
The Use of Memory in Text Processing 

Michael Lebowitz 

Department of Computer Science 

Columbia University 

New York, NY 10027 

November, 1985 

CUCS-200-85 



The Use of Memory in Text Processing 

Michael Lebowitz 1 

Department of Computer Science 

Computer Science Building, Columbia University 

New Yorl<, NY 10027 

23 January 1986 

Abstract 

The performance of natural language processing systems should improve as they read 
more and more texts. This is true both for systems intended as cognitive models and for 
practical text processing systems. Permanent long-term memory should be useful during 
all stages of text understanding. For example, if, while reading a patent abstract about a 
new disk drive, a system can retrieve infonnation about a similar object from memory, 
processing should be simplified. However, most natural language programs do not 
exhibit such learning behavior. In part, this is because it is not obvious exactly how 
memory access should be integrated with other aspects of processing. We describe in 
this paper how RESEARCHER, a program that reads, remembers and generalizes from 
patent abstracts, makes use of its automatically generated memory to assist in low-level 
text processing, primarily involving disambiguation that could be accomplished no other 
way. We describe both RESEARCHER's basic understanding methods and the 
integration of memory access. Included is an extended example of RESEARCHER 
processing a patent abstract by using information about several other abstracts already in 
memory. 

CR classification: 1.2.7, Natural language processing, language parsing and 
understanding, text processing, memory, integrated understanding. 

1 Introduction 

Virtually all natural language processing systems that have been developed suffer from the same 

flaw -- reading texts does not make them smarter. They are not able to process texts better over time, 

even texts that are similar to those read before. This is a clearly a problem for systems intended as 

cognitive models since human language performance in a domain improves as knowledge is acquired. It 

is also troublesome for practical systems, since the lack of learning ability requires all information needed 

for understanding to be hand-coded by the implementor. In this paper we describe a computer system, 

RESEARCHER, whose language understanding ability improves as it reads, primarily by using a dynamic 

'This research was supported in part by the Defense Advanced Research Projects Agency under contract NOOO39-84-C-0165. 
Many people have contributed to RESEARCHER's text processing abilities including John Akbari, Ben Beecher. Tom Ellman. Larry 
Hirsch, Barbara Moo, Charles Ortiz, Cecile Paris, John Sabella, Alexander Voll and Kenny Wasserman. Part 01 the memory access 
algorithm described here was implemented by Tsy Vee. Comments by Kathy McKeown on an earlier draft 01 the paper were most 
useful as were comments by Bonnie Lynn Webber and anonymous reviewers. 
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memory to resolve ambiguities that would otherwise require ad hoc disambiguation rules. 

RESEARCHER reads patent abstracts and automatically builds up a generalized long-term memory 

(knowl.edge base) from them [25, 29]. It provides a framework for studying the ways in which increased 

knowledge in memory can improve the understanding process. Our main goals in this paper are: 1) to 

describe RESEARCHER's conceptual analysis understanding structure, which is rather general and 

easily applicable to a number of tasks that do not require fine syntactic analysis (Section 3), and 2) to 

show how memory access has been incorporated into this structure, primarily to handle difficult 

disambiguation problems (Section 4), resulting in a program whose understanding ability improves over 

time. Section 2 provides background on the ambiguity problems that RESEARCHER must deal with and 

Section 5 illustrates the operation of RESEARCHER on a typical patent abstract, showing how several 

other abstracts already in memory are used during processing. 

It should be emphasized at the outset that RESEARCHER is an experimental system. We use'it as 

a testbed to study issues in generalizing complex object descriptions [25, 30, 50], intelligent question 

answering [35] and other areas, as well as the natural language processing issues discussed in this 

paper. As an experimental system, we,do not expect RESEARCHER to be able to handle every example 

we give it perfectly from beginning to end. We believe that the development of RESEARCHER to date 

indicates that the methods we are using have great potential for the development of intelligent information 

systems. Despite its experimental nature, RESEARCHER has been developed into a substantial 

computer system over the last 3 years. It has a dictionary with over 1300 word definitions. It runs on a 

DECSystemJ2060 and processes each patent abstract in a few seconds. Almost any simple example can 

be processed accurately. Although RESEARCHER is not at the stage where quantitative evaluation of its 

abilities is useful, the system has been tested on over 130 real patent abstracts. While not all of these 

are processed perfectly, many are handled quite well, particularly considering the complex nature of the 

texts. There are indications that with the proper information in memory most of the abstracts could be 

processed quite successfully. This indicates to us that our memory-based approach will be a fruitful one. 

2 Background: Ambiguity and the need for memory access 

Human text processing proceeds at many levels simultaneously [5, 32, 42]. Such processing 

presumably includes the access of detailed, long-term memory for the purpose of finding information 

relevant to a new text (as shown by the phenomenon of begin reminded [40]). Information from memory 

, 
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should be useful in assisting low-level processing, but exactly how to use such information is a difficult 

problem. 

Earlier work on the use of memory in text processing has suggested that memory access might help 

in allocating resources (how and when to apply computational effort) and in identifying the important (or 

interesting) parts of a text [7, 15, 23,42]. However, these are imprecise ideas and difficult to apply. For 

example, IPP [22, 26], a program that read, remembered and generalized from news stories about 

international terrorism, would know from accessing memory that the destination of a hijacking in a story 

that began, "A United 727 en route to Miami was commandeered ... " was likely to be Havana. However, it 

was not clear how to use this information if the story simply continued, "to Havana." It is quite easy to 

process this text without the expectation, and memory just provided a redundant crosscheck. Of course, 

had no destination been mentioned, IPP would have used Havana as a default. Providing default 

information was IPP's main use of memory, along with providing a small amount of help in word sense 

disambiguation. So while IPP did get somewhat smarter as it read; its improvement was not as great as 

one would have hoped. 

It is our feeling that the best way to use detailed memory information duril!g text understanding in 

the context of current systems is to identify specific tasks during processing where memory can be 

applied. We will present here a series of "questions" that arise during text processing that can most 

easily be answered (and often can only be answered) by accessing long-term memory. These questions 

are particularly important in the resolution of ambiguities that must be resolved to achieve the kind of 

robust performance that is crucial to RESEARCHER's learning task. 

We are proposing using memory for understanding, as opposed to general semantic information 

about words or concepts. By memory we mean an appropriately organized knowledge base of detailed 

information acquired from previously read texts. While general semantic information is crucial for our 

conceptually-based understanding methods, in order to resolve many understanding questions it will be 

necessary to look at very detailed information in memory -- in our case, how the objects described in 

patent abstracts are constructed and how their pieces relate to each other. 

To illustrate why memory is needed, consider the following simple example: 
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EX1 - A readlwrite head touching a disk made of XXX ... 

In EX1 there is no way to determine whether XXX is the material used for the read/write head or for 

the disk without knowing something about the objects involved. Indeed, different XXX's would be 

analyzed differently. In some cases, a single XXX could lead to different analyses depending on the 

exact state of memory. For example, if XXX was "plastic" our 'analysis would depend on what we knew 

about plastic disks and plastic read/write heads. We often get the same effect within noun groups such 

as EX2: 

EX2 - A {floppy I hinged} disk support ... 

The resolution of ambiguities such as those in EX1 and EX2 is the area where we believe memory 

will be most immediately useful in text understanding systems (in addition to supplying default values). 

While it may also be possible to use memory to resolve word sense ambiguity, this has not proven to be a 

major issue for RESEARCHER. Note that while the speCific methods described here are from 

RESEARCHER and tailored to reading patent abstracts, ambiguity is a problem for all natural language 

tasks, and we feel our memory-based resolution techniques will be widely applicable. 

The problem of disambiguation is not a new one. Linguists have looked at problems of ambiguity 

for many years. A standard solution to resolve ambiguities such as prepositional phrase and modifier 

attachment (both of which we will look at) is to appeal to semantic constraints (for example [19, 21]), To 

take an example adapted from [19], suppose we are trying to analyze, "red car sale", and determine 

whether "red" modifies "car" or "sale". If our definition of "red" said that it only modified physical objects, 

then we would get the "right" answer, assuming "car" was defined as a physical object and "sale" was 

not. 

While the use of semantic characteristics is a useful technique, it has several problems that we have 

already alluded to. The disambiguation information is static and must be pre-defined for the system. The 

semantic categories that are defined are often quite ad hoc. For example, if we were analyzing "red car 

seat", only a very specialized set of properties would serve to disambiguate. On the other hand, looking 

in a dynamic memory for information about red cars and red seats should prove effective. 

The application of semantic information, including semantic features of words, to resolve ambiguity 

has also been widely used in Artificial Intelligence research (e.g., [1, 2, 20. 38, 44. 54, 56, 57]). 
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Constructions similar to those we will look at have been considered in [10, 33, 55]. All of the Artificial 

Intelligence work. however. has made use of static semantic information specially designed for the 

program. Particularly interesting to us is recent work that looks at parallel disambiguation as a central 

part of understanqing [5. 49], but, again. this work addresses static, semantic-oriented knowledge bases. 

Perhaps closest to our work is that of Riesbeck and Martin [37], which takes a radical approach to the use 

of episodiC information in understanding. limiting the use of bottom-up methods much further than we do 

here. There has also been some work on using the databases connected to database front ends as 

information sources (e.g., [18]), but primarily at a lexical level. 

