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ABSTRACT 

ANALYST, an interactive protocol performanc~ analyzer, LS used to analyze the 
performance of a two phase locking protocol. ANALYST implement3 a specifica.tion
based methodology for performance analysis of protocols which extract3 (rom an 
algebraic specification of a protocol a model of it3 timing behavior. AD.y timing 
requirement or performance measure that can be formally specified in terms of 
attributes of this timing behavior can be thus analyzed. AD. algebraic specification 
of a two phase locking protocol that uses time-out for deadlock detection IS 

provided. Two tIming requirement3 necessary for its efficient performance are 
specified and analyzed yielding optimal settings of protocol parameter.! (such as time
out rate). Additionally, the mean response time and probability of deadlock of the 
protocol are specified and analyzed. This, to the best knowledge of the authors, IS 
the first automated, analytic performance analysis of such a high-level protocol. 

eThi. l'Hearch wu .apponed in pan b,. lh. Delen .. Advueed Rewarch Projecu A~ncy onder conlracl NOOO3~4-
COleS, lh. New York Sl&Le CenLer Cor Advuced Technoioo in Compu\.ert ud Intorm&lion SyaLeIIU ander NYSSTF 
CAT(83).8, ud & IJ'U' Crom ATi:T. 



1 Introduction 

Recently there ha.s been a growlOg need for a.utomated tools to aid protocol 

designers 10 verifying the correctne~ and ana.lyzing the performance of protocols. 

Protocol behavior IS typica.lly time-dependent and i~ correct functioning depends not 

only on functional requirement.", but 8000 on timing requirement." [Noun 84, Shan 

841. Most of the pa.st efforts, however, have concentrated on functional verification 

tools. Timing requirements of protocols have been typically ignored. Furthermore, 

in contra.st to automated verification tools, &Ilalyses of protocol performance ha.ve 

been accomplished m&Il u ally, (see for example [Tows 79, Bwe SO]). Such a.nalyses are 

based upon ad hoc and protocol-dependent techniques and thus cannot be integrated 

with other tools in a protocol development environment. 

In this paper, the performance of a two ph3.3e locking (2PL) protocol [Bern 79) is 

ana.lyzed automatically using ANALYST. ANALYST IS based on a formal 

methodology which extracts a timing behavior of a protocol from its algebraic 

specification. This timing behavior ca.n be used In analyzing the timing 

requiremen~ and perform&nce measures of protocols. 

The 2PL protocol uses locking to regulate the concurrent access to shared data 

ba.se items by multiple transaction!!. The functional correctness of such concurrency 

control protocols h3.3 been studied extensively [Ceri 84). Performance analysis of these 

protocols, on the other hand, has just began to attract interest (see for instance 

[Ches . 83, Morr 84]). 

of this protocol. 

We provide the first specification-based performance a.nalysi!! 

In section 2 we give a.n informal overview of the methodology underlying 

ANALYST. In section 3 we provide a.n algebraic specification of the 2PL protocol, 

and &nalyze its performa.nce. Two timing requirements, the mean response time, and 

the probability of deadlock are specified a.nd a.nalyzed. 



2 A Formal Methodology tor Specification-Based 
Pertormance Analysis ot Protocols 

2.1 An Algebraic Specification Method 

The communication behavior of a protocol may be described by expressions 10 a 

specirication algebra. We a.ssume synchronous interprocess communication in which a 

sender (receiver) process ISSumg a send (receive) event is blocked until the receiver 

(sender) process is ready to receive (send) it. That is, a communications block the 

sender and receiver processes until a successful rendezvous. Let send, receive, and 

rendezvous events be represented by lower case lette~ preceded by 

"&", respectively. 

"I" . , "?" . , or 

Consider the communication behavior or a sender process S In a simple data 

transrer protocol. The sender sends a me8"age and terminates upon receiVIng an 

acknowledgment, or sends the me""age agam after a time-out period. This 

behavior can be described by a Communication Tree (CT) shown in Fig. 1 where 

nodes represent the behavior at a certain execution point . and the branches 

represent the events. The execution starts at the root and proceeds as follows. A 

branch followed by a node indicates that the event labeling the branch IS 

8equentially followed by the behavior represented by the node. A number of CTs 

connected to a node indicates that any or them can be executed 

non.aetermini"tically. All leaves of a CT indicate deadlock or termination. 

