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PROTIST NEWS 

Soil Respiration, Climate Change and the Role of Microbial 
Communities 
Introduction 

Although this contribution is not intended to be a comprehensive perspective on 

current knowledge of soil respiration, a brief overview of some pertinent research on 

global patterns of soil respiration is presented first as a context for the more focused 

discussion of the role of microbial communities in soil carbon budgets and net 

respiratory flux to the atmosphere. Major reviews, and relevant broad research studies 

of current knowledge about regional and global respiratory flux patterns, are available 

from other sources. These include reviews of terrestrial respiration in broad 

geographical regions (e.g. Raich and Schlesinger 1992; Schlesinger 1997; Schimel 

1995; Peng and Apps 2000; Luo and Zhou 2006); in particular geographic regimes and 

biomes (e.g. Townsend et al. 1992; Bekku et al. 2003; Bond-Lamberty and Thomson 

2010; Anderson 2010a); and in relation to soil decomposition processes (e.g. Tate 

1995; Adl 2003). With increasing evidence of global climate change, including 

increasing global temperature and likely major changes in patterns of precipitation, 

effects on soil microbial communities are likely to be significant, especially at higher 

latitudes where thawing of the permafrost may release substantial stored-up carbon 

compounds, thus increasing microbial respiration and efflux of CO2 to the atmosphere.  

Some perspectives on emerging evidence of the effects of climate change, especially 

precipitation patterns and soil moisture on the dynamics of microbial communities and 

respiratory CO2 emissions, are presented in a subsequent section of this paper. Finally, 

some of the prospects and challenges for future research on the role of bacterial and 

protist soil microbial communities in terrestrial carbon budgets and CO2 efflux are 

discussed in relation to emerging research themes and new methodological 

approaches. 
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Factors Influencing Soil Respiration 
 At the beginning of the twentieth century, some of the major factors that influence 

soil respiration had been established. These included the role of soil moisture in 

microbial activity (Greaves and Carter 1920), the primary role of bacterial decomposition 

as a source of CO2 efflux (Turpin 1920), importance of soil diffusion kinetics in 

determining efflux (Lundegårdh 1927) and the correlation of CO2 production with the 

rate of diffusion through the soil (Smith and Brown 1933). More recently, estimates of 

global terrestrial CO2 flux to the atmosphere have improved substantially, in accuracy 

and number, especially in relation to different biomes (e.g. Bond-Lamberty and 

Thomson 2010). The mean rates of soil respiration (g C m-2 yr-1) for a variety of 

vegetation-based, global biomes have been tabulated by Raich and Schlesinger (1992). 

Examples include Tundra (60 ± 6), northern bogs and mires (94 ± 16), desert scrub 

(224 ± 38), temperate grasslands (442 ± 78), temperate deciduous forests (647 ± 51), 

and tropical moist forests (1,260 ± 57). With increasing climate change, current 

evidence indicates there has been a substantial increase in terrestrial CO2 flux to the 

atmosphere during the period of 1960 to present, especially for temperate and tropical 

biomes compared to high latitude biomes.  Based on data analyzed by Bond-Lamberty 

and Thomson (2010), the recent annual global soil respiration (Rs) is estimated to be 98 

± 12 Pg C; or if agricultural areas are excluded, 85 Pg C. The contribution to total Rs by 

boreal, temperate and tropical biomes is 13%, 20% and 67%, respectively.  Although 

the largest contribution is from temperate and tropical biomes, the most significant 

relative change in recent years (7%) has been in the polar biomes. There are less 

dramatic increases (2-3%) in lower latitudes. This is further supported by meta-analyses 

of large networks of data sources (e.g. Rustad et al. 2001). Furthermore, as may be 

expected, the Bond-Lamberty and Thomson (2010) analyses indicate increasing Rs can 

be partially attributed to increasing global climate change. Laboratory studies of the 

effects of warming on soil respiration also indicate that the response of microbial 

respiration to warming as assessed by Q10 measurements may differ substantially for 

soils from different latitudes (Bekku et al. 2003).  As climate patterns change, including 

variations in temperature and precipitation patterns, major shifts in biome boundaries 

are expected to occur. Among these are likely transitions between grasslands and 
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forests. Some current evidence (McCulley et al. 2004) suggests that mean soil organic 

carbon in forested sites can be as much as two-times larger than in remnant grasslands 

(e.g. 3,382 vs. 1,737 gC m-2), including increased Rs in forested sites compared to 

grasslands (745 vs. 611 gC m-2 yr-1). Microbial biomass carbon was also higher in the 

woodlands compared to grasslands (444 vs. 311 mg C kg-1 soil, respectively). 