We will show here exactly how long-term memory can be applied to resolve ambiguity over a large 

class of text understanding examples. Specifically. we propose to access memory when object 

descriptions are completed and when these object descriptions are being combined. Typically such 

processing will be take place at syntactic phrase boundaries, although from our point of view this is 

largely coincidental. Our research differs from earlier work both in that we indicate specific points at which 

to use memory (which turn out to be similar to the locations where semantic information is accessed by 

systems such as [2, 56, 57]) and that we are using a dynamically changing memory rather than fixed 

semantic properties. 

From a conceptual modelling viewpoint. our proposal for integrating memory access with conceptual 

analysis fits well with existing psychological results. A large body of research. summarized in [12]. 

indicates that language processing is computation-intensive at clause boundaries. Many of the 

researchers involved have interpreted these results in syntactic terms. However. since the boundaries of 

conceptual and syntactic units are usually the same, these results are also compatible with a model such 

as ours. 

More recent experiments that measured reading times across various kinds of ambiguity further 

indicate that interactions between different levels of processing take place primarily at phrase boundaries 

[48]. Studies of eye movements during text processing [4] lead to much the same conclusion. Research 

that seems to show that processing ambiguous words requires more effort than non-ambiguous words 

(e.g .• [45, 46, 47]) is also compatible with a model where memory access is performed only at specified 

points in an understanding algorithm (although such resu~s involve a different level of processing. lexical 

access. than those we are concerned with). 
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Our research is also compatible with much of the other Artificial Intelligence work in integrated 

language understanding. From early systems that used a variety of different kinds of information, such as 

Winograd's SHRDLU [56], through systems that concentrated primarily an analyzing text in terms of 

single high-level knowledge structures, e.g., Cullingford's SAM [6] and Wilensky's PAM [53], to systems 

that used a multitude of high-level structures. e.g., Dyer's BORIS [9]. researchers have struggled with 

how to relate various levels of processing. Even when the knowledge was represented in a uniform 

format, such as production rules [52]. a close examination of the implementations showed that processing 

would occur at one level and then hand off information to another level at specified points in the 

processing. This is perhaps largely due to- the sequential computer systems we are working with. We 

use this form of integration explicitly and show how the use of long-term memory can be incorporated into 

such a framework. 

We are not contending that human language processing is a strictly linear sequence of events.that 

shifts among various processing levels. We actually believe that fully parallel models such as those 

proposed in [5. 14, 24, 49] are closer to the truth. However. we do believe that even if various levels of 

processing are carried out simultaneously, they probably only interact at well-specified processing points. 

Perhaps significant results at one level -- such as the completion of a conceptual representation or the 

discovery of a conceptual impossibility - could cause other levels to be aborted. Even parallel processing 

can most easily be studied -- and most practically implemented on current computers - by looking at the 

various levels of processing separately and identifying the points where they interact. That is the 

approach we are taking in integrating conceptual analysis and memory access. 

3 Basic RESEARCHER understanding techniques 

RESEARCHER processes patent abstracts by: 1) using basic syntactic rules to identify "pieces" of 

the ultimate representation and 2) "putting the pieces together" by adding appropriate relations to its 

representation. EX3 shows a patent abstract, P58, typical of those read by RESEARCHER. We are 

concerned primarily with abstracts that describe the physical structures of objects. The goal of the text 

interpretation phase is to build up descriptions of objects, including physical and functional relations 

between various sub-parts of the objects. using a canonical. frame-based representation scheme [50, 51]. 

In Section 5 we show how RESEARCHER does this for the first part of P58. 
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EX3 - P58; United States Patent #4287445; Mark Lienau (Abstract) 

An electromagnetic linear actuator for positioning a transducer over locations on a rotating 
magnetic recording disk comprising an actuator housing used as a stationary base for 
supporting various parts; a coil and cart assembly including a cart, having a rectangular cross 
section and tubular in construction, adapted at one end to support the transducer, and including 
a direct current coil with a cross section matching that of the cart mounted at the other end 
thereof; magnetic means affixed to the actuator housing having an air gap for receiving the coil 
so that the coil-is immersed in a magnetic field; and support means affixed to the actuator 
housing engaging the surfaces of the cart and disposed about the center of gravity of a moving­
mass assembly consisting of the coil and cart assembly and the transducer. 

There are several interesting points about P58 for text processing purposes. First of all, the 

structure of the abstract is not quite what we are used to. For example, the "sentences" in the text have 

no main verbs. We could probably develop an appropriate syntactic grammar for the abstracts using 

baSically the same principles as in analyzing noun groups from normal text. Quite frequently, though, 

different syntactic structures function quite similarly in patent abstracts (or any sort of text, for that matter). 

For example, the phrase from P58, "An electromagnetic linear actuator for positioning a transduce'r _ .. " 
- -

and a hypothetical alternate phrasing, "An electromagnetic linear actuator that positions a transducer _ .. " 

are functionally equivalent, but involve different syntactic structures. 

In general, subtle differences in syntactic structure do not seem to be crucial in this domain. Patent 

abstracts thus provide an excellent source of texts for testing strongly semantic-based understanding 

methods that build conceptual representations directly from text. RESEARCHER uses only the most 

basic of syntactic information, unlike language programs that perform a more careful syntactic analysis. 

In any case, most of the difficult disambiguation problems occur at the semantic, rather than syntactic, 

level. The advantages of minimizing the use of syntactic information (and, in particular of not doing 

independent syntactic analysis) for cognitive models are discussed in detail in [41]. [26] describes why 

this is also advantageous for practical systems. 

EX4 shows the beginning of P58 segmented in a manner that motivates RESEARCHER's text 

processing algorithm. P58, and most other patent abs1racts that provide physical descriptions, can be 

broken into segments of two types -- those that describe physical objects (whose representations in 

memory we refer to as memettes -- tiny chunks of memory), shown in italics in EX4, and those that relate 

the various objects to each other. The memette-describing segments are usually (though not always) 

simple noun phrases, but the relational segments may take many different forms, including verbs and 

prepositions. The relational segments are largely functionally independent of their syntactic form, so we 
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can process them solely on the function they serve, ignoring structural complexities. 

EX4 - P58; Un~ed States Patent #4287445 (abstract) [segmented] 

(An electromagnetic linear actuator) (for positioning) (a transducer) (over) (locations) (on) (a 
rotating magnetic recording disk) (comprising) (an actuator housing) (used as) (a stationary 
base) (for supporting) (various parts); (a coil and cart assembly) (including) (a cart), (having) (a 
rectangular cross section) (and tubular in construction), (adapted at) (one end) (to support) (the 
transducer), (and including) (a direct current coi~ (with) (a cross section) (matching that of) (the 
cart) (mounted at) (the other end) (thereof) ... 

The analysis in EX4 leads directly to RESEARCHER's text interpretation algorithm of two sub­

phases: memette identification and memette relation, or "identifying the pieces" and "putting the pieces 

together". 

3.1 Text processing overview 

The text interpretation methods used in RESEARCHER are based on memory-based understanding 

techniques designed for IPP (which are described in (26)). Processing involves a top-down goal of 

recognizing conceptual structures integrated with simple, bottom-up techniques. Since patents are not 

focused on events, as. were the news. stories IPP processed, the action-based methods of IPP (or oth.er 

conceptual analyzers, e.g., [1, 38, 54)) must be extensively modified in a manner consistent with the 

analysis shown in EX4. 

RESEARCHER uses a functional classification of words that concentrates on those that refer to 

physical objects and those that describe physical and functional relations between such objects, including 

words that indicate assembly/component relations. RESEARCHER does careful processing of object­

describing phrases (usually noun phrases) to identify memettes, modifications to memettes, and 

references to previous mentions of memettes. This processing is interspersed with the application of 

relational words that create relations among memettes. 

In broad terms, the structure of our processing is similar to the cascaded ATN methodology [2, 57]. 

where a syntactic grammar frequently hands off syntactic components to a semantic analyzer that builds 

semantic structures and eliminates impossible constructs. In all likelihood, the memory check methods 

suggested here could be applied to such methods, making them dynamic and more robust. Due to the 

nature of our domain, we are able to use only a small number of different syntactic constructs, eliminating 

the need for a formal syntactic grammar by focusing on the role of words in the conceptual 
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representation. Also, the cascaded ATN methodology views the understanding process as a syntactic 

processor passing off what it finds to the semantic analyzer, we look on the process as being primarily 

one of a conceptual analysis that makes use of syntactic structures when needed (much as in FRUM P 

[8]). 

3.2 Memette identification: Finding the pieces 

Since the descriptions read by RESEARCHER focus on how objects relate to each other, the 

identification of objects is obviously crucial. "Finding the pieces" consists primarily of bottom-up 

recognition of simple noun phrases followed by a reference component that determines whether the 

object being mentioned has been previously mentioned in the text. No explicit syntactic analysis of 

complex noun phrases is done. Prepositional phrase attachment occurs as part of relating memettes. 

The noun phrase recognition process involves the same "save and skip" strategy described in 

[26] (which is similar to the processing described in [13]}. Using a one-word look-ahead process, 

RESEARCHER saves noun phrase words in a stack until the head noun is found. Then the words in the 

stack are popped off and used to modify the memette indicated by the head noun. Noun group 

recognition could also be done easily with simple bottom-up syntactic processing (e.g., [11 D· 

Determining how the words within a simple noun group relate to each other is a problem that, as we 

will see in Section 4, is heavily dependent upon memory access. For example, in a typical phrase such 

as, "a fixed head disk drive assembly", there is no way of knowing whether "fixed" modifies "head", 

"disk", "disk drive" or "assembly" without using knowledge about the structure of disk drives. 

