collection of geometric attributes. One 

of the more powerful approaches to recognition is the ability to model relationships 

between object components and to successfully sense them. The relational con

straints between geometric entities place strong bounds on potential matches. The 

matching process is in many ways a search for consistency between the sensed data 

and the model data. Relational consistency enforces a finn criteria that allows 

incorrect matches to be rejected. This is especially true when the relational criteria is 

based on three dimensional entities which exist in the physical scene as opposed to 
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two dimensional projective relationships which vary with viewpoint. 

In keeping with the hierarchical nature of the model, relationships exist on many 

levels of the model. At present, there are no modeled relationships between objects 

since single objects only are being recognized. However, the inclusion of object rela

tionships is an important next step in understanding more complex multiple object 

scenes. In particular, it should be possible to model the relation between articulated 

parts, although no attempt has been made to do this. 

The first level at which relational information is included is the component 

level. Each c<;>mponent contains a list of adjacent components, where adjacency is 

simple physical adjacency between components. The features (holes and cavities) 

also contain a list of the components that comprise their cross sectional boundary 

curves. Thus, a surface sensed near a hole will be related to it from low level sens

ing, and in a search for model consistency, this relationship should also hold in the 

model. 

At the surface level each surface contains a list of physically adjacent surfaces 

that can be used to constrain surface matching. These relations are all built by hand, 

as the geometric modeling system being used has no way of computing or under

standing this relationship. For the objects being modeled in the data base, this is 

presently simple to implement. However, a useful extension to this worle would be 

to have these relations computed automatically by the modeling system itself. 

The patch relations are implicit in the structure of the composite surface patch 

decomposition being used. Each patch is part of an ordered composite surface that 

contains relational adjacency automatically. Thus, each patch's neighbors are directly 

available from an inspection of the composite surface's defining knot grid. 
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2.5. CREATING THE MODELS 

The models have been created by a combination of hand and computer model

ing techniques. Initially, each object was digitized by a POLHEMUS 3D digitizer. 

Each surface of the object was sampled as coarsely as necessary to allow the spline 

surfaces to be built accurately. The spline surfaces themselves were built by using 

the sparse surface data as input to a CAD/CAM surface modeler that produced a 

modified form of Coons' patch. The coefficients produced by this system were then 

scaled to reflect the true geometry of the surface being modeled. The output of the 

surface modeling for a particular surface is a knot set that defines a series of rec

tangular grids. Each of the grids contains coefficients for a single patch, and C2 con

tinuity is maintained across the patches that comprise a single surface. (Coons' 

patches are described in detail in Appendix A). Figure 2.2 shows the surfaces that 

were generated from modeling a plate, a pitcher and a coffee mug. The plate con

sists of one surface containing 25 patches. The pitcher is made from 24 patches on 

the handle and 18 on the body. The mug has 4 patches on the body and 24 on the 

handle. 

2.6. COMPUTING SURFACE ATTRIBUTES 

Once the surface patches are built, attributes of the patches must be calculated. 

A feature of the bicubic patches is that they are a true analytic representation of a 

surface, which allows simple calculation of the necessary attributes. The patches are 

parameterized in two dimensions u and v and can be represented in matrix form as 

P(u,v) = U A V 

P(u,v) = [1 u u2 u3] [A] [1 v y2 y3 r 
(2.2) 

(2.3) 
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Rgure 2.2. Modeled surfaces of a plate, coffee mug and pitcher. 
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where A is a matrix of coefficients described in appendix A. The area of the surface 

can be calculated as: 

1 1 

Area = Ii' G1 v. du dv (2.4) 

where G is the fIrst fundamental fonn matrix defmed as: 

[

ap ap ap ap] 
au' au au' av 

G = ap ap ap ap 
av' au av' av 

(2.5) 

The unit nonnal n at a point on the surface can be calculated a$ the cross product of 

the tangent vectors in each of the parametric directions: 

ap ap -a- x -':1,.-. u ov 
n = 

"\ ap x ap\ 
au av 

(2.6) 

The bounding box of a patch can be found analytically by fmding the maxima 

and minima of the patch extents and subdividing the patch until it becomes planar 

[40]. However, this requires solving a series of equations that are cubic in one 

parameter and quadratic in the other, requiring numerical solution. For the purposes 

of this research, the surfaces were sampled at small intervals in parameter space and 

maximum and minimum extents computed. 
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ELLIPTICAL K > 0 

HYPER80 LIC K < a 

CYLINDRICAL K:O 

Figure 2.3. Surfaces classified by Gaussian curvature . 

.,..~.-~.,; -------_.-------_ .. -
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2.7. CLASSIFYING SURFACES 

Differential geometry is a study of surface shape in the small, focusing on local 

properties of surfaces. It also provides a method of classification of surfaces by their 

curvature properties that can be used for matching. The Coons' patch formulation is 

excellent for this approach since it is an analytical form that can readily compute 

these curvature measures; computing such measures from point sets or polygonal 

approximations is difficult and error prone. 

The measure that we need to compute is the surface curvature on the patch. For 

a curve, curvature is well defmed as 

1C = lIr (2.7) 

where r is the radius of curvature. For a surface, matters are less clear. At a single 

point, the curvature changes as a function of the direction moved on the surface. 

Limiting our discussion to so called regular surfaces where there is a well defined 

tangent plane at every point on the surface, the normal sections on a surface are the 

curves formed by the intersection of the surface with planes containing the surface 

normal. The curvature measured on these curves is the normaL curvature or 1<:11. As 

the planes containing the normal are rotated around it, forming different normal sec

tions, different values of lC,s are defmed. The directions on the surface (measured in 

the tangent plane) at which lC,s takes on its minimum and maximum values are 

referred to as the principal directions on the surface and define the maximum and 

minimum normal curvature, ~ and~. The Gaussian curvature K is defined as 

K = ~·lCmin (2.8) 

The Gaussian curvature is a measure which describes the local surface changes by 
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means of a scalar (figure 2.3). Of particular importance is the sign of K. If K=O, 

then the curvature in one of the principal directions is zero, implying a flat surface 

with no curvature in this direction- It can be shown that any surface with zero Gaus

sian curvature can be formed by a smooth bending of the plane [29]. Planes have 

lema = lC.mm =0 everywhere on their surface. Cylinders also have K=O as one of their 

principal curvatures is zero. A point on a surface with K>O is referred to as an ellip

tic point At this point the surface lies entirely on one side of the tangent plane since 

both normal curvatures are of the same sign. A hyperbolic point has Ked) and the 

surface at this point both rises above and falls below the tangent plane. By analyzing 

the surface's Gaussian curvature everywhere, a surface can be classified as planar, 

cylindrical, or curved. The procedure to do this iterates over the parametric surface 

. at a specified sampling increment, computing 1Cmix, 1Cmm and K at each, point The 

nonnal curvatures lCmu and lCmm are computed by solving the quadratic equation 

(2.9) 

where G is the first fundamental from matrix defmed in equation (2.5) and D is the 

second fundamental form matrix 

02p 02p 
n'-aul n'-auav 

D = 02p 02p (2.10) 
n'-ava" n'--

()v2 

~'";~.,,-~--... ~...; ... ~ .. 
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2.8. COMPUTING HOLE AND CAVITY ATTRIBUTES 

Features such as holes and cavities are created from the output of the surface 

modeler. A hole or cavity is surrounded by a series of surfaces and these boundary 

curves are obtained from the patch descriptions. Once the boundary points on the 

cross section of a hole are computed, a series of programs are run to compute inertial 

axes of the planar cross sections. The inertial axes are computed by fmding the 

eigenvectors of the following matrix [59]: 

[:: :~l (2.11) 

where Mm, Mu, M20 are the central moments of the enclosed planar cross section. 

The moments for a planar area are defmed as: 

Mjj = f J #dxdy 
regiorl 

(2.12) 

Central moments are moments taken around the centroid of the object, where 

the centroid of a planar region is defined as: 

_ M IO 
x=-

Moo 

_ MOl 
y=

Moo 

(2.13) 

(2.14) 

These moments are computed by transfonning the 3-D planar points into a 2-D 

plane and then using line integrals around the boundary of the cross section to com

pute area and moments. To transform a set of 3-D planar points into the XY pl~e, 

we have to first defme the coordinate frame T that describes the planar set of points 
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in 3-D: 

·Nz 0% A.t Pz 

T 
Ny OJ A, Py 

(2.15) = N: 0: A% Pz 

0 0 0 1 

where N, 0, A represent the frame's basis vectors in the reference frame and P 

represents the location of the new origin in the reference frame. We can take the 

planar points normal vector as A, and N is found by taking the vector between any 

two points on the plane. 0 is simply Ax N. P is chosen as any point in the planar 

point set To transform this frame into the XY plane we calculate its inverse, defmed 

as: 

Nz Ny Nz -P'N 

rl 
Oz 0, 0: -P·O 

(2.16) = Az A, At -P'A 

0 0 0 1 

Applying this transformation to the 3-D points will bring them into the XY 

plane. This will give us a set of planar points from which we can now compute cen

tral moments and principal axes. 

Since we have boundary information enclosing a hole or cavity, we can use line 

integrals around the contour of the point set to calculate the moments. This contour 

is formed by linking the boundary points in a series of line segments. To fInd the 

appropriate line integral, we use Green's theorem in the plane [10]: 

=fff-dx-~dy (2.17) 

regloll 

_ .... -- .... - ---
............. ,. • .-...J::;.;:...~ ...... ;.~;. 
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Using Green's theorem yields the following centroid fonnula using line integrals: 

f -x y dx 
MlO 

x= COf/lour 
= -

f 
Moo 

xdy 

(2.18) 

conIOur 

f xydy 
MOl 

Y= 
COI'fIOII1' = --

fxdy 
Moo 

(2.19) 

conIOfII' 

. 
Similarly, the moments of the enclosed area are found by the following fonnu-

lae: 

Mn = f 4 dx = J f xy dx dy 
COftlour rqlOft 

(2.20) 

(2.21) 

MOl = f =f dx = f J r dx dy 
ctlfllour . rtgion 

(2.22) 

Once the eigenvectors of the matrix in (2.11) are calculated, the principal axes 

of the cross section are founei These axes are in the plane and they must be 

transformed back to three space by frame T. The cross product of these transfonned 

principal axes vectors is the hole's approach axis vector and is the normal to the set 

of planar contour points. Once the principal axes have been transformed to three 
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space, a frame can be created with the principal axes, their cross product, and the 

centroid as the embedded coordinate frame of the hole or cavity. This frame can 

then be stored in the data base and used for calculating the transformation from the 

sensed coordinates to model coordinates. 

2.9. EXAMPLE MODEL 

The models have been implemented as a series of PROLOG [16] facts. The 

choice of PROLOG for the data base was motivated by two concerns. The fIrst was 

the desire to have rich relational information about adjacent parts of the model and 

the ability to inde;t into the data base in many different ways. The low level sensing 

pro~ many pathways and avenues into the data base, and it is advantageous to 

have the model indexed on many different levels and kinds of features and attributes. 

A key insight into the recognitiC)D process is that it cannot be ordered ahead of time 

[3]. The sensors are capable of providing different surface or feature information 

depending upon viewpoint. Therefore, all recognition avenues should be open at all 

times. Secondly, the strategies for recognizing objects are subject to change and 

modification. Implementing these strategies as rules is important so that the recogni

tion behavior can be followed and modified easily. PROLOG's major drawback is 

efficiency. For the size of the data base used in this research this posed no serious 

problems. However, as the number of objects increases, more powerful and faster 

indexing methods will be needed, but this is beyond the scope of this research. Fig

ure 2.4 is a set of PROLOG facts that constitute the data base for a coffee mug. The 

facts include the attributes of each level as well as the relational information between 

entities. Rules for matching against these facts are discussed in chapter 7 . 

. - -: -.~--~.,------

~ .. _~~ .. *_c- _~"_~_~-••• _ •• ;. 
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2.10. SUMMARY 

The higher level· knowledge about the objects to be recognized is encoded in 

three dimensional viewpoint independent models. The particular task and object 

domain has helped to defme criteria for the design . of the models. The models are 

hierarchic and contain surface, feature and relational information. The bicubic surface 

patch primitive is well suited for modeling the curved surface objects in the domain, 

computing attributes of the objects and deriving representations from the low level 

sensors. The database of object models is implemented as a set of PROLOG facts 

that facilitate indexing and defining new sensing strategies during the matching phase 

of recognition. 



I 
.1 

- 41 -

Object data sttucture: 
obj(id.bound_box,list of cavs.,list of holes. list of components,complexity) 

Component data saucture: 
comp(id, bound_box. surface area, priority, list of surfaces). 

Surface data strw:tuIe: 
surf(id,bound box.surface area, priority ,closed surface, 

kind of surface.transfonn). 
Cavity data sttucture: 

cav(id,area.moment ser.depth.priority,lI'allSfonn 
Hole data structure: 

bole(id,area,moment ser.priority ,transfonn) 
Relations fer adjacency: 

rei( objea,element 1 ,elcment2) , ...•............................................................ , 
obj(mug,bbox(83,121,87),[ca_muLOl1,[ho_mug_011, 

[co~muLbandle,co_mug_body,co_mug_bottom],complcx(S). 

cav(ca _mIlL Ol,area( 47S8),mom( 1802083,1802083 ),depth(87),pri(0.166), 
[vee( 4,3,40.294), vec(3,3,4O,293)]). 

bole(ho _ muL 01.area( 1296),mom(187 673, 148729),pri(O.2S), 
[vec(4,3,-16,249),vee(I,3,-16,249), vec(2,3,-17 ,249), vcc{3,4,-16,249)]). 

comp(co _ mugJlandlc,bbox(18,36, 74),area(44S8),pri(0.2S),[s _ mugJwldle _01]). 
comp(co_muLbody,bbox(83,83,87),area(22078),pri(0.3),[s_mug_body_Ol]). 
COmp(CO_muILboaom.bbox(83,83,O),arca(S024),pri(O.033),(s_muLbottom_Ol]). 

sud(s _ mug_handle _0 l,bbox( 18,36, 74),arca( 44S8),pri(0.2S),closed,curved.0). 
suri(s_IDULbody_O l,bbox(83,83 ,87),area(22078),pri(O.3),closed,cyllnder, 

[vec{4,2.5.39.$,250.5), vec(3.2.$,39.$,2S 1.5)]). 
surf(s_mugJ)()UOm_Ol,bbox(83,83,O),area(S024),pri(O.033),open,planar, 

[vee( 4,2.5,39.$,207), vec(3,2..5,39.5,206)]). 

rel(mug.co_mug_ handle,co _ mug_body). 
rel(mug.co_muLbody,co_mug_bottom). 
rel(mug.ca_mug_Ol,co_mug_body). 
rel(mug.ho_muLOl,co_mug_handle). 
rel(mug.ho_muLO 1 ,co_mug_body). 
rel(mug.s_mng_handle_Ol,s_mug_body_Ol). 
rel(mug.s_mug_ body _01,1_ mug_bottom _01). 
rel(mug,ca_IDULO 1,s_muLbody_O 1). 
rel(mug.ho_muLOl,s_muLhandlc_Ol). 
rel(mug,ho_muLO 1,s_muLbody_O 1). 

Figure 2.4. PROLOG facts for model of a coffee mug. 
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CHAPTER 3 

2-D VISION PROCESSING 

3.L INTRODUCfION 

Machine vision research has been spurred by the ease with which biological sys

tems process visual inputs. Unfortunately, the task of understanding a scene from 

vision alone has proved to be difficult. The analogy of an image matrix to a human 

retina has only served to illuminate the powerful kinds of processing taking place in 

the visual cortex, processing that is poorly understood at present. The research of 

David Marr and others has tried to isolate those parts of human visual information 

processing that seem. to operate independently, such as stereopsis, and to apply this 

knowledge to machine vision systems. While some progress has been made, the state 

of machine vision is still primitive. At present, most commercial machine vision sys

tems are binary systems that use simple template matching of 2-D silhouettes. If the 

object is presented in a different pose or the lighting is such that a specularity or 

reflection upsets the silhouette algorithms, recognition becomes impossible. What 

these systems lack is a way of inferring and understanding the three dimensional 

structure of the objects to be recognized. The human visual system has little trouble 

perfonning such tasks. We can understand and recognize the objects in a scene in 

- 42 -
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the presence of noise and distortion and under a variety of different lighting condi

tions. We can even perceive three dimensions from photographs and paintings which 

are inherently two dimensional. The goal of machine vision systems is to to perceive 

as we humans can and it remains an unaccomplished goal. 

The vision processing described here is an attempt to take what is useful and 

reliable from machine vision and to supplement it with active, exploratory tactile 

sensing. There is no attempt to try to understand the full structure of an object from 

vision alone, but to use low and medium level vision processing to guide further tac

tile exploration, thereby invoking consistent hypotheses about the object to be recog

nized. The vision processing consists of two distinct phases. The first phase is a 

series of two dimensional vision routines that are performed on each of the stereo 

images. The second phase is a stereo matching process that yields sparse depth 

measurements about the object. The output of these modules is combined with active 

exploratory tactile sensing to produce hypothesis about objects. This chapter 

describes the 2-D vision processing routines in detail and discusses their performance 

on the images of the objects to be recognized. The next chapter discusses the stereo 

matching based on the output of the 2-D image processing algorithms. 

3~ ~AGEACQ~TInON 

The images in this research are acquired from two Fairchild CCD cameras, 

mounted on a movable camera frame (figure 3.1). The camera frame has 4 degrees 

of freedom (x, y, pan, tilt). The images used here are all generated from a static 

camera position; no attempt was made to acquire images from multiple viewpoints. 

A pair of images of the scene are digitized from the CCD cameras at a resolution of 

-~--'--,--'~~--' -- ~-. 
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380 x 488 pixels. The object to be recognized is known to be a single object and in 

the field of view of each camera. To simplify determining figure from ground, The 

objects are placed on a homogeneous black background. The lighting consists of the 

overhead fluorescent room lights and a quartz photographic lamp to provide enough 

illumination for the ceo elements. 

3.3. THRESHOLDING 

The first algorithm that is run on the images is a histogram of grey levels that is 

used to separate out the background. Since the background is known to be somewhat 

homogeneous, a peak in the histogram is found that corresponds to the background 

grey level which predominates in the image. The picture is then thresholded at this 

level, driving all background pixels to zero. This gain in contrast between back

ground and figure is helpful in establishing gradients for the object's contour. 

3.4. EDGE DETECI'ION 

Once the picture has been thresholded, an edge detection procedure is applied to 

both images. The edge detector that is used is the Marr-Hildreth operator, described 

in [43]. This operator is a derivative based operator, seeking to find intensity 

changes in the image array. It is defmed as the convolution of the original image 

with the Laplacian of a Gaussian, defined as: 

[ ] ~ V2 G(x,y) = ~ Xl;r -2 e 2cr (3.1) 

where a is the standard deviation of the Gaussian and is the space constant used to 

determine over what scale the image should be blurred. The constant a can be related 

.- .. , .•• "':'"--=';'~ ...... ~.~..-:.=-.:..-"'-. ..' --... ~-.~. _ ••. -
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Figure 3.1. Stereo cameras. 
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to the image space by the fonnula 

w 
(J = 

2-./2 
(3.2) 

where w is expressed as the width in pixels of the fIlter's central region. The idea of 

the Gaussian blur function is to smooth the image but not to destroy the underlying 

intensity changes. The blur function destroys all changes at a scale smaller than (J. 

The Laplacian is used because it is an isotropic operator, allowing a single convolu

tion to be used that will yield orientation infonnation. The alternative to using this 

operator is a series of directionally sensitive operators that will require more convolu

tions. Determining the width of the fIlter becomes important in detecting changes at 

different scales. A small value of w will isolate many edge elements, while a large 

value of w acts as a low pass filter, allowing only large scale changes to be output 

In human vision processing, it appears that a number of spatially tuned filters are 

present, isolating changes at different scales [23]. There are benefits to using fIlters 

of different scales. Witkin [73] has shown that it is possible to track the zero

crossings over scale by creating a scale space surface, thereby relating gross level 

changes to fIne details in the image. Yuille and Poggio [76] have shown that these 

zero-crossing maps from different scales form a "fmgerprint' , or characteristic 

description of the underlying signal, and can be recreated (up to a scaling factor and 

a harmonic function) from the zero-crossings alone at different scales. 

The idea of tracking image changes from fIne to coarse detail is appealing. 

However, it is burdensome computationally. Convolving each image with the Lapla

cian of the Gaussian is an expensive operation, especially when performed at dif

ferent scales. In this research, a single filter width was used for purposes of 

----.,..----- "!""! ..... - - ~ - - •• -- -- - - ------
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convenience and processing time. In most cases, a small mter (w=5) was used to 

isolate as many changes as possible, rather than miss some by using larger values of 

w. 