Transitions between grasslands and woodland ecosystems can occur in either direction, 

depending on climatic factors, particularly changes in precipitation patterns, with less 

precipitation favoring transitions from woodland to grassland regimes. 

 

Soil Respiration, Precipitation Patterns and Soil Moisture 

Among major climatic variables, patterns of precipitation and soil moisture are 

likely to have significant effects on soil microbial communities and their respiratory 

responses.  Therefore, a survey of some pertinent published research on the response 

of soil respiration to variations in precipitation is presented as background for the more 

focused analysis of the role of microbial communities in soil respiration presented later.  

A recent review of relationships between soil respiration and soil moisture, including an 

historical analysis of the phases of research in the field in recent decades, has been 

presented by Cook and Orchard (2008).  Soil microbial communities have adapted to 

the stringent environmental conditions of terrestrial life, where stress from repeated 

cycles of precipitation and drying have created strong selection pressures to adapt to 

these highly unpredictable environments. Microbial activity is reduced or ceases below 

critical levels of soil moisture, resulting in desiccation-resistant dormant stages such as 

spores or cysts in some species. Soil fungi, with extensive multicellular networks of 

hyphae, produce hyphal strands that bridge across air-filled pores and are active at a 

water potential as low as -15 MPa; whereas, bacteria are inactive below -1.0 to -1.5 

MPa (Swift et al 1979). Naked amoebae, one of the more common protists in soils, 

encyst at low levels of soil moisture, but rapidly excyst under favorable conditions when 

sufficient moisture is present. Based on one estimate from temperate soil, the percent 

active (P) is linearly related to the weight-based percent water content (M) of the soil, 

i.e. P = 2.84 M – 5.59, r2 = 0.95, based on samples from a Northeastern U. S. site 
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(Anderson 2000). A cubic polynomial regression equation relating water potential (W) in 

bars to soil percent moisture (M) is: W = 21.45 (P) – 1.285 (P)2 + 0.025 (P)3 – 117.41. 

 Overall, global soil respiration (g C m-2 yr-1) is linearly related to mean annual 

precipitation (mm), with a slope of ~ 0.5 (Raich and Schlesinger 1992). The relationship 

of soil respiration to soil moisture content is complex, however, owing in part to the 

variations in soil porosity, amount of aeration of the soil in relation to soil water content, 

and of course the differential physiological responses of the microbial community (e.g. 

Lou and Zhou 2006, p. 92-93). Field observations indicate that soil CO2 efflux is 

curvilinear related to soil moisture. CO2 efflux is limited mainly at the lowest and highest 

moisture levels with a maximum plateau in the optimum soil moisture range (Bowden et 

al.1998; Xu et al. 2004), consistent with earlier experimental reports (e.g. Ino and Monsi 

1969). A review of current research on the relationship of soil respiration to soil moisture 

in some major biomes (Polar Regions, grasslands, and meadows and woodlands) is 

presented as further background information for the subsequent major section on “Soil 

Respiration, Carbon Budget and Microbial Communities”. 

In tundra, moss-rich surface soil that has thawed, and is sufficiently moist to 

support microbial activity, the CO2 efflux is higher for mesic sites compared to wet sites 

where water-logging and anaerobic conditions can suppress aerobic respiration (e.g., 

Oberbauer et al. 1991; Illeris et al. 2004; Anderson 2010b). Illeris et al. (2004), working 

with subarctic heath soil, report that optimum moisture content for CO2 efflux was  in the 

moderate range of 240% soil dry weight, consistent with a range between 200 and 

500%  reported by Heal et al. (1981).  Laboratory measurements of tundra soil 

respiration from a mesic upslope location compared to a wetter downslope location 

(Anderson 2010b) also supported the conclusion that respiratory efflux (nmol min-1 cm-3) 

was greater at the mesic site relative to the wetter site when measured at two different 

temperatures of 15o C (9.1 ± 0.6 vs. 4.1 ± 0.7) and 25o C (21.4 ± 0.2 vs. 7.8 ± 0.5). With 

increased evidence of global warming, and increasing annual temperatures in polar 

regions, substantial stores of organic compounds in the permafrost may be released 

supporting microbial respiratory growth and CO2 efflux to the atmosphere. There are 

millions of square kilometers of circumpolar tundra, and estimates of respiratory CO2 

emissions can become as high as 5  to 10 kmol km-2 h-1, assuming continued climate 
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change warming, a 10-cm thaw depth, and suitable patterns of precipitation (e.g. 