The final portion of "finding the· pieces" involves checking for anaphoric reference to the object 

described. Here RESEARCHER is able to take advantage of some of the arcane nature of patent 

abstracts. A very strict formalism is used for reference in patents, involving the word "said" and exact 

repetition of identifying modifiers. Without such formal language, the reference process would be very 

complicated, as an abstract can refer to many very similar objects. As it is, we can use an uncomplicated 

reference procedure that avoids many techniques needed for other sorts of text. In some domains, 

memory access might also be useful in performing such references. 
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3.3 Memette relation: Connecting the pieces 

The second major sub-phase to RESEARCHER text processing involves putting together identified 

memettes to build a final representation. This process occurs as soon as the objects involved are found. 

By and large, there are three different kinds of relations that tie objects together -- assembly/component, 

phYSical and functional relations between memettes. The basic RESEARCHER strategy for each is the 

same -- maintain information from the relational segments of the text in short term memory and then, 

when the next memette is identified, determine how the appropriate objects relate to each other. The 

three classes of relations are, however, handled differently in memory update and generalization. This 

process, which is largely independent of the form of the relational text segments, immediately builds a 

conceptual representation for later use. 

In uncomplicated texts, the relational process is straightforward. Specified memettes are related 

using a few simple focus techniques including some related to those of Grosz [17] and Sidner 143]. 

Basically, the system assumes that at any point in the text future relational phrases will refer to a single, 

"in focus" object. However, as texts get more complicated, the relational situation frequently becomes 

highly ambiguous, requiring the application of memory for resolution. Memette relation is one of the 

crucial spots in the processing where memory must be applied. We will see how and why memory is 

applied to this problem in Section 4. 

4 Using memory in RESEARCHER during text processing 

In this section, we show specifically how a long-term memory built up from texts can be used to 

resolve certain classes of ambiguity by having the text understanding process "ask questions" of 

memory. We must specify exactly what questions should be asked and when. The questions 

RESEARCHER will ask involve determining which of several possible physical structures is more 

plausible. Section 4.2 describes how these questions are answered. As well as specifying the speCific 

cases we have identified where we believe memory should be accessed, we also wish to illustrate the 

level at which we believe memory access should be applied during text processing. 

We should reiterate that none of the ambiguities noted here are particularly novel. What is new is 

the integration of the disambiguation questions into conceptual analysis methods and the use of an 

automatically generated dynamic memory to answer the questions. 

Concrete noun phrases in English, phrases that describe objects, can have very complex structures. 
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(See [13] for a conceptual analysis approach to noun phrase processing.) RESEARCHER's emphasis on 

object descriptions requires detailed attention to the internal structure of noun phrases, so that we can 

identify how the pieces of such phrases fit together. Memory application is crucial in doing this. 

EX5 shows the first question requiring memory. 

EX5 

Form: object-word1 object-word2 

Example: An actuator housing ... 

Question: What is the relation between object-word1 (actuator) and object-word2 (housing)? 

Noun-noun constructions in English can hide a number of different underlying relationships even 

with no syntactic ambiguity. In the example above, the housing could be part of the actuator, contain the . 
actuator, or be used by the actuator, among many other possibilities. One of the most important tasks for 

RESEARCHER is to determine the proper relationship in such cases. 

Linguistic research provides much insight into this process. There has been considerable effort put . . 
into the analysis of complex nominal phrases. Perhaps the most interesting from our point of view is the 

work of Levi [31]. (Some of Levi's ideas were applied in Finin's Artificial Intelligence work on noun phrases 

[10];) Levi proposes that all noun-noun constructions can be analyzed in terms of predicate 

nominalization or predicate deletion. The first case includes examples such as "city planner" or "oil 

imports" where one noun serves primarily to add specification or to specify a role of the other.2 While 

such cases are important, we have found predicate deletion more common in our domain. In the 

predicate nominalization case, often one noun or the other is not what we would consider to be an object 

description word, although it may specify a case restriction. Predicate deletion occurs in cases where 

there is an implicit predicate between the two nouns -- for example, "transducer assembly" (an assembly 

that contains a transducer) or "actuator housing" (a housing for an actuator). 

Levi not only proposes that a large class of complex nominals can be described in terms of 

predicate deletion, but also that there are only nine possible implicit conceptual predicates -- cause, have, 

make, use, be, in. for, from and about. We will not argue here whether these predicates are sufficient for 

2-rhis construction can also be expressed with a prepositional phrase. e.g .• "planner of dties". but the predicate nominal appears 
to be the more naturallorm. 
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linguistic analysis. As Levi states, for many purposes, including ours, the predicates will have to be made 

much more specific. Our problem with noun-noun constru~tions becomes determining the correct relation 

between the memettes in question. In our representation scheme, this relation can be either one of many 

physical relations, one of many functional relations,· an assembly/component relation or a 

componenUassembly relation.3 The answer can best be found by looking at examples in memory. 

Notice carefully that memory, not just general semantic information, is needed here. 

(RESEARCHER does use general information if no specific examples are available.) While for most disk 

drives the housing is likely to be a part of the actuator (as is the case for P58), the converse could be true 

for another device. Unless we already knew about every possible disk drive, we could not possibly 

prepare our system for all the examples it might encounter. The same will hold for any complex domain. 

Nouns are not the only element in complex nominals. We also have to property apply modifiers, as 

in EX6. 

EX6 

Form: modifier object-w~rd1 object-word2 

Example: A metal drive cover ... 

Question: Does the modifier (metal) apply better to object-word1 (drive) or object-word2 
(cover)? 

EX6 shows how a modifier preceding a noun-noun combination can modify either of the objects 

mentioned. In EX6, either the drive or the cover eQuid be made of metal. In more complex situations, i.e., 

more nouns or a series of modifiers, syntax can reduce the possible targets of a modifier, but only by 

asking memory which modification is more plausible in the context of the object being described can the 

right choice be made. 

EX7 illustrates a somewhat similar noun group problem. 

31t is possible to represent the physical and functional relations as combinations of simpler. canonical fields (see [51)). but the text 
can still refer to many stereotypical combinations of these fielC:s. 
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Form: object-word1 object-word2 object-word3 

Example: A disk-drive transducer wire ... 
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Question: Is object-word3 (wire) "related to" (in the sense of EXS) object-word1 (disk-drive) or 
object-word2 (transducer)? . . 

When muttiple nouns appear in succession, it is not always easy to tell how they group together. In 

EX7, there us no way to tell whether the wire is related to the disk drive or the transducer. The nature of 

the relation must also be determined as in EXS. Again, an appeal to long-term memory of similar devices 

is the best way to solve this problem. 

The "putting together the pieces" phase of RESEARCHER processing also involves ambiguities 

that must be resolved with memory. EX8 shows what can happen when more than one relational word is 

processed. 

EX8 

Form: object-word1 relation-word1 object-word2 relation-word2 object-word3 . . . 
Example: A transducer on top of a disk supporting a spindle ... 

Question: Does relation-word2 (supported by) connect object-word3 (spindle) with object-word1 
(transducer) or object-word2 (diSk)? 

In one sense, the problem shown in EX8 involves a noun group problem, in that it deals with 

modifying phrase attachment. However, in our understanding scheme, it falls into a different category. 

As described in Section 3, relating various objects together is a separate part of processing. This allows 

RESEARCHER to handle many other syntactic manifestations of this problem with the same mechanism. 

The mechanism here is to query memory about which of the possible objects most appropriately takes 

part in the specified relation. In EX8, we need to appeal to memory to determine whether the spindle is 

more likely supported by the transducer or the disk, either of which is syntactically appropriate. 

EX9 illustrates a similar problem. this time with "part indicators" (words that introduce a list of a 

part's subparts). 
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EX9 

Form: object-word1 part-indicator1 object-word2 part-indicator2 object-word3 

Example: A disk drive including a disk with a metal plate (and) ... 

Question: Is object-word3 (metal plate) a part of object-word1 (disk drive) or object-word2 
(disk)? 

In patent abstracts, there are frequently descriptions of an object's parts followed by recursive 

descriptions of subparts' components. This often creates considerable ambiguity of the sort shown in 

EX9, which is structurally similar to EX8. We handle this case separately, as the assembly/component 

relations are represented differently from other relations, since they are so crucial, and are expressed 

slightly differently in the abstracts. Once again, the only way to determine the correct analysis, in this case 

whether the metal plate is part of the disk drive or the disk, is to query memory, quite possibly looking at 

descriptions of specific objects or classes of objects. The same is true for ambiguities involving a 

combination of physical, functional and assembly/component relations. 

4.1 Integrating memory access with text processing 

Asking the disambiguation que~tions described in the previous section fits in nicely with the overall 

RESEARCHER text processing algorithm. RESEARCHER's "save and skip" noun group strategy 

naturally accommodates memory-based disambiguation. As the program is processing the items from its 

short-term memory stack, it keeps track of the identified memettes that can be further modified (the 

memettes described by the head noun, the most recent noun, and possibly intennediate nouns). Then, if 

there is more than one distinct object described in the noun group, as RESEARCHER continues to work 

back through the stack, memory can be queried to determine which object new words modify or relate to. 

Without performing the memory query, it is necessary to employ a set of complex and rather unsatisfying 

heuristics to determine how the parts of noun groups fit together.4 Before there is anything in memory, 

this is what RESEARCHER has to do, but as memory grows, we can achieve much better results by 

using its knowledge base. For new domains, people probably initially apply information from other 

domains, which is not available to our system. 