Such CTs can be formally defined USlOg a unive~al algebra [Grat 681. Each CT 

corresponds to an expression in the algebra. Let t denote the set of send events, 

receive events, and rendezvous events. Also, let the set or identifier" 1 rerer to 

labe~ of nodes in a CT. An expression E is defined by 

1. $ (deadlock), 

2. lEI (identifier), 

3. e. E (sequential composition), e E t, 

4. E + E (non-deterministic composition), 
or 



5. E I E (concurrent composition). 

Concurrently compo:l1ng two expre3.5IOIl!! produce~ a concurrent behavior which 

informally include~ a rendezvous event for every pair of corresp(joding send a.nd 

receive event:!, and a ~huming of other event:! belonging to the two expreS3l0n~ 

[Miln SO, Noun 841. The behavior of the ~ender proceS3 in the data transfer 

protocol can be ~peciCied recursively by the following equation in S: 
S - !me""age • (!acknowledgment • $ + &:time-out • S) 

where &:time-out ~ a rendezvoU3 event between the sender proce~ and a timer 

p roc e3.5. Th~ equation ~ represented in the CT by the node la._eled S connected 

to the CT whose behavior ~ represented by the expre~10n on the right hand side 

of the equation. Given the behavior of the receiver proce~ R in the data tr~fer 

protocol 
R - !acknowledgment.$ 
then 
SIR ... SR 

- &acknowledgment •. $ + &:time-out • (S 1$) 

(We assume that concurrently composing . two identifiers produces " ~!w identifier 

that ~ a concatenation of the two fonner identifiers.) 

In other words, the concurrent composition of expre~ioIl!! produce~ a composite 

expression which ~ expreS3ed in terms of the sequential composition, non-deterministic 

composition, and deadlock opera.tions. Any expression A in the algebra of CTs can 

then be represei!ted canonically ~ a "um of "ummand" E7-1 ai. "Ai' 

A protocol can be specified ~ a l~t. of proce~es. A.5suming that the simple data 

transfer protocol involve~ also a medium proceS3 M (whose behave includes a 

rendezvous event. denoting message and acknowledgment lOS!) and a receiver process 

R, its specificat.ioD would be given by 

PROTOCOL DATA_TRANSFER S,M,R 

The concurrent behavior of the protocol can be obtained by concurrently composing 

the speciCication of its processe~. During the composition, any deadlock or 

un"pecified reception error" in the protocol behavior can be detected. 



2.2 A Specification-Based Perrormance Analysis 

In analyzing the performance of protocols, the specification and analysis of timing 

requirements and performance mea.sures need be addressed. For example, a timing 

requirement for the data transfer protocol example described above, and assumlOg 

that its medium proceS! can lose messages, would be to ensure that the probability 

of time-out occurring before a lOS! in the medium IS minimal and that a time-out 

occur.! as soon as possible after a loss [Noun 84J. An example of a performance 

measure is the mean roundtrip delay starting from sending a meS!a.ge and ending 

with receiving its acknowledgment at the sender. 

The two a.spects of protocol performance can be specified and analyzed uSlOg a 

timing behavior of protocol. A methodology for extracting this timing behavior 

from algebraic specifications of protocols augmented with the distributions of the 

events involved, IS described 10 [Noun 861· Timing behaviors of protocols are 

modeled as marked point proce~~e~ [Snyd 75]. Times between occurrences of even~ 

are assumed to be exponentially distributed random variables. Probability, mean 

time, and variance time attributes of the timing behavior are defined as 

homomorphic Images of expressions' in the specification algebra. If the execution 

point is at the root of a CT representing expreSSIOn B, the probability, and the 

mean and variance of the time duration of A (a summand of B) are denoted by 

PeA), MeA), and YeA), respectively. A neceS!ary condition for these attributes 

to be defined is tha.t A is a terminating behavior meaning it includes the deadlock 

symbol. Three theorems 10 appendix I define mapplOg5 from operations 10 the 

specification algebra to operations on these attributes. 