Anderson 2008; 2010a,b). This is based, however, on a model that assumes only 

bacterial and protist contributions - estimates could change substantially in the future, 

depending on differences in soil physical characteristics, percent active bacteria, and a 

better estimate of contributions by fungi. However, the above estimates are consistent 

with current evidence based on field sampling (e.g. Oberbauer et al. 2007).  In addition 

to estimates of tundra protist contributions to respiratory CO2, the carbon content of the 

protist community can be as much as 25% of the amount in the bacteria in the sampled 

Alaskan tundra soil (e.g. Anderson 2008). 

Risch and Frank (2006) studying a temperate grassland in North America 

reported seasonal soil respiration (µmol m-2 s-1) in relation to soil moisture. Their data 

indicate a positive relationship between respiration and soil moisture. For example, at 

an ungrazed site varying in soil moisture, the respiration (% soil moisture) 

measurements were 0.8 ± 0.2 (15.8 ± 6.6), 2.6 ± 0.9 (17.4 ± 5.0) and 3.8 ± 0.8 (25.1 ± 

13.1). An analysis of their entire set of data (N = 12) shows a positive correlation 

between soil respiration and seasonal moisture (r = 0.65, p < 0.05).  McCulley et al. 

(2007) examined soil respiration (g CO2 m-2 d-1) at a subtropical savanna for a control 

and irrigated site. The respiration data reported in relation to moisture content (m3 m-3) 

are: control site 7.9 ± 6.2 (0.063 ± 0.055) and irrigated site 11.7 ± 7.4 (0.179 ± 0.057).  

The respiration rate of  soil from lowland (Japan) and alpine (China) meadow soils in 

relation to soil moisture content was assessed by Suh et al. (2009). They found a 

curvilinear positive relationship between respiration (mg CO2 (kgsdw)-1 h-1) and percent 

soil moisture with an optimum in the 50% to 60% soil moisture range. The maximum 

respiration at 60% moisture in the alpine meadow was in the range of 0.6 mg CO2 

(kgsdw)-1 h-1 for surface or deeper layers. It was less 0.2 mg CO2 (kgsdw)-1 h-1 at an 

intermediate depth of 10-15 cm.  Comparable depth data for the lowland meadow 

indicated maximum respiration of 0.4 mg CO2 (kgsdw)-1 h-1 at the shallow and deeper 

soil layers and ~ 0.2 mg CO2 (kgsdw)-1 h-1 for the intermediate soil depth. 

Wang et al. (2010a) reported the soil respiration rate (µmol CO2 m-2 s-1) at 5 cm 

depth for three forest locales in China: 1) old-growth mixed coniferous and broad-leaved 

(MN), 2) middle-aged broad-leaved (BL), and 3) young conifer plantation (CP). The 
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respiration rates related to moisture (m3 m-3) for the three sites were: MN, 4.74 ± 0.41 

(50.83 ± 2.05); BL, 5.98 ± 0.54 (40.28 ± 1.82); and CP 3.50 ± 0.37 (48.03 ± 2.85). For a 

subtropical locale, McCulley et al. (2007) reported soil respiration (g CO2 m-2 d-1) for a 

grove (G) and drainage woodland (W).  The respiration rates related to moisture (m3 m-

3) for non-irrigated sites were: G, 9.0 ± 6.9 (0.059 ± 0.037) and W, 8.8 ± 6.2 (0.090 ± 

0.055).  The results for the irrigated sites were: G, 20.8 ± 11.6 (0.138 ± 0.048) and W, 

18.1 ± 10.6 (0.168 ± 0.049).  Soil respiration (mg CO2 m-2 h-1) during the dry and wet 

seasons of a tropical forest in Thailand was measured in a 2-ha plot (Adachi et al. 

2009). During the dry season, the respiration rate related to moisture (expressed as 

percent) was 402 ± 206 (3.5 ± 1.8); whereas, in the wet season, the rate was 1,041 ± 

542. (31.8 ± 5.0). 

