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Abstract

One of the aims of Natural Language Processing (NLP) is to facilitate the use of computers by allowing users to
interact with systems in natural language. Since such interactions often take the form of question-answering
sessions, the process of question-answering is an important part of NLP. In this paper, we are concerned with the
progress made towards building question-answering systems which are natural and satisfying to users, allowing
them to express themselves freely and answering questions appropriately. Such systems are said to provide graceful
interaction. We survey the evolution of question-answering programs, presenting steps and approaches that have
been taken towards providing graceful man-machine interaction, and pointing out eficiencies of existing programs
and theories, Our emphasis is on the various issues and difficulties encountered in building a user-friendly question-
answering program.
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1. Introduction

One of the aims of Natural Language Processing (NLP) is to facilitate the use of computers by allowing users to
interact with systems in natural language. Since such interactions often take the form of question-answering
sessions, the process of question-answering is an important part of NLP. In this paper, we are concerned with the
progress made towards building question-answering systems which are natural and satisfying to users, allowing
them to express themselves freely and answering questions appropriately {20]. Such systems are said to provide
graceful interaction.

1.1 Components of graceful interaction
The following criteria have been identified in the literature as important facets in the overall process of graceful
interaction for question-answering systems [20, 69].

Flexible input: the system should deal meaningfully with anything the user may reasonably ask. To do so, a wide
syntactic and semantic coverage as well as the handling of ellipsis and the resolution of anaphora is necessary.
Features such as spelling correction and synonym capabilities can further enhance the interaction.

Data-independence: the system should free the user from studying the contents and structure of the knowledge base
before asking questions.

Cooperation: the system should provide cooperative answers. In asking a question, the user wants to obtain some
information. A complete answer is one that will provide such information in a coherent manner, and not necessarily
one that literally answers the question.

Avoidance of confusion: the system should avoid misleading the user. Users have beliefs about the knowledge
base when asking questions. When their beliefs contradict facts in the knowledge base, a system should make sure
that answers given do not reinforce these beliefs,

The user expects question-answering programs to exhibit answering capabilities commensurate with their apparent
understanding abilities; i.e. the user expects a system to provide meaningful and cooperative answers, as a human
would. So, while it is possible to provide more graceful interaction with a program by adding human engineering
features (as in LIFER [21] and PLANES [73]), implementing a tuly cooperative system requires studying how
people communicate with each other; this leads to the development of theories of human question-answering
behavior (36, [44], (30, 32], (40, [1).

The emphasis of this paper is on the various issues and difficulties encountered in building a user-friendly question-
answering program. We survey the evolution of question-answering programs, presenting steps and approaches that
have been taken towards providing graceful man-machine interaction, and pointing out deficiencies of existing
programs and theories.

1.2 Overview of the paper

The desire to have easily accessible database systems prompted the initial research into natural language interfaces.
This work gave rise to the first question-answering programs: BASEBALL [14}, SYNTHEX [66], LUNAR (77],
LIFER [21] and PLANES [73). These first natural language interfaces were aimed at allowing users to pose
questions to a database in English in as natural a way as possible. Complex syntactic and semantic parsers were




developed to permit users to express themselves using a variety of English constructions (LUNAR). Anaphora and
ellipsis resolution were added to allow users wo state their questions more concisely (LUNAR, LIFER and
PLANES). Efforts were made to render man-machine communication as comfortable and natural to the user as
possible by augmenting systems with features like spelling correction and paraphrasing the questdon (first in LIFER,
PLANES, and, later in CO-OP (31, 43]). Systems with such complex parsers and additional features are presented
in Section 2.3.

Following these initial developments, the process of question-answering was studied in a more general framework
(36, 24, 1]. Researchers analyzed the factors involved in understanding a question and answering it appropriately.
By studying how humans use natural language, researchers were able to develop systems exhibiting cooperative
behavior, such as:

¢ understanding a question within its context to answer it more appropriately [36, 62]

¢ providing more information than actually asked for [36, 1, 29]

o detecting and correcting misconceptions on the part of the user (32, 40, 41)

¢ allowing the user to ask questions about the database structure [45]
These systems and the theories they embody are presented in Section 3.

Finally, knowledge of the user was also found to be an important factor in question-answering (1, 53, 11], Methods
for exploiting such knowledge 1 further enhance the capabilities of question answering systems are presented in
Section 4. The chart in Figure 1-1 plots the steps that have been made towards graceful interaction in man-machine
. .
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2. Natural language interfaces to databases

Many of the early investigators of natural language question-answering systems implemented front-ends for
database systems. This type of program was widely studied for two primary reasons. First, naive and casual users
frequently found the task of learning a database query language both painful and tedious. (Naive users are those
who do not know much about a computer system and casual users those who do not use one often). As these users
were numerous, there was a clear need for simplified access to databases. By allowing users to pose queries in
English (even if restricted), a question-answering program provides easier access to databases than database query
languages do. Second, the widespread use of databases and their availability offered a convenient testbed for
studying and evaluating natural language interfaces.

Database query languages provide a concise means for specifying rewieval requests, While they are unambiguous,
they are not always easy to use: just as one has to leam a particular programming language syntax in order to be
able to write a program in that language, a database user has to learn a specific query language. As an example, a
user unfamiliar with ISBL (Information System Base Language) [72] will not be able to issue the query shown in
Figure 2-1. Moreover, the user needs to know what kinds of knowledge are available and how it is organized.

In IS‘BL (Information System Base Language),
a query which prints the names of members with
negative balances is expressed as follows:

LIST MEMBERS: BALANCE < 0 % NAME

Figure 2-1: Example of a query in a database query language

Seeking easier communication and more freedom of expression for the user, researchers started to study the
problems of natural language interfaces to database systems,

2.1 Early question-answering programs _

BASEBALL and SYNTHEX were among the first natural language question answering programs. These two
programs used very different approaches to parse questions and find answers: BASEBALL searched for keywords
while SYNTHEX used inverted indices. BASEBALL answered questions about American League baseball games
in a given year and SYNTHEX had a database of English text (the Golden Book Encyclopedia). The domains of
these programs were quite restricted, however, so their designers were able to ignore many of the issues involved in
understanding 2 question and answering it adequately. The use of toy databases built solely for esting purposes
further simplified the development of these programs.

2.1.1 The keyword approach: BASEBALL

BASEBALL [14] grouped the elements of a question into functional phrases and transfarmed them into canonical
expressions called specification lists (Figure 2-2). The dawabase was then searched for items matching that list
exactly. Because there was no inferencing mechanism, no answer to the question was found if no item in the
database matched the specification list exactly, even if the answer could theoretically be derived.




In BASEBALL, the question:
On how many days in July did eight teams play?
would be grouped in the following way:
(on how many days) (in july) did (eight (ieams)) play?
and give rise to the specification list:
day (number of) = ?

month = july
team (number of) = 8

Figure 2-2: Example of a query in BASEBALL

2.1.2 The inverted index approach: SYNTHEX

SYNTHEX [66] used a textual database and some clever indexing techniques to retrieve facts from the database.
Essentially, an inverted index reference was made for every word in the text, and every word in the question was
mapped back into the text A scoring mechanism was then used to choose the facts that constituted the answer,
based on the completeness of the syntactic agreement of the sentence found in the text and the question. Figure 2-3
shows a2 question, sentences found in the database using the inverted index mechanism, and the syntactic agreement
of these sentences with the question.

For the question: Whatdo worms eat?
The following facts might be found:

l- Facts in complete syntactic agreement: Worms eat grass
Grass is eaten by worms

2~ Facts in partial agreement: Worms eat their way through the ground
Horses with worms eat grain

3- Fact with no agreement: Birdseat worms

Figure 2-3: Use of inverted indices in SYNTHEX

This approach had the advantage of being easily adaptable to other domains, since it required only the creation of an
inverted file. Unfortunately, it also had the major problem of being based solely on words, and nc* on their
meanings (or the concepts they represent). As a result, it was unreliable, incomplete, and could not be considered w
really ‘‘understand’’ a question.




2.1.3 Summary

In these two early approaches to question-answering, very litle syntactic analysis was done, and semantics were
taken into consideration only insofar as they were embedded in the patterns and the heuristics used in interpreting
questions. Searching for keywords and patterns does not, in most cases, adequately capture the intended meaning of
a question. Mareover, this method of parsing imposes a burden on the user: a question can be expressed in English,
but, in order to use the program efficienty, the user must know what types of patterns (or kcywdrds) are recognized
and what is contained in the database. Adding patterns (keywords) to the parser will increase the probability that a
query entered by the user will be meaningful to the system. Still, most inputs would not be recognized; building a
system having reasonable generality would require an exorbitant number of patterns. Moreover, these systems
lacked the deductive power necessary to provide answers which could be inferred (deduced) from facts in the
database but were not explicitly stated therein.

2.2 More complete natural language interfaces

The drawbacks of the earliest question-answering programs made it clear that 2 more careful analysis of the input
was necessary in order to understand natural language (whether texts or questions). Subsequent research efforts
were directed towards studying syntax and semantics. Good syntactic and semantic parsers together with large
~ dictionaries achieve a large linguistic coverage, allowing users to express themseives more freely. Furthermore,
users can communicate with the machine in a more concise and natural manner if they are able to use anaphora
_ (such as pronouns) and ellipsis!.

A major step in natural language interfaces was the development of such good syntactic and semantic parsers and
the treatment of anaphora and ellipsis. LUNAR was the first program that dealt in a comprehensive way with both .
syntax and semantics. Later, programs were augmented with human engineering features (such as spelling
carrection and clarification dialogs) aimed at easing the man-machine interaction. We present LIFER and PLANES
as examples of such programs.

2.2.1 Broad linguistic coverage and resolution of anaphora and ellipsis: LUNAR

Designed as an aid to lunar geologists, LUNAR (77] was the first natural language interface to an existing database.
The database described moon rock samples. The geologists could ask for samples with given attributes to be
retrieved (see Figure 24). Users could express themselves in a fairly unrestricted manner, use embedded clauses,
refer to items by descriptions rather than by tags (‘‘sample containing phosphorus’’ instead of ‘‘S10024’"), and
make use of anapharic references and pronouns. The questions they were allowed to ask, however, were restricted
to questions that could be translated into database queries.

LUNAR had a large dictionary and a powerful augmented transition network (ATN) syntactic parser (76] which
could handle many of the subtleties ot knglisn grammar in the limited context of a database. Input sentences were
parsed to produce a parse tree. This parse tree was then examined by a2 semantic analyzer, which related the words
and the syntactic structures in which they occurred to concepts in the database and the relationships between these
concepts. In LUNAR (and its predecessor, Airline Guide [75], whose semantic parser served as a basis far that of
LUNAR), the semantics were represented as procedures. With this representation, LUNAR was able to deduce facts

! An ellipeis is the omission of some words in a sentence.




1) Some gquestions handled by LUNAR:

- Give me all the lunar samples with maénetite.
- Which samples are breccias?
- Of the type A rocks which is the oldest?

2) Attachment of prepositional phrase:

Give me all analyses of sample 10046 for hydrogen.

‘‘For hydrogen’’ is a prepositional phrase. Syntactically,
it could be attached to either ‘‘analyses’’, ‘'‘sample
10046’’ or ‘‘give’’. LUNAR is able to attach it to the

appropriate noun head, ‘‘analyses’’, by backtracking
between the syntactic and the semantic parsers.

3) Example of an ellipsis:
The following sequence

1) Give me all analyses of sample 10046 for hydrogen.
2) for oxygen.

is more natural than:

1) Give me all analyses of sample 10046 for hydrogen.
2) Give me all analyses of sample 10046 for oxygen.

