
Generating Admissible Heuristics by
Criticizing Solutions to Relaxed Models·

Othar Hansson

Andrew E. Mayer

Mordechai M. Yung1

CUCS-219-85

Department of Computer Science

Columbia University

New York, N.Y. 10027

December ,.198~

Abstract

CUCS-119-85

This paper examines one paradigm used to develop admissible heuristics: problem relaxation
[10, 11,32]. This consists of three steps: simplify (or relax) a problem, solve the simplified problem, and

use that solution as advice to guide the search for a solution to the original problem. We introduce an
extension to this methodology which exploits the simplicity of relaxed models. By criticizing the
feasibility of a relaxed solution, we arrive at a closer approximation of the solution to the original problem.
This solution-criticism process recovers some of the information lost by relaxation. and yields more
powerful admissible heuristics than by relaxation alone. We apply our methodology to the Traveling­
Salesman problem and the N Puzzle. For the Traveling-Salesman Problem, it yields the well known.
admissible minimum spanning tree heuristic. For the Eight and Fifteen Puzzles (in general the N puzzle), it
yields a new heuristic which performs significantly better than all previously known heuristics.

Keywords: Problem Solving, State-Space, Heuristic Search, Admissible Heuristic Function, Problem
Rel(U(lrion, Automatic Heuristic Generation. N Puzzle. Traveling-Salesman Problem

1 Supponed in part by NSF Grant MCS-8303139 and an IBM Fellowship.

1

1. Introduction

Domain-specific heuristics enable us to solve cenain previously intractable problems by intelligently

directing the search for solutions. At this point. we do not fully understand how heuristics are generated,

and the development of heuristics is the major bottleneck in constructing intelligent systems [23.241.

Many have attempted to understand the nature of heuristics [13. 22. 23, 24, 27. 28,29,30.32,35], so as

to formulate a general methodology for developing them. The goal is to systematically, and perhaps

automatically develop heuristics for arbitrary problems by applying this methodology.

In this paper, we concentrate on the state-space model of problem-solving [29. 301. and examine one

paradigm [4. 10. 11,321 for the systematic generation of heuristics (we follow the notation and examples

of Pearl [32]). This paradigm offers a method for deriving heuristics by examining optimal solutions to

simplified models of a given problem. More specifically. the paradigm outlines a three-step

methodology: first. simplify the problem; second, solve the simplified problem (preferably

algorithmically); and third. use information gained by solving this simplified problem as advice to guide

the search for an optimal solution to the original problem. We introduce an extension to this paradigm

which enables us to recover some of the information lost in the relaxation: by more closely investig'ating

those aspects of the original problem which are isolated by the simplification, and those which are

overlooked. one can criticize the feasibility of the simplified solution and arrive at a better approximation

to the actual solution.

We apply this improved methodology towards developing admissible heuristics for two problems: the

N Puzzle (e.g., the Eight and Fifteen Puzzles) [5,10,16,17,19,26.31,32,40,42] and the Traveling­

Salesman Problem [1,2,3,9, 14, 15,25,33,34]. These problems have been used to study and develop

heuristic problem-solving techniques for more than twenty years. The N Puzzle has been used by Pearl

and others as an example of the use of his aforementioned paradigm: we use his formulation, and apply

our improved methodology to develop a new admissible heuristic for the problem. Our new heuristic is

more powerful than any previously known admissible heuristic (Manhattan Distance had been the best

known): in tests on 1000 random instances of the Eight Puzzle, search using the new heuristic examined

fewer than half as many states, on average, as search using Manhattan Distance. In tests on 100 random

Fifteen Puzzle instances. search using the new heuristic examined one eighth as many states. We also

demonstrate a similar formulation for the Traveling-Salesman Problem. We use Pearl's paradigm to

develop admissible heuristics, and then apply solution-criticism to refine them. Interestingly, this leads to

Held and Karp's well known minimum spanning tree heuristic [14, 15, 21].

1.1. Background

1.1.1. Overview of Heuristic Search

The state-space approach to problem-solving considers a problem as a quadruple, {So O. I E S, G ~

S}. S is the set of possible states of the problem. 0, is the set of operators, or transitions from state to

state. I is the one initial Slale of a problem instance, and G is the set of goal states. This problem can

2

be represented as a state-space graph, where the states are nodes, and the operators are directed, weighted

arcs between nodes (the weight associated with each operator. OJ is the cost of applying it, ceoi». The

problem consists of determining a sequence of operators, 0l' 02' ... On which, when applied to I, yields a

state in G. Such a sequence is called a solution path (or solution), with length n and cost I:l ceO). A

solution with minimum cost is called optimal.

Solutions to a given problem may be found by brute force search over the state-space. However, as

the sizes of the state-spaces of most problems are prohibitively large, the only hope of finding an optimal

solution in reasonable time is to use an intelligent method of guiding a search through the state-space.

One such method, the celebrated A· algorithm (originally in [12]; also [6,31,32]) orders the search by

associating with each state s two values: g(s) = the length of the shortest path from the initial state to s,

and h'(s) = an estimate of the length of the shortest path from s to any goal state (the actual length is h(s».

In brief, A· is an ordered best-first search algorithm, which always examines the successors of the "most

promising" state, based on the evaluation function, f'(s) = g(s) + h'(s).

To simplify the following discussion, we give the following definitions:

Definition 1: A heuristic function, h'(s), is said to be admissible if V's (h'(s) ~ h(s»

Definition 2: A heuristic function, h'(s), is said to be monotone if V' s, s' such that s' is a
successor of s, (/'(s) ~f'(s'» (recall thatf'(s) is determined by h/(s». Monotonicity implies
admissibility [32].

Definition 3: A heuristic function, hl'(s), is said to be more informed than another heuristic
function, h2'(s), if V' s(~'(s) ~ hl'(s», and 3 s (hi(s) < hl'(s», and both are admissible.

Because the real-world cost of applying operators may be prohibitively expensive, it may be wise to to

search for optimal solutions, despite possible extr~ time required to do so. If A· uses an admissible

heuristic, it is guaranteed to find optimal solutions [32]. We will consider only admissible heuristics in

this paper, and consequently, the word "solution" will henceforth imply "optimal solution".

The informedness of two heuristics determines their relative performance in a search. If one has two

heuristic functionS, hl'(s) and h2'(s) (both of which are monotone), such that hl'(s) is more informed than

h2'(s), then one is guaranteed that A* will examine an equal or fewer number of states if it uses hl'(s)

instead of ~'(s) [32]: hl'(s) is said to have more pruning power than ~'(s). Therefore, if it is known that

hl'(s) is never less than ~'(s), then the search time (measured in number of states examined) using hl'(s)

is guaranteed not to exceed the search time using h2'(s). However, the actual computation time is only

linearly related to the number of states examined, and is, in fact. equal to the number of states multiplied

by the computational effort needed to calculate the heuristic estimate [30]. Therefore, in attempting to

improve heuristics, one must consider the complexity of the heuristic function as well as its informedness.

Recently, Korf [20] has examined a depth-first variant of A·: Iterative Deepening A· (IDA·). If the

state-space we wish to search is a tree, or a graph which closely approximates a tree, IDA· is

asymptotically optimal in terms of both time and space requirements. In order to study heuristic

performance in the large state-spaces of the N Puzzles, we use the IDA· algorithm in our experiments

(IDA· requires only O(/og n) space to search a tree with n states). To guarantee optimality of solutions.

IDA· requires the use of a monotone heuristic.

3

1.1.2. The N Puzzle and the Traveling-Salesman Problem

The Eight (figure 1-1) and Fifteen Puzzles are classic exam pIes of small, well defined. and

conceptually simple problems which are sufficiently complex to exhibit interesting phenomena:

therefore, they serve as popular testing grounds for heuristic search and problem-solving methods. In

particular, these problems are used to demonstrate the development of heuristics in [10, 11, 32]. The

Eight Puzzle consists of a 3x3 frame containing 8 numbered, sliding tiles (the Fifteen Puzzle is a 4x4

frame with 15 tiles). One of the positions in the frame does not contain a tile: this space is called the

"blank," and is given the number '0' for notational purposes. A state can then be considered as an

ordered 9-tuple (To T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8)' understood to correspond to Figure 1-2. There is one legal

operator in this state-space: sliding anyone of the tiles which are horizontally or venically adjacent to the

blank into the blank's position. A solution to a problem instance is a sequence of operators which

transforms a given initial state into a particular goal state (figure 1-1 shows the goal state used in this

paper). The state-space for the Eight Puzzle contains ~ states, and the state-space for the Fifteen Puzzle

contains 1~! states [40,45].

I. 1 1 1 2 1

1 3 1 4 151

1 6 1 7 1 8 1

Figure 1-1: Eight Puzzle goal state:
(0 1 2 3 45 6 7 8)

where a is the blank

Figure 1-2: Standard tile positions
(To T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8)

The NP-Hard Traveling-Salesman Problem [9] has also been used to explore the development of lower

bounds (Le., admissible heuristics) [1, 14, 32]. The problem is that of planning a shortest route for a

salesman who must visit a number of cities and then return to his home city. In more mathematical terms,

we must find a shortest closed Hamiltonian tour through n venices. While recent work on this problem

has concentrated on methods for finding near-optimal solutions quickly, early work was concerned with

branch-and-bound techniques (branch-and-bound may be considered a generalized form of A·) for

finding optimal solutions by using admissible heuristics.

1.1.3. Generating Heuristics through Simplified Problems

We focus our attention on the work of Pearl [32], who proposes that one natural method of developing

good heuristics is to "consult simplified models of the problem domain" [10, 11,32]. He observes four

general methods for the generation of these simplified models. The first method does so by deleting

constraints on the applicability of operators in the state-space. A second method simplifies a problem by

adding constraints to it: this reduces the size of the search space and results in a more directed (therefore

faster) search. A third technique transforms the representation of the original problem into an analogous

one within the domain of an expert problem-solver. Finally, Pearl mentions a probabilistic model, in

which insufficient knowledge about a problem allows us to make only a statistically-based appraisal of

the cost of solving it

4

In this paper, we examine the first method - constraint relaxation - because it is a systematic method

which guarantees the generation of admissible heuristics. When constraints are removed from a problem,

new edges and nodes are introduced into the state-space graph. Clearly, the shortest path between any

two given States in the relaxed graph cannot be longer than the shortest path between the same two states

in the original graph (one can always choose to use the original path). Because it is a lower bound on the

cost of an optimal solution to the original problem, one can use the solution length of the relaxed problem

as an admissible heuristic for the original problem. Furthermore, because h'(s) is derived from an actual

path length in the relaxed state-space graph (it is equal to h(s) in this graph), it is easily seen that the

resulting evaluation function is monotone.