 

Soil Respiration and Pulsed Precipitation Patterns 
Sporadic pulsed precipitation events, especially in dry environments, produce a 

consistent soil respiratory response characterized by a peak in soil microbial biomass 

and respiration within one or two days followed by several days of decline (at constant 

moisture), eventually reaching baseline negligible levels when the soil dries. This 

phenomenon, known as the “Birch effect,” first reported by H. F. Birch (1958) and 

Griffiths and Birch (1961), is particularly pronounced in desert and arid regions, where 

precipitation is punctuated and the soil is typically dry for relatively long intervening 

intervals. With increasing interest in global climate change and potential natural sources 

of CO2
 fluxes to the atmosphere, recent research has focused on the possible 

contribution of the Birch effect to changing patterns of terrestrial carbon budgets and the 

contribution of microbial respiration to atmospheric CO2. In the initial research of 

Griffiths and Birch (1961), the flux of soil CO2 and density of bacteria (bacilli and cocci) 

in a sample of African soil was assessed at 3-hourly intervals for 36 hours after dry soil 

was moistened to field capacity.  Within 18 to 24 hours after wetting, respiratory CO2 

flux reached a peak of ~ 40 µg CO2 gm-1 h-1. The total bacteria count per g soil was ~ 3 

x 108. The peak was followed by a gradual decline in respiration and bacilli over the 

next 12 hours. This fundamental pattern has been replicated across geographic locales 

in a substantial number of research studies, including desert sites (Cable et al. 2008; 
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Zhang et al. 2010) and arid regions such as Mediterranean environments (Jarvis et al. 

2007; Unger et al. 2010). Indeed, the pulsed release of respiratory CO2 from some 

Mediterranean forests can reduce significantly the annual net autotrophic carbon 

sequestration, thus reducing the net sink for CO2 in these ecosystems (Jarvis et al. 

2007).  A critical review of relevant research has been published by Wang et al. 

(2010b). 

 

Soil Respiration, Carbon Budget and Microbial Communities 
A substantial amount of research has examined the role of the “microbial 

community” in the release of soil respiratory CO2 largely with a focus on the role of 

bacteria and fungi. Remarkably little attention has been given to the role of protists, 

even though their role in microbial ecology and soil decomposition has been extensively 

studied (e.g. Adl 2003). In their comprehensive review of soil respiration and the 

environment, Luo and Zhou (2006, p. 52) were able to cite only minimal references to 

the role of protozoa, largely as  important predators in the rhizosphere. Adl (2003), 

however, gives substantial attention to the role of heterotrophic protists in a wide range 

of soil decomposition processes, but does not address microbial respiration in relation 

to major environmental issues. A search of the literature (BIOSIS) for the years of 1969 

to present using the keywords “soil respiration and protozoa” yielded approximately only 

a dozen citations, and some considered the protozoa largely as indicator organisms for 

abiotic soil properties in relation to CO2 fluxes. In addition to bacteria, heterotrophic 

protists are likely to contribute directly to soil respiratory CO2 efflux. Moreover, through 

their significant role as bacterial predators at the base of soil food webs, they may serve 

a significant role in the balance between carbon loss from the ecosystem by respiratory 

CO2 release and its conservation through sequestration in living biotic particulate 

fractions. Moreover as a major link in bacterial-based food chains, the bacterial carbon 

sequestered through protist predation can be transferred up the food chain into higher 

level consumers. However, there appears to be little published research on this dynamic 

role of soil protists in soil carbon budgets, and more specifically in relation to climate 

variables and respiratory CO2 fluxes.  A diagram of the flow of carbon in bacterial-
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based, protist food chains (including relationships to respiratory CO2 loss) pertinent to 

topics presented here is summarized in Fig. 1. 

 
Figure 1.  Carbon flow and respiratory CO2 loss in a bacterial-based, protist food chain. 
Available soil carbon organic compounds (Sc) utilized by bacteria (B) become 
incorporated into the biological particulate fractions of the trophic pathway, leading to 
further incorporation in heterotrophic flagellates (F), and eventually into the amoebae 
(A) of the food chain through their predation on bacteria (mainly) and possibly 
flagellates.  The proportion of soil nutrient carbon incorporated into bacteria (a), and of 
bacteria into flagellates, (b) and ultimately into the amoeboid protists (c) can be 
estimated from analysis of the carbon content of each biological group. Rate of carbon 
respiratory CO2 loss from the trophic pathway for each biological group is denoted as 
bacteria (a’), flagellates (b’) and amoeboid protists (c’). 