Two functions: Terminate and Re.!trict, have been defined to be used in isolating 

interesting event sequences of a protocol's concurrent behavior or segments of it. 

Let , repre!!ent the power set of a. set tha.t. includes all pair.! (e, 1), where t: E t 

and lEI. Informally, Terminate{A, ~ maps the CT corresponding to expreS!lon 

L:7-1 ai • Ai to another CT identical to the former, with the exception that. for 

every branch Ia.beled aj incident upon & node labeled Aj where (ayA} E P, then 

node A· is labeled with a "S' instead. 
J 

This means that the new CT represen~ 

a behavior that would terminate after executing event ai' Re.!trict[A, -9, where 



A - 2:7 1 aj.~' maps the CT rooted at A .. ~ aoother CT that is identical to 

the former, with the exception that everJ branch with a labeled event a j restricted 

by ((ljrA} E P and Aj " A, is excluded. 

be found in [Noun 861. 

Complete definitions of these functions can 

AJJy timing requirement or performance measure of a protocol that can be specified 

in terms of attributes of its timing behavior cao be aoalyzed. For example, the 

timing requirements necessary for the efficient operation of the simple data tn.Jl!fer 

protocol can be specified as follows. Let C denote the concurrent behavior 

obtained (rom S I M I R. This concurrent behavior execution consists of sequences 

in which time-out occurs before a loss in the medium (which would be represented" 

by an internal event), and other sequences in which time-out occurs after a loss. 

The latter sequences cao be isolated usmg &atric:t function on C to get C R

The timing requirement of the protocol cao be then specified as 

minimize MdC) and mazimize P d.cR)' By aoalyzing this timing requirement an 

optimal setting of the time-out period is computed. The meao roundtrip delay can 

be specified by Md 0). 

3 A Two Phaae Locking Protocol 

In a distributed data base system, data iteIIl-' are distributed among several sites. 

User proce~es, at possibly difrerent sites, execute tran3actiona that are allowed to 

concurrently acce~ &.ad modify .the data iteIIl-'. Clearly, such concurrent acces:s has 

to be controlled In order to maintain a consistent state of the data base. 

Locking is one policy that has been used (or that purpose. Eswaren, et. al., 

[Eswa 76] have shown that consistency is maintained by protocols using locking if 

transactions do not request new locks after releasing a lock (well formed 

transactions ). 

A two pha.se locking (2PL) protocol is a concurrency control protocol that uses 

locking [Bern 79].· In a 2PL protocol, all transactions are well-Cormed and each 

p~es through a growing pha~e, c:ommita, aod then pursues a 3hrinh'ng pha~e. In 

the growing phase, a transaction goes through a loop of performing some processmg 

actions, Wbenever it needs a lock, it sends a locking request to the concerned 



data item, then continues processing after its request IS granted. The grow 109 

phase ends when the transaction commits, i.e., 'all its actions are guaranteed even if 

for example). In the 

m the same order 10 

the transaction later aborts (due to failure of its process, 

, shrinking pha.se, a transaction relea.ses all acquired locks 

which they were acquired and terminate". 

A 2PL protocol ensures consistency of the data items, but it does not guarantee 

absence or deadlock situations. Such situation may ar15e between two transactions if 

each 15 waiting for a lock acquired by the other. Deadlock can be avoided if 

each process locks all data items required by a transaction before initiating it 

("tatic locking). Otherwise, a deadlock detection and recovery mechanism ha.s to be 

employed to recover from deadlock situatiorul. 

In this study, we a.ssume the following regarding the operation of the protocol: 

1. Dynamic locking: a process locb a data item only when it 15 
required during the growing pha.se. 

2. Exc/u"ive loeb: a lock can not be shared ,by more than one process 
simultaneously; note that no distinction 15 drawn between read and write 
locks. 

3. Locking through polling: a process that ha.s sent a request for 
acqumng a lock would retry again after a waiting period to acquire it; 
note that no requests are a.ssumed to be queued at a data item. 

4. Deadlock recovery via time-out~: a process waits for a specified period 
for lock acquisition and upon time-out it aborts and restarts [Ceri 841. 
This, mechanism aims at deadlock detection. A process might, however, 
time-out even when no deadlock has occurred. 

