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ABSTRACT 

CANONICAL APPROXIMATION 
IN THE PERFORMANCE ANALYSIS 

OF DISTRIBUTED SYSTEMS 

Eugene Pinsky 

The problem of analyzing distributed systems arises in many areas of com

puter science, such as communication networks, distributed databases, packet radio 

networks, VLSI communications and switching mechanisms. Analysis of distributed 

systems is difficult since one must deal with many tightly-interacting components. 

The number of possible state configurations typically grows exponentially with the 

system size, making the exact analysis intractable even for relatively small systems. 

For the stochastic models of these systems, whose steady-state probability 

is of the product form, many global performance measures of interest can be com

puted once one knows the normalization constant of the steady-state probability 

distribution. This constant, called the system partition function, is typically dif

ficult to derive in closed form. The key difficulty in performance analysis of such 

models can be viewed as trying to derive a good approximation to the partition 

function or calculate it numerically. 

In this Ph.D. work we introduce a new approximation technique to analyze 

a variety of such models of distributed systems. This technique, which we call 

the method of Canonical Approximation, is similar to that developed in statistical 

physics to compute the partition function. The new method gives a closed-form 

approximation of the partition function and of the global performance measures. It 

is computationally simple with complexity independent of the system size, gives an 



excellent degree of precision for large systems, and is applicable to a wide variety of 

problems. The method is applied to the analysis of multihop packet radio networks, 

locking schemes in database systems, closed queueing networks, and interconnection 

networks. 
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CHAPTER 1 

INTRODUCTION 

1.1. MOTNATION 

This work focuses on the area of performance evaluation of distributed 

systems. Such systems include multiprocessor interconnection networks, distributed 

database systems, closed queueing networks, packet radio networks and other sys

tems. The significance of these systems and of their analysis is best summarized by 

P. Heidelberger and S. Lavenberg ([Heid84]): 

" ... Analytic performance modeling has been an extremely useful tool for 

evaluating the performance of computing systems of the 1970's and early 1980's. 

However, computing systems are rapidly advancing and analytic modeling tech

niques must advance with them in order to maintain relevance in the late 1980's 

and into the 1990's. Distributed processing, parallel processing, and radically new 

computer architectures present significant modeling challenges and opportunities. 

Distributed processing systems will become commonplace. These systems will serve 

large numbers of users, consist of many devices and will incorporate large databases, 

both centralized and distributed. High levels of performance will be the key .... 

Further work is needed in database modeling. . . . Particular attention needs to be 

paid to modeling distributed databases. .. . Parallel processing systems will also 

become widespread as hardware costs continue to decline .... There have been very 

few techniques developed to analyze such systems and much work remains to be 

done. In meeting these challenges approximations will playa key role. If possible, 

computable error bounds need to be developed .... A consistent and comprehensive 

framework for validating approximations needs to be developed and applied." 

Thus, the problem of analyzing distributed systems is of fundamental im-



portance to the whole field of Computer Science. Major new advances in this area 

are required. This work provides a step in that direction. 

1.2. THE PROBLEM 

Consider a system of distributed agents sharing a distributed resource. It is 

usually the case that there are more agents than resources. Therefore, interference 

among agents is inevitable. For example, in database systems, transactions interfere 

with each other by locking subsets of the items. In multiprocessor interconnection 

networks, an established connection may block (and thus interfere with) other con

nections. In packet radio networks, transmissions share the broadcast medium and 

thus may interfere with one another if in progress at the same time. 

Given the statistics of generation and duration of service requests, we 

would like to compute a number of performance measures, such as average concur

rency, utilization and throughput. In addition, we would like to be able to show the 

dependence of these measures on system parameters (load, size, etc). If such de

pendence can be established analytically, we can solve problems involving optimum 

design (for example, achieving optimal load to maximize certain performances). 

Among the key performance measures are the following: 

• A measure of average concurrency. For multiprocessor interconnection networks 

this is the bandwidth - average number of accessed memory modules. For database 

systems it is the average number of transactions in the system. For packet radio 

networks it is the capacity, i.e. the maximum number of successful transmissions 

per link. 

• Non-Blocking Probability - the probability that a new activity is not blocked. 

• Distribution of traffic and interference. The operation of a computer system can 

exhibit "interference locality". For example, in multiprocessor systems a processor 



usually requests access to a particular (so-called "favorite") memory module. How 

can we model this phenomenon of "interference locality" and show its influence on 

global performance measures? 

The existence of interference causes two difficulties Cor the performance 

analysis oC these systems. Firstly, since only certain configurations oC concurrent 

activities are feasible (e.g. certain transmissions can coexist concurrently in a packet 

radio network) there is a problem of adequately describing the possible concurrent 

states. Secondly, the systems usually cannot be decomposed into independent, 

easy-to-analyze components. These two problems - combinatorics of concurrency 

and tigb t-coupJing make the analysis of interference systems difficult. 

In this thesis, we consider distributed systems modelled by time-reversible 

Markov chains ([KeIl80]). For such models, the steady-state probability distribu

tion is of the product form. This means that if a state of a system is described 

by k random variables n 1, ..• , nk, then the steady-state probability distribution 

P(nl,"" nk) is given by Hdn.)· .. Hdnk)/ZN. Here ZN is the normalization 

constant ZN such that all probabilities P(nl, . .. ,nk) sum up to 1. This constant 

ZN is called the system partition function ([Mitr84, Yemi83]). The number N is a 

measure oC the system size, such as the size of the database, etc. 

For these product-Corm solution models, a number of performance mea

sures (e.g. average concurrency, throughput, utilization, non-blocking probability) 

can be computed once we know the partition function ZN. This partition Cunction 

is a generating function, with one term for each permissible concurrency level, and 

each term being given a weight related to the combinatorics oC concurrency oC the 

corresponding configurations. In other words, the partition function specifies how 

the possible configurations are partitioned among the different concurrency levels. 

Typically, the partition function ZN cannot be computed in closed Corm 

except for some simple cases. Therefore, the key difficulty in the performance 

analysis of these systems can be viewed as trying to derive a good approximation 

· ) 



to ZN or to calculate it numerically. 

It is interesting to note an analogy here to statistical physics. The main 

theory of statistical mechanics states that the global performance measures of a 

physical system are computed once we know its partition function. The partition 

function of a physical system specifies how the system configurations are distributed 

among different energy levels. It can be shown from this analogy that concurrency 

is analogous to energy, load is a "measure" of temperature, etc. One can even 

introduce a new performance measure oC "pressure" which measures an average 

rate of blocking experienced by activities in progress ([Yemi83J). 

1.3. THIS WORK 

This thesis presents an approximation method to evaluate the system par

tition function ZN in a closed-form. The basic idea is as follows: 

To calculate the partition Cunction ZN Cor a system oC size N, compute its 

generating function ZG(t): 

00 

ZG(t) = L ZNtN 

N=O 

For many product-Corm solution models, it is often easier to find ZG(t) 

in closed form than it is to find the partition function. This is due to the fact 

that typically one establishes a recursive relation among the Z N. Such a relation 

usually yields an algebraic equation for ZG(t). The partition Cunction ZN can 

be approximated Crom ZG(t) by the saddle point approximation ([Cops65]). The 

method is similar to that used in statistical physics to show the equivalence of 

canonical and grand canonical ensembles ([Path84]). This equivalence allows us to 

use the method to compute the average performance measures using the obtained 



approximation of the partition function (see Appendix 2). By analogy with physics 

we will call ZG{t) the grand partition function and the method itself Canonical 

Approximation. 

Using canonical approximation, we can show that the partition function 

admits the following representation: 

where relative error £N is typically of order O{l/N). In the above expression, 

iN is the smallest (positive) point at which the derivative (with respect to t) of 

. logl ZG (t) / t N + 11 vanishest, and F(t N) is related to the second derivative of the 

grand partition function at tN, 

The computational and space complexityt of evaluating iN and F(tN) 

is independent of N. From this representation of the partition function and the 

concept of ensemble equivalence (see Appendix 2), we will be able to derive the 

closed-form approximations for a number of performance measures that do not 

require an explicit calculation of ZN. This is very important in practice: the explicit 

calculation of Z.'I/ may lead to very unstable algorithms (e.g. overflow), since ZN 

can be a very large number (outside of a floating point range of a computer) even 

for moderate values of N. Canonical approximation, on the other hand, allows the 

design of stable algorithms to compute these measures for practically any system 

size N. The computational and space complexity of computing the performance 

measures is independent of N, whereas the precision increases with N. 

Using canonical approximation, we solve the following classes of problems: 

t It can be shown (see Chapter 3) that tN is the saddle point of the surface 

f(t) = logIZG(t)/tN +11 drawn in the complex plane. 
t In this thesis, we assume the real number model of computation with 

the cost of an arithmetic operation to be unity. This is the standard model of 

computational complexity for scientific calculations. 

·) 



• Multihop packet radio networks. Although a general markovian model of multihop 

packet radio networks is available ([Boor8D, Toba82]), the computation of perfor

mance measures (primarily, the nodal throughput) has been done only for very 

small (the number of nodes N = 10) networks due to the complexity of the numeri

cal algorithms involved. In this work, several networks operating under CS~{A and 

C-BTMA are analyzed and compared using canonical approximation. The closed 

form expressions are obtained in terms of a root of a simple polynomial equation. 

Not only is it possible to write down explicit formulae for the nodal throughput 

for any network size N, but it is also possible to identify (analytically) the loads 

when a particular multi-access protocol gives a better performance. Moreover, we 

introduce a method to compute the approximation of the nodal throughput assum

ing the zero capture. The only known methods for the analysis of these under zero 

capture are simulation ([Toba85]) or explicit construction of the underlying state 

space ([Braz85J), which is computationally intractable unless N is very small. 

• Locking Models of Database Systems. The evaluation of global performance mea

sures (e.g. average concurrency and non-blocking probability for each transaction 

class) for a databaSe of N items and p classes using static locking ([Mitr84, Lave84]) 

is reduced to solving a simple polynomial equation. Simple closed-form expressions 

for global performance measures are obtained for any range of parameters. This is 

in contrast with the previously known algorithms, which require an explicit com

putation of the partition function and whose computational complexity is of order 

O(Np) ([Mitr84]). The previous asymptotic (N ...... 00) analysis ([Lave84, Mitr84]) 

requires negligible computation but assumes very low traffic. We will show that 

in heavy traffic, there is a a range of load parameters beyond which the database 

will not have any large transactions. This phenomenon will be explained using the 

analogy from the condensation of an imperfect gas. 

• Single Class Closed Queueing Networks. The computation of performance mea

sures (e.g. average queue length, utilization, and average delay at each node) for 

a single-class markovian network with AI nodes and N customers is usually done 

6 



by iterative numerical algorithms, whose computational and space complexity in

creases with Nand l>J ([Suze73, Reis7g]). Canonical approximation gives simple 

closed-form expressions for these performance measures. The computational com

plexity of the new algorithms, based on these expressions, is of order O(M). There 

are no additional storage requirements. These algorithms are numerically stable 

and convergent with high accuracy even for very moderate values of AI and N. 

The asymptotic analysis (N'I-+ 00) requires negligible computation and can be 

implemented on a pocket calculator . 

• Interconnection Networks. The method is applied to analyze the crossbar inter

connection network for a wideband digital switch. The previous analysis of the 

crossbar has been done in the context of multiprocessor systems ([Shan7S, Shuy83, 

Pate8l, Stre70J). For these systems, the crossbar interconnection network operates 

in the synchronous mode and interference is caused only when there are two or 

more connection requests to the same output line (i.e. only memory interference). 

The crossbar networks for a wideband switch, analyzed in this thesis, operate in 

asynchronous packet switching mode. Unlike the previous models of multiprocessor 

crossbar networks, there is an additional interference when there are two or more 

requests to the same input line, making it much more difficult to analyze. 'We will 

consider such a model with different classes of arrivals requests, characterized by dif

ferent statistics of arrivals, service times and access patterns. Soth "'equally likely" 

and "'favorite output" access patterns are analyzed. Canonical approximation gives 

simple closed-form expressions for the average bandwidth and non-blocking prob

ability for eaLLl class of arrival requests. The computation of these performance 

measures is reduced to solving a simple cubic equation. 

The main contribution of the present work is the introduction of a com

putational method to with the following characteristics: 

o Closed-form Approximation 

o Simple Computationally 

-
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o Complexity Independent of the System Size 

o Wide Applicability 

o Excellent Degree ef Precision for Large-Scale Systems 

1.4. ORGANIZATION OF THIS WORK 

This thesis consists of 8 chapters and 2 appendices. For the sake of clarity, 

some of the proofs are given in the last sections (chapter appendices) of the corre

sponding chapters. All of the theorems and lemmas are ended with a "blackslug" 

sign I. 

Chapter 2 presents a unifying survey of some performance analysis prob

lems arising in distributed systems. The survey will focus on the interrelationships 

between concurrency and interference of processes. Problems to be considered in

clude: analysis of database locking protocols, analysis of multihop packet radio 

networks, and analysis of multiprocessor interconnection networks. 

Chapter 3 presents a model capturing the interference phenomena in a va

riety of distributed systems. After presenting the modeling assumptions, we write 

the general form of the solution. From the general form of the solution we can 

draw an interesting analogy to statistical physics. Details of this analogy can be 

found in the appendix. We then give a rigorous derivation of the canonical approx

imation method and the derivation of the relative error. The method is reduced 

to calculating the saddle-point (if ZG(t) is entire) or the smallest pole (if ZG(t) is 

meromorphic}. The complexity is independent of the system sizQ under considera

tion whereas the accuracy increases for larger size. The chapter concludes with an 

analysis of a classical machine interference model using the canonical approximation 

method. 

8 



Chapter 4 presents the application of the canonical approximation method 

to analyze the performance of some multiple access protocols Cor multihop packet 

radio networks. The general model oC packet radio networks developed by Boorstyn 

and Tobagi ([BoorSO, TobaS2J) is used. Such a model can capture a variety of 

multiple access protocols. However, so far only very small networks have been 

analytically tractable. In this chapter we analyze linear array multi hop packet 

radio networks operating under CSMA with perfect capture and C-BTr..fA. 1\ot 

only are we able to compute the capacities but we can also identiCy (analytically) 

the loads Cor which a particular protocol should be used. We also introduce a 

new approximation method to analyze these systems under zero capture. This is 

important since the only existing methods today are simulation ([Toba85J) or an 

explicit construction oC an underlying Markov chain. 

Chapter 5 presents the analysis of static locking policies Cor a database 

system ([Lave84, Mitr84]). For a database oC N items, p classes oC transactions 

(here a class consists oC all the transactions which require locks on the same number 

oC items) each with its own statistics oC generation and duration oC access requests 

(static locking model oC a database), canonical approximation is used to get closed

Corm expressions Cor the average concurrency oC each transaction class, the non

blocking probabilities, and other database performance measures. The computation 

is based on finding the smallest root oC a simple polynomial. The obtained closed

Corm solution is thus independent oC N. This contrasts with the known algorithm 

([Mitr84]) which is of O(Np). The previous asymptotic analysis Cor these systems 

([Lave84, Mitr84]) was done under the assumption oC low traffic. We analyze the 

behavior oC the database in "heavy" traffic and show that there is a range of load 

parameters beyond which large transactions would not be present. This is similar 

to that of a condensation and is explained using an analogy to imperfect gas theory. 

Chapter 6 presents the analysis of single-class closed queueing networks. 

The method is numerically stable and computes the closed-form expressions Cor the 

average performance measures without an explicit calculation of ZN. The problem 



is reduced to solving a simple algebraic equation. It is shown to provide a very good 

approximation even for very small networks, whereas its complexity is independent 

of the number of customers. This in contrast to some of the other methods based 

on the convolution ([Buze73j) or mean-value analysis ([Reis79j), which are typically 

iterative and linear (complexity of solution) in the number of customers. Both 

load-dependent and load-independent cases are analyzed. For the network with 

only load-independent servers and a large number of customers, a new "pocket 

calculator" program to compute the performance measures is presented. 

Chapter 7 presents the analysis of the crossbar interconnection networks. 

The analysis is presented under the assumptions of asynchronous packet switching, 

'interference at the inputs and outputs, and possibility of favorite memory requests. 

The model is motivated by interconnection networks to be used in future wideband 

communication systems and to operate differently from those used in multiproces

sor systems. The computation of global averages does not explicitly require the 

computation of the partition function. It is reduced to solving a simple quadratic 

or cubic equation. 

Chapter 8 summarizes and concludes this thesis and discusses topics for 

further research. 

Appendix 1 presents the analogy between an interference model introduced 

in Chapter 3 and a rigid-sphere model of a lattice gas in statistical physics. 

Appendix 2 presents the idea of ensemble equivalence in statistical me

chanics. This equivalence suggested the introduction of a method of approximation 

in statistical physics. The canonical approximation introduced in this thesis is mo

tivated by that method. 

:0 



CHAPTER 2 

A SURVEY OF RELATED WORK 

2.1. INTRODUCTION 

The objective of this chapter is to provide a survey of performance anal

ysis problems arising in distributed systems. Problems to be considered include: 

analysis of database locking protocols, analysis of multihop packet radio networks, 

and analysis of multiprocessor interconnection switches. This chapter focuses on 

the interrelationships between concurrency and interference of processes in such 

systems. 

Consider a set of distributed agents sharing a common resource. At. any 

moment of time, a given agent is either idle or busy utilizing the resource. Concur

rent access to a shared resource is typically constrained by possible contention. In 

database systems, for example, agents are transactions contending over the lockable 

items. In multiprocessor interconnection networks, agents are connection requests 

contending over the shared switches. In packet radio networks, agents are trans

missions contending over the shared broadcast medium. A key advantage of a 

distributed system over a centralized one is the performance gained by concurrency 

of activities. Interference determines the level of concurrency that a system can 

achieve. Understanding interference and its impact on performance thus plays a 

key role in the design of an efficient distributed system. 

In analyzing distributed systems one needs to distinguish the synchronous 

mode and asynchronous mode of operation. Under the synchronous mode of opera

tion, time is divided into slots. An agent may become active only at the beginning 

of a time slot and is typically served during the slot. Under the asynchronous mode 

of operation, an agent may become active at any time. In this case, one usually 
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assumes Poisson distribution of arrivals. The service time is random and is usually 

assumed to be distributed expO'nentially. 

The dynamics of agents in the systems above can be described as follows: 

An agent becomes active and tries to access the resource. An acquisition protocol 

is used to determine the conditions under which the agent can obtain the resource. 

Access can be denied because the resource is already used by another interfering 

agent. For example, in database systems, an arriving transaction cannot proceed 

if some of its requested items are exclusively locked by some other transactions. 

In packet radio networks, a node senses that the shared channel is busy and thus 

knows that it might interfere if it starts transmitting. If an agent is blocked, it 

retries later. If the agent is allowed to proceed, it uses the resource for some time. 

When the agent holds the resource, it may try to minimize the potential interference 

from other agents. For example. with the help of a busy tone signal, it may warn 

potentially interfering agents to remain idle. After using the resource, the agent 

becomes idle. 

The acquisition protocol regulates interference among contending agents. 

It is thus a key element in accomplishing greater concurrency and with it, improved 

performance. Therefore, the design of the acquisition protocol is key to accomplish

ing effective performance of a distributed resource sharing system. 

From the statistics of generation and duration of service requests and the 

acquisition protocol, one would like to 

(a) compute a number of performance measures such as the average concurrency 

and blocking probability. 

(b) determine the dependency of these measures on system parameters (load, system 

size). 

Moreover, one would like to be able to compare different acquisition prcr 

tocol.s and choose the one optimizing the concurrency. Unfortunately, the complex 
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combinatorics of admissible concurrent activities makes the analysis of interference 

difficult even for very small systems. 

Whenever there are more tasks than resources, interference and hence 

queues are inevitable. It is therefore natural to model these systems as a net

work of interconnected queues. Such a model typically provides a conceptually 

and computationally appealing mechanism to capture interaction among contending 

agents. Queueing networks models are used to calculate a number of performance 

measures. Key advances in performance analysis can be seen as breakthroughs in 

queueing theory. For a review of computational algorithms for queueing networks, 

see IHeid84, Brue80]. We should just mention that there is a broad class of mod

els called product-form (also called separable or decomposable) solution networks. 

Networks in this class are characterized by the so-called B\fCP theorem (lBask75]). 

Efficient computational algorithms are known only for separable networks. It is now 

generally believed (lHeid84]) that the chss of product-form solution networks will 

not be significantly extended beyond the BMCP networks. 

2.2. MULTIPROCESSOR INTERCONNECTION NETWORKS 

2.2.l.GENERAL OVERVIEW AND PERFORMANCE ISSUES 

The first class of systems to be considered in this chapter is Multiprocessor 

Interconnection Networks. These networks provide communication between pro

cessors and memory modules in multi-processor computer systems (Figure 2.2.1.1). 

Research towards supercomputer and fault-tolerant systems has spurred interest in 

high performance multiprocessor systems, requiring a high capacity interconnection 

network. 

An interconnection network cannot typically provide a dedicated link l>e

tween any processor-memory or processor-processor pair. This is prohibitively ex-
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pensive even for modest-size networks. Therefore, an established communication 

path may block some other paths. For example, consider an 4 x 6 crossbar intercon

nection network (Figure 2.2.1.2). This network consists of 24 switching elements 

and allows all possible one-to-one and simultaneous connections between all 4 pro

cessors and all 6 memory modules. When two or more processors try to access the 

same memory, only one of them will be connected and the rest will be blocked or 

rejected. 

Interconnection networks may be classified into two types: non-blocking 

and blocking. In a blocking network, interference can arise from simultaneous re

quests to use a common path or access the same destination. In such a case, 

interference occurs within a routing switch. Examples of blocking networks in

clude shuffle-exchange, delta, and banyan, described later in this chapter. In a 

non-blocking network, interference can arise only from simultaneous requests to the 

same memory module, but not from an attempt to use anyone switch in a network. 

This type of interference is usually referred to as the "memory interference". An 

example of such a network is a crossbar switch. 

What are the key performance measures in analyzing the impact of inter

ference in multiprocessor interconnection networks? 

• The most important performance measure is the Bandwidth (BW) - the ex-

pected number of memory requests accepted per memory cycle. 

• --The average delay D to access a memory module and get the required data. 

• The probability P that a request generated by a processor is blocked. 

• The distribution of traffic and interference throughout the system. In a practical 

situation, a processor is likely to address a particular memory module most of the 

time, except when an interprocessor communication is necessary. If processor P, 

communicates more often with memory module M i , one calls Mi a favorite memory 

of processor of P,. In such a case, interference is not uniform throughout the system. 
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How does the phenomena of "interference locality" affect system performance? 

There are several different physical forms available for multiprocessor in

terconnection networks. A good survey is given in [Thur82J. For the purposes of 

this discussion, one can divide them into three groups: crossbar interconnection 

networks, bus interconnection networks, and multi-stage interconnection networks. 

2.2.2. CROSSBAR INTERCONNECTION NETWORKS 

Crossbar switch has been analyzed more extensively than other intercon

nection networks (lBhan73, Bhan7S, Bhan77, Bhuyan83, Pate8l, Stre70J). Perhaps 

the first analytic results were reported by Bhandarkar ([Bhan73J) who analyzed an 

N x M crossbar switch under the assumption that service times are exponentially 

distributed. However, most memory systems do not have an exponentially dis

tributed cycle time, although techniques such as interleaving, cache memories, and 

read-modify-write memory access suggest that this exponential assumption may be 

a good approximation. The generation of requests is uniform, in that a processor 

is equally likely to request connection to any memory module. The crossbar is 

modelled as a queueing network with M nodes. A processor is a customer that is 

either receiving service (accessing some memory module) or queued at some node 

(queued to access some memory module). A state of the network is specified by the 

number of queued requests for each memory module. With the above assumptions, 

it is shown that the crossbar can then be described as a closed Jackson network 

with M servers and N customers circulating with uniform routing probabilities ti. 
The steady state distribution 

[(
N + M - 1)]-1 P(any state) = M _ 1 (2.2.2.1 ) 

indicates that all states have the same probability. If one sets N = M then the 
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bandwidth is asymptotically 

N 
E(busy processors) 1-+ 2' (2.2.2.2) 

Thus, no matter how many processors are used, one can expect half of them to be 

active. 

In the above analysis, it was assumed that the cycle time is exponentially 

distributed. However, for real systems it is more realistic to assume that the cycle 

time is fixed. IT the service time is fixed, the crossbar can be analyzed by a simple 

Markov Chain analysis ([Shan75, Shan77!). The analysis of a crossbar network with 

N processors and M memory modules is similar to the analysis of an occupancy 

problem of N balls and Al urns ([Fell66!). Processor requests (balls) are assigned 

to the M memories (urns) at the beginning of each memory cycle. At the end of 

the_cycle one processor request (ball) is removed from each memory (urn). IT there 

are k memories with queued processor requests (k non-empty urns) during cycle C, 

then k new processor requests (balls) are available for assignment for the (C + 1 )-th 

cycle. 

Under these assumptions, the number of distinct states is given by the 

number of ways in which N requests (balls) can be distributed among AI memories 

(urns) and is given by (N~~~I). Unlike the previous analysis, not all states are 

equally likely. Assuming that all processors behave identically, one can show that 

a number of distinct states are equivalent. For example, for a 3 x 2 crossbar, if the 

state (2, 1) means two connection requests to first memory module and one request 

to the second memory module, then the states (2, 1) and (1,2) are equivalent. The 

problem can be described by reduced states (all equivalent states are represented by 

one aggregated state). Using this reduction in the number of states, a computational 

algorithm is presented. The algorithm computes the reduced states, generates the 

transition probabilities for each reduced state and then computes the bandwidth. 

However, despite the reduction, the number of reduced states corresponds to the 

number of different ways in which the number N can be partitioned into AI parts. 
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This number (for N ~ AI) is asymptotic to -4/v'3exp [Jz~~ ]. The number of 

reduced states is exponential in N, and thus the solution method is intractable, 

except for very small N. 

Strecker (lStre70j) has analyzed the crossbar under the assumption of re

moving the queued processors from all the memory modules and reassigning them 

randomly for the next cycle. The state of the system at any cycle can be consid

ered independent of that in the previous cycle. This is unlike the previous analysis 

([Bhan75, Bhan77]) when only those processors which received service in the previ

ous-cycle are reassigned for the next cycle. Although such an assumption may seems 

unrealistic, the results obta.ined by Strecker for the crossbar suggest that this is a 

good approximation. The analytic results are within 8% of the exact Markov chain 

model of Bhandarkar ([Bhan75, Bhan77]). More important, such an assumption 

makes the analysis very easy. The distribution of processors accessing the memory 

modules is given by a binomial distribution: for an N x M crossbar, the probability 

P(i) that there are i requests in a unit cycle is 

. (N) ( 1 ) i ( 1 ) tv-i 
P( I) = i AI 1 - AI (2.2.2.3) 

From this, one can easily derive the expected number of busy memory modules to 

be 

( 
1 ) tv AI 

B~V = A/[l- 1 - M I ...... A/(l -exp(- N)) (:::!.2.~.4) 

In particular, if AI = N the bandwidth BW ~ O.63N. The bandwidth is linear in N. 

It is interesting to note that this expression is similar to the expression (2.2.2.2) for 

the crossbar bandwidth BW ~ O.5N under the assumption of exponential service 

time.' 

In the above analyses, it is assumed that a processor generates an access 

request at the beginning of each memory cycle. It is more realistic to assume. 

however, that a processor generates an access request at the beginning of a cycle 

with some probability. Such a. model was analyzed by Patel ([Pate8lJ), who used 
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the assumptions of Strecker, but with the assumption of the fixed probability m 

that a processor generates a request during a cycle. The following expressions for 

bandwidth (B\V) and non-blocking probability P were obtained: 

(2.2.2.5) 

AI AI ( m)N M ~ 
P = mN - mN 1 - AI t-+ mN (1 - e- N ) (2.2.:2.6) 

Note that m = 1 corresponds to the above results of Strecker ([Stre70j). The 

above asymptotic approximations a.re good within 1 % of the simulation results 

when AI, N > 30 and within 5% when M, N > 8. Note that for a fixed N the AI 

bandwidth increases linearly. 

Bhuyan and Lee ([Bhuy83]) have extended the above analysis of an N x M 

crossbar to show the impact of "interference locality". In real systems, a processor 

accesses a particular memory module most of the time, with occasional requests to 

other memory modules. To capture this phenomena in the model, the processors 

are divided into two groups (it is assumed that N > M). Group A consists of N 

processors each of which accesses its "favorite" memory module with probability 

x. The remaining N - AI processors in group B are equally likely to address any 

of the M memory modules with probability it. If x is the probability of favorite 

memory access, then the bandwidth is shown to be given by 

[ ( l_x)M-l m N-M] 
BW = M 1 - (1 - xm) 1 - m (1 - --) 

AI - 1 JI 

Note that if x = if 
B~V = AI [1 _ (1 _ :) N] 

which is identical to equation (2.2.2.3) for an equally likely case. Bandwidth com

parison is given in Figure 2.2.2.1. It is not surprising to note that the bandwidth 
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for a favorite memory case is higher than for an equally likely case: most of the 

time the processors will try to access their favorite memory modules. As a result. 

there is less interference, which in turn gives a higher bandwidth. 

Crossbar switches for the connection of many processors and many mem

ory modules are becoming less and less attractive due to their complexity (e.g. 

number of switching elements) and high cost, as compared to the cost of processors 

and memory modules. In fact, for a large crossbar multiprocessor system, the cross

bar interconnection network would probably cost more than the rest of the system 

combined. Moreover, the bandwidth provided by such an interconnection network 

exceeds the requirements of most applications. To circumvent the high cost of cross

bar interconnection networks, some "loosely coupled" systems have been proposed. 

In these systems, sharing of the main memory is somewhat restricted: some memory 

accesses may be fast and direct while others may be slow, indirect and even involve 

the operating system intervention. The interconnection networks for these "loosely 

coupled" systems are either multi-bus or multi-stage interconnection networks. 

2.2.3. BUS INTERCONNECTION NETWORKS 

Let us start by a simple example of a multi-bus architecture as given in 

Figure 2.2.3.1. In such a system a processor P. uses its private memory PAl, most of 

the time and occasionally accesses the global memory modules GMi via the system 

global busses. 

Interference arises in such multi-bus systems because of the processor's 

contention for both memory modules and busses. In a system with N processors, 

M memories and b busses, if the number of busses b ~ min(N, A!), then interference 

is caused by the sharing of memory modules. In such a system, a processor can 

always find a bus to access a free memory. Note that such a system is different from 

a crossbar switch. In a crossbar switch, for any processor and any memory module, 
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there is a unique path connecting them. In a multi-bus system, a processor can use 

any global bus to access any memory module. In general, it is expensive to have 

b > min(N, M) busses unless one wants some redundancy in the interconnection 

network for reliability. Moreover, it is not necessary to have that many busses since 

most memory accesses are made to the private memories without the use of the 

busses. 