Figure 2-4: Example of questions handled by LUNAR

not explicitly mentioned in the database. Even though the syntactic and semantic parsers were not fully integrated,
backtracking between the two allowed LUNAR to attach prepositional phrases to the appropriate head noun (see
example 2 in Figure 2-4). The output of the semantic parser was a query expressed in the language of the

underlying database. Finally, the database system received control and processed the query in the conventional
manner,

LUNAR's ATN parser could handle tense, modality, adjective modifiers, embedded constructions and relative
clauses. Furthermare, © allow more freedom of expression, LUNAR handled anaphoric references and ellipsis (see
Figure 2-4). To solve anaphoric references, LUNAR kept a reference list of all noun phrases. That list was searched
for a2 noun phrase whose syntactic and semantic structures matched those of the anaphoric reference. That noun
phrase was considered 10 be the antecedent To handle ellipsis, the current query was compared with the previous
one. If the syntax and semantics matched, the missing part would be taken from the previous query. Because
anaphoric references and ellipsis allow the user to express himseif in a more concise and natural fashion (Figure
2-4), it is important for natural language systems to be able to resolve them. Finally, the representation of semantics
as procedures in LUNAR was a significant development in NLP, since these procedures were able to deduce facts
not explicitly mentioned in the database. Consequently, LUNAR could answer a greater range of questions than
would have been possible otherwise.
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With its powerful ATN parser and large dictionary, LUNAR provided a large linguistic coverage and allowed for a
greater range of questions. Such qualities made LUNAR a successful natural language interface?. Broad linguistic
coverage as well as resolution of ellipsis and anapharic reference became fairly standard features in subsequent
natural language interfaces, and the focus of research shifted to additional human engineering issues.

2.2.2 Tolerance of spelling errors and synonym capabilities: LIFER

An interface can be rendered more user friendly by adding a few human engineering featres. In LIFER, for
example, a spelling correction mechanism attempted to understand input containing spelling errors, users were
allowed to define their own terminology (in terms of the system’s terminology), and, to minimize misunderstanding
between the system and the user, the user was kept informed of the system’s state of processing.

LIFER [21] was a tool for easing the construction of natural language interfaces to databases. Two applications
were developed for LIFER: the LADDER system (55], which answered questions about a naval command and
control database, and a database system with information that described a department in a university.

LIFER had a semantic grammar parser that tried to match an input sentence against templates based on semantic
categories (see Figure 2-5). When a template was matched, the corresponding database query was issued.

The template: what is the caitrib> of the «<ship>

(wvhere <aitrib> and <ship> are semantic categories)
would match.

what is the length ot the Constellation ?
what is the displacement of the Naunlus?

Both Constellation and Nawilus are marked in the database
as being ships, and both leagth and displacement are marked
as being anributes.

Parse tree produced:

TEMPLATE 1

| | i [ | | |
WHAT Is THE <ATTRIBUTE> OF THE <SHIP>
| | | | | | [
] | | | | | ]
what is the length of the <SHIP~-NAME>
|
|
Constellation

Figure 2-5: Example of a template in LIFER

"Anwlhunon[w]MMLUNARmabhwmmmdbmmnw(m“nfnmammﬁcmom)
Nots, howsver, that questions tsnded 10 be relevant 1o the database.




To handle anaphoric references and incomplete input, LIFER tried to match the current utterance with part of the
previous question’s parse tree if the initial matching process against templates failed. Upon success, the fragment
matching from the previous query was inserted into the current tree, and the new query generated, as shown in
Figure 2-6. ’

The template: Whatis the <antrib> of the <ship>
matched: -
What is the homeport of the Constellation?
If the following question was:

of the Nautilus?
it would be correctly interpreted as

What is the homeport of the Nautilus?

Figure 2-6: Ellipsis resolution in LIFER

Note however, that the fragment *‘for the Nautilus’’ could not be understood, since the template previously matched
contained the preposition ‘‘of"’. Such behavior is understandable when one knows how the ellipsis resolution is
done, but inconsistent and incomprehensible for a naive user. This detail highlights a major difficulty in making
systems that are natural to users: the system’s expressive capabilities are limited in comparison with the richness of
a natral language. There are always constructions and vocabulary that the system does not understand.
Unfortunately, these limits are hidden to the user, until they are stumbled upon’. At this point, however, it is
typically very difficult to understand what happens. The user will not necessarily think about rephrasing his query,
but may attempt to explain to the system what was meant. This behavior comes about because the naive user, after
observing the system’s apparent comprehension of nawral language, does not realize that the system, unlike a
human being, only understands a limited subset of the language. Such an interaction will cause even more
confusion as the system will probably not be able to understand such an explanation. Finally, because of the use of
templates, there is no logical explanation for understanding one phrase and not another one, making it difficult for
the user to discover what subset of English is understood by the LIFER system.

Spelling correction

LIFER attempted © understand input containing spelling errors. When a template matched except for one word,
LIFER found possible candidates for that word, based on the word and the expected semantic category, as indicated
by the template. The semantic categories were thus important to reduce the number of alternatives. The best match
among those was then chosen (see interaction 1 in Figure 2-7). Spelling correction is not a major issue in
question-answering. Yet, it is a nice feature in a question-answering program, for it can spare frustration to users by
not making them retype questions because of small spelling errors. It is therefore a small step towards more
pleasant interaction.

ISome programs use & menu 10 constrain the user’s choice at any point and make the system’s limits explicit [71]. This type of interface is,
however, not very aatural
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1- What is the avarage salary and age for math department
secretaries? A

: AVERAGE <== Spelling

PARSED!

LI IR

2= for CS department secretaries?
Trying Ellipsis: 1- wWhat is the average salary and age for CS
department secretaries?

3- What assistant professors in CS were hired in 772

Figure 2-7: Spelling carrection and ellipsis resolution in LIFER

ToextmdthecapabmuaofmesymmdadaptxtmmeM,meowedﬂwuwmdeﬁnesynonym for
both individual words and whole sentences. For example, in order to use Compsci instead of CS, the user could tell
LIFER that they were synonyms (see interaction 25 in Figure 2-8). Similarly, the user could define his own
phrasing for a sentence, using what Hendrix called the paraphrase feature, as in:

let *'describe John'* be *'print the Aeight, weight, and age of John'*
Boththaefeannummﬁmemeydhwmmmunamesysemmmcnmmmmmways In order to do
30, however, a user first has to know the exact syntax used for these features.

Feedback

Hendrix considered feedback an important humanizing factor. LIFER coastantly informed the user of the state of
processing (see interactions 1 and 2 in Figure 2-7); the user was infarmed when the sentence parsed successfully
(*‘PARSED!""); when spelling correction or ellipsis substitution was done, an appropriate message was printed.

Another facet of the feedback feature was to allow users 10 see what went wrong and give them the opportunity to
correct problems when inputs were not parsed correctly. When both the speiling error correction and the ellipsis
substitution failed, LIFER told the user where the problem occurred, i.e., what word was not understood. It also
specified what was expected, ie. the semantic category indicated by the template (see interactions 20 and 24 in
Figure 2-8). From thess, the user could correct the question (interaction 23 in Figure 2-8). Finally, LIFER allowed
a casual user to ask about the definition of some symbols (or semantic category), as in interaction 21 of Figure 2-8.
Note that this type of interaction is also useful to train the user who can readily see what questions are understood by
the system.

Note, however, that LIFER oaly told the user whether the question was parsed or not and did not show him what it
understood the question to be. It can be argued that presenting a paraphrase of the question to the user 0 permit
verification and comrection of the query issued is a useful tool. In fact, paraphrasing can ensure the user that a
system understood a query as it was intended before searching the database for the answer. (This approach has been
implemented in TQA (50, 51, 10], PLANES (73], RENDEZ-VOUS (5, 6], CO-OP [31, 43], and other programs.)
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20- What assistant Professors in compsci were hired after 1975
Trying ellipsis: Ellipsis has failed

THE PARSER DOES NOT EXPECT THE WORD "COMPSCI™ TO FOLLOW

"WHAT ASSISTANT PROFESSORS IN".

Options for the next word or meta-symbol are:
<DEPARTMENT-NAME> OR <DEPARTMENT>

21- What is <DEPARTMENT-NAME>
PARSED!
<DEPARTMENT-NAME> may be any member of the set:
( ANTHRO ANTHROPQOLOGY ART BS BUSINESS ... CS ..
200 ZOOLOGY ]

<DEPARTMENT-NAME> may be any sequence of words
following one of the patterns:
<DEPARTMENT-NAME> => BUSINESS ADMINISTRATION
COMPUTER SCIENCE

23- Use CS for Compsci in 20

PARSED!

(ID 263-42-6062 POSITION Assist-Prof DATE-HIRED 8/1/76)
(ID 501-13-1171 POSITION Assist-Prof DATE-HIRED 6/15/76)

24- How many associate professors are there in the
compsci department?

Trying ellipsis: Ellipsis has failed

THE PARSER DOES NOT EXPECT THE WORD "COMPSCI"™ TO FOLLOW

"WHAT ASSISTANT PROFESSORS IN".

Options for the next word or meta-symbol are:

<DEPARTMENT-NAME> QR <DEPARTMENT>

25- Define compsci like CS

PARSED!
COMPSCI

Figure 2-8: Synoaym capability in LIFER

Limitations

LIFER allowed a good deal of flexibility but had consistency problems. Consider interactions 20-25 in Figure 2-8.
In those interactions, LIFER was given a word it did not recognize. LIFER indicated this fact and told the user what
was expected (inputs 20 and 21). The user was then able to correct the faulty word and reparse the question (input
23). At this point, the user asked the system to use “CS’’ instead of ‘‘COMPSCI'’. Essentially, he asked the
system to coasider **CS** and *‘COMPSCI’’ as synonyms. It would also be reasonable for the user to believe that,
now, he could keep on using ‘‘COMPSCI" instead of *‘CS™. This would certainly be the case in 2 human
interaction, unless this substitution was a one time substitution (as in the case of a spelling error correction).
However, this was not the case in LIFER: as long as the user did not define ‘‘CS’’ and ‘‘COMPSCI’’ as synonyms
using the define option, he was unable to use these two words interchangeably. This is unintuitive and inconsistent.

Finally, because the template system and the juxtaposition method (Figure 2-9) used in LIFER did not provide as
general a parsing mechanism as that employed by LUNAR, the system builder had to be very careful in constructing
the templates and juxtaposition rules to make sure most of the possible questions and juxtapositions would be
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Juxtaposition in LIFER was done by adding expansion rules
for each juxtaposition allowed. For example, the rule:

attribute —> <anribute> <anribute>

would allow the following query:

What is the length, displacement, and home port of the
Constelladon?

Note that this rule is specific to <airibwe> and cannot
be used to join other semantic categories.

Figure 2-9: Expansion rules in LIFER

covered. Inconsistency problems and confusion for the user would arise if some possible constructs had been
overiooked. Thus, LIFER worked best when the system builder was well informed about linguistics and the
database. ‘

2.2.3 Tolerance of ungrammatical inputs; clarification dialog and paraphrase: PLANES

While LIFER tried to be tolerant of spelling errors, one of the primary goals of PLANES was to be tolerant of
grammatical mistakes. PLANES (73] was a natural language interface to a large database containing maintenance
and flight records of naval aircrafts. PLANES was based on the assumption that the sentence-level structure of the
input would not always be syntactically well formed, although the semantic structure would. As a result, PLANES
made little use of syntactic information. Like LIFER, PLANES used a semantic analyzer. This analyzer was an
ATN with one top level node that repeatedly called subnets, each of which identified a particular semantic
constituent.

This method proved successful at parsing ungrammatical inputs (since grammar was ignored), thus easing
interaction by allowing users to pay less attention to the syntactic structure of their questions and not worry about
what syntactic constituents to use to be understood by the system. It had its own problems, however. Because all
the constituents were parsed independently, there was no mechanism to choose a word sense depending on what had
already been parsed. PLANES thus relied heavily on its domain to eliminate problems of word sense selecdon.
This would sometimes lead 0 confusion. Second, this parsing technique caused modifiers to be parsed
independentty of ths head noun they modified, thus defeating the purpose of a modifier (or prepositional phrase).
These problems imposed constraints on. the type of syntax the user could employ (which is contrary to the design
goal of PLANES), snd consequently on the user’s freedom of expression, for he had to know what term to use when.