Memory access fits in equally well in the "putting together the pieces" phase of RESEARCHER's 

4A typical heuristic is: If one word in a noun-noun construction describes an object that normally has no subparts. and the other is 
a vague assembly word (e.g., "structure") then assume that the first is a part of the second. Another heuristic states that if no other 
rules apply. assume an unspecified functional relation. 
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text processing algorithm. RESEARCHER maintains short-term memory buffers with the objects that can 

be targets of a new relation. usually those specified by the head noun of a noun phrase and the most 

recent noun (although there are other possibilities). Then. if these objects are different. and a new 

relation (physical. functional or assembly/component) is being established. memory can be queried about 

which of the objects more plausibly relates to the new object. As with noun group processing. it is 

possible to develop heuristics that handle most cases, but they are complex and do not seem to be the 

right way to go for robust understanding. 

4.2 Using memory to answer the questions 

We have shown how certain ambiguities in language can be resolved with the answers to specified 

questions. The questions we have looked at take the torm of asking which of a set of objects can more 

reasonably be modified in a certain way or relate to another object or what is the most plausible relation 

between two objects. Phrased another way, the needed memory process is to determine which of a s.et of 

partial descriptions of a device is most plausible. . 

Our basic approach to memory in RESEARCHER is to store objects in terms of a hierarchy of 

automatically generalized prototypes created by noticing similarities among representations [25. 27. 30. 

29. 50]. With this sort of memory we can take partial descriptions of objects and determine whether they 

correspond to objects or generalized objects in memory by searching through the hierarchy of prototypes. 

We do not currently try to answer questions that require complex inferences. We aim to have as complete 

as possible a set of examples in memory so that the program can almost always find relevant examples. 

Figure 1 schematically shows the structure of the generalization-based memory that RESEARCHER 

uses. Memory is basically a hierarchy of object-describing frames allowing inheritance in the manner of 

semantic networks [36]. frame systems [34]. MOPs [39. 40] or KUONE [3]. RESEARCHER allows 

inheritance of objects' structures. as well as physical properties. The crucial point about generalization­

based memory is that the hierarchy of object descriptions is automatically created from examples. 

Figure 2 shows how memory might look after a series of disk drive descriptions has been 

processed. The top level concept is disk-drive# (the # is used to distinguish object concepts from words) 

which contains the information common to all disk drives. It organizes one instance that could not be 

described by any more specific generalized objects (patent A). There are two more specific versions of 
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generalized object -----------------------------> specific instances 
I > more specific generalized object -----------> specific instances 

I I 
I > still more specific generalized object -> specific instances 

I I 
I > still more specific generalized object -> specific instances 

I 
> more specific generalized object -----------> specific instances 

Figure 1: Schematic illustration of generalization-based memory 

disk-drive#: f1oppy-disk-drive# and hard-disk-drive#. There are also two more specific versions of 

floppy-disk-drive#. Each concept organizes specific instances that it describes. 

disk-drivel ---------------------------------> patent A 
I > floppy-disk-drive# ----------------------> patents B, C 
I I 
I > single-sided-floppy-disk-drive# -----> patents E, F 
I I 
I > double-sided-floppy-disk-drive# -----> patents G, H, I 

I 
> hard-disk-drive# ------------------------> patents I, J, K 

Figure 2:. Hypothetical instance of generalization-based memory 

There are several factors that make the structure of RESEARCHER's memory more complex than 

Figure 2. First of all. the generalized concepts consist largely of structural descriptions that specify their 

parts. Each of these parts (e.g .. disks, read/write heads) are in their own generalization hierarchy. Also, 

the examples used to build up memory rarely lead to a hierarchy as nice as the one in Figure 2. The 

factors that complicate memory organization include: hierarchies need not take the form of binary trees, 

the same object can be stored in more than one place in memory (as both a hard disk drive and a 

high-density disk drive, for example) and the form of memory depends on the order of presentation of 

examples. There are also many problems in generalizing objects that are themselves hierarchical, many 

of which are described in [50]. Despite all these caveats, however. we can still make use of memory in 

text processing. The quality of the help provided will simply depend upon the quality of memory. 

Our basic plan for using memory in text processing is to look for examples of the possible cases 

specified by the text. So, for example. in the situation illustrated in EX8. if we need to know whether 

object X is more likely to be a part of object Y or object Z (as in "a Y with a Z including an X ..... ). we 

simply look in memory for cases where X is a part of a Y or part of a Z. Similarly, if we have the 
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noun-noun construction, "an X Y", where we need to know the relation between X and Y, we look for 

existing relations in memory between X and y, Notice that this method implies that our system can only 

find genuinely new constructions from unambiguous text. 

Searching for relevant examples in a generalization-based memory is not difficult. Since, as we 

mentioned briefly above, each object is part of its own generalization hierarchy, and the hierarchies are 

indexed. we can efficiently find modifiers applied to objects or relations among objects. So, for example, if 

RESEARCHER is trying to decide whether read/write heads or enclosures are more likely to be magnetic 

(as in "magnetic readlwrite head enclosure ... "), it starts out with its most general read/write head and 

enclosure object descriptions, and searches through the more specific forms of these concepts until it 

finds a case with one or the other being magnetic. Similar processing is done for relations between 

Objects. 

Obviously our scheme for using memory is somewhat oversimplified. It is certainly possibte to 

imagine cases where our questions could be answered through an inference process and yet no specific 

examples found in memory. However, by and large, most of the important inferences will be captured by 

the generalized object descriptions in memory. Thus we are quite satisfied to look for examples. Another 

issue involves what to do when our assumptions taken from memory prove to be wrong, While we have 

not currently implemented a method for reversing incorrect disambiguation choices, we might at some 

point consider techniques of the sort described in [28]. 

4.3 A simple example of memory use 

As a simple illustration of RESEARCHER using memory in text understanding that ~hows how 

performance depends upon the contents of its memory, consider the noun phrase, EX10: 

EX10 - A motor spindle ... 

As discussed above (with EX5), the noun-noun construction in EX10 is ambiguous in terms of the 

relation between the nouns "motor" and "spindle" (actually, the concepts they refer to). We will first show 

how EX10 is processed with no relevant information in memory. Then we will put another simple example 

memory and show how RESEARCHER uses it to process EX10. 

Figure 3 shows how RESEARCHER processes EX10 with no relevant information in memory. In this 
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example, and others, lines beginning with ">>>" indicate queries of memory. Responses are indicated by 

"«<". The letters in the text representation refer to relations listed underneath. In more complex 

examples, we will see the representation in the form of a tree that specifies assembly/component 

relations. The &MEM's represent specific instances of abstract memettes. 

Running RESEARCHER at 14-Jan-86 16:10:56 

(A MOTOR SPINDLE) 

Processing: 

A 
MOTOR 
SPINDLE 

New instance word -- skip 
Memette within NP; save and skip 
MP word -- memette DRIVE-SHAFT# 

New DRlVE-SHAFT# instance (&MEM1) 
»> Looking for relation between MOTOR~ and &MEM1 (DRlVE-SHAFT#) 
New MOTOR# instance (&MEM2) 
Assuming ~ (MOTOR#) and &MEM1 (DRlVE-SHAFT#) are functionally related 
Establishing UNKNOWN-PURP-REL relation; SUBJECT: &MEM2 (MOTOR#); 

OBJECT: &MEM1 (DRlVE-SHAFT#) [&REL1] 

Text Representation: 

----------------------A-1 1 = DRlVE-SHAFT# 

----------------------A-2 2 = MOTOR# 

A list of relations: 

Subject: Relation: Object: 

[&REL1/A] &MEM2 (MOTOR#) {UNKNOWN-PURP-REL} &MEM1 (DRlVE-SHAFT#) 

Figure 3: 'Motor spindle' with memory empty 

The key processing in Figure 3 takes place at the end, when "spindle" is read. As RESEARCHER 

works backwards through the words it has "saved and skipped". it must determine the relation between 

the concepts driv&oshatt# (the definition of "spindle") and motor#. It searches memory for a relation 

between these concepts. Finding none, it can only postulate an indeterminate functional relation between 

the objects. 

The situation is quite different if there is relevant information in memory. For example, suppose 

EX11 had been in memory. 
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EX11 - A drive with a motor that includes a spindle. 

RESEARCHER's representation of EX11, with the drive shaft as part of the motor, is shown in 

Figure 4. Figure 5 shows how the processing of EX10 would take place in this case. 

Text Representation: 

1 = DRIVE# 
-------------11-------------21-------------3 2 = MOTOR# 

3 = DRIVE-SHAFT# 

A ~ist of re~ations: 

Subject: Re~ation: 

<none> 

Figure 4: Setting up memory 

Running RESEARCHER at 14-Jan-86 16:11·:47 

(A MOTOR SPINDLE) 

processing: 

A 
MOTOR 
SPINDLE 

New instance word -- skip 
Memette within NP: save and skip 
MP word -- memette DRIVE-SHAFT# 

New DRIVE-SHAFT# instance (&MEM4) 

Object: 

»> Looking for relation between MOTOR# and &MEM4 (DRIVE-SHAFT#) 
«< Found HAS-PART relation(s) between &MEM2 (MOTOR#) and &MEM3 (DRIVE-SHAFT#) 
New MOTOR# instance (&MEM5) 
Assuming &MEM4. (DRIVE-SHAFT#) is part of &MEM5 (MOTOR#) 

Text Representation: 

-----------------51-----------------4 4 = DRIVE-SHAFT# 
5 = MOTOR# 

A ~ist of relations: 

Subject: Relation: 
<none> 

Object: 

Figure 5: 'Motor spindle' with EX11 in memory 

The processing of EX10 is now quite different. When RESEARCHER looks for a relation between 

drive-shatt# and motor#, it finds the information from EX11 and assumes that the new example follows 

the same pattern -- that there is an assembly/component relation between the two objects. This shows 
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clearly how memory can help resolve ambiguity using only information that must be maintained in any 

case for generalization purposes. RESEARCHER is actually looking at both generalized and real objects 

in memory for guidance. In a fully developed memory, a simple relation like the one in EX11 would 

probably occur as part of a generalized object description. An example such as EX11 could also have 

been used to disambiguate phrases such as "motor spindle cover" or "an assembly with a drive including 

a motor". 