In fact, if b > min(N, M), the model becomes relatively easy to analyze. 

There is no interference for the use of the busses. Interference arises only when 

there are two or more requests for the same memory module. Such a model was by 

analyzed by Ravi ([Ravi72J) to study the bandwidth and interference in interleaved 

memory systems. In that model, N processors issue a request at random to AI 

memory modules at the beginning of each memory cycle. It is assumed that N < AI 

(The model with N ~ AI was considered by Hellerman ([He1l67]) and analyzed in a 

similar fashion). If the request cannot be satisfied, it is queued at the corresponding 

memory module. It is assumed that at most N requests can be queued. From these 

above assumptions, the following expression for the bandwidth is obtained 

_ ~k~kS(N,k)("t) 
BW - L- MN 

k=l 

(2.2.3.1 ) 

where S(N, k) denotes the Stirling number of the second kindt. 

It can be seen from 2.2.3.1 that if one increases AI but keeps N fixed, there 

is less interference (requests are uniformly distributed, thus less chance of a request 

to the same memory module) and thus a higher memory bandwidth. 

The above models completely ignore interference over the use of busses. In 

real bus interconnection networks interference is typically due to the contention ewer 

t The Stirling number S(N, k) of the second kind is defined as the number 

of ways of putting N different things into k like cells, with no cells empty ([Rior781). 



the use of the bus rather than over a memory module. Therefore, it is reasonable to 

assume that whenever a processor issues a memory request, if a bus is available, the 

requested memory is also available. [n other words, one can assume that interference 

in such systems is mainly due to busses. As noted by Marsan ([Mars82aJ), to 

account for the interference of both busses and memory modules would make the 

analysis intractable. Simultaneous possession of busses and memory modules for 

which individual queues exist makes queueing models of multi-bus architectures fall 

outside the range of applicability of the SCMP theorem. Such queueing models are 

thus not in a product-form and are computationally intractable. 

One can, however, analyze the lower and upper bounds of system perfor

mance ([Mars82aj). An upper bound can be obtained by assuming that interference 

is due only to busses, and thus memory interference may be completely neglected. 

Processors are assumed to issue requests for busses according to the Poisson dis

tribution with rate '\. The busses are used for an exponentially distributed period 

with mean p. If no bus is available, the processor request is queued. If there are 

b busses and N processors, the model corresponds to an M / AI/b queueing system 

with a finite number of custo~~rs ([Klei75j). It is illustrated in Figure 2.2.3.2. The 

steady-state probability <Pk that there are k requests in the queue (N - k active 

processors) is given by 

(2.2.3.2) 

Here G is the normalization constant of the probabilities <Pk. 

From the above expression, one can easily calculate the upper bound for 

the bandwidth 

N 

BW = I)N - k)<Pk (2.2.3.3) 
k=O 
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To obtain a lower bound, a number of pessimistic assumptions should be 

introduced. One assumes that the number of shared resources is equal to the number 

of busses. This hypothesis is pessimistic since the number of resources is reduced and 

the simplified model will have a higher level of interference than in real systems. 

Processors issue requests for the shared resources after exponentially distributed 

active periods. Each resource is selected at random with the probability lib. If 

the resource is available (the bus is certainly available - there are as many busses 

as resources), it is accessed for an exponentially distributed time. Then the bus 

and the resource are released. The approximate queueing network corresponding 

to this model contains one infinite server station and b single server stations with 

exponential service times (Figure 2.2.3.3). The steady-state probability distribution 

Th that there are k queued processor requests (N - k processors are active) is given 

by 

n = ~ (~)" (N) (b + k - I)! 
" G bJJ k (b-l)! 

(2.2.3.4) 

where G is the normalization constant for the probabilities D". 

The resulting expression of the lower bound for the bandwidth can be 

found as follows: 

N 

BW = 2:UV - k)D" (2.2.3.5) 

"=0 

Although the lower and upper bounds are available (equations 2.2.3.2 -

2.2.3.3), more precise analyses for the general multi-bus architectures are not yet 

available. 

Some single-bus architectures have been analyzed by Marsan, Balbo, Conte 

and Grigoretti (1~{ars82b, ~fars82d]). In the first model (Figure 2.2.3.4), processor 

Pi can access its private memory P Mi by the local bus LBi • There is a common 

memory (eM) external to all processors and available only through the global bus 
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(GB). Interference arises each time a message is written in (read from) common 

memory. Only one processor P, can access common memory at a time. If the 

bus is busy, it has to wait. Assuming that both the time between requests and 

the memory access time are exponentially distributed, the model corresponds to 

a "machine repairman" model ([Alle78]). In this model, the traffic of messages 

flowing out of a processor balances that flowing into the same processor. Thus, the 

processor activity is interrupted with a rate which is twice the rate of generation 

of messages. In the second model, the common memory CAl is divided into sub

memories CAf,. Processor P, can connect to CAI, by the local bus LB,. A processor 

Pi accesses a "non-local'" memory CAl) (i "# j) by using its own local bus LE" the 

global bus GB and the local bus LB) connected CMj (Figure 2.2.3.5.). Because 

of the blocking phenomenon due to one processor accessing the local memory of 

another one, the second model cannot be modeled as a simple queueing system 

(even with the assumptions of Poisson generation of requests and exponentially 

distributed memory access times). The problem is solved by explicitly constructing 

a corresponding Markov chain. 

These architectures are compared for the same processor communication 

load. For light loads, the first model outperforms the second, despite the fact that 

it generates twice as many communications with the global bus than for the second 

model. This can be explained by the fact that with light loads, the average queueing 

delay is quite low, making the additional interference introduced by the first model 

negligible. With the second model, on the other hand, every access to an external 

common memory preempts a processor, whose probability of being active on its 

local memory is very high under light load conditions. 

The comparison of performance under low interference (light load) is im

portant. Well-designed multiprocessor systems should operate in this region if the 

problem decomposition into tasks and the task allocation to resources is aimed at 

reducing communication overhead. From this perspective, the first model is a good 

choice, considering the simplicity of organization. For heavily loaded systems, it is 

') .. -, 



better to use local common memories. 

Goyal and Robinson ([Goya84]) present the analysis of two generic classes 

of multi-bus computer systems. The first system, called BIP (billion instructions 

per second), consists of a very few high performance processors. The primary mo

tivations are improved throughput, reliability, and availability. The second system, 

called KMIP (K million instructions per second), consists of hundreds of low speed 

processors connected to a large central memory. The examples of such systems are 

airline reservation systems. 

The ElP system is given in Figure 2.2.3.6. The model and analysis of 

KMIP system follows the same lines. There are N processors connected to AI 

shared memory modules by B busses. A processor serves a job for an average of 

11m time units before a miss in local memory occurs. On such a miss, a processor 

references a shared memory module with an equal probability 11M. The processor 

waits till the requested page is transferred to its local memory. It is assumed that 

a page request takes an average of w units of time to obtain the required shared 

memory modules and an arbitrary bus. The page request waits in a queue till all 

the previous page requests to those shared memory modules are satisfied. It takes 

a constant t units of time to access and transfer a page from the shared memory 

to the local memory. Finally, every page request causes an additional (in parallel) 

write request with probability mw. 

It can be shown that the queueing system described above is closed queue

ing network, which is always stable and has an equilibrium state. The queueing 

model for the BIP system is presented in Figure 2.2.3.7. If Up is the processor uti

lization, and M' is the average number of busy memory modules, it can be shown 

that 

{

AI' = [NUpm(l + mw)j[tj 
U - I 

P - l+mtl+m.)(w+C) 
m' = [Upm(l + mw)J[(w + t)1 
M' = A/[l- (1- ~)NI 

(2.2.3.6) 
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This gives 4 equations in 4 unknowns (AI', Up, w, m'), which can be reduced 

to a single nonlinear equation' i~ Up. Therefore, the performance of the system can 

be evaluated by solving this nonlinear equation. The following approximation is 

suggested: Since m' / AI is the probability that a shared memory module is addressed 

from the local memory, the probability that i shared memory modules are requested 

IS 

(2.2.3.7) 

If B ~ M then the equation 2.2.3.7. also gives the probability that i shared memory 

modules are busy. If B < M, the maximal possible number of busy modules is B. 

Therefore, the average number of busy memory modules for an arbitrary number 

of busses can be approximated as 

(2.2.3.8) 

The utilization of an individual bus is given by UB R:1 M' / B. The authors call this 

the truncation method. 

The analytical results are within 5% of the simulation results. The most 

critical design parameter is the bandwidth of a single bus. If the required bandwidth 

cannot be made available on a single bus, it may be traded to some extent for an 

increased number of buses and shared memory modules. The proposed model allows 

us to study the effect of bus failures on system performance by varying the number 

of busses B. This is unlike some of the previous work, which assumed a fully 

functional interconnection network for the analysis. 

Many of the assumptions are not met by real life bus-shared systems. Ac

cess times may not be of exponential duration, processors may not evenly share the 
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load, and there may be more interference in some resources than in others. The 

uniform distribution of requests (the uniform distribution of interference) is defi

nitely an optimistic assumption: if there is more interference at a particular bus, 

this resource becomes a system bottleneck and thus the processing power decreases. 

If the above queueing models are extended to include non-uniform sharing of total 

load among processors, the solution becomes complex since one must separate cus

tomers into classes. Despite the growing number of multi-bus architectures, very 

few analytic studies have been done on this. 

2.2.4. MULTI-STAGE INTERCONNECTION NETWORKS 

A multi-stage interconnection network is a network in which the nodes 

can be arranged in stages, with all the source nodes at stage 0, and all the out

puts at stage i connected to inputs at stage i + 1. These networks can provide an 

effective interconnection scheme for parallel computations of such problems as the 

Satcher sorting method ([Ston 71 J), polynomial evaluation, and fast Fourier trans

forms ([Peas77]). 

An example of a multi-stage network is the shuffle-exchange (or Omega) 

network ([Lawr75]). The standard N x N shuffle-exchange network ([Lawri5]) 

consists of k = log2N columns of routing switches connecting N processors to N 

memories. An example of a 3-column 8 x 8 shuffle-exchange network is given III 

Figure 2.2.4.1. 

Each column consists of N/2 two-input, 2-output routing switches. A 

perfect shuffle connection is used between each pair of adjacent columns. The 

switches forming the path from the source processor S to the destination memory 

D are set according to the binary value of the address of D. A switch in column 

j will interpret the j-th bit of D to set its internal path. If the j-th bit is 0. the 

upper output of request will be used, if it is 1 the lower output is used. 
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Shuffle-exchange networks have many topologically equivalent forms, de

pending on the interconnection pattern. These include delta networks ([Pate7g]), 

indirect binary cube ([Peas77]) and others. Most of the analytic results (or multi

stage interconnection networks are in fact concerned with the shuffle-exchange class 

of net works. 

In a shuffle-exchange network, if each input of a switch at column j has an 

active request, then whether or not there is interference at that switch will depend 

on the i bits of two destination tags. I( they are the same, interference exists and 

only one request can be established. Because the j-th column examines only the 

j-th bit of a destination tag, it is reasonable to assume that if requests generated 

by processors are random, the binary distribution of destination bits is random as 

well. This assumption of "interference independence" between stages is the central 

idea of the analysis of all of these networks. 

The first analytic results for shuffle-exchange networks were reported by 

Nelson and Thanawastien ([Than8l/). They have analyzed these networks in a 

circuit switched mode using the discrete Markov chain approach. To calculate the 

bandwidth, one determines the probability of having ni active outputs in column i. 

given that no requests are originated by N processors. This probability is calculated 

by considering a I-column 2N x 2N network, no active inputs, and calculating n 1. 

These nl active outputs become inputs to the second column of the network. The 

process is repeated k times resulting in nk requests at the output of the k-th stage. 

The analysis proceeds under the assumption of equally likely access patterns and 

synchronous operation. The memory bandwidth is a polynomial in p, Yo hich is 

the probability of having a conflict at a switch given two active inputs. From the 

expressions of memory bandwidth, several other important parameters are derived, 

including the non-blocking probability P = BW IN and the average delay D = 
tN I P. (Here tN denotes the time to complete a basic network cycle, that is. the 

time for a memory request to travel to and from shared memory) The figure 2.2.4.2. 

shows the memory bandwidth BW for some p. It is interesting to note that (or a 
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fixed p, the bandwidth increases almost linearly with N. 

Even though one can argue that unbiased resolution of the conflict should 

imply that p=I/2, the possibility of favorite memory requests ("locality of interfer

ence") implies that the value of p < 1/2 or p > 1/2 is quite reasonable. 

Since no restriction is made on the connection pattern between columns 

of 2-input, 2-output switches, the above results ~re applicable to all of the shuffle

exchange networks (indirect binary n-cube, Delta, Baseline, and Reverse-Exchange). 

In the above analysis it was assumed that the processor always generates 

the request at the beginning of a memory cycle. In real systems, however, this may 

not be the case. It is more realistic to assume that at the beginning of a cycle, 

a processor generates a request with some probability. Patel ([Pate8l!) has ana

lyzed such a model of 2.!V x 2N shuffle-exchange networks, assuming synchronous 

operation, uniform distribution of requests, and a fixed probability mo that a pro

cessor generates a request during a cycle. Under these assumptions, one can derive 

a relation between the request rate m, on an output line of stage i and the initial 

request rate mo. Using this, recursive formulas for the bandwidth BW and the 

non-blocking probability P are derived: 

p = m.!V 
mo 

(:2.:!.4.1) 

The above equations can be solved only numerically. The comparison of p.-\ and 

BW with those of crossbar networks is illustrated in Figures 2.~.-t.3. and :!.:!.4.4. 

The non-blocking probability for the crossbar approaches a constant value. 

whereas it continues to fall for shuffle-exchange networks as N grows. The band

width provided by the crossbar is higher than that of delta networks but at an 

enormous increase in the number of switching elements (lY"'l vs. N x 10gzS). ~ote 

that the bandwidth is linear for larger N. This is consistent with the previous 

analysis of Thanawastien and Nelson ([Than8l]) described above. 

Bhuyan and Lee ([BhuY831J have extended the above approach to show tbt> 
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effect of "favorite memory case": a processor P, requests a particular memory mod

ule Mi most of the time. The favorite memory connection for standard 3-column 

8 x 8 shuffle-exchange network is shown in Figure 2.2.4.1. From the probabilities 

of favorite memory request mo, a recurrence relation for the bandwidth (8\V) is 

derived by quite complicated arguments. An example of comparison of favorite and 

equally likely access is given in Figure 2.2.4.5. For favorite memory case ("interfer

ence locality") the bandwidth is higher than for uniform access. This can be easily 

explained by the fact that processors try to access their favorite memory modules 

most of the time. This leads to a decrease in interference and thus to a higher 

bandwidth. 

The above systems were analyzed in circuit-switching mode. Diaz ([Diaz81]) 

analyzed the delta networks in packet-switching mode. Under the packet-switching 

mode, the processor does not need to establish a continuous connection, but sends 

data in packets from one stage of the network to the next. Diaz assumed that the 

networks operate asynchronously with packet lengths distributed independently and 

equiprobably among all possible destinations. In addition, the analysis is done un

der the assumption of "ma.ximal loading" - a buffer at the input link always has a 

packet to send. If interference occurs when two packets try to use the same link, one 

of the packets is equiprobably selected while the other is rejected. No "interference 

locality" is assumed. 

Under these assumptions, the dependence of the rate of increase in through

put (average number of packets processed by the network per unit of time) on the 

number of buffers is largest for a change from one to two buffers. This rate increase 

falls off sharply as the buffer size increases. It seems, therefore, that for most appli

cations, the number o( buffers between stages should be limited to one or two. The 

approximate analysis and simulation results suggest no significant difference when 

the rejected packets are assumed to be lost. Thus, the simple model which assumes 

that interfering packets are lost can be used to obtain a fairly good estimate of in

terference (or more realistic models and environments. Again, since no assumption 
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was made on a particular interconnection pattern, the above results are applicable 

to all multi-stage permutation networks. 

The multi-stage interconnection networks considered above have a unique 

path from each processor to each destination (memory module or another proces

sor). Any interconnection network with a unique path from "source" to "destina

tion" is called a banyan network ([Goke73]). The term "'banyan network" there

fore encompasses a fairly large variety of switching networks whose interconnec

tion geometries may be either highly regular or almost random. A multi-stage 

banyan network is therefore any multistage network with a unique path between 

any processor-processor or processor-memory pair. For example, the 8 x 8 ~hufHe 

exchange network given in Figure 2.2.4.1. is an example of a 3-stage banyan network 

built of 2 x 2 switches. 

Unbuffered multi-stage banyan networks built of k x k switches were ana

lyzed by Kruskal and Snir ([Krus83J). The unbuffered network is assumed to operate 

in synchronous packet switching mode, where packets are generated by independent 

random processes (no "interference locality") and there is a fixed probability for each 

processor to generate a packet. The relevant performance measure is the probability 

rn, that there is a packet on any particular input at the i-th stage of the network. 

This probability is shown to be 

.= 2k [_(k+I)IOge i o(~)l 
rn, (k-l)i 1 3(k-l) i + i 

Therefore, the non-blocking probability is inversely proportional to the 

number of stages in the network. In particular, for the network built of 2 x 2 

switches, the bandwidth 

(2.2.4.3) 

Thus, interference grows geometrically with the number of stages, resulting in a poor 

bandwidth if many stages are used. The bandwidth of packet-switching networks 
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can be improved by using buffers to queue interfering packets. An accurate analysis 

of interference of buffered square ba.nyan networks does not seem tractable. 

One of the assumptions in the above analysis of multi-stage interconnection 

networks is the assumption of uniform distribution of traffic. This may not always 

be true in practice. It often happens that there are one or more hot spots - locations 

to which a specified fraction of the total references is directed. The quantitative 

investigation of the performance impact of such contention was considered by G.P. 

Pfister et aI. ([Pfis85]). They analyzed an omega network (4 ~ N ~ 64), where 

the fraction of references directed to a "hot spot" was varied from 0.5% to 32%. If 

NiS the number of processors, r (0 ~ r ~ 1) is the number of packets emitted per 

processor per unit time and h is the fraction of memory references directed at the 

hot spot, then there are r( 1 - h) + rhN packets to the "hot" memory during one 

cycle. The hot spot occurs when this value equals to the capacity of the weakest 

link in the path between a processor and a "hot" memory. Saturating the capacity 

of the link, which is connected to hot memory, causes queues in the switch closest 

to that memory to fill. The same happens to the switches in the previous stage and 

so on. 

Therefore, hot spot non-uniformity in the traffic can produce global degra

dation. The limitation from this effect can be significant. As shown in [Pfis85]' for 

large systems with 1000 processors, the hot spot traffic of 0.125% limits the po

tential bandwidth of the system to 500, that is 50% efficiency. This effect of -hot 

spot" degradation is independent of network topology or switching mode (packet or 

circuit). It occurs in any multi-stage network with distributed routing. One of the 

possible solutions, suggested and implemented as part of the RP3 project ([Pfis8.5j), 

is to <;letect the occurence of memory requests directed at identical memory locations 

as they pass through each switch node. Such messages are combined into a single 

message. The preliminary results indicate ([Pfis85]) that this provides an adequate 

solution. The expense is, of course, the additional cost of a combining network. 

The development and analysis of strategies to solve the "hot-spot" degradation i~ 
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an important area of research. 

A general queueing model for multi-stage networks was proposed recently 

by Mudge and Makruchi ([Mudg82]). Under the assumption of Poisson arrivals, 

uniform distribution of requests, and exponential service times, the first stage can 

be modeled as an MIA!/II L queue. However, the output of that stage to the 

second stage fails to be Poisson. For large switches the distribution is assumed 

to be approximately Poisson. With such an approximation the network can be 

represented by a sequence of AI/A!/I/ L queues. The obtained results are within 

20% of the simulation results. Deriving an exact tractable queueing model for 

multi-stage banyan networks appears to be impossible. 

2.2.5. CONCLUDING REMARKS ON INTERCONNECTION NETWORKS 

Exact models of "realistic" interconnection systems typically do not sat

isfy the BMep theorem and are thus computationally intractable. For example, 

consider a shuffle-exchange system operating in the asynchronous mode and assume 

that memory requests are queued at inputs to stage 0 of the network. Some of the 

requests queued at different inputs can be active, and some cannot be active, de

pending on the address of the destination nodes. To describe a queueing model for 

such a system, one would need to take into account not only the size of the queue 

at each input, but also the contents of each queue. Such a queueing model is not 

in a product form. 

Despite the growing number of multiprocessor systems, relatively few ac

alytic studies of performance of interconnection networks have been done. 
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2.3. MULTIPLE ACCESS PROTOCOLS 

2.3.1. GENERAL OVERVIEW AND PERFORMANCE ISSUES 

The next class of models considered is packet broadcast networks. Packet 

radio networks consist of geographically distributed computers broadcasting data 

packets over a shared communication medium. It is often the case that two units 

cannot have a direct connection. Thus intermediate users must act as relays, cre

ating a multihop communication network. Such a network can be represented by 

a graph where nodes are transmission sources and edges connect nodes that can 

directly communicate. 

Since one is dealing with a network operating in a packet-switching mode, 

conflicts necessarily arise whenever transmissions attempt to acquire the same chan

nel simultaneously. The problem is to minimize this conflict by providing an ade

quate access control. This "interference resolution" problem is non-trivial since the 

users are usually geographically distributed. To solve this problem, a set of rules 

which define under what conditions a node is allowed to transmit must be defined. 

Such a set of rules is called a multiple access protocol. 

What are the key performance measures in analyzing the impact of inter

ference in packet radio networks? 

• The most important performance measure is the throughput S - the average 

number of successful concurrent transmissions processed per unit of time and the 

dependence of the throughput on the system parameters (number of nodes .v. of

fered traffic G, etc.). 

• Capacity - the ma.ximum throughput that a system can achieve. 

• The relationship between.the throughput S and the delay D (the average time 

from the point when the packet is generated until it is successfully receive-l). 
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• Channel utilization - the percentage of channel capacity used by successful 

transmissions. 

• Optimal degree - for a given protocol and the network size N, the average 

degree d (how many other nodes can a node "hear" on the average) that ma.ximizes 

throughput. The larger the degree d (the more powerful the transmitter) the fewer 

"hops" will be required for a packet to reach the destination and thus increase the 

throughput. On the other hand, increasing d will introduce more interference and 

thus tend to degrade the throughput. 

It is recognized that certain random access channels are unstable in the 

absence of certain channel control procedures ([Fay077, Carl75, Lam75, Medi83, 

Toba77]). In the case of the so-called absolute instability, the channel throughput 

becomes zero even under very light traffic conditions. In the case of the so-called 

oscillatory instability, the channel throughput jumps at random times from one 

locally stable point to another. The detailed discussion of the question of stability 

is, however, beyond the scope of this paper. 

Many multiple access protocols for interference resolution have been pro

posed and studied by numerous researchers ([Abra70, Boor80, Braz85, Klei80, 

Lam75, Rubi83. Silv83, Taka83 , Toba75] to name just a few). An excellent sur

vey is the paper by Kurose, Yemini and Schwartz ([Kur084]). For the purpose of 

the discussion of interference, these protocols can be classified into two different 

classes: controlled-access and contention protocols. 

Under controlled-access protocols, the distributed stations are coordinated 

in such a way that there is nO' interference - two or more stations never try to 

transmit at the same time. Such a coordination is achieved by some ordering of 

access rights. Under contention-based protocols, each user monitors the broadcast 

channel and tries to transmit his data the best he can without incurring interference. 

Interfering packets are retransmitted by the users according to control algorithms. 

The reader is again referred to an excellent comparative survey of these protocols 
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in [Kur084]. 

In this paper only contention-based protocols are considered. We will 

not discuss the tree access protocols t ([Cape79, KapI85]). The contention-based 

protocols discussed in this paper can be divided into two main groups: ALOHA-type 

and Carrier-Sense type schemes. 

2.3.2. ALOHA-TYPE SCHEMES: SINGLE-HOP CASE 

The ALOHA scheme is perhaps the first example of a multiple access pro

tocol. Under the Aloha-type schemes ([Abra70j) any node wishing to transmit over 

the shared broadcast channel, does so independently of the others. Under light 

traffic, because of low interference, the transmission will succeed with a high proba

bility, and thus with a low delay. As the load increases, so does the probability that 

a node that wants to use the channel will encounter interference when another node 

also wants to transmit. As a result of interference a '"collision" occurs, destroying 

the packets of both nodes. These nodes retransmit the messages after some random 

time to avoid future interference. In the pure-AWHA, each node transmits over a 

shared channel in completely unsynchronized manner. If within some appropriate 

time-out period they receive the acknowledgment from the destination, then they 

know that no interference wa:sJ>resent. Otherwise, they assume that interference 

has occurred. Clearly, a given packet of time duration T interferes with any other 

packet broadcasted within T seconds before or after the start of the given packet. 

Thus, the interference can occur over a '"vulnerable" period of length 2T. To avoid 

continuously repeated conflicts, a random retransmission delay must be introduced, 

spreading the interfering packets over time. If one assumes that the generation of 

traffic is Poisson, it can be shown ([Abra70]) that for the offered channel traffic load 

t In a tree access protocol, there is a sequential decision process to isolate a 

single busy node which is then allowed to transmit its data packet. 



G, the throughput S is given by 

S = Ge-2G (2.3.2.1) 

This is shown in Figure 2.3.2.1. The maximum throughput is Smar = ie = 0.184 

at G = t. 

The effect on performance when packet lengths are selected from the ran

dom distribution was analyzed by Ferguson ([FergiiJ). The main result of his study 

was that if the mean of the packet length is the same as the constant packet length 

considered above, the optimum performance is achieved for constant packet lengths. 

If the packets are of the same length, then the obvious way to minimize 

interference would be to minimize the "vulnerable" length. This is the idea of the 

slotted-ALOHA ([Robei4]). The completely unsynchronized channel is modified 

by "slotting" time into segments corresponding to a time to transmit a packet. 

Nodes can transmit only at the beginning of a time slot. The "vulnerable" period 

is reduced twofold to T. The throughput equation becomes 

The ma..ximum throughput is S;ar = ~ = 0.368 at G = 1. As one would expect, the 

ma..ximal throughput is twice that of the pure-ALOHA. The corresponding through

put curves of slotted and unslotted ALOHA are given in Figure 2.3.2.1. 

The above systems are analyzed under the pessimistic assumptions that if 

two packets interfere, both packets are lost. In practice, such an assumption pro

vides a lower bound on system performance, since the stronger of two interfering 

packets may capture the receiver and be received without error. This fact can be 

used to show that by dividing users into two groups - one transmitting at higher 

power and one transmitting at lower power, the maximum throughput can be in

creased by about 50% ([~fetzi6D. The result may be of importance to packet radio 

networks with a mixture of data and packetized speech traffic. 
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The single-hop slotted ALOHA networks have been analyzed for various 

traffic matrices and transmission strategies by Silvester and Kleinrock (lSilv83a]). 

The network environment is a set of randomly located nodes that are able to com

municate in one hop, described by the traffic matrix. In this model, if a node i 

has a packet to transmit, it does so in any time slot with probability PI' This 

corresponds to the offered traffic randomized so that slotted AWHA will operate 

correctly and resolve previous conflicts due to interference of simultaneous trans

missions. If each node can reach any other node (completely connected topology) 

and carries identical traffic, then Pi = p. In such a case the throughput S is given 

by 
1 1 

S = Np(1 - p)N-l ....... N-.- = - as 
Ne e 

(~.3.~.3) 

which is of course the familiar result for the capacity of the slotted AWHA. 

We can consider restricting the transmission range for a uniform traffic 

matrix. The transmission probability Pit that a node "hits" k nodes (including 

itself) is assumed to be Pit = 11k. The throughput Sit for a node that hits k nodes 

is assumed to be the same for all of the N nodes and is Sit = 1 IN - 1. The 

throughput of the network is then shown to be 

N [N ( k - 2 1 1 ) N -2] r tIl ] 
S = N _ 1 !l 1 - N - 2 k N - 1 ~~ k - k2 

logN 
~-

e 
(:?3.:?4) 

In other words, the throughput can be made proportional to the logarithm 

of the number of nodes (equation 2.3.2.4). This is verified by the simulations: ran

dom networks are generated with points uniformly distributed within a unit circle. 

Pairs are randomly assigned and transmission radii determined. The transmission 

probability for a node is taken to be the reciprocal of the number of nodes within 

the range of that node. From this, one can compute the success probabilities for 

each node and hence the throughput. The results of the simulation are given for 
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I-dimensional networks (Figure 2.3.2.2) and for 2-dimensional networks (Figure 

2.3.2:3). 

An excellent agreement is seen between the model and the simulation. For 

small networks, a large proportion of the nodes are close to the edge of the networks. 

and thus one would expect that the agreement is not as good for small networks. 

Nodes near the edge suffer less interference. As the number of nodes increases, these 

edge effects become proportionately less important. In two dimensions, there is a 

higher proportion of nodes on the edge of the network and thus the model requires 

larger networks in order for the agreement to be good. 

The next problem is finding the best traffic matrix to maximize through

put: what traffic matrix all<?~s the highest traffic levels to be supported for a 

random network? In theory, it is possible to find a traffic matrix such that the 

throughput S is proportional to the number of nodes. Because of the "interference 

locality" of traffic requirements, it is reasonable to expect that the performance of 

single-hop slotted ALOHA is between the logarithmic and the linear performance. 

2.3.3. ALOHA-TYPE SCHEMES: MULTIPLE-HOP CASE 

In the previous section, it was assumed that the packet can reach its desti

nation in one hop. It is more realistic to consider the multiple-hop case: the packets 

have to travel through the intermediate node(s) to reach the destination. 

The simplest case is, of course, the two-hop AWHA network. The two-hop 

slotted ALOHA has been analyzed by Tobagi ([TobaBO]). The studied configurations 

are the star configuration and the (ully connected configuration shown in Figure 

2.3.3.1. In these systems, the traffic originates at terminals and is destined to a 

central station. This traffic may require that packets are relayed by store-and

forward receivers. 
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For small number of users N, the star configuration offers a higher sys

tem capacity. As N increases there is more interference at the inner hop, which 

becomes the critical hop, and both configurations are equivalent in capacity. The 

fully connected configuration provides smaller packet delays for low and moderate 

values of throughput. This becomes more noticeable for the larger values of N, 

where network delay becomes the important component of the total packet delay. 

This is shown in Figure 2.3.3.2. 

Under the assumption of the negligible processing time at the devices, 

packet radio systems are channel bound: a slight improvement is gained by in

creasing the buffer size at the nodes from 1 to 2, but no significant improvement is 

obtained beyond that. 