* Like LUNAR and LIFER, PLANES was able to handle anaphoric references and pronouns, using the previous query

to complete a sentence. If the sentence could not be parsed, even after trying pronoun substitution, a clarification
dialog would be initiated. Like LIFER, PLANES tried to explain what part of the input question failed. PLANES
gave mare feedback to the user than LIFER did by paraphrasing the question to make sure the generated database
query was the one the user intended. After seeing the paraphrase, the user had the choice of accepting it or changing
it. Although paraphrasing may provide useful feedback to the user, it may also get tedious, as illustrated in the
hypothetical dialog presented in Figure 2-10,
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nqg

: Give me a list of all parts supplied by a company in Tennessee
I UNDERSTAND THE QUERY AS:
PRINT ALL PARTS WHOSE SUPPLIER IS IN TENNESSEE
IS THIS RIGHT?
Yes
<answer>

by a company in Texas
I UNDERSTAND THE QUERY AS:
PRINT ALL PARTS WHOSE SUPPLIER IS IN TEXAS
IS THIS RIGHT? .
: Yes
: <answer>

ng ng

n g

Paraphrasing a question makes sure the system understood a
query as it was intended, to avoid both a useless costly
search and misinterpretation of the answer by the user.
However, paraphrasing the query and asking the user for
verification each time a question is entered can become
tedious for the user.

Figure 2-10: Using paraphrase for feedback

2.3 Conclusions

Question-answering programs have made valuable improvements over database query languages, as illustrated in
this section. Parsers were able to handle a large subset of English syntax, and input constraints were significanty
relaxed. Some systems helped the casual user further by providing paraphrasing or guidance in the selection of
terms,

There are, however, four serious limitations to the question-answering programs presented so far. First, because
systems understand only a subset of English and the extent of that subset is unknown to the user, the user may find it
hard to stay within a system's scope of understanding, causing inexplicable inconsistencies to arise. Second, by
only allowing the user to pose questions that are readily translated into database queries, these systems implicitly
depend on the users’ knowledge of the structure and content of the database. Such an assumption is a burden to a
user, especially a casual or naive one. Furthermore, because of the limited range of these questions and the fact that
the answer was always taken 10 be the result of a database search, the more general problem of understanding the
human question answering process was ignored. Finally, users of an ‘‘intelligent’’ system will tend to attribute
human-like features 10 it, and they will expect the system to respond to their questions in the same way a person
would. If systems were able 10 genzrute the same kinds of answers a human would provide, interaction would be
greatly improved. It is thus important to understand how people communicate and what kinds of answers they
expect when asking a question. Understanding the human question answering process is, however, very hard, and
researchers have tended to address at most one or two aspects of human interaction in their systems. Some of the
results are presented in the next chapter.
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3. More general approaches to question-answering
The interpretation of a question (or any utterance) goes beyond its syntactic and semandc analysis. This is
significant both in understanding a question correctly and in answering it appropriately, even if the question is taken
in isolation. See Figure 3-1 for a simple example of this phenomenon.

Q: Could you tell me the time>?

According to the semantics of this question, it is a
Yes/No question, asking for the capability of the
hearer to inform the speaker of the time. Technically,
the answer should be either:

A} \Yesl 14
or MNo? !’ ’
meaning: ‘‘Yes I can’’
or ‘‘No I cannot’’

However, there is no doubt that this question should be
interpreted as a request to inform the speaker of the
time. Thus, a better affirmative response (and the only
one acceptable in cooperative human question answering)
is:

‘YIt’s 2:15 pm’’

‘No’’, on the other hand, is an acceptable negative
ansver, eventhough it will appear slightly rude. From
this answer, assuming the respondent is being at least
cooperative (which is a reasocnable assumption in
everyday communication), we can infer that the
respondant does not have a watch and thus cannot inform
the speaker of the time. As this answer may appear
rude, a better negative answer would be:

‘‘I don’t have a watch’’

This simple example shows that beth the question and
the answer are to be interpreted beyond their literal
meaning and that, because of the way humans use
language, it is possible to make inferences that do not
depend on the semantic content of an utterance alone.

Figure 3-1: Interpretation of a question

Generating a good answer 0 a question, even in the database domain, can require more than a simple database
search. There are several related issues. First, an appropriate answer might have to account for the context of the
question, its undertying mesning (questions cannot always be taken literally) and the identity of the user. Second,
providing a literally correct answer is usually necessary but it may not be sufficient (36, 62, 31, 29]. Third, it is
important to understand what can be inferred from an utterance to ensure that the response provided by the system
cannot be misinterpreted by the user. Finally, generating an answer involves both deciding what information to
include and how to organize it. All these issues have been studied and the results obtained were applied both to
extend the capabilities of natural language interfaces and to form a comprehensive theory of question answering,
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Three main approaches have been taken to the problem of understanding questions, determining answers and
providing cooperative behavior.
e Categorizing of questions:
* Lehnert relied mainly on a conceptual categorization of questions to determine their intended
meaning and what the answers should be [36].

* McKeown associated discourse strategies with the question type to determine the content of the
answer [45].

 Analyzing a questioner’s goals and plans: following Cohen’s approach of considering speech acts as
actions in a planning systems, Cohen, Perrault, Hobbs, Robinson and Allen looked at answers in terms
of how they respond to the questioners’ goals. 7, 8, 24, 1]

o Using Grice’s cooperative principles [15, 16]: researchers have applied Grice's cooperative principles
of communication and the nodon of implicature to provide responses that convey the desired
information to the user [31, 40, 41, 29].

We will present these approaches in turn and see how they have been applied.
3.1 Categorization of questions

3.1.1 Providing answers based on the category of the question: QUALM

Letmert [35, 36] was the first researcher to examine the problem of question answering in the abstract, present a
general theory and embody that theory in a system. She tried to identify the factors involved from understanding a
question to farmulating the answer. Her perspective was one of natural language processing and relied on the idea
of conceptual information processing [57] and theories of human memory organiz.aﬁon. Determining an answer was
based mainly on a conceptual categorization of questions. She showed how a question’s context, the state of the
system and some rules of conversation could all affect the categary of a question and the final answer.

QUAILM

Lehnert embodied her theories in QUALM, a system used in conjunction with the story understanding programs
PAM (Plan Applier Mechanism) [74] and SAM (Script Applier Mechanism) [9] to answer questions about the
staries they had read and to provide a means for evaluating their understanding capabilities.

The process of understanding a question and retrieving the answer was more integrated in QUALM than it was in
database front-ends. The input was parsed directly into a language independent representation (Conceptual
Dependency notation [56]), and all further processing to correctly interpret the question and answer it occurred at
this conceptual level. Scripts, plans and actions were aiso represented in Conceptual Dependency. QUALM was
intended to embody a general theory of question answering and thus tried to answer questions about the stories read
in the same way people would. An example of questions answered by QUALM is given in Figure 3-2. In this
example, all the answers provided by QUALM include more information than was actually requested in the
questions (which are all yes/no questions), making the question answering session more natural and cooperative than
if QUALM had always answered ‘‘Yes'’,

The theory of question answering as presented by Lehnert included:
¢ What it meant to understand a question and how context affected this understanding. Understanding a
question in QUALM included classifying it in the appropriate conceptual category. Lehnert defined a
taxonomy of questions to predict:the kind of memory search that would be required and showed how
the category of a question could be derived.
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Given the story:

John went 1o New York by bus. On the bus he talked o an
old lady. When he left the bus, he thanked the driver.

He took the subway to Leone’s. On the subway his pocket
was picked. He got off the train and ensered Leone's. He
had lasagna. When the check came, he discovered he could
not pay. The management told him ke would have to wash
dishes. When he left, he caught the bus 1o New Haven,

In answering a question, QUALM gives more
information than what was actually requested.
Example:

Ql: Did John go to New York?

Al: Yas, John went to New York by bus.
Q2: Did John eat?

A2: Yes, John ate lasagna.

Q3: Did someone pick Jcochn’s pocket?

A3: Yes, a thief picked John’s pocket.

By giving more information than requested in the

question, QUALM provided for a more natural
question-answering session.

Figure 3-2: A question-answering session with QUALM

o What kind of answers were appropriate. In Lehnert’s theory, the kind of answer depended primarily on
the question category; once the answer was classified, memory retrieval strategies were determined.

The conceptual category of a question and its derivation
Lehnert claimed that her conceptual categorization was crucial in determining the answer to a question because it
indicated what a question really meant, ie, what the intentions of the questioner were. An incorrectly classified
question would yield an inadequate answer, The thirteen conceptual categories she identified are shown in Figure
3-3. In the theory presented by Lehnert, a question was parsed on several levels in order to be carrectly classified.
First, a lexical processing level produced the literal semantic interpretation of the question. Second, a reference
recognition level identified what the question referred t0 in memory. At this point, the question had been
understood in a literal way and had been parsed into a Conceptual Dependency representation. A discrimination net
then tested the structure of the question to place it into one of the conceptual categories. The classification obtained
by going through the net was not necessarily the final one, since it relied only on the structural fearures of a
" question, and thus on its Hteral meaning. Finally, inferences based on dialog conventions, context, and knowledge
of the user were employed to refine the categorization of the question and add constraints if necessary. Refining the
categorization corresponded to transforming the literal meaning of a question into its infended meaning. Constraints
were also sometimes used to restrict the set of possible answers. Lehnert maintained that without such constraints,
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Causal Antecedent: e.g. ‘‘Why did the book fall?’’
{the question asks about the event causing a concept]

Goal Orientation: e.g. ‘‘Why did Mary hit John?’’
{the question asks about the mental state of the actor]

Enablement: e.g. ‘‘How was John able to sleep?’’

Causal Consequent: e.g. ‘‘What did John do after quitting his job?’’
Verification: e.g. ‘‘Did you eat?’’

Disjunctive: e.g. ‘‘Is Data Structures on mondays or tuesdays?’’

Instrumental/procedural: e.g. ‘‘How did you get to school?’’
(by bus)

Concept Completion: e.g. ‘‘What did you eat?’’
Expectational: e.g. ‘‘Why didn’t you come last night?’’
Judgmental: e.g ‘‘What should I do now?’’

Quantification: e.g ‘‘How many Pascal books do you have?’’
Feature Specification: e.g. ‘‘How old is your dog?’’

Request: e.g. ‘‘Do you have the time?’’ (3 am)

Figure 3-3: Conceptual categories identified by Lehnert

answers that are correct but useless and inappropriate would be generated*.

Lehnert divided the inference mechanism into three parts: the contextual-inference rules, the context-independent
rules and the knowledge-state assessment rules. Each rule changed the category associated with a question or

“Example of a congtraint proposed by Lehinert to further specify a question:

Universal.Set inference rulg:
Use the active script te darive the sat of potantial answers.
Add the constraint thet the answer must belong 10 1his set.

Consider the question:
Q: Who was aot in class 1oday?

This rule is needed to avaid producing the following answer:
A: Lowis XIV, Napoleon and Charlemagne.

Such an answer would be inadequate (though technically correct, even though it is a partial answer). According to Lehnert, this problem would
arise because no constraint on the set of possible answers was added (i.e. that the answer should be from the set of students for that class).
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added a constraint to the question specification. A rule had preconditions that had to be true in order for it to apply
and a target interpretation indicating the change to be made.

Contextunal-inference rules examined the conversational context of a question and allowed for a question to be
understood within that context. The context of the question in QUALM could be provided either by the topic of
conversation ar by a script.