The edge detector (algorithm 3.1) outputs the location, magnitude and orienta

tion of each detected edge element that corresponds to a zero-crossing of the flltered 

image's second derivative. In any discrete approximation to this zero-crossing, the 

question o~ localization becomes important, especially if the zero-crossing locations 

are to be used for stereo matching. If a sign change in the convolved image occurs 

between two pixels in the x or y directions, a linear interpolation is used to isolate 

the zero-crossing to subpixeIS. The algorithm will fmd zero-crossings of both edges 

and noise clements in the image. A magnitude threshold is established to fIlter out 

noise edges that are of small magnitude, leaving the edge clements related to physical 

effects in the image. It is important to note that these physical effects include sha

dow, occlus~ons, and textures as well as surface geometry. 

The results from the edge detector algorithm are shown in figure 3.2. The mag

nitudes of many of these zero-crossings are weak. Figure 3.3 shows a histogram of 

zero-crossing magnitudes for the picture fIltered with w=4 showing a defmite peak at 

a magnitude of 6. The tbresholded zero-crossings are shown in figure 3.4. 

3.5. SEGMENTATION 

Segmentation is used to isolate and analyze groups of pixels that are bounded 

by closed chains of edge pixels. The segmentation is used to guide the tactile sys

tem. We do not want to blindly grope on the object with the tactile sensor, we want 

to explore regions of interest that can be related to physical edge effects on the 
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1. Convolve the original image P with the V2 G operator, 
yielding image L 

2. Proceeding left to right, top to bottom in image I, determine if 
a zero-crossing exists at pixel [x,y] by the following rules: 

Given a pixel of value A at location [x,y] in image I 
surrounded by 4-neighbors of value B, C, D, E. 

x-1 

y-1 Y y+1 

E 

x D A c 
x+1 B 

a) If (A *B)<O and (A *C)<O then a zero-crossing exists at 
[ x + intcrpolate(A,B) , y + interpolate(A,C) ]. 

b) If (A*B)<O and (A*C»=O then a zero-crossing exists at 
[ x + intcrpolate(A,B) , Y ]. 

c) If (A*B)>=<> and (A*C)<O then a zero-crossing exists at 
[ x, y + interpolate(A,C) ]. 

The function intcrpolate(a,b) where a and b differ in sign 
returns a value between 0 and 1 based on the linear inter
polation of the zero point between a and b. 

3. The magnitude and orientation of the zero-crossing at [x,y] is: 

dx = I(x+1J') - I(x-1J') 

dy = 1(,x,y+1) - l(x,y-1) 

Magnitude = " tJil+dj 
Orientation = atan2(dy,dx) 

4. If the magnitude is below threshold M, reject this edge. 

Algorithm 3.1. Edge Detector. 
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Figure 3.2. Zero-crossings for w=4. 
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Figure 3.3. Histogr.un of zero-crossing magnitudes. 
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Figure 3.4 Thresholded zero-crossings. 

object. Segmentation accomplishes this goal, segmenting the object into closed con

tour regions that can be explored independently by the tactile system. The importance 

of these regions is that they are bounded by edge elements and in turn, do not con

tain any edge elements in the interior of the region. This forms a segmentation of 

the object that can be used to discover the object's structure. The regions isolated on 

the object are either surfaces, holes or cavities which the vision system cannot deter-

mine from the sparse data available. However, the tactile exploration will be able to 

determine this when it begins the tactile portion of the sensing. 

,----~--.. ---- _ .. , - -----. ~ ---- _-_ =- _:"!'_,.:::z~.-_. ___ •• _.. __ .... ' . .• __ .. ~"._._ •. 
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3.5.L FILLING IN THE GAPS 

The goal of segmentation is to break the object up into regions bounded by 

closed contours of zero-crossings. If the convolved V2G image is thought of as a 

continuous two dimensional function, then the zero-crossings form a closed continu

ous curve, segmenting the image. Due to the discrete nature of the convolution, the 

zero-crossings do not always form closed curves. Typically, small pixel gaps will 

appear, preventing a closed contour chain of 8-connected zero-crossings. A two 

stage procedure (algorithm. 3.2) is used to close these gaps and form closed contours 

of zero-crossings. The first stage is a modification of a procedure of Nevatia and 

Babu [45] to find linear segments from edge contours. This procedure creates a 

predecessor successor array (PS). A PS array is created by designating the 8-

connected predecessor and successor neighbors for every directed zero-crossing edge 

element. Edge elements that.arC at the beginning (end) of the 8-connected chain are 

designated as having no predecessors (successors). Edge elements that branch off 

with either two predecessors or two successors are also marked. From this array, 

chains of 8-connected zero..crossings are created. The second stage is to take these 

chains and to link them into longer chains, bridging gaps if needed. The second 

stage is an iterative process where successively longer chains are built and more pix

els are bridged depending upon the pixel distance to be bridged. Initially, pixel gaps 

up to a distance of 2..J2 are bridged, requiring only a single pixel to be added. This 

stage repeats until only gaps of two pixels are left, at which point two pixel gaps are . 
iteratively filled. The algorithm will continue until the maximum designated gap dis-

tance is reached. In practice, filling in more than two pixel gaps is ambiguous. If a 

small fIlter size w is used for the initial convolution, the zero-crossings are usually 
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dense enough to fill the gaps accurately. Once the gaps are filled, the region analysis 

can continue. 

This algorithm succeeds in filling small pixel gaps. However, certain imaging 

conditions will cause gaps greater than 3 pixels to be created. While the fill gaps 

algorithm can span larger distances than 3 pixels, its performance degrades notice

ably. For the zero-crossings in figure 3.4 the output of the Bridge Gaps algorithm 

successfully filled small contour gaps but was unable to bridge the gap at the top left 

comer where the surface turns sharply. In this image and the image of the coffee 

mug, small gaps that remained after the Bridge Gaps algorithm were filled by hand. 

This part of the segmentation problem in vision remains unsolved. A possible 

approach is to use scale space techniques and follow zero-crossings at many levels to 

fill the gaps. Heeger [27] has proposed a parallel algorithm for filling in the gaps of 

digital images that while computationally expensive, shows promise. 

3.5.2. REGION GROWING 

Region growing (algorithm 3.3) begins with the zero-crossing image which is 

output by the bridge gaps algorithm. This is an image I containing zero-crossings 

and added pixels from the bridge gaps algorithm. Region analysis will separate the 

image into regions bounded by closed contours, and will then calculate measures for 

each region. The algorithm to create each region from a closed contour is a recur

sive growing operation on the image I that tries to grow a pixel's 4-connected neigh

bors until a border is found. As it grows these pixels, it colors them homogeneously, 

thus defining a region. 
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Input: Zcro-crossing image from Edge Detector algorithm 
Maximum_Gap is maximum number of pixels to bridge 

Output: Image with added pixels to create closed contours. 

1. Form a predecessor successor array cPS) that denotes the 
8-connected neighbors that are predecessors and successors 
of directed zcro..crossing elements. Mark beginning and ending 
elements and elements with multiple predecessors or successors 

2. Starting at all beginning, ending or branch elements, traverse 
the connected chain and save it 

3. Set N=l. 
3. -Compare beginning or end elements of the chains. If'the gap is 

less than N pixels, bridge the gap by adding the pixels and merging 
the chains. 

4. Repeat step 3 until no N pixel gaps remain. 
s. N-N+1. ' 
6. IF N < Maximum_Gap goto step 3 else write out the image with added 

pixels. 

Algorithm 3.2. Bridge Gaps. 

The algorithm uses two image arrays. Initially, the two arrays are identical with 

the zero-crossing image. A seed pixel is used to start a growing operation that recur

sively grows the 4-connected neighbors of every pixel that is not an edge element. 

EaCh pixel that is grown is marked in the second array as visited with a particular 

color. When the x:ecursive growing fmally fails, all 4-connected pixels are colored 

homogeneously in the second array. By searching through the second array for an 

uncolored, non-edge pixel, we generate a new seed pixel and continue the operation, 

coloring grown pixels with a new color. This continues until all pixels in the second 

image are either colored or edge elements. The algorithm then examines each edge 
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element in the colored image. The 8-connected neighbors of each edge element are 

compared and if they are all the same color or other edge elements, then this edge 

pixel is tenned an isolated pixel, completely contained by a homogeneously colored 

region. Isolated pixels are colored by their containing region's color. 

The final part of the region growing is to output a chain of pixels that deter

mines the closed contour of the region. This algorithm (algorithm 3.4) outputs a 

chain of 8-connected pixels that consists of the boundary contour of each region. 

The algorithm is a modified version of Pavlidis' contour tracer [53]. In Pavlidis' 

algorithm, a connected closed contour of a homogeneous region R is found by walk

ing along the extremities of the region and recording the members of R who have 

neighbors not in R. The algorithm begins by rmding a member of R with a neighbor 

not in R and always "walks to the right" rmding 8-connected neighbors that are in 

region R with neighbors outside the region. This algorithm will output a chain of pix

els that includes only members of the set R. What is desired instead is the chain of 

pixels not in R, but that have neighbors in R. In terms of the region picture from 

algorithm 3.3, we want the chain of edge pixels that separate regions, not the set of 

region points adjacent to the edges. The difference is important as the locations 

along the contours will be used for stereo matching. 

The output of the region grower is an array of colored regions separated by 

closed contour edge chains. Figure 3.5 shows the closed contours formed for the 

pitcher by the region growing and contour tracing algorithms. 
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Figure 3.5. Oosed contours from Region Grower and Contour Tracer algorithms. 

3.5.3. REGION ANALYSIS 

These regions need to be further analyzed so we may compute their centroids, 

average gray value and 2-D area. The centroid will be used to fmd a beginning 

exploration point on the region and the area measure is used to order the regions for 

exploration. 

An important piece of information about these regions is their adjacency. From 

the region image, we can compute a r~gion adjacency graph as defmed by Pavlidis 

[53]. This is a graph that contains nodes which are colored regions and arcs between 

regions if they are adjacent. These adjacency relations will be used later in matching 

against the model data base. They are also used to determine if any regions are com

pletely contained by another region. A completely contained region can be found by 

finding a cut node in the region adjacency graph. The adjacent regions are found by 
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Image 11 and 12 are identical zero-crossing image arrays, 
globally defined, containing pixels of value 0 or pixels 
of value 1 where an edge has been determined to exist. 
Output is homogeneously colored regions in image 12. 

region Jrower() 
{ reL.color-2; 

FOR ( i-o; kPICSIZE; i-i+l ) { 
FOR ( j-o; j<PICSIZE; j<j+ 1 ) { 

IF ( I1(i][j] -- 0 and 12(i][j] - 0 ) { 
grow(iJ,reg_color); 1* non edge pixel, not visited *1 

} 1* end IF *1 
reL color - reg_color + 1; 

} 1* end FOR *1 
} 1* end FOR *1 
FOR ( i-o; i<PICSIZE; i-i+ 1 ) { 1* remove isolated pixels *1 

FOR ( j-o; j<PICSIZE; j<j+ 1 ) { 
IF ( l1[i][j] - 1 ) { 1* is it an edge element? *1 

homog(iJ); 1* see if the edge is isolated *1 
} 1* end IF *1 

} 1* end FOR *1 
} ,. end FOR *1 

} ,. end regionJrower *1 
grow (iJ.color) 1* grows 4-connected neighbors */ 
{ FOR ( k- -1; k<- 1; k-k+2 ) { 

FOR(m-o; m<2; m-m+ 1 ) { 
p-k; q-o; 
IF ( 11[i+p][j+q] - 0 and 12[i+p][j+q] - 0 ) { 

I2[i+p][j+q] - color; 1* mark as visited *1 
grow(i+kJ.color); 

p-O ; q-k; 
} 1* end FOR */ 

} 1* end FOR */ 
} 1* end grow */ 
homog (iJ) 1* colors isolated edges */ 
{ IF ( all non-edge 8-neighbors of 12[i][j] are color K ) { 

12[i][j] - K; 
} 1* end IF *1 

} 1* end homog */ 

Algorithm 3.3. Region Grower . 

--=~~-~-'--. -_.-.-. ---, --- --_. 
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Input to this algorithm is the colored region array computed by 
algorithm 3.3. Output is chains of pixels bordering a homogeneous 
region. Define the lkonnected neighbors of a pixel as: 

3 I 2 I 1 

4 I I 0 

, I 6 I 7 
start - pixel in region with edge as 4 neighbor 
new - start; '* beginning edge element in chain *' 
first - TRUE; '* first time through switch *' 
s - 6; 1* neighbor search direction *' 
Wlm.:E ( ( start !- new) or ( first) } { '* not closed yet *' 

found - FALSE; '* flag for new contour pixel *' 
cycles - 0; '* if 3 cycles: single pixel region *' 
WHn..E ( found - FALSE and cycles < 3 ) { 

cycles - c:ycles + 1; 
IF ( (s-1 mod 8) neighbor in region R } { 

s - ( S - 2) mod 8; 
found - TRUE; 

} else { 
DeW - (s-1 mod 8) neighbor. add new to chain; 
first - FALSE; . 
IF ( s neighbor in region ) { 

found - TRUE; 
} else { 
. new - s neighbor. add new to chain; 

filst - FALSE; 
IF ( (S+l) mod 8 neighbor in region) { 

found - TRUE; . 
} else { 

new - (5+ 1 mod 8) neighbor. add new to chain; 
first - FALSE; 
s - (s+2) mod 8; 

} 1* end IF *' 
} 1* end IF *' } '* end IF *' } '* end WHn..E *' 

} 1* end WHn..E *' 
Algorithm 3.4. Contour Tracer. 

examining contour pixels that separate regions and looking at the colors of their 8-

neighbors. Algorithm 3.5 is used to compute' region statistics and build the region 

adjacency graph for the image. Figure 3.6 shows the region adjacency graph 
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generated from the region analysis. 

3.6. SUMMARY 

The two dimensional vision processing routines create bounded regions that can 

be used by the stereo matcher and tactile exploration algorithms. These algorithms 

create regions of larger interest moving away from pixel based point properties to 

token based contours and regions. As is the case in all vision processing. the tokens 

are artifacts of the lighting. reflectance and geometry of the surfaces imaged. The 

stereo algorithms in chapter 4 and the tactile exploration discussed in chapter 5 are 

intended to further classify these regions as surfaces, holes or cavities. 



- 59 • 

R is a region array containing homogeneously colored 4-connected 
~gions and boundary contours. Boundary contour pixels are 
zero and regions are colored from 1 to MAXCOLOR Array I 
is the original gray value image. 

1* all counters initialized to zero *' '* compute region statistics *' 

FOR ( i-o; i<PICS1ZE; i=i+ 1 ) { 
FOR (j=O; j<PICS1ZE; j<j+1 ) { 

region = R [i][D; 1* region is pixel color *' 
IF ( region != 0 ) { '* not a boundary pixel *' 

sum[region] ~ sum [region] + I [i][j]; '* sum gray value *' 
xsum[region] ~ xsum[region] + i; 1* sum x's *' 
ysum[region] = ysum[region] + j; 1* sum y's *' 
~region] :s area[region].+ 1; '* sum area *' 

} 1* end IF *' 
1* create region adjacency graph *' 

IF ( R [i][j] ~ 0 ) { 1* boundary pixel *' 
find non zero regions of 8·neighbors of pixel iJ; 
IF (no arcs exist for these adjacent regions) { 

add arcs for these regions in the graph; 

} 1* end IF *' 
} 1* end IF *' 

} 1* end FOR *' 
} 1* end FOR *' 
FOR ( i-<>; i<Num_regions; i:::i+l ) { '* compute centroids *' 

x~enter[i] ::: xsum[i] , area[i] ; 
ycenter[i] ::: ysum[i] , area[i] ; 
avgJray _value::: surn[i] 'area[i]; 

} 1* end FOR *' 
} 1* end region_analyzer *' 

Algorithm 3.5. Region Analyzer. 

'~"r"F¥""_. z:c*",*p, IP':- .. _,-r-f!"';'P-~.'-_"" ___ '-' 
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Figure 3.6. Region adjacency graph for pitcher. 



CHAPTER 4 

3-D VISION PROCESSING 

4.L INTRODUCl'ION 

This chapter discusses the use of binocular stereo as a method for obtaining 

depth infonnation from images. The experimental imaging system used is described 

along with an analysis of its acc~. The stereo matching algorithm based upon 

the output of the two dimensional processing described in chapter 3 is presented 

along with an analysis of its perfonnance. Fmally, the need for tactile sensing is 

motivated by analyzing the inability of stereo to create dense and accurate depth 

maps. 

4.2. DETERMINING DEPTH 

Machine vision ,research has centered on the problem of obtaining depth and 

surface orientation from an image, creating what has been called by some authors the 

"2Y2 D" sketch [42]. Currently, there are several sensing systems that can derive 

depth from a scene. Among these are laser rangers [69,41,1], photometric stereo 

[32] and binocular stereo [7]. Determining which sensor to use is chiefly determined 

by the task domain. Laser imaging is potentially hazardous and has difficulty with 
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shiny metal reflective surfaces. At present, it is a more expensive depth sensing 

technology than the other methods mentioned above. Photometric stereo puts great 

demands on the illumination in the scene and on properly understanding the reflec

tance properties of the objects to be viewed. Binocular stereo has the advantage of 

low cost and ability to perform over a wide range of illuminations and object 

domains. It is also a well understood and simple ranging method, which motivates 

its use in a generalized robotics environment where many different task and object 

domains may be in effect Used as a single robotics sensing system, stereo has clear 

defICiencies. If there is a lack of detail on the object, only sparse measurements are 

possible. If too much detail is present, the matching process between image events 

can easily become confused. Detail also causes a marked degradation in performance 

as the potential match space increases. The next sections examine the ability of 

stereo to determine depth in our task and object domain. 

4.3. COMPUTATIONAL STEREO 

Stereo has been used in a variety of applications. A large body of work in 

stereo has centered on aerial photogrammetry, trying to detennine object structure 

and depth from aerial images. Recently, interest in stereo for robotics has increased 

as the underlying visual processes in humans have been revealed. Barnard and 

FlSchler [7] have broken down the computational stereo problem into a number of 

separate steps that are needed to generate depth representations from images. This 

chapter follows their paradigm and explains each step in the process in detail. The 

steps in the stereo process are: 
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• Image acquisition. 

• Camera modeling. 

• Camera calibration. 

• Feature acquisition. 

• Image matching. 

• Depth detennination. 

• Interpolation. 

4.4. IMAGE ACQUISmON 

The camera system used to acquire the images is described in section 3.2. An 

important component of image acquisition is the domain of interest. In this research, 

the domain consists of smoothly curved objects with large surfaces, cavities and 

holes. The Objects are not textured and are homogeneous in color, presenting a uni

form albedo. The smooth nature of the objects and lack of textural detail are natural 

impediments to stereo matching, since these objects yield few match points. 

4.5. CAMERA MOOELING 

In order to compute depth from stereo, a suitable camera model and camera 

parameters must be understooci Figure 3.1 shows the cameras used in this research. 

The two cameras are mounted with their focal points 12.7 cm. apart, deflning what is 

known as the stereo baseline. The objects to be imaged are at a distance of 4 feet. 

In trying to find a correspondence between an event in one image and its counterpa.r4 

a large search problem exists. For a image of size NxN pixels, each pixel event m 
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the left image has potentially N2 possible matches. A simple and effective way to 

constrain this is to limit the search along epipolar lines. Epipolar lines (figure 4.1) 

arc defined as the lines in each camera's focal plane caused by the intersection of the 

focal planes and the epipolar plane, which is a plane fonned by a point in the scene 

to be imaged and the two focal points of the cameras. A pixel event in one c~era 

can limit its search for the corresponding event in the other camera to searching 

along the epipolar line in the corresponding camera. This effectively makes the 

search for an event O(N) rather than O(N2). In a digital system, an effective 

approach is to register the cameras so that the epipolar lines correspond to the scan 

lines in the images. The procedure for registering the cameras was to take a test pat

tern of black circles and calculate the center of gravity of each circle in each image. 

- The centers were compared and adjustments were made to have. the centers 

correspond. The accuracy reported by this procedure was correspondence within .5 

pixels across scan lines. This is a painstaking procedure that is extremely critical to 

the success of the stereo algorithms. The procedure is compounded by the additional 

camera parameters of focus and zoom which must also be adjusted for spatial coher

ence of the images. 