The above studies of the ALOHA were concerned with centralized networks 

- all the traffic was destined to the central node. For multihop packet radio networks 

one no longer has a centralized node. This greatly complicates the interference 

analysis and, in fact, relatively little work has been done in this area. 

Silvester and Kleinrock ([Silv83bJ) have analyzed multihop slotted AWHA 

networks with regular structure - the nodes are placed on a regular graph such as a 

square grid or loop (Figure 2.3.3.4). It is assumed that the traffic matrix is uniform, 

that is, each node splits its traffic equally between all possible destinations. \Vith 

such a traffic matrix and a regular topology, it is assumed that the traffic load on all 

the links is homogeneous. This seems to be a valid assumption, since either there 

are no edge effects to consider (e.g. loop) or they can be ignored since they are 

of minor importance to the rest of the network. Under the above assumptions, we 

find that the throughput is ma..ximized if the probability of transmission during a 

slot p = ~, where d is the average degree of a node plus 1 (for the node itself). 

To calculate the throughput, one proceeds as follows. First, if p = I j done 

can easily calculate the expected number of successful transmissions per slot for the 

whole network to be Sn~f = Njd(l -l/d)d-l. The expected path length in hops is 
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shown to be L = (N + d - 2)/(2d - 2). The throughput is then 

S=Sntt= 2N (l_.!.)d 
L N+d-2 d 

(~.3.3.1 ) 

Let us first examine ~e question of the optimal degree d for the loop 

networks. One can consider two extreme cases. If the network is fully connected 

(d = N), then from (2.3.3.1) we obtain 

(2.3.3.2) 

for large d. This is what one would expect - the throughput corresponds to the 

usual infinite ALOHA population. 

The other case is when each node is only connected to its two neighbors 

(d = 3). For such a case the throughput is 

S = '2N (~)3 1-+ 16 
N + 1 3 27 

(2.3.3.3) 

Since 16/27 > l/e, the maximum throughput is achieved for some inter

mediate value of d. From (2.3.3.1) we can find that the optimal degree turns out to 

be 

d t ~r; op ? .. (:~.3.3.4) 

The optimal throughput is Smaz = ~/e. In fact, for large N the exact 

value of d is not very critical as long as it is greater than 3 and grows more slowly 

than N. Thus, the optimal throughput of 2/e will be achieved for any moderate 

value of d. This is illustrated below in Figure 2.3.3.5. 

For the line networks ([Silv83b]), the throughput is 

(2.3.3.5) 



(The constant e depends on the average path length) For large d the throughput is 

almost independent of the degree and a capacity of ele can be achieved. 

For two-dimensional networks ([Silv83bJ), the average path L for a uniform 

traffic matrix is found to be proportional to J'NIVd. For small d the throughput 

is 
(N ( )d-l 

S = ev d 1-1 (~.3.3.6) 

Here e is some constant, depending upon the topology. The above expression (equa

tion 2.3.3.6) means that one should set d as small as possible, since both Ifr and 

(1 - ~ }d-l increase as d decreases. The optimal value turns out to be 4 (hexagonal 

tesselation) . 

2.3.4. CARRIER-SENSE SCHEMES 

To reduce the level of interference caused by overlapping packets, one can 

allow the nodes to sense the channel. Based on the information gained in this 

way about the state of the channel (idle,busy), the node takes a particular action. 

This is the idea of Carrier Sense Multiple Access (CSMA) protocols. The various 

protocols presented below differ by the action (pertaining to packet transmission) 

that a node takes after sensing the channel. 

The simplest example is the nonpersistent CSMA ([Klei75aJ). The idea is 

to limit interference by always transmitting a packet (at some later time according to 

the retransmission delay distribution) by a node once that node sensed the channel 

to be busy. The other "extreme" is to never let the channel go idle. If a node senses 

the channel to be busy, it waits until the channel becomes idle ("persists"') and then 

transmits. This is the idea of a 1 - persistent protocol. 

The above protocols differ by the probability of not rescheduling a packet 

which finds the channel busy upon arrival. If two or more nodes sense the channE'l 
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busy under a I-persistent protocol, as soon as the channel becomes idle, they all 

try to transmit and thus interfere. To limit this interference, one would like to 

randomize the starting time of these transmissions. This can be achieved by let ting 

a node "persist" (transmit as soon as it senses the channel idle) with probability p. 

This is the idea of a p - persistent protocol (lKlei75a]), which is the generalization 

of a I-persistent protocol described above. The parameter p is chosen in order to 

reduce the interference while keeping the idle periods between any two consecutive 

non-interfering transmissions as small as possible. If the packets are of the same 

length, a slotted version of these protocols can be considered in which the time a.xis 

is divided into slots, and packets can only be transmitted at the beginning of a slot. 

Kleinrock and Tobagi ([Klei75aJ) analyzed the above protocols under the 

assumption of an infinite number of users who collectively form an independent 

Poisson source with a mean packet generation rate of A packets per unit of time. 

This is an approximation to a large population in which each user generates packets 

infrequently and each packet can be successfully transmitted in a time interval much 

less than the average interarrival time. Clearly, if T is the time to transmit a packet 

then the throughput per node is S = >'T and is less than 1 because of interference. 

The basic equations for the throughput S are expressed in terms of a (the 

ratio of propagation delay to packet transmission time) and G. The Figures 2.3.4.1 

and 2.3.4.2 illustrate some comparisons between different protocols. 

While the capacity of the ALOHA channels does not depend on the prop

agation delay, the capacity of a CSMA channel does. An increase in a increases 

the "vulnerable" period of a packet - the period over which interference can occur 

(Figure 2.3.4.1). It is not surprising, therefore, that capacities of non-persistent 

and p-persistent schemes are more sensitive to increases in a than the I-persistent 

scheme. For larger a, non-persistent CSMA drops below I-persistent. For large a, 

ALOHA becomes superior to any CSMA schemes. This is because any decisions 

that a node wishes to make under CSMA are based on obsolete data. 
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The above modes deal with the case when all the nodes are within range 

and in line-of-sight of each other. However, this may not always be the case. It 

is possible that a node may not be able to "hear" all the other nodes' traffic. Not 

surprisingly, in such a multihop case, the analysis becomes much more complex. 

The reason is that the interference in a multihop environment comes not only from 

the transmission overlap but also from the so-called hidden terminals (lToba7S]). 

An idle channel around the transmitter does not necessarily imply that the channel 

around the intended receiver is also idle. This is illustrated for a simple multihop 

network in Figure 2.3.4.3. If node A senses an idle channel and sends ~ pc:..:ket 

to node B, the packet will suffer a collision if node D is transmitting. Node D is 

hidden from node A because it is outside of the hearing range of A. The hidden 

terminal problem causes additional interference and thus decreases the throughput 

achievable using CSMA. 

Tobagi and Kleinrock ([Toba7S]) analyzed the performance of the above 

CSMA protocols in such an environment. A network configuration is specified by 

a "hearing" matrix: if there are N nodes, this is an N x N matrix A such that 

the element ail = I if and only if i hears j and is 0 otherwise. To simplify the 

description, one can partition the nodes into groups: all terminals within the same 

group hear exactly the same subset o( terminals in the population. The input 

processes (or each group are assumed to be Poisson. The solution for a general 

case is intractable. A simple case when the population can be partitioned into AI 

independent groups o( equal size can be analyzed. For each node, a (raction o( 

population is hidden, namely (M - 1)/"'1. The channel capacity (or various values 

of M is given in Figure 2.3.4.4. 

As seen from that figure, channel capacity experiences a big decrease be

tween the case of Al = I (no "hidden" terminals) and M = 2 (additional int('ricr

ence from "hidden" terminals). The decrease is more critical (or the non-persistent 

CSMA than for the I-persistent. For Al ~ 2, slotted ALOHA performs performs 

better than CSMA. For j\{ > 2, the channel capacity is rather insensitive to the 
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number of groups and approaches Pure ALOHA, as one would expect. 

The problem of interference from "hidden" nodes can be alleviated with 

the help of a busy tone transmitted on a separate frequency by the receiver. This 

is the idea of BTMA - Busy Tone MUltiple Access protocols ([Toba75J). Under the 

assumptions of zero propagation delay, the busy tone guarantees correct reception 

of the original packet and prevents the additional interfering transmissions. Because 

of lower interference one can expect that the throughput of BTMA is higher than 

that of CSMA. Several BT~{A protocols exist depending on who is transmitting the 

busy tone ([Braz83]). In the C-BTMA (conservative BTMA) any node that senses 

a carrier emits a busy tone. Thus, if node A transmits a packet to node B, then all 

neighbors of A transmit the busy tone, thus blocking all nodes in the region within 

twice the hearing radii from node A. In the I-BTMA (Ideal BTMA) the receiver 

node B transmits the busy tone, blocking only its neighbors. This scheme is not 

easily implement able since B must know a priori that it is the intended receiver. 

Some examples of BTMA will be considered below. 

A general model to analyze various CSM A schemes in multihop env iron

ments has been developed recently by a number of researchers ([Boor80, ~{agI83. 

Braz83]). In the model, one assumes that message lengths are exponentially dis

tributed, and redrawn independently from the corresponding distribution each time 

a message is transmitted. Receivers capture the first transmission that reaches 

them (perfect capture) and transmitters always get perfect acknowledgment. One 

assumes that interference is only due to the contention of the channel, thus each 

node is assumed to have an infinite buffer space, perfect acknowledgment, zero pro

cessing and propagation delays. If transmission fails because of the interference 

from another node, the packet must be scheduled for a later time. The intersched

ule times are assumed to be distributed Poisson and it is also assumed that there 

is always a packet available at each schedule time. Simulation studies ([Boor801) 

for Single-hop ALOHA indicate that if rescheduling is delayed more than 10 tim~ 

the packet length, the assumption is a valid one. Packet lengths are assumed to be 
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independently reassigned at each node in a path. This assumption is consistent with 

the rescheduling delay assumptions above. Note that under the above assumptions, 

the process of scheduling points for each node is Poisson. Let Ai denote the rate of 

this Poisson process of scheduling points for node i and let 1/ JJi be the mean length 

of packets transmitted by node i. 

To use such a model to study different protocols, one need ... to take into 

account the transmit status of each node. In the ALOHA schemes, the receive status 

of each node can be completely ignored, while in CSMA schemes, it is implied from 

the transmit status of the neighbors. The state-space X(t) at time t is the set 

of nodes which are transmitting at that time. Since, depending on a particular 

protocol, not all the subsets of nodes can be transmitting, the state-space is a 

function of the protocol in use. 

For example, for a 4-node chain of Figure 2.3.4.5. the state space 5 is 

CSMA: 5 = {O, (1), (2), (3), (4), (1,3), (1,4)' (2,4)} 

C-BTMA: 5 = {O, (1), (2), (3), (4), (1, 4)} 

ALOHA: 5 = Power Set of {I, 2, 3, 4} 

Because of the assumption of exponential message lengths and the Pois

son nature of the scheduling point process, it can be shown that .\'(/) is a contin

uous reversible Markov chain, and thus the steady-state distribution has a simple 

prod uct-form. 

If P(A) denotes the steady-state probability of state A, it is easy to show 

that 

P(A) = (II Ai) Po 
.eA P. 

(2.3.4.1 ) 

where Po is the normalization constant and equals the probability of finding all the 

nodes idle. 
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For example, for a 4-node chain above, if one assumes the link throughput 

pattern to be uniform, then the throughput equations become 

For CSMA: S = 1+52+2G2 with Smax = 0.128 

For C-BTMA: S = k [1 - 5ci+l] with Smax = 0.2. 

The corresponding curves are shown in Figure 2.3.4.6. The tractability of 

these models for larger systems is tampered by the absence of an efficient compu

tational algorithm to calculate the normalization constant Po. 

The analysis of zero capture for the above model has been presented by 

Brazio and Tobagi (lBra.z8-1]). Under zero capture, any two interfering packets 

result in the failure of transmission. The analysis of zero capture is more difficult. 

Due to the dependency that exists between the message length and the success of its 

transmission, the average transmission time of a successful packet is not IIp,, The 

calculation of the link throughput from i to i involves the construction of a Markov 

chain representing the states of the network under which the ;-to-j transmission 

results in success. Although it can be done in principle, it seems that the exact 

solution based on such a construction is infeasible even for very simple networks. 

For multihop systems, one can gain some throughput by transmitting even 

if a node senses the channel to be busy. This is the idea of Rude-CS~L-\ (!~els85]). 

The motivation for this is that a busy channel around the transmitter does not 

necessarily imply that the intended receiver also senses the channel to be busy. This 

can be explained with the simple example in Figure 2.3.4.4. Suppose node A. has a 

packet for node B. If node A senses that the channel busy, the transmission could be 

from node C. Since node C lies outside of the hearing range of node B, transmission 

from A to B (despite the busy signal sensed by A) will be successful. To create the 

mathematical model, one takes the general model of Boorstyn ([Boor80]). And, in 

addition, one assumes that each node i knows the number Nl of its neighbors who 

are transmitting and the number N'J. of its idle neighbors. If A is the rate at which 

packets are generated at node i for transmission, then the rate A, at which node I 
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transmits is given by 

(~.3.4.2) 

where x and yare static network parameters. If the state of the neighbors is of no 

relevance, then x = y = 1, and the resulting protocol is our old friend the ALOHA 

protocol. If only the transmitting neighbors are relevant (x = 0, y = 1), one obtains 

the CSMA protocol. Thus, Rude-CSMA can be thought of as a generalization of 

these two protocols. 

The basic problem in the analysis of this protocol is to find the optimum 

values of x, y,.x to achieve maximum throughput. This is done numerically and 

only for very simple networks (a 6-node grid and a 7-node random network.) The 

optimal performance was obtained when the protocol was CSMA with optimized 

channel input rates (found numerically). Thus, for practical networks, the Rude

CS~fA should not be "'rude". \Ve should add here that even if Rude-CS~L\ were 

to perform better for some x, y, it would be difficult to implement a system where 

a node knows the status of all of its neighbors. 

Brazio and Tobagi ([Braz85J) have used the general model of Boorstyn 

([Boor80]) to analyze the throughput of spread spectrum multihop packet radio 

networks. The bits 0 and 1 in the data are encoded with specified sequences of 

N binary digits (chips). The receiver is equipped with matching filters that allow 

the detection of the presence of the code waveforms of the data bits. Each p:u:ket 

transmission has a preamble which the receiver uses to acquire bit and packet syn

chronization ([Kahn78]). Note that the conditions of success depend on the ways 

codes are selected. If all the nodes use the same pattern, then any two over!apping 

transmissions interfere. On the other hand, if they are all different, the interference 

will be confined to preambles only. With the spread spectrum operation, one can in

troduce the Destination Code Sensing Multiple Access (DCSMA). under DCS\1 A, 

the source node of a link monitors the channel for the existence of transmissions 

using the code assigned to the destination of the packet, prior to transmitting it. 

The link is blocked if, at a scheduling point, any such transmission is detected. ~ote 
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that the reception of the packet may have to be aborted if a scheduled transmission 

is to take place. The Markovian model is then formulated, from which one can ob

tain the throughput equations. This produces some numeric results are presented 

for very small systems. Analysis of the spread spectrum multihop networks is in its 

very early stages. 

2.3.5. CONCLUDING REMARKS ON MULTIPLE ACCESS SCHEMES 

For many models, a number oi protocols for multi-hop networks do not It'nd 

themselves to a simple product form solution, a.s for example in ALOHA schemes, 

where a node is inhibited from starting a transmission if it is receiving a packet or 

the J-BTMA. The question of the existence of a product form solution for a "ariety 

of CS~fA protocols for the above model of multihop networks was addressed by 

Brazio and Tobagi ([Braz84J). The neccessary and sufficient condition for a protocol 

to possess a product form solution turns out to be the "symmetry" of interference: 

for all pairs of used links i and j, link j blocks link i whenever link i blocks link j. 

The schemes that do admit a product-form solution can be numerically an

alyzed in practice only for very small and simple networks. Many of these schemes 

were originally designed for simple hop systems and it is not yet clear how to COln

pare them for large multihop packet radio networks. New approximation tecIJlliques 

to analyze such schemes are clearly required. 

2.4. LOCKING SCHEMES FOR DATABASE SYSTEMS 

2.4.l.GENERAL OVERVIEW AND PERFORMANCE ISSUES 

The last class of systems we will consider here is database systellls. :\ 
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database consists of a collection of items shared by many users. These users update 

the database with transactions. Concurrent transaction processing is a means of 

improving system performance and resource utilization. To process transactions 

concurrently, the database management system must control the read and write 

transactions so that they do not produce incorrect results (deadlock or inconsistent 

state). Thus, a concurrency control mechanism for locking must be used. It must 

guarantee the user that transactions will perform the same computation as they 

would in a serial environment (serializability). Clearly, the concurrent processing of 

transactions creates a problem of interference. Locking, while essential in concurrent 

transaction processing, creates interference among transactions accessing shared 

item(s). This clearly impairs concurrency. In addition, an implementation of a 

concurrency control mechanism, essential as it is, creates a noticeable overhead 

which makes it difficult to analyze the impact of interference on concurrency. 

What are the key performance measures in analyzing the impact of inter

ference in database systems? 

• The most important performance measure is the average number of concur

rent transactions. A :'other related measure is the multiprogramming level - the 

ma.ximum number of concurrent transactions. 

• The blocking probability that an arriving transaction can get the required data 

items. 

• The optimal unit of locking (granularity of locking). 

The impact of granularity on interference and concurrency for a particular 

concurrency control mechanism is a very important question. Fine granularity 

decreases the interference and thus allows a higher degree of concurrency. In the 

extreme case, if a granule corresponds to a record (the smallest addressable data), 

then interference is minimal, l?ttl the database system must be prepared to handle 3. 

lock table with the same number of entries as records in the database. On the other 

hand, course granularity decreases both c,>Dcurrency and the overhead of managing 
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the locks. Again, in the extreme case, if a granule corresponds to an entire database, 

then only one transaction can be active at a time and the database system will have 

to keep track of only one lock. 

Another issue related to granularity is the distribution of lock requests to 

the lockable units of the database, and its effect on interference. Few experimental 

studies have been conducted to determine the spatial reference pattern according 

to which transactions reference the items in a database ([Smit78]). It seems that 

items referenced by a transaction are usually clustered in several localities and 

sequentiality of access is an inherent characteristics of most systems. Because of 

the lack of agreement upon reference patterns and the mathematical tractability 

requirements for analytical studies, rather simple reference patterns are usually 

considered. One example is where access requests are equally likely distributed over 

entire database ([Lang82]). This question of "interference locality" seems to have 

received far less attention here than in the case of multiprocessor interconnection 

networks discussed above. 

To analyze database performance, one must analyze interference in the 

context of a particular concurrency control mechanism. There has been consider

able research on concurrency control schemes and there are a number of ways to 

classify them ([Bada80, Bern8t, Fran84]). Although numerous concurrency control 

mechanisms have been implemented (for a good survey see [Bern81]), there is an 

obvious lack of analytical studies. Work in this area is in its preliminary stages. 

2.4.2. ANALYTIC MODELS 

Perhaps the first analytic models to investigate the trade-off between lock

ing granularity and increased concurrency were proposed by Irani and Lin ([Iran7gll. 

The database is assumed to consist of D units of physical blocks, a number of gran

ules H, a multiprogramming limit N, and mean transaction time T. With such 
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definitions, the locking granularity G = DI H. The mean number of lock requests 

issued by a transaction is L = T IG. The transaction processing is modeled using 

the class exchange mechanism of the SCMP networks. The authors consider three 

types of service centers: the CPU, I/O units, and pseudo service center. The pseudo 

service center models the waiting time for a blocked transaction until a lock is re

leased. Two different models are then considered. In the first one, the granularity 

is assumed to be so coarse that the lock table is small enough to be kept III core. 

The probability that a locked request is blocked is 

P = L(N - 1) 
'2H 

('2.4.2.1 ) 

The second model considers finer granularity and assumes that the lock table is 

stored on disk. To discuss the trade-offs between granularity and performance and 

to be able to carry out numerical calculations two assumptions are made. First 

of all, the mean time until lock release for a blocked transaction is assumed to 

be a constant - it is independent of the level of multiprogramming level Nand 

granularity G. Althougb tbis time should clearly depend on the concurrency in 

the system and the granularity of locking, the autbors justify tbe "constant" time 

assumption by simulation and empirical evidence. Secondly, the probability that 

a lock request is blocked is assumed to be inversely proportional to the number 

of granules. Clearly, tbis makes a big difference in tbe overbead associated witb 

eacb transaction. Secondly, tbe models ignore tbe overhead for accessing the list of 

waiting transactions for queueing and dequeuing. The results are what one would 

intuitively expect. 

For large transactions tbat access too many items, fine granularity is too 

expensive since it requires higher locking overhead. On the otber band. coarse 

granularity results in a loss of concurrency since many small transactions would 

require very few items. This is shown in Figures 2.4.2.1 and 2.4.~.2. If the num

ber of items required by transactions varies in size and some transactions require 

many items, coarse granularity is appropriate. A number of interesting conclusion~ 

can be drawn from tbe results of this study. To maximize the througbput, a rel-
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atively coarse granularity should be chosen. Locking overhead is very costly for 

fine granularity. If the locking granularity is fixed, increasing the degree of multi

programming can always improve the system throughput. It is interesting to note 

that the results of this study agree well with the simulation results of Ries and 

Stonebraker ([Riesi7, Ries79]), who assumed that the amount of service required 

by a transaction is proportional to the number of locks. 

Potier and Leblanc ([Poti80!) have given a quantitative analysis of two 

classes of locking policies. The first class is the static lock policy, under which all 

the locks necessary for transaction are obtained in one atomic action, and are all 

released upon completion. The second class is the Dynamic Lock policy, where the 

locks are acquired and released as they are required. Note that under dynamic 

acquisition, deadlocks and inconsistent states are possible. On the other hand, the 

interference and the locks' mean times are clearly shorter than under the static rule. 

If the part of the transaction during which locks are obtained is short, then the static 

lock policy is a close approximation to the dynamic one. The above conclusions are 

based on the assumption that each transaction makes the same number of acccs--~s 

n, which are also assumed to be independent and uniformly dist:ibuted. The moJel 

is solved by finding the probability of being blocked. The results for the throughput 

for different n and granularity G under static locking policy are shown in Figure 

2.4.2.3. 

The throughput exhibits a minimum for each n, since in this mod(:i the 

mean number of locks v(G) tested on each access is proportional to granularity G. 

One can argue, therefore, that these kinks in the throughput curves indicate the 

importance of the no-locality assumption that is indicated by the linear funct ion 

v(G). Transactions with a large number of accesses very rapidly tend to lock all the 

files, thus increasing interference and preventing activation of the new tran~acti()ns. 

This effect is partly alleviated by using finer granularity, although, as it h3.S bl't'n 

pointed out, this leads to an increase in locking overhead. Since two large ~ nns

actions are more likely to interfere than two smaller ones, it is not surprising that 
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increasing the granularity tends to increase the throughput more for the database 

with larger number of accesses. 

A different analysis for static locking was considered by Galler ([Gall8~J). 

He analyzed both centralized and distributed database systems. His model is a 

single class queueing model consisting of N terminals generating access requests to 

a database of size D and of granularity G. The total number of concurrent accesses 

is limited by some multiprogramming level (certainly no more than DIG). The 

model is described by several equations of the form W = f(W, D, G) where W is 

the expected waiting time. The equations can be solved by successive substitution 

and can be proven to converge when modelling many real systems. The accuracy 

can be expected to be higher than that from the previous approach of Potier and 

Leblanc ([Poti80]). In that model, the control parameter used in the calculation 

is the maximum number of blocked transactions resubmitted after a transaction 

leaves the system. That parameter is important to calculating the throughput. 

Unfortunately, this number is difficult to measure and a bad estimate could lead to 

erroneous results. 

The throughput and the response time can be calculated from the ex

pected waiting times using simple formulae. An example of throughput cOlllparisoll 

for different transaction sizes and granularity is given in Figure 2A.~A. For finer 

granularity (smaller G), the probability of interference conflict is small. ~ot sur

prisingly, the throughput is higher the smaller the granularity G. For a fixed value 

of G, the increase in the throughput for larger transaction sizes is noticeable for 

coarser granularity (larger G). The results are similar to those obtained by Potier 

and Leblanc ([Poti80J). The analytic results best agree with the simulation when 

the waiting time for a lock is deterministic and the transactions require only one 

lock. Therefore, the applicability of the model seems limited. 

The above studies considered mostly static locking policy. The analytic 

study of Shum and Spirakis ([Shum81j) describes some forms of the dynamic ::!

phase locking. It investigated three basic problems: First, the non-trivi:ll lower 
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bounds for the steady-state probability P that a transaction will complete without 

restarts (deadlocks); second, an upper bound on the average number n of restarts 

per transaction, and third, the mean response time R of a transaction (including 

restarts). The model assumes a database of M items (granules). The arrival time 

distribution of transactions is assumed to be Poisson with rate -X. Transactions are 

characterized by "hopping behavior" - each transaction moves from one item to the 

next item with probability (1 - ())/A/. On each visit to the granules, transactions 

obtain service for a time period distributed exponentially with parameter p. \Vorst 

case lower bounds on the performance are obtained by assuming a simple deadlock 

prevention 2-phase locking algorithm. 

A number of analytic bounds for P, n, R are obtained, gIven -XI p, AI, (). 

For example, the probability of completion with no restarts is 

1 - () -X -X ()2 AI 
P = 1 - ()" AI - for - < --()' AI ~ 100 

- I~ P P 1 -

The average number of restarts is 

1 
n = --1 

P 

The response time for AI > 100 is approximated by 

1 
R = POp 

(~.4.~.2) 

For AI < 100, the computational effort is acceptable and can be used to obtain an 

estimate of P. For the more general case of 2-phase locking where deadlocks are 

allowed, the rate of deadlocks is proportional to the average number of concurrent 

transactions. 

Another dynamic locking scheme was considered by Chesnais, Gelenbe 

and Mitrani ([Ches83]). In their model, a transaction requires items which are 

locked until the transaction either completes or aborts. If the required item is 

locked by another transaction, it waits for a random period of time before trying 

again. A transaction that is still unsuccessful on the L + I-st attempt is aborted 
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immediately and restarted from the beginning. The time required to process an 

item and time to process a transaction is assumed to be distributed exponentially. 

Finally, the multiprogramming level is assumed to be constant: if one transaction 

is completed, a new one enters the system. Since the behavior of a transaction is 

influenced by that of all other transactions operating on a database, the number of 

states to describe the system will be so large that exact numerical computation is 

prohibitively expensive for any problem of reasonable size. Therefore, the following 

approximation is suggested. The approach is to treat an individual transaction in 

isolation and then analyze it in steady state. The influence of other parameters is 

reflected in the analysis by the probability F that an item requested by a transaction 

is unavailable. Assuming that all transactions are statistically identical, one can 

derive the equation for F in the form F = ¢(F). The authors then show that 

an admissible solution exists. The question of the uniqueness of the solution is 

very difficult and is treated only for some special cases. For example, if the time 

necessary to commit or abort a transaction is negligible, the solution is unique 

and corresponds to the case L = O. This means that a transaction should restart 

whenever interference is encountered. It is encouraging to note that the results of 

simulations are within 10% of estimated values. 

Tay ([Tay84]) has analyzed both static and dynamic locking policies for 

a centralized database model using mean value analysi'1. To apply this method, 

a number of simplifying assumptions are made: The total number of concurrent 

transactions is assumed to be fixed. When a transaction finishes, it is replaced by 

another one. If the next cannot proceed because some of the locks are not available, 

it is held back for a period long enough to let the conflicting transactions l('~ve 

the system. While the restarted transaction is kept out of the system, a different 

transaction begins processing. Note that under mean-value analysis, the number of 

transactions is kept constant by assuming that there is always a transaction which 

can proceed. This is equivalent to saying that a restarting transaction requires 

different items from the previous time. The access pattern is assumed to be uniform. 
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This means that a transaction requests any item with the same probability. This 

assumption can be relaxed by dividing the database into two parts with different 

access probabilities for each part of the database. This allows the modelling of 

situations where some items of the database are accessed almost all the time. 

The author considers two cases: the no-waiting case where the conflicts are 

resolved by restarts, and the waiting case where conflicts are resolved by blocking. 

The analysis proceeds by writing the functional equations involving the number 

of transactions N, a database of size D, the transactions length k, and "load" 

..\ = N / D. The objective is to determine the throughput for a given N. 

An example of the throughput comparison for waiting and non-waiting 

cases is presented in Figure 2.4.2.5. As long as the multiprogramming level N is 

small, the throughputs are almost identical - interference is not very likely. Increas

ing N increases the potential number of conflicts (increase in interference) and this 

will tend to decrease the throughput for the waiting case. This is precisely what is 

described by the curves referred to above. 

Morris and Wong [Morr841 presented some models to compare locking 

and optimistic concurrency control for the cases of both exclusive and nonexclusive 

access. Here, a database consists of N items. An arriving transaction requires 

exclusive locks on w items (the "write" set of data items) and non-exclusive (the 

"read" set of data items) locks on r items. The more restrictive assumption of only 

exclusive access can be analyzed by taking r = O. Each transaction has exponen

tially distributed service time requirements with mean 1/1'. The authors consider 

two classes of concurrency control schemes: locking schemes and optimistic schemes. 

In a locking scheme, after admission to the system, a transaction declares all its 

read and write sets. If it does not interfere with any runnable transaction, it starts 

the execution. If there is interference, it is blocked. When a transaction finish("S. 

all blocked transactions are checked in FCF~· order to see if they can proceed. In 

an optimistic scheme, an admitted transacti')ll begins execution immediately, mak

ing all of its writes to temporary copies of the data items. When the transaction 
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finishes, a check is made to see if any of these items have been modified by any 

departed transaction. If not, the completing transaction makes its writes/outputs 

permanent (i.e. commits) and departs from the system. Otherwise, it aborts and 

must try reaquiring the same data items at a later point in time. The primary 

performance measure for botQ ~hemes is the ma..ximal throughput T(.\f) when the 

multiprogramming level (total number of running and blocked transactions) is a 

constant M. 

An exact analysis of these schemes is intractable since one must keep 

continuous record of the exact access sets of every runnable and blocked transaction. 

However, if a blocked transaction is allowed to independently redraw its access sets, 

the model becomes tractable while retaining a high level of accuracy. With such an 

assumption for a locking scheme, one can recursively compute the probability p( i) 

that there are; customers running in the system (multiprogramming level M). If 

1'(;) denotes the corresponding service rate function, the maximal throughput can 

be evaluated as follows 

.\I 

T( AI) = Lp(i)J.l(i) 
1=1 

A rough upper bound for T(Af) can be computed in O(A/3 + Alw2) operations. On 

the other hand, for an optimistic concurrency control scheme, T(Af) is computed 

to be of the form 

T(M) = max (1 + ~(AI -1)¢ - )1 + 4(Af - 1)¢ _1) (AI) 
:?(Al - 1)2¢2 'M I' 

Here t/J is the probability that a departing transaction caused another transaction 

to abort. 