In human communication, the topic of a conversation is heavily used to understand utterances, for it provides a
context in which sentences can be rendered unambiguous, and ellipsis and anaphara understood. Keeping track of
the topic of the conversation is essential. As an example, when one knows the conversation topic and assumes that
there is continuity in the conversation, it is possible to understand the ellipsis in the dialog (1) shown in Figure 3-4.
The topic of conversation together with a transcript of past discourse can be potentially mare useful than the ellipsis

-and anaphora resolution we saw in the natural language front-ends to databases, where ellipsis was solved by

matching the current utterance against the previous one and anaphora resolved by finding the closest matching
element’. The topic of conversation can indeed provide a more complete context for a question. However, in
QUALM, the conversation topic as a whole is taken to be the last conversation topic. As a result, the ellipsis and
anaphora resolution procedure used is essentially the same as the ones previously studied.

1) Topic of conversation .

Pl: Have you seen Mary recently?
P2: She is out of town visiting her mother and her sister.
Pl: When is she coming back?

In this dialog, the topic of conversation is ‘‘Mary’’
Using traditional pronoun resolution, ‘‘she’’ in the last
santence would be bolioved to refer to either ‘‘sister’’,

‘‘mother’’ or ‘‘Mary’’. The participants, however, have
no trouble identifying the pronoun as referring to
A\ \Maryl r . -

2) Knowledge about scripts

Within the script of an auction, the question:
‘‘Who will give me $5027°
means: ‘‘Who will bid $50?’’

3) Beliefs about the guestioner

From a father to his daughter coming back at 2:00 AM.

Q: Do you know what time it is?

Being aware that her father surely knows the time, she should
interpret the question as ‘‘Why are you coming so late?’’

Figure 3-4: Factors influencing the interpretation of a question

Some stereotyped situations are associated with specific conversational style. Such a sitation, called a script, can

3Ses [18] for more oa this topic.
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be the context for a question; within a particular script, a question may have a very specific meaning, which differs
considerably from its usual meaning, as illustrated in the second example in Figure 3-4. In her theory, Lehnert
suggested that a program should use knowledge about scriptal conversational patterns to help understanding a
question.

Context-independent inferences rules transformed the interpretation of a question from the literal one to the
intended one, causing the new interpretation to reflect the way people use language. Figure 3-5 shows one such
rule, used to transform yes/no (verification) questions into requests.

Agent-Request conversion rule:
Criteria: 1. Conceptual categorization = Verification
2. Question concept is of the form:
an object X is in 2Z’'s possession;

the modal of the question is CANS.

Target interpretation :
2 is to give X to Y, where Y is the person
posing the question.

Using this rule, the question:
Canl haveacoob‘e?v
is re-interpreted as:
Would you give me a cookie?
This rule embodied the fact that a restricted set of
yes/no questions should be interpreted as requests.

The application of this rule, as specified in QUALM,
does not depend on the context of the question.

Figure 3-5: A context-independent rule in QUALM

Knowledge-state assessment rules involved beliefs of the answerer about the questioner. In Lehnert’s theory, such
knowledge mainly affects how a question is interpreted and thus how it is classified, as opposed to how it is
answered. As an example, a question can acquire an interpretation different from its usual one if it is obvious that
the questioner aiready knows the answer to the usual interpretation (see (3) in Figure 3-4). While Lehnert gave .
some heuristics for bow such knowledge could affect the interpretation of the question, she did not address the
problem of representing that knowledge, and the rules were not implemented.

Answering a question

%The rule, as specified by Lehnert actually uses Conceptual Dependency notation for the question form. The form showed in this example is
ope of two forms described in the criteria for this rule.



20

To answer the question, a system must first decide what to include in the response. In QUALM, this was done
mainly on the basis of the question category. Lehnert recognized that humans have the ability to vary their answers
but avoided studying all the factors that can influence an answer. She chose to vary the style, or mood, of the system
instead. The mood here referred to whether the system was to provide a ‘‘talkative’’ answer or not, as shown in
Figure 3-6.

Q: Did John go to New York?

Mood = talkative
Al: Yes, John went to New York by bus.

Mood = minimally responsive
A2: Yes.

Figure 3-6: How QUAILM could vary an answer by varying its mood

Based on mood level, QUALM varied the amount of information given in the answer using the heuristics
(elaboration options) specified by Lehnert. Of these heuristics, few were actually implemented in QUALM, and the
remainder were too vague to be applied at this point, since they require a deeper understanding of how knowledge of
the user affects an answer. Moreover, this scheme allows the answer to be varied only in the amount of infarmation
given to the user. If the system was t0 answer the same way a person does, the answer should vary both in the
amount and the kind of information given. It may indeed be desirable to give different kind of infarmation
depending on the point of view taken to answer the question [46), the type of the user (53], or the user's knowledge
of the domain [48]. QUALM could vary its mood only when the appropriate variable is changed by hand. Ideally,
this tailoring should be done dynamically.

Once it was decided what information to include in the answer, a memory search depending on the conceptual
category of the question was carried out’. Lehnert noted that questions about events that did not happen (why-not?
questions) were more difficult to answer than other kinds of questions. QUALM was able to answer such questions
20 long as they were about failed expectations, that is about events which we would expect to happen, because they
were embodied in a scripe, but did not occur (also called ‘‘ghost paths’’). To do so, the program used its script
knowledge to detect where the departure from the script occurred.

Finally, Lehnert stadied the problem of choosing the best answer when several are possible. She defined rules that
should be followed im picking the best answer. However, those rules involved knowledge about the user and were
thus not yet ready 10 be wsed in a question answering program without further study.

Conclusions
Lehnert’s departure from the database domain was importnt as it provided a more general framewark for question-

*The Request category was sct studied is QUALM. Beczuss a request question typically asks for aa action to be performed, and asking for the
perfarmancs of aa actios (23 in *“tall me the data’") is act sppropriats in the story underatandisg comtaxt, Lehnert argued that there was 50 deed 0
study request questicns. Howsever, coasider the question **Can you Lell me something about Jahm'', which is intesded 0 mean ‘‘Teil me what
you know sbout Jobm, what did he do?*’. Such & qusstioa would require the program (0 generats 8 summary of the story.
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answering research. Through the categorization of questions and the rules used to transform a question from the
literal to the ‘‘intended’’ interpretation, Lehnert provided a fairly simple mechanism to answer questions in an
appropriate manner in many cases and successfully implemented it in QUALM to answer questions about stories.
However, deriving the proper question classification will not always lead to an appropriate answer. A simple
example is shown in Figure 3-7, where, based on the category of the question (verification), the answer would be
*“Yes’* or ‘‘No’’, or, using an elaboration option, a statement specifying the immediate cause. These answers would
not be as informative as the indirect answer given in the example, which is by far more appropriate and cooperative.

Q: Are you ready for your exam tomorrow?

This question is a \verification question. It could

be answered with the direct answers ‘‘yes’’ or
‘‘no’’. Lehnert specified an elaboration option (the
enquiry/explanation option) which could generate an
indirect answer by finding an apparent cause. Here,
an apparent cause could be:

Al: I have not studied.

The following answer, however, is more appropriate
and informative in this case:

A: I decided against taking it.

Figure 3-7: An answer not dictated by the category of the question

Furthermore, while Lehnert was able to identify several of the factors necessary to understand a question and
determine its answer, the rules presented in the theory do not constitute a general enough theory of language usage
to fully explain how humans interpret questions and make appropriate answers. Important issues in the question-
answering process such as discourse structure and knowledge about the user and what makes an answer appropriate
remains to be studied in depth.

3.1.2 Providing coherent answers using discourse structures: the TEXT System

Like Lehnert, McKeown (45, 44] used the categorization of questions to aid in determining the answer to a question.
Her research, however, was not aimed at understanding questions but rather at determining the content and textual
shape of answers. She studied how principles of discourse structure and focus constraints could be used to guide the
information retrieval process.

The TEXT system

McKeown’s work was implemented in the TEXT system. The TEXT system used a portion of an Office of Naval
Research database containing information about vehicles and destructive devices. The knowledge base contained
entities, relations between them, attributes, a generalization hierarchy, and a topic hierarchy. Using the TEXT
system, a user could ask questions such as those in Figure 3-8. Since the angwers to these questions are not the
result of a database search, deciding what to say becomes an important issue. McKeown developed means to select
the appropriate information from the database and organize it coherently into paragraph-long answers. Though
developed mainly to study the problems of natural language generation, the TEXT system is a useful tool to add to a
conventional database interface, since it allows users to familiarize themselves with the database content.
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1. What is a frigate?
2. What do you know about submarines?
3. What is the difference between a whisky and a kitty hawk?

The TEXT system could handle questions about the database
content.

Figure 3-8: Questions answered by the TEXT system

Schemas

Instead of just tracing through the knowledge representation to select the answer, McKeown employed rhetorical
techniques found in naturally occurring texts. RAetorical predicates are among the means available to speakers (0
effectively convey information. They include: analogy, specification of a property or artribuse of an object (entity),
and illustration by example.

Linguistic studies showed that certain combinations of these predicates were preferred over others [17].
Furthermore, after studying English texts and transcripts, McKeown found that certain combinations were associated
with particular discourse purposes. For example, the definition of an object was often accomplished using the
following sequence of rhetorical predicates: '

(1) Identification of the object as 2 member of some generic class;

(2) Description of the object’s function and attributes;

(3) Analogy to familiar objects;

(4) Dlustration by examples.

McKeown encoded these combinations of predicates into schemas, which listed the different predicates that could
be used for a particular discourse purpose in the arder in which they should appear. Thus, schemas represent
standard patterns of discourse structure. The TEXT system used four schemas, each corresponding to one or more
discourse purposes (see Figure 3-9),

Schema Discourse purpose
Identification: requests for definitions
Attributive: requests for available information
Conatituency: requests for definitions

requests for available information

Compare and contraﬁt: requasts about the differences
between objects

Figure 3-9: Schemas used in the TEXT system

Figure 3-10 shows the identificarion schema. The question types in TEXT correspond to different discourse
purposes. Consider the questions in Figure 3-8. The first question is a request for a definition, the second a request
for information about an object, and the last asks for the difference between two objects.
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Identification Schema®

Identification (class & attributive / function)
{Analogy/ Constituency/ Attributive/ Renaming]”
Particular Illustration / Evidence *
{Amplification / Attributive / Analogy]
Particular Illustration / Evidence

Figure 3-10: Example of a schema used in TEXT

Selecting the answer from the knowledge base

When TEXT was asked a question, it selected a subset of the knowledge base that contained all the relevant
information to that question. This step limited the amount of information future processes had to look at in order to
pick out the appropriate answer. This subset of the knowledge base was called the relevant knowledge pool and was
constructed based on the question type. For instance, for a request about definitions, all the infarmation
immediately associated with the object being defined (such as its auributes, superordinates and subtypes) was
selected.

A schema was then chosen based on the discourse purpose associated with the question type and the amount of
information available in the relevant knowledge pool. The elements of the schema were filled sequentially, and its
predicates were matched against the relevant knowledge pool. An instantiated predicate corresponded to a
proposition that would be translated into an English sentence by the generation component [44]. When alternate
instantiations were possible, the system used constraints on how focus of attention can shift to select the most
appropriate one. McKeown extended previous work on focus of attention (for understanding anaphora) [64] to
provide focus constraints that limit what can be said next and still maintain coherence. Using these constraints, the
program avoided choosing propositions that jumped from one topic to another in an uncontrolled manner, thus
ensuring the text coherence. Essentially, the focus guidelines caused the program to:

o Select the proposition such that the focus changes to an item just introduced.

» Select the proposition that allows the focus to remain the same.

¢ Choose the proposition that makes the focus switch back to the previous one.
Using the identification schema and focus constraints, TEXT produced the answer shown in Figure 3-11: Note that,
based on the knowledge base and focus constraints, only five predicates were chosen from the schema.