4.6. CAMERA CALIBRATION 

In: order to. determine depth, a transformation between the camera image coordi

nates and the 3-D world coordinate system being used is needed. This can be done 

in a number of ways. One method is to discover the actual camera model parameters 

that relate the two coordinate systems [21]. The other method is to experimentally 

obtain a calibration transfonn from a series of known data points in the scene and the 
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image [68]. This latter method is simpler and well suited to our problem. We can 

derme a point in homogeneous 3-D world coordinates as: 

[x,y,Z,w] (4.1) 

and a homogeneous point in 2-D image space as: 

[x,y,w] (4.2) 

The transformation matrix that relates these two coordinate systems is: 

Tn T12 T13 

[X,y,Z,l] T21 Tn T23 

T31 T32 T33 
= [x, y , w ] = w[u , V, 1 ] (4.3) 

T41 T42 T43 

Here we have arbitrarily set the homogeneous scaling factor W = 1. If we multiply 

out these matrix equations, we get: 

(4.4) 

(45) 

(4.6) 

If we substitute the value of w in (4.6) in (4.5) and (4.4) we get two new equations: 

(4.7) 

(4.8) 

If we know a point (X, Y • Z) in 3-D world coordinate space and its 

corresponding image coordinates (U , V) then we can view this as a series of two 

equations in 12 unknown transform parameters T jj• Since we get 2 equations per pair 
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of world and image points we need a minimum of 6 pairs of world and image points 

to calculate the matrix. In practice, due to errors in the imaging system we will want 

to use an overdetermined system and perform a least square fit of the data. The 

technique used in solving an overdetermined system of equations 

AX = B (4.9) 

is to calculate the pseudo-inverse matrix and solve for X: 

(4.10) 

This method requires a way of detennining the 3-D world points and the 

corresponding 2-D image points. The technique described here is due to Izaguirre, Pu 

and Summers [35]. The PUMA manipulator contains an embedded world coordinate 

system that is used to position the robot and is fixed to the robot's base (figure 4.2). 

An LED is mounted on the end effector at a known position relative to the robot 

coordinate frame. The calibration procedure then moves the ann to one of a number 

of predetermined points in the camera's field of view. The LED is imaged in a dark 

room and the center of gravity of the LED impulse function in the image is com

puted, yielding sub-pixel image space coordinates of the known 3-D world coordi-

nates. 

The number of points needed is at least six. A better result is achieved with 

more points to tty to reduce the error due to any single point Experimentation 

showed 40 points yielded low errors and a subsequent increase in the number of cali

bration points did not improve the accuracy. The errors in calibration were deter

mined by substituting the calculated transformation parameters T ij for each' camera 

into (4.7) and (4.8) along with the known image coordinates in each camera and 
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Figure 4.2. PUMA coordinate system. 
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solving for X, Y and Z This also is an overdetennined system of 4 equations in 3 

unknowns that is solved by a least square fit The transformation of each 2-D image 

point into 3-D is a line, and we are trying to find the intersection point in 3-D of the 

two lines emanating from the cameras. Due to imaging errors, these lines are usually 

skew, and the intersection point is the midpoint of the common perpendicular to 

these lines. The errors in position from the known 3-D robot positions were then 

computed. The largest ~r was in the X direction which relates directly to depth 

since the camera centers were generally aligned along this axis. The results for a 

typical calibration sequence of 40 points are in table 4.1. 

4.7. FEATURE ACQUISITION 

The correspondence problem for stereo is helped by isolating physical events in 

each image that correspond to the same location in space. Edges found by derivative 

based operators are good candidates for features. They suffer from the point nature of 

the data which necessarily introduces small error in the correspondence process. 

Researchers have sought to find larger groupings of pixels (tokens) in an attempt to 

lessen the effects of a single pixel error. Various tokens have been used. From edge 

detection algorithms lines and arcs have been isolated to try to match larger group

ings of pixels with more accuracy. Gray level analysis has also tried to group 

regions of pixels showing similar gray level properties such as variance measures. 

The features to be matched are the edge elements determined by the Edge 

Detector algorithm (algorithm 3.1). These features correspond to physical effects in 

the image of geometry, lighting and reflectance. These edge elements are localized 

to subpixels, and contain both magnitude and orientation information. A key element 

1,---~ ___ "_ 
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CALIBRATION ERRORS, mm. 

X .Y Z X Y Z 

-1.108927 -0.058305 -0.301625 -0.478541 -0.073906 -0.123573 

1.149862 0.081078 0.345332 0514949 -0.017872 0.088030 

0.812104 -0.026641 0.307286 -0.961732 -O.2008n -0.363145 

-0.248319 -0.174759 -0.058981 -0.698619. 0.105659 -0.280506 

0.166807 0.050148 0.109394 -0.189775 0.187463 -0.093896' 

-0.902715 -0.051679 -0.375009 -1.037003 -0.049500 -0.363201 

0.627194 0.010328 0.280518 0543729 0.056435 0.168897 

-1.137701 -0.024076 -O.3n457 1.347597 -0.024106 0.492834 

-0.148735 0.092887 -0.070734 0.858068 0.004397 0.341967 

1.095666 -0.018231 0.511182 -0.089491 0.164923 -0.012673 

-0.594617 0.003411 -0.310890 -0.737822 0.069448 -0.296553 

0.583711 -0.013140 0.159542 0.334448 -0.014276 0.076215 

-O.2169S6 -0.043942 -0.160494 -0.363198 -0.060250 ' -O.ln463 

0.409463 -0.117902 0.151622 0.653874 0.095679 0.340519 

0.99S076 0.110S4S 0.5178n 0.106311 0.080782 0.110672 

0.024S26 0.135637 -0.048202 -0.281059 -0.074397 -0.055166 

0.392691 -0.052112 0.182265 -0.426613 -0.220015 -0.197387 

-0.027173 -0.003933 -O.oan81 1.031748 -0.052976 0.323383 

-O.ln226 -0. 14148S -0.074718 -0.443750 0.023856 -0.094611 

-1.239145 -0.017965 -0.623783 -0.010544 0.155523 0.037553 

Table 4.1. Calibration errors. The X axis measures depth 

from the the cameras. 

of the algorithm is establishing a threshold value in magnitude for a zero-crossing. 

Noise points which can cause problems for a stereo matcher are thinned out by this 

process. An important point here is that this approach can err on the conservative 

side and still be successful. Most stereo systems have only vision to use; therefore 

decreasing the data gives rise to problems of sparseness. The approach being 



" 

- 71 -

followed here is that relatively sparse visual data ( and correspondingly more accu

rate) is supplemented with active tactile exploration. Low confidence features are not 

used, nor are they needed in this approach. 

A further thinning algorithm is used to make the matcher more accurate. The 

stereo matcher is only interested in matches along the closed contours of regions. 

All isolated edge pixels determined by the Region Grower ( algorithm 3.3) are 

excluded from consideration by the matcher. This will greatly decrease the number 

of false matches seen by the matcher. 

4.8. IMAGE MATCHING 

. This is the most difficult part of the stereo process. The image matcher used 

was originally developed by Smitley [65] for use on aerial images. It has been modi

fied for the task domain of robotic object recognition. Given a set of features from 

each image, how do we match them? The initial matching criteria for two zero

crossing elements to match is: 

• The zero-crossings must be on the same scan line. 

• The zero-crossings must have a similar orientation. 

• The zero-crossings must have the same contrast sign. 

The initial constraint that helps here is the epipolar one: only features (zero-crossing 

edge elements) on corresponding scan lines are matched. This is not a strong enough 

constraint as there may be many edge elements in each scan line. The zero-crossings 

themselves provide us not only locality of the features but also magnitude and orien

tation infonnation. If two edges match then their orientations should be similar in 

each image. The similarity measure used is thirty degrees. A further requirement is 

.... 
-"~-.-------
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that the contrast change across the edge be the same. Intuitively, this means that a 

black to white edge as we move across the image should match with a black to white 

edge in the other image, and vice versa for white to black edges. Requiring the edge 

magnitudes to correspond within a tolerance level does not prove to be helpful, 

although it is appealing to try to match edges by their "strength". 

Many edges in the scan line can satisfy the weak criteria for selecting matches 

above. What is needed is a metric to measure the match after this initial matching 

stage so the matches may be ordered probabilistically. To establish a metric, a corre

lation is performed about windows centered on the matched pixels in each image. 

The output of the comlation is a metric of the degree to which the areas surrounding 

the matched pixels agree. By establishing large confidence levels (above 95%), only 

those matcheS that are robust will survive. The correlation takes place over a win

dow ~ around the two matched pixels. Detennining the size of the window is 

an important part of the matching process. A small window will not include enough 

detail to disambiguate potential matches and a large window may drown out the 

effects of small local disambiguating features, at the cost of greatly increased pro

cessing time. A reasonable choice for this window size can be made by relating its 

size to the edge detector parameter w, dermed in (3.2). The window over which 

correlation proceeds should be proportional to the density of the zero-crossings 

found. For a filter of size w, a window of size 2wx2w was used. 
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4.9. DEPTH DETERMINATION 

Stereo vision has a number of serious problems which preclude it from being 

capable of creating dense, reliable depth images. One of the more serious problems 

is homogeneous areas within images that are lacking in detail. No edge features are 

present in these regions and the matching algorithms have no basis for a match. On 

the other hand, too much detail will confuse the matcher and cause false recognition. 

This is especially true with periodic textures on surfaces that leave little basis for 

local discrimination. 

Another serious problem related to the practical implementation of stereo algo

rithms for depth determination is the inability of stereo to match edges whose orien

tation approaches horizontal. As edges become horizontal. localization of feature 
I . 

matches becomes ambiguous as is shown in figure 4.3. If we have a series of hor

izontally oriented zero-crossings in both images, then it is not at all clear how to 

match these points; they all satisfy the criteria of orientation and sign and within the 

window have equally probable confidence levels from the correlation. Experimenta

tion has shown that as zero-crossing orientations approach 90° from vertical, the 

accuracy of the matches degrades seriously. Figure 4.4 shows the left and right 

closed contours of a coffee mug and the resulting correctly matched zero-crossings 

revealing the lack of horizontal match data. The matches were made with zero

crossings up to 70 ° from vertical; above 70°, the matches are unreliable. 

Solina [66] has analyzed the quantization errors due to stereo for the cameras 

used in this research. Figure 4.5 is taken from this work and graphically shows the 

error in location of two matched pixels. Any point within the diamond shape region 

will map to the same two pixels in the images. The error is a function of depth and 
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increases as the distance from the camera increases. For the camera model used in 

this work. a one pixel error in disparity causes a change in absolute depth of approxi

mately 4mm. By using subpixel accuracy, this error is reduced to 2mm. 

IAI 

Figure 4.3. Ambiguity of horizontal matches. Pixel A ~ match with 

B, C, D, or E. The correlation windows will be identical 

in these regions. 

A further practical implementation problem fOf determining depth from stereo is 

the effect of incorrect camera registration. A incorrect scan line registration of only 

one scan line can cause large errors. Figure 4.6 demonstrates this errof. Here the 

two digital images of a curve are misaligned by one scan line, yet the resulting 

change in disparity is 4 pixels. This can translate to 16 mm in depth for the cameras 

being used. With vertically aligned edges the effect is minimized since the disparity 

values will be similar. As a digital curve approaches horizontal, the disparity values 

can change over a large range, causing "correct" matches but incorrect depth values. 

~-~ --- -------. 
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Figure 4.4. Oosed contours and stereo matches up to 65 0. 
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F'tgme 4.5. Stereo error. Points inside the diamonds have the same 

digital image coordinates. 
~--------. ------ .. -

~-,....--------. 

Figure 4.6. The two digital curves are incorrectly registered by one 

scan line. Pixel A matches with B and not C, causing an 

error in disparity of 4 pixels. 

- --.-" ._. 
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4.10. INTERPOLATION 

The last step in stereo vision processing is to interpolate the depth points calcu

lated from stereo and try to create a 2 Y2 D sketch of the imaged surface. Looking at 

figure 4.4, it is obvious that the data is too sparse to accurately interpolate a surface. 

Further, some of the regions are not surfaces but holes and cavities. If the system 

were relying on stereo vision alone, this would be another serious drawback to under

standing the object's structure. However, the tactile algorithms can fill in nicely 

what stereo cannot process. Multiple sensing allows a system to rely on each sensor 

for the data it can provide efficiently and accurately, rather than being dependent on 

a single modality. The intent of this work is to use those parts of vision systems that 

work well and not to try to have vision alone understand the scene. In the context of 

recognizing smooth objects without texture, stereo will be able to efficiently compute 

a sparse depth representation on the object's contour. This sparse data can be used 

to guide the active tactile exploration to fill out the surface and feature -descriptions 

of the object to be recognized. 

4.11. SUMMARY 

This chapter has described stereo vision in a robotics environment. While stereo 

appears to be a well understood visual process, its practical implementation in certain 

object domains leaves much to be desired; it is not robust enough to build dense sur

face descriptions for recognition purposes. However, it can provide sparse three 

dimensional data about regions that can then be explored by the tactile sensor. The 

matches provided by the stereo algorithms are reliable because they are based on 

contour tokens as opposed to pixels. High confidence levels are established for the 
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matches in order to reduce error. The sparse and conservative matches produced are 

adequate to allow tactile sensing to funher explore the regions in space. Chapter 5 

describes the nature of the tactile exploration algorithms and chapter 6 describes the 

integration of these two modalities. 
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CHAPTER 5 

TACTILE SENSING 

S.L INTRODUCTION 

. Tactile sensing has for the most pan been ignored in favor of other kinds of 

robotic sensing, particularly vision. The ability that humans have to infer three 

dimensional shape and structure from projected two dimensional images has led most 

researchers to try and emulate this human information processing ability. However, 

the task of vision by machine has proved to be much more complex than originally 

thought The very complicated interaction and coupling of surface reflectance, light

ing, and occlusion yield intensity arrays that machines cannot understand well. 

Vision researchers are now focusing on biological systems, hoping to be able to 

understand functioning systems and apply this understanding to machine vision sys

tems. While progress is being made, it is clear that the early promise of machine 

vision has yet to be fulfilled. The approach taken here is that for tasks such as 

object recognition, vision sensing is not enough. What is needed is extra sensory 

information that can supplement the sparse and sometimes confusing visual data. In 

this work, the extra data is supplied by a tactile sensor that is actively controlled and 

is used in an exploratory manner. 
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This chapter traces the development of tactile sensing in robotics environments 

with particular emphasis on the design and use of these sensors. It then describes the 

tactile sensor being used in this research. Lastly, the active tactile exploration algo

rithms that move the robotic arm using sensory feedback are described in detail. 

S.2. CAPABn.rrIES OF TACTILE SENSORS 

While vision remains the prinuuy sensing modality in robotics, interest in tactile 

sensing is increasing. Harmon [26] has surveyed researchers in the field of robotics 

and reports that 90% of those surveyed viewed tactile sensing as an essential con

comitant of vision. A major reason for this was the inability of vision systems to deal 

effectively with occlusio~ uncontrolled illumination and reflectance properties. 

These researchen felt that the present state of three dimensional scene analysis from 

~ion was "pre-stone age". - They felt that tactile sensing systems would be part of 

an overall sensing environment that included many different kinds of sensors. Tactile 

sensing was felt to be important for recognition tasks, assembly and parts fitting 

worle and inspection tasks. Tasks that call for close tolerances or low absolute error 

can benefit from a tactile approach. It seems clear that in a robotics environment 

intelligent touch is useful. 

Tactile sensors vary in their ability to sense a surface. At the lowest level, sim

ple binary contact sensors such as microswitches report three dimensional coordinates 

of a contact point The next level of sensor reports gray values that are proportional 

to the force or displacement on the sensor. The most capable of these sensors can 

also sense surface orientation, returning a surface normal vector. Useful properties 

that remain unexploited are temperature and hardness sensing. The geometries of 



.. 
- 81 -

these sensors vary from a single sensor to planar arrays of sensors to finger like 

arrays covered with sensors. Much of the research in tactile sensing has centered on 

the transduction technology. A number of technologies including microswitches, 

strain gauges, piezoelectric materials and conductive elastomers have been utilized. 

For a thorough review of these technologies see Harmon [25]. 

An early effort at pattern recognition with tactile sensors was the work of 

Kinoshita, Aida and Mori [38]. They utilized a five fingered hand containing 22 

binary sensors to discriminate between objects. Each object was grasped from a 

number of different vantage points and the resulting binary pattern recorded. A 

discriminating plane was calculated in the sensor space from these learning samples. 

To perform object recognition, the object is picked up a number of times and its 

membership in the discrimination space is computed. This work was able to distin

guish a square pillar from a cylinder at 90% reliability. A similar approach was used 

by Okada and Tsuchiya [48] who used an eleven degree of freedom three fingered 

hand to grasp objects and form binary patterns with the hands contact sensors. 

Another example of tactile recognition was the work of Ozaki et al [52]. In this 

work objects were treated as containing parallel slices which were sensed by a spe

cial gripper. The gripper consisted of 7 contact surfaces with tactile sensors (one 

palmar segment and two three segment fingers) which were wrapped around an 

object's contour and reported the unit normal distribution along the contour. This 

distribution was then matched with a set of model distributions to try to discriminate 

shapes. The system would not work well with objects that could not easily be 

described as a series of slices. 
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Overton [51] described a tactile sensor organized in a rectangular array capable 

of yielding gray value information proportional to force exerted on each sensor in the 

array (each sensor is a forcel). Simple vision array operators were used to distin

guish patterns of tools from static sensing. A similar effort was reported by Hillis 

[30] who used a very high spatial resolution tactile sensor to distinguish small objects 

(screws, clips, bolts etc.). His approach also was to use traditional gray level pr0-

cessing techniques on the array values to find bumps and holes on the surface. He 

also implemented a measure of the ease with which an object could be rolled. 

Because the sensor was larger than the object, static sensing was used. 

Work at Penn in touch sensing began with Wolfeld's thesis [74] Wolfeld used a 

sensor mounted on a XYZ positioner to determine shape, texture and hardness of 

various objects: An attempt was ~ to interpret the sensor imagery over time and 

integrate the results, a departure from the static sensing normally employed. The 

sensor used was a flat pad array of conductive elastomer sensors manufactured by the 

Lord Corporation. Bajcsy [5] and Allen [2] investigated one fmger touch ~ensing 

using the tactile sensor described below. This is a fmger shaped array of sensing ele

ments (figure 5.1.) that was mounted on an XYZ positioner under computer control. 

5.3. SUMMARY OF TACTILE SENSING 

Tactile ,sensing is still in its infancy. The approaches so far have emphasised 

traditional pattern recognition paradigms on arrays of sensor data, similar to early 

machine vision work. Most sensing has been static in that the sensor is larger than 

the object and a single "touch" is used for recognition. Very little has been done on 

dynamic sensing and integrating multiple "touch frames" into a single view of an 

", 
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Figure 5.1. Tactile Sensor. 
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Figure 5.2 Surface normals on the tactile sensor. 

object. Gray value processing. to dctcnnine surface properties is also limited. It 

appears that a fruitful approach to tactile sensing may be to follow the human para

digm and identify human tactile sensing properties to be used in machine tactile sens

ing (see Gordon [22] for an overview of human tactual perception). More exotic 

sensors such as Raibert and Tanners VLSI based sensing array (55] may also help 

by providing high resolution reliable tactile sensing. 

Because tactile sensing is new and unexploiteci, major strides in many areas still 

need to be made. Among these are more robust sensor design to increase spatial 

resolution, eliminate nonlinearities and hysteresis and increase dynamic range and 

bandwidth. Further, intelligent control of sensors is needed at the software level as is 

the integration of these sensors into a multi-sensor environment. Solution of these 
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problems will allow tactile sensing to be an important part of robotics systems, espe

cially since it is potentially low in cost. 

5.4. EXPERIMENTAL TACTILE SENSOR 

The experimental tactile sensor (figure 5.1) used in this research was developed 

at L.A.A.S in Toulouse, France. It consists of a rigid plastic core covered with 133 

conducting surfaces. The geometry of the sensor is an octagonal cylinder of length 

228 nun. and radius 20.nun. On each of the eight sides of the cylinder there are 16 

equally spaced conducting surfaces. The tip of the sensor contains one conducting 

surface, and there are four other sensors located on alternate tapered sides leading to 

the tip. The tip sensing element is referred to as the tip sensor, the tapered sensors 

are referred to. as the taper sensors and the sensors along each of the 8 vertical 

columns are referred to as the side sensors. Figure S.2 shows the range of surface 

nonna! directions for each of the 133 sensing elements. The conducting surfaces are 

covered by a conductive elastomeric foam. The foam is produced in different widths 

from 2 mm. to 4 nun. which allows for a variation in compliance depending upon the 

task. There is a cable exiting from the top of the sensor that carries the reference 

signal and output wires from the sensors. This cable is connected to a AID converter 

that outputs the readings on all sensors in an eight bit gray value. The entire array of 

sensors may be read in a few milliseconds. The digitized signal from the sensor AID 

unit is fed into a Z-80 microprocessor that is responsible for the low level tactile pr0-

cessing. 

The response characteristics of the sensor vary slightly over the 133 sensing ele

ments. A representative sensing element and one that is in contact more often than 
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any other is the tip element. Table 5.1 shows the contact forces necessary to have 

initial, midrange and overload response for this sensing element The repeatability of 

the sensor can also be measured. Table 5.2 shows the X, Y, Z coordinates of contact 

reported by the sensor during a test of repeatedly moving the sensor onto and off of a 

rigid surl'ace. The spatial resolution of the sensor is relatively poor. The side sensors 

are approximately 8 m.m. apart and the tip sensors 7 mm. Thus, localization of sig

nal can cause an error of up to 4m.m. 

The sensor is mounted on the end effector of the PUMA 560 manipulator [70]. 