The above two approaches to concurrency control are compared by simu

lation for two choices of 1'(;): (1) 1'(;) = i and (2) 1'(;) = i/(i + 5). An example of 
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the first model is a balanced 'central-server model with the number of disk drives 

much greater than the maximum multiprogramming level. An example of a sec

ond system is a balanced central server model with 5 disk drives. The simub.tion 

results track the analytic results very closely. For the above models, the results 

show that the locking scheme consistently outperforms the optimistic scheme over 

a wide range of parameters. The advantage of the locking scheme is more evident 

in higher interference cases. Not surprisingly, the results also indicate that the use 

of a non-exclusive locking policy offers considerable improvement over the exclusive 

locking policy. Both schemes were analyzed under the assumption of fixed size of 

access sets. A more complete characterization of models in which the lockiug scheme 

outperforms the optimistic scheme is an important topic for further research. 

The analysis of the impact of interference on concurrency for various gen

eral classes of scheduling policies independent of any transaction processing system 

was considered by P. Franaszek and J.T. Robinson ([Fran85]). The primary per

formance measure here is the effective level of concurrency E(N, p), defined as the 

expected number of the N transactions that can run concurrently and do useful 

work, where p is the probability of conflict among transactions. In contrast, most 

of the previous analytic work discussed above have concentrated mainly on analysis 

and simulation of relatively detailed models of systems. It can be difficult, therefore, 

to analyze the effect of interference independent of other system characteristics. 

The authors suggest the following model. The multiprogramming level is 

set to be N - there are always N transactions in the system. If a transaction does 

work leading to its completion, it is said to be active ([Fran85]). If a transaction is 

doing work, which will be aborted due to interference from any other transaction, 

it is said to be inactive. An interference conflict occurs between any two concur

rent transactions with probability p. At the end of each unit of time, all active 

transactions finish and are replaced by the new ones. In the new time unit, if two 

transactions were also in the previous unit, then there is interference conflict if and 

only if there was a conflict in the previous time cycle. The set of interfering trans-
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actions can be modeled by a random graph, whose vertices represent transactions, 

and an edge between two transactions indicates an interference conflict between the 

two. 

Using this model, the authors consider three general classes of concurrency 

control policies: 

• Priority-less. In this type of policy, any transaction can be blocked by any other 

transaction. An example is the standard locking policy, where locks are ac4uired 

incrementally (lGrayiS]). For this policy, they show that 

( 
p)N-I 

£(N, p) ~ N 1 - 0 .. (2.4.2.3) 

This implies that for the standard locking methods, E(N, p) ....... 0 for fixed p and 

IV ....... 00. 

• Strict Priority. In this type of policy, given an interference conflict between 

two transactions, the higher priority transaction becomes active and blocks the 

other one. An example of such a policy is the wound-wait method ([Rose7S]) - a 

transaction with lower priority is made to wait (if possible) or aborted. For this 

policy, the authors show that 

£(N ) < 1 - (1 - p)N 
,p - (2.4.2.4) 

P 

• Essential Blocking with Priority. In this type of policy, a transaction is blocked 

if and only if it interferes with a transaction of higher priority that is active (doing 

useful work). An example is the optimistic concurrency control methods. For this 

policy 

(l-p) 1 
1 + 10g(p(N - 1) + 1) ~ E(N,p) ~ 1 + -log(p(N - 1) + 1) 

P P 

If p- is axed and N is increased, the expected number of active transactions is un

bounded but still of O(logN). This is in contrast with the strict priority scheduling 

in which the expected number of active transactions is bounded by IIp. On the 



other hand, it results in very high costs in terms of wasted work if it is obtained 

using the optimistic methods. 

The predictions of the random graph model and the above expressions for 

E( N, p) are confirmed by simulations of an abstract transaction system. Even if one 

can achieve an increase in E(N, p) using conflict-dependent scheduling, no dramatic 

increase can be expected if the interference conflicts occur independently. All of the 

above results are of practical importance only for fairly large N or p. Even for 

the essential blocking with priority policy, to achieve a linear increase in E( N, p) 

by increasing the number of processors, one needs an exponential increase in the 

number of concurrent transactions. This means that distributee database systems 

with a large number of processors must be designed such that p decreases with N 

or that conflicts do not occur independently. This can be used to an advantage. 

Simulation results show that a number of new scheduling policies perform better 

than known methods. A precise analysis of these methods is a subject for future 

work. 

2.4.3. HIERARCHICAL DECOMPOSITION APPROACH 

One of the main difficulties in the performance analysis of database systems 

IS relating the available solution techniques for queueing networks with different 

strategies for database design at both the logical and physical levels. An cverall 

hierarchical analytic framework of assessing and predicting performance measures 

of a variety of physical and logical database decisions has been suggested by Sevcik 

([Sevc81]). At the lowest level, one has a queueing network model. From the input 

parameters (transaction sizes, granularity, statistics on the arrival rates. and serv in"> 

time of transactions) one obtains the estimates for total storage requirements. th(> 

necessary file structures, and so on. From these estimates, one can obtain the nt-xl 

level of this analytic framework, namely the specification of the necessary physic aJ 
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database. And so on. By analytical techniques, the workload description at one 

level and the set of design choices is transferred into the workload description of the 

more fully specified next level. The highest level is, of course, the logical database 

design. 

Such a decomposition solution method to evaluating a centralized database 

with static locking was considered by Thomasian and Ryu ([Thom83]). They ana

lyze the database system using the hierarchical decomposition method, where the 

highest level model yields the mean user response time. From the viewpoint of 

the multilevel modeling approach proposed in [SevcS1J, mentioned above, this work 

presents a breakdown of the highest modeling level for computing user-oriented 

performance measures such as m.::an response time. (Because the arrival process 

is 1farkovian, the highest modeling level can be represented by a one-dimensional 

birth-death process and analyzed very easily.) It extended the work of Pot ier and 

Leblanc [PotiSOI by allowing more than one transaction to be considered for acti

vation. This permits the incorporation of the scheduling discipline into the model. 

The authors analyzed two variations of FCFS - FCFS with skip (the scheduler 

concludes its scan after the first interference is detected) and FCFS without skip 

(the scheduler scans all of the transactions in the pending queue). The queueing 

network model is assumed to have a product form solution with a single job class. 

The authors consider two cases: resampling of the locks - the locks requested by 

pending transactions are resampled each time the transaction is checked for acti

vation and no resampling of the locks. The obtained analytic expressions indicate 

that the differences in throughput are insignificant for both FCFS with skip and 

FCFS without skip. This is shown in Figure 2.4.3.1. For small transaction sizes 

n, there are no significant differences in throughput with resampling and without 

resampling. 

This can be explained by the fact that for small transaction sizes, the 

probability of interference conflict is very small. As one increases the transaction 

size, the resampling case should give better throughput since the transaction does 
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not persist on the same specified locks but rather requires a different set of locks 

each time it is checked for activation. Not surprisingly, a finer granularity allows 

higher concurrency in the system. 

2.4.4. EXACT MARKOV MODELS OF STATIC LOCK POLICY 

As one can see from the previous discussion, analytic models of locking 

behavior adopt to some extent the approach of using the steady state averabc values. 

One exception to this is the exact model of a static lock policy, based on a Marko-~ 

process. Such a model was analyzed by Mitra and Weinberger ([~iitr84]) and by 

Lavenberg ([Lave84J). In this model, one considers a database system with N items 

and p classes of transactions. Transactions in the same class (1 require the same 

number jfr of items. A transaction of class (1 arrives according to the Poisson 

distribution with rate Afr , requires exclusive locks on }",; items, and holds them for 

a tLme distributed exponentially with parameter JJfr. Locks are obtained in one 

atomic action. A transaction interferes with many other transactions which contain 

items in common with it. In real systems, an interfering transaction must wa.it until 

the locks are available. To capture this interference exactly, it is necessary to ta.ke 

into account not only the number and type of transactions in process alld in the 

queue, but also their context. The simplifying feature in the model is that blocked 

transactions are cleared. 

The probabilistic model obtained with the above assumptions is a ~farkov 

process. Because of the simplifying assumption that blocked transactions are cleared, 

the model can be described by a time-reversible Markov process and the sttd,dy 

state probability distribution P(i., ... ip ) that there are ifr transactIOns of class CJ is 

in product form 

'1 " 

P( 
. .) P .... pp 
'., ... ,Ip = ZN 
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The global performance averages can be calculated once one evaluates the 

normalization constant ZN. Because ZN has O(NP) terms, direct evaluation of the 

normalization constant is out of the question even for small values of iV and p. 

Instead, it is evaluated recursively in O(N p) multiplications. Thus, the analysis is 

tampered by the difficulty of estimating ZN in closed form. 

In the asymptotic analysis, the following result for the blocking probability 

P(7 of transactions of class a is obtained 

(2.4.4.1) 

It states that the blocking probability of a particular class a is proportional 

to the number of items locked by all concurrent transactions, and by the weighted 

fraction )(7/ N of the database locked by a transactions of class (J. SimulaCons were 

done for cases where the analytical models can be solved. Numerical results demon

strate that the above relation remains adequately valid provided P(7 is sufficiently 

small, e.g. P(7 ~ 0.05. 

The authors consider some extensions where a transaction of class a re-

quires )(7 exclusive locks and k(7 non exclusive locks. The following asymptotic 

expression for the blocking probability P(7 can be obtained 

The above formula (2.4.4.2) is amenable to an iuterpretation which is 

intuitively appealing: Blocking probability for class (J transactions is the product 

of the number of items locked by individual class (J transactions and the weigliled 

fraction of the database touched by individual transactions, minus the product of 
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the number of items non-exclusively locked by individual class (J transactions and 

the weighted fraction of the database touched by non-exclusively held items. 

For this model with both read/write transactions, we do not even know 

whether there is a recurrence formula for the partition function. The system per

formance measures need to be computed here from the solution of the basic Markov 

process. Thus asymptotic analysis and simulation appear to be the only tools to 

analyze the performance of these systems. Exact results do not yet exist in the 

general case of both exclusive and non-exclusive locks. 

Lavenberg ([Lave84]) considered the above model allowing both exclusive 

and shared locks. A transaction of class (J requires (Jl exclusive locks and (J2 shared 

locks. If nl and n2 are random variables denoting the stationary number of exclusive 

and shared locks respectively, then to the order of O( ~) the blocking probability 

Pu for class (J transactions is given by 

(~.4.-1.3) 

The first term, which approximates the probability of blocking du'C' to 

exclusive lock requests, is the product of the number of exclusive locks requested 

and the probability that a particular lock is already held. Tile second term, which 

approximates the probability of blocking due to shared lock requests, is the product 

of the number of shared locks requested and the probability that a particular lock 

is held in the exclusive mode. 

If all locks are exclusive, the probability of blocking reduces to 

(~.4.4.4) 

Note that the above equation (2.40404) is identical to the equation (~.4.4.1) 

obtained by Mitra and \Veinberger ([~fitr84]). It is somewhat stronger since it is 

O( ~) instead of o(.~ ). 
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One of the shortcoming of both models is the assumption that blocked 

transactions are lost. In real database systems, the blocked transactions are resub

mit.ted later. Such a case is approximately analyzed as follows ([Mitra84]). One 

assumes that a blocked transaction is resubmitted after a random delay having 

mean d. The total offered traffic (new transactions and retransmissions) of class-a 

transactions is assumed to be Poisson with rate T;. The offered traffic of U new'" 

class-a transactions is Poisson with rate Tu. Under these a3Sumptions. the mean 

total delay Du for class-a transactions is ([Mitra84]): 

2.4.5. CONCLUDING REMARKS ON 

DATABASE LOCKING SCHEMES 

The limited number of analytic studies have led to different conclusions 

about the system performance, mostly due to the differences in modeling assump

tions and the values of parameters. Even if there existed an agreement on modeling 

assumptions, the inherent analytic difficulties remain. Allowing transactions to use 

more than one resource (e.g. item) simultaneously produces models that are difficult 

to solve using the traditional queueing network approach. In general, these models 

do not obey the local balance equations and thus the solution is not in the product 

form. For example, locks may be held for a period of time which may depend on the 

amount of time spent accessing other resources (e.g. disks). In addition, while some 

transactions hold locks, others requesting the same locks cannot start processing. 

Because of these two facts, local balance assumptions are violated and thus global 

balance techniques or heuristic approximation must be used. Therefore, the models 

are not amenable to efficient .exact solution techniques for product form queueing 

networks or mean-value analysis. 
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The analysis of the impact of interference is central to the understanding 

of the performance of concurrency control mechanisms. Such analysis allows one 

to select the database parameters (load, size, granularity) to achieve the maximum 

possible concurrency. While interference is the determining factor in the analytic 

tractability and the understanding of these systems, the analysis is often difficult 

and very little work has been done. 

2.5. CONCLUSION 

The key to analyzing these systems is the ability to capture interference. 

Relatively few analytic results are known and the techniques one uses today may 

not be adequate. The complexity of the systems and the nature of interaction 

and interference make them very difficult to analyze, even with many simplifying 

assumptions. Where analytical methods succeed, the solutions are often obtained 

only in the asymptotic cases and, except in some simple cases, are very difficult to 

interpret. 

Clearly, new methods and approximation techniques to analyze interfer

ence and its effect on the performance of computer systems are needed. 
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CHAPTER 3 

A MODEL OF INTERFERENCE 
AND THE METHOD OF 

CANONICAL APPROXIMATION 

This chapter presents a model of interference for a wide variety of dis

tributed systems. The key difficulty in the analysis of the model is the computation 

of the system partition function. To solve this problem, we introduce the method 

of canonical approximation to compute the partition function and a number of per

formance measures in closed form. Exact error bounds are derived. The method is 

illustrated via a solution of the classical machine interference model. 

3.1. A MODEL OF INTERFERENCE 

The model of interference presented here is the same as the one given in 

[Yemi83j. It is described here for the sake of completeness. Consider a set of N 

distributed agents competing for a shared resource. N will be used to indicate both 

the set of agents and its cardinality as long as no confusion arises. The terms agent 

and activity are used interchangeably. Assume that there are p classes of agents. 

An agent of class i becomesaetive according to the exponential interarrival law 

with rate ~i, and once active (once it has acquired part of the resource) it uses 

the resource for a period distributed exponentially with rate p,. Assume further 

that agents may interfere with each other and that two interfering agents cannot be 

active at the same time. For example, in database systems, transactions (agents) 

constitute a class if they require the same number of items; they interfere with 

each other by locking the subsets of the items. In multiprocessor interconnection 

networks, an established connection (agent) may block (and thus interfere with) 
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with other connections. In packet radio networks, transmissions (agents) share 

the broadcast medium and thus may interfere with one another if in progress at 

the same time. Assume further tha.t if an arriving agent cannot get access to the 

resource, then it departs without further affecting the system. In the language of 

queueing theory this means that blocked customers are cleared. 

We call such a system an Interference System. An interference system 

can be represented by an interference graph G =< V, E > where the set of nones 

V represents possible agents, and an edge between two nodes represents a mutually 

exclusive interference between them (lYemi83]). An interference graph of a :2 x :2 

crossbar is given in Figure 3.1.1. An agent is a processor-memory pair. For example. 

node 12 of the interference graph corresponds to a connection request from processor 

1 to memory 2. Agents interfere if they try to access the same memory module or 

come from the same processor. For example, nodes 12 and 22 are connected by 

an edge in the interference graph. They correspond to connection requests that 

interfere over the access the same memory 2. 

With the above assumptions, the evolution of the system is that of a spatial 

birth-death process over the interference graph. Let rr(A) represent the equilibrium 

probability of the set A E V being active while A E V is idle. It is clear that 

A can be represented by the p-tuple A = (nl' n2,"" np) where ni is the number 

of activities of type i. It is easy to show that the above birth-death process is 

time-reversible and that the equilibrium probability distribution rr(.) satisfies the 

following detailed balance equation: 

(3.1.1 ) 

rEA' rEA 

where x corresponds to an activity of type i. Here A C denotes the closure of A, that 

is, the set of vertices in A and those neighboring vertices in A. 

To solve equation (3.1.1)' define a set of nodes in the interference graph to 

be independent if no two nodes in such a set are neighbors. There is a one-t<rone 
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correspondence between possible concurrent activities and "independent " nodes. 

This is illustrated for a 2 x 2 crossbar in Figure 3.1.2.30. and in Figure 3.1.:::!.b 

Let J denote the set of independent subsets of G. Define (} ~I ••••• n, to be the 

number of distinct independent subsets of G having nj nodes of type i. It is easy to 

verify the following: 

Theorem 3.1. The equilibrium probability that solves equation (3.1.1) IS given 

by 

by: 

AeJ 
otherwise 

where Pi = >",/p, and ZN, the "partition" function of the system is given 

ZN = 2: p~1 ... p;' = 2:(}~I .... ,n"p~l ... p;' • (nl,···,n,)EJ 

The partition function- is thus the generating function, with one term for 

each possible concurrency level, and each term given a weight, related to the com

binatorics of concurrency of the corresponding configurations. In other words, the 

partition function specifies how the possible system configurations are partitioned 

among different concurrency levels. This is analogous to the concept of a partition 

function in statistical mechanics (see Appendix 1 at the end of this thesis) 

A number of important performance averages can be computed from ZN. 

The average concurrency of class (J can be found in terms of the "logarithmic deriva

tive" of ZN: 
~ aIogZN 

Ea = ~k1l'(na = k) = Pa f} 
k Pa 

(3.1.~) 

The total number of concurrent activities is obviously 

Etotal = £1 + ~ + ... + Ep (3.1.3) 
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The throughput Tu is defined as the average number of class (1 activities 

processed per unit of time. 

(.'3.1.4) 

If there are l\'u nodes in the interference graph corresponding to activities of type 

(1, then knowing the throughput Tu , we can calculate the non-blocking probability 

Bu that an arriving activity of class (1 is not blocked. 

(3.1..5 ) 

The utilization of the system (the probability of at least one activity) IS: 

(3.1.8) 

Therefore, a number of global performance averages can be computed once 

we know ZN. For most models, it is very difficult to derive ZN in closed form. The 

key difficulty in the performance analysis of such models can be viewed as trying 

to derive a good approximation to ZN or to calculate it numerically. 

We should note some critical points about the interference model con

sidered in this work. Some assumptions could be relaxed without incurring any 

significant change. The assumption that each agent is either idle or busy does not 

properly account for blocked activities. The easy solution is to assume that blocked 

agents are regenerated from the same statistics as new arrivals. This is usually 

a good approximation used routinely in the analysis of many systems ([Coop8l. 

Mitr84, Rior62]). 

Finally, in this work we will also analyze some product-form solution mod

els (e.g. queueing networks) which are not described by the above interference 

model. 
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3.2. THE METHOD OF CANONICAL 
APPROXIMATION 

In this section we introduce the method of canonical approximation to 

approximate ZN in closed form. It computes the closed form approximation to ZN 

from its generating function ZG(t). The method is similar to that developed in sta

tistical mechanics to establish the equivalence of the canonical and grand canonical 

ensemble (see Appendix 2 at the end of this thesis). This ensemble equivalence 

allows us to use the method to compute average performance measures using the 

obtained approximation of the partition function. By analogy with physics (see Ap

pendix 2 at the end of this thesis), we will call ZG(t) the Grand Partition Function. 

It is assumed that ZG(t) can be computed in closed form. This is true for many 

models, including a variety of product form solution models which are not described 

by an interference system (e.g. closed queueing networks described in Chapter 4). 

The canonical approximation method is based on the following theorem: 

Theorem 3.2.1. (Main theorem) Let ZG(i) be a function analytic around the 

origin and having the power series 

00 

ZG(i) = L ZNt N (3.2.1 ) 
N=O 

with ZN > o. Let the function f N (i) be defined in the domain of convergence of 

ZG(t) by 

f N (t) = 10gZG(t) - (N + 1 )logt (3.2.2) 

Then 

(1) There exists R, 0 < R ~ 00 such that the function ZG(t) is analytic III the 

domain D = {t: 0 ~ It I < R}. 
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(2) There exists a unique positive real solution tN E D of the equation I~ (tN) = O. 

(3) The partition function ZN ~n be represented 

ZG(tN) (1+£N) ZN = .N..Ll I ..... .. II #~ \. 
(3.~.3) 

where 

1 'l 1 • 2 'l 

EN = ~4 (3V4 - SVi) + 1152 (168v3vs + 38Sv3 - 630v3 v. - 24v6 + 105v;) + ... 

and Va is defined by 

(a) (2) 
Va = IN (iN) /IN (tN) 

/ 
( )

a 

(3.~.4) 

Proof. By classical A bel's theorem of complex analysis (Theorem 2.4. in [Alfh66]), 

for every power series with positive coefficients which is analytic around the origin"'", 

there exists a number R, 0 < R ~ 00, called the radius of the convergence such that 

the series converges to an analytic function in the domain D = {t: 0 ~ It I < R}. 

By Cauchy's theorem ([Alfh66]) 

ZN = _1_ f ZG(t) 
271"i tN + 1 dt (3.~.5) 

This can be rewritten in terms of IN (t) (equation 3.2.2) as follows 

ZN = ~ f exp(fN(t)) dt 
... 71"1 

(3.::!.6) 

t It is not true, in general,that ZN > 0 implies that ZG(t) is analytic with 

a positive radius of convergence. For example, ZN = N! is an obvious counterex

ample. Thus, the assumption of analyticity around the origin is very important. 
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Let us show that there is a unique positive t NED at which f'tv (t N) = o. 

To do so, consider the function 

00 

hN(t) = tZG(t)f;" (t) = tZ~(t) - (N + l)ZG(t) = 2:[n - (N + I)]Zntn 
n=O 

In this discussion, we will consider hN (t) as a function of a real variable. 

Clearly, tN > 0 is a root of f;" (t) = 0 if and only if hN (IN) = o. There are two 

cases to consider 

Case 1: R < 00. We can rewrite hN (t) as follows 

N 00 

hN(t) = 2:[n - {N + l)]Zntn + 2: [n - {N + l)]Zntn 
n=O n=N+l 

Let us examine the function hN (t) as t ~ R. The first part of hN (t) 

decreases but is bounded below by some finite AI 

N 

-00 < AI = l:[n - (N + l)]ZnR" < 0 
n=O 

On the other hand, the second part of hN (t) tends to +00 as t ~ R. 

Therefore, hN (t) tends to +00 as t ...... R. Since hN (0) = -(N + 1 )Zo < 0 and hN (I) 

is continuous, it follows that there is a tN E (O, R) such that hN (tN) = o. 
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Case 2: R = 00. Set s = n - (N + 1). Then hN(t) can be rewritten as follows 

N 00 

hN(t) = E[n - (N + 1)]Zntn + ESZ3+N+ltN+I+8 
n=O 

N 00 

= L [(n - N - I)Zn + nZN+n+l tN + 1
] tn + L SZs+N+ltN+ 1+ 3 

n=O 8=N+l 

Let t* be defined by 

( 
l·lZ )$ t* = ma.x n 

nZn+N+l 
n=l, ... ,N 

Since Zn > 0 for all n. it follows that t· is finite. For t > t*, all of the 

coefficients of hN (t) become positive. Therefore, hN (t) > 0 for t > t·. Again, since 

h(O) = -(N + 1 )Zo < 0 and hN (i) is continuous, it follows that there is tN E (0, t*) 

such that hN (iN ) = O. 

To prove the uniqueness, let iN be any of the positive roots of hN (t) = 0 

and let us examine h'rv (t N ). 

N+l~ N+l 00 

> t ~[n - (N + l)]Znt~ + t E [n - (N + 1)IZnt~ 
N n=O N n=N+l 

Hence, h~'V (tN) > O. This means that each root IN is a simple root. 

Moreover, it means that the function hN (t) is always increasing in the neighborhood 



of a root. But then, if t~) and t~) are two adjecent real roots (i.e. no real root 

in (/~), t~»)) within the radius of convergence of hN (I), then for sufficiently small 

f > 0, we have hN (t~) + f) > 0 and hN (t~) - f) < O. Since hN (t) is analytic within 

the radius of convergence, there exists a root of hN (I) = 0 in (t~) + f, I~) - f). This 

contradiction proves the uniqueness of IN. Therefore, there is a unique positive 

IN E D such that I~ (IN) = o. It is easy to show that at I = IN, the second 

derivative of exp(fN(/)) is positive. Therefore, the integrand exp(fN(t)) (equation 

3.~.6) exhibits a minimum at iN, when treated as a function of a real variable. 

Since 1(/) is analytic in D, it must possess a unique derivative everywhere 

in D. This means that !'(tN) = 0 irrespective of the direction in which we pass 

through the point IN. From the Cauchy-Riemann conditions ([Alfh66J), 

I~(t) = fJIN _ i fJIN 
fJx fJy 

the second derivative of the function with respect to y must be equal and opposite to 

the second derivative with respect to x. It follows then that as we proceed through 

the point tN in a direction orthogonal to the real axis, the integrand (equation 

3.2.5) exhibits a maximum. Thus, iN is a saddle point. This is illustrated in Figure 

3.~.1. 

Intuitively, for large N, the saddle-point is very "steep". One can expect 

that the most dominant contribution to the integral comes only from the immediate 

neighborhood of the point IN. This is, in fact, the basic idea of the approximation. 

Formally, let us choose as a path of integration the straight line passing 

through iN and parallel to the imaginary axis. It can be shown ([Wint47]) d::tt on 

any straight line parallel to the imaginary axis, the integrand attains its maximum 

modulus only where the line crosses the real axis. We can thus try to approximate 

ZN by the expansion of Is (I) in the neighborhood of IN. 

Formally, on this contour we have 

(3.::!.7) 
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The equation 3.2.5 can now be rewritten as follows 

(3.2.8) 

. / (2) 
Set w = tv f N (tN). Using the expansion exp(x) = 1 + x + x2 /2~ + . ", 

and equation 3.2.4, we can rewrite 3.2.8 as follows 

Z - exp(fN(tN)) j+oo[ ( 2/'1)] {I V3. 3 V4 4 1 (V3 3)2 } d N - exp -w.. - -tW + -W - - -w + . . . W 
21r 3! 4! 2 3! 

-00 

where V5 are defined by 3.2.4. The odd powers of w vanish on integration. For the 

remaining terms we use the identity ([Abra82]) 

to obtain the following expansion of ZN: 

1 4'" .., I --( 168v3V~ + 385v3 - 630vjv4 - 24v6 + 105 v .. ) + ... 
1152 

Let us rewrite this as follows 
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where 

It is not apparent (rom the above (ormal development that this is an 

asymptotic expansion o( ZN, in which the first (most dominant) and second term of 

the error are given by the corresponding terms in equation 3.2.10, and in which the 

remainder in this equation is o( the same order as the last term neglected. This can 

be established by the method of steepest descent - the path of integration being the 

curve o( the steepest descent through iN upon which the modulus o( the integrand 

decreases most rapidly. Details can be (ound in IDani54j. Thus, to establish the 

relative error o( the approximation, we need to compute the first error term(s) as 

given by equation 3.2.10. The estimates on these terms give a good bound on the 

relative error. For most o( the functions ZG (t) considered in our examples, the rel

ative error is typically o( order O(l/N). Hence, (or large N, we have the (ollowing 

approximation (or ZN: 

• 

The above theorem shows how to compute the partition (unction ZN (rom 

its generating (unction ZG(t). If we consider ZG(t) to be the exponential generating 

(unction, the representation (or ZN (equation 3.2.3) will have a (actor of /'I/! in (ront. 

To apply the method, we need to compute ZG(t). For a wide variety o( problems. 

it is easier to compute ZG(t) in closed (orm than ZN. 

It is orten the case that R < 00, that is, the grand partition (unction 

ZG(t) is not an entire (unction - it is analytic everywhere except at isolated points 

(singularities). It is interesting to note the (ollowing: 

Theorem 3.2.2. Let iN be the saddle point used in evaluating ZN and let R be 

the radius of convergence of the grand partition (unction. If R < 00 then t.~ ......... R. 
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Proof. First we show that {t N } is a monotonically increa.sing sequence. Recall 

that 

I , ( ) = Zb (t) _ N + 1 
N t ZG(t) t 

Hence, tN is the solution of 

(3.~.11) 

Define the following functions WN (I) by 

WN (t) = tZ~(t) - (N + l)ZG(t) 

Clearly, tN is a root of ti':v (t) = o. By the previous theorem, there is a unique 

positive tN+l < R at which the function IN+l(t) = logZG/tN+ 2 attains a minimum 

(when treated as a function of a real variable), that is, WN+i (tN+l) = o. Since 

IN+l (tN+d > 0 (see theorem 3.::!.1), it follows that IN+dt) is a convex function. 

It follows then that for t > t:V+l we have wN+dt) > o. Since ZG(t) > 0 for t > 0, 

it follows then that 

Therefore, for t > tN+l we have WN(t) > o. This implies that if WN(tN) = 0 then 

tN < tN+l. Hence, {tN} is monotonically increasing. Since tN < R this sequence 

has a limit r $ R. Clearly, tN < t- for all N. \Ve claim that t- = R 

Assume otherwise, that is t- < R. We can derive a contradiction by 

showing that there exists /v'o such that for N > No we have tN > t-. First. since 

t- < R it follows that ZG(t-) < 00. In particular, t- Zb(t-) < 00. Now, the sequence 

{tN} is monotonically increasing with N. Moreover, since ZN > 0 for all .V, the 

grand partition function ZG(t) is monotonically increa.sing with t > o. Clearly then, 

(N + l)ZG(tN) 1--+ 00 with N. In particular, there is No such that for N > A'o we 

have 

(3.::!.1 ~) 
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From equations 3.2.11 and 3.2.12, it follows that for such N 

(3.:2.13) 

Again, since tZ~(t) is monotonically increasing as a function of t, it follows 

from equation 3.2.13 that tN > t*. The above contradiction shows that t* = Rand 

hence, tN ~ R. • 

3.3. THE CASE OF POLES 

The main theorem of canonical approximation is applicable for any Zc(t) 

satisfying the conditions of theorem 3.2.1. However, when Zc(t) is meromorphic 

(analytic everywhere except at isolated poles), we can approximate ZN in a different 

way using the calculus of residues. The main result of this section is the following 

theoremt. 