Although the two last assumptions have been considered by other resea.rche~, no 

work has been reported on how to optimally set the time-out and polling rates. 

• If the time-out rate is too large, then a transaction would be Unnecessarily aborted 

and restarted th~ decreasing throughput of the protocol. If it is too small then 

a transaction would would for a long time after a deadlock situation ha.s occurred 

to abort and consequently the resporule time of a transaction would be degraded. 

Similarly, if the polling rate 15 too high, then the network is flooded with polling 

messages and assuming. Also, assuming that a lock grant arriving while a. process 15 



sending another request doe~ not preempt it, then if the polling rate is too high 

the re:5pon~e time will be degraded. The :5ame' e!fect can be also due to that a 

data item :5cheduler receiving a lock request :5pend3 item to processe~ it, during 

which a release request might arrive and its processing delayed. J( the polling rate 

was too small then the re~ponse time would be degraded since a process waits too 

long before trying again to acquire a lock. Note that the use of time-outs for 

deadlock detection involve~ local decisio~ to restart a transaction, minimal overhead 

10 the response time compared with other detection mechanisms which involve 

elaborafe- computatio~ and checks of wait-for grap~ [Ceri 841. 

An algebraic specification of the protocol IS given 10 section 3.1. The concurrent 

behavior or the protocol IS computed and the space and time complexities of 

computing it are examined 10 section 3.2. Also, some interesting behaviors 

belonging to th~ concurrent behavior are ~pecified and derived. The performance 

of the protocol i~ analyzed in ~ection 3.3. 

3.1 An AlgebraIc Specincation 

Con~ider a d~tributed data base system with M logical processe~, and N distinct 

data items each with a scheduler process ~ciated with it. Let M denote the set 

{i; i-l, ... ,M}, and JJ denote the set U; j-l, ... ,N}. The communications between 

a process p. 
I 

and a data item D· ) 
are depicted 10 Fig. 2. There are three ports 

through which they interact: a port (J •• 
I) for messages to acquire a new lock to the 

da.ta item, a port /. "' 
I) 

for message~ to grant a lock, and a port r·· 
'J 

for messages 

to release a lock. The 2PL protocol ~ then specified as 

, ... , 

Before introducing the detailed a.lgebraic specifications of processe~ and data item 

schedulers, we d~ribe simplified versio~ or their CTs. These CTs are illustrated in 

Fig. 3 and FiS. 4, respectively. In these figures, events denoting communications 

between a proces:! Pi and data item scheduler D j are de:5cribed by a subscript ij; 

events denoting internal events in a proces:! Pi are de~cribed by :5ubscript i (except 

& Pij repre:5enting process i deciding it needs to lock data item J). 

A process Pi starting a new transaction, as shown In Fig. 3, might perform some 



actions and then decides it needs a lock to data item j (&P
I
) It then sends a 

request to it (!!li} and starts a time-out timer. The process IS blocked until it 

receives a granting of its request (!II) upon which it 

and acquiring more locks, or decides to commit (&Cj)' 

either continues processing 

If after a certain waiting 

period the locking request IS not granted, the process decides to try again (&gj) 

and sends another request. However, if the time-out period expires (&tj), the process 

suspects that it is involved in a deadlock, aborts the transaction, a.nd restarts it. 

When aborting or committing a transaction, a process releases all the acquired locks 

(!r i} in the same order in which they have been acquired. We assume that there 

is always a transaction waiting to be executed on each process; therefore, after a 

transaction commits and terminates a new transaction 15 started immediately. In 

addition, it is ass,umed that the behavior of a restarted transaction is independent 

from that of the previously aborted transactions. 

The behavior of a data item scheduler D i' as shown in Fig. 4, starts at a state 

in which it is waiting for a locking request. The first locking request it receives 

(!!lijl IS granted and the scheduler IS locking. Subsequent locking req~ests while it 

IS still locking are ignored. A grant of the first received locking request (!/j} is 

sent to the source process and the data item IS locked. The data item remalDs 

locked until it receives a release request from that process (!r i/ 
received rrom other processes (that are aborting) are ignored. 