Conclusions ,

McKeown concentrated on strasegies forconstructing an answer based on the discourse purpose sought after. Using
discourse strategies (that sppear to exist in natural language texts), and focus constraints, the TEXT system was able
to produce coherent paragraph-long answers. However the user’s goal in asking the question was considered only
insofar as the question type characterized this goal. How the user’s needs, beliefs, and knowledge can influence the
final answer was left unstudied. Finally, the TEXT system did not attempt to vary its answer depending on the user.

IWe are using McKeown'’s patation: brackets (‘[ ') indicate opticnality, **/"’ alterpatives, ‘*+'' that the item may appear one or more times,
and ‘'*"’ that the item may appear zero or more times.
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(definition AIRCRAFT-CARRIER)
Schema selected: identification

praedicates instantiated: (1) identification
(2) analogy '
(3) particular-illustration
(4) amplification
(5) evidence

1) An aircraft carrier 1is a surface ship with a DISPLACEMENT
between 78000 and 80800 and a LENGTH between 1039 and 1063. 2)
Aircraft carriers have a greater LENGTH than all other ships
and a greater DISPLACEMENT than most other ships. 3) Mine
warfare ships, for example, have a DISPLACEMENT of 320 and a
length of 144. 4) All aircraft carriers in the ONR database
have REMARKS of 0, FUEL TYPE of BNKR, FLAG of BLBL, BEAM of
252, ENDURANCE-RANGE of 4000, ECONCMIC-SPEED of 12,
ENDURANCE~-SPEED of 30, and PROPULSION of STMTUGRD. 5) A ship
is classified as an aircraft carrier if the characters 1
through 2 of its HULL-NO are CV.

Figure 3-11: Example of an answer generated by the TEXT system

mmmumeammmmmmwmmmmwu
instantiated and decide on whether recursive use of the schemas is appropriate.

313 Summary

Examining questions other than those that can be readily translated into a database query, researchers started to look
at the problems of interpreting a question correctly (Le. as it was intended to be interpreted) and answering it
appropriately (Le. providing an answer that satisfies the questioner). Clearly, systems with such capabilities would
provide a more graceful interaction to the users. Lehnert saw the problem of question-answering as one of placing
questions in appropriate categories and concentrated on wndersianding questions, using primarily the question’s
context and some coaversational rules. McKeown, on the other hand, concentrated on providing an informative and
coherent answer, based on discourse structure and focus rules found in natural language texts. In her system,
McKeown assumed that the user’s purpose for discourse was known and did not study parsing issues. Making use
of a question’s context, discourse strategies and focus constraints in providing an answer definitely results in a
“‘better’’? answer tham ons resulting from a simple database retrieval. However, neither Lehnert nor McKeown
characterized what aa appropriate answer really is and this issue remains to be studied. Finally, in both systems, the
problems of generating indirect answers when necessary and tailoring an answer to the user were neglected.

%'Better’* hors refers to how astural and ciose 1o & buman response the mswer is.




25

3.2 Appropriate responses and the goal of the questioner

Another approach to the problem of determining an answer was proposed by Hobbs/Robinson and Allen/Perrault
[24, 1]!0, Their goal-oriented approach attempted to explain indirect answers and cooperative behavior in terms of
the goals of the questioner.

The problem in providing appropriate answers lies in the fact that it is very hard to pinpoint what appropriate
means. By not addressing the question itself but still providing enough information for the user to infer the answer,
indirect answers provide a good basis for studying the appropriateness of answers. Furthermore, in human question
answering, indirect answers are often given. We can probably assume that, when engaged in cooperative dialogues,
if humans choose t0 answer a question indirectly, the indirect answer is more appropriate then a direct one. It is
therefore desirable for a system to also be able to provide indirect answers when necessary. While people have no
problem understanding such answers and generating them, it is hard to characterize what makes an indirect answer a
good response and when one is preferable to a direct one.

Hobbs and Robinson studied indirect responses in task oriented dialogues with the goal of determining what makes
an answer appropriate. After studying transcripts of task ariented dialogues, they divided indirect answers in three
categories:

1. The answer was indirect but did answer the question asked; the direct answer could be inferred from it.

2. The answer denied a presupposition, a belief the questioner had about the domain!!,

3. The response addressed higher goals the questioner was trying to achieve,
An example for each of these cases is presented in Figure 3-12,

Assuming that people ask questions with goals in mind, Hobbs and Robinson concluded from their analyses that, 1o
be appropriate, an answer must provide some information that allows questioners to achieve their goal. That
information need not be exactly the same as that asked for in the question. The answerer may find the question
inappropriate given the goal to be achieved and provide information that he thinks is relevant!? This sort of
behavior assumes the answerer (1) wants to help the questioner, (2) is able to help the questioner and (3) knows the
questioner's goal.

Hobbs and Robinson thus proposed a characterization of the appropriateness of an answer. However, the guidelines
they offer do not yet specify how o generate an ‘‘appropriate’’ answer, nor do they determine when an indirect
answer should be chosen over a direct one. Finally, it is a significant problem to figure out the goal a person wants
to achieve.!3 This is complicated by the fact that one utterance may be used to achieve several purposes.!4

1%The results cbtained by Allea sad Perrsuit will be presentod in the chapier discussing user modelling problems, for they Vere mainly
concerned with the problems of inferring the goals and pians of the user, which involves forming a model of the user.

}1Special cases of this problem have boea studied at length, as will be seon in the next sectioa {31, 40, 41].

"Miuuahavenhobeenmdiedby]odﬁ[29]vhouiedwid¢nﬁfymekindldrupmmapeaadincemininmiom(inchxdingthuof
an expert and 2 novice) 10 maks sure that, because of the expectations from the questioner, the arswer will not be interpreted in an unintended
way.

!3This problem was addressed in part by [1].

14This has beea termed the multifaceted aspect of utterances (19).
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1) Although indirect, the answer answers the guestion asked.

Q: Is your area paper finished?
R: I just have to add the bibliography.

The direct answer (NO) can be inferred from the response
given. However, the indirect answer provides more information
than the direct one would have had.

2)Ihe answer denjes 3 presupposition of the guestion.

Q: Have you passed your oral exam?
R: We don’t have an oral exam in our department.

The questioner had the assumption that the hearer had to take
an. oral exam. The respondent corrects that belief.

3)The response answers to higher goals the
questioner was trving to achieve,

Q: Which key do I need?
A: The door is unlocked.

The respondent recognizes that the questioner’s goal is
to open the door. The response he provides does not
answer the question but still enables the questione: to
fulfill his goal.

Figure 3-12: Examples of indirect answers

3.3 Grice’s cooperative principles and the notion of implicature

Instead of deriving answers based on question taxonomies or the goal of the questioner, Kaplan [31], Mays (40},
McCoy [41], and Joshi [29] attempted to use the more general theary of language usage as developed in the area of
pragmatics in order to characterize what an appropriate answer is.

Pragmatics, the study of how knowledge about the context of an utterance affects its understanding, gives us a
theory to explain how people can mean more than what they say with the notion of implicature [70, 37]). Studying
how implicature works provides a general way to deal with the issues of language usage, instead of applying the
specific rules used by QUALM. It is, however, a very hard problem and has been studied only in part.

Grice’s maxims and implicature

Grice {15, 16] proposed a theary about how people use language. He suggested that the following guidelines are
used in human conversation in arder to communicate efficiently and in a cooperative manner: )

1. The Cooperaﬁve Pnncxple Make your contribution as informative as is required, in the context in
which it occurs.

2. The Maxim of Quality. Do not say what you believe is false ar what you lack evidence for.
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3. The Maxim of Quantity. Make your contribution as informative as necessary, but not more
informative than required.

4. The Maxim of Relevance. Make your contribution relevant to the conversation.
S. The Maxim of Manner. Be brief and orderly. Avoid ambiguity and obscurity.

. Grice claimed that, when engaged in a conversation, humans tend to cooperate with each other and will use the
guidelines given above. It follows that, even when an utterance seems to violate the principle of cooperation,
humans will try to interpret it at a deeper level to make it in fact cooperative, This interpretatdon will give rise to
inferences that could not have been drawn from semantics only. This framewark can be used to understand indirect
responses, as shown in the example in Figure 3-13. The inferences that can be drawn from our knowledge of
language usage are called conversational implicatures. Understanding these conversational implicatures would
clearly help in building computer systems that would be able to understand questions more deeply and provide
indirect answers,

There are two ways implicatures can arise: by following Grice's maxims or by apparently flouting them (that is
deliberately violating them as in the second example of Figure 3-13).

1) Following Grice’s maxims:

Q: How cold is it outside?
A: I am only wearing a sweater over my T-shirt.

The answer does not seem to be relevant. However, we do
consider it to be an appropriate answer to the question posed.
Assuming the answerer is being cooperative, we try to find a
connection between the person’s outfit and the outside
temperature to derive the direct answer.

2)Flouting Grice’s maxim (The maxim of quantity this case):

Q: What was the party?
A: A party is a party.

This statement is rather obvious and thus violates the maxim
of quality. However, it does convey information, namely
that that the party was average and not overly exciting;
e.g, there is nothing else to say.

Figure 3-13: How inferences can be drawn from an answer

The information conveyed both when following and flouting 2 maxim is part of a comprehensive theory of language
usage. However, to implement question answering programs that provide a natural access to some body of data, we
are more concerned with utterances that follow Grice’s maxims.

Grice’s maxims and the notion of implicature have been used in an attempt to characterize when indirect answers
are preferable over direct ones. In particular, it was found that indirect answers may be preferable to direct ones
when the latter are negative, for then, indirect answers may be more informative. Two examples are shown in
Figure 3-14. Two cases of this situation have been studied: presumptions, and scalar implicature. We first
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Ql: ‘‘Are all the professors in the lLinguistics department
full professors?’’

Al, a direct answer: ‘‘Yes’’
A2, an indirect answver: ‘‘There is no Linguistics
department here’’

A2 is more informative than Al, even though Al is also
(trivially) correct. Moreover, Al can actually Dbe
misleading, by not refuting the belief that there is a
Linguistics Department.

Q2: ‘‘Are all the professors in the Linguistics department
full professors?’’

Al, a direct answer: ‘‘No’’
A2, an indirect answver: ‘‘two are’’

Here again, the indirect answer is more informative than
the direct one.

In both examples, by providing Al, a system would be
considered to provide only partial information. (This is
called stone-walling.)

Figure 3-14: Indirect answers may be more informative than direct ones

introduce these two cases and then present how they have been studied in order to improve question answering
systems.

Presumptions
Consider the question:
Q3: What grade did Bob get in Data Structures?

In asking this question, the speaker must believe that Bob took the Data Structures course. In fact, this follows from
one of the conventions of cooperative conversation: the questioner must leave a choice of direct answers to the
respondent, or, in other wards, the questioner must believe that there are several possible direct answers to his
questions. (If there was st most one possibie direct answer, he could then infer the answer without asking the
question.) So, if all but (at most) ore of the direct answers entails a proposition P!5 , we can assume that the
questioner believes P. Proposition P is then said to be presumed by the question. In the previous example, Q3
presumes that *‘Bob took a Data Structures course’’ and ‘‘there are more than one possible grade’”.

If the presumption is false, the answerer should refute it, and an indirect answer is more appropriate than a direct
one. Failure to deny the presumption implicitly confirms it and thus misleads the questioner. Such a situation arises

134 proposition P! semantically eatails the proposition P2 if and only if P2 is true whenever P! is.
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when (1) a question contains some of the speaker’s beliefs about a domain, that is the question presumes'6 some fact

to be true about the domain of discourse [33, 37]; and (2) these beliefs are not supported by the data (or facts). The

user has then a misconception about the domain. Because of a natural language system’s apparent understanding

capabilites, users are prone to expect the system to correct any misconceptions they may have. For a system to be

cooperative, it must be able to detect such misconceptions and answer in such a way as to correct the misconception

and avoid misleading the users. In order to detect whether the questioner has some misconceptions about the
domain of discourse, a system needs to be able to infer the presumptions of a question. A false presumption

carresponds to misconception on the part of the user. Kaplan [30] called a question containing a false presumption a

loaded question. He was concerned with detecting misconceptions and providing appropriate answers to loaded

questions.