This is a commercial six degree of freedom robotic manipulator. The tactile sensor 

is mounted with its long axis perpendicular to the mounting plate. This is called the 

tool Z axis. There is a mechanical overload protector in the mounting plate of the 

sensor which will allow the sensor to deflect if a force greater than approximately 5 

pounds is exerted on ~e sensor, preventing it from being damaged by an accident 

5.5. ORGANIZATION OF TACTILE PROCESSING 

The organization of tactile processing encompasses three distinct logical levels 

which take place on three separate hardware levels. At the top level are a set of 

PROLOG and C language modules on a V AX1150 that integrate vision and touch 

sensing. This level decides when and where a tactile exploration should be carried 

out and upon its completion, interprets and integrates this information into a global 

understanding of the scene. The intermediate level tactile processing consists of pro

grams resident in the PUMA controller that coordinate the PUMA arm movements 

based upon high level goals and low level tactile sensory feedback. The low level 

consists of programs that reside in a Z-80 microprocessor that communicates directly 
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Contact - 1 Contact :0 127 Contact - 255 

170 grams 453 grams 1100 grams 

Table 5.1. Response characteristics at tip sensor, 2 mm. foam. 

x y z 
222.38 613.16 -286.97 

222.47 613.16 -286.16 

222.22 612.91 -286.81 

222.41 613.16 -286.72 

222.50 613.19 -286.56 

222.38 613.25 -286.84 

222.38 613.22 -287.13 

222.47 613.03 -286.75 

222.47 613.00 -286.47 

222.50 613.19 -287.19 

222.38 613.06 -287.00 

222.38 613.09 -286.75 

222.34 612.97 -286.75 

222.41 613.06 -286.41 

222.47 613.03 -286.91 

222.38 613.25 -287.25 

222.34 613.03 -286.63 

222.22 612.91 -286.88 

222.50 613.16 -286.63 

222.22 612.94 -286.88 

Statistics 

x y Z 
222.39 613.09 -286.78 

az ay az 

0.09 0.11 0.27 

Table 5.2. Repeatability of Sensor Contact 
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with the tactile sensor. The low and intennediate levels will be explained in the next 

sections. The high level is explained in chapter 6. 

5.6. LOW LEVEL TACTll.E PROCESSING 

The low level tactile processing is a series of Z-80 programs that co~dition and 

filter the data coming from the sensor. The low level routines on the Z-80 work in 

conjunction with the intermediate level tactile routines in the PUMA controller that 

move the PUMA arm with tactile sensory feedback. 

The Z-80 executes a series of commands that are specified from the PUMA sys

tem. The Z-80 maintains an intcrna1 array of the 133 contact sites most recent gray 

value readings, and has the ability to take new readings from the sensor. The low 

level routines that are perfonned on the Z-80 are explained below. 

• SET GLOBAL 1HRESHOLD. This function establishes a threshold gray value . 

Any contact that is below this value is ignored. 

• SET LOCAL 1HRESHOlD. This allows a mask to be specified with varying 

thresholds for each sensor. The main function of this command is to normalize 

the signal response for all 133 of the sensors. 

• SNAPSHOT. This command causes the Z-80 to poll all 133 sensor sites in 

order and report back the gray values for each sensor. The command returns a 

list of 133 ordered pairs consisting of sensor number and gray value. 

• SORTED SNAPSHOT. This is the same as the SNAPSHOT command except 

that the ordered pairs are presorted by gray value before being sent back to the 

PUMA system. 
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• RETURN NU?vfBER OF OVER TIIRESHOLD SENSORS. This command 

causes the Z-80 to interrogate the sensors and report back the number of sensors 

over the global threshold gray value. This command is useful in comparing 

changes over time (moving on to or off of a surface) and in ignoring spurious 

responses. 

• RETURN N LOCA nONS OVER TIIRESHOLD. This command will return 

the N locations and gray values that are over the global threshold value, sorted 

by decreasing gray value. If N=l, then this will return the location and gray 

value of the sensor with the maximum contact force applied. If N=133, then 

this command functions identically to SORTED SNAPSHOT. 

• . GUARDED MOVE. This c0IIUna?d will cause the Z-80 to ~ontinuously moni

tor each of the 133 sites on the sensor and report back (via an interrupt to the 

PUMA) the location and gray value of the sensor with the highest over thres

hold gray value. This is the most useful primitive for surface following and 

movement of the arm with feedback. 

• NEAREST NEIGHBORS. This command asks for the values of the 4 nearest 

neighbors of a specific sensor. Once the maximum contact sensor is found, 

establishing contact values at neighboring sites will allow better localization of 

contact and determination of potential spurious signals. 

5.7. INTERMEDIATE LEVEL TACTILE PROCESSING 

The intermediate level tactile processing takes place in the VAL-II system of the 

PUMA. VAL-II [71] is a robot programming language developed for the PUMA 

series of robots. A particularly useful feature of VAL-II is host control. This allows 
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another computer to act as a controlling node for the V AL-II system. Using host 

control, VAL-II commands can be issued on the host and transmitted over a serial 

link to the PUMA where they are then executed. All program. 110 with the VAL-II 

system is sent to and from the host machine. The effect of this is to allow the con

trol module of the object recognition system to directly call the VAL-II commands to 

perform arm movement with tactile feedback. This procedure has been simplified by 

a set of C language subroutines written by Alberto Jzaguirre [34] that duplicate the 

VAL-II command set, allowing a C program. on the host computer to use the VAL-II 

command set and move the robotic arm. 

The PUMA has an embedded world coordinate system that is shown in figure 

4.2. A location in this space is specified in VAL-II as a 6-vector [~.z,o.a,l], 

where x,y.z are the translational parameters and o,a,t are modified Euler angles used 

to determine orientation. The special location HERE returns the 6-vector that 

corresponds to the position and orientation of the end effector, measured at the center 

of the tool mounting surface on the wrist VAL-II allows the designation of arbitrary 

coordinate frames by supplying a frame origin and two axes for the frame. This 

allows representing locations in the coordinate frame of the tactile sensor, once the 

frame that represents the sensor is defIned. Each sensing element's position in space 

is then defined as a relative transform from the tool mounting plate, allowing compu

tation of its absolute position in space. The orientation of each sensing element is 

also known, allowing computation of the surface normal at the contact site within the 

limits of the sensor's orientation resolution. 

VAL-II has commands to allow asynchronous interrupts on 16 binary sensor 110 

lines. If the low level tactile processing detennines that an over threshold contact 
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has ocCUITed, an interrupt can be sent to the V AL-IT system. This interrupt will 

cause the automatic invocation of an interrupt service routine which can communicate 

with the arm movement programs via a shared memory location, causing the move

ment of the arm to be modified based upon the position and orientation of the tactile 

contact 

The intermediate level tactile processing is characterized by the need to 

integrate the low level tactile sensor feedback with the coordinated movement of the 

arm. The arm needs to be used as an exploratory device. It is guided by high level 

knowledge about each region to be explored and the low level sensory feedback from 

surface contact 

S.7.L EXPLORING REGIONS 

The high level tactile processing will determine a region to explore by touch. 

Once a region is chosen to be explo.red, the intennediate level VAL-IT exploration 

program is remotely executed by the high level using V AL-IT host control. This pro

gram (algorithm 5.1) will establish if the region discovered by the vision algorithms 

is a surface, hole or cavity. The program needs as input an approach vector towards 

the region. The computation of this approach vector is important since it requires 

specifying a starting position in space wQich the tactile sensor must be moved to and 

also an orientation which represents the direction from which the sensor will 

approach the region. The orientation of the sensor is computed by calculating the 

least square plane Plsq with unit normal Nlsq from the matched 3-D stereo points that 

fonn the contour of the region. Nlsq then becomes' the approach vector for the sen

sor. The V AL-IT routines will then orient the ann so that the tactile sensor's long 
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axis (tool Z axis in the sensor frame) is aligned with NIstr The starting point Csran to 

which the sensor is moved is calculated by intersecting plane P lsq with the line Ll 

formed by back projecting the region's 2-D centroid into the scene. Cstan is then 

modified by translating it back along Nlsq so it is off any surface that might be in 

that region. 

The arm is then moved along the tool Z axis until contact with a surface or it 

moves beyond plane Plstp implying the presence of a hole or a cavity. If the sensor 

is able to travel its full length beyond Plsq without contact, then a hole has been 

found. If it travels beyond a specified cavity threshold T cav before contact, then it is 

a cavity. 

5.7.2. SURFACE TRACING 

Once the sensing routines have deterinined if the region is a surface or a hole or 

a cavity, the region must be further explored. If the region is a surface, then a bicu

bic surface patch must be built by integrating vision and touch. This procedure is 

explained in chapter 6. What is required of the intennediate level routines is to trace 

across the surface that has been discovered, reporting back points of contact along 

the way. These contact points on the surface are then integrated by the high level 

tactile processing into a surface patch describing the surface. The surface trace algo

rithm (algorithm S.2) takes as input the point CENTER deflned in algorithm 5.1, 

which is the 3-D point where contact with the surface was established. The trace 

routines trace out from this point to edges of the region. The high level routines 

choose 4 knot points on the regions boundary to serve as knot points for the bicubic 

surface patch. These knots create four boundary curves around the region. By 
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Algorithm to determine if a region is a surface. hole or cavity. 
Inputs: 
Plstf Equation of least square plane of 3-D points 

of region's contour with unit normal N1sq
Csuzn= Intersection point in 3-D between the line Ll 

from the camera back projected through the 2-D 
centroid of the region and P Lsq' 

Outputs: Determination by algorithm if region is a surface, 
hole ex cavity. 

BEGIN. 
Build coordinate frame Tl with NLsq as Z axis 

and C stan as origin of frame Tl. 
1'2 - frame n translated to workspace bounds along N lstr 
MOVE ann to T2.1* aligns sensor with plane normal *' 
Set global threshold for tactile sensor. 
Set up guarded move intcnupt. 
DIST - 0.'- distance sensor tip has moved past Plsq *' 
SENSOR_LEN - length of tactile sensor along its Z axis. 
REPEAT 

MOVE along positive Z axis of frame 1'2 1 mm. 
IF ( sensor tip has moved beyond P Lsq ) { 

OIST - distance between sensor tip and PLsq 
} 

UNTn.. ( (tip contact established) or 
(OIST > SENSOR_LEN) ). '* contact a surface or hole found *' 

IF ( tip contact established and DIST < Tcav) { 

Set CEN1'ER - tip contact poinL 
report ·surface" to hOSL 

} ELSE { 
IF ( OIST >- Tcav and DIST < SENSOR_LEN ) { 

CAVITY _OEPTII - DIST. 
CAVITY _BOTTOM-HERE. 
report "cavity" to hOSL 

} ELSE { 
HOLE CENTER - HERE. 
report "hole" to hOSL 

} ,- end IF *' 
} ,- end IF *' 
END. 

Algorithm 5.1. Explore region. 
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tracing out from the CENTER point towards the midpoints of each of the regions 

four boundary curves, a new knot set and boundary curves are created. This pro

cedure is explained in detail in chapter 6. 

there are many paths between two points on a surface. The constraints that are 

used in determining the path to traverse in this algorithm establishes a weighted 

move vector in determining the next movement along the surface toward the goal 

point 

the movement vector M is determined by: 

Wi are the weights for each of the vectors G j • 

G l is the unit vector in the direction of boundary curve midpoint. 

G2 is the unit vector formed from the previous two contact points. 

G3 is the unit vector that preserves equal parameterization. 

(5.1) 

the need for all three G j is easily established. G 1 is needed to make progress 

towards the boundary edge. We will want to make progress towards the boundary 

at each movement step. However, with concave and convex surfaces, cycles can 

occur as the trace progresses. G2 is used to maintain a path's direction. Once we 

start moving in a certain direction we do not want to stray too far too fast from that 

path. This vector is an "inertia" vector helping the sensor stay on a steady course. 

G3 is needed to keep the parameterization of the surface patches unifonn. and this 

vector moves the trace in the direction to preserve parameterization. This vector is 

the unit resultant of the vectors from the present contact point on the surface to the 
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endpoints of the boundary curve that the trace is approaching. 

The surface trace begins by contacting the surface, determining the surface nor

mal from the contact sensor element, and backing off in the negative surface nonna! 

direction a short distance. M is then calculated and the ann is moved a short dis-

tance in that direction. The surface is then recontacted along the surface normal and 

the cycle repeats. The trace is ended by incurring one of two conditions. The first 

condition is determination of a surface discontinuity. The regions to be explored are 

smooth from the vision analysis since they are lacking in zero-crossings in their inte

rior. If an edge discontinuity appears (as signaled by side sensor contact) the trace 

will end since it has reached a surface geometry change. The other condition to end 

the trace is when the surface contact points are within a threshold of the boundary 

stereo match curve. Thus the trace will end on occlusion edges or discontinuity 

edges. 

5.7.3. HOLE/CAVITY TRACING 

If the Explore Region algorithm determines that the region is a hole 'or cavity, a 

different tactile tracing routine is used. In the case of a hole or cavity, we want to 

determine its cross sectional area, moments and boundary. This can be done by 

moving the sensor around the hole or cavity's boundary and recording the contact 

points which are then sent to the high level routines for calculation of the properties 

mentioned above. The Trace Hole/Cavity algorithm (algorithm 5.3) begins by mov-

ing the sensor just beyond the least square plane PLsq of a region's contour points, 

aligned with NLsq- It then proceeds to move in a direction perpendicular to NLsq until 

it contacts a surface. Once the surface is contacted. the sensor moves in a sawtooth 
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Algorithm to perfonn 3-D s.urface tracing 
with tactile sensory feedback 

Inputs: CENTER is starting point on surface 
NLrq is normal to Plsq 
D is small movement distance 
GOAL is goal point of trace 

Output Series of contact points on the surface 

BEGIN 
MOVE arm to CENTER. 
AUGN arm with tool Z axis along NLrq
set global threshold for tactile sensor. 
surface normal= tool Z axis. 
REPEAT 

REPEAT 
MOVE along surface_nonna! D m.m. 

UNTIL ( surface contact established ). 
report contact position to host 
calculate surface_normal from contact sensor orientation. 
MOVE along negative surface_nonna! D rom. 1* back off *1 
calculate M. 1* from equation 5.1 *1 
MOVE in diIection M D m.m. 

UNTIL ( GOAL reached or contact by side senso~ ). 
END. 

Algorithm 5.2. Trace Surface. 

manner (figure 5.3) staying perpendicular to Ntsq. alternately backing off and recon

tacting the surface, recording the contact points. The distance that the sensor travels 

between contacts is continually updated, and if it exceeds a threshold, the sensor will 

return to the surface along the last contact normal, recontacting the surface. This 

prevents the sensor from losing its way. When the sensor returns to the starting 

point the trace is complete. The set of points recorded constitutes a boundary con

tour for the hole or cavity, which is then processed by the high level routines. 
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o tactile sensor I top view 

Figure S.3. Movement of the tactile sensor inside a hole. 

5.8. SUMMARY 

The use of tactile sensing in robotics has been limited. Previous approaches 

have emphasized static sensing using traditional pattern recognition techniques. The 

approach taken here is to use active, dynamic sensing of surfaces and features to try 

to uncover the underlying three dimensional structure of the object The tactile sen

sor being used is a fmger like device that is mounted on a robotic arm. The organi

zation of tactile sensing is on three distinct hardware and software levels. The low 

level is a series of programs that condition and sample the data coming from the sen

sor. The intermediate level consists of programs that move the robotic arm based 
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upon feedback from the tactile sensor. Algorithms exist to explore a region in space 

and determine if it is a surface, hole or cavity. Once a region is identified, it can be 

further explored by surface following algorithms that report contact points on sur

faces and boundary contours of holes and cavities to a controlling host process. The 

high level knowledge needed to perform these tactile explorations is described in the 

next Chapter. 
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Program to trace a hole/cavity. 
TI is coordinate frame from Explore Region algorithm. 
D I is small movement distance. 
D2 is threshold for moving without contact If movement is 

longer than D2, we need to recontact the surface. 

BEGIN. 
MOVE arm to frame Tl. 
MOVE arm along Z axis of TI DI nun. 1* Z axis is long axis *1 
REPEAT 

MOVE'along X axis of Tl Dl mm. 1* perpendicular to Z *1 
UNTIL (side contact established at point P start). 

report coordinates of contact point P stan to host 
P = P start" 

REPEAT 
distance moved = O. 
Nl = calculated surface' normal at P. 
N2 :::a projection of NI onto XY plane of frame TI. 
N3 = N2 rotated 45 0 about tool Z axis. 
MOVE off surface along N3 DI nun. 1* back off in tool XY plane *1 
N4 = N3 rotated 900 about tool Z axis. 1* approach in XY *1 
REPEAT 

IF ( distance_moved < D2 mm. ) { 
MOVE towards surface along N4 Dl nun. 
distance moved = distance moved + D l. - -

} else { 1* gone too far without contact *1 
MOVE ~ong negative NI DI nun. 1* recontact surface *1 

} 
UNTIL (side contact established at P) 
report coordinates of P to host 

UNTIL ( distance from P start to P < D ). 
END. 

Algorithm 5.3. Trace Hole/Cavity. 
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CHAPTER 6 

INTEGRATING VISION AND TOUCH 

6.1. INTRODUcnON 

The vision and tactile processing described in the previous chapters needs to be 

integrated to build descriptions of surfaces and features of objects that can be 

matched against the models in the model data base. The procedures described in this 

~hapter use both sensing modalities, integrating the data from the sensors to build 

high level descriptions of what is seen and felt This chapter describes the methods 

used to build high level surface and feature descriptions of the sensed objects. A 

hierarchical procedure is presented for building curvature continuous composite sur

faces from the vision and touch data. This procedure computes a Coons' patch 

representation which is the same primitive used in the model database which facili

tates matching. A method for creating smoothed boundaries of hole and cavity cross 

sections is also presented that facilitates matching. 

- 100 -
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6.2. COMPOSITE BICUBIC SURFACES 

The vision algorithms describe regions in space that are to be actively explored 

by the tactile sensor. Once the Explore Region algorithm (algorithm 5.1) detennines 

that a region is a surface, a surface description must be built from both vision and 

tactile data. The surface description will be a composite bicubic surface as described 

in appendix A, which is the same primitive that exists in the model data base. 

The information needed to create a series of curvature continuous patches on a 

set of M x N data points P(u,v) defined on a rectangular parametric mesh is summar

ized in figure 6.1. 

To build an interpolating composite surface all that is needed besides the data 

points themselves is ~gential and twist vector information at the boundaries of the 

mesh. The integration of vision and touch will compute the information in figure 6.1 

to build surface descriptions. 

6.3. BUll..DING LEVEL· 0 SURF ACES 

Level 0 surfaces are surfaces comprised of a single surface patch. They are 

defmed on 2 x 2 rectangular knot set (figure 6.2). The information needed besides 

the 4 knot points are the tangents in .each of the parametric directions and the twist 

vectors at these knots. The choice of the knot points on the boundary of the surface 

is important If these points are not chosen wisely, the resulting surface will be a 

poor approximation to the real surface. There are two considerations in choosing the 

knot points. The first is that the points should be chosen at points of high curvature 

on the boundary curve. If the parametric direction tangents coincide with the lines of 

curvature on the surface then the twist vectors will be zero, which will allow a 
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P JIV(O, N) Py(O, N) Py(1, N) - - - Py(M, N) 

PII(O, N) P(O, N) P(1,N) - - - P(M, N) 

P,,(O, N-l) P(O, N-l) pel, N-l) - P(M, N-l) 

PII(O,O) 

P ",,(0,0) 

- - -
- - -
- - -

P(O,O) P(l,O) - - - P(M,O) . 

Pv(O,O) Py(l,O) - - - Py(M,O) 

P(iJ) are the data points deftned on the grid. 

P iiJ) are the tangents in the u direction. 

P vCiJ) are the tangents in the y direction. 

Puv(M, N) 

PiM,N) 

P,,(M, N-l) 

PwCM,O) 

PUy(M,O) 

P JIV(iJ) are the cross derivatives or twist vectors. 

Figure 6.1. Infonnation needed to build a composite surface. 

simple computation of the surface. The second consideration is that the knots need 

to be spaced unifonnly in each of the parametric directions. Given a closed contour 

boundary of a region from the vision algorithms, we have to choose the four comer 

knots that will be used to create a level 0 surface. The algorithm that does this 

chooses these points according to curvature and parametric spacing. The algorithm 

(algorithm 6.1) for choosing points of high curvature on a contour is a modification 
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of an algorithm originally proposed by Johnston and Rosenfeld [60]. Given a set of 

contour boundary points Pi the " vectors AiA: and Bik at Pi are defIned to be: 

AiA: = Pi - Pi+k (6.1) 

BiA: = Pi - Pi-k 

The kcosine at Pi is: 

Aik'Bik 
(6.2) ciJ: = 

IAikilBikl 

In this defInition, cik is the cosine of the angle formed between the k vectors Aik and 

BiJ:o Accordingly, points of bigh curvature will have a cosine of +1 (zero angle 

between them). and po~ts with no curvature will have a value of -1 (lying on a 

straight segment). The algorithm computes cik for a range of k in the vicinity of Pj' 

It assigns a leve1.h at each ~i where h is the value of k that maximizes Cik: This 

yields a set of local m.axima of curvatures that are then further thinned by retaining 

only those local maxima CiJI that are greater than or equal to any other local maxima 

'thin· h f P W1 range '2 0 j. 