Release requests 

A glossary the identifiers used in the algebraic specifications and their descriptions 

are given 10 Table 1. Identifiers are associated with subscripts denoting the 

identity of the process or data item scheduler whose behavior they describe. In 

addition, identifiers of a process specirica.tion, except for the initial identirier, are 

associated with an ordered list of locked (and waiting to lock) da.ta item numbers. 

This allo,..s the. order of acquiring lock:! to be remembered and thus to release 

them in that. order in the shrinking phase. Identifiers of a data item scheduler 

specification are also associated· with the process number that is owning a lock for 

the data item to distinguish between relea.se requests when a data item is locked. 

Algebraic specifications of a proce5.!J and a data item scheduler are given In Fig. 5 

and Fig. 6, respectively. These specifications follow the simpler corresponding CTs 



In Fig. 3 and Fig. 4, respectively. One a-. :d detail in Fig. 5 is that since a 

proce~ might be involved in deadlock only if it h3.3 already locked one data item, 

time-out is not allowed when a process is waiting for its first lock. 

3.2 Concurrent Behavior 

The concurrent behavior C of the specified 2PL protocol IS : •. .:01 by 

The time complexity of obtaining the concurrent behavior of the 2PL protocol is of 

O(N!M.WN+NIM·MN), &Dd the space complexity i! of O(N!M MN). A proof of 

how these complexities are computed i! given lD [Noun 861. 

These ·~~pl05ive time and space complexities are due largely to that every proee~ 

h3.3 a different identifier to describe its behavior (or every possible sequence of 

locks acquired. Also because every da.ta. item scheduler ha:s a different identifier 

proce~ that might lock it. Consequently, generating the 

of the 2PL protocol with large numbers of communicating 

iteIWS IS very expensive. Subsequently 10 this paper, we will 

(or every p~ible 

concurrent behavior 

processes and data 

examlDe only the C3.3e of both M a.nd N equal to 2 (unless noted otherwise). 

Even in this C3.3e the concurrent behavior includes 580 equations! Therefore, 

instead of listing the complete concurrent behavior we describe in this section some 

interesting sequences belonging to it. 

The concurrent behavior C describes the concurrent execution of transactions on two 

processes that can a.ecess &Dy of the two available data items. It includes, for 

example, sequenCe3 of events in which one proce~, waiting to a.equire a lock to a 

data item, is blocked because the other process ha.! already a.equired that lock. It 

also includes other sequences of events In which transactions are executed and 

committed withoui deadlock. 

The specifications of processes and data item schedulers in the 2PL protocol given 

in Fig. 5 &Dd Fig. 6, respectively, are cyclic. For example, after a transaction 

runnlOg on & proce~ commits another transaction is ~umed to be ready and is 

started. Consequently, the concurrent behavior C IS aoo cyclic describing the 

execution of several succe~ive transactions on the proce~es in the data base. 

• 



The first behavior that we are interested 1D deriving 

behavior, denoted by Ctenn, which starts at 'C and 

executing on proces:!! PI releasing its last lock and 

describes the execution of one transaction from start 

effects of other concurrent transaction on it. 

Gtenn can be derived 80S follows 

Ctenn - Terminate[C , {(&rU'* Pl*) , (&rI2'* Pl*)}] 

from C is the terminating 

ends with the transaction 

terminating. This behavior 

until termination, and the 

(2) 

where 1*' matches any string and is used to indicate any identifier (recall from 

section 2.1 that names of identifiers in the specification of a concurrent behavior 

are concatenation:s of corresponding identifiers In the concurrently composed 

specifications ). 

Two other behaviors that will be used in specifying timing requirements necessary 

for the_ efficient performance of the specified 2PL protocol, can be derived from 

The first behavior, which we refer to 80S C1, i.s a behavior belonging to 

Cterm in which the two proces:!!es are constrained' such that they time-out only 

after the' occurrence of a deadlock situation. The second behavior, which we refer 

to as C2• is a behavior belonging to Ctenn 1D which process PI IS constrained 

such that retries to acquire an awaited lock for a data item only if that data 

item is free. 