4.4 Problems in memory access 

The series of examples in Section 4.3 introduces an important question. What happens if more than 

one relevant example can be found in memory? Obviously this will occur frequently when memory 'is 

complex. At the moment, we have one heuristic for use in this case. When multiple relevant examples 

are found in memory, those nearest the top of the generalization hierarchy. Le .. in the least specific 

generalized object descriptions, are used. This seems logical, as a general object description applies. to a 

wide range of cases. However, this heuristic will require the construction of a large memory to be tested. 

The same is true in considering examples where one of the ambiguous cases is so obvious that Grice­

type considerations [16] indicate that the case would not be likely to occur in text. 

Several other problems arise in looking for relevant examples for use in text understanding. We will 

mention two here. First, our scheme would require refinement to handle certain elements of context in a 

very broad domain. For example, suppose RESEARCHER's memory had descriptions of stereo 

turntables as well as disk drives. The relation between objects such as motors and drive shafts might be 

very different for the two devices. A search for a relation between new instances of these objects begun 

by starting at motor# and drive-shaft# could easily find the wrong relation. For the moment, we have 

avoided the problem by only considering a relatively narrow domain. 

A second problem is that matching objects in a new example with other examples or generalized 

object descriptions is not a trivial task. In the disk drivetturntable example, while texts might describe the 

motors in each device with the same word, they are not truly the same conceptually. RESEARCHER 

would note the difference by representing the two objects differently in memory. The trick is then to note 

that we might want to consider the objects as being "the same" for purposes of disambiguation (e.g., in 

identifying the relation between the motor and the drive shaft). More strikingly in this example, we might 

wish to place in correspondence the disk drive's read/write head with the turntable's cartridge, since the 

relations involved are similar. 
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This matching process is a difficult one. We currently assume that objects with a "close" common 

ancestor in the generalization hierarchy match for search purposes. It turns out that exactly the same 

matching process is needed for the generalization process (see [50]), so we can apply solutions found 

there to our text processing memory search. 

5 A RESEARCHER example 

We will complete our presentation of RESEARCHER's use of memory in text understanding by 

showing how the program processes the first part of the real patent abstract we looked at in Section 3 

(P58) including how it makes use of other examples. At the risk of making the program look a bit foolish, 

we will first show how RESEARCHER understands P58 without any other examples in memory. 

RESEARCHER's representation of P58 in this case is shown in Figure 6. The representation consists of 

a set of identified memettes, a main part hierarchy and several parts that are not directly part· of the 

actuator. There is also a set of relations between memettes. The relations prefixed with R- are physical 

and those beginning with P- are functional (purposive). 

The representation in Figure 6 is actually not all that bad. Other than one major mistake, which will 

be discussed shortly, most of the relationships in the representation are correct, or at least plausible. 

However, and this is the key point, these relationships were determined in the face of extreme ambiguity 

by relatively ad hoc disambiguation rules, or in some cases, just by plain luck. As we will see below, the 

method by which RESEARCHER resolves ambiguity using information in memory is much more 

satisfying and potentially much more robust. 

The one major mistake made when producing the representation in Figure 6 illustrates this point 

nicely. RESEARCHER assumed that the list of objects following the word "comprising" were parts of the 

disk, not the actuator. A close look at P58 reveals that this is syntactically plausible. The mistake could 

easily be corrected with a heuristic suggesting that an actuator is more complex than a disk and hence 

more likely to have parts. Similarly, some sort of focus heuristic could also be devised (though focus 

seems to be used unusually in patent abstracts). However, the robustness of such heuristics is 

problematic, unlike, we feel, our memory-based methods. 

To illustrate the use of memory in processing, there will have to be other examples in memory for 

RESEARCHER to find. We will show how RESEARCHER processes P58 after having read the following 
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Running RESEARCHER at 19-J&n-86 19:57:10 
Patent: P58 
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(AN ELECTROMAGNETIC LINEAR ACTUATOR FOR POSITIONING A TRANSDUCER OVER 
LOCATIONS ON A ROTATING MAGNETIC RECORDING DISK COMPRISING AN ACTUATOR 
HOUSING USED AS A STATIONARY BASE FOR SUPPORTING VARIOUS PARTS *SEMI* A COIL 
AND CART ASSEMBLY INCLUDING A CART "'COMMA* RAVING A RECTANGULAR CROSS 
SECTION AND TUBULAR IN CONSTRUCTION *COMMA* ADAPTED AT ONE END TO SUPPORT 
THE TRANSDUCER *STOP*) 

Text Repre.entation: 

---------------------AE-l 1 - TypB/PURPOSE/ELEC~OMAGNETIC 
CONFIGURATION/LINEAR ACTUATOR. 

--------------------ABK-2 2 - TRANSDUCER' 

1-----------B-3 
1----------EF-5 
1 
1---------FGH-6 
1----------GH-7 

----------CD-41 1-------------9 
1 1------------10 
1-------------81------------11 

1--------IJK-12 

A list of relations: 

Subject: Relation: 

['REL1/A] 'HEMl (ACTUATORl) {P-GUIDES} 
['REL2/B] 'HEM3 (LOCATION') {R-ABOVE} 
['REL3/C] {P-WRITES} 
['REL4/D] (P-ROTATES) 

3 ~ NUMBER/>l LOCATION. 
4 = CONFIGURATION/CYLINDRICAL 

TYPE/PURPOSE/MAGNETIC DISK' 
5 = ENCLOSURE' -
6 a MOBILITY/NONE BASE' 
7 - NUMBER/SOME PART, 
8 - UNKNOWN-ASSEMBLYj 
9 .. CARRIAGE' 

10 - COIL' 
11 - SRAPE/RECTANGULAR 

CROSS-SECTION' 
12 - NUMBER/l END, 

Object: 

'HEH2 (TRANSDUCERj) 
'HEH2 (TRANSDUCER') 
UlEM4 (DISK') 
'HEM4 (DISK') 

['RELS/E] 'HEMl. (ACTUATORl) {UNKNOWN-PURP-REL} U!EMS (ENCLOSURE.) 
['REL6/F] 'HEMS (ENCLOSURE') (P-ACTS-AS) ,HEM6 (BASE') 
['REL7/G] 'HEM6 (BASEl) (P -SUPPORTS) ,MEM7 (PARTI) 
['REL8/a] ,HEM6 (BASEl) (R-CONNECTED-TO) 'MEM7 (PART') 
['REL9/I] 'HEMl2 (END I) (P-MODIFIES) 
['REL10/J] 'HEMl2 (END') (R-AT) 
[ 'RELll/K] 'HEMl2 (END') (P-SUPPORTS) 'HEH2 (TRANSDUCER*> 

Figure 6: P58 without any other examples in memory 

three excerpts from other patent abstracts. 

EX12 - P82: United States Patent #4305105: Bin Ho and Charles Dong (Abstract) 

A linear actuator for a magnetic disc drive has shortened magnetic flux lines totally confined 
within the actuator housing wnereby the actuator can be placed in closer proximity to a disc. 
The actuator includes a generally cylindrical housing with magnets attached to the inside 
surface of the housing. 
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EX13 - P94; United States Patent #4034613; Martin Halfhill and Russell Brunner (Abstract) 

A disc drive memory device is described utilizing a continuously rotating drive shaft and a roller 
which rides thereon to effect translational motion of a carriage to move a readlwrite head 
between address locations on a magnetic recording surface of a data storage disc. 

EX14 - P137; United States Patent #4400750; Forestlane Co. Ltd. (Abstract) 

A magnetic readlwrite head carriage assembly for a floppy disk drive is disclosed for use with 
double sided floppy disks. The head carriage assembly comprises a coil spring, having a 
central coil portion and first and second ends, which is mounted in a position between the base 
and the head support arm. 

Figures 7, 8 and 9 show the representations created and incorporated into memory by 

RESEARCHER for EX12 (P82). EX13 (P94) and EX14 (P137). For purposes of understanding P58. the 

key point in P82 is that it describes an actuator that includes an enclosure ("housing") as a part. The 

unknown functional relation between these parts will also prove significant. The relevant parts of P94 are 

the locations on the disk and the carriage as part ·of an assembly. P137 will contribute the description of 

an assembly that includes both a coil and a carriage. Note that even if every detail of a representation is 

not correct. it is still possible for RESEARCHER to make use of the parts that are correct. It is unlikely 

that any blatantly incorrect relations will prove relevant in processing later texts. 