This algorithm yields the curvature values at each point of the contour. Starting 

with the maximum curvature value found, the four knots are successively chosen. 

Any point of bigh curvature that is within a distance D of an already chosen point is 

rejected to insure uniform spacing. The fInal knot creates a series of 4 boundary 

curves on the contour. An important requirement of this method is that boundary 

curves on opposite sides of the contour be approximately equal in length. Step 6 of 

the algorithm reflects this constraint Figure 6.3 shows the closed contours developed 
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Figure 6.2. Level 0, levelland level 2 composite surfaces. 
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Algorithm to choose 4 knot points of high curvature unifonnly 
spaced on the contour. 

Input: Digital 2-D closed curve C, consisting 
of points Pi' 
D is a minimum knot separation distance along the curve. 
L is a threshold for boundary curve length equality. 

Output: Location on C of the 4 knot points. 

1. For every point i on C, compute C ik for a range of 
k in the neighborhood of Pi' Compute the maximum of 
these Cjk and store it as Cj also storing the 
range h where h is the neighborhood around pixel i where 
the curvature maximum occurred. 

2. For every point on the contour, if Cj ~ Cj 

for all j in neighborhood ~ of Pj, 

then save this 'Cj as a local maximum. 

3. Order the Cj determined in step 2 by cosine value. 

4. Let the initial knot be Pj where j is the location on 
the curve where the largest curvature was seen. 

S. Continue choosing two more knots from the ordered list 
If anyone of the chosen curvature maximums is within a 
neighborhood D of an already chosen point, reject this point 
as a knot 

6. Choose the final knot from the ordered list such that the 
difference in lengths of the boundary curves on opposite 
sides of the patch is less than L. 

Algorithm 6.1. Choose Knot Points. 
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Figure 6.3. Knot points chosen on pitcher surface. 
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from the image of a pitcher and the chosen knot points on the contour. 

6.3.L CALCULATING TANGENT VECTORS 

Once the 4 knots that define the extremes of the rectangular defIning grid are 

. chosen, the tangent vectors in each of the parametric directions must be calculated. 

The contour of the region contains a series of three dimensional data points obtained 

from stereo matching that defIne four boundaIy curves on the surface. These curves 

are approximated by a least square cubic polynomial parametrized by arc length 

which is then differentiated and scaled to yield tangent vector values for the knots. 

The scaling is necessary since the approximating curve and the defIning parametric 

grid use different parameters. 

6.3.2. CALCULATING TWIST VECTORS 

The twist vectors are more difficult to estimate. In the non-parametric represen

tation of a surface, 

% = G(XJ1) (6.3) 

the cross derivative ::;, measures the rate of change in the x direction of the slope 

of the surface in the y direction, or the twist in the surface. The parametric cross 

derivatives are related, but since the actual surface twist is found by ratios of the 

parametric derivatives, they can be an artifact of the particular choice of parameters. 

If the parametric directions on the surface are along the lines of curvature of the sur

face, then there is no twist in the surface and the twist vectors are zero. 
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In practice, if care is taken, these vectors can be set to zero with minor effects 

on the surface. This assumes that the parametrization of the surface has been chosen 

wisely. with comer knot points chosen at places of high curvature or discontinuity 

along the boundary and spaced uniformly. in both parametric directions. Attempts 

have been made to estimate these vectors by sampling surface data at the corner 

points with the tactile sensor but the results were not useful. As the number of 

patches that interpolates the surface increases, the effect of these twists is reduced 

since they only need be computed at the four comers of the knot grid. 

Recently, Selesnick [61] has suggested a method for computing the twists from 

surface data at the knots. His method relates the twist normal component to the 

Gaussian curvature of the surface which can be ~omputed locally. Once the Gaus

sian curvature is computed, the component of the twist vector in the direction of the 

surface normal may be computed. This leaves the surface tangential components of 

the twist to be estimated, which can be done accurately with locally sampled data. 

For the purposes of this research, the twists are assumed to be zero. 

6.4. BUll.DING HIGHER LEVEL SURFACES 

A level 0 patch is built from vision data only and is not an accurate description 

of the underlying surface. There are an infmi~ number of surfaces that can fit the 

boundary contour that vision supplies. Further, the tangents which are estimated 

from stereo match points are inaccurate along contours that are horizontal due to the 

lack of stereo match points. What is needed is infonnation in the interior of the 

region to supplement the boundary information.· This information can be obtained by 

the active tactile exploration algorithms described in chapter 5. From a level 0 

-----~~ 
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surface, a level 1 surface can be built that includes more surface information in the 

interior. Figure 6.2 describes the method of building higher level surfaces. A level 1 

surface is formed by adding a tactile trace across the single surface patch defmed in 

level 0, and a level 2 surface is formed by adding tactile traces to each of the 4 

patches defmed by level I creating a new surface with 16 patches. This method is 

hierarchical and general, aliowing surfaces of arbitrary level to be computed. The 

only restriction is that the new composite surface is globally computed. This means 

that given a knot set at resolution N x N, the new knot set will be at resolution 2N-I .. 

x 2N-I, involving tactile traces in (N-I)·(N-I) patches. By using higher order poly

nomial surfaces, local adjustments in the patches are possible; however the extra 

computational burden is not warranted by using fifth degree or higher polynomials. 

In practice, a level I patch containing a 3 x' 3 knot set and 4 patches shows good 

results. 

Algorithm 6.2 describes the procedure for creating a level 1 surface from a level 

o surface. A level 0 surface has a 2 x 2 knot set and I patch, and a level 1 surface 

. has a 3 x 3 knot set and 4 patches. The algorithm uses the Surface Trace algorithm 

(algorithm S.2) to generate interior surface information. The traces begin at the point 

of surface contact found in the Explore Region algorithm (algorithm S.l), which lies 

in the interior of the smface. The algorithm then traces in the direction of the mid

points of the level a boundary curves. The traces preserve the equal parametriiation 

on the surface by using the knot points at the boundary curve ends to calculate the 

movement direction on the surface. The points reported during these traces are com

bined into cubic least square polynomial curves that are differentiated and scaled to 

calculate the tangential information needed at the boundaries. The boundary curves 
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tangents computed from vision data are updated to include the new tactile infonna

tion, which fills in areas that lack horizontal detail from the stereo process. 

Figure 6.4 shows a level one patch built from real stereo contours and active 

tactile sensing of a pitcher. Further results from real data using active tactile sensing 

are reported in chapter 8. The method is able to accurately interpolate planar, 

cylindrical and curved surfaces. 

It is important to note that the vision processes are supplying the justification 

for building smooth curvature continuous surfaces from a region. If the region were 

not a smooth surface, then zero-crossings would have appeared inside the region, pre

cluding the assumption of smoothness. The lack of zero-crossings, or the "no news 

is good news" criteria established by Grimson [23] supports this method and in fact 

is the reason it succeeds in interpolating the surfaces well. 

6.5. BUILDING HOLE AND CA VITY DESCRIYfIONS 

The Trace Hole/Cavity algorithm (algorithm 5.3) describes the method for trac

ing the contour of a hole or cavity with the tactile sensor. A hole or cavity is 

described by its approach axis and a planar cross section. The sensor reports points 

of contact as it moves on and off the surface surrounding the hole or cavity. This 

can be a noisy procedure as many of the tactile sensor's contacts become activated 

in a small tight area such as the hole in the handle of a coffee mug. The poor spatial 

resolution of the sensor contacts also contributes to this phenomena. The data is not 

continuous, but is a set of ordered contact points. Linking these points with line seg

ments yields a curve that needs to be smoothed. The smoothing of each boundary 

curve is done by approximating the series of linked contour points with a smooth 

~-------=:r 



- 111 -

Figure 6.4. Level 1 surface of a pitcher. 
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Algorithm to create a new level 1 patch from a level 0 patch. 
Input: Level 0 patch containing a 2 x 2 knot set 
Output: Level 1 patch containing a 3 x 3 expanded knot set 

1. Move the sensor to the point of surface contact determined 
by the Explore Regio!1 algorithm (algorithm 5.1). 

2. Using the Trace Surface algorithm (algorithm 5.2) trace 
from the surface contact point to the midpoint of each of 
the boundary curves in the level 0 patch. The movement vector 
M in the Trace Surface algorithm is computed using 
the midpoint of each boundary curve as the goal point and 
the knot points at the end of each curve as the equal parameter 
spacing points. 

4. Create a new knot set with the old knots as the comer knots 
of a 3 x 3 knot set The initial surface contact point· will 
become the knot in the center 'of the grid. The fmal contact 
point of each trace becomes the new knots in between the old 
2 x 2 knot set 

5. Adjust the tangents at the comers of this new.knot set by 
recomputing the cubic least square boundary curves between 
the old knots to reflect the added tactile information on the 
boundary curves. Differentiate the curves and scale the 
tangents to reflect the change in parametrization. 

6. Add the tangents at the new knots by forming cubic least 
square polynomial curves from the tactile trace data. 
Differentiate the curves and scale the tangents to reflect 
the change in parametrization. 

Algorithm 6.2. Create New Patch. 
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periodic spline curve. The periodic spline matches derivatives at the endpoints which 

is important in a creating smooth curves that are closed. Figure 6.5 shows a set of 

noisy linked sample points of a circular boundary curve and the boundary curve 

created by smoothing with splines. Once the curve is smoothed, a moment set is 

computed for the cross section bounded by the curve using the metllods of chapter 2. 

The moments are important in determining the transformation between sensed and 

model coordinate systems. 

6.6. SUMMARY 

The integration of vision and touch is the cornerstone of the recognition process. 

This method allows full three dimensional surfaces to be created from sparse vision 

and active tactile sensing. The method requires the use of the active tactile algo

rithms discussed in the previous chapter to control the movement of the arm and sen

sor as it traces surfaces and features on the object. The surfaces that are puilt from 

this method are smooth interpolants of the actual surface, able to be sensed at vary

ing levels of resolution. The composite surfaces built from this method are 

represented in an analytic form which allows simple computation of attributes for 

matching. The smoothness constraint is an outcome of the vision analysis which 

yields regions without interior zero-crossings to explore. Boundary curves that con

tain the cross sections of holes and cavities are found through active tactile sensing 

also. These curves are then smoothed to negate sensor noise effects and create an 

accurate boundary description. 
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Figure 6.5. Sampled and smoothed boundary curves for a circle. 
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CHAPTER 7 

MATCHING 

7.1. INTRODUCTION 

The low level vision and tactile algorithms provide a set of three dimensional 

surface and feature primitives that are used by the matching routines to detennine 

what the object is and to determine its orientation. The matching routines try to fmd 

an object in the model data base that is consistent with the surface and feature infor

mation discovered by the sensors. The intent is to invoke a uniquely consistent model 

from the three dimensional surface and feature primitives discovered. If more than 

one consistent object is found in the data base, a probabilistic measure is used to 

order the interpretations. Once a consistent interpretation is found, a verification pro

cedure is begun. This requires the matcher to calculate a transformation from the 

model coordinate system to the sensed world coordinate system. This transformation 

is then used to verify the model by reasoning about the slots in the model data base 

that are not filled The initial choice of a model is made easier by the three dimen

sional nature of the primitives, allowing matching of higher level attributes rather 

than sets of confusing and noise filled point data. The rules used for invoking a 

model are such that no a priori choice of features or surfaces is needed; all the 
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structural parts of the model are candidates for matching. The object recognition sys

tem has no way of knowing what features or surfaces will be sensed from a particu

lar viewpoint It must be able to invoke a model based upon any identifiable part of 

the model [3]. 

The matching phase is the most difficult of all the modules since it requires the 

system to do high level reasoning about objects and their structure based upon 

incomplete information. The approach taken here is to develop a set of rules that 

will allow experimentation with different reasoning strategies to try to develop this 

capability in the system. The strategies and rules to be used are still under develop

ment and will require further research and are an obvious extension to this work. At 

present, a set of rules exist for the instantiation phase of matching. The v~cation 

phase is currently not implemented as an integral part of the system. Programs that 

carry' out verification sensing have been developed and are demonstrated in chapter 8. 

This chapter explains the strategies and techniques for matching developed so' 

far and proposes directions for future research. Chapter 8 discusses the experimental 

results achieved with the rules and methods described below. 

7.2. DESIGN OF THE MATCHER 

An important design decision in building a matching system such as this is 

when to invoke the higher level knowledge in the model. The infonnation encoded 

in the model is rich and useful, and it would be helpful to the low level modules to 

have such information as early as possible. For example, if the first region explored 

by vision and touch is a hole. a possible strategy might be to search the data base of 

models and find all objects with holes that are consistent with the sensed hole. The 
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reasoning modules could then try to fmd discriminating structures in the models with 

holes to suggest the next level of sensing. While it appears that humans may be 

capable of such reasoning, it clearly is beyond present machine capabilities to reason 

this strongly. The approach taken here is to sense as much as possible initially to try 

I to limit the burden on the reasoning modules. If many primitives are found, the pr0-

bability of a unique and consistent interpretation rises. The cost of this extra sensing 

is minimal. The discrimination that must take place to distinguish similar objects 

will no doubt cause most of the region sensing to occur anyway. By invoking the 

model later in the recognition process many blind alleys caused by reasoning with 

incomplete information are eliminated at the cost of sensing up front If a unique 

interpretation results from sensing all the regions then the probability of a correct 

interpretation is increased As Binford has stated in [9] 

In machine perception, overwhelming verification of a correct hypothesis is 
typically inexpensive compared to the computation required to get to the 
correct hypothesis. These factors shift the utility balance toward getting 
data needed for a highly constrained decision. Very strong, relevant data 
are available if descriptive mechanisms can abstract them and interpretation 
mechanisms use them. 

The implementation of the matcher consists of a set of PROLOG goals that 

match sensed regions with model nodes. The model data base is implemented as a 

set of PROLOG facts that are indexed in a hierarchical manner. The data base con-

sists of eight kitchen objects: pitcher, mug, spoon, teapot, plate, bowl, drinking cup, 

pot Four of these objects (pitcher, mug, plate, bowl) were used in experiments to 

test the matcher and its ability to correctly identify the objects. The other objects 

were included in the data base to see if the discrimination would work in certain 

selected cases discussed in chapter 8. The model data base is limited in size by the 
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difficulty of the modeling effort and desire for efficiency in the matching routines. 

The matching routines described below are intended to show strategies and methods 

for model 'instantiation, computation of transformations from model to sensed world 

coordinates, and verification procedures. The discriminations produced by the 

matcher are meaningful because the discriminations are based upon actual sensed 3-D 

structure. 

7:3. MODEL INSTANTIATION 

The flISt phase of matching is to try to instantiate a model which is consistent 

with the sensory data. The rules for instantiation are based upon the sensed attributes 

of each region investigated by vision and touch. These regions may tum out to be 

surfaces, holes or cavities, and it is important that the instantiation rules not favor 

one or more of these access routes into the data base. The 'hierarchical nature of the 

model allows access to the model attributes at different levels depending upon the 

kind of sensory data produced. 

The matching of sensed data against the model data base can be prohibitively 

expensive if all sensed regions must be matched against all model nodes. The instan

tiation phase tries to limit the number of feasible models quickly using easily com

puted criteria. Once the initial set of consistent interpretations is produced, more 

detailed matching occurs to try to determine a transformation from model to sensed 

coordinates. Finally, the verification will perform a new level of sensing to test the 

hypothesized model for consistency. 
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7.3.1. DISCRIMINATION BY SIZE 

One of the benefits of using active tactile exploration is that physical size con

straints can be used for global discrimination. Nevatia and Binford [46] and Brooks 

[15] have shown the utility of using physical size constraints in recognition tasks. 

The tactile sensor can be moved into the workspace to trace the global outline of the 

object to determine its bounding box. This is done by aligning the sensor vertically 

with the worktable and moving the sensor until it contacts the object The sensor 

then moves around the object until it returns to its starting position. The granularity 

of the movement may be varied to obtain coarse measurements or produce finer 

detail. This is a simple, fast and effective procedure for limiting the initial search 

spac~ of the object models. Any model whose bounding volume exceeds the sensed 

volume is rejected. This procedure also puts coarse bounds on the location of the 

object which can be used by the verification procedures later. 

7.3.2. DISCRIMINATION BY GROSS SHAPE 

Another simple discrimination test that is useful is discrimination by gross 

shape. The three dimensional sensory data supplies information on features (holes 

and cavities) and surfaces. If the low level sensing discovers N holes, all models 

with N-l holes can be rejected. This applies equally well to cavities. For surfaces, 

the criteria is more strict Because the sensors discover patches of possibly larger sur

faces, the surface type classifier is less robust A curved surface in the model may 

have cylindrical regions, which may be sensed as a cylindrical partial patch. There

fore, gross shape discrimination must be conservative in matching curved surfaces. 

In the case of planar surfaces, discovery of a planar surface is a strong discriminant 

; .. ' -- .-



- 120 -

The procedures used to classify surfaces are discussed in section 7.3.4. 

7.3.3. FEATURE ATIRIBUTE MATCHING 

Feature attributes are used as a discrimination tool to invoke a consistent model. 

Holes and cavities are modeled as right cylinders with constant planar cross section 

perpendicular to the cylinder's axis, occupying a negative volume. The constant 

cross section can be used to deflDe a set of moments that can be used to match the 

cross section with a sensed feature. Moment matching was flISt described by Hu [33] 

who described a set of seven moment invariants involving moments of up to third 

order. These moments are simple to compute using the methods described in chapter 

2. At the instantiation level two matching criteria are used. The flISt matches the 

moment Moo which measures the area of the planar cross section. For a match to be 

accepted, the sensed and model areas of the cross sections must be within a thres

hold If this moment matches within the threshold, then the invariant MOl + M20 'is 

matched between sensed and model systems. This measure is scaled to reflect the 

difference in Moo when it is matched In the case of cavities, an extra attribute of 

depth is available as a matching criteria. 

Each feature is defined by its planar boundary curve and axis. The methods of 

moments was chosen for its simplicity of computation and matching. Other methods 

may be used besides the method of moments to match the curves. Two dimensional 

curve matching is a well studied problem. Other approaches are the curvature primal 

sketch of Brady and Asada [13] and the methods of curve matching developed by 

. Kalvin et al [36] and Faugeras and Bhanu [8]. 
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Once we have computed the moment set, the invariants can be used for match

ing. At the model instantiation phase, matches are only rejected if a strong rejection 

criteria exists since it is unlikely that a globally poor match will survive this culling. 

This discrimination becomes more and more robust as multiple features and surfaces 

are discovered. 

7.3.4. SURFACE ATTRIBUTE MATCHING 

The surfaces created from vision and touch need to be matched against the sur

faces in the model data base. This problem is compounded by the fact that the sur

faces created from vision and touch may be contained within or partially overlap the 

surfaces to be matched against in the model data base. There are two levels at which 

this matching takes place. In the instantiation phase, surfaces are matched according 

to global criteria described below. This phase tries to match surfaces· by such attri

butes as area and type of surface. After a model has been instantiated, fmer level 

matching is attempted to try to ascertain a transformation matrix between model and 

sensed object 

The initial phase of matching surfaces tries to match on two attributes, area and 

type of surface. The area criteria is useful in the context of posing initial consistent 

matches between sensed and model objects. The sensor is not capable of sensing 

accurately parts of the model with fine structure such as the handle of the mug. The 

area criteria effectively culls out small feature matching and leaves the task of larger 

shape correspondence. Any patch whose area is smaller than the sensed patch's area 

will be rejected as a match. 
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7.3.5. CLASSIFYING SURFACES 

As described in chapter 2, the Gaussian curvature K is a measure which 

describes the local surface changes by means of a scalar. Using this measure, sensed 

surfaces can be classified as planar, cylindrical, or curved. The procedure to do this 

iterates over the parametric surface at a specified sampling increment, computing the 

normal curvatures Kmax,lCmm in the principal directions and computing K as the pro

duct of these curvatures. 

To classify a surface as planar, two criteria must be met The Gaussian curva

ture computed over the surface must be within a threshold of zero everywhere and 

the surface must pass a planarity test The test for planarity computes a least square 

plane Ax + By + Cz + D = 0 from a set of points on the surface. R~idual d.istances 

for each point ( Xi , Yi • Zi ) in the set to the plane were computed from 

(7.1) 

and a measure r of the planarity of the points was defmed as: 

r = ...fR (7.2) 

where R is the mean residual in (7.1). If r is below a threshold, then the surface is 

classified as planar. Cylindrical surfaces are those with K=O (within a threshold) and 

having a non zero Kmax or lCmin. Curved surfaces are computed similarly and have a 

nonzero value of K. 