The Restrict function can be used to derive C 1 as follows. Two identifiers in the 

concurrent behavior Gtenn, correspond to the protocol being In a deadlock state: 

Fll F2 2 WI 12 W2 21 and F1 2 F2 1 W 1 21 W2 12. For the first identifier, process 

PI has data item D1 locked and IS waiting to acqUire lock to D2, while process 

P2 has data item D2 locked and. is waiting to acqUire lock to D1· The same 

description applies to the second identifier with the exception that the data items 

are interchanged. Therefore, to compute C l , time-out should be allowed only if 

the 2PL protocol is in any of these two states. 



Let 17' = {(&t1,F1 1 F22 WI 12 W2 21) , 

(&t1,F1 2 F21 WI 21 W2 12), 

(&t2,FI 1 F", 2 WI 12 W2 21) , 

(&t2,FI 2 F21 WI 21 W2 12)} 

then C 1 = Restrict[Cterm,P'] (3) 

To derive C2, proce~ PI should be allowed only to retry for an awaited lock if 

that lock is available. The identifiers corresponding to the cases when proce~ PI 

is waiting to acquire the lock to data item Dl that. is Cree are Dl * WI 1 * and 

Dl * WI 21 •. Similarly, the identifiers corresponding to the cases when process PI 

is waiting to acquire the lock to data item D2 that is free are * D2 WI 2 * and 

* D2 WI 12 *. 

Let P',... {(&C1,D1 * WI 1 *) , (&C1,D 1 * Wl 21 *) , 
(&C1, * D2 WI 2 *) , (&CI, * D2 WI 12 *)} 

(4) 

The last. two behaviors that we are interested will be derived from the complete 

concurreM behavior C. These behaviors are to be used in analyzing the behavior of 

the protocol ID deadlock situations. Consider the terminating behavior, C delJd' 

representing those behaviors of the protocol in which the protocol terminates when 

a dea.dlock occurs. Thus we can examtne the deadlock beha.vior of the protocol 

without giving a chance for time-outs to resolve these deadlocks. 

computed from C by 

CtUlJd - Terminate[C , {(&all,F1 1 F22 WI 12 W2 21) , 

(&a12,F1 2 F2 1 WI 21 W2 12), 

(&a21,F1 1 F22 WI 12 W2 21) , 

(&a22,F1 2 F2 1 WI 21 W2 12)} 

C delJd can be 

Now let us derive behavior C3 which includes only those events sequences that lead 

to dea.dlock. C3 can be derived from C dead by constraining &aU and &a12 such 

that process PI does not. lock the two available data iteD:l!5 and therefore there 

would be no possibility of deadlock. Also, &cI should be constrained in order to 

avoid committing before allowing deadlock to occur. 

identifiers in C, then C3 is given by 

II r denotes the set of all 



C3 - Re"trict[CdeGd , {(&Gn,1E (r - Dl • SI ~I)), 

(&a21,1 E (r - • D2 S1 12)) , 
(&c1,1 E {0})}] 

3.3 Performance Analysis 

3.3.1 Timing Model 

Let ).e denote the exponential rate of the occurrence time of event &e. 

of the events included in C are described as follows: 

rate of process I accessing data item j. 

rate of time-out of process I. 

rate of polling of process i for awaited lock. 

rate of committing of process i. 

rate of transmission plus propaga.tion, and processing of 

locking request rrom process i to data item i-

rate of transmission pl~ propagation, and processing of 

granting a lock from data item j to process I. 

rate of transmission pl~ propagation, and processing of 

a release request (rom process i to data item j. 

(6) 

The rates 

Let the delay incurred in the transmission, propagation, and processmg of a locking 

request, granting, or release request be denoted by 6· . -1/), =I/'Al =I/'A ',) G" ., r·· 
, ,) I,} I .) 

for any , , J. We assume that any process m the data base has the same rates 

of events (or varIous transactions running on it. This IS clearly true for 

transac tion- independen t rates such as delay. It l! also a reasonable assumption for 

other transaction-dependent rates assuming that transactions running on a process 

belong to the same tran"action e/a"" that has the same rates. 



3.3.2 Specincation and Analysis of Timing .~~qulrements 

Two timing requirements are necessary for the efficient performance of the specified 

2PL protocol. The first ensures that a process times-out only after a deadlock 

situation in which it is involved OCCUr3 and it times-out as ~n as possible In 

order to avoid unnecessary delay. The second ensures that a process retries to 

acquire an awaited lock only if the lock is available and does that as soon a,., 

possible after it has become available to avoid unnece~a.ry delay. 