 

Some recent research findings, and a critical analysis of problems and prospects, 

are presented here with the hope that it may stimulate additional research in this 

seminal field of the role of terrestrial protists in terrestrial carbon budgets, soil 

respiratory CO2 efflux, and global climate change. Given that global climate change may 

produce marked changes in precipitation, particular attention is given here to the role of 

bacteria and protists in relation to soil moisture, carbon balance and terrestrial 

respiratory CO2 efflux, including some recent data on the role of microbial communities 

in the carbon budget and CO2 efflux associated with a pulsed re-wetting of dried soil.  A 

substantial amount of data is available on the effects of repeated wetting of dry soil on 

the bacterial and fungal communities in soil, including their relationship to soil organic 

matter, compared to soil protists (e.g. Krivtsov et al. 2004; Schmitt et al. 2010).  Among 

recent studies of a comprehensive analysis of soil microbial communities, Fitter et al. 

(2005) report some key findings of the UK NERC Soil Biodiversity Programme: 1) an 

extreme diversity of small organisms - over 100 species of bacteria, 350 protozoa, 140 

nematodes and 24 distinct types of arbuscular mycorrhizal fungi were identified, 2) 

stable isotope (13C) analyses indicated a rapid movement of carbon through the food 

web, and 3) the combination of taxonomic diversity and rapid carbon flux makes the soil 

system highly resistant to perturbations. Griffiths et al. (2001) examined the effects of 
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inoculating sterile agricultural soil with serially diluted suspensions prepared from the 

parent soil and followed changes over 9 months. They report no consistent effect of 

biodiversity on a range of soil processes, including respiratory growth response or 

community level physiological profile and decomposition, leading to a conclusion that 

the biodiversity and complex interrelationships of the biota were such that the 

experimental reductions had no direct effects on these soil functions. Fluctuations in soil 

moisture, however, have consistently shown some major effects. Schnürer et al. (1986) 

report that oxygen consumption of soil microbial communities was the parameter that 

responded most rapidly in experimental treatments of either drip irrigation or a single 

pulse of rainfall. Fungal abundance estimates paralleled oxygen consumption. In the 

rain plot, bacterial numbers doubled within 3 days and declined during the following 

period of drought. In the irrigated plot, bacterial numbers increased by 50% and then 

remained constant. Large numbers of naked amoebae were recorded 2 days after a 

large natural rainfall. Pulses of precipitation, even in locales that are not moisture-

limited, can produce a bacterial biomass peak lasting 1 – 2 days (Clarholm and 

Rosswall 1980). They suggested that the limited peak, and relatively rapid decline in 

bacterial abundance after approximately two days, might be due to grazing by 

microfauna. However, no further evidence for the rapid decline was presented; although 

the data are consistent with the well-established “Birch Effect.” Additional studies have 

been published on the effects of moisture pulses on soil responses, especially 

respiration (e.g. Franzluebbers et al. 2000, Mamilov and Dilly 2002, McCulley et al. 

2007, Xiang et al. 2008). The “Effect” has been replicated in varied experimental 

settings, but further research appears to be needed to fully resolve the cause(s) (e.g. 

Xiang et al. 2008). Three possible mechanisms for the “Birch Effect” have been 

published: 1) “microbial stress” resulting from catabolism of osmolytes, accumulated 

during soil drying, that requires energy expenditure and produces elevated respiration 

(Harris 1981, Schimel et al. 2007), 2) “substrate supply mechanism” assumes that 

rewetting of the soil causes fragmentation of soil particles, release of nutrients and their 

redistribution; thus, providing available nutrients to support a pulse of microbial growth 

and peak respiration (e.g. Appel 1998, Denef et al. 2001a,b, Miller et al. 2005, Wu and 

Brookes 2005), and 3) “microbial trophic effects”, a rapid initial bacterial growth upon 
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rewetting leading to a CO2 pulse, followed by decline due to top down predation by 

microfauna, especially protists at the base of the foodweb (e.g. Clarholm and Rosswall 

1980).  Based on the current evidence, each of these mechanisms may have a 

contributory effect.  However, among these contributing factors, the role of protists as 

top-down predators has not received as much attention in accounting for the changes in 

the carbon budget, especially on the subsequent decline in soil respiratory CO2 flux 

following rewetting of dry soil.   