Scalar implicature

The second example in Figure 3-14 involves a particular type of implicature, called scalar implicature. Homn (25,
26] observed that when an utterance refers to a value on some scale defined by semantic entailment, that value
represents the highest value on the scale of which the speaker can truthfully speak. Assuming the speaker follows
Grice’s principles, we can then infer that he is saying as much as he can. Consequently, higher values on the scale
are either false or unknown to be true by the speaker, and values lower on the scale can be marked as true, since they
are entailed (see Figure 3-15). Horn called this phenomenon scalar predication, while Gazdar [13] called it scalar
quantity implicature, As illustrated by the example, a system that can deal with such implicatures would be more
cooperative by being able to provide indirect responses.

' Consider semantic scale <all some none>
and the exchange:

Q: Did you buy the books required for the qualifying exam?
A: I bought some.

The direct answer ‘‘No’’ can be inferred, since, by the maxim
of quantity, if ‘‘all’’ the books were bought, the answerer
would have said so. The scalar implicature allows us to
interpret the answer as:

‘' There are some books that I have not bought. However, I
did buy a subset of them.’’

Here again, the indirect answer is more informative than
the direct one.

Figure 3-15: Example of scalar implicature

Grice’s cooperative principles and the notion of implicature were used to extend the capabilities of natural language
interfaces to database systems and make them behave in a more cooperative and human-like manner.

“Amlpedﬂcauuppeuwennumedmamwlqum:nnﬂlpmpodﬁml'.inwhiacautheqtuionilnidw
presuppose P.
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3.3.1 Extensional misconceptions and the CO-OP system

The ability to correct a misconception a user may have about a domain can be very important for a namral language
interface that is to be used by naive and casual users who are often not familiar with the structure or the content of
the domain and are therefore likely to have false beliefs about it. Kaplan [31] was the first researcher to address the

problem of correcting a misconception on the part of the user.

Kaplan studied questions that could be translated into a single database query and was concerned with those
containing extensional presumptions (i.e, presumptions about the existence of a set of entities in the knowledge
base) (see Figure 3-16). Kaplan used language-driven inferences (those that can be inferred from language usage)
as opposed to domain-driven inferences (those that need domain specific knowledge as well as general world
knowledge) to detect presumptions in questions. In the CO-OP system, he showed that, by limiting the domain of
discourse to database queries, a significant class of presumptions could be computed using only language-driven
inferences.

The computation of the presumptions of a database query was possible by representing the query in an intermediate
graph notation, the Meta Query Language (MQL). A database query can be viewed as requesting the selection of a
subset from a presented set of entities [2] by putting this presented set through a series of restrictions. In CO-OP,
this process was done by translating the query into the Meta Query Language. The nodes of the graph were sets and
the arcs binary relations among them. Using this scheme, the direct answer to the query was obtained by composing
the sets according to binary relations, in fact selecting a subset (see Figure 3-16). The importance of this
representation for detecting misconceptions lies in the fact that each connected subgraph of this representation
carresponds to an extensional presumption of the query (the existence of a set), as illustrated in Figure 3-16.
Consequently, an empty subset indicates a false presumption, and hence a misconception on the part of the user.

CO-OP detected misconceptions while retrieving answers from the database. If the query resulted in an empty set,
the intermediate representation was examined. Each connected subset was checked for emptness in turn, and the
carresponding corrective answer was generated:

Example of a gorrective angwer:

‘I don’t know of any Linguistics courses.’’

By transiating a query into the MQL intermediate rep'uentanon, Kaplan was able to compute presumptions in a
domain-independent manner and without the need to add general knowledge to the knowledge base. The generation
of the cormrective answer was also done in a straightforward manner, by checking for the possible emptiness of the
sets. Even though CO-OP was able © offer corrective responses only to questions showing extensional
misconceptions, this work was important as the starting point for studying how to detect misconceptions in
questions and how 0 respond sppropriately.

33.2 Intensional misconceptions

The misconceptions dealt with in CO-OP are those that depend on the contens of the database. They arise from
extensional presuppositions, meaning that the user believes that there are elements satsfying a particular set
description when that description actually has no extension in the database. Another type of misconception, called
intentional misconceptions, depends on the structure of the database. It occurs when the user believes that an entity
(or a set of endities) can participate in a relation when, in fact, it cannot. These misconceptions are not addressed in
CO-OP. An example is shown in Figure 3-17.
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The query:
Which students got F’s in Linguistics courses?

was representad as follows in Meta Query Language:

/ students \ GOT / F’s \
\ / m——————————e >\ /
| IN
NI/
|
/linguistics \ / courses \
------------- >\ /

This query presumes the existence fo the following sets:

There are students.

There are F’s. (Some of the grades are F’'s.)

There are courses.

There is Linguistics.

There are students that got F’s.

There are grades of F’s in (some) courses.

There are Linguistics courses.

.There are students who got F’s in courses.

There are students who got F’s in Linguistics courses.

Figure 3-16: A query in CO-OP

Q: Which undergraduates teach courses?

Q presupposes that undergraduates can teach courses.

If in fact, undergraduates cannot teach courses, the
following answer is not appropriate for it does not
deny the presupposition.

Al: I don‘t know of any undergraduates that teach courses.
A better answer would be:

A2: Undergraduates carnot teach courses.

If undergraduates could teach courses but were not teaching

this particular semester, the misconception would be

Figure 3-17: An intensional misconception

In order to recognize such misconceptions, the system needs some knowledge about the permissible relations
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between entities in the knowledge base. Mays [40] designed a data mode! aimed at allowing a system to detect
intensional misconceptions. This data model included the following information:

* entity-relation information: what entities (or group of entities) can participate in what relations.

¢ hierarchical information: superset/subset information.

e partition information: the incompatibility of groups of entities.
Using this database model, an intensional misconception is recognized when a relationship between entities
presupposed in the query cannot be established in the database model. This failure can be computed in a fashion
similar to that used in Kaplan’s system. Here, the MQL query is checked against the database model (instead of
against the database) to verify that each relation presupposed can be established.

Mays concentrated on detecting intensional misconceptions. The implementation of the component of the system
that would actually respond to a question showing some misconceptions on the part of the user was not carried out.

3.3.3 Current work on misconceptions

Yet another type of misconception happens when there is a discrepancy between what the user believes ‘about an
object and what the system believes about it McCoy [41] is currently investigating these object related
misconceptions, mainly in the framework of expert systems. She is concemed with how to correct the
misconception as opposed to detecting it (which was the emphasis of both Kaplan and Mays). McCoy is examining
the problem of characterizing in a2 domain independent manner what influences the choice of additional infarmation
to include in answers and enabling a system to produce such responses.

Instead of relying on an a priori list of possible misconceptions, as in the approach taken in some CAI systems [68,
3, 671, McCoy classified object related misconceptions based on the knowledge base fearure they involve. A feature
of the knowledge base could be a superordinate relation or an azribute. Through the studies of transcripts, she has
identified what types of additional information should be contained in the answer corresponding to each type of
object related misconceptions. A correction schema that dictates what kind of information to include in the answer
is associated with each type of misconception.

33.4 Using implicature to provide indirect answers to yes/no questions

Through the work oa misconceptions, we have seen how indirect answers can be provided to yes/no questions, by
computing the presumptions contained in the questions and refuting them if necessary. Besides being more
informative, these indirect answers can also avoid misleading the user. Traditionally, the ‘‘normal’’ answer to
Yes/No questions is chosen among the two direct answers ‘‘Yes'' and ‘‘No’’, and systems that allow for indirect
answers go through extra processing to recognize that an indirect answer is necessary and to derive it. The notion of
implicature, however, provides a way 10 broaden the set of possible responses to a Yes/No question.

Hirschberg [23] proposes a redefinition of yes/no questions in order to treat indirect answers in the same way as
direct answers, i.e. as a possible respoase to yes/no questons. She uses the notion of scalar implicature, and
extends the definition of scale to include set/set-member, wholelpart, process sages, spatial relationship,
prerequisite orderings, ensitylattribute, isa-hierarchy, and temporal scale. By broadening the definition of scale, the
direct answer w0 the question below can be entailed using scalar implicanure:
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Q: Have you baked the cake?
A: I just put it in the oven.

With the process stages scale: <mix; put in oven:; bake: frost>

the hearer can infer that the values higher up on the scale are
either false or unknown to the speaker. The direct answer ‘'‘No’’
can be entailed, but indirect answer given provides more
information.

Note that this scale could be embodied into a script.

If the set of possible answers to the questions contained all the values in the process stage scale (instead of only the
two direct answers ‘‘yes’’ or ‘‘no’’), the system would be readily able to provide the more informative indirect
answer based on the information contained in its knowledge base.

Based on this extension of scalar implicature, Hirschberg thus proposes a new way to represent Yes/No questions t0
broaden the set of possible answers. A system that can use scalar implicature will be able to provide more useful
answers to Yes/No questions and avoid conveying false inferences that may be drawn by direct answers.

Unfortunately, scalar implicatures do not explain all the possible indirect answers to Yes/No questions however. In
particular, they do not support request type questions. Moreover, it may be very hard to determine all the scales that
are applicable at any point and which scale to use.

3.3.5 Avoiding false inferences

Another interesting issue related to conversational implicatures is that of false inferences, that is inferences that
could be drawn from an utterance but that the speaker knows are false. In cooperative behavior, it is clearly
undesirable to produce such an utterance. Likewise, a system should not provide an answer from which the user
could draw false inferences. Again, such an answer would be considered misleading.

To study this situation, Joshi [28] modified slightly the maxim of quality which became;

‘‘if you, the speaker, plan to say anything which may imply for the hearer something that you believe to be false,
then provide further information to block it’")

Using this modification, Joshi, Webber and Weischedel [29] argue that, to be cooperative, a system must be able to
recognize that a response may mislead the user and modify such a response. They are attempting to characterize the
cases in which the system can foresee the possibility of drawing wrong inferences from the answer. To do so, they
first develop a formal method for computing the possible inferences that can be drawn from an answer, identifying
the factors that come into play, and characterize the types of behavior usually expected from the answerer.

They identified the types of informative behavior in cases where the question indicates that the questioner wants t0
achieve some goal. They distinguished between the stated goal oc S-goal of the user (that is the goal as stated in the
question) and the intended goal ar I-goal, which represents what the user really wants to achieve. They identify
relations that can exist between these two goals. As an example of such relation, the [-goal may be an enabling
condition for the S-goal. Assuming a system knows the actions and events that can achieve a goal, together with
their probability of occurring, the system can detect whether, by achieving the stated goal, the intended goal will
also be achieved. The system can then generate an answer, based on the relation between the two goals and the
information contained in the database.
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Joshi, Webber and Weischedel characterize the information to be given in a response according to whether
achieving the S-goal will also achieve the I-goal. A possible situation is given in the example below:
Example:

The proposed action X does not achieve the I-goal: G

Q: i need to fulfill my elective requirements,
Can I take Graph Theory?

If Graph Theory does not fulfill the elective requirement
(i.e, the action does not achieve the goal),
a cooperative answer might be:

A: You can take Graph Theory, but it will not
fulfill your elective requirements, as
electives need to be humanity courses

In this case, the system would check that G cannot be
achieved by performing X, even though the enabling conditions
of X are true, so that X can be performed. On the other hand,
the system finds that the action Y can achieve the goal, and
thus informs the user. It would be misleading the user not
to inform him that performing X does not achieve the intended
goal.