One can identify two properties of the heuristic information provided by the relaxed models: simplicity

refers to the computational effon required to solve the relaxed problem and calculate the heuristic, and

proximity refers to how closely the relaxed solution approximates the actual solution. In general, the

more relaxed a model is, the less proximity and the more simplicity it has. The challenge is to increase

the proximity of the relaxed model without significantly decreasing the simplicity of the heuristic

calculation. If we translate this to the vocabulary of theoretical computer science, the challenge is to

discover tight lower bounds which are easy to derive and compute.

Our observation is that instead of using the relaxed solution directly to advise us in finding the

solution to the original problem, we can first investigate characteristics of the relaxed solution (which can

be thought of as a preliminary plan for solution) in comparison to those of the original one. If we can

admissibly recover any information that was lost in the process of relaxation, we will have created a more

informed admissible estimate than the heuristic from the relaxed model alone.

1.2. Outline of the Paper
In section 2 we discuss the constraint relaxation model proposed by Pearl and examine its

effecti veness on the Eight Puzzle. In section 3 we introduce and discuss our refinement of Pearl's model.

We use our method to generate a new heuristic for the N Puzzle (the Linear Conflict heuristic), and we

prove its monotonicity. We then show how this process may be iterated: we apply the method again to

develop a slightly more powerful monotone heuristic. Based on experimental data, we chart the

effectiveness of the Linear Conflict heuristic, as compared to known heuristics for this problem. Section

4 we apply our method to the Traveling-Salesman Problem, and by criticizing solutions to relaxed models

we derive a well known admissible heuristic for this classic problem. In Section 5, we review the

solution-criticism method in light of these two examples. Section 6, the conclusion, summarizes our

results.

2. Examples of Heuristics from Relaxation: Constraint-Deletion on the N Puzzle
In this section, we examine Pearl's formulation of the N puzzle domain, in order to better understand

the effects of the relaxation process. We discuss three known heuristics - Manhattan Distance (5].

Relaxed Adjacency [10], and Misplaced Tiles (5] - which Pearl uses to demonstrate the applicability of

5

constraint-deletion. Aside from these heuristics, we use the constraint-deletion method to generate two

new relaxed models.

2.1. Formalization of the Problem
To use the constraint-deletion method, one must fonnally represent the problem in tenns of the states,

operators and constraints upon those operators. Pearl uses a set of STRIPS-like [8] predicates to describe

the problem state of the Eight Puzzle:

ON (x,y)
CLEAR (y)
ADJ (y,z)

tile x is on cell y
cell y is clear of tiles
cell y is horizontally or

vertically adjacent to cell z

The single operator on the state-space is described as follows:

MOVE (x,y,z)

precondition list
add list
delete list

ON (x,y) ,CLEAR (z) , ADJ (y,z)
ON (x,z) , CLEAR (y)
ON (x,y) , CLEAR (z)

The essence of Pearl's method is that by removing preconditions for this operator one is creating a

relaxed model of the problem. This is, of course, only one possible description of the problem. One may

either refine the predicates used, or describe the problem using a different set of predicates, as we

demonstrate in both of our new relaxed models.

2.2. Manhattan Distance
If one chooses to delete CLEAR(z) from the list of preconditions, one generates a new model of the

puzzle, in which the optimal solution length is given by the Manhattan Distance heuristic. In this new

puzzle, a tile may be moved into any horizontally or vertically adjacent position, with stacking allowed.

Obviously, the optimal solution to this puzzle is found by moving each tile along a shortest path between

its initial and goal .positions. For anyone tile, the length of this shortest path is the grid distance

(horizontal plus vertical distance) between its current and goal positions. Therefore, the total solution

length is merely the summation of these grid distances for each tile.

2.3. Relaxed Adjacency
One may instead choose to delete the ADJ(y.z) precondition. This results in a new puzzle in which

any tile, anywhere, may swap positions with the blank. In this "Relaxed Adjacency" model, optimal

solutions are given by the following algorithm, first introduced by Gaschnig [10] but never proven to be

optimal (see Appendix 1.1 for the proof of an upper bound for this estimate and a proof of its optimality):

While any tile is out of its goal position do
if the blank is in its own goal,

then s.wap with any misplaced tile
e~e swap with the tile that

belongs in the blank's position

2.4. Misplaced Tiles

6

Another obvious relaxation is to delete both ADJ(y.z) and CLEAR(z). In this model of the puzzle, any

tile in any position may be moved into any other position. with stacking allowed. The obvious algorithm

for solving this puzzle is simply to move each tile from its current position into its goal position. Thus,

the length of the optimal solution is merely the number of tiles which are not currently in their goal

positions - the "misplaced tiles".

2.5. The Checkerboard Relaxed Adjacency Model
In the original problem, the tile positions form a bipartite graph of positions - each move shifts the

blank from one side of the bipanite graph to the other. If one colors the puzzle like a checkerboard. the

red squares form one side of the bipanite graph, and the black squares the other side (see Figure 2-1.), In

the original problem. the blank is constrained to move to only a small subset of the other side of the graph

(Le., the adjacent positions). One may relax this constraint by allowing the blank to move to any of the

positions in the other side of the graph.

I X I I X I

I X I

I X I I X I

Figure 2-1: Checkerboard model

This model's proximity can be thought of as being somewhere between the original model and the

Relaxed Adjacency model. because one has deleted only a part of the adjacency requirement. In this new

model. one can think of any given tile position as being" adjacent" to half of the other positions. To

formalize this. we define three new STRIPS-like predicates and change the preconditions for MOVE:

RED (y)
BLACK (y)
DIFF-COLOR (x.y)

MOVE (x.y.z) :

precondition list
add list
delete list

y is a red position
y is a black position
RED (x) ED RED (y)

ON (x.y) ,CLEAR (z) , DIFF-COLOR (y.z)
ON (x.z) ,CLEAR (y)
ON (x.y) ,CLEAR (z)

7

In short, if a black position is blank (i.e., clear), only tiles in red positions may move into it, and vice

versa. Unfortunately, this simplified model is not simple enough - we have yet to find an algorithm that

solves it optimally. This points out a limitatior. of the constraint-deletion method, as well as the

simplicity/proximity tradeoff. Of course, one may search to find solutions in any simplified model

lacking an algorithm, in the unlikely hope that the search time will be short [44].

2.6. The Checkerboard Misplaced Model
One may generate a simplified version of the Checkerboard Relaxed Adjacency Model by deleting

CLEAR(z) from the precondition list. producing the Checkerboard Misplaced Model. This can be solved

optimally by the following algorithm:

While any tile is out of its goal position do
if the tile is in the same half of the puzzle

as its goal position
men move the tile into any position

in the opposite half of the puzzle
e~e move the tile into its goal position

This heuristic can estimate as high as 16 moves, for the puzzle shown in Figure 2-2 (Relaxed

Adjacency estimates only 10).

I 5 I 8 I

I 1 I 2 I 7 I

I 4 131 6 I

Figure 2-2: Checkerboard Misplaced = 16
(0 5 8 1 2 7 4 3 6)

2.7. Summary and Remarks on the Relaxed Models
Notice that some of the models presented are, in fact. relaxations of already relaxed models. For

example, the Misplaced Tiles model is a relaxation of the Relaxed Adjacency model. since it can be

generated by deleting a precondition in that model. Clearly, any relaxation of a given model will have

solution lengths no longer than that model. Consequently, the Relaxed Adjacency heuristic is more

informed than the Misplaced Tiles heuristic. Figure 2-3 shows the "relaxation space," which is a partial

order (ordered by the informedness of the heuristics) of the models described above. This is analogous to

hierarchical abstraction spaces (e.g., ABSTRIPS [38]).

The order is a partial one, because some models may be independent of one another, in that they are

8

!original model!

! ,----! ,
V I

-"..,---
I Checkerboard I I

I-----!Relaxed Adj.! I
~~_V I V ___ ~
I Relaxed ! I I Manhattan I
!Adjacency! I !Distance !

I V V
I ~1~C~h-e-ckerboardl
,_____ !Misplaced !

, I
I I
V V.~ __ ~~~

!MISplaced Tiles model I

Figure 2·3: Panial order of the discussed N-Puzzle relaxation space .
generated by relaxing different preconditions (e.g., Manhattan Distance and Relaxed Adjacency).

Gaschnig investigated the Relaxed Adjacency heuristic and found that it evaluated only slightly higher

than Misplaced Tiles in most, and lower than Manhattan Distance in all of the 875 puzzle instances which

he studied [10]. We noticed, however. that there are exceptions which he overlooked: the Manhattan

Distance estimate is lower. in 0.2% of the possible Eight Puzzle instances (see Figure 2-4 for one such

instance). Realizing that the evaluations made by these two heuristics are both guaranteed to be

underestimates, one can employ the trivial improvement of using MAX(Manhattan Distance, Relaxed

Adjacency) as an estimate (this is a general suggestion from Pearl [32], although neither he nor Gaschnig

mention Relaxed Adjacency's occasional superiority).

I 2 I ;I. I

I 4 I 3 I 8 I

! 7 I 6 ! 5 I

Figure 2-4: Relaxed Adjacency = 12
Manhattan Distance = 8
Optimal Solution = 24

(0 2 1 4 3 8 7 6 5)

9

3. Refining Relaxed Models by Solution-Criticism
We have seen how constraint relaxation can generate a number of admissible heuristics for the Eight

Puzzle. We may consider such a heuristic function as examining certain properties of a problem. But,

because of the relaxation, some of the properties are overlooked, and others exaggerated or simplified:

therefore the solution proposed is infeasible for the original problem. The different relaxations we have

seen are weighted heavily towards certain propertie~ - e.g., shortest path of a tile to its goal position

(Manhattan Distance), the bipartite graph of tile positions (Checkerboard Relaxed Adjacency), and the

role of the blank in moving the tiles (Relaxed Adjacency). We wish to study the properties which these

relaxations stress, and those which they ignore or simplify, and thereby criticize the feasibility of the

simplified solution.

Manhattan Distance, on the average, is the best of the heuristics discussed above. We will attempt to

improve upon it by contrasting the solution plan which it suggests to that of the original problem.

3.1. Analyzing the Shortcomings of the Manhattan Distance Model
Manhattan Distance can be thought of as proposing a solution for the problem. It proposes that the

puzzle can be solved by moving each tile along a shortest path to its goal position. More specifically, the

optimal solution in the Manhattan Distance model is a set of sub goal solutions, one for each tile. A

sub goal solution is any shortest path for a given tile from its current to its goal position. In many cases,

there is a single, unique shortest path: the tile is already in its correct row (column) and need only move

within t11at row (column) (see Figure 3-1). In other cases, the path is not unique (see Figure 3-2).