To more fully document the dynamic role of soil microbial communities in the soil  

carbon budget and their relationship to changes in respiratory CO2 efflux during a 

pulsed re-wetting of dry soil, some recent experimental studies are reported here based 

on prior published techniques (Anderson 2002, 2006, 2008, 2010a,b). Bacteria, 

heterotrophic nanoflagellates, and naked amoebae densities were monitored in relation 

to respiratory CO2
 efflux in laboratory cultures of soil obtained temperate, Northeastern 

USA forest sites at Torrey Cliff, NY. Illustrative data for three sites are presented. Dried 

soil samples were moistened to field capacity with micropore filtered water and 

analyzed at 24 and 72 hours post wetting to monitor effects consistent with the “Birch 

effect.”  Organic content of the three soil samples expressed as percent of dry weight 

was as follows: subalpine elevated berm (130 m elevation) containing mountain laurel 

and red cedar (15), broad leaf forest (13), and white pine stand (6). The means ± s.e. 

for soil respiratory flux and estimated carbon content of bacteria, heterotrophic 

nanoflagellates, and naked amoebae (at 24 h and 72 h post rehydration) for the five 

sampling sites are presented in Table 1. The densities (N g-1) of the bacteria, 

nanoflagellates and naked amoebae mirrored the pattern of carbon content. Respiratory 

CO2 flux and bacterial densities decreased for all sampling sites after 72 h compared to 

24 h; while densities of naked amoebae consistently increased at 72 h for each of the 

five sampling sites. The heterotrophic nanoflagellates densities varied, sometimes 

increasing marginally (e.g. berm and forest soil samples) or decreasing (marsh, pine 

crest and pine slope). Naked amoebae are known to prey on flagellates (Anderson 

1994, Bovee 1985) and some of the decline in heterotrophic nanoflagellates densities 

may be attributed to predation by amoebae or other microfauna. In general, the 
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decrease in bacterial respiratory CO2 emissions at 72 hours was commensurate with 

increasing sequestration of carbon into the biological particulate fractions.  

 

  

Table 1.  Summary statistics (means ± s.e.) for respiration flux and carbon 
content of bacteria, microflagellates and naked amoebae 

    

Sample Respiration   Bacteria Flagellates Amoebae 
 nmol min-1 g-1 µg g-1 µg g-1 ng g-1 

   
Berm 

24 h       9.0 ±  0.7 96.8 ± 2.9 6.4 ± 0.3 40.0 ± 0.9 
 72 h  3.8 ±  0.6 80.1 ± 7.9 10.6 ± 1.6 310 ± 7.2 

 
Forest 

24 h 10.7 ± 0.06 7.8 ± 0.6 5.7 ± 0.6 60.0 ± 1.4 
72  h 5.5 ± 0.7  4.5 ± 0.4 6.8 ± 0.9 300 ± 6.9 

 
Pine 

24 h 3.0 ± 0.1 45.8 ± 5.6 3.6 ± 0.5 5.0 ± 0.1 
72 h 1.2 ± 0.05 27.5 ± 5.1 3.1 ± 0.6 25.0 ± 0.6 

 
            
 

 

Although additional research is needed, especially at other geographic locales, it 

appears, based on this laboratory research, that some of the decline in bacterial 

densities, and hence their contribution as a major source of soil respiration, may be due 

to increased densities of predatory heterotrophic nanoflagellates and naked amoebae. 

However, further research is required to account for how much of the possible top-down 

effect can be explained by other predators, such as nematodes and other microfauna, in 

the bacterial food chain. Bacteria are likely the major source of soil respiration within 

protist communities in most terrestrial regimes. Prior research has indicated that 

terrestrial bacteria may account for a larger amount of estimated respiratory CO2 flux 

compared to that of heterotrophic nanoflagellates and amoeboid protists, at least in 

higher latitudes (e.g. Anderson 2008, 2010a). This is attributed to the higher densities of 

bacteria (at the base of the food web) and possibly their greater capacity to assimilate 

and respire available soluble carbon sources (e.g. Boddy et al. 2007). In some soil 
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systems, fungi are a substantial source of respiratory CO2 exceeding that of bacteria in 

some upland locations, whereas bacterial respiratory activity may exceed fungal activity 

in wetter sites. Hence, fungi also must be considered in addition to the contribution from 

bacteria, especially if mycorrhiza are abundant and nutrient status is low (Sulzman et al. 

2005).  

With respect to partitioning of carbon resources, the results reported here 

indicate that, commensurate with pulsed precipitation events, there is a shift in the 

carbon fractions from a large respiratory loss associated with the initial peak in the CO2 

flux, toward a more distributed component in eukaryotic microbial particulate fractions, 

including major increases (five-fold or more) within the naked amoebae (Fig. 2).  