Optimal settings of the time-out and polling rates tha.t satisfy these timing 

requirements depend on the rates of the variOUS events involved In the global 

behavior of the protocol. Consequently, a proce~ can not optimally set its time-out 

and polling rates using only local knowledge about the rates of its events. It has 

to also know the sta.te of each of the data item.s in the case of ~ "te first timing 

requirement, and of each of the other processes and data items ior the second. 

This is obviously not feasible In a distributed system. 

Alternatively, we show that if a process knows the rates of events of the other 

processes and data item schedulers, it can use information showin: the effect of 

these events on its performance to optimally set its time-out. and polling rates. 

Such informat.ion can be obtained by analyzing the t.iming behavior of the protocol. 

As discussed In section 3.1, the first timing requirement of the 2PL protocol should 

ensure that the transaction response time IS minimized a.nd throughput. of the 

protocol maximized. Instead of maximizing of throughput, we consider minimizing 

1 - Pc (CI ) which indicates the proba.bility of 2PL concurrent behavior in which 
term 

a. process times-out unnece~arily. The ~·t:ond timing requirement. should ensure that 

the tr~action response time and the number of unnecessa.ry locklng requests sent, 

are minimized. A:s a. measure of t.he number of unnecessary lucking requests, we 

consider 1 - Pc (C2). Let 
term 

and 

PI =0 1 - Pc (CI ) 
term 

(7) 

(8) 



The mean time, t r, of behavior Gterm starting a new transaction until it commits 

and releases all its acquired locks including restart..s due to time-out IS given by 
tr = Me (Gterm ) 

term 
(9) 

The two timing requirements are formally specified as: 

Treql . Minimize tr and Pl' 

Treq2. Minimize tr and 

Consider behavior Gterm. In a deadlock situation the only two possible events to 

occur are either process PI or proces:! P2 times-out (abort..s), releases its locks, and 

restarts. This will allow the other process to acquire the awaited lock after it is 

released. Using rule P4 in appendix I we find that the probability of process PI 

aborting is equal to Xt /(X t +Xt ). Similarly, the probability of process P2 aborting 
I I 2 

is equal to Xt/(X tl +Xt2 ). If Xtl is set greater than Xt2, then process Pz has 

higher priority In continuing without aborting, and conve~ely. The two processes 

would have the same priority if their time-out are set equal. 

assumed throughout the rest or the analysis. 

The latter will be 

In order to satisfy the two timing requirements, We vary the time-out rate for the 

first and the polling rate ror the second and find the value that minimizes the 

mean time and the probability terms in each. Note that optimal time-out rate is 

arrected by variations In the setting or the polling rate. Therefore, we iterate 

through computing the optimal setting or one and use that to compute the optimal 

setting of the other until we converge. 

In Fig. 7 we plot tr versus Pl ror iterations 2, and 4. In Fig. 8 we plot mean 

time of tr versus P2 for iterations 1, 3, and 5. Note that the two goals In . 
both timing requirements are contradictory and therefore we replace Treql and Treq2 

tr tr 
by minimize - and minimize -, respectively. From the figures, optimal 

___ I-PI I-PI 

settings of the time-out and polling rates such that Treql and Treq2 are' satisfied 

for iterations 1 through 5 are given In Table 2. The optimal settings of the 

polling rate in iterations 3 and 5 are identical to two decimal places. 

iterations stop at 5. 

Thus the 



3.3.3 Specification and Analysis or Probability or Deadlock 

The probability of deadlock Pd is given by 

Pd = P cdeaiC3) . 
(10) 

In Fig. 9 Pd is plotted versus the rate of committing o( process P l (or several 

values o( the rate of committing o( process P2. ~ the rate of committing of a 

transaction class increases the shorter the transactions. That is, transactions that. are 

less likely to need to lock all the data item:s available in the data base. The 

figure shows that the probability of deadlock increa,.,es sharply a,., the lengt.h of 

transactions increa"e,. especially ir long transactions are running on both processes. 