A recent development by Koparkar and Mudur [40] also can test for planarity 

directly from the surface patch equations. This result has related the planarity of a 

bicubic surface patch to the boundary curves of the patch. The method can be 

applied here to fmd out how planar a surface patch is. A Coons' patch can be 
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defmed as 

(7.3) 

where Ai and Bj are the blending functions of the patch and Qij are coefficients com

puted from patch data. If the blending functions are linear, and the patch corners are 

coplanar, then the patch is planar. By establishing small tolerances for coplanarity 

and linearity, the patch may easily be tested. This theorem states that the linearity of 

the patch is a function of the linearity of its blending functions, which are readily 

accessible and easily computed. Determining the linearity of the blending functions 

is accomplished by fmding the curve maxima or minima measured from the chord 

joining the curve's endpoints. 

Surfaces will match at this stage if two criteria are met The fIrst is that the 

sensed surface and matched model surface are of the same type as defIned above. 

The second is that the sensed patch's area must be less than or equal to a model 

surface's area. If these criteria are met, then the surfaces are judged consistent in 

this fIrst level of discrimination. The surface matches must then be relation ally con

sistent as described below. 

7.3.6. RELATIONAL CONSISTENCY 

The set of possible consistent interpretations can be restricted further by main

taining relational consistency between the sensed regions and the model nodes. The 

relational constraint used is adjacency. If two sensed regions in space are physically 

adjacent, then the model nodes that these regions match with must also be adjacent 

The list of potential matches generated from the surface and feature matching is 
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further reduced by this method. For example, if a planar surface that is the lid of a 

teapot is sensed, it will match with both the bottom planar surface of the teapot and 

the lid If the hole in the handle of the teapot is also sensed, an adjacency relation 

exists relating the two sensed regions (hole and lid). Sensing and matching the hole 

will cause the planar surface match with the bottom of the teapot to be rejected. It 

will be rejected because the model contains no adjacency relation between the hole 

and the bottom of the teapot. There does exist a model relation between the hole and 

the lid, and this is consistent with the sensed adjacency relation, causing this match 

to be accepted. 

7.3.7. ORDERING MATCHES 

The initial search for consistency is done by creating lists of all consistent 

matches between a set of sensed regions and the nodes in the data base. The sensed 

regions are described by a data structure that contains a list of cavities, a list of holes 

and a list of surfaces that have been discovered. These lists are then compared with 

each object node, trying to match lower level surface and feature nodes with the 

sensed data. The output of this matching is sets of consistent matches ordered by a 

combined probability-complexity measure. If the particular view that is presented to 

the sensors is rich in structure that can be sensed, then the matching described above 

is strong enough to invoke a unique consistent interpretation. If the view does not 

provide strong discriminating features and surfaces, then the consistent matches must 

be ordered for later verification. 

There are two cases to consider in ordering matches. The fIrst is matches that 

are consistent within the same model object. For example, consider an object with 
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two cylindrical surfaces, equal in area. A sensed cylindrical patch may match either 

of these model nodes. Both matches will be accepted, but a preference will be given 

to the match of the model node containing the higher probability. The probability 

measure is an aid for recognition in which the components are ordered as to their 

likelihood of being sensed. High priorities are assigned large components or isolated 

components in space that protrude (handles, spouts). Obscured components, such as 

a support surface of an object are assigned lower priorities. The probabilities do not 

preclude recognition but simply give a preference for one set of potential matches 

over another. The probability measure is normalized across all objects so that each 

object's surface and feature probabilities sum to 1. 

The second case is consistency across different model objects. Given a set of 
. . 

consistent object matches a strategy for determining which object is present is 

needed. The set of consistent interpretations needs to be partitioned in some manner. 

In general, determining these partitions dynamically is very difficult A possible 

solution is to partition the objects a priori; however, the space of possible consistent 

interpretations is too large for this to be an effective strategy. The strategy used here 

is to search for object complexity. To implement this strategy, a complexity attribute 

is attached to each object model which is the number of components and features in 

the model of the object The normalized probability measure computed from 

matches within each object is mUltiplied by the model complexity and the matches 

are ordered by this measure. Given two matches of equal probability, the more com

plex object will be preferred, and verified flrst This choice was made for two rea

sons. First, the sensors are more capable of flnding the presence of a surface or 

feature than the absence of one. Secondly, flnding a surface or feature not only helps 
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the discrimination but quantifies it through sensing the surface or feature attributes. 

7.4. VERIFICATION 

Verification can be viewed as slot filling, where the instantiated model's nodes 

are either filled, representing a sensed match, or unfilled. Verification becomes a 

process of reasoning about unfilled slots. The fIrst step in this process is to compute 

a transformation between the model coordinates and sensed world coordinates. Once 

this transformation is computed, veriflcation sensing can be carried out, usin& the 

sensors to discover unsensed or occluded structure. 

7.4.1. COMPUTING MODEL TO SCENE TRANSFORMATIONS 

Once a model is instantiated, a transformation between model coordinates and 

sensed world coordinates must be computed. This transformation will allow the 

knowledge embedded in the model coordinate frame to be used in the sensed world 

frame. By transforming model surfaces and featureS to the sensed world frames, 

verification of unrecognized slots in the model can proceed since their assumed loca

tion is now computable with this transformation. This knowledge enables the sensors 

to explore regions that were not seen in the initial sensing and to explore visually 

occluded areas with tactile sensing. The transformation may be computed with 

feature information or surface information. In some cases, a partial transformation 

may be computed that will allow further sensing. 
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7.4.2. MATCHING FEATURE FRAMES 

Each feature in the data base is associated with a coordinate frame. This allows 

the feature to be defmed in object centered terms rather than arbitrary model coordi

nates. Once the models and their frames are developed, mappings from one feature 

frame to another are readily computable. Figure 7.1 shows the frames Cm and Hm 

which are object centered frames defmed for a coffee mug's cavity and a hole in the 

model coordinate system. The relative transform between the hole frame and the 

cavity frame RIIcm can be defmed as: 

(7.4) 

(7.5) 

Similarly, the transformation from modeled cavity to modeled hole Rchm is: 

(7.6) 

Because these are relative frames, discovering one of the model frames in the sensed 

coordinate space will defme the other feature in the sensed coordinate space. Assum

ing we know the match between the hole in sensed world coordinates with frame Hs 

and the model hole with frame Hm then the cavity in sensed world coordinates is 

defmed by frame C;. 

(7.7) 

The determination of the new feature frame in sensed world coordinates is important 

to the verification process. If an unfilled feature slot is seen, then the feature's frame 

in sensed coordinates is available through the relative frame mapping. The frame for 

a feature defines the axis of the hole or cavity in sensed world coordinates which is 
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then used as an approach vector to sense the unseen feature even if it is occluded. 

c'" 

Figure 7.l. Coordinate frames for the features of a mug. 

In some cases, feature frames are only partially defmed. This is the case with 

rotationally symmetric features such as a circular cavity or hole. The approach axis 

of these features is well defined, but the principal axes of inertia are not However, 

the frame matching technique discussed above can still determine within this rota

tional parameter the new sensed frame. If occlusion infonnation is also included, the 

new frame can be constrained to lie within a certain rotational range around the 

approach axis, allowing occlusion sensing to take place and find features that cannot 
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be seen. An example of this is given in the next chapter, where the tactile sensor is 

able to sense a visually occluded hole. 

7.4.3. MATCHING SURFACE FRAMES 

Matching of surfaces is more difficult because a unique surface frame is not as 

easily sensed as a feature frame. Planar and cylindrical surfaces have one well 

defmed frame vector which is the plane's normal and the cylinder's axis. Curved 

surfaces in general do not have any such natural embedded frame. In the case of 

planar and cylindrical surfaces, the one axis which is defined will allow defining the 

transformation up to a rotational parameter about that axis and a translation. In the 

case of the plane, the plane's centroid is also computable and this will supply the 

translational component of the transformation. This can be used in conjunction with 

other feature and surface matches to constrain the sensed frame. 

Curved surfaces have no embedded frame information that is unique that we 

may exploit for arbitrary surface frame matching. Unlike a planar or cylindrical sur

face, an arbitrary curved surface has fewer invariants such as a normal to the planar 

surface or an axis of the cylinder that can be matched against. One approach, imple

mented by Potmesil [54], is to generate point matches on the surface and try to 

iteratively compute the transformation matrix. Potmesil matched bicubic patch 

descriptions in order to build three dimensional models of objects from different 

viewpoints. His method was to choose an initial set of point matches (four are 

needed) and compute the transformation from one patch to another and then test for 

correspondence. The method worked reasonably well but was slow and used an arbi

trary evaluation function. No attempt was made to implement this method here due 
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to the excessive time of execution which precludes its use in a robotics environment 

Compounding this problem is the surface subset problem: the sensed surface is in 

general a subset of the larger model surface. Therefore the point matches must be 

chosen from a potentially larger set of points. 

The analytic nature of the surfaces created from vision and touch allows compu

tation of differential geometry measures such as lines of curvature, principal direc

tions, and Gaussian curvature. Recently, Brady, Ponce, Asada and Yuille [14] have 

suggested that certain lines of curvature that are planar might be significant in terms 

of recognizing structure. For example, the only planar lines of curvature on an ellip

soid are the lines formed by the intersection of the symmetry planes with the surface. 

Discovery of lines such as these is feasible with the representation used, and may 

lead to more robust recognition methods for curved surfaces. 

7.4.4. VERIFICATION SENSING 

Once the transformation relating the modeled to sensed coordinates is com

puted, features and surfaces locations in the model can be related to the sensed world 

coordinates. The location and approach axis of holes and cavities can be computed 

from these transformations and used to guide the tactile sensor to verify the feature's 

existence. In particular, occluded features may be sensed and verified in this manner. 

Because their approach axes and centroids are well defmed by the transformation, 

blind tactile search can succeed. 

Tactile sensing of visually occluded surfaces is difficult The integration of 

vision and touch to build surfaces described in chapter 6 works precisely because 

both modalities are being used. The vision guides the tactile tracing, establishing 
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starting and ending conditions on the trace. Attempts to use touch alone to build sur

faces that are visually occluded will not work without 'the extra information supplied 

by vision. Blind touch can only sense discontinuities and presence or absence of sur

faces. Further, because the touch is blind, the relation of these surfaces to the object 

structure is unclear. It is not possible to build a patch description as is done in the 

visible parts of the scene. 

Verification can be time consuming if all model slots are to be filled. The 

hierarchic nature of the models supports different levels of verification sensing. If a 

component slot is filled because a surface of that component was matched, we can 

decide to accept the component as verified or do 'further sensing on any other sur

faces that make up this component If the model instantiated is unique, then lower 
, ' 

levels of sensing may not be necessary. If the instantiation is not unique, then going 

deeper into the hierarchy of slots to perform more sensing may be called for. Confi

dence levels for verification can be set up in this manner, suggesting different levels 

of acceptance and further sensing to be carried out 

7.5. SUMMARY 

Matching is the last step of the recognition process. It has two components 

which are instantiation and verification. Instantiation tries to fmd consistent interpre

tations from the sensed data using rules. Once a model is instantiated, verification 

computes a transformation from model to scene, allowing further sensing to take 

place and support or reject a hypothesis. Design decisions need to be made as to the 

levels of sensing and matching criteria that need to be established for each phase of 

the process. Matching is done at a coarse level to try to quickly reduce the number 
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9f feasible models. Matching is based upon attributes of surfaces and features 

discovered by the integration of vision and touch. If the imaged scene is rich with 

structure that can be sensed, instantiation of a unique model is likely. If a unique 

instantiation is not possible, then the possible objects are ordered by probabilistic 

and complexity measures. 

The transformation from model to sensed coordinates Irul:y be computed from 

either feature or surface information. Features have an embedded coordinate frame 

that simplifies the computation of this transformation. Surfaces may only supply par

tial information about the transformation. Partial transformations will still allow 

further verification sensing to take place. 

~--~-~. -,..--- . 



CHAPTER 8 

EXPERIMENTAL RESULTS 

S.L INTRODUCTION 

This chapter details the experiments that were conducted to test out the 

approaches developed in the previous chapters. The results of integrating vision and 

touch are further presented as is the ability of correct matches to be made against the 

model data base. The experiments are intended to show working approaches to 

object recognition. The experiments show that integrating vision and touch is a 

viable method for recognition, particularly when compared to standard vision pro

cessing. The experiments reported are all run with real data from real noisy sensors; 

no simulation results will be reported. The tactile sensor being used is relatively 

crude in terms of spatial resolution compared to newer devices. Despite these 

shortcomings, the approaches to matching discussed in the previous chapter work 

well in a number of important cases. The main intent of these experiments is to 

show 1) the utility of the methods presented and 2) the ability of touch and vision to 

succeed in situations that vision alone would find difficult. 
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Figure 8.1. Digital images and zero-crossings for the plate. 
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Figure 8.2. Region analysis and stereo match points for the plate. 



- .- - -~-.-- . --

. . 

- 136 -

Figure 8.3. Level 1 surface for the plate. 

Figure 8.4. Surface normals on the plate. 
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Surface Analysis, plate 

Surface Area Kmu. Kmin r 

sensed 29470 .000896 -.000053 4.71 

model 28496 .000326 -.000209 4.81264 

Table 8.1. Surface analysis of the sensed and model plates. 

Orientation Analysis, plate 

actual normal vector (0.734507 , 0.007877 , 0.67855) 

sensed normal vector (0.751346 , 0.030944 , 0.659182) 

angular difference 6.25 degrees 

Table 8.2. Orientation analysis for the plate. 

8.2. EXPERIMENT 1 

The first experiment tried to recognize a salad plate which is a regular planar 

object The digital images and zero-crossings are shown in figure 8.1 and the region 

analysis and stereo matches in figure 8.2. The images yielded few feature points 

that could be matched to detennine depth as expected with a smooth homogeneous 

surface. The stereo matcher was only accurate in matching zero-crossings up to 65° 

from vertical, yielding sparse and incomplete depth information. An image such as 

this would pose large problems for a vision system alone; the data is too sparse to 

support a consistent visual hypothesis. The region analysis revealed only a single 

region to be explored which was the central area of the plate. The tactile system 

explored the plate and built the surface description shown in figure 8.3 by integrating 

