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Abstract

The *equivalence® problem for shape descriptions is that a single
three-dimensional shape may have several different descriptions.
The Slant Theorem (Shafer!) for equivalent generalized cylinder
descriptions was proven under the restrictions that the same radius
function and the same axis be used for all the descriptions. A proofl
is given that the theorem still holds when the "same radius
function® condition is removed. It does not hold when the *same
axis® condition is removed. The ellipsoid is a counter-example.

Introduction

The equivalence problem for shape descriptions is that a single
three-dimensional shape may have several different, equivalent
descriptions. One way to deal with this problem is to use s method
of generating descriptions which guarantees that the description
produced is always a upique, canonical representation. The other
approach is to permit alternate descriptions, but be able to tell
when two descriptions are equivalent, i.e. describe the same shape.

Shafer! investigated this second approach for a class of generalized
cylinders. After eliminating the trivisl equivalences due to rotation,
etc., Shafer gave theorems about some families of equivalent
descriptions.

The Slant Theorem

Following Shafer!, a generalized cylinder is Straight if its axis (or
spine) is a straight line segment. It is Homogeneous if all its cross-
sections have the same shape except for scale. A Straight
Homogeneous Generalized Cylinder (SHGC) is given by the four-
tuple (A,C,r,a) (see Figure 1).

Figure 1:

Straight Homogeneous Generalized Cylinder

A is s line segment in 3-space called the Axis or spine. It is
parameterized in s, and an s-coordinate may be defined coinciding
with the Axis. a is the (constant) angle of each cross-section plane
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to the Axis. C is the planar cross-section curve. Coordinates u and
v may be defined for the cross-section plane, such that the u-
coordinate coincides with the projection of the Axis onto the cross-
section plane. C may then be parameterized in t: C(t) =
(uft),¥{t)). r(s) is the radius function, which gives the scale of the
cross-section at each point along the Axis (C gives the shape f the
eross-section, r gives the scale). So in suv-space, each point un the
surface is given in terms of parameters s and t by (s, r(s)u(t),
r{s}v(t)). A mutually orthogonal set may be formed by replacing
the u-coordinate with a w-coordinate perpeadicular to the Axis and
the v-coordinate. Then in swy-space, the point on the surface given
by parameters s and t is (s + r{s)u(t)cos a, r(s)u(t)sin a, r(s)v(t)). In
this paper, it is assumed that the Axis function A(s) is linear, and
that the radius function r{s) and cross-section function C(t) sre
piecewise C2.

An SHGC is a Right SHGC if its cross-section angle a = x/2.
Otherwise it is an Oblique SHGC. An SHGC is Linear if its radius
function p(s) is linear. The Slant Theorem (Shafer!, page 103 and
Appendix E} states that:

An Oblique Straight Homogeneous Generalized Cylinder (SHGC)
has an equivalent Right SHGC if and only if the radius function
of the Oblique SHGC is Linear. {Two otherwise equivalent
descriptions which bave differently sloped ends are regarded as
equivalent for the purposes of this theorem).

The theorem was proven under the restricted conditions that the
same radius function and same Axis be used for both the Oblique
and the Right SHGCs. The question arises whether the theorem
still holds when these conditions are relaxed.

The *same radius function® condition

The Slant Theorem still holds when the ®same radius function®
condition is removed. The *if* part of the theorem (*Linear radius
function implies the existence of an equivalent Right SHGC®) is
already true from the restricted form of the theorem. So what must
be proven is the following:

Given an Oblique SHGC G = (A,C,r,a) where radius function r
is non-linear, there does not exist any Right SHGC G* =
(A.C*r*,x/2) which has the same Axis as G (without restriction
on the radius function r® of G*).

Proof: The basic idea is that at least one of the angled cross-
sections of the Obligue SHGC will be on a non-linear bend in the
radius function r(s). But the bend must be spread over a wider
range of cross-sections in the Right SHGC, and there is no way for



one radius function to consistently handle all of them. Proof: Using (s,w) coordinates (and ignoring the v-coordinate), it
can be seen from the way in which the zigzag construction is done

Given an Oblique SHGC G = (A,C.r,a), the *zigzag® construction that
shall be defined as follows for a value of s = s, and values of t =
ty and t = ty, (see Figure 2). Call the point given by s = s, and t L, = (s; + rls;)u(ty )eos a, #(s;)u(t, sin a).