In Fig. 10, the probability of deadlock is plotted against 611 for various >. =-P11 
>'p. Increasing the access rates leads to a smaller time spent In 

12 
processing 

actions (let it be denoted by tpc)' The two rates are maintained equal to analyze 

the erred of varying tpc on proba.bility of deadlock while holding the access ratio 

constant. The figure shows that a,., delay increa,.,es, t.he probability of deadlock 

Increa"es and saturates for very. la.rge delays. A large delay means t.hat a lock 
. . 

request sent by a process takes a long time to reach the data item during which 

the other might had the chance to lock it, thus 
. . 

the probability process increasing 

of deadlock. However, for a large delay t.hat l! already larger than the delay 

between the other process and the data item:s, this Increase disappears. 

Additionally, a" the processing time decrea"es tpc Increases, the probability o( 

deadlock decreases because of the higher probability that the process decides to 

commit instead of needing another lock. 

3.3.4 Specincation and Analysis or Mean Response Time 

The mean response time of a process running one transaction including restarts IS 

given by P,.. 

access rates 

In Fig. 11, Pr is plotted versus the commit rate >'c for 
1 

>. ->. . 
Pll P12 

As . expected, the mean response time decreases 

various 

as the 

commit rate increa,.,es since transactions are shorter. Increasing the access rates 

lew to a smaller t.ime spent in processing actions tp~ this results In a lower 

mean response time. However, for very large access rates, Pr saturates. This is 

partly due to the increa"e of probability of deadlock a" tpc decreases since a high 

probability or deadlock causes tra.nsactions to abort and restart thus increasing the 

mean response time. 



Appendix I: Mapping rules of attributes or a protocol'8 
timing behavior 

Let F /.. t) and f J.. t) denote the probability distribution and density function of the 

occurrence time of event t. Also, {or a terminating expression C = 2:}:1 C j. Cjr 

let CH(C)={cj;j=-l, ... ,m} and 8a(C)=Cj if a==cj j==l, ... ,m, or otherwise 

undefined. 

Theorem 1 

Pl. P c(a • A) 

" 
P2. P cO: 7 1 ai· Ai) =- L P c(aj. Ai) 

j=1 

P3. P c(a) 

P4. PJ$) 

P5. Pc(C) 

Theorem 2 

Ml. Mc(a. A) 

M2. McO:7-1 (I • ..Ai) 

M3. Mc(a) 

M4. Mc($) 

=- 10
00 II [l-Fej(t)!dFa(t) 

ej e cH(C) '" Cl 

if and only if a E CHlC1 

- 0 

== 1 

::::0: Mc(a) + Moa(C)(A) 

" E P c(aj)' Mc(aj. Ai) 

j-l - " L: P c(ai) 
i-I 

::::0: 10
00 

II [1 - Fe.(t)!dt 
• 

ei e cH(C) 

if and only if a E CHlC1 

== 0 

if C", $ 



Theorem 3 
VI. V c(a • A) 

n 

= V c(a) + V (Ja(C)(A) 

n 

L P c(ai) . rv c(aj • Ai) + M~(ai • Ai)] 

V2. Vc(L aj. Ai) 

j"..l 

n 

[Bern 79) 

[Bux 80] 

[Ceri 841 

[Ches 831 

[Eswa 76] 

[Grat. 681 

[Miln sol 

- 2 1000 

t II [1-FeP)] dt 

ei e cH{C) 

- M~a) 
if and only if a E CHIC] 

- 0 
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where .,. < 
Table 1: 

process Pi IS starting a new transaction. 

process Pi has :!.cquired locks for data items il h 
}",-1 and has decided to send a locking request 

to data item }n' 

process Pi has acquired locks (or data items }1 }2 

... i n- 1 and is waiting (or lock or data item I n. 

process Pi has acquired loeb ror data items Jl J2 

.•• J,.. 

process Pi has decided to commit. 

process Pi IS aborting. 

process Pi IS restarting. 

data item D· J 
IS unlocked. 

data item D· 
. 

being locked by Pi' J 
13 process 

data item D· J 
IS locked by process Pi' 

N 

Glossary of iden tifiers used 10 the specification or 
2PL protocol 

the 
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Optimal 
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