Theorem 3.3.1. Let the grand partition function Zc(t) have poles at to. i 1 , ••• 

with 0 < Itol < lill < .... Let m, be the degree of the pole at i, and let H,(;V, m" t,) 

be defined by 

Then for large N we have 

t This is a generalization of the theorem given in [Henr77J for the case where 

all poles are simple. 
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The relative error of the approximation 

exponentially with N. In particular, if to is a simple pole (order 1) then 

Z Res[Zc(to )1 
N ~ - t N +1 

o 
I 

The proof of theorem 3.3.1 can be found in the Appendix at the end of 

this chapter (section 3.6). It follows from the above theorem that the partition 

function is asymptotically determined by the smallest pole of its grand partition 

function. The precision of the approximation depends on Ito/t"- If the second 

(by magnitude) pole is very close to to, then one can use the approximation by 

evaluating the residue at the first two poles and so on. In cases when the other 

poles are not close (in magnitude) to to, taking the residue at the smallest pole 

provides a very good approximation. More examples will be considered in Chapter 

7. 

If the smallest pole is simple, then the evaluation of the partition function 

(and its derivatives, to obtain the performance measures) is straightforward. If 

the smallest pole is not simple, then the computation of ZN and of its derivatives 

will involve the terms of the order of N·!. In such cases, we should consider the 

apprQximation using the saddle-point (Theorem 3.:!). 

A Very Simple Example. Let us consider a simple example of a M/A!/l/S 

queue. Assuming that the grand partition function 

00 co 1 pN +1 1 
Zc(t) = LZ.v tN = L - t N = ----

N = 0 N = 0 1 - P (1 - t)( 1 - pt) 
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is given, we would like to obtain an estimate of ZN. Assume p < 1. The smallest 

pole t, = 1 is of order 1, the corresponding residue is ReslZG(tdl = ' __ 'P' 

Canonical approximation gives the following 

Z ~ -ResIZG(t, )1 = _I_ 
N t~V + I 1 _ P 

The relative error is 

For larger N our approximation is more exact. In fact, the approximate partition 

function corresponds exactly to the partition function of the AIIAIII queue (any 

number of customers can be queued), which is the limiting case of AI lA-III I iV system 

for increasing N. 

3.4. EXAMPLE: MACHINE INTERFERENCE MODEL 

Let us now consider an example of a machine repairman model. It;'5 

variously called the machine repair model, the machine interference model. or the 

cyclic queue model (lAllei8, Ferd71J). This model consists of N machines and a 

single repairman. A machine breaks down according to the exponential interarrival 

law with rate.A. If a repairman is available, the broken machine requests the service 

for a period distributed exponentially with rate JJ. It is then back in operation. If 

the repairman is busy, the broken machine has to wait, thus forming a queue in 

front of the repairman. 

The above system is thus an Afllw/llNIN queueing model. It can be 

used to represent an interactive computer system (1M unt75!). For such systems. 

the repairman consists of one or more CPUs plus the associated queues (Figur£> 

3.4.1). The customers (users) are interacting with the system through N terminal~ 

Each customer is assumed to be in exactly one of three states at any time: 
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(1) "thinking" at the terminal. The think time is exponentially distributed with 

average value 1/>... 

(2) queueing for CPU service (First-Come First-Serve Discipline). 

(3) receiving the CPU service which is distributed exponentially with the average 

of 1/ JJ time units. 

Thus, a user at a terminal cannot submit a new request for CPU service 

until the previous request has been satisfied. To calculate the partition function 

ZN, we need to to calculate Q~'V - the number of configurations corresponding to i 

broken machines in the queue. _The number of ways to have i broken machines is, 

obviously, (~). Since the order in which these i machines are arranged in the queue 

is important, we get Q~'V = ('~) I!. Therefore, the partition function for the model is 

Z ~(N)." N = L- i .. p 
1=0 

We can rewrite this as follows: 

.'V (N) . N N'. N 1 _ ., 1 _ • 1 _ ,N _ 
ZN - L i I.p - L(N _ i)!P - N.p Li!pl 

1=0 1=0 1=0 

From equation 3.4.2 we obtains the following recursive expression for the partition 

function: 

N+1 1 
ZN+l = (N + 1)!pN+1 ~ -.,- = (N + l}pZN + 1 L- .. pi 

,=0 

Rewriting that as 

00 00 Z 00 tN+1 
~ ZN+I tN+1 - t ~ --'!!"t N + ~ __ _ 
L-(N+lP -p L- N! L-(N+l)! 
N=O N=O N=O 
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we obtain the following expression for the (exponential) grand partition function 

Zc(t) = ~ ZN tN = exp(t) 
L- N! 1 - pt 

. ~ N=O 

(3.4.3) 

The grand partition function has only one (simple) pole at to = 1/ p. The residue 

at that pole is 

Res[Zc(l/p)] = _ exp{l/p) 
p 

Canonical approximation gives the following estimate to the partition function 

. '" _ ,ResIZc(l/p)] _ ,N 
Z .... '" N. (l/p)N+1 - N.p exp{l/p) (3.4.4) 

The mean queue length of customers (including the one at the machine) 

(3.4.5) 

The utilization 

Uv =l-_l_:::::Jl- 1 
. ZN N!pN exp( 1/ p) 

(3.4.6) 

The throughput is pU.v . Therefore, by Little's formula, the response time (mean 

time required. to put the machine back into operation) 

For large N, we can use the Stirling approximation for N! to show 

1 1 

N' v (/):::::J V ...... 0 
.p' exp 1 p ../211'N (¥)' exp{l/p} 

And therefore, 

(3.4.i) 



It is interesting to compare our approach here to that taken by earlier 

researchers. In the "traditional" analysis of the machine repairman model ([AIleI8, 

Kleil5]) one shows that mean response time is 

N I 
W'V = ----

. p( I - Po) ~ 

where Po is the probability that the server is idle. For large N, one assumes that it 

is very unlikely that the server is idle and thus sets po = O. From this assumption. 

one obtains the expression for the response time identical to that in equation 3.4. I 

and similarly for other performance measures. 

The notable exception to these "traditional" analyses is the work by Fer

dinand ([Ferd71]) who used a statistical mechanics approach to analyze this system. 

The partition function Zs is evaluated by its asymptotic expansion in terms of the 

incomplete gamma function. Although this work used the analogies from statistical 

mechanics, the computational method to evaluate ZN cannot be applied to other 

systems. 

Let us examine the behavior of the response time of the system as one 

changes N but keeps ~ and p fixed. For N = 1 there is no queueing and therefore 

WN = lip. For small values of N (corresponding to p ¢: liN), the users interfere 

with each other very little: when one user wants a CPU interaction, the others are 

usually in the think mode and so very little queueing occurs. Thus, the curve of the 

mean response time is asymptotic at N = I to the curve WN = lip. On the other 

hand, if N 1-+ co, then the response curve is asymptotic to WN = (N/p) - (1/~). 

This is illustrated in Figure 3.4.2. 

The two asymptotes intersect at the point N* = I + (1/ pl. This can be 

thought of as the system saturation point ([Klei76]). If each interaction required 

exactly 1/ P units of CPU service time and exactly I / ~ units of think time. thf'n 

N*·-is the maximum number of terminals that could be scheduled in a way that 

causes no mutual interference. For N ¢: N*. there is almost no interference and 

the response time W.'V is approximately I/p. On the other hand, for N > iVa. users 
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interfere totally with each other. This means that adding one more terminal raises 

everyone's response time by 1/ J.l. 

3.5. CONCLUSION 

This chapter presented a model of interference for a variety of distributed 

systems. It presented rigorous mathematical foundations for the canonical approx

imation method and for the analysis of its complexity and precision. We presented 

and analyzed a classical machine interference model using the new method. 

3.6. APPENDIX 

(PROOF OF THEOREM 3.3.1) 

In this appendix we present the proof of theorem 1. To that end, we need 

the following two lemmas: 

Lemma 1. Suppose f N (I) has a pole of order m at t = to. Then the residue of 

f N (t) at point to is given by (see I A lfh66J) 

ResI!N(to)] = 1 g(m-l)(to) 
(m-l)! 

where g(t) = (t - to)m hv(t). I 

Lemma 2. 

R [Zc{t)] 
es t N + 1 

t=t, 

11 ) 
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Proof. Since the pole at t = ti is of order mi we can write ZG(t) = FN (t)/(t - a)m. 

where FN (t) is analytic at t = ti. By the previous lemma 

Res [ZG(t)] _ 1 ami
-

1 
[FN(t)] 

tN + 1 _. - (mi - l)! [)tmi- 1 tN + 1 -. t-t, t-t, 

( 2) 

By Leibnitz's rule 

Clearly, 

ami-1-kt-(N+l) (N + 1l(N + 2)··· (N + mj - 1 - k) 
[)tm,-l-k tN+m,-k 

(3) 

= (_l)m,-l-k (m,.- 1 - k)! (N + mi - 1 - k) 
t·" +m,-k mi - 1 - k , 

On the other hand, 

Equations 2 - 5 imply 1. I 

If we define 
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then we can write 

R [ZG(t) 1 
es tN+l t=ti 

H.(N, mi, td 
t N + 1 , 

Note that Res[ZG(t)(t - 1,)8]t=ti is independent of N. It is obvious that 

HdN, mi, td is polynomial in N of degree at most mi - 1. 

Now, we can prove the theorem 3.3.1. The statement of the theorem is 

similar to the method of subtracted singularities ([Henr77])t. Let us recall the 

statement of the theorem: 

Theorem 3.3.1. Let the grand partition function ZG(t) have poles at to, i l , ... 

with 0 < Itol < Itll < .... Let mj be the degree of the pole at ti~. Let HdN, mi, t,) 

be defined by 

Then for large N we have 

Z Ho(N.mo,to) 
N ~ - 1''''+1 

o 

The relative error of the approximation 

t The proof in [Henri7] is given for the case when all of the poles are simple. 
~ In this theorem, we consider the case where there is a unique pole of the 

same magnitude. The proof for the more general case, where there are several poles 

of the same magni~ude, is along the same lines. 
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exponentially with N. In particular, if to is a simple pole (order 1) then 

Proof. Let C be the circle around the origin excluding all the poles and let C' be 

the~ircle around the origin surrounding all the poles. Then by the residue theorem 

([Alfh66J) 

Z = _1 i ZG{t) dt = -~ R [ZG{t)] _1 i ZG(t) d = 
N 2' tN+1 L- es tN+1 + I)' tN+1 t in c . t-t .. 11'1 C' ,=0 - . 

Ho{N,mo,t o) [1 + ~ H,(N,m"t,) (~)N+ll +_1,1 Zc:(t)dt 
("'+1 L-Ho(N,mo,to) Ii 21fIJc ,tN + 1 
o ,=1 

Clearly, 

1
_1_1 ZG(t) dtl < maXtEC' [ZG(/)] 
21fiJc ' tN+ 1 - [tIN 

The term H,(N,m"t,)/Ho(N,mo,to) is a polynomial in N of degree at 

most m, and thus increases polynomially with N. On the other hand, since Ito I < 

Itil, the term (to/td N + 1 is exponentially decreasing with N. Therefore, 

H,(N,m"t,) (to)N+I ...... O 
Ho(/,v,mo,t o) I, 

exponentially fast. For large N we can therefore write 

Z = -Ho(N, mo. to) [1 + I 
~ N+l EN 

to 
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with the (relative) error of the approximation 

< L H.(N. m •. td 
- Ho(/V, mo,to) .= 1 

exponentially fast. Therefore, for large N 

Z Ho(N, mo· to) 
N;=::::- /"V+l 

o 

If to is a sim!)le pole, then 

R [Zc(tl] _ Res[Zc(to)] 
e 8 iN + I i'V + 1 

1=10 0 

We have therefore 

Z Res!ZG(io)! 
N;=::::- i N + 1 

o 
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CHAPTER 4 

CANONICAL APPROXIMATION: 
PACKET RADIO NETWORKS 

4.1. INTRODUCTION 

In this chapter the method of canonical approximation is applied to the 

performance analysis of multihop packet radio networks (PRNETs). These networks 

consist of geographically distributed radio units broadcasting data packets over a 

limited range. A key design problem of a PRNET is to resolve the interference that 

occurs whenever two or more nodes try to transmit over a shared channel within the 

same neighborhood. This is accomplished by means of a multiple access protocol 

- a set of rules which defines the process by which a node proceeds to transmit. 

The primary performance measure is the nodal throughput - the average number of 

packets delivered by a node successfully per unit of time. Other measures of interest 

include the steady-state probability distribution of the number of transmissions. the 

average delay, the fraction of the channel capacity used for successful transmission. 

the probability that a scheduled transmission is successful, and the average number 

of packets in the system. 

Most of the previous work on multiple access protocols has been confined 

to the single hop case: a transmission of each node may interfere with transmis

sions of all other nodes (see Chapter 2). Although a general markovian model of 

multi hop packet radio networks is available ([Boor80, Toba82]), the computation 

of performance measures (primarily, the nodal throughput) has been done oIlly (or 

very small networks due to the complexity of the numerical algorithms involved. 

In this chapter. we apply canonical approximation to calcub.te the nodal 

throughput for several networks operating under CSMA and C-BTMA. We obtain 
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simple explicit formulae for the nodal throughput for any network size N, as well 

as identify (analytically) the loads when a particular protocol gives a better per

formance. We introduce a method to compute the nodal throughput assuming the 

zero capturet. The analysis of the multi hop networks under zero capture is typi

cally done by simulation ([TobaB5J) or by the explicit construction of an underlying 

Markov chain ([BrazB5]), which is computationally intractable unless N is very 

small. 

4.2. THE MODEL 

The model of multihop packet radio networks used here is the one in

troduced by 800rstyn and Kerschenbaum ([800rBO]). In this model, the network 

consists of N nodes with a specified "hearing matrix". For any two nodes i and j 

the hearing matrix specifies whether or not i can hear j. The points in time when 

new and retransmitted packets are scheduled for transmission are called scheduling 

points. Packets are retransmitted either because at some scheduling point they 

were inhibited from transmission or because their transmission has been interfered 

with. The process of scheduling points from a node is assumed to be Poisson with 

parameter A. In general, we need not assume the same rate of A for all the nodes. 

The lengths of packets are assumed to be distributed exponentially with parame

ter Jl. For notational convenience, assume Jl = 1. The model assumes negligible 

propagation delay. 

We will consider two protocols - Carrier Sense Multiple Access (CS~fA) 

with perfect capture, and Conservative Busy Tone MUltiple Access (C-BT~t A). 

Capture assumption is defined as the ability of the receiver to correctly receive a 

packet despite the presence of other time overlapping transmissions. Perfect capt urt' 

is the ability of receiving correctly the first packet regardless of future overlapping 

t This method was developed jointly with Professor Moshe Sidi of the TL'(-hnl()n 
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packets. The zero capture assumption means the complete destruction of the first 

packet by any overlapping transmission. This is considered in section 4.4. 

Under CSMA, a node wishing to transmit senses the channel. If it senses 

the channel idle, the node starts transmitting; otherwise it waits for the next sched

uled point in time and repeats the above procedure. Under the perfect capture 

assumption, the transmission of a packet from i to j may not be successful only if 

any of the "hidden nodes" k (neighbors of j but not of i) are transmitting to j at 

the....same time when i starts its transmission. 

Under C-BTMA, any node that senses a carrier emits a busy tone. If a 

node i transmits a packet to node j, all the other neighbors of i transmit a busy 

tone, thus blocking all nodes in a region within twice the "hearing radius" of node 

;. Note that under C- BTM A, once a. node starts transmitting, it is guaranteed of 

success. 

For these protocols, with the assumptions of Poisson arrivals and exponen

tial service time, it can be shown ([Boor80, Toba83J) that the equilibrium probability 

distribution 1I"(i} of having; simultaneous transmissions in the system is given by 

pi 
11"(;) = Z 

N 

where p = ~/ JJ and ZN, the "partition" function of the system, is given by: 

N 

ZN = LONpi 
,=0 

and where o~ denotes the number of ways to have i concurrent active nodes. 

A number of important measures can be obtained once the partition fu DC

tion is computed. The most importa.nt performance measure in a packet radio 

network is the nodal throughput S, which is defined as the average number of suc

cessful transmissions processed by node i per unit of time. Note that it is not just 
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the average number of concurrent transnllssions, since some of these will not be 

received by their destinations. The ma.ximum nodal throughput is called the nodal 

capacity. 

To calculate the nodal throughput, let us first calculate the link throughput 

Si,i, the average number of successful transmissions over the £-to-j link per unit of 

time. Let Ai,i denote the set of nodes that must be silent at the initiation of the 

i-to-j transmission to guarantee its success. The probability of success of the i-to- j 

transmission is then 

Pi,i = P(A,,] idle) = (-4.2.1) 

Note that if the set of nodes N can be represented as N = Nl U Nz where 

Nl and Nz do not interfere with each other, then 

( 4.2.2) 

If Pi] denotes the traffic intensity for the packets from node i to node j, 

then from 4.2.1 we obtain 

(4.~.3) 

And therefore, the nodal throughput is given by 

(·L~.4) 

Before considering the examples, let us note the following lemma which 

will be used extensively throughout this chapter. The proof 01 this lemma is given 

in the Appendix at the end of this chapter. 
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Lenuna 4.2.1. The (unction f(t) = 1 - t - pt" = 0 where p > 0 has n distinct 

roots. There is only one positive root to. This root is the smallest in magnitude 

among all other roots. I 

In particular, if ZG(t) is of the form 

Z (t) _ F(t) 
G - 1-t_pt"+1 

and to is a simple pole of ZG(t) (a simple root of 1- t - pt"+l = 0 and F(to):I 0) 

then 

Res!Z (t )] - _ F(to) 
G 0 - (n+l)pt~+l 

4.3. APPLICATIONS 

4.3.1. TANDEM NETWORKS: CSMA 

Consider a tandem of N packet radios operating under the Carrier Sense 

Multiple Access (CSMA) scheme ([Boor 80]). In such a system, all nodes share the 

same bandwidth and each node (except for the end nodes) can communicate with 

two neighbors (see Figure 4.3.1). To calculate the partition function ZN we apply 

the canonical approximation as follows. 

Step 1. To calculate the grand partition (unction, derive a recursive relation for 

o~'V, the number of configurat'iO'ns involving i transmissions. To that end, suppose 

one more node is added to a tandem o( size N. Let us examine a configuration 

involving i transmissions. There are clearly two cases to consider: 

Case 1: the (N + 1)-st radio is not transmitting. There are ON such configurations, 

Case 2: the (N + l)-st radio is involved in a transmission. There are O:V~l such 

configurations. 
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Hence, 

for N ~ 1, 1 ~ i ~ N and 

This implies the following recursive relation 

with Zo = 1, ZI = 1 + P 

Therefore, the grand partition function is 

00 

ZG(t) = ~ ZNt.''I = 1 + tp 
~ 1 - t - pi'2 
N=O 

",0 - ",0 - 1 lAO - lAN -

(·1.3.1.1) 

(·1.3·1.~1 

Step 2. Find the smallest positive pole of the grand partition function. 

2 
t - :-----;:;==~ 
o - 1 + Jl + 4p 

Step 3. Compute the residue of-the grand partition function at to 

1 + pto 
Res[ZG(to)] = ----'--

'2pto + 1 

Step 4. The partition function is given by 

1 + Jl + 4p 

2Jl + 4p 

N+" 
ZN ~ _ Res[ZG(tol] = 1 (1 + Jl + 4P) * 

t~+1 Jl + 4p 2 
(4.3.1 .. 1) 

For this particular example, it is easy to calculate the relative error. The 

second pole of the grand partition function is 

? 
tl = -

Jl + 4p - 1 
(4.3.14) 
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The relative error of the approximation is easily calculated to be 

€N = Re8[ZG(t1 )1 (to )N~. = (Jl + 4p - 1 )N+2 ~ 0 
Re8[ZG(to)1 tl Jl + 4p + 1 

(4.3.1.5) 

Thus, the relative error €N decreases exponentially with N. 

To calculate the link throughput SI,i+ I under the perfect capture assump

tion, consider a typical node i. The transmission of i to i + 1 will be successful. if 

at the start of the transmission, all of the nodes in Ai,I+l = {i - I, i, i + 1. i + :2} 

remain silent. This is shown in below in Figure 4.3.1. 

1 i-I I i + 1 i + 2 N 

~ - - - -. • ,. • .- - -. ./'-.. ./ '-- oJ - ... -..r" 

NI A'.I+1 N'J 

Figure 4.3.1: A Transmission Configuration (CSMA, d = 1) 

The sets of activities generated by the subsets of nodes NI = {1. ... , i -

2} and N2 = {i + 3, ... ,N} are mutually non-interfering and correspond to two 

tandems of sizes i - 2 and N - i - 2 respectively. Therefore, using equations 4.~.1 

and 4.2.2 one finds the probability of successful transmission from node i to node 

i + 1 to be 

p.. = P(A' . idle) = Z,-2 ZN -1-2 ~ 1 ( 2 ) 2 
1,1+1 I,} ZN Jl+4p I+Jl+4p 

(4.3.1.6) 

Assuming that node i is equally likely to transmit to node i + 1 as to node 

i-I, (that is, Pi,i+1 = pi'!.), the link throughput is given by 

., 
S _ /!.p '" p ( 2 )-

1,1+1 - 2 1.1+1"'" 2Jl + 4p 1 + Jl + 4p 
(4.3.1.7) 

If €N denotes the relative error of canonical approximation in calcubt In~ 

ZN (equation 4.3.1.5), then from equations 4.3.1.6 and 4.3.1.7 we obtain t h(' f( II· 

lowing expression for the relative error 6.11{ in calculating the nodal throughput (~ .. 
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given by equ:}~ion 4.3.1.7): 

ON =(1 + £i-2)(1 + fN-i-2) _ 1 = fi-2 + £N-i-2 + fi-2fN-i-2 - fN 

1 + fN 1 + fN 

The relative error ON for the nodal throughput decreases exponentially with I\/. 

The nodal throughp'ur is obviously 5. = 25i,i+l' Figure 4.3.2 gives the 

nodal thoughput as a function of the load for different values for N. For small 

N, th-.; edge effects (the rightmost and leftmost node can only broadcast to one 

neight·or) are significant, reducing the average nodal throughput. As one increases 

N, .~;ese edge effects become less and less noticeable. Even for relatively small 

N = 12, the nodal throughput is very close to the one calculated by the canonical 

ap':roximation. 

Let us note the shape of the curves. As p increases from 0, so does the 

. hroughput. For light p, there is little interference. Therefore, the throughput 

increases with an increase in p. For large p, there is more interference and, in fact, 

a transmission will find it less likely to succeed. Therefore, after some point, the 

throughput decreases with an increase in p. The nodal capacity of 5 i = 0.17 ~ is 

achieved at p = 1.2. For p = 1 the throughput is 0.17 as has been shown in [Boor80, 

Toba83j by using numerical methods and simulation. However, one gains a slight 

improvement in the throughput if packet retransmission attempts are generated 

faster than the average transmission duration time (p = 1.2). 

4.3.2. TANDEM NETWORKS: C-BTMA 

Let us consider the tandem of N packet radios as before, but assume that 

it operates under the C-BT~fA protocol. This means that a node can transmit only 

if its immediate neighbors as well as the neighbors of the immediate neighbors are 

silent. As before, we can derive a recurrence relation for the partition function by 

adding one more node to the tandem and examining the number of configurations 

118 



having i transmissions. One would get that for N ~ 2 

and 

The partition function then satisfies 

0 0 - 0 0 - 0° - 1 0- 1- N-

ZN+l = ZN +pZN-Z, N ~ 2 with Zo = I,ZI = 1 +p,Zz = 1 +2p (4.3.2.1) 

From the above. the grand partition function satisfies: 

ZG(t) = 1 + pi + pt
2 

1 - t - pt3 
( 4.3.:2.2) 

Let to be the smallest (positive) pole of ZG(t). The existence and unique

ness of this pole follows from lemma 4.2.1. By the same lemma, the residue of ZG(t} 

at to is given by 

ReslZ (t }I = _ I + pto + pt5 
G 0 3ptg + 1 

Applying the canonical approximation, one gets the following expression 

for the partition function 

Z ReslZG(to )1 
N ~ - t N + 1 

o 

1 + pto + pt~ 
(3ptg + l}tf +1 

(4.3.'2.3) 

To calculate the throughput, consider a typical node i in a tandem. This 

node will be successful in a transmission to node i + 1 if the set of nodes one and 

two hops away Ai,i+l = {i - 2, i-I, i, i + 1, i + 2} are silent. The sets of activities 

generated by the subsets of nodes NI = {I, 2, ... , i - 3} and N2 = {i +3, .... ;\'} are 

mutually independent and correspond to two tandems of sizes i - 3 and N - i - 2, 

respectively. This is illustrated below in Figure 4.3.3. 

1 i-2 i-I i i+l i+2 N 

-- - - ~."""""""'."'--'.""'-'.~.""----.III •• - - -. 
'"---....----''---------.,y,..------~ 

NI A •.• + I N'l 

Figure 4.3.3: A Transmission Configuration (C-BTMA, d = 1) 
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Therefore, the probability of success 

Assuming that a node is equally likely to talk to any two of its neighbors, 

the link throughput 5.,.+ I is given by 

The nodal throughput is 

(4.3.~A) 

To calculate the capacity, note that once a node is permitted to start 

a transmission, the success of transmission is guaranteed. Thus, the capacity is 

achieved at p ....... 00, For large p the pole can be approximated by to ~ p- t. With 

this approximation 

The throughput per node is k. This is what one expects: as p ....... x the 

tandem will be densely packed with transmissions. One would expect every 3-rd 

node to be active. 

It is interesting to compare the above results to the simulation studies on 

ring networks reported in [Toba83]. The link throughput for a ring under C-BT\I.\ 

exhibits a quasi-periodicity of period 3: all rings with a number of nodes which is a 

multiple of 3 have a little higher throughput than those which are not multiple:; of 

3, The difference decreases as the number of nodes increases. This can be explairll,(j 
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using canonical approximation. First, note that the tandem and ring exhibit similar 

behavior, especially for large N. The grand partition function (equation 4.3.2.2) 

has three poles - one is to (real, positive, and smallest in magnitude) and two are 

complex conjugates. If one considers the exact expression of the partition function, 

it is dominated by the smallest root. However, for small N, the contributions from 

the complex roots are not negligible. These contributions are the largest when N is 

a. multiple of 3. As N increases, the contributions from these complex roots become 

smaller as the partition function is increasingly dominated by to. For large N, the 

partition function is insensitive to the divisibility of N by 3. The simulation results 

were reported for relatively small size (N < 20) rings. 

Figure 4.3.4 gives the the nodal throughput and compares it to the one us

ing CS\fA with perfect capture. For p < 0,43, CS\fA outperforms C-BTMA. This 

says that for lighter loads, there is no need to be overly restrictive ("conservative"). 

For heavier loads, when there is a lot of interference, greater restriction helps. 

4.3.3. LINEAR ARRAY: CSMA 

Consider a packet radio network of N nodes placed on a linear array of 

degree '2d, that is nodes can transmit up to d nodes in either direction. A typical 

transmission configuration for a linear array of degree 2 is illustrated in the Figure 

4.3.5. 

To calculate the partition function ZN one can derive a recursive relat ic.n 

for o~ as follows. Suppose one more node is added to the network. Let us examine 

a configuration involving i transmissions. There are clearly two cases to consider: 

Case 1: the N + I-st radio is not transmitting. There are oN such configurat ions. 

Case 2: the N + I-st radio is involved in a transmission. There arc 0:'; ~J ~u("h 

configurations. 
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Hence, O~+l = O:;~d +o~ and with initial conditions o~ = 1 for S < d. 

The above relation implies the following 

{ 
ZN+l = ZN + pZN-d for N ~ d 
ZN = 1 + pN for 0 $ N < d 

(4.3.3.1 ) 

It follows then 

which after some algebraic manipulations reduces to 

t - 1 + ptd+ 1 - pt 
Z (t) - ----:.....---;--

C - (t - 1)( 1 - t - pt d+ 1 ) 
(4.3.3.2) 

Let to be the smallest positive pole of Zc(t). The existence and uniquene::,:; 

of this pole follows from lemma 4.2.1. By the same lemma, the residue 

R IZ I 
to - 1 + ptg+ 1 - pta 

es t --
c(o) - (to-l)((d+l)ptg+l) 

-p15 
(1 - to)[1 + d(l - to)1 

Applying the canonical approximation, one obtains the following expres

sion for the partition function: 

Z Res[Zc(to )] 
N ~ - t N + 1 

a (1 - to)[1 + d(l - to)lt~+l 
(4.3.3.3) 

To calculate the throughput, consider a typical node i and let S,.,+k (0 < 

k $ d) be the throughput of a link connecting nodes i and i + k which are k 

hops apart. Since node i can communicate with up to d successive nodes in either 

direction, under the perfect capture assumption, the transmission to node i + k 

(0 < k $ d) will be successful if the set of nodes Ai.i+k = {i - d, i - d + 1, .... i -
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1, i, i + 1, ... , i + k + d} are silent at the initiation of that transmission. This is 

shown in Figure 4.3.5. 

1 i-2 i-I i i+l "+2 i+3 i+4 N .- - /---. 
~'-= ~, ,./ N -....,- ... 

I AI.i+2 N'l 

Figure 4.3.5: A Transmission Configuration (CSMA, d = 2) 

The probability of success is therefore 

D PtA 'dl) ZN\.~,.'+1r - Z,-d-I ZN-i-k-d R [Z ( )1 ~J+k 
Fi,i+k = i,i+k 1 e = ZN - ZN ~ - es G to Jto 

Let us consider the case where the traffic is equally distributed among 

2d outgoing links from node i, that IS, PI.,+k = p/2d. In such a case, the link 

throughput 

P 
ZtZd+k+2 

S - _ p. ~ __ ---'-p-::-o ____ ~ 
1.I+k - 2d 1.I+k 2d(1 - to)[1 + d(1 - to)1 

The nodal throughput of node i, 

d p2 tZd+3 1 td t (1 td) 
S . - ') '"' S . 0 - 0 _ --:-_o __ ---'o,--~ ,- ~L.. II+k ~ -- - ---:c 

k=I' d(l-to}[l+d(l-to}]l-to d[l+d(l-to)] 
( ~.3.3.-t) 

Figure 4.3.6. gives the curves of the nodal throughput as a function of 

load for d = 3, d = 5 and d = 10. The corresponding capacities are S, = 0.0826 at 

P = 0.73, Si = 0.0544 at P = 0.53 and SI = 0.0293 at p = 0.31. 