Although the naked amoeba densities increased substantially, they were not the 

highest typically observed in soils at these sites based on prior research.  The naked 

amoeba fraction would be expected to increase with time beyond the 72 h assessed 

here, typically reaching peak densities in c. 10 to 14 days (e.g. Anderson 2010c, Page 

1988).  Given the importance of accounting for the partitioning of carbon in soil microbial 

communities, especially estimates of the balance between particle sequestration within 

biota versus loss as CO2 to the atmosphere, the current results point toward a 

significant effect of protistan predation on bacteria as a mechanism to increase the 

biotic particle-bound carbon resources, and simultaneously to diminish loss through net 

respiratory CO2 efflux, especially during early phases after a pulsed rewetting of soil. 

With respect to Fig. 1, the major shifts are a decreased loss of bacterial CO2 flux (a’) 

and greater contribution to the carbon sequestration factors (b and c); most consistently 

in this research, the amoeba fraction contribution (c).  Further research is needed to 

more fully quantify the role of terrestrial heterotrophic protists in sequestration of soil 

carbon under varying climatic conditions in relation to changing temperature and 

precipitation patterns.  
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Figure 2.  Percent (%) of total carbon content (displaying the 24 and 72 hour results) for 
each data source (a = respiratory flux, b, c and d = carbon biomass for bacteria, 
nanoflagellates and naked amoebae, respectively) related to sampling sites (abscissa). 
Opaque bar = 24 h and grey bar = 72 h measurements. The contribution of respiration 
declines at 72 h compared to 24 h , and  bacterial biomass also declines concurrently 
for each of the sampling sites. Naked amoeba biomass increases substantially, while 
the flagellate biomass is variable depending on the sampling site, increasing only 
moderately in the berm and broad leaf forest samples. See Table 1 for respiratory and 
carbon mass numerical data. 
 

The balance between respiratory carbon loss and sequestration within biological 

particulates is likely to be of increasing importance in polar environments. In these 

biomes, increasing temperatures leading to thawing of the organic-rich permafrost, and 

changing patterns of precipitation, threaten to increase microbial respiratory CO2 flux to 

the atmosphere, thus exacerbating the greenhouse effect and global warming (e.g. 

Oechel et al. 1993; Chapin et al. 1995; Oberbauer et al. 2007; Anderson 2008, 2010a).   

Current estimates indicate that bacteria among the microbial community (bacteria and 

protists) are a major source of respiratory CO2 in the Alaskan tundra, as elsewhere, 

comprising as much as 60% during spring and summer (e.g. Anderson 2008). Hence, 

top-down controls on their abundance may be a significant factor in soil carbon 

dynamics. Soil fungi are typically abundant (e.g. Griffiths et al. 2001), they are subject to 

predation by naked amoebae (Old and Darbyshire 1978; Old et al. 1985), and should be 

included more completely in analyses of  microbial standing stock, carbon budgets and 

respiratory CO2 fluxes (Nakas and Klein 1980; Stamatiadis et al. 1990; Langley et al. 

2005), especially in relation to pulsed precipitation (e.g. Gordon et al. 2008; Bapiri et al. 

2010).  Clearly, additional research is needed to more fully document the relative 
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contributions of the various biotic fractions to carbon sequestration versus respiratory 

loss in high latitudes and other major global biomes. 

 

Future Research: Prospects and Challenges 
While the need for expanded research on the diversity and role of microbial 

communities in climate change and soil respiratory CO2 fluxes is evident, there are 

some challenges. Field-based studies of terrestrial CO2 fluxes using modern  

techniques (e.g. eddy covariance and portable field-based IRGA monitoring equipment) 

provide an in-stu assessment of total soil CO2 exchange including plant and soil biota. 

To assess the soil microbial contribution, the substantial yield from root respiration, as 

much as 40 to 60% especially in forests and woodlands (e.g. Olsson et al. 2005), must 

be subtracted from the total.  One solution is girdling of the trees in woodland stands, 

thus eventually leading to root death and removing the living root contribution (e.g. 

Olsson et al. 2005) or in combination with methods of root trenching to cut the roots at a 

place antecedent to the soil sample site and immediately eliminate root contributions 

(e.g. Schaefer et al. 2009). All of these techniques, however, are intrusive and alter the 

soil environment. More recently, stable isotopes (e.g.13C-labeled CO2) as tracers have 

been used to separate the sources and sinks of carbon in vegetative sites where 

autotrophic sources of soluble organic matter are of importance (e.g. Andrews et al. 