Patent: P82 

Text Representation: 

1-------Z-7 1 • CONFIGURATION/LrNEAR 
I ACTUUORI 

1--------CD-11-------C-61-------E-8 2 • DRIVE' 
I 3- - TYPE/PURPOSE/MAGNETIC 
I DISK' 

---------A-21 4 ~ SIZE/SHORT MAGNETIC 
I NUHBER/>l LINE' 
1--------AD-3 6 - CONFIGURATION/CYLINDRICAL 
I ENCLOSORE' 
1---------B-4 7 • NUMBER/>l MAGNET' 

8 • LOCATION/INTERIOR SURFACE' 

----------------------B-S 5 - FLUX' 

A list ot relations: 

Subject: Relation: Object: 

['REL1/A] 'MEM3 (DISK') {UNKNOWN-PURP-REL} ,MEM2 (DRIVE.) 
['REL2/B] ,MEMS (FLUX') {UNKNOWN-PURP-REL} 'HEM4 (LINE#) 
['REL3/C] 'MEMl (ACTUATOR') {UNKNOWN-PURP-REL} ,HEM6 (ENCLOSORE') 
['REL4/D] 'MEM3 (DISK') {R-CLOSE-TO} 'MEMl (ACTUATORl) 
['RELS/E] 'MEM7 (MAGNET') (R-CONNECTED-TO) 'HEM8 (SURFACE.) 

Figure 7: RESEARCHER representation of EX12 
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Patent: P94 

Text Repre.entation: 

1-------10 
1-----F-111----FL-121-----J-181-----K-17 
1 
1-----G-13 

----~---91-----H-14 

1-----H-15 
1----IK-16 

---------------------L-19 19 - DATA' 

A 1iat ot relation.: 

Subject: Relation: 

9 = UNKNOWN-ASSEMBLY# 
10 = MEMORY. 
11 = DRIVE. 
12 = DISK. 
13m DRIVE-SHAFT. 
14 - ROLLER, 
15 - CARRIAGE' 
16 - TYPE/PURPOSE/READ-WRITE 

TRANSDUCER' 
17 - NUHBER/>l LOCATION, 
18 - TYPE/PURPOSE/MAGNETIC 

SURFACE, 

Object: 

['REL6/J'] ,HZMl2 (DISK') {UNKNOWN-PURP-RKL} "'fEMll (DRIVE') 
['REL7/G] {P-ROTATES} ,HEMl3 (DIUVR-SHAFT') 
['RELe/H] ,HEMl4 (ROLLER') (R-ON-TOP-OP') ,HEMl5 (CARRIAGE') 
['REL9/I] 'HEMl6 (TRANSDUCER') {P-HOVES} 
['REL10/J] {P-WRITES} ",mM18 (SURFACE') 
['RELll/K] 'HEMl6 (TRANSDUCER') (R-BETWEEN) 'HEMl7 (LOCATION') 

object2: 'HEMl8 (SURFACE') 
['REL12/L] 'HEMl9 (DAU') {P-WRITES} 'HEM12 (DISKl) 

Figure 8: RESEARCHER representation of EX13 

Figure 10 shows how the first part of P58 is processed. As before, the lines marl<ed with ">>>" are 

the points where memory is queried, and "«<" indicates replies. 

Processing of P58 begins with "an electromagnetic linear actuator". We can see in Figure 10 how 

RESEARCHER processes this noun group by saving and skipping the words "electromagnetic" and 

"linear" until the head noun, "actuator" is reached. It then worl<s back through the noun group, applying 

the modifiers to actuator#. Even though this case is not ambiguous, RESEARCHER still looks in 

memory for relevant examples. In doing so it finds the example of the linear actuator from P82. Next to be 

established is a purposive relation, P-GUIDES, taken from the word "positioning" (after "for", which in this 

case indicates that a purpose word is to follow). 

When processing the phrase "over locations", RESEARCHER runs into its first true ambiguity, one 

like EX8 in Section 4. In establishing the R-ABOVE relation from "over", RESEARCHER must decide 
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Patent: P137 

Text Repre.entation: 

1------------21 20 = TYPE/PURPOSE/MAGNETIC 
1 ONKNOWN-ASSEMBLYI 
1----------R-22 21 = CARRIAGE_ 
1----------0-25 22 = TYPE/PORPOSE/READ-WRITE 
1 TRANSDOCER_ 

. 1------------201----------0-26 23 = DRIVE' 
---------MN-231 1----------P-27 24 - rYPE/PORPOSE/TWO-SIDES 

I I TEXTURE/SOFT DISK' 
I 1---------PS-28 2S = SPRING' 
I 26 = LOCATION/CENTER COIL' 
I 27 = NUMBER/2 END' 
1---------MN-24 28 = LOCUION' 

---------------------S-29 29 - BASE' 

--------------------QR-30 30 - ARM' 

A li.t of relation.: 

Subject: Relation: Object: 

['REL13/M] 'MEM24 (DISK') (ONKNOWN-PURP-REL) ,MEM23 (DRIVE') 
[~14/N] 'MEM23 (DRIVE') {P-OSED-FOR} ,MEM24 (DISK') 
[GULlS/OJ 'MEM26 (COIL') {ONKNOWN-PURP-RELI 'MEM2S (SPRING') 
[,UL16/P] 'MEM27 (END') {R-INSIDE-OF} 'MEM28 (LOCATION') 
['REL17/Q] 'MEM30 (ARM') {P-SOPPORTS} 
[GREL18/R] 'MEM22 (TRANSDOCER') {UNKNOWN-PURP-RELI ,MEM30 (ARM') 
['REL19/S] ,MEM28 (LOCUION') {R-BE'l'WEEN} ,MEM29 (BASKI) 

object2: 'MEM30 (ARM') 

Figure 9: RESEARCHER representation of EX14 

whether the ''transducer'' or the "actuator" is over the "locations". In searching memory to resolve this 

ambiguity, RESEARCHER finds an instance of a transducer and locations in an R-BETWEEN relation 

from P94. It cannot use this example to resolve the ambiguity involving R-ABOVE, so it uses a simple 

syntactic heuristic. A more sophisticated version of the program could perhaps consider the connection 

between R-BETWEEN and R-ABOVE. 

A similar ambiguity arises when "a rotating magnetic recording disk" is reached. The internal 

"identify the pieces" processing is similar to that for the first noun group, saving the modifiers and then 

applying them to disk#. RESEARCHER must decide whether the "part of" word, "on", indicates that the 

"locations" or the "actuator" is part of disk#. (If the second reading is not obvious, imagine the word 

"and" before "on". This reading is syntactically possible, with or without the word "and" being present.) 

RESEARCHER's first choice of how to resolve this ambiguity is with a memory check. It looks for 

cases in memory where either the concept locatIon# or actuator# is part of disk#, and finds the example 

of locations on disks from P94. This is used to resolve the ambiguity and RESEARCHER creates a 
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Runninq RESEARCHER at 16-Jan-86 01:04:15 
Patant: 1'58 

26 

(AN ELECTROMAGNETIC LINEAR ACTUATOR FOR POSITIONING A TRANSDUCER OVER LOCATIONS 
ON A ROTATING MAGNETIC RECORDING DISK COMPRISING AN ACTUATOR HOUSING USED AS A 
STATIONARY BASE. FOR SUPPORTING VARIOUS PARTS *SEMI* A COIL AND CART ASSEMBLY 
INCLUDING A CART *COMMA* HAVING A RECTANGULAR CROSS SECTION AND TUBULAR IN 
CONSTRUCTION *COMMA* ADAPTED AT ONE END TO SUPPORT THE TRANSDUCER *STOp*) 

Processinq: 

AN New inatance word -- skip 
ELECTROMAGNETIC : Mamette modifier; save and skip 
LINEAR Mamette modifier; save and skip 
ACTUATOR HI> word -- memette ACTUATOR' 

Naw ACTUATOR' inatance ('HEK31) 
»> Lookinq for mematte modified by CONFIGURATION/LINEAR from ,MEH31 (ACTUATOR') 
«< Found use of property CONFIGURATION - LINEAR ['~ (ACTUATOR')] (from P82) 
Auqmentinq ,HEK31 (ACTUATOR') with feature: CONFIGURATION = LINEAR . 
»> Lookinq for memette modified by TYl'E//PURPOSE/ELECTROMAGNETIC from 'MEM31 (ACTUATOR') 
Auqmentinq 'MEH31 (ACTUATOR') with feature: TYFE//PURPOSE ~ ELECTROMAGNETIC 

FOR (FOR1) 
POSITIONING 
A 
TRANSDUCER 

Purpose indicator -- skip 
Purpose word -- save and skip 
Naw instance word -- skip 
MP word -- mamette TRANSDUCER' 

New TRANSDUCER' instance ('HEK32) 
Establishinq P-GUIOES relation; SUBJECT: ,HEK31 (ACTUATOR'); 

OBJECT: ,HEK32 (TRANSDUCER') [~L201 

OVER 
LOCATIONS 

Relation word -- save and akip 
HI> word -- memetta LOCAT~ON' 

New LOCATION' instance ('HEK33) 
»> Refininq R-ABOVE OBJECT from ,HEK32 (TRANSDUCER') ,HEK31 (ACTUATOR') 
«< Found R-BETWEEN relation(s) between ,HEH17 (LOCATION') 

and 'HEH16 (TRANSDUCER') (from P94) 
Unable to aelect OBJECT -- usinq most recent 
Eatabliahinq R-ABOVE relation; OBJECT: ,HEK32 (TRANSDUCER'); 

SUBJECT: 'HEK33 (LOCATION') ['REL21] 