Let us calculate tbe capacity for large d. From equation 4.3.3.4 one dif

ferentiates the nodal througbput S, with respect to to and solves S'(to) = o. We 

obtain 



For large d, the pole to is very close to 1. Therefore, writing to = 1 - 0 and 

using the approximation (1 - o)d ~ 1 - do, we find that the capacity is achieved at 

1 
to ~ 1--

d+l 

From equation ·1.3.3.4, we arrive at a capacity of 

~ [1 - ( 1 - ffi) d] 

d (1 + d!l) 

1 - ! 0.318 
~--~ =--

2d d 

The corresponding load 

1 - to e 
P=7+'~d 

o 

4.3.4. LINEAR ARRAY: C-BTMA 

Consider the same linear array of packet radio nodes but assume they are 

now operating under the C-BTMA scheme. As before, we can derive a recurrence 

relation for the partition function by adding one more node and considering the 

corresponding two cases. Because of C-BT~{A, the recurrence relation becomes 

O~V+l = o~v + o~"-~2d for N ~ '2d with initial conditions o~ = N for N < '2d 

This gives 

{ 
ZN+l = ZN + pZN-2d for N ~ 2d 
ZN = 1 + pN 0 ~ N < 2d 

The grand partition function Zc(t) can be shown to satisfy 

t - 1 + pt2d+ 1 - pt 
Z (t) - ----'-----.,,-;.-c - (t _ 1)( 1 - t _ pt2d+ 1 ) 

(4.3.4.1) 

(4.3.4.:') 



Let to be the smallest positive pole. The existence and uniqueness of this 

pole follows from lemma 4.2.1. By the same lemma., the residue 

t - 1 + pt2d+ 1 - pt 
Res[Z (t )] - _ 0 0 0 

G 0 - (to-l)(1+p(2d+l)t5 d ) 

pt5 
(1 - to) [I + 2d(1 - to)] 

The pa.rtition function is given by 

Z Res[ZG(to)] pt5 
N ~ - t~+l - (1 - to) [1 + 2d(1 - to)] t~+l ( 4.3.4.3) 

As in the previous case, define S",+k (0 < k ~ d) to be the link throughput 

between nodes i and i + k that are k hops apart. Because of the C-BTM A, the node 

i will be successful at every transmission to i + k. It can initiate a transmission if 

the set of nodes A = {i - '2d, i - '2d + 1, ... ,i + '2d} is silent. The probability of this 

IS 

Z Z t 4d+2 
P, \-2d-\ .v -I-2d R [Z (t )]t4d P 0 

i,i+k = ZN ~ (S GOo = -( I---to-).....:[~1..::..+-2-d-(-1---t-o-)] 

Assuming that node i is equally likely to talk to any of its '2d nei-:;hbors, 

the link throughput is given by 

The nodal throughput 

d 2t 4d+2 
S-t),""S ~ Po 
I--~ I,I+k (1-to)[I+2d(l-to)] 

( 4.3.1.·1) 

Since every transmission results in success, the capacity is achieved :.it 

p 1-+ 00. For large p the pole can be approximated as follows 
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The asymptotic nodal throughput is easily seen to be S, = 1/(2d + 1) ~ 

O.S/d. This is what one would intuitively expect: for very large p the linear array 

w ill be packed with transmissions. Since every i-to-j transmission blocks '2d + 1 

nodes, and the system is densely packed, one would expect that the throughput per 

node is l/('2d + 1). 

It is interesting to compare the capacity S,maz for CSMA with perfect 

capture and C-BTMA for large d. 

for CSMA and S maz 0.5 f C B 
I ~ d or - T~f'\ 

This says that for the same (large) d, the capacity under CSMA is 3600 

worse than under C-BTMA. This is what one can intuitively expect. By being 

more restrictive, C-BTMA avoids the situations where a transmission cannot be 

guaranteed of success. 

Figure 4.3.6 gives the nodal throughput and compares it with CSMA with 

perfect capture for d = 3,d = 5 and d = 10. Just as in the case of d = 1, for 

lighter loads CSMA outperforms C-BTMA. For each d, canonical approximation 

allows one to identify (analyti~a.ny) the regions when CSMA outperforms C-BT~lA. 

These regions are indicated in Figure 4.3.6. Note that as the level of interference 

increases (higher load p, or denser topology - larger d), the range of the load~ for 

which CSMA is better decreases. This says that one should be more "restrictive" 

as the interference increases. 

4.4. ANALYSIS OF ZERO CAPTURE 

The analysis of zero capture is very difficult, because the probability of 

successful transmission depends upon the duration of the transmission. The analysis 

can be done by simulation ([Toba8SJ) or by the explicit construction of a ~iarkov 
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chain describing the activity of a packet radio network ([Bra.z85J). In the latter case, 

only very small (N = 4) networks can be analyzed. Our approach here is to derive 

both a lower bound and an easy approximation for the link throughput under zero 

capturet. 

Let Ai,i be defined as before and let Bi,} be the set of nodes that can 

transmit but must remain silent during the i-to-j transmission. Obviously, B •. ) ~ 

Ai,}. To guarantee the success of the i-to- j transmission, every node in B •. ) must 

remain silent throughout this transmission. These nodes may be silent if they are 

blocked by other active transmissions or if they have no data to transmit when they 

are not blocked. This is shown in Figure 4.4.1. 

To obtain a lower bound on S.,], one assumes that nodes in B.,) are silent 

during the i-to- j transmission because they have no data. To calculate the prob

ability that nodes in B •. ) are si!ent during the i-to-j transmission, let the random 

variable Ti,} denotes the time duration of i-to-;' transmission (recall that it is dis

tributed exponentially with parameter pl. We obtain 

P(B',J idle) = 100 

P(B •. ) idlelT',J = X)P(Ti,J = x)dx = 

(4.4.1) 

The lower bound for probability that the i-to-;' transmission is successful 

is then 

( 4.4.2) 

The lower bound for the throughput under zero capture is therefore 

L B ZN\A. . 1 
S. J. . = P. J p, •. J. = P.· J. '., (4.4.3) 

, " 'ZN 1 IB I + P ',} 

t This approximation was developed jointly with Professor Moshe Sidi of 

the Technion. 
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Now, let us consider the following approximation. During the time TI ,), 

a node k E Bi,i is silent because it is blocked by other nodes or it has no nata to 

send. It is easy to calculate the probability 0 that all nodes in Bi,i are silent 

( 4.4.4) 

Then CHi,i is the "vulnerable" period in which node k E Bt) can start 

transmission but should remain silent. This suggests the following expression 

( 4.4.5) 

This yields the following approximation for the link throughput for CS~{A 

with zero capture: 
ZN\A . S -. ..J ____ _ 

I.} - PI,} ZN 1 IB I + op i.i 
(4.4.6) 

The nodal throughput SI for node i is obviously 

(4.4.7) 

We apply these ideas to analyze the tandem (d = I). First, we establish 

the lower bound. The set of nodes that must be silent at the initiation of an i-to

i + 1 transmission is Ai,,+1 = {i - 1, i, i + I, i + 2}. To guarantee the success of this 

transmission, node i + 2 must remain silent. Hence, B i ,i+l = {i + 2}. The lower 

bound for the nodal throughput is then 

130 



131 

N · 0 S CSMA (d = 1) 

N · 0 

N · a 

..-I · 0 

..-I · Canoaical Appraximat;oo 
0 Simulation 

..-I · 0 

..-I · 0 

..-I · 0 
Lower Bound 

a · 0 

o · o 

o · o 0.0 0.2 0.4 0.6 0.3-- 1.0 1.2 1.4 1.6 1.8 2.0 

Figure 4.4.1: CS\tA ~odaJ Throughput (or Zero Capture. 



Now, let us apply tre apprcximation as given by equation 4.4.6. The 

probability cr is easily found to be 

_ ZN\B, . .; __ -R [Z (t )] _ 1 + Jl + 4p 
cr - Z N - fS G 0 - --::-2 -/--;;:1 =+=4:=P~ 

The "vulnerable period" approximation is then 

S P 2 
( )

2 

, ~ Jl + 4p(l + crp) 1 + J1 + 4p 

The corresponding curves are shown in Figure 4.4.1. The "vulnerable 

period" approximation is close to the results of the simulation runs on a lOO-node 

tandem. For low values of p, the lower bound curve is close to the simulation results 

but diverges as the load is increased. This is easily explained. For low p, it is likely 

that a node is silent because it has no data. For high p, it is likely that it has data 

but is blocked by an active neighboring node. The comparison with simulation 

results indicate that the "vulnerable period" approximation is fairly accurate. 

4.5. CONCLUSION 

This chapter presented an application of the new method of canonical 

approximation to analyze CSMA and C-BTMA protocols with perfect capture for 

a number of network topologies. A lower bound and an easy approximation for 

CSMA with zero capture was presented. The method allows us to analyze a number 

of network topologies with relative ease. Further work will extend the application 

of the new method to study other multiple access protocols and network topologies. 
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4.6. APPENDIX 

In this appendix we give a. proof of lemma 4.2.1: 

Lerruna 4.2.1. The function f(t) = 1 - t - ptn = 0 where p > 0 has n distinct 

roots. There is only one positive root to. This root is th.: smal1est in magnitude 

among all other roots. 

Proof. First, let us show that every root of f(t) = 0 is simple. If t, is a root of 

order 2 or higher then obviously f(t,) = 0 and f'{t;} = o. Now, 

If J'(td = 0 then ti = n/(n - 1). But then f(n/(n + 1)) ¥ o. This contradiction 

shows that every root of f(t) = 0 is simple. 

Since f(O) = 1 > 0 and f(l) = -p < 0 the function has a root to satisfying 

o < to < 1. Moreover, since /'(t) < 0 for t > 0 it follows that f(t) is a decreasing 

function for positive t and hence, the root is unique. 

For any other root t1 one can write t1 = RcosO + iRsinO where 0 ¥ o. 
Since t1 satisfies 1 - t1 - pt7 = 0 one obtains 

g(R, 0) = 1 - RcosO - pRncosn(J = 0 

But g(R, lJ) > 1 - R - pRn = f(R). The function f(R) has only one positive real 

root R = to. Moreover, the function /(R) is decreasing for larger R. Therefore, 

g(R, lJ) is bounded below by a decreasing function intersecting the X-a. xis at to. 

But this implies t1 > to. Therefore, to is the smallest in magnitude among all the 

roots. • 

133 



CHAPTER 5 

CANONICAL APPROXIMATION: 
DATABASE SYSTEMS 

5.1. INTRODUCTION 

In this chapter the method of canonical approximation is applied to analyze 

a general model of static locking policy in database systems with N items and p 

classes of transactions. The model has been recently analyzed by D. M;~ra, P. 

Weinberger and S. Lavenberg ([Mitr84. Lave84]). They obtained an exact recursive 

algorithm to compute the partition function, whose computational complexity is 

of DUlp). The exact expressions for average concurrency, throughput and non

blocking probability for each class of transactions involve an explicit calculation 

of the partition function. The asymptotic (N ....... 00) analysis ([Lave84, Mitr84j) 

requires negligible computation but assumes very low traffic. The central focus 

of the analysis is the interference phenomenon among transactions, which is the 

cause of conflicts in a database. This is unlike most of the previous analytic studies 

of locking (see Chapter 2). which concentrated on the trade-off between locking 

overhead and the degree of allowable parallelism ([Iran78. Poti80]). 

Canonical approximation gives a simple closed form approximation to the 

partition function and performance measures. The approximation requires finding 

a root of a simple polynomial. Average concurrency, throughput and non-blocking 

probability for each class of transactions are computed without an explicit calcu

lation of the partition function. Since the magnitude of ZN can exceed a floating 

point range of a typical computer even for modest values of N. canonical approxi

mation allows the design of stable algorithms to analyze the model for any ra1ge of 

parameters (e.g. N and load values), in particular, in heavy traffic. The complexity 

of canonical approximation is of O(J~logN), where J~ is the largest number of item~ 
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which can be locked by any transaction. We will show that there is a range of 

load parameters, beyond which the database will not have any large transactions. 

Using canonical approximation, we will compute these load parameters at which 

this "change" takes place. This phenomenon will be explained using the analogy 

from the condensation of imperfect gas ([Path84]). 

5.2. THE MODEL 

The model described in this section is the one analyzed by D. Mitra and P. 

Weinberger ([Mitr84]) and by S. Lavenberg ([Lave84]). The results of this section 

are taken from [~fitr841. They are presented here for the sake of completeness. 

A database consists of N items. An item is the smallest entity in the 

database which may be locked. There are p classes of transactions. A transaction 

of class (1 requires j~ items. Without loss of generality, assume)1 ~ ... ~ Jp. 

Thus, there are C:) transactions of class (1. In this model no distinction is made 

between items that are to be read from the others that are to be written or updatl-d. 

Executing transaction makes no use of the temporal ordering of the processing of 

items. Transactions interfere if they request the same items. 

Requests for processing arrive exogenously to the database. The stream of 

requests to process a particular transaction of class (1 is assumed to be Poisson with 

the rate >.~. On arrival of such a request, the database lock manager determines 

if any of the items for the new ..transaction are already locked. If so, the request is 

cleared from the system. Otherwise, a transaction is accepted. The lock managl'r 

places locks on the required items in one atomic action. 

Usually, locks are obtained during the course of a transaction and rell,a. .... ,d 

when the transaction commits or aborts. If the part of the transaction during whICh 

locks are being obtained is short, then our model is a good approximation. In ot h"r 
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words, blocking in this model corresponds closely to rejecting a transaction using 

optimistic concurrency control ([BernBI]). Just as in optimistic concurrency control, 

the conflict detection is done at one time. The conflicting transaction is aborted, 

so that no deadlock or waiting is involved. In the optimistic concurrency control, 

the transaction commits or aborts at the conclusion. However, in our model, this 

is done at the beginning of transaction processing. 

The processing time for a transaction of class (j is assumed to be dis

tributed exponentially with the mean 1/ PI7 t. The transactions that are accepted 

for processing are processed concurrently. 

One of the assumptions of this model is that blocked requests are lost. In 

real systems, blocked transactions are resubmitted for processing. However, block

ing systems often provide fundamental insights even into lossless systems. D. Mitra 

and P. Weinberger ([MitrB4]) present a scheme for approximating performance mea

sures for lossless systems by using the results from blocking schemes. 

One can argue that it is more realistic to consider both exclusive (write) 

and non-exclusive (read) locking. However, the model becomes much more difficult 

to analyze. At this point, it is not known whether there is an efficient way to exactly 

compute ZN if non-exclusive locks are allowed. A simple asymptotic expression for 

non-blocking probabilities for this model in low traffic was obtained recently by S. 

Lavenberg ([LaveB4]). 

With the above assumptions, the model corresponds to the interference 

model considered in Chapter 3. Nodes of the graph corresponds to a set of data 

items. If a transaction arrives requiring this set of data items, the corresponding 

node becomes active. Recall that the equilibrium probability distribution for the 

t This condition can be relaxed ([MitrB4]). The processing time for a trans

action can be assumed to be an independent random variable with an arbitrary but 

common distribution for all transactions in a class with mean I/PI7 
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model is 
p7 1 ••• p~p 

7r(nl, ... ,np )= ZN 

where Pa = >'a/Pa and the partition function ZN is given by 

\ .. 

Here (}:~ ..... ip is the number of distinct configurations such that there are ia con

current transactions of class a. 

As noted above. one can drop the assumption of exponential service time 

for transactions of class a and consider any service distribution with (finite) mean 

l/Pa. 

To analyze the system, one needs to calculate the partition function ZN. 

Possible configurations of the model can be described by the set S of the p-tuples 

S = {I = (ii, ... , ip) : i I i.+ ... + ipJ~ ~ N} w here there are ia transactions of 

class a. Let J denote the p-tuple (il, .. ' ,J~) and let I' J = l::=1 iki". It is obvious 

that if I E S then I' J ~ N. The partition function is given by the following lemma: 

Lemma 5.2.1 ([Mitr84\). The partition function is given by 

Z L N! 1 1 i1 i 
N= P ... p P 

(N - I' J)! (jl!) 11 •.• (]~!) I p i I ! ... ip ! I p 
iES 

(.5.~.1) 

Proof. Consider the term 

( N) [ (I' J)! ] [ 1 1 
I' J (jl !)I1 ... (J~!)Ip i 1! ... ip ! 

The first ratio is the number of ways to select the locked items. The 

second ratio is the number of ways to distribute the items into the queries. The 

third corrects for the fact that the order of queries is not important. 
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Hence, 

and thus the partition function is given by the expression (5.2.1). • 

The number of terms in the above expression for the partition function is 

of O(l\j'P). Direct evaluation of ZN is computationally expensive. D. ~{itra and P. 

\Veinberger ([~{itr84]) have obtained a recursive algorithm to compute ZN in terms 

of ZI, ... , ZN-I' Its computational complexity is of O(Np). The computation 

of the average concurrency ana non-blocking probability of each class requires an 

explicit calculation of the partition function. The asymptotic analysis (as N ....... 0) 

requires negligible computation but assumes low traffic (e.g. (~)p = 0(1)). 

The next lemma gives the closed-form expression for the (exponential) 

grand partition function. The expression for ZG(t) was obtained in [~{itr841 to 

produce a numerical algorithm to calculate ZN in terms of ZI,"" ZN-I: 

Lemma 5.2.2 (lMitr8-1]). The grand partition function is given by 

ZG(t) = f: ~ t N = exp(t + 2::C(1tJ,,) 
N=O (1 

where C(1 = p(1/J~!. 

Proof. 

00 1 ci. 00 tN-I'] (pac )1 .. 
Z (t) = ~ tN ~ II-2.... - ~ ~ II (1 

G L- L- (N _ I' J)! i(1! - L- L- (N - I' J)! i(1! 
N=O IES (1 N=O/ES (1 

I 
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5.3. CANONICAL APPROXIMATION 

Let us now apply the method of canonical approximation. The grand 

partition function is an entire function and therefore one applies the canonical 

approximation method by using the saddle point. Let 

p 

G(t) = t + L cot)" and /(t) = C(t) - (N + l)logt (5.3.1) 
0=1 

The saddle-point tN is found from f'(tN) = O. It is the unique positive 

root of the following )~-th order equation: 

t N G' ( t N ) - (N + I) = 0 (5.3.~) 

The second derivative of /(/) at the saddle-point is 

(.5.3.3) 

Canonical approximation (theorem 3.2.1) gives the following expression 

for the partition function: 

The relative error (N of the canonical approximation is given by 

1 .., 1 o4'" 
(N = -(3vo4 - 5V3·) + --(168v3v~ + 385v3 - 6JOv3MVo4 - 24v6 + 105vo4) + ... 

24 1152 
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where 

Error Analysis and Complexity. Let us establish the accuracy of the approx

imation. The main result is summarized in the following lemma: 

Lemma 5.3.1. The relative error of the canonical approximation EN is of O( 1 IS). 

The proof of this lemma can be found in the appendix at the end of this 

chapter (section 5.9). From this lemma it follows that £N 1-+ O. Therefore. to 

O(IIN) one has 

(5.3.5) 

The approximate evaluation of the partition function is reduced to finding 

a positive root tN of a simple }~-th order polynomial equation J'(tN) = O. This 

computation can be easily accomplished by such algorithms as the bisection method 

or the Newton-Raphson method ([Kron83]). 

To evaluate the (computational) complexity of computing the saddle point. 

let us consider the bisect ion method. It is easy to show from 5.3.:::! that !' (0) = 
-(N + 1) < 0 and /,(N + 1) > O. Hence, the saddle point satisfies 0 < ts < N + 1. 

To compute the saddle point up to the 6-th decimal digit, one would need logS + 
log106 < 20 + 10gN iterations. For example, if the size of the database is 106 items. 

one needs less than 40 iterations. At the i-th iteration, one needs to evaluate !,(t~~,l) 

at some new estimate t~) to the saddle point tN, This evaluation can be performed 

in O()~) arithmetic operations using the Horner's rule ([Kron83]). Therefore, uSing 

the bisection algorithm, one can compute the saddle point in O(}~logN) arithmetic 
- -

operations. This is easily accomplished for practically any N and }~ of interest. 

Even in the "worst case", when there are N classes of transaction:;; (I .' 

)~ = N) the evaluation of the saddle-point can be done in O(NlogN) arithml't II' 
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operationst. On the other hand, the computation of ZN for such case using the 

exact algorithm would require an O(N2) operations. 

5.4. PERFORMANCE MEASURES 

Once the approximate partition function is obtained, one can calculate 

a number of performance measures. The most important performance measures 

are the average concurrency E(I of transactions of class C1 and the non-blocking 

probability B(I that an arriving transaction of class C1 is not blocked. In this section. 

we show how to compute E(I without an explicit calculation of ZN. 

The main result of this section is summarized by the following lemma: 

Lemma 5.4.1. The average number of concurrent transactions of class C1 can be 

computed as follows 

E .V 1 + J(I N )(1 )(1-1 tJ
" [ • 1(3) (I ) . ( . ) 1 

17 ~ PI7 )~! IN[J(2)(tN)]2 - 2tJ.vJ(2)(tN) 
(5.4.1 ) 

To O(I/N) the above expression can be rewritten as 

The proof of this lemma can be found in the Appendix at the end of this 

chapter. Note that the expression for E(f does not involve an explicit calculation 

t In this problem it is easy to show that 1"(/) > 0 and increasing for t E 

(0, N + 1). Thus, the Newton-Raphson method is always convergent and gives a 

much faster algorithm than the bisection method. For the sake of simplicity w{' 

analyzed the complexity using the bisection method 
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of ZN. It can be used to compute approximately the average concurrency for a 

database of any size N. The complexity of computation is independent of N, 

whereas the accuracy increases with N. 

A number of other performance measures can be computed using E/7. The 

throughput of class a transactions is 

(5.4.3) 

Since there are C~) transactions of class a, the non-blocking probability 

for class a transactions is 

(5.4.4) 

Finally, let us gIve an interpretation to the saddle-point tN. If Ea is 

the concurrency of class a, then J"aEI7 is the average number of items accessed by 

transactions of class a. Let us rewrite equation 5.3.2 as follows 

(5.4.5 ) 

From equations 5.4.5 and 5.4.2 we have 

(5.4.6) 

But il El + ... J~Ep is the average number of items locked by the concurn.:nt 

transactions of all classes. Since N is the number of items in the database, it follows 

I-t~ 



from equation (5.4.6) that the saddle-point tN corresponds to the average number 

of idle items in the database. 

5.5. EXAMPLES 

Example 5.5.1. Let us consider the simple case of p = 1 and jl = 1. (The purpose 

of this example is to illustrate the degree of precision of canonical approximation, 

using the saddle-point.) Each transaction locks just one item. One can compute 

the exact value of ZN = L: cnpl = (1 + p)N. But let us compare it with the one 

obtained by canonical approximation. 

The grand partition function is ZG(t) = exp(C(t)) where C(t) = t + pt. 

Let--

l(t) = C(t) - (N + l)logt = t + pt - (N + 1)logt 

The saddle point tN can be found from equation f'(t) = 0 to be l.v 

t:::l. At the 'addle point 

(f(t )) (
e(l+p))N+1 

exp N = N + 1 and 1"(t ) = (1 + p)2 
N N + 1 

Using Stirling's formula for N! 

(N)"'" N! ~ JZ'KN -; 

one gets the following approximation for the partition function 

N!e/(tN) (e )N+IN!(I+ P)N(N+l) v 
ZN ~ = ~ (1 + p)' 

.j2rrl"(tN) N+l .j2rr(N+l) 
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Hence, ZN = (I + p) .'I as expected. The average concurrency 

E ~ t = p(N + 1) = pN [I + 1 1 
p .'I 1 + p 1 + P N(I + p) 

( 5.5.1) 

For this example it is easy to show that the exact expression for the average 

concurrency is pN /( 1 + pl. Therefore, the relative error (.'I in the calculation of the 

average concurrency is 

1 
(v = - 0 . lV(l + p) 

as 

Since there is a total of N different transactions, the non-blocking proba

bility (equation 3.1.5) 
E 1 

B=-;:::;:-
Np I +p 

The blocking probability can be rewritten 

I-B;:::;:E/N 

This agrees with the asymptotic results (equation 2.4.4.4) for the non

blocking probability in low traffic reported by S. Lavenberg ([Lave84J) and D . .\1itra 

([Mitr84J). 

Example 5.5.2. Assume now that only one class of j-item transactions is allowM. 

The grand partition function 

The saddle-point t,v satisfies 

tJ 
Plv +t -(N+I)=O 

(j_I)! N 
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The average concurrency can be found as follows 

E 
pt~~ _ N + 1 - t N 

~ ., - . 
J. J 

Since every transaction locks j items, the maximum possible concurrency 

m the system is N Ii transactions. It is easy from the equation (or the saddle

point that tN -- 0 as p -- 00. Thus, the maximum possible concurrency of Sh is 

achieved at infinite value of the load. 

Since there are ('~) possible transactions, the non-blocking probability 

B= ~ ~ N+ I-tN 

- (~)p (~)jp 

The utilization of the database U = jE. In Figure 5.5.1 we give the 

curves for the utilization for different values of j. Following [Mitr8-tJ, the unit for 

measuring total offered traffic is choS€n to be j(~)prV. This is explained by the fact 

that C~) p measures offered traffic in transactions per second and each transact ion 

involves jlN fraction of the database. Therefore, if the locks were shared, j ("") piS 
] 

would represent the fraction of the database accessed per unit of time. This explains 

the name of this unit of traffic, namely databases/second ([Mitr84]). It is int(,j ,·~ting 

to note that the utilization curves run almost in parallel. For the same load. lh('re 

is less interference among transactions for the smaller value of j. This expl?ins why 

the utilization values are higher for classes with smaller value of j. The utilization 

increases very fast with the load, but then becomes almost linear as a (unct ion of 

the load. • 

Example 5.5.3. Suppose now that only 2 classes are allowed with j, = 1 and 

J2 = 2. (Transactions of class 1 lock 1 item and transactions of class:::! I(ldo .. ':' 
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items.} The grand partition function 

The saddle point tN is found by solving: 

P2 t'jy + (1 + pdt N - (N + 1) = 0 

The positive root gives us the following saddle-point 

The concurrency of class 1 is given by 

The concurrency of class 2 is given by 

There are N possible transactions of class 1 and (~) possible transactions 

of class 2. Therefore, the non-blocking probabilities HI, Ih for classes 1 and '2 are 

given by: 

BI = ~ ~ tN 
Npi P 

and 
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In Figure 5.5.2 we show the curves Cor the database utilization Crom these 

two classes oC customers. Obviously, U1 = El / Nand U2 = 2Ez/N. We fixed. 

the load of 2-item transactions at 5 databases/second. As we increa...c;e the load 

of I-item transactions, the utilization oC class 2 decreases and the utilization oC 

class 1 increases. This can be explained by the Cact that there is more interCerence 

experienced by 2-item transactions than by I-item transactions (These transactions 

contend over 2 items rather than over I item). Thus, with load increase, the Craction 

of the database filled. with I-item transactions will increase while that with ~-item 

transactions will decrease. In some sense, class 2-transactions are being "starved" . 

A similar situation was described. in [Mitr84]. In fact, for a fixed Nand P'2 one can 

easily find the value of p~ at which the fractions are the same. Increasing PI beyond 

this point leads to starvation of class-2 transactions. This is illustrated in Figure 

Example 5.5.4. Assume that I «p « Nand iu = 0', that is class 0' transactions 

require 0' items. Assume p, = p. Note that for this model, the total traffic of class 

0' transactions is C;)Pu increases with 0'. The grand partition function is 

2G(t) = f: ~~ t·..., = exp (t + tfitl
) ~ exp(t + p(et 

- I)) 
N=O 1=1 

The saddle point iN satisfies 

iN + peXp(tN) = N + I 

For a fixed. p and large N we have iN ~ log~. Therefore, the average 

concurrency of transactions of class j is 

[ "']' E '" P t' ...... PI' 
I "oJ 1 N "" 1 og-P 

t. I. 
(.5.5.4.1 ) 
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For example, if p = liN then Ei ~ 2i /i!N. On the other hand, if p ~ I 

(very high traffic) then E.", ~ (logN)' Ii! 

Since transactions of different classes lock different number of items in 

the database, it is more convenient to consider another performance measure: the 

fraction of the database U q = (J Eq IN accessed by class-(J transactions. Let us first 

calculate the maximum value of Uq • To do so, we find the value of p at which 

O~q = O. Using equation 5.5.-t I we have 

8Uq = .!. (~logN _ 1) 
8p (J! N p 

Solving O!! .. = 0 we obtain log'v = NI(J which implies that p = Nexp{ -N I(J). 
up p 

It is easy to check that at this p, the value of Uq is maximized and is given by 

at p = N exp ( - ~) 

What does this mean? For light p there is little interference. We would 

expect that the utilization Uq increases with p. For larger p, there is more interfer

ence. Moreover, for larger p, transactions of lower classes {i.e. classes I ..... (J - 1) 

may have a higher chance to succeed because they lock a smaller number of items. 

Because of this, for higher values of p (i.e. for p > Nexp{-NI(J)), the utilization 

Uq ' .... ould, in fact, be decreasing with an increase in p. This is illustrated in Figure 

5.5.3, where we show the curves of U~ and U6 for a database of N = 1000 items 

and p = 20 classes. Note that the curves intersect, which suggests that above some 

p we can expect Uq + 1 < U(1' 

Let us establish this formally. We want to find the value of the load p such 

that Uq + 1 = U(1' We have 

(JEq P q+1 P t q iN ~ iN [1_ Uq + 1 = -- ~ -IN = v- v N (J! ((J - I)!' (J (J 
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Therefore, UU +1 = Uu for iN = (1 which implies that p = Ne- f7
• For 

p > Ne- f7 (i.e. iN < (1) we have UU+l < Uu . This can be easily explained. For 

the s~me p, the total traffic of class (J + 1 is (u~ 1) P and is higher than that of class 

(1, which is (~)p. For light traffic (small p), there is little interference and most 

of the transactions are able to proceed. Therefore, for small p one would expect 

Uf7+ 1 > Uf7 • 

Transactions of class (1 + 1 lock more items than transactions of class (1. 

Therefore, one would expect that the fraction of the database accessed by transac

tions of class (1 + 1 would be higher than that of class (1. As one increases the load, 

there is more interference. Transactions requiring smaller number of items have 

more chance to proceed, even though the total traffic is higher for larger classes. 

Thus Uu decreases for larger (1 and increases for smaller (1. This is exactly simi

lar to the phenomena of "starVation" described in the previous example. For each 

(1, canonical approximation allows us to calculate the value of the load (namely, 

p = N e- U
) beyond which Uu > Uu+ 1 , ••• Up. As we keep on increasing p, the trans

actions of more and more classes are be "starved". In the limit (as p ....... (0) only 

class-l transactions would be present. In Figure 5.5.3 we showed the curves 

The non-blocking probability for class (1 is given by 

It is easy to see that 8 u decreases to 0 quite rapidly with (1. This reflects 

the fact that for larger (1, an arriving transaction will find it very unlikely that the 

required items are available. 