Using this method, a system would be able to inform users of the effectiveness of their action in order to achieve
their goal, and provide altemnatives if necessary. However, as noted before, inferring both the stated goal and the
intended goal is a very hard task. Furthermore, the process of generating informative responses is static (conditions
are checked in turn, as in a discrimination net) and there is no explicit reasoning about the questioner’s expectations.

3.4 Conclusions

Progressing beyond the study of database front-ends allowed researchers to address the problem of question-
answering in a more general framework. Through the study of language usage, theories about human question-
answering were developed, and methods to alleviate the problems of previous question-answering programs were
implemented. Researchers analyzed more thoroughly the factors involved in interpreting a2 question and found that
the context of questions together with some rules of conversation could help understanding a question beyond its
literal meaning. Using these results, they were able to build programs that attempted to extract the inzended
meaning of questions. Other researchers tried to characterize the notion of appropriateness of an answer, by
looking at the goals of the users and the rules of cooperative discourse. Mare graceful man-machine interaction
resulted as programs were able to answer in a more human-like manner, providing indirect answers, carrecting
misconceptions on the part of the user, and answering questions about a knowledge base.
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4. User Modelling

4.1 Introduction

Throughout the previous sections, we have often mentioned that knowledge about the user could aid a system in
making various decisions required during the course of understanding and answering a question.

Rumelhart [54] and Shannon [62] were among the first researchers to recognize that some knowledge of the user
was needed to generate appropriate answers. They showed that to answer where questions, knowledge about the
user’s location was important. Figure 4-1 shows three possible answers to a single where question.

Q: Where is the Empire State Building?

Al: In the United States.

A2: In New York.

A3: On the corner of Fifth Avenue and 34th Street.

Each of these answers can be appropriate in the right context,
that is depending on where the questioner is (for example,
in Ivory Coast for Al, in Florida for A2, and in Manhattan for A3).

Figure 4-1: Knowledge about the user’s location can influence an answer

Humans make use of their knowledge about other participants in a conversation in order to communicate effectively.
It is clearly desirable for a computer system to have knowledge about the user in order to more closely approximate
natural language question answering. In this section, we will examine various methods that have been developed to
help achieve this goal.

A user model can contain a variety of facts about a user, including:

¢ The user’s goals in asking a question. The goal can influence the way to address the question. As seen

in the research done by Hobbs and Robinson, an appropriate answer is one that address the goal of the
user. It is thus important to know what that goal is.

¢ The plan the user has to achieve the goal

o The user’s knowledge about the world. This will help in providing the appropeiate information (that is,
information that the user will understand).

¢ The type of the user, which can also influence the information given in the answer. In an information
retrieval system for example, user types may include managers, secretaries, or engineers, each of whom
should be addressed in a different manner.

o Information already given as responses to previous questions.

User modelling problems inciude the task of constructing a2 model, which can be done by either collecring facts from
a user or inferring them from a dialog, that of organizing the model, and using it to improve the system’s behavior in
responding to questions and possibly to change its behavior if it becomes obvious that responses provided are not
appropriate. In this chapter, we present some of the research done that addresses the various aspects of user
modelling in question answering, showing how a man-machine interaction can be improved when a system is able 0
take a particular user into consideration.
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4.2 Using knowledge about the user’s plans and goais to generate helpful responses

Allen and Perrault (1] examined the problems of generating appropriate responses (o questions by inferring the
questioner’s goal. In doing so, they also tried to be faithful to philasophical and linguistics accounts of speech acts
[61]. They showed that, by keeping a model of the questioner’s beliefs and by being able to infer plans and goals, a
system can provide helpful and cooperative answers. They also developed a method that enables a system to derive
the user’s beliefs and goals. Using this method, a question answering system can build a user model that contains
the user’s goals and beliefs and use it to answer questions in a cooperative fashion. The types of cooperative
answers 2 system would be able to generate using this user model included direct and indirect answers, as well as
answers containing more information than was requested in the question.

Allen and Perrault considered speech acts in the context of a planning system [7]. Conversants have models of the
world, which include beliefs about the woarld, beliefs about other conversants, and goals to achieve. Language is
viewed as being goal-oriented: a speaker produces utterances in order to achieve an effect on the listener, typically
modifying the listener’s beliefs and goals. Upon observing a speech act, the listener is capable of inferring the
speaker’s goal and reconstructing a plan to achieve that goal. To be cooperative, the listener can now help the
speaker achieve his goal by indicating what information is needed to achieve the goal This can result in giving
nmhfamaﬁondunexplkidynkeglfuiftheﬁsmmogxﬁwmhinfamaﬁonasbeingnecasmymaclﬁzve
the goal (example in Figure 4-2),

Patron: when does the train to Montreal leave?
Clerk : 3:15 at gate 7.

The clerk was able to infer the patron’s goal to board the
Montreal Train. Upon reconstructing the plan needed to
achieve that goal, the clerk recognized that knowing the
departure gate was also necessary (besides the departure
time, which was explicitly asked for). So the clerk gave
these two pieces of information in the answer, thus
appearing cooperative.

Figure 4.2: Cooperative behavior: inferring the speaker’s plan

To detect the user’s goals and plans, 2 system needs domain knowledge that includes plans and goals users may
have in the domain of discourse, a formulation of actons, which have preconditions, substeps and effects, and
bellefs and wants (intentions). In their system, Allen and Perrault used a standard planning formalism to represent
plans and goals (12], in which given an initlal state of the world W and a goal G, a plan is a sequence of actions that
transform W into G. Two simpile plans in the train domain, as used by Allen and Perrault, are shown in Figure 4-3.
Allen and Perrmit’s plans are similar 0 those described in [58] . Schank and Abelson, however, used plans as an
aid in finding the relations between two acts in order 0 understand a story. Here, plans were used to derive the goal
of a questioner and thus help achieve a goal. Schank and Abelson also developed the noton of goal, but the goals
they used were rather general, while those used in Allen and Perrault are domain specific. Beliefs and intentions
were represented as in (22, 7). Because this knowledge is represented explicitly, the system is able to reason about
what the user needs to know in order to achieve a plan. This fact is very important since a system appears (o be
cooperative when it is able to provide information that will help the user to achieve a goal. Allen and Perrault also
specified two types of inference rules, that the system could use to derive the user's goal: planning rules to infer
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what plan a user may have to achieve a goal; and inferencing rules, which are used to infer a goal from an observed
action (see Figure 4-4).

Upon observing an action (or hearing a speech act, in the case of a question answering system), the system tried to
reconstruct the user’s plan. This was done by deriving the user’s goal from the observed action using inferencing
rules and finding plans that would achieve the expected goals the system knew about (such as BOARD and MEET in
the train domain) using the planning rules. Heuristics were used to rate the different plans and goals, so that
eventually one plan and one comresponding goal would be chosen as the correct plan (goal). An example of a plan
reconstruction from a sentence is given in part in Figure 4-5.

Expected goals:

BOARD (A, <train>, TORONTO)

MEET (A, <train>, TORONTO)

Actions:
- BOARD (agent, train, station) :SOURCE(train, station)

precondition: AT (agent, the x:DEPART.LOC(train, x)),
the x:DEPART.TIME (train, x)

effect: ONBOARD (agent, train)

- MEET (agent, train, station):DEST(train, station)

precondition: AT (agent, the x:ARRIVE.LOC(train, x)),
the x:ARRIVE.TIME (train, x)

effect: MET (agent, train)

Figure 4-3: The train domain

Helpful responses

Allen and Perrault claimed that helpful responses are needed when the listener detects a goal in the plan of the
speaker that the speaker cannot achieve without assistance. Such goals typically correspond to some information the
speaker lacks but needs 10 achieve his goal. In our previous example, knowing the departure gate is one such goal
(if the listener believes that the speaker does not yet know it).

After reconstructing the user’s goal and plan, the system would find the goals it believed the user needed help to
achieve and produce plans to achieve them.!9 When they were achieved, the answer to a question was produced:

Q: ‘‘When does the train to Windsor leave?’’
A: ‘‘The train leaves at 4:00pm. The train
leaves at gate 4.’’

This led the system to include more information than explicitly requested.

"Nuamnlphnwnluwwud&xexhgmL;lqmondmexumhgmnphnwnumupﬁﬁ|awn]ynunomz
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Example of Planning zules:

~ If an agent A wants to achieve a goal E, and ACT
is an action that has E as an effect, then A may
want to execute ACT (i.e. achieve ACT).

- If an agent A wants to achieve P and does not
know whether P is true or not, then A may want to
achieve:

‘‘agent knows whether P is true’’,

Example of Inference rules:

- If S believes that A has a goal of executing
action ACT, and ACT has an effect E, then S may
believe that A has a goal of achieving E.

- If S believes A has a goal of knowing whether a

proposition P- is true, then S may believe that A
has a goal of achieving P.

Figure 4-4: Planning and inferencing rules

Helpful information can also be offered in response t0 2 Yes/No question. From the utterance:
‘‘Does the Windsor train leave at 42’°’
the listener can infer the goal:
The speaker wants to know when the train leaves
This goal, in tun, can be connected to the BOARD act, whose preconditions require knowing the departure ime and
gate. Here, if the direct answer to the question is ‘“No’’, the listener, by inferring the goal of the speaker and
recognizing obstacles in the plan, will provide useful information such as the actual departure time:
‘“No, the train leaves at épm.’’ '

Goals and indirect speech acty

Plan inferencing allows for the understanding of indirect speech acts. By reconstructing the plan from the utterance,
the indirect interpretation can be inferred For example, from *‘Do you know when the Windsor train leaves’’, the
goal ‘*Agent wants 10 know the departure time’’ can be inferred. Allen and Perrault extend their theary and analysis
in order to distinguish between the cases where a question is intended literally and when it is intended indirectly. To
do so, they use Searis definition of swface speech acts, which comrespond to the literal meaning of the utterance, and
illocutionary acts, which carespond to the indirect mezning (61]. An intensional precondition is now added to
detect whether an utterance should be interpreted directly or indirectly, and the rules are adjusted appropriately.
Note that now, the process is complicated by the fact that the beliefs need to include the intentions of the conversant.
Inferring these may be very hard.

Understanding sentence fragments
The plan inference process sids in the understanding of sentence fragments (such as *“Train to Windsar?’’), because
such fragments are usually sufficient to infer the basic goal. Compare this approach to that taken in QUALM [36],
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From the speech act: ‘‘When does the train to Windsor leave?’’
a REQUEST action can be constructed!’:

REQUEST (A, S, INFORMREF (S, A, the (x:time):
DEPART.TIME of <trainl> is x))
where <trainl> = the (x:train:DEST(x, WINDSOR))

1. This action specifies an action cluster consisting of a
REQUEST of INFORMREF!®. It is added to the plan
alternative in each partial plan.

2. The partial plans are examined for similarities
between alternatives and expectations:

- BOARD plan: A
the train to WINDSOR
the DEPART.TIME

- MEET plan: A

3. The BOARD plan is favored as it is more specified, and the
train descriptions in the alternative and the expectation

are merged. Now both the source and the destination
are known.

4. ...[More tasks are executed to complete the plan.]

Figure 4-5: Example of Plan reconstruction

where fragments were understood within a script or by using the discourse topic. Using plan inference rules is more
applicable in some cases where a script is not available. On the other hand, the script knowledge could alleviate
some of the processing involved in the required inferencing. In a system containing a large knowledge base, both
approaches have the problem of identifying what the utterance refers to (which script to activate, or which action is
involved). Using a script or plan inferencing allow a sentence fragment to be understood even before a topic of
discourse has been established (or a previous query encountered).

Conclusions

Inferring the goal of a speaker and detecting obstacles in the speaker’s plan provide a more general framework
within which some linguistic phenomena can be explained. In particular, it provides a method of generating (and
explaining) cooperative responses. Unfortunately, the inference process is quite lengthy, rendering this approach
computationally expeasive for large-scale applications. Furthermore, the system has to know ahead of time all the
possible actions permissible in the domain. Adding domain dependent knowledge may be required in some cases.
Further research on plans and goals and their use in cooperative discourse continues (65, 52, 4].