I X ~ ~ Y I

Figure 3-1: Unique, straight-line
shortest path from X to Y

I X ~ ~ 1
- ,1. - ,1. - ,1.--

.1 ~ ~ Y 1

Figure 3-2: Non-unique shortest
paths from X to Y

We will explore only what happens to the unique shortest paths, because in these cases, the subgoal

solution given by the relaxed model is uniquely determined - hopefully it will be simple to analyze and

improve the heuristic by recognizing when these suggested subgoal solutions are infeasible. First, we

present the following results about paths:

Lemma 4: If there exists one path from position X to position Y in the N Puzzle that is of
even (odd) length, then all paths from X to Y are of even (odd) length.

Proof: From the discussion in Section 2.5, one knows that the tile positions form a
bipartite graph. Since, in a bipartite graph, all paths of length 1 move between the
two sides of the graph, al1 paths between positions which are on opposite sides of the
graph are of odd length. and all paths between positions which are in the same side
are of even length. Q.ED.

Consequently,

Corollary 5: If there is a unique shortest path, p, between position X and position Y in the N
Puule. then any alternate path will be at least 2 moves longer than p.

10

One notices, when comparing the subgoal solutions to the actual optimal solutions, that the unique

shortest paths of two tiles occasionally conflict. In these cases, one tile may be forced to take an alternate

path. increasing the solution length by at least two (from Lemma 5). In fact, there are several distinct

cases in which this phenomenon occurs (the examples below indicate some of these). In general. these

conflicts can only exist in a given line when two or more tiles have both their current and goal positions

in that line: in that case, there are at least two unique shortest paths and the possibility of a local subgoal

conflict.

The idea of shortest paths is only brought to our attention by studying the optimal solutions to this

relaxed problem. We must then attempt to look critically at this concept which influences the heuristic

offered by the relaxed model, and attempt to gauge the degree to which it affects the solution to the

relaxed model. Once one can recognize and characterize the cases where the unique shortest paths are

necessarily violated in the optimal solution to the original problem, one may determine a way to

compensate for these oversimplifications. Before describing a precise method for doing so, we examine

several examples of this phenomenon.

3.1.1. Examples of Conflicting Shortest Paths

Figures 3-3 throug~ 3-6 illustrate four typical t:xamples of conflicts between unique shortest paths.

I 5 I I 3 I

Figure 3-3: Shortest paths collide:
Add 2 to Manhattan Dist

I 5 I 3 I 4 I

Figure 3-5: '5' must move off-line:
Add 2 to Manhattan Dist

I 4 I 3 I

Figure 3-4: '4' acts as an obstacle,
although its path length is 0:

Add 2 to Manhattan Dist

I 5 I 4 I 3 I

Figure 3-6: 2 tiles must move off-line:
Add 4 to Manhattan Dist

II

In Figure 3-3, either the '5' or the '3' must move outside of the middle row to make room for the other

to pass. Therefore, one should add two to the estimate of Manhattan Distance (one for the move out of

the line and another for the move returning to the line).

Figure 3-4 shows a conflict in which a tile, which had previously been "solved", presents an obstacle

to another tile. This conflict contradicts the Means-Ends analysis [28] intuition that solved subgoals will

not be disturbed (similar failures occur in planning solutions to problems in the "Blocks World" [7,46]).

To resolve this conflict, either the ' 4' or the '3' will have to follow a non-shonest path, adding at least 2

moves to the Manhattan Distance estimate.

Figure 3-5 shows another typical conflict. In this state, the '5' tile is in conflict with the '3' and the

'4'. Clearly, either the '5' has to move out of the way (2 extra moves) and allow the others to pass to

their goal positions, or the '3' and '4' have to move and allow the '5' to pass (4 extra moves). To

preserve admissibility, one must assume that the less costly resolution occurs, and add 2 to the Manhattan

Distance estimate.

Lastly, Figure 3-6 illustrates the most complex case, where each tile is in conflict with the other two.

This can only be resolved by moving two of the tiles off line. One should, therefore, add 4 00 the

Manhattan Distance estimate when this case is recognized.

If one can devise a method for tabulating the additional moves forced by conflicting subgoals, one can

add that total to our Manhattan Distance estimate and create a new admissible heuristic for this problem:

one which can easily be generalized to the N Puzzle. Intuitively, one examines the puzzle state, row by

row and column by column, and adds to Manhattan Distance the minimum number of additional moves

necessary to resolve the conflicts within each row and column: therefore, this estimate is stiIl a lower

bound on the actual optimal solution length (a precise algorithm is given below). To give some idea of

the relative informedness of this heuristic, we compare its estimates to those of Manhattan Distance,

Relaxed Adjacency, and Misplaced Tiles, for the puzzle instances shown in Figures 3-7 to 3-10.

I 2 III

I 7 I 4 151

I 6 I 3 I 8 I

Figure 3-7: Misplaced Tiles = 4
Relaxed Adjacency = 6
Manhattan Distance = 6

Linear Conflict - 8
Optimal Solution = 22

(0 2 1 7 4 5 6 3 8)

I 2 I 1 I

I 5 I 4 131

I 6 I 7 I 8 I

Figure 3-8: Misplaced Tiles = 4
Relaxed Adjacency = 6
Manhattan Distance = 6

Linear Conflict = 12
Optimal Solution = 20

(0 2 1 5 4 3 6 7 8)

I 4 I 3 I 6 I

I 8 I I 7 I

151 2 I 1 I

Figure 3-9: Misplaced Tiles = 8
Relaxed Adjacency - 10
Manhattan Distance = 22

Linear Conflict = 22
Optimal Solution = 26

(436807521)

I 2 I 7 I

I 5 I 4 131

I 8 I 1 I 6 I

Figure 3-10: Misplaced Tiles = 7
Relaxed Adjacency = 10
Manhattan Distance = 14

Linear Conflict = 24
Optimal Solution .. 26

(2 7 0 5 4 3 8 1 6)

12

While the Linear Conflict heuristic is clearly more informed than the Manhattan Distance heuristic,

one notes that, because the relaxation space is a partial order, one cannot presuppose anything about the

relative informedness of the Linear Conflict and Relaxed Adjacency heuristic. In fact, there are cases of

the Fifteen Puzzle (e.g. (0 1 3745269 13 10 11 8 12 14 15») for which the Relaxed Adjacency estimate

is higher than the Linear Conflict heuristic.

We note that the idea of tile conflicts has been mentioned by others: Nilsson, for example, noted that

Manhattan Distance "is too coarse, ... in that it does not accurately appraise the difficulty of exchanging

the positions of two adjacent tiles" [31 J. However, the heuristic he proposes to correct the situation, the

Sequence Score (also investigated in [5, 36]), is inadmissible and is applicable only to special goal states

of the Eight Puzzle. Furthermore, it is not generalizable to the N. Puzzle.

3.1.2. An Iteration of the Process - an Even More Informed Heuristic

One may now consider the differences between the solutions proposed by the Linear Conflict model

and those of the original problem. One can iterate the process of heuristic refinement by once again

criticizing the differences between these proposed solution paths. We notice that the Linear Conflict

model affords no consideration to the effects of diagonally adjacent correct tiles in the puzzle's corners.

However, there are several simple cases where the solution length to the actual problem is clearly affected

by this occurrence.

I 3 I I 3 I 6 I

I 4 I 7 I I 4 I 7 I

Figure 3-11: Comer tile is blocked: Figure 3-12: Two correct tiles prevent a swap:
Add 2 to Linear Conflict Add 4 to Li near Conflict

13

17141 I 7 I 4 I

I 6 I I 6 I 3 I

Figure 3-13: Comer tile blocks its neighbor: Figure 3-14: Comer tile blocks a swap:
Add 2 to Linear Conflict Add 4 to Linear Conflict

The Corner Conflicts are merely a special case of Diagonal Conflicts, which can be found throughout

the puzzle. We could have chosen to admissibly add the effects of these Diagonal Conflicts to Manhattan

Distance, however, one cannot admissibly add the effects of both Diagonal and Linear Conflicts (the

movement of one tile might reduce both of these estimates, and so the heuristic estimate would not be

monotone). The Corner Conflicts described above consider tiles which could not be involved in any

Linear Conflicts, and therefore their contribution can be added to the Linear Conflict estimate. We note,

however, that the relative contribution of the Corner Conflicts decreases as the size of the N Puzzle

increases, and so, we will instead concentrate on the Linear Conflict Heuristic.

3.2. An Algorithm for Calculating the Linear Conflict Heuristic
The algorithm performs an analog of plan criticism upon the unique shortest paths which exist in any

given line. We first define a linear conflicl:

Definition 6: Two tiles Ij and tk are in a linear conflict if Ij and tk are in the saf!1e line, the .
goal positions of tj and tk are both in that line, tj is to the right of tk, and the goal position of Ij is
to the left of the goal position of IIc'

We now define some variables used by the algorithm:

s is the current state.

C(tj>rj) is the number of tiles in row rj with which Ij is in conflict. Similarly for C(lj,Cj)

Ic(s, rj) is the number of tiles that must be removed from row rj in order to resolve the line~r
conflicts. Similarly, Ic(s,c) is the number of tiles that must be removed from column Cj In

order to resolve the linear conflicts.

md(s, I) is the Manhattan Distance of tile t j •

L is the size of a line (row or column) in the puzzle. L =vN + 1.

LC(s) is the minimum number of additional moves necessary to resolve the linear conflicts in
s.

MD(s) is the sum of the Manhattan Distances of all the tiles in s.

Begin {Algorithm}

For each row rj in the state s, one accounts for the conflicts local to that row ic(s,rj) as follows:

• lc(s,rj) = O •

• For each tile tj in rj' determine C(tj,rJ

• 'While there is a non-zero C(tj'rj) value, do
• Find tic such that there is no C(tj'rj) greater than C(t",r). (As tic is the tile with the most

conflicts, we choose to move it out of rj)'

e C(t",rj) = O.

• For every tile tj which had been in conflict with tic' C(tprj) "" C(tj,rj)-1.

elc(s,rj)=lc(s,rj)+ 1.

14

Check similarly for linear conflicts in each column Cj' computing lc(s, Cj)' Then calculate the estimate

of the Linear Conflict alone:

Le(s) = 2[{lc(s,rl)+ ... +ic(s,rL)}+{ic(s,cl)+···+ic(s,cL)}]

Determine, for each tile I j in state s, its Manhattan Distance md(s,tj), and sum these to get the overall

Manhattan Distance MD(s) =md(s,t1) + ... +md(s,tN)' Calculate the overall Linear Conflict heuristic

estimate: h'(s) = MD(s) + Le(s).