5.6. CONDENSATION OF THE DATABASE 

In this section we will-analyze the behavior of the database under heavy 

traffic. We will show the existence of a set of threshold parameters for the loads, 

above which, the average number of transactions, requiring many items. becomes 

insignificant (e.g. « 1). We will show that this is similar to liquid-gas condensation 

of an imperfect gas. Thus, one can think of this change in the behavior of a database 

as the database "condensation". 

We start by analyzing the dependence of the saddle point tN on the load 

parameters Pl, ... , pp. In particular, we will show that (or any r E (0, N + 1) we 

can choose the loads so that t N < r. To start, let us examine the equation for the 

saddle point iN (derived from equation 5.3.2): 

l'(t) = t + . PI ill + ... + . Pp t1, - (N + 1) = ° 
()1-1)! Up-I)! 

(5,6.1) 

When all the Pu's are 0, the saddle point is obviously tN = N + 1. Let us 

shO\v that if we increase any of the loads, say Pu, the saddle-point decreases. Since 

iN is a root of l' (t) = 0 we have by the implicit function theorem 

ot(eN) 
op" 

O['!tN) 
otN 

t)" -I 
/v 

(iC1 - 1 )!/"(tN) 
(5.6.:;) 

Since iN > ° and 1"(tN) > 0 (equation 5.3.3), it follows from equation 

5.6.2 that ~~~ < O. This means that the saddle point decreases with an increase in 

PC1' 

Let us show that by choosing the loads PI, ... , Pp sufficiently large we can 

make tN < r for any r E (0, N + 1). It would be sufficient to show that we can 

choose the load of any class, say P~ independently of the others so that iN < r. 
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Indeed, take PlY so that [(N + l)(J~ - l)!/PIYj1/i" = r. In other words, r is the root 

of the equation (J/::: 1)! (1" - (N + 1) = o. But the coefficients of f' (t N) = 0 (except 

for t~ and -(N + 1)) are larger than those for lJ"~I)!tj,, - (N + 1) = O. It follows 

then that for such PlY (and any choice of the other loads) iN < r. This is illustrated 

in Figure 5.6.1, where we show the (typical) dependence of tN on the loadst. 

Therefore, it is possible to choose the load parameters PI,"" Pp (not III 

a unique way, of course) so that the saddle point tN < r for any r E (0, lv' + 1). 

"Smaller" values of Pa 's correspond to "larger" values of tN and, conversely, "larger" 

values of PlY'S correspond to "smaller"' values of tN. This is consistent with the 

interpretation of the saddle point as the average number of unlocked items in the 

database (see equation 5.4.6): for smaller loads, the number of unlocked items is 

larger, for larger loads, it is smaller. 

We now turn to the primary focus of this section. In the previous section we 

mentioned for some specific examples that for large loads, the transactions requiring 

many items have a leSS€r chance to succeed than those requiring fewer items. We 

now ask the following question: when will the average number of transactions. 

requiring many items, be significant (e.g. ~ I)? To answer this, let us analyze EI 

for large I. From equation 5 .... 2 and Stirling's approximation to I! we have 

PI I PI (e )1 EI ~ -tN ~ -- -iN 
I!' J'2rrl I 

(.5.6.3) 

From the previous discussion it follows that we can choose the loads PlY'S 

so that iN < ~. From equation 5.6.1 we obtain that for such loads, the number EI 

is practically equal to zero. It is so, since etN /1 < 1 and 1 :l> 1. This means that 

in a macroscopic sense, the population of large transactions is not at all significant. 

On the other hand, if t N > ~, then EI becomes large and thus large transactions 

would be present. 

t To show the dependence of tN on all the parameters Pi, ...• Pp would 

require p + 1 dimensions. Thus, we showed the dependence of iN on just two load 

parameters P. and PJ' 
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Figure 5.6.1: Saddle Point a..:; a Function of Loads 
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What does this mean? When PI are "'large" (i.e. such that tN < lie), 

as soon as a transaction of class a departs and frees )"a items, it is likely that 

there will be a number of transactions competing for them. Transactions of lo\.,.cr 

classes will have a better chance to proceed, since they contend over a smaller set of 

items. Therefore, one would not expect large (I ~ 1) transactions to be present in 

macroscopically significant numbers. On the other hand, if PI are small, then these 

transactions can be present since there may be very little interference. Therefore, if 

one starts with high values of PI'S, then as the PI'S decrease (the database "cools") 

we reach a point when a formation of "'large" transactions takes place. Note that 

this point is achieved for still relatively high Pt. 

Let us explain this phenomenon using the analogy to imperfect gas ([Path8-t]). 

A real (imperfect) gas consists basically of discrete molecules. To a fairly good 

approximation, the potential energy t/J of the assembly of N molecules can be bro

ken into pair-wise interactions. The "strength" of pairwise interaction between 

molecules i and j is specified by the function I'i' One assumes Iii = 0 if there is 

no interaction between molecules i and j. The higher the temperature of imperfect 

gas, the stronger is the pairwise interaction. A molecule in such a physical system 

corresponds to an item in a database. Two interacting molecules correspond to two 

items in the same transaction. To make the analogy complete, let us say that the 

"strength" of pairwise interaction between two items in a database is determined 

by probability that these items are locked by the same transaction. The higher 

the load on the database, the more likely it is for any two items to be in the same 

transaction (i.e. the stronger is the pairwise interaction). In view of the above 

discussion, it is more likely that these two items will be in a smaller transaction 

than in a larger one. 

Let us make an assumption that class a transactions lock a items and 

classes run from 1 to N. The reason for introducing these assumptions is to make 

the formulas "'identical" to those obtained in statistical physics. The statistical 

mechanical interpretation of the results is valid for the general case as well. 
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One can associate a graph of N nodes in 1-1 correspondence with inter

acting molecules: there is an edge between points i and j whenever II) 'I O. The 

collection of graphs that link up any I points will be called an I-cluster. Thus, a 

transaction locking I items corresponds to an I-cluster. Figure 5.6.1. shows the 4 

graphs corresponding to a 3-cluster. A 3-cluster corresponds to an active trans

action locking 3 items. With such an I-cluster, one defines the so-called I-cluster 

integrals bl as followst 

bl = ~!/! J (contribution from an I-cluster) (5.6.4) 

The partition function Z .... can be evaluated III terms of these I-cluster 

integrals bl as follows ([Path84]) 

with (5.6.5) 

For the database system, the contribution of the I-item transaction to the 

partition function depends on Pl. In fact, if one defines bl = PI/VI!, the above ex

pres:-;ion for the partition function of an imperfect gas of N molecules with pairwise 

interactions can be written in the same form as partition function for a databaset. 

The partition function is computed from its exponential grand partition function 

(5.6.6) 

t There is also a factor of 1/,,3(1-1), where ,\ denotes the thermal de Broglie 

wavelength of the particles. One assumes ,\ = 1 for the sake of the simplicity of 

notation. 
t It is assumed that every molecule is a part of some cluster. This is not 

exactly true for our model of the database since some of the items may remain 

unlocked by any transaction. However, this difference is insignificant in this context. 
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using the saddle-point method ([Path84]). The expression 5.6.6. Cor the grand 

partition Cunction for imperfect gas is "similar" to the expression 5.2.2. Cor the 

grand, partition Cunction for the database model. Let mi denote the average value 

of mi. It can be shown ([Path84]) from equation 5.6.4 that 

(5.6.7) 

where iN is the saddle-point used to calculate the partition function Zs (equation 

5.6.5) from the grand partition Cunction Zc(t) (equation 5.6.6). Using bl = pt/V I!, 

we can rewrite this as mi = Plt~",/I! in complete analogy with the expression Cor the 

average concurrency of transactions of class I (equation 5.4.2). 

Mayer ([Maye38] has shown that Cor this system oC interacting pa.rticles, 

one has bl = klb~ Cor large I. Here bo is a Cunction of the absolute temperature 

calculated from cluster integrals. From 5.6.5, one obtains that the population oC 

large-sized clusters m; :::::: Vkt{boiN)lt. As long as iN < b"Ol, the population m; 

oC I-clusters is practically 0 since hi iN < l and I :> 1. This means that in the 

macroscopic sense, the population oC large-sized clusters is not significant. In a 

database system, this corresponds to high values oC the loads PI so that the number 

of large transactions E/ :::::: O. 

On the other hand, iC iN > b~ I then mi becomes exceedingly large. This 

means that as iN increases and passes through the critical value ie = b"O I. a for

mation of large-sized clusters (i.e. condensation) takes place. In a database system 

this corresponds to the "low" values oC PI so thatEI:l> l. 

Figure 5.6.2. shows the relation between the specific volume v = ~. /.\' 
in the condensation region Cor imperfect gas. The horizontal portion in the figure 

represents a preCerential Cormation oC large-sized clusters, and hence the appear~nce 

oC a two-phase state, in the system. If iN is increased (even slightly) above the 

tHere kl is also a function oC the variable I. However, this dependence do~ 

not play any significant role in this context. 
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critical value bOI
, the density 1/1l becomes exceedingly large: there is a formation 

of large-size clusters. Similarly, if tN is decreased (even slightly) below the critical 

value of bol
, the density becomes small: there are almost no large-size clusters. 

Thus, one can think of the corresponding phenomenon in the behavior 

of the database as that of a "database condensation". It means that there are 

values pi of the loads so that for PI > pi the throughput of transactions of class 

I decreases and becomes almost O. The loads should be tuned as to not allow 

this to happen. Canonical approximation allows one to compute analytically the 

corresponding "threshold" loads for each class of transactions. 

5.7. CONCLUSION 

In this chapter the method of canonical approximation was applied to 

study the exact locking models of database systems. Closed form expressions were 

obtained for average concurrency, non-blocking probability, and other database per

formance measures. The computations are reduced to finding a positive root of a 

simple polynomial equation. Performance measures are expressed in terms of thl~ 

root without an explicit calculation of the partition function. They can be obta.ined 

for any values of parameters. Using these closed form expressions, we established 

the existence of of "database condensation" , which was explained using the analogy 

from the theory of imperfect gas. Further work will extend the applications of the 

method to other locking models of database systems. 

5.8. APPENDIX 

In this appendix we present the proof of lemma 5.3.1 and lemma 5.·1. I us.'(i 

in the chapter. 

160 



Lemma 5.3.1. £N is of O(l/N). 

Proof. By theorem 3.2.1, it is enough to show that the dominant term of f..v are 

of O(1/N). Let us rewrite this term 

following 

The derivatives of f{t) can be found as follows 

Hence, 

f(8)(tN) = C(8)(tN) + (_1)8 (8 -l)t!!N + 1) 
N 

(5.3.~) 

(5.3.3) 

It is enough to give an estimate of lis for 8 ::; 6. First, let us note the 

Therefore, 

::; (jp - 1) .. , Up - 8 + 1) t N C' (t N ) 

= (;~ - 1) ... (J~ - 8 + 1)( N + 1) ~ J; -1 (N + 1) 
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Therefore, we obtain the following (pessimistic !!!) upper bound 

J~-l + (-l)a(8 - 1)1 
Va« 2a/ 2 (N + 1)8/2-1 

On the other hand, since 

we obtain the following lower bound 

> t:"C(8)(tN) + (-1)8(8 - 1)!(N + 1) 
V8 - j;/2(N + 1)8/2 

> (-1)5(8 -l)!(N + 1) 1-+ 0 

i;/2 (N + 1 )8/2 

(5.3.4) 

(5.3.5 ) 

Substituting these bounds from 5.3.4 and 5.3.5 into the expression .).3.1 of 

the most dominant term of relative error, one can conclude that iN is of O( 111\'). 

I 

Let us now prove the second lemma 

Lenuna 5.4.1. The average number of concurrent transactions of class (J can be 

computed as follows 

e,; [ J~f(3)(tN) J~(;~-d 1 
E~ = P~7:'. 1 + tN[J(2)(tN )1 2 - 2t'j..,f(2)(tN) (5.1.1) 

To O(lIN) we have 

( ~ t·)) .J.' ._ 
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Proof. From 5.2.1 it follows that 

(5.4.3) 

By the Chain rule 

aZN fr ZN aZN atN 
--=--+----
ap~ ap~ atN ap~ 

(5.4.4) 

The partial derivative aa· ZN is taken explicitly with respect to p~, treating 
p" 

t.'V as an independent variable. The first term of 5.4.4 gives 

(5.4.5 ) 

For the second term of 5.4.4 we have 

exp(C(tN ) )/(3) (/.v) atN __ /(3) (tN) Z v al.v 
tZ+ 1'2/(2}(tN )J27r/(2}(tN) ap~ - Jl 2 l(tN) • apa 

(5.4.6) 
azs at N 

Since tN satisfies !'(tN) = 0, we have by the implicit function theorem 

a[,(t!{ ) 
ap" 

a[,(tN) 
at.'! 

Therefore, equation 5.4.·3 can be rewritten as follows 

(5.4.7) 

(5.·1.8 ) 
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Equations 5A.3 and 5.4.8. imply 5.4.1. To show equation 5A.:-? let us 

rewrite equation 5.4.1 as follows: 

( .5.4.9) 

where i can be written as follows (from equation 5A.8) 

(5.·4.10) 

Since ju ~ )~ we have 

(.S.·I.II) 

Similarly, 

(~C(2)(t) tNC/(tN) = N + 1 .... N». . (5. -1.1 :-?) 
)p )p 

Therefore, from equations 5.4.10, 5.-1.11 and 5.4.12 We obtain 

(. <t:: (.V + 1)( 1 + 1 /J~),~ 
)~(;~ - 1) 

(.5.4.13) 
(N + 1)(1 + l/J~) 

The error term is therefore of O(I/N). Hence, to O(I/N) the average 

concurrency of class (J is given by equation SA.2. I 
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CHAPTER 6 

CANONICAL APPROXIMATION: 
CLOSED MARKOVIAN NETWORKS 

6.1. INTRODUCTION 

This chapter applies the canonical approximation method to analyze single

class closed queueing networks. A network of this class consists of N customers 

circulating among AI nodes. Each node may consist of a single constant rate ex

ponential server (a load-independent node), m such exponential servers (an m

server node) or infinite number of such exponential servers (an infinite server or 

IS node). The problem is to compute a number of performance measures for each 

node. Among the key performance measures are average queue length, average 

waiting time, throughput and utilization. 

Canonical approximation gives simple closed-Corm expressions for these 

performance measures. The new algorithms, based on these expressions, are stable, 

give excellent precision (even for small Nand M) and require O(M) arithmetic 

operations for for both load-dependent and load-independent cases. They require 

a fixed size storage for intermediate computations. The computation of the per

formance measures does not require the explicit computation of the normalization 

constant ZN of the steady-state probability distribution. This makes it possible to 

analyze networks for any N. The new algorithms are very simple and can be imple

mented by a Pascal program of less than 100 lines of code. The asymptotic analysis 

(N 1-+ 00) for the case, where all the nodes are load-independent, requires negligible 

computation and can be implemented on a pocket calculator. This is unlike most 

of the other exact or approximate methods ([Buze73, Chan82, Eager84, Schw79]), 

whose computational complexity is usually at least of O(N M) and whose storage 

requirements for intermediate computations is usually of O(N). On the other hand. 
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let us note that many of the algorithms for single-class queueing networks have been 

extended to analyze multi-class queueing networks, where the service distribution 

of a customer may depend on his class. We do not yet know how to apply canonical 

approximation to analyze multi-class queueing networks (see Chapter S). In section 

6.7 we will compare our algorithms with some well-known computational algorithms 

for closed Markovian networks with regard to precision, computational complexity, 

and storage requirements. 

The importance of fast algorithms for the performance analysis of queueing 

network models of computer systems is well known ([Buze71, KellSO, Klei76]). As 

noted by McKenna ([McKeS4]), "closed Markovian queueing networks have emerged 

as one of the most important tools for modeling computer systems, computer com

munication systems, on-line computer networks, and other real time computer sys

tems ([Klei76, SaueS1]). This was because of the discovery of an important class of 

such networks that were analytically tractable, the so-called product form networks 

([Bask7S, KellSO]). Unfortunately, until quite recently, the use of these models 

was confined to relatively small networks, since their use in large networks involves 

intractably large calculations or approximations involving errors of unknown mag

nitude, questions of uniqueness, unknown range of applicability, and problems with 

con\'ergence ([Bard79, Buze73, ChanS~, EageS4, Schw79])." The book by Bru

ell and Balbo ([BrueS4]) presents an excellent overview of different algorithms for 

closed queueing networks. 

The computational expense of an exact solution of a product form queueing 

network can be prohibitive when the network has multiple closed customer classes. 

As noted by Eager ([EageS4]), there are two major motivations for considering f~t 

approximate solution techniques (or single-class queueing networks. First, in uti

lizing some of the approximate solution techniques ([Zab080j), it may be necessary 

to analyze a very large number of single-class networks to obtain some bounds hr 

the analysis of multiple-class networks. Secondly, the complexity of the existing 

exact and approximate algorithms typically increases with N and AI. Thus, these 

166 



algorithms may not be appropriate for very large networks. Moreover, some of 

these algorithms are unstable even for moderate values of N and AI (se€ section 

6.8). Finally, fast algorithms for single-class networks are of theoretical interest, 

since they often provide insight that can be applied to the multiple closed queueing 

networks. 

6.2. THE MODEL 

Consider a closed network of AI nodes with N jobs (customers). Let 

JI.(k) be the expected service time at node i when there are k jobs at that node. 

For the load-independent case, JI.(k) is independent of k, whereas for the load

dependent case, JI.(k) depends on the number of jobs at node i. Let Pij be the 

routing probability that when a job finishes at node i, it will se€k service at node 

j. It is well-known that the steady-state probability distribution that there are ", 

customers at node i is given by the Gordon-Newell soliJtion ([Gord67]) 

(6.~.1 ) 

where: 

(1) X, = eiJl,. The e, are the solutions of Al linear equations 

which equate the flows into and out of each station. Note that the above product 

form solution is unique up to a multiplicative constant. (This is because there are 

167 



M - 1 independent equations in determining the ej's.) If one sets el = 1, the other 

e/s can be uniquely determined. This can be done by the standard techniques 

of solving systems of linear equations ([Kron83]), the computational complexity of 

which are of O(.\{3). 

Let us note that in analyzing the time complexity and storage requirements 

of any algorithm for the above models, one does not count the time to compute ej's 

and the storage for Xi. 

(2) 

Ddn.) = {nl n, d. 
J=1 J 

Here dj are positive functions for queue dependent mean service times. For 

the load-independent case, dJ = 1. For the load-dependent node with an infinite 

server, dj = j. In other words, 111/dJ is the service time at node i when there are j 

customers at that node. 

(3) ZN is the partition function given by 

(6.~.2) 

Here the set S of possible state configurations is obviously 

(G.:?3) 
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6.3. DETERMINATION OF THE GRAND 
PARTITION FUNCTION 

To apply canonical approximation to evaluate ZN, we need to compute 

the grand partition function 

00 

Zc(l) = L ZNtN (6.3.1 ) 
N=O 

To do this, we define A, to be the random variable over the state-space S 

(equation 6.2.3) denoting the total number of customers at node i. Let the prob

ability distribution of A, be given by F,(Ad. Let g,(t) be the generating function 

for the probability distribution of Ai, namely 

00 

g,(t) = L F,(ndt"' (6.3.2) 
".=0 

Then it can be shown ([Thom82, Wi1l76j) that the grand partition function 

is 

00 M 

Zc(l) = LZNtN = IIg,(t) (6.3.3) 
,=0 ,= 1 

The above expression (equation 6.3.3) for the grand partition function 

Zc(t), stated in terms of the product of generating functions gi(t), allows one to 

replace any number of nodes by a composite equivalent node (aggregation). This 

construction is given in detail in ([Thom82j). 
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Before applying the method of canonical approximation, let us note here 

that the computation of ZN from its generating function ZG(t) has been consid

ered before. A number of researchers ([Will76, Thom82]) have used the generating 

function formulation for multiclass closed queueing networks to derive the "'convo

lution" formulae. Although they considered a more general multi-class model, they 

did not give a direct formula for performance measures which does not involve iter

ative numerical computation of ZN even for a single class model. Moore ([Moor72J) 

obtained an algorithm to compute ZN for the load-independent case. It requires 

an O(Af) arithmetic operations and uses the partial fraction expansion of ZG(I) in 

the simple case when all of the poles are distinct. Lam ([Lam77]) has extended the 

computation of ZN for the load-independent case when not all of the poles of ZG(t) 

are distinct. Both of these only apply to load-independent networks. Moreover, 

both of these have poor numerical properties. The explicit calculation of the par

tition function and of the performance measures in these algorithms involves the 

summation of the terms of O(N!) (constituting the partition function). In contrast, 

we will apply canonical approximation to obtain simple and stable algorithms to 

analyze any single-class queueing networks (of any size) with high precision. 

6.4. CANONICAL APPROXIMATION 

Let JJddj denote the expected service time at processor i when there are 

j jobs at that node (equation 6.2.1). Define 

(6A.1 ) 

By Jackson's theorem ([Klei75aJ), the probability distribution of A" the 

number of customers at node i, is that of a Markovian queue with the same arrival 
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and service time (as for node i in the closed queueing network). Therefore, the 

generating function for Ai becomes 

(604.~) 

Of practical interest are the case of a load-independent server, an infinite 

server (IS) station, and an m-server station. 

Load-Indep enden t Server. In this case, the service rate at each node is 

independent of the number of~ustomers in the queue. Thus, D, (n,) = 1. The 

generating function g, (t) of the probability distribution of Ai is therefore 

co co 

gdt) = LP(A, = k)t
k = LXktk = 1 _ X,t 

k=O k=O 

(6.4.3) 

Infinite Server Station. In this case, node i consists of an infinite number of 

identical servers with rate p,. For such a node one has 

(604.4) 

m-Server Station. In this case, node i consists of m identical servers with rate 

Pi· For the m-server station 

X2 Xm i .. \'""' 

gdt) = 1 + Xit + -' t 2 + ... + -' _tm, + ~ '. tni 
.." m ' L- m'mn,-m, .... t· , . . 

n,>m, ' 

(6.4.5) 

m-l Xk ('( t)m 
~ _, t k + -.;.~. -' .;........,..,-~ 
L- k! m! [1 _ Li] 
k=O m 

If all of the stations are of the IS type, then (Xl + ... + XM)N IN! is the 

exact expression for the partition function. One can therefore assume that there 
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is at least one load-independent or m-server station i. It follows then that Zc(t) 

is a meromorphic function with at least one pole. Canonical approximation based 

on residues (theorem 3.2.1) is easy to apply only in the case when the smallest 

pole is simple. Moreover, even for this case, if the other poles are not simple, it 

is difficult to estimate the relative error for a given N. As we shall see, canonical 

approximation based on the saddle point overcomes these difficulties. 

To apply the method, define f(t) by 

M 

f(t) = 10gZc(t) - (N + l)logt = I)ogg,(t) - (N + 1)logt (6.4.6) 
,=1 

The saddle-point tN' is found from 

(6.4.7) 

Canonical approximation (theorem 3.2.1) gives the following expression 

for the partition function 

(6A.9) 

The relative error of canonical approximation is given by 

(6A.10) 

1-'1 
1-



where v~ are defined by 

(6.4.11) 

ERROR ANALYSIS. Let us analyze the relative error of canonical approxima

tion. To do so, let us establish a bound on the first term of the relative error.lt is 

given by the following lemma: 

Lemma 6.4.1. The first (dominant) term i~) of the relative error of canonical 

approximation satisfies I£~) I ¢: 0.04. 

The proof of this lemma can be found in the Appendix at the end of this 

chapter (section 6.12). The above result says that the first (most dominant) term 

of the relative error is well below 0.04. From theorem 3.2.1, the rest of the terms for 

the relative error are of the same order as the first term. In the actual computations 

of the exact and approximate partition functions for over 40 random networks with 

N > 20 and Al > 5, the relative error was below 5%. 

Complexity. Let us analyze the complexity of canonical approximation. The 

most essential part is the calculation of t/ll. From theorem 3.1.2, the saddle point 

i/ll E (0, min(mdXs)}. Without loss of generality, assume Xt/ml = max(X,/m,). 

Since 1'(0) < 0 and l'(mt/X1 } > 0, one can apply the bisection algorithm ([Kroni9j). 

The method is stable and convergent. 

To estimate the number of iterations needed to compute tN, note that 

Xi'S are defined up to a multiplicative constant. Without loss of generality, one 

can assume that mt/X1 = 1. Thus, tN E (0, 1). Since at each step of the bisection 

method the error is halved, to compute the saddle point with accuracy 2- k • ont> 

would need at most k iterations. For example, with k = 20, one can compute tbt> 
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saddle point up to the sixth decimal point in at most 20 iterations. Thus, for all 

practical purposes, the number of iterations is bounded by some constant. Since 

each evaluation of !'(tN) takes an O(M) arithmetic operations, the computation 

of iN can also be accomplished in an O(M) arithmetic operations. There are no 

additional storage requirements. 

6.5. PERFORMANCE MEASURES 

Having obtained the closed· form approximation for ZN, we can now com· 

pute a number of important performance measures for each node: utilization, 

throughput, mean queue length, and mean waiting time. We will show how to 

obtain these measures without explicitly calculating the partition function. The 

main result of this section is the following lemma: 

Lemma 6.5.1. For a separable single-class closed queueing network, the average 

queue length Q~) at node i can be computed as follows: 

x, irf(2)(iN) Xd(3)(iN) aJ'(t .... ) 

'2f(2) (t N ) aXi + '2[f(2) (IN )]2 ax, (6.5.1 ) 

where the partial derivative o· [~~~~tN) is taken explicitly with respect to X" treating 

tN as an independent variable. 

The proof of this lemma is given in the appendix at the end of this chapter. 

Let us show how to compute the average queue lengths for different types of servers. 

Load-Independent Server. For this server, g,(t) = 1/(1 - Xlt). Therefore, one 

obtains the following expression for the average queue length at node i: 
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We call a node i a bottleneck node if Xi = ma..x} (X}). Let us show that 

for the non-bottleneck nodes, to O(l/N) we have the following expression 

Q
' X,iN :::::::----
N 1 - X,tN 

(6.5.3) 

First, note that 

and 

Therefore, for the second term in the brackets we get 

(6.5.4) 

For the third term in the brackets we can show 

j(3)(tN) < 1 

::!( 1 - X,iN )tN U(2) (iN )1 2 ::!( 1 - X,iN )iN J j(2) (iN) 

(6.5.5) 

Therefore, from equations 6.5.4 and 6.5.5, it follows that to O(l/.Y) the 

queue length for the non-bottleneck node is given by 6.5.3. 

The accuracy of the queue length approximation at node i (equation 6.5.3) 

depends on how "close" X, is to XI/mi. Thus, in actual computations, one should 

compute the upper bound (equations 6.5.4 and 6.5.5) for the relative error. If it 

seems large, then one should consider including the error terms and use the equation 

6.5.1. to calculate the average queue length. 

A similar observation applies to the calculation of the mean waiting time 

below. First, let us compute the utlization U~) at node i. From the Gordon-Newell 
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formula (equation 6.2.1) it follows that 

N N-I 

Q (i) _ 1 ~ vk . _ ~' ZN-I 1 '""'" XiZ . _ (,)( (k) 
N - Z-L-'~i ZN-J - ... '-Z+Z- L- , N-J-I - UN l+QN_I) (6.5.6) 

Nj=1 N NJ=I 

Therefore, the utilization of node i is given by 

(6.5.7) 

The throughput of node i is given by 

(6.5.8) 

The mean waiting time ~~!.~) (both time spent waiting in the queue and 

time spent in service) is easily found from the Little's formula: 

(6.5.9) 

The calculation of these performance measures is reduced to calculating 

the saddle points tN-I and tN. The computation of utilization, throughput, mean 

queue length, and average waiting time, may be performed in 0(1\1) arithmetic 

operations. These measures are easily expressed in terms of the saddle point without 

the explicit computation of the partition function. The algorithm requires a fixE'<! 

size storage for intermediate computations vs. O(N) of most of the other algorithm~ 
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([Buze73, Chan80, Reis80J). The accuracy of the approximation is of O(I/N). 

This compares with the O(M N) computational complexity and the O(1'l) storage 

requirements of the convolution algorithm ([Buze73J) or the mean-value analysis 

algorithm ([Reis80]). 

Infinite Server Station. For this station gdt) = expX,t. From equati:JD 6.5.1, 

the queue length Q~) is given by 

(6.5.10) 

The average waiting time is easily obtained from the Little's formula: 

(6.5.11) 

m-Server Station. For this station 

m-l X~ Ie (X.t)m 
g. (t) = ~ -k' t + [ Xt] L-. m! 1 - ~ 

Ie=O m 

(6.5.1:2) 

Let us note the following 

Similarly, 

ag~(t) mL-2 X~ Ie m (X.t)m (m - 1)!t ( (X.t)m )2 -- = t -t + - + ~-...:..-ax, k! X. m' [1 - &1J (X,t)m m' [1 - &1] k=O . m . m 

(6.5.1-1) 
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Therefore, all the terms for this station needed in the computation of 

the queue length (equation 6.5.1) can be computed in O(m) arithmetic operations. 

Similarly, for other performance mea.sll rps. 

6.6. ANALYSIS OF THE LOAD-INDEPENDENT CASE 

In this section we restrict our attention to the case where each node has a 

load independent server with rate Pi. We will establish a simple "pocket calculator" 

algorithm to compute the performance measures. 

Let us recall that the queue length can be computed as follows 

In the previous section, it was shown that the queue lengths for the non

bottleneck nodes can be approximated to O(ljN) as follows 

Q
(I) XltIV 
~----

N 1 - X,iN 
(6.6.~) 

Since the total number of customers is N, the average queue length for 

the bottleneck nodes 1, .... d I can be found as follows 

(6.6.3) 

In the previous section it was shown that the utilization can be comput(>(J 

as follows: 

(6 r,. 1) 
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Since the throughput is T~) = U~) IlJi, by Little's formula, the average 

waiting time for "non-bottleneck" nodes i (i > dd is 

W(i) ~ _ . XitN 

N Tt)(1- XitN) 
(6.6.5) 

For the "bottleneck" nodes j (j = 1, ... dd, the average waiting time is 

easily found from equations 6.6.2 and 6.6.3 to be 

(6.6.6) 

Just as it is the case for the average queue length, the waiting time for 

"bottleneck" nodes is asymptotically linear in the number of customers, whereas 

for other nodes it is (asymptotically) independent of N. 