ON (ON2) Part of indicator 

Aaauminq ,HEK33 (LOCATION') or ,HEK32 (TRANSDUCER') or ,HEK31 (ACTUATOR') 
is part of the followinq 

A 
ROTATING 
MAGNETIC 
RECORDING 
DISK 

New inatance word -- skip 
Purpoae word within NP; aave and skip 
Mamette modifier; aave and skip 
Purpoae word within NP; aave and skip 
HI> word -- memette DISK' 

Naw DISK' instance (,MEM34) 
Establiahinq'P-WRI'1'ES relation; OBJECT: ,HEK34 (DISK') ['REL22] 
»> Lookinq for memette modified by TYl'E//PURPOSE/MAGNETIC from 'MEH34 (DISK') 
«< Found uae of property TYPB//PURPOSB - MAGNETIC ['HEK3 (DISK')] (from P82) 
Auqmentinq 'HBH34 (DISK') with feature: TYFE//PURPOSE - MAGNETIC 
Eatabliahinq P-ROTA'1'ES relation; OBJECT: ,HEK34 (DISK') ['REL23] 
»> Selectinq comp for 'HEK34(DISK') from amonq ,HEK33 (LOCATION') 

'HEK32 (TRANSDUCER') ,HEK31 (ACTUATOR') 
«< Found HAS-PART relation(a) between '~2 (DISK') and '~7 (LOCATION') (from P94) 
«< Found R-CLOSE-TO relation(s) between ,HEK3 (DISK') and ,~ (ACTUATOR') {from P82} 
Assuminq ,MEM33 (LOCATION') is part of ,HEK34 (DISK') 

Figure 10: RESEARCHER processing the first part of PS8 

relation similar to the one in P94 in its representation of this example. RESEARCHER also finds a 
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physical relation between actuator# and disk# (from P82), but that example was not relevant to the 

ambiguity being resolved. 

Had RESEARCHER not found a relevant example, it would have resorted to its set of heuristics and 

gotten the same resu~. The relevant rule states that ''virtual'' objects. such as location#, which refer to 

implicit parts of objects. are more likely to be parts of solid objects (such as disk#) than are complex 

objects (such as actuator#).5 This sort of processing is related to the use of semantic properties of words 

for disambiguation, and is integrated nicely with memory search. However. we wish to avoid adding too 

many ad hoc rules of this sort and feel that the memory-based result is more pleasing. 

Further use of memory by RESEARCHER occurs in the processing of the next section of P58, 

shown in Figure 11. 

The first noun group processed in Figure 11. "an actuator housing". includes a noun-noun 

construction requiring memory access: RESEARCHER must determine the relationship between the two 

objects described, actuator# and enclosure# ("housing'). There are no syntactic clues or semantic 

clues al) to the relation. So, RESEARCHER goes to memory and finds the assembly/component and 

unknown purpose relations that existed in memory for another example of these concepts (P82). It 

assumes that these relations hold for the new example. Had there been a more complex construction, 

say noun-noun-noun, RESEARCHER would have used this same information in memory to determine 

which objects were related to each other. 

The assembly/component relation from P82 is used to resolve another textual ambiguity. 

RESEARCHER must determine whether actuator# or dlsk# is comprised of the "actuator housing" (and 

other parts). Again, the existing relation in memory resolves this ambiguity, and determines that the 

housing is part of the actuator. Since this relationship has already been established (while analyzing the 

noun group) processing simply moves on. As mentioned when we showed how RESEARCHER 

processed P58 with no help from memory, this turns out to be the key ambiguity to be resolved in 

understanding P58. 

The remainder of Figure 11 shows more examples of "identifying pieces", "putting the pieces 

SOther such virtual objects are sidej. topl. etc. 



COMPRISrNG 

AN 
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Parts of ,MEH34 (DISK') or ,MEH33 (LOCATION') 
or ,MEH32 (TRANSDUCER') or ,MEM31 (ACTUATOR') to follow 

New instance word -- skip 
~tte within NP; save and skip 
MP word -- mamatte ENCLOSURE' 

New ENCLOSURE' instance ('MEM35) 
»> Looking for relation between ACTUATOR' and 'MEM35 (ENCLOSURE') 
«< Found HAS-PART UNKNOWN-PURP-RBL relation(s) between 'MEMl (ACTUATOR') 

and 'HEM6 (ENCLOSURE') (from P82) 
AaswUng ,MEH3S (ENCLOSURE') 18 part of ,MEM31 (ACTUATOR') 
Establishing UNKNOWN-PURP-REL relation; SUBJECT: ,MEH31 (ACTUATOR'); 

OBJECT: 'MEM3S (ENCLOSURE') ['REL24] 
»> Selecting assy for ,MEH3S (ENCLOSURE') from among 5MEH34 (DISK') 

'MEH33 (LOCATION') ,MEH32 (TRANSDUCER') 'MEH3l (ACTUATOR') 
«< Found IS-PART-OF UNKNOWN-PURP-REL relation(s) between 'HEM6 (ENCLOSURE') 

and 'MEM1 (ACTUATOR') {from P82} 
5MEH3S (ENCLOSURE') 18 already known to be a part of ,MEH3l (ACTUATORI) 

USED AS 
-> USED-AS 
A 
STATIONARY 
BASE 

Phrase 
Purpose word -- save and skip 
New instance word -- skip 
Memette modifier; save and skip 
MP word -- ~tte BASE' 

New BASE, instance ('MEH36) 
»> Looking for mamette modified by MOBILITY/NONE from ,HEM36 (BASE') 
Augmenting ,MEH36 (BASK') with feature: MOBILITY - NONE 
AaswUng ,MEH36 (BASEl) 18 part of ,MEM3l (ACTUATOR') 
»> Refining P-ACTS-AS SUBJECT from ,MEH3S (ENCLOSURE') 5MEH3l (ACTUATOR') 
«< Positive heuristic result ENCLOSURE' ACTUATOR' on NOT-IMPLICIT-PURPOSE 
Establishing P-ACTS-AS relation; SUBJECT: ,MEH35 (ENCLOSURE'); 

OBJECT: 'MEH36 (BASK') ['RZL2S] 

FOR (FOR1) 
"SUPPORTrNG 
VARIOUS 
PARTS 

Purpose indicator -- skip 
,Purpose word -- save and skip 
Mematte modifier; save and skip 
MP word -- memette PART' 

New PART' instance ('MEH37) 
»> Looking for mamatte modified by NUMBER/SOME from ,MEH37 (PART') 
Augmenting ,MEH37 (PAR'r1) with feature: NUMBER • SOME 
AaswUnq 'MEM37 (PAR'r1) 18 part of 'HIlM3l (ACTUA.TORt) 
»> Refininq P-SUPPOR'rS SUBJEC'r from ,MEM36 (BASE') ,HEM3S (ENCLOSURE') 
«< Positive heuristic result ,HEM29 (BASE') on IMPLICI'r-PART-OF-UNITARY 
«< Positive heuristic result ,HEM6 (ENCLOSURE') on NOT-IMPLICIT-PURPOSE 
Unable to select SUBJEC'r -- using most recent 
Establishing P-SUPPORTS relation; SUBJEC'r: ,HEM36 (BASE'); 

OBJEC'r: 'HIlM37 (PAR'r') ['RXL26] 
Establishing R-CONNECTED-'rO relation; SUBJEC'r: ,MEH36 (BASE'); 

OBJEC'r: 'MEH37 (PAR'rI) ['REL27] 

*SZMI* Skip (SJtlP) 

Figure 11: RESEARCHER processing the second part of P58 

together" and accessing memory to resolve ambiguity. No further relevant examples from memory are 

found, so RESEARCHER makes use of heuristics like the one mentioned above. In the case of 

determining whether the "actuator" or the "housing" is "used as a base" both satisfy the same heuristic, 

so the most recent object mentioned is used. 

Figures 12 and 13 show further examples of RESEARCHER's processing as it completes the first 
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fragment of P58. Examples from both P94 and P137 are found to indicate the various relations within the 

. "coil and cart assembly". (Actually, to do this example in a fully general fashion, we would also have to 

apply memory-based techniques to determine the scope of "and" as a connective.) This example 

illustrates clearly how RESEARCHER's memory search is semantic rather than lexical, since P94 referred 

to a "carriage" in a "device" and yet RESEARCHER can use this example to determine the relation 

between a "cart" and an "assembly". Figures 12 and 13 include cases of RESEARCHER finding 

examples from both P94 and P137 that serve to resolve the same ambiguity. A topic of further research is 

to determine what to do if relevant examples from memory contradict each other (see Section 4.4) . 

. When RESEARCHER reaches the point in processing shown in Figure 13, it has built up the 

representation shown in Figure 14. (RESEARCHER handles the entire patent abstract, but the 

representation gets rather messy.) This representation captures all the information from P58 th?t is 

needed for the learning aspects of RESEARCHER. 

6 Conclusion 

As we have seen in this paper, memory application is an absolute necessity if we wish for our 

understanding systems to take advantage of the all information they possess to improve performance. 

However, we must delineate exactly how memory should be used. as illustrated in this paper. In the 

RESEARCHER framework, simple syntactic rules, driven by generic memory structures ("semantics"). 

limit the possible ways that a representation can be constructed, and searching detailed memory resolves 

ambiguities. This allows each phase of the processing to be relatively simple and lets the redundant 

nature of language help us obtain robust performance. While a different conceptual understanding 

scheme or a different domain might require other points of memory access, this general framework will 

still be appropriate. 