End {Algorithm}

We now prove that this algorithm calculates a lower bound on the minimum path length which needs

to be added to the shortest paths in order to resolve conflicts in each line (other conflicts are still

possible):

Theorem 7: The above algorithm calculates the minimum path length needed to resolve all
linear conflicts.

Proof: First, we concentrate on one line and prove the following claim: for any
line, the algorithm calculates the minimum number of tiles which must take non­
shortest paths.

Notice that in the line, one may consider each tile as a node in a graph. Conflicts
between tiles are arcs in the graph. In resolving conflicts, one wants to remove all
arcs by removing a minimum number of nodes. Our algorithm follows a greedy
strategy, removing a node with highest degree first, and continues recursively on the
remaining graph. Therefore, it determines the minimal number of tiles which must be
removed from the line. The algorithm counts 2 moves for each removal, which is the
minimal number needed according to Corollary 5.

Since the algorithm calculates each line separately, what remains to be shown is
that the number of conflicts in a line is independent of the conflicts in other lines. To
do this, we demonstrate that removing a tile from one line (to resolve a conflict) will
not affect conflicts in other lines. Consider a line in which one removes k tiles in
order to resolve all conflicts. Among these tiles, one removes tile~. If S is not in its
goal position, then it is only involved in conflicts in this line. If tj is in its goal
position. then moving it out of this line will have no effect on the confltcts which may
exist in the perpendicular line. because it does not change position relative to the
other tiles in that line (it merely moves into the blank position).

Therefore, the algorithm, which calculates the correct number of conflicts in each
line independently (counting 2 moves for each removal), and sums these numbers,
returns the minimum added path length to remove all linear conflicts. Q.E.D.

3.2.1. Computational Complexity of the Linear Conflict Heuristic

15

The calculation of MD(s) requires 0 (N) operations. To calculate Lees) requires, for each line of tiles,

O(N) operations in the worst case. Since there are 2.JN + I lines, it requires 0 (N1.5) operations.

However, during a search, one can calculate the heuristic estimate for a given state more efficiently,

assuming that one has the estimate for its parent in the search space. Thus in a naive implementation,

MD(s) costs 0(1), and Lees) costs O(N). In our implementation, we reduced both calculations to table

lookup. To prepare the Linear Conflict table, we pre-computed the linear conflicts possible in a line. We

stored with each tile in the state two numbers indicating whether it is in the goal row and column, and if

so, where their goal positions are in their current row and column. Thus, in our implementations, Lees)

merely costs a small number of table lookup operations. In fact. the calculation of LCCs) caused the

search program for the Fifteen Puzzle to be, on average, only 5% slower per node (Le., nodes examined

per second) - this was more than made up for by the dramatic decrease in the number of nodes that needed

to be examined when the Linear Conflict heuristic was used (cf. 3.3).

3.2.2. Proof of Monotonicity of the Linear Conflict Heuristic

Theorem 8: The Linear Conflict heuristic is monotone (and therefore admissible).

Proof: To establish monotonicity we must show that 'V s, s' j(s') ~Jts)
(where s' is a successor of s). Recall that Jts) = g(s) +h'(s), where
g(s') = g(s) + 1 and h'(s) =MD(s) + LC(s).

In the movement from a state to its successor, let us assume that tile x
moves from row rj to 'j' while remaining in column C/c We now consider
the effects of tile x's movement on MD(s') and LC(s'), and consequently
h'(s):

l. The goal position of x is in neither 'j nor rj"

md(s',x) =md(s,x) ± l. LC does not change.
h(s')=h(s) ± 1. and./ts') =j(s) + 1 ± 1 ~./ts).

2. The goal position of x is in rj"

Therefore,

Since x moved into its goal row, md(s',x) = md(s,x) - l. Because
r· is not x's goal row, it contributed nothing to lc(s,rj), and its
absence has no effect: lc(s',rj) = lc(s,rj). Because x is moving into
its goal row, it mayor may not contribute to the conflicts in that
row, so either lc(s' ,r) = lc(s,,) or lc(s' ,,) = lc(s,r) + 2. Therefore.

h(s')=h(s) ± 1, andJts') =Jts) + 1 ± 1 ~fl..s).

3. The goal position of x is in rj.

Because x moved out of its goal row, md(s',x) = md(s,x) + l.
Because 'j is x's goal row, it mayor may not contribute to the
conflicts in that row, so either lc(s',rj) = lc(s,rj) or
lc(s',rj)=lc(s,rj)-2. Because'j is notx's goal row, its presence or
absence contributes nothing to the conflicts there: lc(s',r) = lces,,).

Therefore, h(s')=h(s) ± 1, andfl..s')=./ts)+ 1 ± 1 ~j(s).

In all cases,fis') '2j{s).

By the symmetry of the puzzle, one can construct a similar argument for
movement within a row. Q.E.D.

3.3. Empirical Data and Analysis of the Linear Conflict Heuristic

16

We have developed a new heuristic for the N Puzzle, which is more informed than the Manhattan

Distance heuristic (which had been known to be, on average, the most informed heuristic for the

problem). A srudy of its relative informedness and pruning power was conducted. Numerous search and

analysis programs were implemented to measure the relative strengths of various heuristics on the Eight

and Fifteen Puzzles. The search algorithm used was IDA· [20]. The relevant results are summarized in

the tables in Appendix 1.2.

To study the informedness of the different heuristic estimates, the entire state-space of the Eight

Puzzle was evaluated using the Relaxed Adjacency, Manhattan Distance, and Linear Conflict heuristics.

The heuristic evaluations are summarized in Tables 1 to 3. Table I shows the distributions of the three

heuristic estimates, as well as the actual distribution of optimal solution lengths: in order to illustrate 'these

distributions. the SO% of the states centered about the mean are marked with asterisks. Comparing the

four distributions, one sees that the distribution of Linear Conflict estimates (mean at IS.11, with the

middle SO% ranging from 14 to 17) most closely approximates the actual distribution of solution depths

(mean at 21.97, with the middle 50% ranging from 19 to 24). The distribution of Manhattan Distance

estimates has a mean at 14.00 (with the middle SO% ranging from 12 to 16), while the distribution of

Relaxed Adjacency estimates has a mean at 8.0S (with the middle SO% ranging from 8 to 9). Table 2

shows how the three heuristics compare on individual puzzles: Relaxed Adjacency rarely estimates higher

than Manhattan Distance on a given puzzle, but the Linear Conflict estimate is often much higher. Table

3 shows the best, worst, and average evaluations of the three heuristics for each depth of the search tree:

once again, Linear Conflict's comparative power is evidenced. One notices that the Linear Conflict

. estimate increases as a function of Manhattan Distance: in other words, Linear Conflict's advantage over

Manhattan Distance (Le., the ratio of their estimates) grows faster as it is faced with harder problem

instances.

Tables 4 to 6 summarize performance of the new heuristic compared with Manhattan Distance. The

pruning power of the two heuristics was examined by solving 1000 randomly generated Eight puzzles and

the 100 random Fifteen Puzz[es used in the tests of [20], and comparing the number of states examined

(this measure is proportional to searcn tIme: see 3.2.1). Tab[e 4 shows the number of states examined for

the 1000 Eight Puzzles, arranged by the depth of the solution found: overall, the number of states

examined using Linear Conflicts is less than half of the number of states examined using Manhattan

Distance. The table also suggests that the comparative pruning power of Linear Conflict increases with

problem difficulty: this is expected from the discussion of Table 3 above. Moving onto the Fifteen

Puzzle, Tab[e S (an extension of a similar table in [20]), shows that. for the Fifteen Puzzle. the average

number of states examined using Linear Conflict is only one-eighth of the average number of states

17

examined using Manhattan Distance. For 61 out of 100 puzzle instances, Linear Conflict performed less

than 20% of the search required by Manhattan Distance: in only 7 cases did it perform more than 30%.

Manhattan Distance caused the search to examine over 100 million states in 40 puzzle instances, and over

500 million states in 17 puzzle instances, while Linear Conflict caused the search to examine over 100

million states in only 11 puzzle instances. and no state required the examination of 500 million states.

The 100 Fifteen Puzzles are sorted by problem difficulty (in number of states examined) into quintiles in

Table 6: one sees that the Linear Conflicts heuristic demonstrates comparatively more pruning power on

more difficult Fifteen Puzzle problem instances Uust as it did for the Eight Puzzle).

One sees that the comparative power of the Linear Conflict heuristic increases with the difficulty of

the problem instance. Furthermore, when moving from the Eight to the Fifteen Puzzle, the advantage of

Linear Conflict increases (because there is a greater chance for conflicts to occur as the size of the puzzle
increases).

4. Another Example - the Traveling-Salesman Problem
The Traveling-Salesman Problem [9, 34) is one of the most famous NP-Hard problems. This

intractable problem is considered a "real-world" problem. and the development of heuristics fOr its

solution has occupied many researchers.

4.1. Pearl's analysis of the Traveling-Salesman Problem
Pearl (32) uses this. problem as the very first example of the constraint-deletion method. However, he

does not formalize it in terms of the state-space model of problem-solving. Instead, he concentrates on a

description of the goal and the constraints upon it He suggests that we may consider a successful

Traveling-Salesman tour as satisfying three constraints:

(1) being a graph (2) being connected (3) being of degree 2

Pearl outlines informally how we can develop simplified problems, and thence, admissible heuristics by

deleting one or more of these constraints on the goal description. If we delete (2) we arrive at the

"optimal assignment" heuristic, and if we delete (3) we arrive at the "minimum spanning tree" heuristic.

Pohl [33, 34] describes some heuristics obtained by deleting (1).

However, to be consistent with our previous example and the state-space model that we are examining,

we will formulate the problem differently, using a well-defined set of states and operators. We then

delete constraints upon the operators to get relaxed models of the problem, find solutions to these relaxed

models, and then analyze and criticize these solutions.

4.2. Formalization of the Problem
We will consider a search for solutions in a state-space of partial tours. From any given state, the

heuristic should be an estimate of the minimum cost completion of the partial tour. In other words. if in a

given state we have completed a partial tour from cityy to city". we want to estimate the length of a

minimum partial tour from city" back to city y which visits all the remaining cities. We may simply forget

18

all of the cities we have already visited in the partial tour, and delete them (and the edges incident with

them) from the graph.