M, = (3, + r(s)u(tygcos a, r(s)ultyglsin a).

L, = (35 + r{sp)ulty Jeos @, r{s;)u(ty Jsin a).

But also
axis 1 Lo = (3, + r(s;Ju(tyg)cos a, r(sy)u(ty )sin a).
S
2 S So the slope of line L,L,
Figure 2: The zigzag construction

= 1y, Ly: similarly for M,. Working in swv-space, the points may = [r(s;)u(t, }sin a - r{s,}u(ty hsin af
be displayed in a plot of w against s (see Figure 2). The coordinates [ l(s; + risJu(ty)eos a) - (s; + r(s, Ju(ty)eos a)]
of L, in swv-space are (s, + r(sy)u(ty)eos a, r{s;)u(t Jsin a,
el ) = tan a fu(ty)/(ult Fulta )] [1- (elsg)/rts))

The set of points (s + r(sju(t, Jeos a, r(s)u(t }sin a, r{s)v(t, )} for all
s, forms a curve in swv-space, call it ®curve L* (likewise ®curve
M?*). Take the plane in swv-space perpendicular to the Axis which

Likewise it can be shown that the slope of line L,Ly

contains Ly. Call the intersection of that plane with curve M, point = tan a [u(ty )/ (u(ty Fu(tay))] [1 - (r(s3)/r(sa))]

M,. Call the s-value for that point 5,. Now take the plane which is

at an angle a to the Axis and contains M;. Call the intersection of And the result follows (with the same argument for MM, and
that plane with curve L, point L,. Similarly, work in the other My).

direction to define sy, Ly, and M, (see Figure 2, which plots oaly the

w and s coordinates). Now using the Lemma, .we get the result that r(s,)/r(s;) f=

- t(sy)/r(s).
(For some SHGCs and values of s and t, it may be that the
intersection of the curve L and the plane in swv-space may include . . o . .
more than one point, or even a line (but not less than one point). In But 1'f G* were s valid SHGC, "”_‘h its radius and cross-section
such cases, it is fairly easy to see that all the cross-sections functions r%(s) and C*(t), the following would bold:
perpendicular to the Axis cannot have the same shape, in which
case no Right SHGC can be constructed which is homogeneous, and r(s, Ju(tysin a ] rlsphu(ty)sin a
the theorem is satisfied. So in what follows it will be assumed that
each point in the Oblique cross-section maps to exactly one point in = s, o)u(ty") [ r{s,put(t*)

the Right cross-section.)
- L 3 . * : ! L ] L
Since r(s) is non-linear, there exists some value s = s,, some ¢ > 0, = rsp)u’(ty’) [ ro(sag)u®(t®)
and some real value m, such that for all s in (s, - ¢,3,), the slope of i .
r{s) is less (greater) than m, and for all s in (35,5 + ¢}, the slope of = risplu(tyglsin @ [ r(sy)u(ty)sin a
r{s) is greater (less) than m.
where the middle equality is due to the *Homogeneous® part of

It is evident that by choosing t and t,, close enough together, L, *SHGC* (ﬂ.l _‘51’055'5““?05 must have the same shape, up to “fl')-

and M, can be chosen with u(ty) and u(ty,) close enough together so T':"“ equalities would imply that '(’1)/"(32) - ’(.32)/"(33)' Since

that the zigzag construction can be made with 5, in (s, - ¢3,), and this has been shown to be false, no equivalent Right SHGC can

83 in (3n.8; + ¢). Further, this can be done so that u(t; ) and u(ty,) exist.

are equal neither to each other nor to 0, because SHGC G is a i

closed figure. {As an example of a non-closed figure which does not The *same axis® condition

satisfy this theorem, take as the cross-section s line segment parallel

to the v-coordinate, and any reasonable non-linear radius function). The theorem does not hold if the ®same Axis® restriction is
removed. If difTerent axes are permitted, then there are non-Linear

From the way in which this zigzag construction has been done, it is SHGCs that bave different, equivaleat SHGC descriptions. The

clear that the slopes of line L L, and line LoLy are not equal sphere is & trivial.cos.mter-example that will oot be considered, since

(likewise for line M, M, and line MyM,). its aiternate descriptions differ only by rotation.