MThe speech act definitions are bused oa [49]

YINFORMREF is to inform an agent of the referent of a variable.
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4.3 Constructing a user model with the aid of stereotypes

Another type of user model is one that attempts to capture the characteristics of the user in terms of user types. Rich
(53] studied how to construct such a model using stereotypes. Researchers have made use of stereotypes for both
story understanding and story generation, as they seem to embody implicit but necessary information ( [59, 34]).
Rich claimed that stereotypes can also be used in question-answering to build a user model and that humans
themselves often construct such a model of a person based on stereotypes they know. As an example, when talking
to a lawyer, people tend to assume the lawyer is highly educated and wealthy, as lawyers might be expected to be.

Rich showed how a2 model of the user can be built by iefming and intersecting various stereotypes and how a system
can then use this model to tailor its answer to a user. GRUNDY, a system simulating a librarian, made use of such a
method to suggest books o its users. Although GRUNDY was not a question answering program, the method it
employed to construct a user model is applicable to such systems.

GRUNDY used a generalization hierarchy of stereotypes, each containing a set of characteristics. Each
characteristic was a triple including an attribute or facet, its value, and a rating. The stereotype for a feminist is
shown in Figure 4-6. Politics, Sex-open, or Tolerate-sex are facets of this stereotype. Their values, ranging from -5
to § indicate the truth value of the facet, while the rating represents how confident the system is of the information.

FACET VALUE RATING
(from -5 to 5) (out of 1000)

Genl ANY-PERSON
Genres

woman 3 700
Politics Liberal 700
Sex-open S 900
Pliety -5 800
Political-causes

Women 5 1000
Conflicts

Sex-roles 4 800

Upbringing 3 800
Tolerate-sex 5 700
Strength

Perseverance 3 600

Independences 3 600
Triggers Fem-woman-trig

FEMINIST STEREOTYPE

Figure 4-6: Example of stereotype in GRUNDY

Associated with a stereotype were also triggers which signalled the appropriate use of a stersotype.

Stereotypes were activated through triggers when users were asked to describe themselves by typing a few words.
Because of the generalization hierarchy, one stereotype could also activate another one: as an example, if the
Protestant stereotype was activated, then the more general Chrisrian stereotype would be activated as well. The
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user model was built up by combining the characteristics of the active stereotypes. When the same characteristic
occurred in several stereotypes, the user model would contain the average of their values, weighted by their
respective rating. It was hoped that, having several stereotypes active at one point would result in a reasonable
picture of the user. The user model thus contained a set of characteristics, taken from the active stereotypes. A
justification was associated with each characteristic. This justification indicated which stereotype the facet was
borrowed from, in case the system needed to remember how the information was derived. '

Once the model was built, the system used it to select a book to present to the user. The most salient characteristics
of the user were selected, and one was chosen at random to serve as a basis for selection. As the objects in the
knowledge base (books) also had attributes that corresponded to the facets of the users’ stereotypes, a set of books
was selected that matched the chosen characteristic. Each book of the set was then evaluated against the other
salient characteristics of the user, and the best match was presented to the user.

In presenting the book to the user, GRUNDY used the information in the user model to decide on which aspects of
the book to mention. When the book was refused, GRUNDY would try to understand why by asking the user which
characteristic of the book was disliked. Based on the answer, GRUNDY would try to alter the user model by
changing the inappropriate characteristic.

Validity of this approach and its use in question answering systems

User types are important in question answering systems for they provide a convenient way for systems to draw
inferences on the kind of information to present to the user. In some sense, systems today already use the idea of a
stereotype by the fact that their builders make some assumptions about the typical users of the system and design it
for such users. Some systems recognize that there may be different types of users (typically only two, expert and
naive), and associate some information in the system with each type [63]. However, the different types are not
explicitly represented as in Rich’s system. ’

Rich’s approach has the advantage of offering more possible distinctions among users. Furthermore, because the
system builds the individual user model dynamically by combining many static models, it allows for greater
flexibility as to what characteristics are included in the user model and is thus better able to tailor a response to the
user. In arder to use this approach in a question answering program, one would have to be able identify the possible
users of the system and characterize them.

Unfortunately, the stereotypes built into the system are totally dependent on the system builder's view of the
possible users: the characteristics included in the stereotype can be colored by this view, and the numbers given as
values to facets seem rather arbitrary. Users are not just an intersection and conglomerate of stereotypes, and it can
be harmful to not recognize this fact. Furthermore, combining stereotypes by taking an average of their common
characteristics oversimplifies the compiex issue of relative stereotype and characteristic importance. Finally, even if
the user model constructed in that fashion reflected the user’s characteristics faithfully, it may not be a good idea to
base the answer only on these characteristics.

Stereotypes are a good way to start a user model, but they should be complemented by other methods that would
allow a model to be further specified and customized. For example, modifiers could be introduced. Furthermore, a
system must be able to adapt itself and change the way it infers a model and uses it For GRUNDY, this would
mean being able to detect that the use of a stereotype is inappropriate in a certain situation (e.g., that a trigger is
invalid), to recognize that some piece of information is not appropriate for a certain class of user (e.g., that the
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characteristic associated with an object is inaccurate), or that a stereotype contains invalid characteristics, This
adaptation could be based on feedback from the user.

4.4 User modelling and focus in natural language interfaces to databases

Instead of employing user models to vary the amount of information given in answers, Davidson [11] used a user
model to facilitate the interpretation of definite noun phrases. In PIQUE, Davidson showed how a user model
containing focus information can be used to disambiguate sentences containing definite noun phrase in a database
interface, When accessing a database, users typically ask several questions on a topic (on one part of the database),
but do not follow a general conversational pattern, as they would if they were conversing with a person: a topic of
coaversation is not introduced, and there are no linguistic cues that indicate when a topic changes. As a result, the
topic of conversation is not necessarily the crucial piece of information that allows the system to disambiguate
questions., Instead, Davidson argued that a system needs to remember which aspect of the database (called the
JSocus) was previously examined (see Figure 4-7). This focus is thus different from a discourse model It refers o
the part of the database a user was last interested in.

Who are the programmers?

Jones, Smith, Baker

What’s Jones’ salary?

There are 24 employeas named ‘Jones’.
Which one do you mean?

BRER

In this example, it is clear that the user had in mind the
person that was Just mentioned. The system however did
not behave intelligently or cooperatively by not
recognizing that fact. It would have been able to
understand the definite noun phrase had it remembered what
part of the database was just accessed.

Figure 4-7; Sample interaction with a database

In a database system, a user’s database query is typically represented in a formal data manipulation language,
usually a variant of relational calculus or algebra (example in Figure 4-8). When thus represented, a query can also
be seen as an intensional descripeion of some set of the database.

The query: Who are the programmers?
might be expressed as: -

{ x.name : (x belongs to the set of employees) |
x.occupation = programmer }

This expression can be viewed as an intensional description
of the set of programmers.

Figure 4-8: A database query
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PIQUE used the segment of the database described by such a query to represent a user’s focus. The user’s focus
was then used to interpret future inputs containing definite noun phrases, by providing a frame of reference. Based
on the set of objects highlighted by the focus model, the system added more constraints to those queries, as shown in
Figure 4-9.

From the query Ql: ‘‘Who are the programmers?’’
which is represented as:

{ x.name : (x belongs to the set of employees) |
x.occupation = "programmer" |}

PIQUE sets the focusinformation to be:
the set of employees which are programmers

A future query might be:
Q2: ‘‘What is Jones’ salary?’’

Q2 is represented as:

{ x.sal : (x belongs to the set of employees) |
x.name = "Jones" }

Using the focus model, the system adds constraints to the
representation of Q2 to get:

{ x.sal : (x belongs to the set of employees) |
x.name = "Jones"
AND x.occupation = "programmer"}
Using this representation, Q2 can be correctly understood as:

‘' What is Jones’ salary, where Jones is one of the programmers’’

Figure 4-9: Using focus infarmation to add constraints

To make sure the user was aware of the system’s interpretation of a query, PIQUE informed the user when the user
focus was used and gave the assumed referent of an expression. Like paraphrase, this feedback avoided confusion,
in case the query was misinterpreted.

This simple focus model is significant because of its relation to the database concept of views, which represent the
way the users see the relations in the database. Furthermare, the focus model was obtained without any extra
processing,

4.5 Conclusions

Using information about the user, computer systems can treat users as individuals and address their particular needs.
Adding information about the user thus potentially renders a question-answering system more useful and leads to
major progress towards the goal of graceful interaction. Researchers have started to study the problem of user
modelling and its use on question-answering, as we have seen in this section: by inferring the goals of a user, a
system can generate helpful (possibly indirect) responses; the type of a user can be used to decide on the kind of
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information to provide; finally, by keeping the ‘‘user’s view’' of the context of a question, a system can understand
definite noun phrases entered by the user.

However, the sudy of user modelling and its importance is a fairly recent area of study, and work continues on the
development of user models that can guide a system in generating answers containing ellipsis and anaphora (27], in
generating the appropriate response (47, 48] or explanation (46) to a user and in detecting and correcting
misconceptions [60). Many issues in user modelling are still under study, including the representation of a user
model, its use in a system and how to update it if necessary.
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5. Conclusions

We have surveyed a variety of methods used to provide more graceful interaction between man and machine and
more closely approximate human question answering, from human engineering features to the development of
language theories. The common goal of the programs surveyed was to provide a natural language interface that
would allow users to express themselves as freely as possible and that would answer questions as a human would.
Each of the theories studied was applied in a particular domain and each represented a subset of what is needed to
fully achieve human question answering abilities and thus true graceful interaction. The following table summarizes
the progress made towards graceful interaction and which aspects of graceful interaction were addressed by the
systems (or theories) presented:2®

Flexible | Data | Cooperation | Avoidance of
Input | Independence | | Confusion

BASEBALL | | | |
SYNTHEX?! | | | |
LUNAR | XXX | [ |
LIFER | XXX | I | XXX [with feedback]
PLANES | XXX | | | XXX [with feedback]
--------- | ——=mmmmmm e [ - ———mm—e e e
QUALM I i | .00 ¢ I
--------- [ - === el et B e
TEXT | | XXX | XxxXx |
- === = |m—————— I ke | ==
Co-0P | | XXX | X | XXX

! e R ittt | ————m e fomm e
Mays’ | ! X | ).0.0 ¢ | XX
system I { | i
--------- [==——mmmmmm e e e | ————- | e ettt bty
Hirshbergl| I I xxx |
--------- R et et [l Tt Rttt
Allen and| | | |
Perrault | I ] XX [
--------- Rt el Bl Bttt il K
GRUNDY I | | XX |
--------- e Rttt Il Bttt
PIQUE | | | XX |

I | | I

Further research is needed w0 study how these theories could interact with each other, complement and help each
other to make up more comprehensive systems. More basic work is also needed however. None of the problems
presented have beea fully solved, and some problems of question answering have not been addressed at all. To be
truly cooperative, & systam should be able t0 ask the user questions when additional information is needed. In order
to do so, one must stady when it is appropriate to pose questions, and how the system should do it to be most
effective [39]. For saser model to be complete, it must include some information about the user’s knowledge about
the domain of discourse. Tailoring a response based on this knowledge is an impaortant part of user modelling [48].
Learning is also an important issue: a system should be able to learn from past experiences: that is, it should be
able to improve itself based on its previous performance. Finally, the problem of generation (actually producing

302 ach of thess aspocts cag involve several issues and have been sofved using different approsches as described throughout this paper.
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output in good English) has been studied in some systems ( [42, 38, 45]), but further waork is needed. Research is
being conducted in all these areas and researchers are applying and extending the methods we presented to other
types of systems, such as expert systems, help systems and CAI systems.
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