To calculate an exact heuristic, we must construct a tour from city x to city y (denote this by

TOUR(cityx'cityy». A tour consists of "visiting" all of the remaining cities in the graph (with cityy

visited last), using the single operator MOVE(cityi' citYj)' defined as:

MOVE (citYi' citYj)

precondition list
add list
delete list
cost

ON(salesman,citYi), NOT(VISITED(citYj»
ON (salesman, citYj), VISITED (citYj)
ON(salesman,citYi)
DISTANCE (CitYi,citYj)

The goal has been reached when, for every cityz that had to be visited, VISITED(cityz) is true. The

successful tour consists of the sequence of applications of the MOVE operator by which the goal was

reached (a symmetric tour is given by switching cityi and cityj in every MOVE). Notice that the

movement of the salesman resembles the movement of the blank in the N Puzzle, except that in this

problem, all positions are adjacent, the cost of the operator is variable, and (of course) the goal is entirely

different. As far as we know, this is the first formulation of this problem in a state-space model using

STRIPS-like predicates.

4.3. Rela~ed Models and Soiut~on-Criticism
At any given state, the problem is to construct a TOUR(cityx'cityy) which visits all the remaining

cities. We may simplify the problem by deleting either of the preconditions of MOVE.

If we delete the NOT(VISITED(cityj» constraint, we get a simplified problem in which the optimal

solution is given by the shortest tour which visits all cities, with multiple visits allowed. There seems to

be no efficient algorithm for computing such a shortest relaxed tour. We note, however, that the cost of a

minimum spanning tree is a lower bound on the cost of such a relaxed tour.

If we delete the ON(salesman. cityi) requirement, we allow the salesman to jump (for free) to cityi' and

then move to cityj. Because of the add list, the salesman does not actually visit cityj in this move. We get

the optimal solution to this problem by traveling the shortest edge incident with each city (if there are n

cities to visit, we use n edges, one "more than in the minimum spanning tree). The solution to the relaxed

model is always a subgraph consisting of connected components, where each component of m nodes is a

modified tree of m edges, which either has a cycle containing equal (shortest) length edges, or a

duplicated shortest edge which creates a degenerate cycle. Such a solution can be calculated in

polynomial time. Notice that, for problem instances with very small numbers of evenly distributed cities,

this easily-computed heuristic estimate may be higher than the cost of the minimum spanning tree,

because it contains one more edge. As N increases, however, this becomes less likely.

Applying our method of solution-criticism, we see that the solutions to this relaxed model contain

cycles and may be unconnected. We may admissibly increase the estimate by breaking these cycles (if

19

there are k components in the subgraph, there will be k cycles - we break them by deleting kedges),

adding the minimum-weight set of k-J edges which connect the components, and then adding another

shortest edge (which creates a cycle). We replace k of the edges by k different edges (the shortest edge

will be a member of both sets). The total length of the new edges will not be less than the total length of

the removed ones. Note that the resulting graph is a minimum spanning tree with an added shortest edge.

TItis estimate is computable in low-order polynomial time [43].

A further criticism may be added. The resulting graph is not connected to city" (because it had been

visited already in the partial tour from city y to city" : city y was not visited in the partial tour). We may

possibly increase the estimate by deleting the added shortest edge mentioned above, and adding instead

the shortest edge which connects city" to the minimum spanning tree. The resulting graph is merely a

minimum spanning tree which includes city", except in the case where City" equals cityy (the initial state

of the search), in which we get Held and Karp's minimum-weight I-tree instead [14, 15]. Interestingly,

this heuristic, which we have derived by solution-criticism is one of the most famous admissible

heuristics for the Traveling-Salesman problem [14, 15]. Its performance has been thoroughly studied in

[15].

Notice that when we move from citYj to cityj' we do not assume that cityj has been visited in the

process - this is an artifact of the definition of the operators. In the original description of the problem,

we assume that cityj has been visited previously: therefore, VISITED(cityj) was not included in the

original add-list in the operator's definition. However, if we do add VISITED(cityj) to the add list, and

then delete ON(cityj) from the precondition list. we arrive at a problem where the optimal solution is

given by the minimum weight set of edges E such that every city is incident with an edge in E. The set of

edges E is a solution to the minimum-weight edge cover problem. This problem can be reduced to the

minimum weighted-matching problem, and solved in polynomial time.

5. Discussion of the Solution-Criticism Method
The process of relaxation makes a problem easy by allowing us to concentrate on certain aspects of the

problem while ignoring others. This often makes the problem easier to analyze, and perhaps easier to

solve algorithmically. However, these solutions are poor approximations of a feasible solution to the

original problem. For example, the Manhattan Distance relaxed model allows us to consider optimal

solutions for each tile, without regard to the global conflicts which may result because of the interaction

of these subgoal solutions. We may increase the proximity of this relaxed model by accounting for those

constraints which it overlooks. One of the relaxed Traveling-Salesman problems allows us to simplify

the problem of visiting all the cities in a proper tour into the many subproblems of visiting each city,

without regard to the connections between these subtours. By correcting this unconnected solution, we

arrive at the celebrated minimum spanning tree heuristic.

The method of solution-criticism is a first attempt at restoring the global view to these myopic relaxed

solutions, by comparing them to actual solutions to gain an understanding of those global considerations

that they overlook. In many cases, we may be able to increase the estimate provided by the relaxed

solution either by refining them into a more feasible solution, or simply by adding some measure of what

20

they have overlooked. This may be considered as analogous to a planning process, in panicular, the

problem of planning in a hierarchy of abstraction spaces [38].

We note, that for more than two decades. the Eight Puzzle has been used as a research example to

demonstrate the development of heuristics. and yet. the Manhattan Distance heuristic has not been

improved upon in all these years. We believe that oul" improvement. the Linear Conflict heuristic, is

difficult to find directly without following the methodology suggested here.

Pearl's method of constraint-deletion seems suitable for automation. Constraint-deletion is a

straightforward procedure, given a representation of the problem. However. there is one major difficulty:

choosing, from among the vast array of problem representations, one which yields useful relaxed models

for which we can find algorithms. Therefore, a robust problem-solving system must be capable of

changing the representation of a problem [18].

Adding our refinement will add another aspect to the automation, because discovering differences

between the solutions to the relaxed model and the original problem demands the addition of learning

components to the system. The system will have to learn, by examining problem instances. which

characteristics of the relaxed model's solution are not found in the actual solution to the problem. Notice

that this approach to learning heuristics is related to learning in the planning domain [38,41], as opposed

to approaches which attempt to learn heuristics by statistical analysis [37,39].

6. Conclusion
The process of criticizing the solutions to relaxed models is suggested as a valuable addition to the

constraint-deletion method. The preceding analysis and empirical data show that one can develop a very

powerful heuristic by attempting to understand the infeasibility of a proposed relaxed solution, and

recovering some of the information that was lost in the relaxation.

We have demonstrated how such criticism has been used to derive powerful admissible heuristics for

the N Puzzle and the Traveling-Salesman Problem.

The process of generating admissible heuristics suggested here is analogous to the procedures used in

developing lower bounds for problems. First, one simplifies the problem so that its solution is a lower­

bound and is easily attainable, and then one attempts to tighten that bound by reconsidering factors

ignored by the simplification. We believe that the process of relaxation and subsequent tightening

captures one of the methods used by humans in coping with hard problems.

Acknowledgements
Aside from teaching us all we know about heuristic search, Rich Korf suggested the idea of tile

conflicts. We thank him for many helpful comme~ts and much suppon. We would also like to thank

Bruce Abramson and Jens Christensen for many fruitful discussions, and Bill Schilit for his generous and

friendly help in implementing some of the search programs.

I. Appendices

1.1. Proof of Upper Bound for Relaxed Adjacency Heuristic

Theorem 9: For any given N Puzzle, P, Rela1(ed-Adjacency(P) S; ~ Misp\aced-Tiles(P).

Proof: One may represent the abstract solution plan to any N Puzzle as the pennutation
necessary to ttansfonn the given puzzle into the goal state. This pennutation may be
represented as:

(
to tl ... NtN)
o 1 .. .

Alternately, this pennutation can be given as a sequence of cycles (cyclic pennutations):

j

(to 1 ... to ,,) ... (t. 1 ... t· k) where ~ k· = N+ 1 and k· is the length o/the jlh eye/e.
• '''0 }, }. I £.J I I

i.O
For example, the abstract solution to the puzzle shown in Figure 3-9 is

(138)(2657)(40)

In other words, tile 1 moves to tile 3's position, tile 3 moves to tile 8's position, tile 8 moves
to tile l's position, tile 2 moves to tile 6's position, etc. Solving the entire pennutation by
solving each cycle individually is the optimal strategy for solving a puzzle in the Relaxed
Adjacency model.

Of course, the individual operators in the Relaxed Adjacency model are not cycles, but
pennutations of two tiles (i.e .. transpositions) of the fonn (0 t), where t is the tile to be swapped
with the blank (call these operations "blank-swaps"). The problem of finding an optimal
solution, then, is to show how the sequence of cycles which represents an abstract N Puzzle
solution may be transfonned into an optimal (i.e., shortest possible) sequence of blank-swaps.
For example, the puzzle shown in Figure 3-9 may be solved by

(0 1)(03)(08)(0 1)(02)(06)(05)(07)(02)(04)

This sequence of blank-swaps corresponds directly to the sequence of moves in the optimal
solution.

We present the following facts about such blank-swaps: they are elementary results of
pennutation group theory.

Fact A: A cycle of the fonn (tl ... tk), where 'v,!;,l S;iS;k (tj*O), may be optimally

represented as a sequence (of length k+ 1) of blank-swaps as follows:

(0 t,,)(O t"_I)'" (0 t2)(0 t 1)(0 tk)

Note that this can be thought of as an initial move which brings the .blank into the
cycle, creating a new cycle, and then a solution of the new cycle as in Fact B.

Fact B: A cycle of the fonn (t1 ... tk)' where 3tj ,1 S;iS;k (tj=O), may be optimally

represented as a sequence (of length k- 1) of blank-swaps as follows:

(0 ti- 1)··· (0 t1)(0 tk)··· (0 t i+ 1)

Fact C: A singleton cycle of the fonn (t) can be represented as a null sequence of
blank-swaps.

Obviously, in any N Puzzle, one can only have one cycle which contains the 0 (there is only

21

one blank, after all). Call the length of that cyclic permutation LEN b' To sol ve this cycle will

require LEN b - 1 blank-swaps.

One may have up to ~ cycles of length > 1 which do not contain the blank. Call the number
of such cycles NUM nb' and the sum of their lengths LEN nb' To solve such a cycle of length I
will require 1+ 1 blank-swaps. So, to solve all of them will require LENnb+NUMnb blank-

swaps.

One may have up to N cycles of length = 1 excluding the cycle (0). These cycles represent
single non-blank tiles which are in their goal positions. Call the number of such singleton
cycles NUMr These cycles are already solved.