the touch and vision data into a level one surface description .. The surface was 

~~~ ...... ~- -~--~-~-,-~~---. . - . -. 
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sampled at small intervals in parameter space calculating the maximum and minimum 

Gaussian curvatures (Kmax ' KmiD), the area of the surface and the root mean residual 

r which tests for planarity. Table 8.1 shows this analysis along with the analysis of 

the modeled salad plate's surface. 2 

An analysis of the surfaces in the model database established a threshold value 

of ±.OOI for determining zero Gaussian curvature. The surface patch's Gaussian cur

vature was within this threshold implying a planar or cylindrical surface. The value 

of the residual measure r was small confmning a planar surface. All of the objects 

in the data base except the cereal bowl have at least one planar surface, and are 

potential matches; however, when the areas were compared, the matcher was able to 

discriminate among these objects and choose the plate. If the areas of the planar 

model surfaces had been similar further techniques to discriminate planar shapes 

would be necessary. The techniques used for discrimination of features (moments) 

could be used here, but in general the surface subset problem may preclude this. The 

planar sensed area being matched may not be the entire planar model surface. If the 

planar surface on the bottom of one of the objects mentioned above was similar to 

the plate, the matcher would have ordered the objects by complexity and tried to use 

verification sensing to discover hidden occluded structure. Figure 8.4 shows the com

puted surface normals on the plate, verifying its planar appearance. 

The normal of the least square plane fitted to the surface was the estimate for 

the orientation of the object No other orientation parameters were available since 

2 All surfaces shown from integrating vision and touch are shown onhographicaUy project
ed, with no hidden lines removed The lines on the surfaces are lines of constant parameteriza
tion, computed by holding one parameter of the surface constant and iterating over the other 
parameter. 
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the plate was symmetric about its planar axis. Table 8.2 shows the accuracy of the 

orientation estimate, which was formed by taking the dot product between the orien

tation vectors and calculating the angle between them, yielding an angular difference 

of approximately 6°. 

The use of touch in this experiment verified the planar nature of a surface. The 

sparse visual cues were not dense enough to support the conclusion from vision 

alone. Determining if a surface is planar is a strong constraint It allows determina

tion of an orientation in space and constrains the surface in ways that facilitate 

matching in 2-D rather than 3-D. 

8.3. EXPERIMENT 2 

The second object imaged was a cereal bowl. The digital images and zero

crossings are shown in figure 8.5 and the region analysis and stereo matches in figure 

8.6. The images are similar to the plate in experiment 1. The only depth cues are 

monocular, where small shading gradients exist but which elude the zero-crossing 

edge detector. If surface reflectance and lighting were known a possible method of 

shape reconstruction would be shape from shading. However, these constraints are 

unknown in our case. This is an excellent example of the discriminatory power 

when tactile sensing is added to vision. The region analysis yields one region to 

explore with the tactile sensor. Upon exploration, a level one surface of the bowl 

was computed and is shown in figure 8.7. Figure 8.8 is a cross section through the 

level one surface showing the surface normals. The tactile sensor did not find a sur

face until it had passed 40mm. beyond the plane of the region's contour determined 

from vision. This prompted a cavity trace in addition to the surface trace. 
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Figure 8.5. Digital images and zero-crossings for the cereal bowl. 
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Figure 8.6. Region analysis and stereo matches for the cereal bowl. 
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Figure 8.7. Level 1 surface for the cereal bowl. 
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Figure 8.8. Cross section of bowl surface showing surface normals. 
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Surface Analysis, cereal bowl 

Surface Area Kmax Kmin r 

sensed 41218 0.000949 -0.003550 14.9788 

model 60616 0.001290 0.000432 17.2152 

Table 8.3. Surface analysis of the sensed and model bowls. 

Moments, cereal bowl cavity 

cavity Moo M20 M02 M2o+M02 
sensed 17068 21927264 24656910 46584174 

model 19378 29882396 29882396 59764792 

scaled sensed 19378 28263552 31781979 60045532 

Table 8.4. Moments for sensed and model bowl cavity 

Orientation Analysis, cereal bowl 

actual cavity axis (0.810766, -0.001906, 0.585368) 

sensed cavity axis (0.765278, 0.041297,0.642374) 

angular difference 5.08 degrees 

Table 8.5. Orientation analysis for the· cereal bowl. 

The matcher tried to match the surface and the cavity with an object in the data

base. The surface is not planar or cylindrical since its Gaussian curvature is above 

the established zero threshold. Table 8.3 shows the results of the surface analysis of 

sensed and model bowls. The cavity had a sensed depth of 40mm. and a moment set 

which is shown in table 8.4. The pitcher surface was a potential match along with 
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the bowl in this example but the cavity depth and moments only matched the bowl. 

The model cavity depth is 45mm. and the depth from sensing was 4Omm. The cavity 

sensing yielded an estimate of the cavity's axis vector that was determined by the 

normal to the cavity cross section and is shown in table 8.5. The angular difference 

between the actual cavity axis and the sensed axis was approximately 5 0. 

The initial visual data for experiments 1 and 2 were almost identical. Only by 

using touch sensing did the surface's depth become apparent The discovery of a 

cavity allowed the system to discriminate between two potential surface matches. 

The combination of surface and feature information reduces the likelihood of multiple 

consistent models being found. 

8.4. EXPERIMENT 3 

The third experiment imaged a coffee mug. In this image the hole, cavity, han

dle and body of the mug were all visible. The digital images and zero-crossings are 

shown in figure 8.9 and the region analysis and stereo matches in figure 8.10. The 

region analysis yielded 4 separate regions to explore. The first region explored was 

the cavity. Figure 8.11 shows the tactile sensor tracing the cavity of the mug, figure 

8.12 shows the smoothed boundary curve computed from the tactile trace of the cav

ity, and table 8.6 shows the computed moment set for the planar cross section of the 

sensed cavity. The second region explored is the mug's main body for which a sur

face patch was built and is shown in figure 8.13. This surface patch is a level one 

patch built from vision and touch and very closely approximates the cylindrical sur

face of the mug. The geometric analysis of the patch is shown in table 8.7 . The 

analysis of the patch shows its Gaussian curvature to be within the specified 

~,- . ..,--~-"",---~ - --- .. 
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threshold of zero Gaussian curvature. The patch is not planar since its residual value 

from the fitted plane is too large. This leaves the choice of the surface to be a 

cylinder. If the model database contained parabolic or elliptic cylinders, then further 

geometric analysis of the surface is needed. If the sensed surface is a circular 

cylinder, then planes perpendicular to the cylinder's axis will fonn circles of intersec

tion on the surface. The cylinder's axis can be detennined by flnding the lines of 

minimum curvature on the surface. The lines of minimum curvature are one of the 

principal directions on the surface. They are uniquely defmed except in the case of 

umbilic points which are points on the surface where the curvature in each of the 

principal directions are equal (spheres and planes are entirely composed of umbilics). 

Using the lines of curvature, the cylinder's axis may be computed and by intersecting 

the surface with planes perpendicular to the axis, a set of intersection curves can be 

created which will be circles if the surface is a circular cylinder. Figure 8.14 shows 

the surface nonnals computed for the patch. 

The hole was found after the Explore Region algorithm penetrated the region 

defmed fro\ vision processing and did not contact a surface (flgure 8.15). The 

Trace Hole/Cavity algorithm traced the hole and the smoothed boundary curve shown 

in flgure 8.16 was computed from the contact points on the holes boundary. Table 

8.8 shows the computed moment set for the traced hole. 

The matcher was presented with an abundance of sensed region information to 

try to instantiate a modeL The cylindrical surface that was computed matched a 

number of objects in the database (pot, coffee mug, drinking glass) as did the cavity 

(drinking glass, coffee mug). The hole was not found in the drinking glass (an 

identical object in the database to the mug but without a hole or a handle) but 
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Figure 8.9. Digital images and zero-crossings for the coffee mug. 
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Figure 8.10. Region analysis and stereo matches for the coffee mug 
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Figure 8.11. Tactile sensor tracing the coffee mug cavity. 

Figure 8.12. Smoothed boundary curve for coffee mug cavity. 
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Figure 8.13 .. Levell surface for the coffee mug body. 

Figure 8.14. Surface normals for the coffee mug body . 
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Figure 8.1S. Exploring and tracing the coffee mug hole. 

Figure 8.16. Smoothed boundary curve for coffee mug hole. 
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Moments, coffee mug cavity 

cavity Moo M20 M02 M20+M02 
sensed 4383 1485060 1583911 3068972 

model 4758 1802083 1802083 3604167 

sensed scaled 4758 1750112 18666606 3616718 

Table 8.6. Moments for sensed and model coffee mug cavity. 

Surface Analysis, coffee mug body 

Surface Area Kmu Kmin r 

sensed 9598 0.000492 -0.00062 11.18 

model 22078 0.00 0.00 9.73 

Table 8.7. Surface analysis of the sensed and model coffee mug bodies. 

Moments, coffee mug hole 

hole Moo M20 M02 M20+M02 
sensed 1011 152109 44729 196839 

model 1296 187673 148729 336402 

sensed scaled 1296 249843 73470 323313 
.. 1 

I Table 8.8. Moments for sensed and model coffee mug hole. 

Orientation Analysis, coffee mug 

actual cylinder axis (0.0, 0.0, 1.0) 

actual cavity axis (0.0, 0.0, 1.0) 

sensed cylinder axis (-0.005972, 0.010281, 0.999929) 

sensed cavity axis (-0.054294, -0.056377, -0.996932) 

maximum angular difference 4.75 degrees 

Table 8.9. Orientation analysis for the coffee mug. 
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matched with the coffee mug, yielding a unique choice of object 

This particular view was rich with infonnation. Not only did it provide a 

unique instantiation, but it also allowed a check on the orientation of the mug. The 

cylindrical surface axis and the cavity axis are parallel in the model and Table 8.9 

shows the agreement between these two axes and the actual orientation. The agree

ment is quite close, showing the ability to detennine orientation from both surfaces 

and features. 

The handle of the mug is too small and fine for the sensor to adequately build a 

patch description. It can be verified -as a surface with the sensor, but attempts at 

building a patch description failed due to the sensor's much larger size. This experi

ment shows the many ways an object can be recognized. Holes, caviti~ and surfaces. 

are all able to be used to both recognizc and correctly identify orientation parameters 

for the objects. This is important in that certain viewing angles may present a 

confusing region that cannot be sensed accurately. However, if one of the regions is 

able to be sensed accurately, then a partial match can be established leading to later 

recognition. 

8.5. EXPERIMENT 4 

The purpose of experiment 4 was to see if the system could detennine if the 

mug was cavity side up or bottom side up. Visually these two positions are very 

similar. Only by exploring the region with the tactile sensor can the surface or cav

ity be distinguished. The objects in these experiments are rigidly fastened to the sup

port surface. The sensor is too massive and the arm control too slow in response to 

prevent the objects from moving when being sensed. To perform this experiment, 
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Figure 8.17. Levell surface for coffee mug bottom. 
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Figure 8.18. Surface nonnals for coffee mug bottom. 
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Surface Analysis, mug bottom 

Surface Area Kmax KInin r 

sensed 4790 0.000534 0.000299 0.577 

model 5024 0.00 0.00 0.00 

Table 8.10. Surface analysis of the sensed and model mug bottom surfaces. 

Orientation Analysis, Coffee Mug 

actual plane axis (0.0, 0.0, 1.0) 

sensed plane axis (0.050760, -0.04268, .998702) 

angular difference 3.0 ° 

Table 8.11. Orientation analysis for the coffee mug, experiment 4. 

the mug was actually in the same upright position as in experiment 3. The visual 

analysis was the same as for experiment 3, but a thin plate conforming to the bottom 

surface of the mug was placed over the cavity opening during the tactile sensing. 

The tactile sensor reported a surface rather than a cavity. The surface is shown in 

figure 8.17 and the surface analysis is in table 8.10 , revealing a surface with zero 

Gaussian curvature and a small value of r, conflrming its planar shape. Figure 8.18 

shows the surface normals verifying the planar analysis. The orientation analysis is 

in table 8.11 and it compares the sensed plane's normal vector with the actual plane 

normal vector, showing an agreement within 3°. 

8.6. EXPERIMENT 5 

The next object imaged was a pitcher. The digital images and zero-crossings 

are in figure 8.19 and the region analysis and stereo matches in flgure 8.20. The 

first region explored is the cavity which is found by moving the probe along the 
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nonna! to the cavity's contour plane and finding no contact within a specified dis

tance of movement beyond the contour plane. The contour reported from this sens

ing was not accurate due to the shape of the cavity and the resolution of the sensor. 

The pitcher cavity has a variable cross section along its axis; it is not constant as the 

model expects. This prevents the Trace Hole/Cavity algorithm from properly tracing 

the cavity. The trace underestimated the cavity area by being below the plane of the 

wide mouth opening by a small amount of distance which yielded a different boun

dary curve. A solution to this problem is to modify the trace hole algorithm to fol

low edge discontinuities; however the sensor being used has difficulty following fine 

changes in surface structure such as this due to its poor spatial resolution. A more 

accurate sensor would allow cavities such as this to be traced, extending the range of 

the objects that can be modeled and recognized. 

The next region sensed is the main body surface of the pitcher. This surface is 

a very complex surface to build a description from, with concavities and twisted 

space curves for boundaries. However, the vision and touch routines were able to 

build a quite accurate level one surface which is shown in figure 8.21. The Gaus

sian curvature (table 8.12 )ranges from positive to negative on this surface describing 

a surface with hyperbolic and elliptic points. Figure 8.22 shows the surface normals 

computed from the surface and figure 8.23 shows the principal directions on the sur

face. The Gaussian curvature analysis rules out all planar and cylindrical patch 

matches. Thus the pitcher body is matched in the model when the further constraint 

of surface area is considered. 

The hole is an excellent discriminating feature between the pitcher and the mug. 

The tactile routines were able to sense the hole and compute its moment set (table 
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Figure 8.19. Digital images and zero-crossings for the pitcher, side view. 
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Figure 8.20. Region analysis and stereo matches for the pitcher, side view. 
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Figure 8.2l. Levell surface for the pitcher body, side view. 

Figure 8.22. Surface normals for the pitcher body, side view . 
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Figure 8.23. Principal directions, pitcher body, side view. 

Figure 8.24. Smoothed boundary curve for pitcher hole. 
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8.13). A problem due to sensor size is its inability to accurately sense the point of 

the handle. The sensor is physically too large to fit into this space, and it is unable 

to sense the point of the handle. The area of the cross section is underestimated 

because of this but is still within a threshold of the model area. The smoothed 

sensed boundary contour of the hole is shown in figure 8.24 

Surface Analysis, pitcher body 

Surface Area Kmax Kmin r 

sensed 26469 0.000841 -0.001439 16.335 

model 59427 0.001908 -0.004580 40.67 

Table 8.12. Surface analysis of the sensed and model pitcher bodies. 

Moments, pitcher hole 

cavity Moo M20 MOl M20+Mo2 
sensed 2353 343564 611903 955467 

model 2565 1083210 283496 1366706 

scaled sensed 2565 408236 727086 1135322 

Table 8.13. Moments for sensed and model pitcher hole. 

The system was able to discriminate in this experiment based upon surface 

differences and feature differences. The recognition was able to be done even though 

the cavity trace was unsuccessful. This is due to the fact that three, dimensional 

structure is being sensed and partial matches of this structure are strong. The 

discovery of the curved surface and the hole allowed the matcher to uniquely instan

tiate the pitcher model. 
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Figure 8.25. Digital images and zero-crossings for the pitcher, front view. 
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Figure 8.26. Region analysis and stereo matches for the pitcher, front view. 
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Figure 8.27. Levell surface for the pitcher body, front view. 
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Figure 8.28. Surface normals for the pitcher body, front view. 
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Fi 8 29 Principal directions, pitcher body, front vi~w. 19ute . . 

Surface Analysis, Pitcher body, front view. 

Surface Area Kmax Kmin r 

sensed 26747 0.000962 -0.001033 16.77 

model 59427 0.001908 -0.004580 40.67 

Table 8.14. Surface analysis of the sensed and model pitcher bodies. 

8.7. EXPERIMENT 6 

In this experiment the pitcher was imaged from the front, with no cavity or hole 

in the scene The digital images and zero-crossings are in figure 8.25 and the region 

analysis and stereo matches in figure 8.26 . - The single region of the pitcher was 

traced with the sensor under active control of the system and the surface that was 

built is shown in figure 8.27. Figure 8.28 shows the directions of the surface nor· 

mals on the patch and figure 8.29 shows the principal directions on the surface. 

Table 8.14 contains the surface analysis. This surface had negative Gaussian 

• 
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curvature which precluded it from being cylindrical or planar. Matching of this sur

face was much more difficult than any of the others and was not entirely successful. 

The only surface of equivalent area and surface type was the pitcher. However, 

computing the transfonnation from model to sensed coordinates was not successful. 

Unlike a planar or cylindrical surface, an arbitrary curved surface has fewer invari

ants such as the nonnal to a planar surface or an axis for a cylinder that can be 

matched against Compounding this problem is the surface subset problem: even 

though we may match correc~y, the transformation may not be easily computed since 

it is unclear which subset of the surface is matching which part of the larger surface. 

The result of this experiment is that there is too little information to effectively know 

the object's structure. Therefore a new visual view is needed .and this can be 

reported to the camera system. A slight change in viewing angle will reveal the cav

ity or the hole which can be used to compute the transformation matrix. Even 

though full recognition was not accomplished in this case, the ability to do partial 

matching is an improvement over vision systems that must have a global match or 

none at all. The discovery and quantification of a three dimensional surface is useful 

and as the new view is taken this information can be used to build on the description. 

8.8. EXPERIMENT 7 

In this experiment, the coffee mug was imaged with the handle occluded. The 

digital images and zero-crossings are in figure 8.30 and the region analysis and stereo 

matches in figure 8.31 . The first region probed by tactile sensing was the cavity and 

the moment set in table 8.15 was computed. The second region probed was the body 

of the mug and a level one surface description was computed from vision and touch, 
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shown in figure 8.32 along with the surface nonnals in figure 8.33 . The objects in 

the data base that will match with these two regions are a drinking glass without a 

handle and a mug with a handle. From this visual angle there is no way that the two 

objects can be distinguished. The instantiation module will pick both objects to be 

verified. The matcher will order these objects by complexity, causing the coffee mug" 

to be verified. The mug is the more complex object and its only untilled slots are 

the handle, hole and bottom surface. All regions from the vision analysis are 

matched, leaving visually occluded parts only. 

It is possible to reason about and sense occluded features. It can be detennined 

that the object is a mug by verifying the occluded hole, From the analysis so far 

there is no way to determine where the hole lies. If it is a ~ug the hole lies in the 

occluded area which is shown in figure 8.34. The bounds on this volume are known 

. from the vision and touch sensing that has already been perfonncd. The cavity and 

the hole each have an internal frame associated with them. In a rigid object, once 

these frames are defmed, then knowing one frame detennines the other through a 

series of transfonnations described in chapter 7. The problem can be solved uniquely 

if the cavity has a unique internal frame. Knowing this internal frame and the relative 

transfonn from the model frame to the hole will allow us to compute the hole frame 

in the sensed coordinate system. The cavity does not possess a unique frame; it is 

rotationally symmetric, leaving a degree of freedom in its internal frame which is the 

rotation about its approach axis. This degree of freedom can be exploited to reason 

about the hole. The flxing of the cavity's approach axis in space means that the hole 

centroid is conf'med to lie in a circle centered at the cavity and swept out about the 

cavity's axis. Computing this circle gives a set of three dimensional points which 
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represent possible locations of the hole's centroid. Intersecting this circle with the 

known occluded volume yields a possible set of locations of the hole. Each of these 

locations is associated with a particular fixing of the rotationally symmetric axes 

about the cavity's axis. The approach is to fix the cavity's rotationally symmetric 

axes at an angle of rotation that is midway between the angles that bring the hole 

into occlusion and bring it out Once this is defmed, this yields an approach axis for 

the hole which the sensor can then use to actually sense the hole. In the experiment, 

the hole was found this way, rejecting the drinking glass match and accepting the 

mug match. Figure 8.35 shows the sensor searching for and fmding the hole in the 

visually occluded area. 

This last experiment shows the power of this approach to object recognition. 

Multiple sensors were used synergistically to invoke a possible set of objects. High 

level reasoning about the object's structure that is encoded in three dimensional 

models allowed further verification sensing to successfully discriminate between the 

objects. The knowledge about the three dimensional world (the occluded volume) 

and the object's geometry (which is encoded in the model) can be used to perform 

active sensing in occluded areas. 

8.9. SUMMARY 

The experiments reported here show the ability of vision and touch sensing to 

sense and recognize objects that would be difficult for vision alone. The three 

dimensional surface and feature primitives provide strong matching criteria that can 

lead to unique instantiations based upon a combination of surface and feature attri

butes. In cases of multiple consistent objects, verification· sensing and high level 
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reasoning can discriminate by sensing occluded areas. In some cases the system is 

unable to accurately sense features due to the sensor's poor spatial resolution and 

physical size. The feature matching provides strong discriminating evidence in 

choosing a possible object The surface information is also able to constrain the set 

of possible matches. The combination of both provides strong recognition criteria. 
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Figure 8.30. Digital images and zero-crossings for coffee mug. 
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Figure 8.31. Region analysis and stereo matches for the coffee mug. 
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Figure 8.32. Levell surface for the coffee mug body. 

Figure 8.33. Surface normals for the coffee mug body. 
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Figure 8.34. Occluded area of the coffee mug. 
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Figure 8.35. Tactile sensor verifying the visually occluded hole . 
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Moments, coffee mug cavity 

cavity Moo M20 MOl M2o+MOl 
sensed 4948 1872094 2114266 3986360 

model 4758 1802083 1802083 3604167 

sensed scaled 4758 1731206 1955153 3686359 

Table 8.15. Moments for sensed and model coffee mug cavity. 
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CHAPTER 9 

CONCLUSIONS 

9.1. INTRODUCTION 

This chapter is a summary of what has been learned from this work. A system 

for recognizing objects based upon discovering their three dimensional structure 

through vision and touch has been presented. The paradigm of model based recogni-

tion was used, where the models are hierarchical, three dimensional and viewpoint 

independent The models use a simple surface primitive and include nodes for expli

cit specifications of feature$ such as holes and cavities. The models also include spa

tial relationships between the model components which constrains matching. Algo

rithms have been developed to analyze and segment two dimensional images into 

regions of interest Stereo matching on the contours of these regions provides sparse 

three dimensional information that can be used to guide a tactile sensor to perform 

active exploratory tracings of surfaces and features. This entailed developing three 

dimensional surface following and feature discovery algorithms for the tactile sensor 

that coordinate the movement of the robotic arm with tactile feedback. A robust, 

hierarchical procedure was then developed to integrate the vision and touch informa

tion into surface and feature primitives that could be used in a matching phase. 
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Matching of these surface and feature primitives was accomplished by an analysis of 

the geometry of the computed surfaces and features and development of rules that 

can be used to discriminate among the model objects. The three dimensional struc

ture of these objects was also used to compute transformations that determined an 

object's orientation in space. Finally, a series of experiments were run to test the 

utility of such procedures, and to show that these methods could succeed in recogniz

ing objects that vision alone would have difficulty with. This chapter is an attempt 

to put this work into context by discussing what was successful and what needs 

further development Ideas for: extensions to this work and possible future 

approaches are also presented. 

9.2. TACTll..E SENSING 

The first success of this research was the use of active, exploratory tactile sens

ing to obtain robust shape data. Touch has been looked upon as a poor stepchild to 

vision processing in robotics. This is due in part to the fact' the previous researchers 

have not tried to use active controlled touch but rather static touch. Static touch is 

too local in nature to succeed. Active touch sensing provides powerful shape infor

mation but it extracts its price for this information in demanding powerful control of 

this active medium. An important conclusion about touch is that it cannot succeed 