Although we do feel that many levels of language comprehension can occur in parallel, as is 

probably the case in the human brain, we must resist the temptation to assume that such processing is 

hopelessly unstructured. The observation that the levels of the parallel processing only interact at 

specified points allows us to consider different levels separately. However, it is equally crucial that we not 

consider the different levels of processing in total isolation, as strong interaction is certainly necessary for 

optimal performance. Furthermore, access of long-term memory must be part of language processing to 



A 
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AND (AND2) 
CART 
ASSEMBLY 
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New instance word -- skip 
Hemette within NP; save and skip 
Skip (SKIP) 
Mamette within NP; save and skip 
MP word -- _matte UNKNOWN-ASSEMBLY# 

New UNKNOWN-ASSEMBLY. instance (,MEH38) 
»> Looking tor relation between CARRIAGE' and 'MEH38 (UNKNOWN-ASSEMBLY. -- 'ASSEMBLY') 
«< Found IS-PART-OF relation(s) between 'MEM21 (CARRIAGE.) 

and ,MEM20 (UNKNOWN-ASSEMBLY. -- 'ASSEMBLY') {from P137} 
«< Found IS-PART-OF relation(s) between ,~S (CARRIAGE') 

and 'HEM9 (UNKNOWN-ASSEMBLY. -- 'DEVICE') {from P94} 
New CARRIAGE, instance ('MEH39) 
AsswUng 5MEH39 (CARRIAGE') 1& part of ,MEH38 (UNKNOWN-ASSEMBLYi! -- 'ASSEMBLY') 
»> Looking tor relation between COIL' and one of 'MEH39 (CARRIAGE.) 

,MEH38 (UNKNOWN-ASSEMBLYI -- 'ASSEMBLY') 
«< Found IS-PART-OF relation(s) between ,MEM26 (COIL') 

and,MEM20 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') {from P137} 
New COIL' instance ('HEM40) 
AsswUng 'HEM40 (COIL') is part of ,MEH38 (UNKNOWN-ASSEMBLY' --'ASS~LY') 
Asauming ,MEH38 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') is part of ,MEH3l (ACTUATOR') 

INCLUDING Parts ot ,MEH38 (UNKNOWN-ASSEMBLYI -- 'ASSEMBLY') 
or ,MEH3l (ACTUATOR') to follow 

New instance word -- skip 
MP word -- memette CARRIAGE' 

Reterence tor CARRIAGE': 'MEH39 
»> Selecting assy for ,MEH39 (CARRIAGE') from among 

'MEH38 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') 'MEH3l (ACTUATORl) 
«< Found IS-PART-OF relation(s) between 'MEM2l (CARRIAGE') 

and 'MEM20 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') (from P137) 
«< Found IS-PART-OF relation(s) between ,~S (CARRIAGE.) 

and 'HEM9 (UNKNOWN-ASSEMBLY' -- 'DBVICE') (from P94) 
'MEH39 (CARRIAGE') 1& already known to be a part of ,MEH38 
(UNKNOWN-ASSEMBLY' -- 'ASSBMBLY') 

*COMMA* 
HAVING 

A 
RECTANGULAR 

Skip (SKIP) 
Parts of ,MEH39 (CARRIAGE') or 'MEH38 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') 

or ,MEH3l (ACTUATOR') to follow 
New instance word -- skip 
Hemette modifier; save and skip 

CROSS SECTION Phrase 
-> CROSS-SECTION : HP word -- mamette CROSS-SEC:ION, 

New CROSS-SECTION' instance ('HEM4l) 
»> Looking for mematte modified by SRAPE/RECTANGULAR from 'HEM4l (CROSS-SECTION') 
Augmenting 'HEM4l (CROSS-SECTION' --'CROSS-SECTION') with feature: SHAPE a RECTANGULAR 
»> Selecting assy for ,HEM.l (CROSS-SECTION' -- 'CROSS-SECTION') 

from among 'MEH39 (CARRIAGE') ,MEH38 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') 'MEH3l (ACTUATOR') 
«< Positive heuristic result UNKNOWN-ASSEMBLY. on GENERIC-ASSEMBLY 
Assuming 'HEM4l (CROSS-SBCTION' -- 'CROSS-SBCTION') is part ot 

'MEH38 (UNKNOWN-ASSEMBLY' -- 'ASSIUmLY') 

Figure 12: RESEARCHER processing more of P58 

explain the robustness of human processing and to achieve robustness in computer understanding 

systems. We feel that our efforts to integrate memory access with conceptual analysis techniques in 

RESEARCHER are important step in the direction of truly robust understanding and in developing 

systems that get smarter as they read. 



AND (AND2) 
TUBULAR 

Skip (SKIP) 
Mamette modi~ier; eave and ekip 

IN CONSTROCTION : Phra.e 
-> IN-CONSTROCTION : Collectinq modi~iers 

31 

»> Lookinq ~or mamette modi~ied by CONFIGURATION/CYLrNDRICAL ~rom &HEM31 (ACTUATOR#) 
&MEM38 (ONKNOWN-ASS~~LY' -- 'ASSEMBLY') 'HEM41 (CROSS-SECTION' -- 'CROSS-SECTION') 
Unable to determine -- using close.t 
Augmenting ,MEM38 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') with feature: CONFIGURATION = CYLrNDRICAL 

*COMMA* 
ADAPTED 
AT 
ONE 
END 

Skip (SKIP) 
Purpose word -- save and akip 
Relation word -- aave and skip 
Mem.tte modifier; aave and akip 
MP word -- mem.tte END' 

New KNO' in.tance ('HEM42) 
»> Lookinq ~or mem.tte mod1~ied by NUMBER/l ~rom ,HEM42 (END') 
Augmentinq ,HEM42 (END') with ~eature: NUMBER - 1 
AaaUDdng &MEM42 (END') is p~rt o~ UmM38 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') 
Eatabliahinq P-HODIFrES relation; SUBJECT: 'MEM42 (END') ['REL28] 
Eatabli.hing R-AT relation; SUBJECT: ,HEM42 (END') ['REL29] 

TO SUPPORT 
-> SUPPORTS 
THE 
TRANSDUCER 

Phra.e 
Purpoae word -- .ave and .kip 
Antecedent word -- skip 
MP word -- memette TRANSDUCER' 

Reference ~or TRANSDUCER': ,MEH32 
»> Ra~1ninq P-SUPPORTS SUBJECT from '~~42 (END') 

'MEM38 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') 'MEM31 (ACTUATOR') 
«< Found IS-PART-OF relation(a) between ,MEM22 (TRANSDUCER') 

and ,MEM20 (UNKNOWN-ASSEMBLY' -- 'ASSEMBLY') {~rom P137} 
«< Found IS-PART-OF relation(.) between 'MEM16 (TRANSDUCER') 

and ,HEM9 (UNKNOWN-ASSEMBLY' -- 'DEVICE') {from P94} 
Unable to .elect SUBJECT -- uainq most recent 
Eatabliahing P-SUPPORTS relation; SUBJECT: 'MEM42 (END'); OBJECT: 'MEM32 (TRANSDUCER') ['REL30] 

·STOP* Break word -- .kip 

Figure 13: RESEARCHER processing the final part of P58 
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Text Repre.entation: 

1---------lCY-35 
1 
1 
1-------YZAl.-36 
1--------ZAl.-37 

32 

31 a TYPE/PURPOSE/ELECTROMAGNETIC 
CONF IGURAT ION/LrNEAR 
ACTUATOR. 

35 = ENCLOSURE. 

1 1------------39 
36 = MOBILITY/NONE BASEl! 
37 = NUMBER/SOME PART. 
38 = UNKNOWN-ASSEMBLY. 
39 = CARRIAGE I 

---------TX-311 1------------40 
1------------381------------41 

1-----B1C1Dl-42 

------------------TODl-32 32 - TRANSDUCER' 

40 = COIL' 
41 = SHAPE/RECTANGULAR 

CROSS-SECTION. 
42 = NUMBER/l END' 

-------------VW-341--------------U-33 33 • NUMBER/>l LOCATION' 
34 • TYPE/PURPOSE/MAGNETIC DISK' 

A li.t of relation.: 

Subject: Relation: Object: 

['REL20/T] ,MEM31 (ACTUATORl) {P-GUIDES} 'MEM32 (TRANSDUCER') 
[,REL21/U] 'MEM33 (LOCATION') {R-ABOVE} 'MEM32 (TRANSDUCER#) 
['REL22/V] {P-WRITES} 'MEM34 (DISK') 
['REL23/W] {P-ROTATES} ,MEM34 (DISK') 
['REL24/X] 'MEM31 (ACTUATORI) {UNKNOWN-PURP-RZL} 'MEM35 (ENCLOSURE') 
['REL25/Y] 'MEM35 (ENCLOSURE') {P-ACTS-AS} ,MEM36 (BASEl) 
[,REL26/Z] ,MEM36 (BASEl) {P-SUPI'ORTS} 'MEM37 (PART') 
['REL27/ll] 'MEM36 (BASEl) {R-CONNECTED-TO} 'MEM37 (I'ART#) 
['REL28/Bl]'HEM42 (END') {P-MODn'IES} 
['REL29/Cl]'HEM42 (Info I) {R-AT} 
['REL30/Dl]'MEH42 (END') {P-SUPPORTS} 'HEM32 (TRANSDUCER') 

Figure 14: RESEARCHER representation of P58 at this point 
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