We will note that (LENb-l)+LEN nb is equal to the number of misplaced tiles in the puzzle,
MT.

Clearly, LEN nb + (LENb -1) + NUMs=N and by the above discussion, the collective length
of the optimal blank-swap sequences for all the cyclic permutations is
(LENb-I)+(LENnb+NUMnb), or MT+NUMnb. Since there are at least two misplaced tiles in
each non-singleton cycle which does not contain the blank, we can see that NUM nb can never

I 3
exceed '2MT, and so MT+NUMnb ~ '2MT.

From the discussion in the above proof, the following is evident:

Corollary 10: Gaschnig's algorithm for calculating the Relaxed Adjacency heuristic divides
the puzzle into these cyclic permutations and solves them optimally, by applying the following
step until the puzzle is solved:

if the blank is in its. own goal,
~en swap with any misplaced tile
e~e swap with the tile that

belongs in the blank's position

It is easily seen that the iteration of this step will produce a solution in which the I-length cycle
which contains the blank is solved first (if such a cycle exists), in 1-1 moves (cf. Fact A,
above). Then cycles which do not contain the blank are solved, one at a time. For a cycle of
length k, this is done by first moving any misplaced tile T into the blank's position, creating a
new cycle which contains the blank (the new cycle has length k+ 1) - this is solved in (k+ 1 - 1)
moves. Together with the first move ofT, such a cycle takes k+I moves to solve (cf. Fact B),
and leaves the blank in its goal position.

Thus, all cycles are seen to be solved optimally (cf. Facts A and B above) by Gaschnig's
algorithm.

22

1.2. Tables

RA

Table 1

Heuristic Estimates of the Entire State-Space of the Eight Puzzle
arranged by Estimated Depth

ESTIMATE RA MD LC ACTUAL DEPTH

0 1 1 1 1
1 4 2 2 2
2 28 4 4 4
3 168 10 10 8
4 1036 115 53 16
5 4060 246 94 20
6 15274 695 237 39
7 33516 1134 494 62
8 * 61732 3655 1656 116
9 * 41632 5084 2344 152

10 22624 10999 5383 286
11 " 1260 11862 6620 396"
12 105 * 21707 15178 748
13 0 * 20040 15662 1024
14 0 * 27625 * 26072 1893
15 0 * 20954 * 23150 2512
16 0 * 22180 * 27996 4485
17 0 14226 * 19946 5638
18 0 10825 17463 9529
19 0 5896 9752 * 10878
20 0 2790 5708 * 16993
21 0 1186 2274 * 17110
22 0 204 941 * 23952
23 0 0 280 * 20224
24 0 0 103 * 24047
25 0 0 10 15578
26 0 0 4 14560
27 0 0 2 6274
28 0 0 1 3910
29 0 0 0 760
30 0 0 0 221
31 0 0 0 2

Relaxed Adjacency MD = Manhattan Distance LC = Linear Conflict

asterisks mark the 50% of the states centered around the mean

23

Table 2

Number of Deviations of Relaxed Adjacency
and Linear Conflict Estimates

from Manhattan Distance Estimate

ESTIMATE RA MD LC

MD- 16 0 0 0
MD- 14 130 0 0
MD- 12 3058 0 0
MD 10 16525 0 O·
MD- 8 41349 0 0
MD- 6 56661 0 0
MD- 4 42674 0 0
MD- 2 17194 0 0
MD 3545 181440 101400
MD+ 2 300 0 61260
MD+ 4 4 0 16282
MD+ 6 0 0 2304
MD+ 8 0 0 186
MD+ 10 0 0 8
MD+ 12 0 0 0

RA Relaxed Adjacency MD Manhattan Distance LC Linear Conflict

24

RA

Table 3

Minimum, Average, and IVlaxilJlum Values of each
Heuristic Estimate for the Entire Eight Puzzle

- arranged by Actual Depth

Depth Minimum Average Maximum

RA MD LC RA MD LC RA MD LC

0 0 0 0 0.0 0.0 0.0 0 0 0
1 1 1 1 1.0 1.0 1.0 1 1 1
2 2 2 2 2.0 2.0 2.0 2 2 2
3 3 3 3 3.0 3.0 3.0 3 3 3
4 4 4 4 4.0 4.0 4.0 4 4 4
5 3 5 5 4.80 5.0 5.0 5 5 5
6 4 4 4 5.43 5.79 5.79 6 6 6
7 5 5 5 5.90 6.61 6.61 7 7 7
8 4 4 4 6.51 7.37 7.37 8 8 8
9 3 5 5 6.60 8.23 8.31 9 9 9

10 2 4 4 6.86 8.72 8.86 8 10 10
11 1 3 3 6.75 9.30 9.50 9 11 11
12 2 4 4 6.99 9.66 9.97 10 12 12
13 3 5 5 6.95 10.09 10.62 9 13 13
14 2 4 4 7.15 10.35 10.98 10 14 14
15 3 5 5 7.18 10.85 11. 49 9 15 15
16 2 4 4 7.45 11.13 11. 84 10 16 16
17 3 5 5 7.51 11. 68 12.51 11 17 17
18 2 4 6 7.72 11. 96 12.85 10 18 18
19 3 5 5 7.76 12.62 13.55 11 19 19
20 2 4 6 7.95 12.88 l3 .87 10 20 20
21 3 5 7 7.94 13.60 14.67 11 21 21
22 4 4 8 8.11 13.84 14.97 10 22 22
23 3 7 7 8.11 14.65 15.82 11 21 23
24 4 6 8 8.31 14 .83 16.09 12 22 24
25 3 9 9 8.25 15.72 16.97 11 21 25
26 4 8 8 8.46 15.82 17.21 12 22 26
27 5 9 11 8.41 16.76 18.00 11 21 27
28 4 10 12 8.61 16.66 18.35 12 22 28
29 5 11 13 8.42 17.50 19.43 11 21 25
30 6 12 12 8.79 16.72 19.45 12 22 24
31 9 21 23 9.00 21. 00 23.00 9 21 23

AVG 8.05 14.00 15.11

Avg actual depth: 21. 97

Relaxed Adjacency MD Manhattan Distance LC = Linear Conflict

25

Table 4

Comparative Performance:
IDA * Search on 1000 Random Eight Puzzle Instances

Average number of states examined for each of the three heuristics
. arranged by Depth of Optimal Solution

NUMBER OF PUZZLES DEPTH RA MD LC

0 0 0.0 0.0 0.0
0 1 0.0 0.0 0.0
0 2 0.0 0.0 0.0
0 3 0.0 0.0 0.0
0 4 0.0 0.0 0.0
0 5 0.0 0.0 0.0
0 6 0.0 0.0 0.0
0 7 0.0 0.0 0.0
0 8 0.0 0.0 0.0
2 9 21.0 15.0 15.0
2 10 77.0 47.0 40.50
0 11 0.0 0.0 0.0
2 12 196.0 58.0 55.50
6 13 232.66 54.33 41.33

11 14 445.0 106.72 66.90
17 15 796.76 173.0 123.70
28 16 1272.31 292.71 178.32
37 17 2045.59 335.89 205.43
45 18 2901.57 493.13 284.15
73 19 5108.36 654.12 357.87
92 20 7831.1 902.76 474.68
90 21 13751.71 1497.24 785.7

121 22 20581.09 1804.64 889.15
119 23 36971.29 2888.22 1382.27
113 24 56904.56 3543.43 1675.99

87 25 102872.56 5653.60 2699.85
96 26 159644.41 7260.80 3434.69
33 ".., 287195.12 12827.24 5597.21 ~ I

21 28 352690.91 14815.38 6977.90
5 29 603842.8 20146.60 8917.19
0 30 0.0 0.0 0.0
0 31 0.0 0.0 0.0

TOTAL AVG 3299.53 1571. 5

RA Relaxed Adjacency MD = Manhattan Distance LC Linear Conflict

26

Table 5

Comparative Performance:
IDA>Ie Search on 100 Random Fifteen Puzzle Instances (cf. [20])

page 1 (1 - 50)

NO

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

MD LC
INITIAL STATE INIT INIT LEN

14 13 15 7 11 12 9 5 6 0 2 1 4 8 10 3 I 41
13 5 4 10 9 12 8 14 2 3 7 1 0 15 11 6 I 43
14 7 B 2 13 11 10 4 9 12 5 0 3 6 1 15 I 41
5 12 10 7 15 11 14 0 8 2 1 13 3 4 9 6 I 42
4 7 14 13 10 3 9 12 11 5 6 15 1 2 8 0 I 42
14 7 1 9 12 3 6 15 B 11 2 5 10 0 4 13 I 36
2 11 15 5 13 4 6 7 12 8 10 1 9 3 14 0 I 30
12 11 15 3 8 0 4 2 6 13 9 5 14 1 10 7 I 32
3 14 9 11 5 4 8 2 13 12 6 7 10 1 15 0 I 32
13 11 8 9 0 15 7 10 4 3 6 14 5 12 2 1 I 43
5 9 13 14 6 3 7 12 10 8 4 0 15 2 11 1 I 43
14 1 9 6 4 8 12 5 7 2 3 0 10 11 13 15 I 35
3 6 5 2 10 0 15 14 1 4 13 12 9 8 11 7 I 36
7 6 8 1 11 5 14 10 3 4 9 13 15 2 0 12 I 41
13 11 4 12 1 8 9 15 6 5 14 2 7 3 10 0 I 44
1 3 2 5 10 9 15 6 8 14 13 11 12 4 7 0 I 24
15 14 0 4 11 1 6 13 7 5 8 9 3 2 10 12 I 46
6 0 14 12 1 15 9 10 11 4 7 2 8 3 5 13 I 43
7 11 8 3 14 0 6 15 1 4 13 9 5 12 2 10 I 36
6 12 11 3 13 7 9 15 2 14 8 10 4 1 5 0 I 36
12 8 14 6 11 4 7 0 5 1 10 15 3 13 9 2 I 34
14 3 9 1 15 8 4 5 11 7 10 13 0 2 12 6 I 41
10 9 3 11 0 13 2 14 5 6 4 7 8 15 1 12 I 33
7 3 14 13 4 1 10 8 5 12 9 11 2 15 6 0 I 34
11 4 2 7 1 0 10 15 6 9 14 8 3 13 5 12 I 32
5 7 3 12 15 13 148 0 10 9 6 1 4 2 11 I 40
14 1 8 15 2 J 0 3 9 12 10 13 4 7 5 11 I 33
13 14 6 12 4 5 1 0 9 3 10 2 15 11 8 7 I 36
9 8 0 2 15 1 4 14 3 10 7 5 11 13 6 12 I 38
12 15 2 6 1 14 4 8 5 3 7 0 10 13 9 11 I 35
12 8 15 13 1 0 5 4 6 3 2 11 9 7 14 10 I 38
14 10 9 4 13 6 5 8 2 12 7 0 1 3 11 15 I 43
14 3 5 15 11 6 13 9 0 10 2 12 4 1 7 8 I 42
6 11 7 8 13 2 5 4 :;. 10 3 9 14 0 12 15 I 36
1 6 12 14 3 2 15 8 4 5 13 9 0 7 11 10 I 39
12 6 0 4 7 3 15 1 13 9 8 11 2 14 5 10 I 36
8 1 7 12 11 0 10 5 9 15 6 13 14 2 3 4 I 40
7 15 8 2 13 6 3 12 11 0 4 10 9 5 1 14 I 41
9 0 4 10 1 14 15 3 12 6 5 7 11 13 8 2 I 35
11 5 1 14 4 12 10 0 2 7 13 3 9 15 6 8 I 36
8 13 10 9 11 3 15 6 0 1 2 14 12 5 4 7 I 36
4 5 7 2 9 14 12 13 0 3 6 11 B 1 15 10 I 30
11 15 14 13 1 9 10 4 3 6 2 12 7 5 8 0 I 48
12 9 0 6 8 3 5 14 2 4 11 7 10 1 :5 13 I 32
3 14 9 7 12 15 0 4 1 8 5 6 11 10 2 13 I 39
8 4 6 1 14 12 2 15 13 10 9 5 3 7 0 11 I 35
6 10 1 14 15 8 3 5 13 0 2 7 4 9 11 12 I 35
8 11 4 6 7 3 10 9 2 12 15 13 0 1 5 14 I 39
10 0 2 4 5 1 6 12 11 13 9 7 15 3 14 8 I 33
12 5 13 11 2 10 0 9 7 8 4 3 14 6 15 1 I 39