" . o But there are non-trivial counter-examples: Consider a right
Lemma: The slopes of line L,L; and line Loly are equal (likewise ellipsoid with center st the origin in Cartesian 3-space. It can be

for line M;M, and line MyM,) if and only if r(s,)/r{s,) = r(s,)/r(s,). represented in equation form as:
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x*fa® + y3/6% + 2% = 1

Thinking in terms of generalized cylinders, and taking the x-axis as
the Axis, we have a Right Non-linear SHGC, with elliptical cross-
sections.

Now suppose we slant the Axis by an angle a in the x-y plane, but
leave the elliptical cross-sections parallel to the y-z plane (a kind of
skew transformation). This *oblique® figure is clearly an Oblique
Non-linear SHGC, again with elliptical cross-sections. This *slant®
transformation can be carried out in the equation representation by
replacing y with y - x tan a and rearranging to get:

x%( 1/a% + tana [ b2) - xy(2tan a [ b?) +y2/b? = 1-12/c?

Analytic geometry texts show that the left side is the equation of a
family of ellipses that have been rotated in the x-y plane by an
angle

B = (1/2) arctan|2 tan a [ (1 - b%/a? - tana)]

These ellipses are centered on the z-axis, and it is easy to show that
their orientation and eccentricity is independent of the value of z.
They all have the same shape. So this ®oblique® figure may be
represented as a Right Non-Linear SHGC, with Axis on the z-axis,
and elliptical cross-sections.

This type of result is not limited to ellipsoids. But the ellipsoid has
this additional property: the *oblique® figure is simply another
right ellipsoid, rotated from the x-axis by the angle 8 given above.
If the rotation by g is carried out on the equation representation,
the result is:

(x3/32)|cos?8 + (3%/b%)tan%acos?s - 2tanacosfsing + sin?f)|

(y2/b?)|cos®3 + L’lana;osﬁsinﬂ + tan®asin?g + (b?/a2)kin?g)

+

+

(/%)

The eccentricity is different from that of the original right ellipsoid,
as we would expect.

So the ®oblique® figure can slso be represented as a Right non-
Linear SHGC with the Axis in the x-y plane at angle 8. Thus
*being a right ellipsoid® is a non-Linear property of SHGCs which is
invariant under skew transformations. To put it another way, there
is no such thing as an oblique ellipsoid.

It is interesting that while the z-axis representation depends on
being able to take advantage of the freedom to orient the Axis
anywhere in three dimensions, the ®angle A° representation also
works as a counter-example to the two-dimensional azalog ~f the
Slant Theorem. T

So there are some Non-linear Oblique SHGCs which are equivalent
to Right SHGCs, and therefore the ®only if* part of the Slant
Theorem does not hold without the *same axis® condition.

Families of descriptions with different axes

Define an H-axis for a shape as a line which is the Axis for some

SHGC description for that shape. An RH-axis is an Axis for some
Right SHGC description. Shafer in his Pivot Theorem (!, p. 105
and Appendix F) has described families of H-axes which all use the
same cross-sections, which exist only for Linear SHGCs. Other
tlasses of shapes that have multiple H-axes:

I. There is an H-axis lying in the x-y plane, and the equation
representation for the shape can be written in the form

fixy) = glz)
and [ satisfies
f{kx.ky) = h(k)f{x.y) for some function h.

Then the z-axis is an RH-axis. For example:

(xfa)* + (y/b)} + (z/c) =1

2. The cross-section of a Right SHGC itself has multiple H-axes in
its plane. For example, a square has four H-axes, a regular
pentagon five, and a circle infinity. Any radius function can be
used. These also satisfy the property of the previous type above.
Included here could be spheres, cylinders, right prisms with
polygonal bases, tetrahedra, octahedra.

3. Various elongations and skews of the first two types. Included
here would be oblique prisms with polygonal bases and irregular
tetrahedrons. The ellipsoid can be seen as an elongated sphere.
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