2000; Burke et al. 2003; Leake et al. 2006; Paterson et al. 2009). However, these 

methods do not provide evidence of the diversity and contribution of different taxonomic 

groups of microbes (e.g. bacteria, protists and fungi) to the respiratory CO2 loss.  The 

use of biochemical markers such as analyses of phospholipid fatty acid esters and 

sterols that are specific to certain microbial taxa, as well as molecular genetic DNA 

analyses, have provided improved estimates of the diversity of soil microbes, especially 

for bacteria and some fungal groups (Tunlid and White 1990; zelles 1999; Agnelli et al. 

2004; Cleveland et al. 2007; Bartling et al. 2009), but increasingly explored for protists 

(e.g. Caron et al. 1999; Lara et al. 2011). However, these techniques have not been 

refined sufficiently to apply to the broad diversity of soil heterotrophic protist at the 

species level, especially naked amoebae whose molecular genetics remain insufficiently 

documented . Thus, various methods of microscopic counting and size determinations 
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are required to augment these approaches and more fully account for protist 

abundance, diversity, carbon content, and estimated respiratory CO2 loss (e.g. Baldock 

et al, 1982; Fenchel and Finlay 1983; Li et al. 2004; Anderson 2002, 2006, 2008).  Due 

to their fragility, naked amoebae cannot be preserved for subsequent microscopic 

analyses. At present, live amoebae must be observed and sized by light microscopic 

techniques, each with its particular strengths and limitations (e.g. Darbyshire 1994; 

Smirnov and Brown 2004; Adl et al. 2008; Anderson 2010c). Nonetheless, a wide 

variety of amoeba taxa are recoverable by these techniques and good estimates of their 

contribution to carbon budgets of aquatic and soil environments can be made if care is 

taken to make observations at appropriate intervals during laboratory preparation (e.g. 

Anderson 2006, 2007, 2010a,b,c). Microflagellates can be enumerated using 

fluorescent stains and UV microscopy. However, difficulty in discriminating them from 

larger bacteria may lead to an overestimation of abundance and biomass, unless 

careful attention is applied during microscopic visualization and enumeration.  A 

comprehensive review of methodological issues of estimating soil microbial biomass 

parameters spanning research during the last century has been compiled by stockdale 

and Brookes (2006). 

Laboratory methods of assessing soil respiratory activity, though limited due to 

disturbance of the in-situ structure of the soil composition during sampling, provide 

greater control of the soil properties and sources of respiratory CO2. The soil can be 

examined to remove fragments of roots and to eliminate detectable soil fauna such as 

microarthropods, worms, etc. Hence, it is possible to infer the role of the remaining soil 

microbial community in carbon budgets and how much of the respiratory loss is 

attributable to various microbial taxa (e.g. Andrews et al. 2000; Anderson 2007, 2008, 

2010a,b,c; Bartling et al. 2009; Bapiri et al. 2010). However, current detailed analyses of 

the role of protists in major aquatic and soil environments are clearly limited by present 

methods of analysis. In the future, if more substantial methods of molecular genetic 

analyses are developed, perhaps including microarrays (e.g. Metfies et al. 2007) and/or 

barcoding (e.g. Nassonova et al. 2010; Chandni et al. 2011; Thierry et al. 2011), we 

may gain much greater precision and validity for our estimates of the contribution of 

protists to the dynamics of soil microbial communities and their role in the carbon cycle. 
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Although these modern techniques may improve our detection of protistan abundance 

and diversity, challenges remain in defining algorithms that link these data to estimates 

of carbon biomass and respiratory rate of the individual taxa of protists. 

Moreover, additional simultaneous field-based and laboratory experimental 

studies, using soil from the same sampling site, may enhance inter-calibration of data 

from these two sources of evidence and improve predictions from laboratory results to 

the field. This may be increasingly important at geographical locales where global 

warming and climate change are expected to have major effects, including polar, arid, 

and tropical environments. Some terrestrial processes that have taken millennia in 

geological history have become increasingly compressed to decades and centuries in 

recent years as anthropogenic effects have accelerated climate change. Furthermore, 

soil sources are currently the second most important source of atmospheric CO2 (Luo 

and Zhou 2006). Consequently, we need to examine natural phenomena such as 

terrestrial CO2 exchange with the atmosphere much more critically in light of global 

warming and associated changes in climate within a shorter historical time frame than 

has been considered previously. With increasing evidence of global climate change, 

and the corresponding importance of microbial communities as sources of greenhouse 

gases, we have much to gain by an earnest effort to improve the precision of our 

taxonomic identification techniques and methods of analyzing the role of heterotrophic 

protists in the carbon cycle at regional and global scales. 
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