LEGEND

43 57
43 55
41 59
42 56
44 56
40 52
30 52
36 50
36 46
45 59
45 57
35 45
38 46
43 59
46 62
26 44
46 66
43 55
38 46
36 52
36 54
45 59
37 49
38 54
36 52
44 58
35 53
36 52
40 54
35 47
40 I 50
45 59
42 60
42 52
39 55
38 52
42 58
43 53
35 49
38 54
40 54
32 42
54 64
38 50
39 51
41 49
35 47
39 49
37 59
41 53

MD
STATES

276.361.933
15.300,442

565,994.203
62.643.179
11. 020. 325
32.201.660

387,138,094
39.118.937

1. 650, 696
198,758,703
150.346.072

546.344
11.861.705

1,369.596.778
543.598.067

17.984.051
609.399.560
23,711.067

1.280,495
17,954.870

257,064 .• 810
750,746.755

15.971.319
42,693,209

100.734.844
226.668.645
306,123.421

5,934.442
117,076.111

2,196.593
2,351.811

661. 041.936
480,637.867

20,671.552
47,506.056
59,802.602

280.078.791
24.492.852
19.355.806
63.276.188
51.501.544

877.823
41,124.767
95.733.125

6.158.733
22.119.320

1.411.294
1.905.023

1,809,933,698
63,036.422

!..c
STATES

12.205,623
4.556.067

156.590.306
9.052,179
2,677,666
4.151. 682

97.264.710
3.769.804

88.588
48.531. 591
25.537.948

179.628
1.051.213

53.050.799
130.071.656

2.421.878
100.843,886

5.224.645
385.369

3.642.638
43.980.448
79.549.136

770.088
15,062.608
13.453.743
50.000.803
31.152,542
1.584.197

10.085.238
680.254
538.886

183.341. 087
28.644.837

1.174.414
9.214.047
4,657,636

21,274,607
4.946.981
3.911.623

13.107.557
12,388,516

217.288
7,034.879
3.819.541

764.473
1. 510. 387

221. 531
255.047

203.873.877
6.225.180

GOAL STATE Initial Heuristic Estimate :or Manhattan Distance
Initial Heuristic Estimate for Linear Conflic~
Length of Optimal Solution :) :1 2 3

?CT

4.4
29.8
27.6
14 .5
24.5
12.9
25.1

9.6
5.4

24.4
17.0
32.9

819
3.9

24.0
13 .5
16.6
22.0
30.1
20.2
17 .1
10.6
4.8

35.2
13.4
22.1
10.2
26.7
8.6

31.0
22.9
27.7

6.0
5.7

19.4
7.B
7.6

20.1
20.2
20.7
24.1
24.8
17 .1

4.0
12.4

6.8
15.7
13 .4
11.3

9.9

4 5 6 7
8 9 ~O 11

12 13 14 15

MD INIT
LC INIT

LEN
MD STATES
LC STATES

PCT

Total number of states examined us ng Manhattan Distance
Total number of states examined us ng Linear Con:lic~
100 • ((LC STATES) / (MD STATES)

27

Comparative Performance:
IDA· Search on 100 Random Fifteen Puzzle Instances

page 2 (51 - 100)

NO INITIAL STATE

51 10 2 8 4 15 0 1 14 11 13 3 6 9 7 5 12
52 10 8 0 12 3 7 6 2 1 14 4 11 15 13 9 5
53 14 9 12 13 15 4 8 10 0 2 1 7 3 11 5 6
54 12 11 0 8 10 2 13 15 5 4 7 3 6 9 14 1
55 13 8 14 3 9 1 0 7 15 5 4 10 12 2 6 11
56 3 15 2 5 11 6 4 7 12 9 1 0 13 14 10 8
57 5 11 6 9 4 13 12 0 8 2 15 10 1 7 3 14
58 5 0 15 8 4 6 1 14 10 11 3 9 7 12 2 13
59 15 14 6 7 10 1 0 11 12 8 4 9 2 5 13 3
60 11 14 13 1 2 3 12 4 15 7 9 5 10 6 8 0
61 6 13 3 2 11 9 5 10 1 7 12 14 8 4 0 15
62 4 6 12 0 14 2 9 13 11 8 3 15 7 10 1 5
63 8 10 9 11 14 1 7 15 13 4 0 12 6 2 5 3
64 5 2 14 0 7 8 6 3 11 12 13 15 4 10 9 1
65 7 8 3 2 10 12 4 6 11 13 5 15 0 1 9 14
66 11 6 14 12 3 5 1 15 8 0 10 13 9 7 4 2
67 7 1 2 4 8 3 6 11 10 15 0 5 14 12 13 9
68 7 3 1 13 12 10 5 2 8 0 6 11 14 15 4 9
69 6 C 5 15 1 14 4 9 2 13 8 10 11 12 7 3
70 15 1 3 12 4 0 6 5 2 8 14 9 13 10 7 11
71 5 7 0 11 12 1 9 10 15 6 2 3 8 4 13 14
72 12 15 11 10 4 5 14 0 13 7 1 2 9 8 3 6
73 6 14 10 5 15 8 7 1 3 4 2 0 12 9 11 13
74 14 13 4 11 15 8 6 9 0 7 3 1 2 10 12 5
75 14 4 0 10 6 5 1 3 9 2 13 15 12 7 8 11
76 1~ 10 8 3 0 • 9 5 1 14 13 11 7 2 12 4
77 0 13 2 4 12 14 6 9 15 1 10 3"11 5 8 7
78 3 14 13 6 4 15 8 9 5 12 10 0 2 7 1 11
79 0 1 9 7 11 13 5 3 14 12 4 2 8 6 10 15
80 11 0 15 8 13 12 3 5 10 1 4 6 14 9 7 2
81 13 0 9 12 11 6 3 5 15 8 1 10 4 14 2 7
82 14 10 2 1 13 9 8 11 7 3 6 12 15 5 4 0
83 12 3 9 1 4 5 10 2 6 11 15 0 14 7 13 8
84 15 8 10 7 0 12 14 1 5 9 6 3 13 11 4 2
85 4 7 13 10 1 2 9 6 12 8 14 5 3 0 11 15
86 6 0 5 10 11 12 9 2 1 7 4 3 14 8 13 15
87 9 5 11 10 13 0 2 1 8 6 14 12 4 7 3 15
88 15 2 12 11 14 13 9 5 1 3 8 7 0 10 6 4
89 11 1 7 4 10 13 3 8 9 14 0 15 6 5 2 12
90 5 4 7 1 11 12 14 15 10 13 8 6 2 0 9 3
91 9 7 5 2 14 15 12 10 11 3 6 1 8 13 0 4
92 3 2 7 9 0 15 12 4 6 11 5 14 8 13 10 1
93 13 9 14 6 12 8 1 2 3 4 0 7 5 10 11 15
94 5 7 11 8 0 14 9 13 10 12 3 15 6 1 4 2
95 4 3 6 13 7 15 9 0 10 5 8 11 2 12 1 14
96 1 7 15 14 2 6 4 9 12 11 13 3 0 8 5 10
97 9 14 5 7 8 15 1 2 10 4 13 6 12 0 11 3
98 I 0 11 3 12 5 2 1 9 8 10 14 15 7 4 13 6
99 I 7 15 4 0 10 9 2 5 12 11 13 6 1 3 14 8
1001 11 4 0 8 6 10 5 13 12 7 14 3 1 2 9 15

MD LC
IN!T INIT LEN

44
38
50
40
29
29
36
37
35
48
31
43
40
31
31
41
28
31
37
30
30
38
37
46
30
41
34
41
28
43
39
40
31
37
32
35
34
43
36
36
41
37
34
45
34
35
32
34
39
38

44
42
50
42
31
33
36
39
37
48
35
45
42
35
35
43
30
35
39
32
34
40
39
46
34
43
36
41
30
43
41
44
37
41
32
37
36
45
40
40
H
39
34
45
36
37
34
34
19
40

56
56
64
56
41
55
50
51
57
66
45
57
56 I
51 I
47 I
61 I
50 I
51 I
53 I
52 I
44 I
56 I
49 I
56 I
48 .I
57 I
54 I
53 I
42 I
57 I
53 I
62 I
4-9 I
55 I
44 I
45 I
52 I
65
54
50
57
57
46
53
50
49
44
54
57
54