blindly. Tactile sensing needs to be driven from the high level. Blindly groping on 

a surface of an object is a poor and inefficient way to perform recognition. It also 

can be error prone given the state of present day sensors. What makes tactile sensing 

succeed in this work is the cues that vision provides; where to sense, at what orienta

tion, in what direction. Without this higher level guidance, the touch is too difficult 
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to control and the signals too conflicting to succeed. When a surface is traced, the 

sensor knows the smooth nature of the surface from the vision analysis. These con

straints are combined to allow touch to actively probe and trace surfaces. 

A clear advantage of tactile sensing over vision is that touch can deal with 

occlusion. As the experiment with the occluded mug handle showed, touch can ver

ify visually obscured parts of the object It was only able to do this by using higher 

level reasoning about the object's structure and guide the tactile sensor to a probable 

location for the hole. A strategy of sending the sensor into the occluded area and 

reporting back contacts would be doomed to failure. The knowledge to interpret the 

contacts must be available. 

9.3. INTEGRATING VISION AND TOUCH 

The next success was being able to build accurate and robust surface and feature 

primitives using the combined vision and tactile sensing. The idea that two sensors 

are better than one was easily proven. Neither of the sensors alone are capable of 

building true three dimensional primitives that are more than point based. Point 

based methods tend to be weak and intolerant of error. No matter how good a sensor 

is, it produces error. Relying on single pixel or point values is inherently unstable. 

The data needs to be abstracted and smoothed into larger more robust measures. In 

this research, the stereo matches are pixel based but the pixels to be matched are 

found on contours of related pixel chains, thus eliminating many possible spurious 

point matches. The three dimensional data from these matches is not used as isolated 

sets of points, but grouped into curves in space, broken at discontinuities in curva-

ture. The same is true for the tactile trace points. They are also grouped into curves, 

-----:1"-~ 
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smoothing out the small discontinuities due to noise and resolution error. Finally, 

these curves are combined into surfaces. Surfaces are large, stable entities as 

opposed to points. The surfaces are built using techniques that interpolate the known 

data that is found from the smoothed sensing above. The method is recursive in that 

the surfaces can be sampled and interpolated to a prespecified accuracy, depending 

upon the level of sensing desired. Point based methods are too sensitive to succeed 

with noisy sensors. The matching is done on larger scales using surfaces and planar 

cross sections that are more robust amidst sensor error. The surface matching is 

based upon local properties of surfaces (differential geometry) analyzed over the 

whole surface. These measures are sensitive to small changes. The reason that the 

analysis is correct in the experiments is that the surfaces are built to be curyature 

continuous. Small local discontinuities due to sensor error are reduced with this 

method, making the differential geometry measures accurate. 

9.4. UNDERSTANDING 3-D STRUCfURE 

Object recognition in this work is predicated upon discovering three dimensional 

structure of objects. It may seem obvious that understanding three dimensional struc

ture is a necessary first step to a host of important robotic tasks, including recogni

tion, grasping. manipulation and inspection. However, this has not been the primary 

approach of much previous work. Instead of being the primary initial focus, three 

dimensional structure was an outcome of the model matching phase. Only by 

correctly invoking a model (determined through a variety of viewpoint dependent and 

two dimensional projective analysis) was the actual three dimensional structure 

uncovered. By using active sensors, three dimensional structure can be discovered 
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initially. The reasons why this is important are listed below: 

• The sensed primitives need to be related to the model components in model 

based recognition. The models can be easily and efficiently structured as three 

dimensional surfaces and features. The discovery of three dimensional surfaces 

and features facilitates this matching effort. The models in this work use the 

same surface primitive that the sensors together compute. This eliminates 

expensive transformations of the data and possible information loss. 

• Viewpoint independent recognition assumes no characteristic views of the 

object The orientation in space of the object needs to be computed from the 

combination of sensing and high level reasoning. Uncovering the three dimen

sional structure makes this computation possible, especially with 3-D volumetric 

primitives containing embedded axes. 

• There is a limit to the amount of recognition that can be done at the low level. 

Reasoning about three dimensional objects at a higher level implies understand

ing the three dimensional structure. Spatial relationships in three dimensions 

involve three dimensional entities. Only by uncovering these entities can higher 

level reasoning be invoked. 

• Tasks beyond recognition also imply an. understanding of three dimensional 

structure. Grasping, inspection and manipulation all involve understanding and 

reasoning about the three dimensional structure. 
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9.5. PARTIAL MATCHING 

Partial matching is important because it allows the system to succeed amidst 

failure. Certain regions of the object may not be easily sensed either due to their 

complexity or the inability of the vision to understand a region. Partial matching of 

three dimensional entities allows recognition to continue, searching for structure that 

can be accurately sensed. 1bree dimensional objects can be complex; however the 

experiments have shown that if this complexity can be sensed, even partially, it can 

lead to full recognition. The holes and cavities discovered by sensing are complexi

ties of the object that once sensed are extremely useful in deciding what object it is. 

This has important ramifications in discovering objects other than those known to be 

in the data base. Suppose a coffee mug with two holes for the fmgers is imaged . . 

and is not in the database of models. Structurally, the object is similar to the mug 

used in the experiments and the sensing would be similar except for the quantity of 

holes discovered. An object such as this can be. compared to existing data base 

objects based upon its decomposition into viewpoint invariant surface and feature 

structure, which is what the models contain. In this manner new objects can be 

sensed and classified even though they may not be members of the data base. 

9.6. IMPORTANCE OF HIGH LEVEL REASONING 

No matter how robust the low level sensing tasks are, they need context to 

allow further analysis and understanding. This is especially true in the verification 

phase where sensing is used to support or reject an hypothesis. Of particular impor

tance is being able to understand and reason about three dimensional spatial relation

ships. The system is able to find true three dimensional entities, and can detennine 
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some of their spatial relationships. However it is not powerful enough to reason 

about why all slots aren't filled in the models. Being able to reason from a 3-D 

model and plan the next round of sensing would be valuable, particularly in being 

able to discriminate between many possible consistent models. 

9.7. WHAT HASN'T WORKED 

The methods described in this work will not work for small surface structures. 

As objects become more complex, these structures occur more often. Part of this 

problem is due to sensor resolution. More powerful and higher resolution sensors can 

conceivably deal with this problem, such as the inability to sense the handle of the 

pitcher or mug~ However, as objects become more complex, so do the object models 

that defme them. The models used in this work are organized by an obvious object 

structure and segmentation. More complex objects may not show this structure, and 

the models may prove inadequate as presently formulated. While this is a serious 

problem, it still does not preclude partial matching which is one of the obvious 

strengths of this method. Even though some structure may not be accurately sensed, 
-

other parts will leaving partial conclusions that can be rectified and evaluated by 

higher level reasoning modules. 

Another problem with the method is that because it relies partially on vision, it 

cannot totally be isolated from the unsolved problems of machine vision. The crea

tion of closed contours from edge detection is still a problem in certain scenes. 

Approaches to solving this problem have been mentioned in chapter 3 and appear to 

show some success. A partial solution was implemented in this work but some of 

the images still needed a small number of pixels fllied in to create the contours. The 
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scale space approach appears to be the most promising, and while time did not per

mit its implementation, it is an area of further research that appears very promising. 

Certain degenerate viewing points of the object yield confusing sets of informa

tion that can cause problems at the tactile end. Typically these can be seen by notic

ing small structure and responding to it, yielding partial matches as discussed above. 

However, the higher level reasoning modules are not developed to try to reason about 

this. 

Homogeneous objects were used with a pwposeful lack of detail. However in 

real world robotics, objects will have a geometric structure as well as visual structure 

encompassing texture, reflectivity changes on the surface and noisy surface gra

dients •. (think of your favorite mug with a design on its surface f:hat will totally con

fuse vision). Tactile sensing can help in this case since surface structure can be 

sensed independent of printing on the structure. What is not clear is how to integrate 

the vision to tell the tactile where to look on a noisy, partitioned image. 

The method of moments is a simple and useful way to classify planar shapes. It 

is especially useful in determining transformation axes, and it does this quite accu-
-

rately. It is less clear how the moment measures themselves change as objects are 

slightly distorted. The two moment measures used, Moo and M20+Mo2 are fairly 

stable but the other invariants that have been proposed (third order) did not appear to 

be as stable. They appeared to fluctuate even though shapes matched the measures 

used. There is a large body of literature on 2-D shape matching and techniques other 

than those used here may give better results on a large database of objects. 

The models used in this research are independent objects, modeled as separate 

instances even though they may differ slightly in a dimension. A stronger model is 

-~.~: ---
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one that specifies classes of objects that can be grouped by structure and uses sym-

bolic attributes for diffi tia . b' . 
eren tmg 0 ~ects m the class, similar to ACRONYM objects. 

The database used here was small enough to ignore the indexing problem. As the 

number of objects grows, this becomes a serious problem. 

9.8. FUTURE DIRECI'IONS 

There are a number of directions in which this research leads. This work has 

shown the utility of active sensing to reason about and understand three dimensional 

structure. The sensing that is done is done serially, fIrst using vision and then touch 

to create a hypothesis and then using touch to verify. More tactile feedback could be 

used to help support or reject visual hypotheses. The vision is relied upon presently 

to create regions of interest The tactile could in fact verify that these regions really 

are regions that have physical meaning before a detailed surface or feature trace is 

attempted. The closing of contours could be done with tactile feedback also. 

Further, vision could reevaluate what it knows about the image based on the tactile 

discovery. Many vision algorithms show markedly improved performance when they 

are given constraints on a scene, such as region being cylindrical or planar. The tac

tile can only make the vision more robust as it determines three dimensional struc-

ture. 

The data base of models includes single objects. Extending this to multiple 

objects in a scene "and articulated parts would be a useful extension. Both of these 

ideas could be implemented with the coordinate frame method, where object relation

ships are described in terms of relative frames with variables instead of precomputed 

constants. These variables can be discovered using the same techniques on single 
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objects, which again is identifying three dimensional structure. 

The experiments showed that there are many primitives that can lead to recogni

tion . In some cases the discovery of both features and surfaces allowed multiple 

. methods to calculate orientation and object structure. If multiple visual views could 

be used, then combining this data should make recognition even more robust 

The part of this work that is the least well developed is the higher level reason

ing about solid objects. This is clearly a must for robotics to succeed in the future. 

It requires efforts in 1) building automatic 3-D models of objects that capture their 

complexity and 2) relating the spatial information contained in the. model to goals 

and further sensing. This is a formidable task, but the techniques being developed in 

A.I. research are pointed at just such problem domains. 

Another avenue is the implementation of more multiple sensor systems. The 

benefit of many sensors is shown in this work, and there is no reason to stop at two . 

The control problems become much larger however, and distributed processing tech

niques will need to be implemented at the low level while reasoning from many 

(perhaps conflicting) sources is needed at the high level. 

The sensor used here was a single finger, and robots will need multiple fingers 

to do grasping and manipulation. Extending this work to multiple fingers is possible. 

One method would be to use the other fmgers to try to stabilize the object during tac

tile sensing; the objects used now are rigidly attached to the support surface. The 

other would be to have multiple parallel traces implemented, for which there may be 

psychological evidence showing that this is an effective human strategy also. No 

attempt was made in this research to try to emulate human tactile processing. Vision 

research has shown that it can be helpful to study working biological systems for 
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insights into machine problems. 

9.9. SUMMARY 

This research has attempted to improve robotic perfonnance in a real noisy 

object domain using multiple sensing. Tactile sensing has been shown to be a useful 

tool in object recognition. The use of multiple sensors has provided more robust and 

accurate sensory data that can be combined into three dimensional primitives that 

facilitate matching and an understanding of the underlying structure of the objects. 

The ability to sense actively demands higher levels of control than with passive sen

sors, including the ability to reason at a high level about object structure. This rea

soning capability needs to be further developed and is a natural extension of this 

work, allowing tasks beyond recognition to be attempted in a multi-sensor environ-

ment 



APPENDIX A 

BICUBIC SPLINE SURFACES 

1. INTRODUCTION 

The surfaces that are used in modeling the objects are represented as parametric 

bicubic surface patches. The integration of vision and touch to build surface descrip

tions also uses this representation. Therefore it is instructive to explore this represen-

tation fully. Faux and Pratt [17], Foley and Van Dam [19] and Forrest [20] contain a 

more detailed discussion of bicubic patches, and this appendix draws from these 

references. 

2. PARAMETRIC CURVES AND SURFACES 

The parametric form of a space curve P(u) parameterized by u is: 

P(u) = (x(u), y(u) , z(u» (A.I) 

This representation is not unique, as there are a number of different parameterizations 

that yield the same curve. The tangent vector of a parametric curve Pis: 

(A.2) 

- 185 -



- 186 -

For a surface, two parameters are needed. The parametric representation is: 

P(u,v) = (x(u,v) , y(u,v), z(u,V» 

The tangents in each of the parametric directions on the surface are: 

P .. (u,v) = (ax k ~) 
- au ' au ' au 

_ ax .£l. ~ 
P v(u,v) - (av ' dV ' av) 

(A.3) 

(A.4) 

(AS) 

The unit surface nonnal n(u,v) at a point on the surface is formed by taking the cross 

product of the the tangents in each of the parametric directions: 

n = 
ap ap 
-x-
au av 

I ap x api 
au av 

(A. 6) 

3. COONS' PATCHES 

The particular form of bicubic surface patch that is being used in this research 

was originally studied by S.A. Coons and is known as a Coons' patch. Coons' for

mulation of this type of surface patch was somewhat more general and the restricted 

form of Coons' patch used here is sometimes referred to as a tensor product, Carte

sian product or Ferguson surface. These patches have been used extensively in com

puter graphics and computer aided design. The patches are constructive in that they 

are built up from known data and are interpolants of sets of three dimensional data 

defmed on a rectangular parametric mesh. This gives them the advantage of a:'<.is 

independence, which is important in both modeling and synthesizing these patches 

from sensory data. 
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3.1. LINEARLY INTERPOLATED PATCHES 

The sUlface interpolation problem that is being considered here is to define a 

mapping from the unit parametric square plane into a surface defined on R3: 

P: [0,1] x [0,1] -+ R3 (A.7) 

such that the mapping interpolates the data points specified. To create such a map

ping, we choose four points 

P(O,O) , P(O,l) , P(1,O) , P(l,l) (A.8) 

which form the vertices of the patch and are referred to as the knot points (figure 

A.l). These points are defmed on the parametric grid 

OSu,vSl 

If we form line segments between adjacent knots as the bounding contours of 

the patch, we can create an interpolated surface patch bounded by the line segments: 

P(O,v) , P(u,O) , P(l,v) , P(u,l) (A.9) 

To interpolate the interior of this patch, we can linearly interpolate between the 

curves on opposite sides of the patch; between P(D,v} and P(l,v) in the u direction 

and similarly between P(u,O) and P(u,l) in the v direction. The equation of the sur-

face then becomes: 
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Figure A.!. Parametric surface patch. 
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Rl = P(u,v) = P(O,O) (l-u) (I-v) + P(O,!) (l-u) (v) 

+ P(1,O) (u) (l-v) + P(l,l) (u) (v) . (A.!O) 

Substituting values for u , v verifies that the boundary curves (A.9) are in fact the 

line segments between the knot points. This kind of a patch is referred to as a bil

inear patch. 

Having built a bilinear surface P(u,v) that interpolates the data points, we want 

to know if it is the only such surface. The answer is clearly no, as there are an infm

ite number of surfaces that will interpolate the sparse data at the boundaries. In con

structing other surfaces, we can relax some of the above restrictions to fonn more 

complex surfaces. In particular, we need not require linear boundary curves. If we 

know more boundary data than just the knot points, we can fonn two cubic polyno

mial space curves P(u,O) and P(u,l) which interpolate the boundary between adjacent 

knots in the u direction which can then be linearly interpolated in the v direction to 

obtain: 

R2 = P(u,v) = P(u,O) (I-v) + P(u,!) (v). (A.ll) 

If we know the other two boundary curves, P(O,v) and P(l,v), we can similarly fonn 

another surface: 

R3 = P(u,v) = P(O,v) (l-u) + P(1,v) (u). (A.12) 

R2 and R3 fonn ruled surfaces as they are linear in one of the parametric direc

tions. To fonn a surface that has nonlinear boundary curves on all boundaries we 

can sum surfaces R2 and R3. However, substituting values of u and v reveals that 

the knot points will not be interpolated correctly nor will the boundary curves (A.9) 



- 190 -

be correct This is due to the fact that summing these two ruled surfaces includes the 

comer points twice. To negate this effect, we can subtract out the unwanted terms 

by subtracting surface Rl to create a new surface: 

R4 = P(u,v) = R2 + R3 - Rl (A.13) 

= P(u,O) (1-v) + P(u,l) (v) 

+ P(O,v) (1-u) + P(1,v) (u) 

- P(O,O) (l-u) (I-v) - P(O,I) (l-u) (v) 

- P(I,O) (u) (I-v) - P(1,I) (u) (v) . (A.14) 

Substitution of u , v verifies that the knot points are correctly interpolated as are 

the boundary curves. This surface can also be written in matrix· form as: 

r ]rp(O,V)] r, ] [I-V] 
P(u,v)=l(l-u) u lp(l,v) + lP(u,O) PCu,l) v 

r ] rp(O,O) P(O,I)] [I-V] 
- l{l-u) u lp(l,O) P(l,l) v (A.IS) 

3.2. HERMITE INTERPOLATION 

From the matrix representation we can see that u,{l-u),v,(I-v) are functions that 

blend together the 4 defmed boundary curves and are appropriately known as blend

ing functions. The blending functions in (A. IS) are linear and by removing this res-

triction we are able to build more complex interpolating surfaces. In particular, we 

can specify that the blending functions be cubic polynomials, such that the knot 

points are still interpolated. However, by specifying boundary curve information 
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only, we will only be able to have adjacent patches exhibit positional or cO con

tinuity. Our goal is to build composite surfaces composed of many adjacent patches 

that have higher levels of continuity. To obtain C1 or derivative continuity, we need 

to specify boundary tangent information. We must specify the positional constraint 

embodied in the boundary curve as well as a tangential constraint along the entire 

boundary curve to form a smooth join. A simple way to do this is to use Hermitian 

interpolation between the knot points to form the boundary curves and the boundary 

tangent criteria. Hermitian interpolation interpolates a cubic polynomial space curve 

between two known points, given the points and the tangents to the curve at the two 

points. If the curve between the two points is parameterized by u, 0 SuS 1 

then the interpolating curve P(u) between two points P(O) and P(l) with tangents 

PiO) and Pil) is: 

P(u) = U Mis Gis (A. 16) 

1 0 0 ° P(O) 

=[1 u u2 u3] 
0 0 1 0 P(l) 

-3 3 -2 -1 PuCO) 
(A.17) 

2 -2 1 1 Pil) 

where Mis is the hermite matrix and Gis is the hermite geometry matrix. Substitution 

of u=O and u=1 shows that the endpoints and end tangents are correctly interpolated 

by this curve. Extending this to two' dimensions, we need to specify the four boun

dary curves of each patch to insure positional continuity, and we also need to specify 

the cross boundary tangents to insure a smooth C1 join between patches. Across the 

u direction boundary curves, P(u,O) and P(u,l) , we need to express the tangents in 

the v direction and vice versa for the v direction boundary curves P(O,v) and P(1,v). 
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Specifying these tangents can also be done by using hennite interpolation. At each 

knot point we specify tangents in each of the parametric directions to create the 

boundary curves using the hennite method. To create the tangent criteria along the 

boundary curves, we can again use the hennite method. To create the tangent criteria 

along the boundary curve P(O,v} we must interpolate tangents in the u direction along 

this curve. We know the u direction tangents at the endpoints, PiO,O) and Pu(O,I). 

This gives us two of the four pieces that hennite interpolation requires. The other 

two pieces are the cross derivatives at the knots. These can be thought of as the rate 

of change of the tangent in .the v direction with respect to u, P Uy or the rate of 

change of the u direction tangent with respect to v, P yU' which can be shown to be 

equivalent [17]. The equation for a surface with these characteristics can be built 

analogously to (A. 13}. The. equation simplifies below because the cubic blending 

functions are the same functions that are used to create the cubic hennite boundary 

curves. 

P(u,v} = UMhQMrV (A.IS) 

1 0 0 0 

= [1 U U 2~] 0 0 1 0 
-3 3 -2 -1 
Z -2 1 1 

P(O,O) P(O,I) Py(O,O) Py(O,I) 1 0 -3 2 1 
P(l,O) P(l,l} Py(1,O} Py(l,l) o 0 3 -2 v 

PueO,O) Pu(O,I) Pw(O,O) P uy(O,I) 0 1 -2 1 y2 (A.19) 

PuCI,O) Pu(1,l) P w(1,O} Puy(1,l) o 0 -1 1 y3 
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Matrix Q above is a matrix of coefficients contained on the boundaries of the 

patch. The upper left 2 x 2 partition of Q is a matrix of the knot points. The upper 

right and lower left 2 x 2 partitions are the tangents at the knot points in each of the 

parametric directions. The lower right 2 x 2 partition contains the cross derivatives, 

known as the twist vectors, at each of the knot points. In building a composite sur

face with many adjoining patches, we can insure C1 continuity across these patches 

by imposing the following constraints on the coefficient matrices: 

Given patch PI (u,v), with boundary curve Pl(l,v), and an adjoining patch 

P2(u,v), with shared boundary curve P2(O,v), the coefficient matrices must con-

form to the following: 

ql0 qu q12 q13 

ql0 qll q12 q13 
Ql = Q2 = 

/cq30 /cq31 /cq32 /cq33 
(A.20) 

Q30 Q31 q32 q33 

It can be seen that this reproduces the boundary curves on each patch and that 

the tangents are maintained also across the join. The constant k in (A.20) is allowed 

because the actual tangents are ratios of the parametric tangents, and the constant 

drops out when taking these ratios. Similarly, for patches joined along a u direction 

curve, we can replicate columns of the matrices to form a smooth join. In this case, 

for surface joined along Pl(u,l) and P2(u,O), the constraint is: 
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- qOl - q03 qOl - kq03 

- qn - q13 ql1 - kq13 
Q1 = Q2 = 

kq23 
(A.21) 

- q2l - q23 q2l -
- q31 - q33 q31 - kq33 -

3.3. CURVATURE CONTINUOUS PATCHES 

The patches above are joined with C1 continuity. We would like to create 

patches that have C2 or curvature continuity across their joins. In one dimension, we 

can create curvature continuous composite curves from a set of points using the 

method of cubic splines. Splines are functions that minimize the strain energy along 

the curve. They are historically called splines from the long thin strips that early 

builders used to approximate curves through a set of points. To create curvature con

tinuous composite curves we will use hermite interpolation between the sets of 

points, but we will specify positional, flrst derivative and second derivative continuity 

conditions at the adjacent knot points. For a cubic polynomial curve, we need 4 con

straints to compute the 4 coeffIcients. Given a set of N points, we can deflne N-1 

spans between each pair of adjacent points. If we flt a cubic polynomial to each 

span. we need a total of 4 * (N-1) constraints. Each of the N-l curves has 2 posi

tional constraints, for a total of 2 *(N-l) constraints. If we require continuity of first 

derivatives at the curve joins, that yields N-2 further constraints. Requiring second 

derivative continuity at the joins (which makes the curves curvature continuous) 

yields N-2 constraints also. There remain 

4x(N-l) - 2x(N-1) - (N-2) - (N-2) = 2 (A.22) 
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two constraints before the set of composite curves is completely specified. Possible 

constraints that may be added are knowledge of the first or second derivatives at the 

first and last of the knots. If we can add these two extra constraints, then the compo

site curves are completely specified. Extending this idea to two dimensions, we start 

with a rectangular grid of knotpoints, P(m,n) m=O,l, ... ,M n=O,l, ... ,N, that fonn (M 

x N) patches on the grid. We can create composite spline curves in each of the 

parametric directions such that the curves joining the knot points are curvature con

tinuous. The extra conditions we need to specify are the tangents at each of the end

points of the composite splines on the grid. Since we are also requiring the (M x N) 

patches to be curvature continuous across the joins, we need to interpolate the cross 

bo~ndary tangent curves using the splining method. The two extra conditions 

imposed for this constraint are the cross derivatives (twists) at the comers of the knot 

grid. The infonnation needed to create a series of curvature continuous patches can 

be summarized graphically as: 

P w(O,N) PI/(O,N) PI/(l,N) - - - PI/(M,N) P w(M,N) 

PiO,N) P(O,N) P(l,N) - - - P(M,N) PiM,N) 

PiO,N-l) P(O,N-l) P(l,N-l) - - - P(M,N-l) Pu(M,N-l) 

- - -
- - -
- - -

Pu(O,O) P(O,O) P(1,D) - - - P(M,O) Pu(M,O) 

P w(O,O) PvCO,O) PI/(1,Q) - - - PI/(M,O) PUI/(M,O) 

The algorithm that computes these patches from the above data is summarized in 

Faux and Pratt, pp. 224-225 [17]. 
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