)olD
STATES

26.622.863
377.141.881
465.225.698
220.374.385

927.212
1.199.487.996

8.841.527
12.955.404

1.207.520.464
3.337.690.331

7.096.850
23.540.413

995.472.712
260.054.152

18.997.681
1.957.191.378

252.783.878
64.367.799

109.562.359
151.042.571

8.885.972
1. 031.641.140

3,222,276
1. 897.728

42.772.589
126.638.417

18.918.269
10.907.150

540.860
132.945.856

9.982,569
5.506,801.123

65,533,432
106,014.303
" 2.725.456

2.304,426
64.926.494

6.009.130.748
166.571.097

7.171,137
602.886,858

1.101.072.541
1,599.909
1.337.340
7,115,967

:2.808,564
1. 002.927

183.526.883
83.477,694
67,880.056

Le
STA:ES

4.683.054
33,691. 153

125,641.730
26,080,659

163.077
166,183.825

3.977,809
3.563,941

90.973,287
256,537.528

672,959
8.463.998

20,999,336
43.522,756
2.444.273

394,246.898
47,499,462

6,959,507
5,186.587

40,161.673
539.387

55,514,360
1,130,807

310.312
5,7.96.660

25,481.596
5.479.397
2,722,095

107,088
39.801.475

L 088,123
203.606.265

2.155,880
17.323.672

933,953
237.466

7.928.514
422.768.851
29,171,607

649.591
91, 220.187
68.307.452

350,208
390.368

1.517.920
1.157,734

166.566
41.564.669
18.038,550
17.778,222

?CT

17.6
08.9
27.0
11.8
17.6
13.9
45.0
27.5
07.5
07.7
09.5
36.0
02.1
16.7
12.9
20.1
18.'8
10.8
04.7
26.6
06.1
05.4
35.1
16.4
13.6
20.1
29.0
25.0
19.8
29.9
10.9
03.7
03.3
16.3
34.3
10.3
12.2
07.0
17 .5
09.1
15.1
06.2
21.9
29.2
21.3
09.0
16.6
22.6
21.6
26.2

TOTAL 2.998476E10 3.759631E9 12.5

LEGEND

GOAL STATE

o 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

MD INIT
LC IN!!

LEN
MD STATES
LC STATES

E'CT

Initial Heuristic Estimate for Manhattan Distance
Initial Heuristic Estimate for Linear Conflict
Length of Optimal solution
Total number of states examined using)oIanhattan Distance
Total nU~Der of states examined using Linear Conflict
100 w ((LC STATES) I (MD STATES))

28

QUINTILES

1st.

2,.,d

3rd

4t.h

5 .. h

Table 6

Comparative Performance:
The 100 Random Fifteen -Puzzle Instances

Sorted into Quintiles by Number of States Examined

STATE NUMBERS STATES MD STATES LC PCT.

79 12 42 55 97 19 94 47 93 09 4.7 . 10' 9.4 . 106 20.01
74 48 30 86 31 85 73 28 45 61

95 90 57 n 81 78 05 13 96 58 2.9 • 10' 5.3 .. 10' 18.21
02 23 20 16 77 65 39 34 46 62

18 38 51 06 08 43 24 75 35 41 I. 1.1 .. 10' 1.6 ., 10' I 15.21
36 04 50 40 68 87 83 100 99 441

25 84 69 29 76 80 11 70 89 98 3.3 • 10' 6.0 ., 10' 15.11
10 54 26 67 21 64 01 37 27 52

07 53 33 15 03 91 17 32 22 63 3.1 . 10 10 1 2.9 . 10' 9.61
72 92 56 59 14 49 66 60 82 88

LEGEND

Me STATES Tot.al number of stat.es exaMined Using Manhat:an Distance
LC STATES Total number of states examined using Linear Conflict

PCT 100 .. ((LC STATES) I (MD S:'ATES))

29

References

1. Bellmore, M. and Nemhauser, G.L. "The Traveling Salesman Problem: A Survey". Operations
Research 16 (1968), 538-558.

30

2. Croes, G.A. "A Method for Solving Traveling-Salesman Problems". Operations Research 6 (1958),
791-812.

3. Dantzig, G .• Fulkerson. R .. and Johnson, S. "Solution of a Large-Scale Traveling-Salesman Problem".
Operations Research 2 (1954). 393-410.

4. Dechter. Rina and Pearl, Judea. The Anatomy of Easy Problems: A Constraint-Satisfaction
Formulation. UCAI-9, International Joint Conference on Artificial Intelligence, Los Angeles, California,
August, 1985, pp. 1066-1072.

5. Doran, 1. and Michie, D. Experiments with the Graph-Traverser Algorithm. Proceedings of the Royal
Society, 294 (A), 1966, pp. 235-259.

6. Feigenbaum. Edward A. and Barr, Avram (Ed.). Handbook of Artficial Intelligence. Vol. I. Wm.
Kaufmann, Los Altos, California, 1981.

7. Feigenbaum, Edward A. and Cohen, Paul R. (Ed.). Handbook of Art/iciaiintelligence. Vol.lIf. Wm.
Kaufmann, Los Altos, California, 1982.

8. Fikes, R.E. and Nilsson, N.J. "STRIPS: A new approach to the application of theorem proving to .
problem solving". ArtiJicialfntelligence 2 (1971),189-208.

9. Garey, M.R. and Johnson. D.S .. Computers and Intractibility. W.H. Freeman, San Francisco, 1979.

10. Gaschnig, John. A Problem Similarity Approach to Devising Heuristics: First Results. IJCAI-6,
International Joint Conference on Artificial Intelligence, Tokyo, August, 1979, pp. 301-307.

11. Guida, Giovanni and Somalvico, Marco. "A Method for Computing Heuristics in Problem Solving".
Information Sciences 19 (1979), 251-259.

12. Han, P.E., Nilsson, N.J., and Raphael, B. "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC-4, 2 (1968),
100-107.

13. Hayes, 1.E., Michie, D., Pole, K.E. and Schofield, P.D.A. A Quantitative Srudy of Problem-Solving
Using Sliding Block Puzzles: The 'Eight-Puzzle' and a Modified Version of the Alexander Passalong

. Test. Experimental Programming Repon No.7, Experimental Programming Unit. University of
Edinburgh, 1965.

14. Held. Michael and Karp, Richard M. "The Traveling-Salesman Problem and Minimum Spanning
Trees". Operations Research 18 (1970), 1138-1162.

15. Held, Michael and Karp, Richard M. "The Traveling-Salesman Problem and Minimum Spanning
Trees: Pan II". Mathematical Programming 1 (1971),6-25.

16. Horowitz, Ellis and Sahni, Sanaj. Fundamentals of Computer Algorithms. Computer Science Press,
Rockville, Maryland, 1978.

17. Johnson, W.A. and Storey, W.E. "Notes on the '15' puzzle". Am. J. Math 2 (1879). 397-404.

18. Korf, Richard E. "Towards a Model of Representation Changes". Artijicialintelligence 14 (1980),
41-78.

31

19. Korf, Richard E .. Learning to Solve Problems by Searching for Macro-Operators. Pittman, London,
1985.

20. Korf, Richard E. "Depth-First Iterative-Deepening: An Optimal Admissable Tree Search". Artificial
Intelligence 27 (1985), 97-109.

21. Kruskal, J. B. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem.
Proceedings of the American Mathematical Society, 1956, pp. 48-50.

22. Lenat, Douglas B. "The Nature of Heuristics". Artificial Intelligence 19 (1982).189-249.

23. Lenat, Douglas B. "Theory Formation by Heuristic Search". Artificial Intelligence 21 (1983),31-59.

24. Lenat, Douglas B. "EURISKO: A Program That Learns New Heuristics and Domain Concepts".
Artificial Intelligence 21 (1983),61-98.

25. Lin, S., and Kernighan, B.W. "An Effective Heuristic Algorithm for the Traveling-Salesman
Problem". Operations Research 21 (1973),498-516.

26. Loyd, Sam. Mathematical Puzzles of Sam Loyd. Dover, New York, 1959.

27. Michalski, Ryszard, Carbonell, Jaime G., and Mitchell, Tom M .. Machine Learning: An Artificial
Intelligence Approach. Tioga, Palo Alto, California, 1983.

28. Newell, Allen and Simon, Herbert A. GPS: A Program that Simulates Human Thought. In
Computers and Thought, E. A. Feigenbaum and J. Feld.p1an. Eds., McGra~-Hill, New York, 1963, pp ..
279-293.

29. Newell, Allen, and Simon, Herbert A .. Human Problem Solving. Prentice-Hall, Englewood Cliffs,
NJ,1972.

30. Nilsson, Nils 1.. Problem-Solving Methods in Artifical Intelligence. McGraw-Hill, New York, 1971.

31. Nilsson, Nils 1.. Principles of Artificial Intelligence. Tioga, Palo Alto, 1980.

32. Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison­
Wesley, Reading, Mass., 1984.

33. Pohl, Ira. The Avoidance of (Relative) Catastrophe, Heuristic Competence, Genuine Dynamic
Weighting and Computational Issues in Heuristic Problem Solving. IJCAI-3, International Joint
Conference on Artificial I ntelligence, Stanford, California, August, 1973, pp. 12-17.

34. Pohl, Ira. "Practical and Theoretical Considerations in Heuristic Search Algorithms". Machine
Intelligence 8 (1977), 55-72.

35. Polya, George. How to Solve It. Princeton University Press, Princeton, NJ, 1945.

36. Purcell, Edward T. Machine Learning of Heuristics for Ordered-Search Algorithms. Ph.D. Th.,
University of California at Los Angeles, 1978.

37. Rendell, Larry. "A New Basis for State-Space Learning Systems and a Successful Implementation".
Artificial Intelligence 20 (19~3), 369-392.

38. Sacerdoti, Earl D. "Planning in a Hierarchy of Abstraction Spaces". Artificial Intelligence 5 (1974),
115-135.

39. Samuel, A.L. Some studies in machine learning using the game of checkers. In Computers and
Thought, McGraw-Hill, New York, 1963, pp. 71-105.

40. Schofield, P. D. A. "Complete Solution of the 'Eight-Puzzle"'. Machine Intelligence I (1967),
125-133.

32

41. Sussman, G. J .. A Computer Model of Skill Acquisition. American Elsevier, New York, 1975.

42. Tait, P. G. Note on the Theory of the '15' Puzzle. Proceedings of the Royal Society, Edinburgh, 10,
1880, pp. 664-665.

43. Tarjan. R.E .. Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania. 1983.

44. Valtona, Marco. A Result on the Computational Complexity of Heuristic Estimates for the A·
Algorithm. IlCAI-8, International Joint Conference on Anificial Intelligence, Karlsruhe, West Germany,
August, 1983, pp. 777-779.

45. Wilson, Richard M. "Graph Puzzles, Homotopy, and the Alternating Group". Journal of
Combinatorial Theory (8) 16 (1974), 86-96.

46. Winston, Patrick Henry. Artificial Intelligence. Addison-Wesley, Reading, Massachusetts. 1977.