Asymptotic Analysis. Let us analyze the network as N 1-+ 00. By theorem 

3.1.2. one can approximate the saddle point tN ::::::l II XI' Then, the queue length, 

mean waiting time, and utilizat ion of the non-bottleneck nodes can be computed 

by equations 6.6.2, 6.6.4 and 6.6.6 respectively. One obtains 

(6.6.7) 

For a bottleneck node i U = 1, ... , d l ), these measures can be computed 

by equations 6.6.3, 6.6.5 and 6.6.6 to yield 

(6.6.8) 
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Note that asymptotically, the queue lengths of the non-bottleneck nodes 

are bounded, whereas for the non-bottleneck nodes they are proportional to N. A 

similar observation applies to the mean queue lengths. The behavior of the network 

is governed by the bottleneck nodes 1, ... , d •. 

The above discussion suggests a simple algorithm to analyze such closed 

queueing networks (where all AI nodes have load-independent servers) for large N. 

The input is a (unsorted) list of Xi's: 

Step 1. Scan the list, searching for the X· = maxXi and noting the number of 

times m that this ma..ximum occurs. 

Step 2. Scan the list again, computing the sum 

for all j with Xl =I X·. 

s= ~ Xj 
L-X· - X 

1 1 

Step 3. Scan the list again. For each X, in the list, compute the average queue 

length Q~) at node i as follows 

if X, "# X· 

otherwise 

The algorithm can be implemented on a simple pocket calculator. One can 

write a similar "pocket calculator" algorithm for the computation of the waiting 

time and utilization. 

EXAMPLE. Consider a random network consisting of 20 load independent nodes. 

The values for the Xi'S are summarized below: 

x. = 0.974 
X6 = 0.942 
X •• = 3.354 
X. 6 = 2.047 

X2 = 3.662 
X7 = 0.309 
X I2 = 1.961 
X. 7 = 3.999 

X3 = 3.044 
Xs = 3.566 
XI3 = 1.896 
XIS = 2.180 

X 4 = 1.613 
X9 = 3.189 
X I4 = 2.692 
X. 9 = 0.098 

X5 = 0.542 
X.o = 0.244 
X I5 = 4.419 
X20 = 0.668 
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For a given N, at each node we compute the relative error for the queue 

length calculated by equation 6.6.5 and by the above "calculator" program. (The 

exact queue length for each node is calculated by the mean-value algorithm). We 

then add up the magnitudes of the relative error at each node and divide it by 

the number of nodes. This gives us an average (per node) percentage relative error. 

The corresponding curves are illustrated in Figure 6.6.1. The average error obtained 

from equation 6.6.5 is referred to as the canonical approximation. The average error 

from the "calculator" program is referred to as the asymptotic approximation. As 

one can see from the corresponding curves in Figure 6.6.1, for N> 100 customers, 

the average relative error is well below 2% for the canonical approximation. If 

. one uses the "calculator" algorithm, the error is slightly higher, but within 1 % for 

N > 300. Since the "calculator" program requires trivial computations, it can be 

used to analyze load-independent networks with a very good accuracy. 

6.7. COMPARISON WITH SOME OTHER ALGORITHMS 

Let us briefly compare the method of canonical approximation with some 

of the other exact and approximation methods. Let us note that these methods 

have been designed primarily for multi-class queueing systems. An excellent survey 

is given in [Heid84J. 

The three exact algorithms to be considered are the convolution algorithm 

([Buze73j), the MVA (mean-value analysis) algorithm ([Reis80j), and the local bal

ance algorithm for a normalizing constant (LBANC) ([Chan80j). The convolution 

and LBANC require the explicit evaluation of ZN' Since ZN can exceed the floating 

point range of most machines with even small parameter values, these algorithms 

are not stable unless the proper scaling is used. The MVA avoids this problem 

by computing the averages without a.n explicit computation of ZN. For the load

independent case, the evaluation of ZN by these algorithms requires an O(.\'AI) 
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multiplications and an O( Al N) additions. For the load-dependent case, the compu

tational complexity is of O(M N'l). A comparison of these algorithms is described 

in ([Chan80, Lave83]). 

The above algorithms are exact. There has been a considerable amount of 

research on designing efficient approximation schemes. A good survey can be found 

in [Eage84]. Let us mention just a few of these. 

The performance bound hierarchy (PBH) developed by Eager and Sev

cik ([Eage84]) attempts to estimate the optimistic and pessimistic bounds on the 

performance measures from a network with N - i customers (level i bound) and 

then applying the MVA equations until the original number of customers is reached. 

The optimistic or pessimistic character of the initial estimates is preserved by the 

recursion equations used by the solution algorithm. The level N bounds correspond 

to the exact applications of the MVA. The basic difficulty is obtaining good initial 

bounds for an initial level i. Moreover, it is difficult to estimate the error since 

only pessimistic and optimistic bounds are available. The methodology can be ap

plied for multi-class queueing models, although the method becomes much more 

complicated. 

Most of the approximation methods typically rely on the MVA for moti

vation ([Bard/g, Chan82, Eage84]). A notable exception to these methods is the 

asymptotic expansion of the partition function developed by J. McKenna and D. 

Mitra ([Mcke84]). The expansion is based on the integral representation of X,! 

where Ni denotes the number of customers of class i. The partition function is then 

expressed in terms of some "large" parameter N reflecting the size of the network. 

It is assumed that the network is in "heavy usage" which in practical terms means 

that none of the processors are more than 90% utilized. Typically, less than 4 

terms of the expansion are required to achieve satisfactory results. The correspond

ing computer program (PANACEA) requires about 6000 lines of codf> ([McKe8·t\). 

The method is particularly useful when the network has many classes, each with 

many customers. 
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When applied to single-class closed queueing networks, many of these 

methods are of theoretical interest, since it is typically not very costly to solve 

these networks exactly, unless N is very large. For such networks, canonical ap

proximation is an attractive alternative to other methods. It is very simple, stable 

and easy to implement. Unlike most of the previous exact or approximation meth

ods, it is not recursive. The algorithm computes simple closed-form approximation 

to the performance measures in O(AI) arithmetic operations. There are no addi

tional storage requirements. Error bounds for the performance measures can be 

easily computed. The accuracy increases with N, while the complexity stays the 

same. The asymptotic analysis (N 1-+ 00) when all the nodes are load-independent 

requires negligible computation and can be implemented on a pocket calculator. 

6.8. SOME EXAMPLES 

Example 1. The first example is a network of N customers con::;isting 

of AI identical nodes. Thus. X, = X. For this network, one can easily compute the 

exact value of the partition function and the average performance measures. The 

purpose of the example is to compare these exact values with the approximate values 

obtained by canonical approximation. The relative error of the approximation will 

be shown to be of O(l/N). 

For this network, the grand partition function 

1 
ZG(t) = (1 _ Xt)M 

Let Itt) be 

/(t) = -Aflog(l - Xl) - {N + l)logt 

The saddle point IN is easily computed from 

/'(/) = AfX _ N+ 1 =0 
1 - Xt I 

{6.8.1} 

(6.8.~) 

(6.8.3) 
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to be 
N+ 1 

t N = Al X + (N + 1) X (6.8.4) 

From lemmas 6.2.1 and 6.2.2, one can easily compute the exact value of 

the partition Cunction 

(6.8.5) 

On the other hand, canonical approximation gives the following 

AIM(N + I)N J2rr(N + l)(N + M + 1) 

(6.8.6) 

_ ~N J2rr{N + AI + 1) (.v+.~±l )""'+M±1 AI(N + 1) 

-, J2rr{N + 1) (' ... :1 )' .... ±1 V2rr.\{ ('~{).\I {N + M + 1)2 

Using the Stirling approximation 

( N)·... [ I I 139 1 v' - 2rrN - I -- - ... .. - vTiN e + I:!N + 2881,/2 51, 8-iON3 + (6.8.7) 

one can rewrite equation 6.8.6 as follows 

Z "'" XN(N+M+I)!M(N+l) - \N(N+AI-I) [1 I 1 
N f"¥ (N + I)!M!(N + AI + 1)2 -. Al - I - N + Al + I 

(6.8.8) 

Comparing with the exact expression 6.8.5, one obtains concludes that 

the relative error in computing ZN by canonical approximation (ignoring the error 

terms in the Stirling approximation to N!) is of O{ lIN}. 

Let us now turn to the computation of the queue length. Since all the 

nodes are identical, one knows that the exact average queue length per node is 
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N/A/. In the calculation of the queue length using the canonical approximation, 

one needs to know f(2)(tN) and f(3)(tN). From 6.8.3 one obtains 

f 
(2) ( ) = (N + 1) 2 + M (N + 1) d f (3) (t ) = (N + 1) 

3 
- :. M2 (N + I) 

iN A/t2 an N Al2t3 
N _ N 

, (6.8.9) 

Substituting these into the expression for the queue length (equation 6,6.11) 

one obtains 
N+l[ 1 (N+I)2-2Af2 1 

Q N ~ Al 1 - Al + M (N + 1)( N + M + P 
(6.8.10) 

This can be rewritten as follows 

(6.8.11) 

where the relative error is 

1 I I 1 1 
f.N = - AI(N + 1) - (N + 1) (N + AI + 1) + N - AI N(N + 1) - -N-(N-+-I-)(-N-+-J-I-+-1-) 

It is easy to see that 

1 2 2 
If ,"I I <t: N + AIN + AlN2 = O(l/N) (6,8.12) 

The relative error of canonical approximation is of OOP./), Similar con

clusion holds for other performance measures. 

Example 2. Let us consider the example analyzed by Eager ([Eage84j), The 

purpose of this example is to show how to analyze a network which contains different 

types of serverst. The network consists of 9 nodes with N = 50 customers, The 

first 8 nodes are load independent with the following parameters: 

XI = 0,25 X2 = 0.2 X3 = 0.17 X. = 0.16 
x's = 0.08 X6 = 0.06 X 7 = 0.05 Xs = 0.03 

t An example of a network with only load-independent nodes was presented 

at the end of section 6.6. 
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The last, 9-th node is an infinite server node with X9 = 15. The grand 

partition function for this network is 

8 1 
Zc(t) = exp(X9 t)TI X 

1 - ,t 
.=1 

The saddle-point is easily found from the equation 

'(t) = X ~ Xi _ N + 1 = 0 1 9 + L-l _ Xit t 
1=1 

to be (IV = 2.94. From these, one can easily compute 1(2)(tN) = 7.25 and 1(3) (tN) = 

-1.96. The queue length at the infinite server node is 

Comparing this with the exact value of Qi~) = 43.74 one can see that the 

relative error £9 is 0.86%. 

The queue lengths at load-independent nodes can be found from equation 

6.6.1: 

The absolute values of the relative error (i for the queue length at node i 

are summarized below 

£1 = 4.41% £2 = 0.19% £3 = 0.56% £. = 0.51% 
£~ = 1.04% £6 = 0.08% £7 = 0.33% £8 = 4.06% 
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6.9. CONCLUSION 

This chapter presented an application of the new method of canonical 

approximation to some closed markovian queueing networks. The method allows 

direct computation of global performance averages with high accuracy. Further 

work will extend the application of the new method to study multi-class closed 

queuing networks. 

6.10. APPENDIX 

PROOF OF TWO LEMMAS 

In this section we give the proof of lemma 6.4.1 and lemma 6.5.1. 

Lemma 6.4.1. The first (dominant) term €~) of the relative error of the canonical 

approximation satisfies I€~) I ¢: 0.04. 

Proof. To start, introduce the following notation 

( 1 ) 

It is easy to show that hilt) > 0 for t > O. The derivatives of f(t} at the 

saddle-point IN can be written as follows 

( "2) 
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The expression for v~ (equation 6.4.11) can be rewritten as follows 

[L~ltNh~~)(tN) + (_l)e(s -1)!(N + 1)] 
[L;~lt7vh~~)(tN) + (N + l)r

/2 

To O(l/N), the first (dominant) term (~) is 

( 1) 1 " 
l = -(3v - 5v·) 
N 24 4 3 

3~M t4 h(4)(t ) (V + 1 + ~M (2 h(2)(t )) _ 5 (~M t3 h(3)(t ))2 
L....,=l N, N i L....J=l N J N L....,=l N 1 .v 

It is easy to establish the following two inequalities 

and 
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Therefore, 

(4) 

Similarly, it is easy to show that t~) :;» -0.04. Therefore, It~) I <t: 0.04 

I 

Now let us prove lemma 6.5.1. 

Lenuna 6.5.1. For a separable single-class closed queueing network the average 

queue length Q~) at node i can be computed as follows: 

x, a- f(2)(tN) Xi/(3)(tN) 01'(( ... ) 
2f(2)(/N) ax, + 211(2)(/."1 )1 2 ax, (5) 

where the partial derivative o· f~~~~tN) is taken explicitly with respect to Xi, treating 

iN as an independent variable. 

Proof. From the Gurdon-Newell formula (equation 6.2.1) the average queue length 

at node i is 

Q(I) _ ~.oP( _ 0) _ Xi aZN 
N - L-J n, -} -

ZN aXi 
]=0 

(6) 

By the chain rule, 

(7) 

The derivative o;{~ is taken "explicitly" with respect to :\1' treating t ..... 
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a.'3 an independent variable. The first term of 7 gives 

(8) 

The "explicit" partial derivative 

(9) 

The second term of 7 

( 10) 

Since IN is defined in terms of X, by the equation !'(tN) = 0, one has by 

the implicit function theorem 

1 a!, (t N ) 9' ( t N) a 9, ( t.v ) 
-

j(2)(tN) ax, jPl(tN ) ax, 
9, ( t N) a ~ (t .v ) 

j(2)(tN) a}( 

The formula 5 follows from equations 6 - 10 I 

( 1 1 ) 
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CHAPTER 7 

CANONICAL APPROXIMATION: 
CROSSBAR INTERCONNECTION 

7.1. INTRODUCTION 

The objective of this chapter is to apply the method of canonical approxi

mation to analyze a crossbar interconnection network. The performance analysis of 

such networks has been motivated by telephone switching systems ([Bene65]) and 

the development of multiprocessor computer systems ([Bhan73, Bhya.83, Pate81]). 

Recent developments towards wideband switches for future visual and data com

munications ([Huan8·t]) have spurred increased interest in the design and analysis 

of interconnection networks operating in asynchronous packet switching mode. In 

such systems connection requests may arrive from independent sources with quite 

different traffic characteristics (e.g. facsimile, voice, video). 

The previous work on the analysis of the crossbar interconnection net

works ([Bhan75, Bhya83, Pate81, StreiOJ) assumed that interference is present only 

because of the contention at the intermediate switches or at the outputs (memory 

modules). This is a realistic model for multiprocessor systems, since a processor 

does not initiate two or more concurrent requests. In the model of a wideband 

crossbar switch considered here, however. there is an additional interference due to 

the possibility of two concurrent requests to the same input. This makes the mudel 

more difficult to analyze, 

In this chapter we apply canonical approximation to obtain a simple way 

of calculating the non-blocking probabilities and the average concurrency of (';vb 

class of connection requests. We consider two models of an N x N crossbar in

terconnection network. In the first model, there are different classes of conne<'llun 
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requests characterized by different statistics of arrivals and connection times. In 

each class, there are connection requests from any input to any output. Thus. for 

an N x N crossbar, there are !f2 possible connection requests in each class. This 

would be called the "equally likely" case model. The computation of the perfor

mance measures for this case reduces to solving a simple quadratic equation. The 

second model is characterized by the existence of a class of N possible connection 

requests of the form (i. id from a node i to a specific (depending on i) output i,· 
We would call this the "favorite-case". For this case, the computation of the perfor

mance measures reduces to solving a simple cubic equation. In addition, we obtain 

simple asymptotic (as N 1-+ 00) expressions for these performance measures and 

compare some of our results with previous work. 

7.2. THE MODEL 

Consider an N x N crossbar network ([Krus83, Pate8!]). We assume that 

an input can be connected to just one output. There are p classes of connection 

requests. A request (i, j) of class (j for a connection from input i to output i arrives 

according to Poisson distribution with rate -\(1, and an established path is used 

for a period of time with mean 1/p(1' To avoid hardware and control complexity. 

there are no store-and-forward buffers at the intermediate switches in the network. 

Therefore, connection requests interfere if they try to access the same inpu t or 

output. It is assumed that the blocked connection requests are cleared from the 

system. Such a system can be described by an interference model as presented III 

Chapter 3. The state of the system can be described by the set of p-tuples 

s = {( iI, ... , ip) : 

where i(1 is the number of concurrent transmissions of class (j. Recall (theorem 
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3.2.1) that the steady-state probabiHty distribution lI'(il,"" ip) is given by 

(7.2.1 ) 

where pq = ).q/ /Jq and the partition function ZN is given by 

Here (}:~'"'''' is the number of distinct configurations with ;/7 concurrent connections 

of class (T. 

A number of important performance measures can be obtained once the 

partition function is calculated. The most important of these for a crossbar switch 

are the bandwidth EN and the non-blocking probability BN 

Let us note here that the above model is not confined to a crossbar sw itch 

with input/output interference. We can consider a system consisting of two sets 

of N resources. An arriving request requires two resource (one from each set). 

For example, we can consider a database system where each transaction requires 

exclusive locking on two items in two different locations (assuming there are .V 

items at each location). Such models are clearly "isomorphic" to the model of a 

crossbar, considered here. 

7.3. ANALYSIS OF THE "EQUALLY LIKELr' CASE 

The purpose of this section is to analyze the "equally Hkely" case. In 

this model connection requests are distinguished only by their statistics. Let us 

start with deriving an expression for the partition function. We have the following 

lemma: 
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Lenuna 7.3.1. Let P = PI + ... + pp. The partition function ZN is given by 

(7.3.1) 

where LN (x) denotes the Laguerre polynomial of degree N. 

Proof. To calculate the partition function, we first need to calculate O':~ ..... tp - the 

number of configurations with iC1 connections of class u. There are Cl.:~.,i) ways to 

choose iC1 inputs for connections of type u and Cl.~ .. i) ways to choose iC1 outputs 

for connection of type u. Once iC1 inputs and iC1 outputs are chosen, there are iC1~ 

ways to achieve all permutations of those inputs and outputs. 

Hence, 

11 ..... 1~ _ ( N )2., ., 
0'."/ -. . '1 . .... p. 

'1, .... 'p 

It is easy to show that we can rewrite this in the following way: 

. . ( N)2 (.. 
'l ..... '~_ (")' 'I+'''+'P) ON -. .'1 +"'+'p.. . 

'1 + ... + 'p '1, ... , 'p 

The partition function for such a network is 

-- N (N)2 N (N)2 
= L i i!(pi + ... + pp)' = L i i!p' 

,=0 ,=0 
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Let us rewrite the partition function as follows 

ZN = ~.N (~) N!. pi = /,v N!I:.N (-1)' ( N .) ~ (_~)i 
L- I (N-I)! N-I t! p 
,=0 ,=0 

(7.3.2) 

From the definition of Laguerre polynomials of degree N 

we immediately obtain 7.3.1. I 

The expression for the partition function involves Laguerre polynomials 

LN (x) with x < O. The standard expansions of L.IV (x) are available only for x > 0 

([Szeg39J). Laguerre polynomials have a radically different behavior for x < 0 

(monotonically increasing) than for x > 0 (which has alternating signs for even and 

odd N when I > 0). For example, it is easy to check that for x > 0 there is no 

saddle point ([Henr77]). 

Let us apply the method of canonical approximation. We need to compute 

the grand partition function for ZN. This is easy. From the generating function of 

Laguerre polynomials ([ Henrii]) 

~ ( ) v 1 -xt 
~ LN (xlt· = --exp -
L- 1-1 I-t 
N=O 

(7.3.3) 

we obtain the following expression for the (exponential) grand partition function 

~ ZN (p) Of ~ (1) v 1 (t) ZG(I) = L- N' t' = L- LN - - (pt), = --exp --
. p 1 - pt 1 - pt 

N=O ."1=0 

(7.3.-4) 
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Define f(t) by 

J(t) = logZc(t) - (N + 1 )logt = (_t -) -log( 1 - pt) - (N + 1 )logt 
1 - pt 

Solving J'(t) = 0, we obtain a simple quadratic equation for the saddle 

point 

(N + 2)p2 t2 
- (2N P + 3p + 1)t + (N + 1) = 0 (7.3.5) 

Canonical approximation (theorem 3.2.1) gives the following expression 

for the partition function 

(7.3.6) 

The relative error iN of the canonical approximation is given by 

where 

The derivatives of J{t) can be computed as follows 

(7.3.7) 

It is easy to compute the first terms of the relative error. In Figure 7':31 

we show the exact relative error for different N and some values of p. Beca.use of 

the numerica.l overflow in the computation of the partition function, we calculalt.> 

the exact relative error for relatively small N and relatively high traffic. Recall th:lt 

there are N2 connection requests of each class, each with load Pa. The total olft.'n .. J 

traffic Ta of class (J is therefore ll/2 Pa. As seen from Figure 7.3.1, the relative emir 
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is small (less than 6%) even for very small values of N. It is decreasing for larger 

N, as should be expected from the method of canonical approximation. 

Thus, for large N we have 

(7.3.8) 

The approximate evaluation of the partition function is reduced to solving 

a quadratic equation. 

Performance Measures. The most important performance measures of inter

connection networks are the average number of concurrent transmissions and the 

non-blocking probability for each class. The expression for the bandwidth is given 

by the following lemma: 

Lemma 7.3.2. The average number of concurrent transmissions of class (J IS 

given by 

For large N, it can be computed as follows 

(7.3.10) 

The proof of this lemma can be found in the appendix at the end of this 

chapter (section 7.6). In Figure 7.3.2 we compare the bandwidth computed from the 

exact partition function (equation 7.3.2) and from the approximate ("asymptotic") 

expression 7.3.6. for a ~O x 20 crossbar and different values of p. As seen from 

these curves, even for relatively small N, the asymptotic formula for the average 

concurrency gives an excellent approximation. As before, we chose relatively heavy 

traffic to be able to compute the exact expression for the concurrency. 

199 



0 · 0 
N E N = 20 

0 · CO 
r"1 

0 
Exact 

· >D 
r"1 

0 Asymptotic 
· 0:' 

r"1 

0 · N .... 

0 · 0 .... 

0 · CO 

0 · >D 

0 · 0:' 

0 · N 

p 

o · o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 1.3.2: Bandwidth Comparison vs. Load 



From equation 7.3.4 one can approximate tN as follows 

1 1 
IN ~ - - --=== 

p p..fNP 

Therefore, one can rewrite equation 7.3.10 as follows 

EN ~ Npt7 _ Npt7 
P pyWP 

(7.3.11) 

(7.3.12) 

In particular, if there is only one class of connection requests, the average 

concurrency is given by 

(7.3.13) 

The above results tell us that the full bandwidth of N is obtained at 

infinite p. It is interesting to compare our results to some previous results for the 

analysis of crossbar. In synchronous case, the bandwidth is proportional to .V and 

is approximately N( 1 - exp( -p)) where p is the probability of a service request 

within a memory cycle ([Pate81, Stre70j). In fact, we can rewrite the expression for 

the bandwidth (equation 7.3.13) as EN ~ N( 1 - exp( -logk)) in exact analogy to 

the results obtained under the assumption of synchronous case. Let us note once 

again that in the previous analysis of a crossbar switch, the interference arises only 

over the memory contention. In our model, on the other hand, it can also arise 

both from concurrent requests to use the same input or output. 

There are N2 connections in each class. Therefore, the non-blocking prob

ability Bt7 for class (1 is given by 

(7.3.1·1) 

Note that the non-blocking probability that a request can proceed is in

dependent of the class of the request. It does depend on p since IN depends on 

p. 
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7.4. ANALYSIS OF THE "FAVORITE" CASE 

Let us now analyze the so-called "favorite" case: Assume that there is a 

class of N possible requests of the form (i, j,) from input i to a particular ("favorite") 

output j, (depending on i). Without loss of generality, assume that processor j, = i. 
Assume that a favorite output request comes with rate A1 and ordinary requests 

come at rate A2' The arrival process is assumed to be Poisson as before. The 

corresponding average service times are assumed to be distributed exponentially 

with parameters 1/111 and 1/112 respectively. It is easy to extend this to the case 

where there are different classes of connection requests. Let P1 = Ad 111 and P'2 = 

A2/112' Assume P2 =F 0 (the problem is trivial to analyze if h = 0) 

First, let us derive the expression for the partition function. It is given by 

the following 

Lenuna 1.4.1. The system partition function is given by the following expression: 

(7.·1.1) 

where as before LN (x) denotes Laguerre polynomial uf degree N. 

Proof. To write down the partition function, we need to calculate Q~~! , which is 

the number of configurations for an N x N crossbar with i favorite memory and 

j ordinary connection requests. The number of ways to have i favorite memory 

connections is obviously ('~) .. -This is because once one chooses i processors. t h<' 

corresponding i memory modules are uniquely determined. This leaves a crossbar 



of N - i processors and N - i memory modules for j ordinary connections. 

i,i = (N) (N - i)2 ., 
Cl N . . J. 

I J. 

Therefore, the partition function is 

N (V) (V _ ') 2 .' N (N) , [N - i (N _ .) 2 ] 
ZN = i~O '.. • j I j!p~~ = ~ .. p~ f; j I i!/lz 

• 
IV (N) () N i () _ i.· , N-i 1 _ , PI N-i 1 -I: i PI(N-I)·P2 LN -, -- -N.~7!P2 LN - i --

,=0 P2 ,=0 P2 

To apply the method, we need to compute the grand partition function. 

\Ve can compu te the (exponential) grand partition function as follows 

(7.·t.~) 

= 1 exp (Pit + __ t_) 
1 - fJ2t 1 - P2 t 

Note that if PI = 0 ! the equally likely case) the partition and grand par

tition functions are the same as those obtained for the equally likely case. Define 

the function f( t) by 

/(t) = logZc(t) - (N + l)logt 

= (Pit + t ) -log(l - fJ2t) - (N + l)logt 
1 - P2t 

(7.·L3) 
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The first derivative of /(t) is 

/ '(t) - + 1 P2 
- PI (1 - pz t ) 2 + (1 - pz t ) 

N + 1 

t 
(7AA) 

The computation of the saddle point is reduced to solving a simplt> cubic 

equation. Note that the second and higher derivatives of /(t) do not depend on PI 

and can be computed as in the equally likely case (equation 7.3.6) by taking pz = p. 

The canonical approximation gives the following expression for the parti

tion function 

(i.·t..S) 

Performance Measures. Let us first compute the average number of favorite 

memory requests. The main result is summarized in the following lemma. 

Lemma 7.4.2. The average number of "equally likely" requests can be c~mputed 

as before. The average number of "'favorite memory" requests can be computed as 

(7..1.6) 

For large N, it can be rewritten as 

(7A.7) 

The proof can be found in the Appendix at the end of this chapter (section 

7.6). As in the previous case, for large N the non-blocking probabilities are 

(7.4.8) 

If we let PI = P2 then ~ = N E1 • This is easily explained. The total 

offered load at input i from "'favorite" requests is TI = Pl. The total offered load 

~O-t 
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at input i from "equally likely" requests is ;2 = N P2 {all requests of the form (i, j) 

with j = 1, ... N). Thus, looking at input i, we would expect there to be N times 

as many "equally likely" requests than "favorite" requests. This is equivalent to 

saying that Ez = N EI . 

Figure 7.4.1 gives the average concurrency of "favorite~ and "equally likely" 

requests for N = 20 and fixed ;1 = 0.5. When ;2 = 0, only "favorite" requests are 

present. There is no interference among them. As one increases ;2, there are more 

and more "equally likely" requests. Thus, E:!. increases and El decreases. At some 

point ;2 one has El = E:!.. For;2 > ;2 one gets £7, > E1 • Further increase in ;'2 

leads to "starvation" of "favorite" requests - only "equally likely" requests w ill be 

present. 

7.5. CONCLUSION 

This chapter presented an application of canonical approximation to the 

analysis of different models of a crossbar switch. The method gives an extremely 

simple way of calculating some performance measures without an explicit calcu!a

tion of the partition function. The computations are reduced to solving a simple 

polynomial equation. Further work will extend the application of the method to the 

analysis of other systems, particularly of the multi-stage interconnection networks. 

7.6. APPENDIX 

In this appendix we provide the proofs to lemma 7.3.2 and lemma i.·t~. 

Let us start with lemma 7.3.2: 

Lemma 7.3.2. The average number of concurrent transmissions of class (j 1:; 



gjv~n by 

For large N, it can be computed as follows 

Proof. The equation for the bandwidth is 

(3) 

By the chain rule, the partial derivative can be written as follows 

(4) 

The derivative a;; .. N is taken "explicitly" with respect to Pa, treating t.v 
as an independent variable. The first term of 4. gives 

From 1'{tN) = 0 it follows that 

The explicit partial derivative can be found as follows 

a- II/{tN) = !..:...... [N + 1 - (N + 2)p2t~ 1 = 2p(N + 2) 
apa apa t~{l- pt. ... )2 (1 - ptN)3 

~Oi 



theorem 

where 

Therefore, equation 4. can be rewritten as follows 

0* ZN [ 2p(N + 2) 1 
op~ ~ ZN (N + 2)tN - (1 - piN)3 II/(iN) (5) 

Let us now compute the second term of 4. We have 

Since IN is defined by equation f'(IN) = 0, we have by the implicit function 

21."1 + piN (1 - pi N ) 
II/ (t N )( 1 - pt N )3 

Equations 3 • 7 imply 1. To prove 2, let us rewrite 1 as follows 

( 7) 

2 2p(N + 2) 1(3)(tN) 2 + p(l - piN) 
E = N - NiN(i- ptN)2 1"((",) + 2N[t'(tN)]2 (1- piN)3 (8) 

Obviously, 2/ N 1--+ o. Since 

p(N+l) N+l N+l 
> ( + + <) = <) ( ) 1 - ptN )/."1 tN iN 1 - piN 

we obtain for the second term in 8 

2p(N + 2) 2p(N + 2)(1 - piN) 
NtN(l-ptN)211/(tN) < N(1 +p(l-pIN)) 

= (1 + v2 ) 2p( l( - piN) ) < 2 (1 + v2 ) (1 - piN) 1--+ 0 
1 1 + p 1 - piN 1 
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At the last derivation we used the fact that tN ~ p. Similarly, this is also 

the case for the last term in 8. Thus, for large N, expression 2 is valid • 

Let us now prove the second lemma in this appendix. 

Lemma 7.4.2. The average number of "equally likely" requests can be computed 

as before (lemma 7.3.1). The average number of "favorite" memory requests can 

be computed as 

(9) 

For large N, it can be rewritten as 

( 10) 

Proof. To calculate ~, we can proceed as in lemma 7.3.1. It is easy to show that 

all partial derivatives (e.g. !'(tN), j(3)(tN )) are independent of PI. Therefore, the 

average concurrency ~ can be computed as in lemma 7.3.1. For large N, we have 

~ ~ N P2iN' Note that the average concurrency ~ does depend on PI since t.v 

depends on PI' 

Let us calculate E I . By the chain rule, the partial derivative can be written 

as follows 
aZN 0- ZN aZN atN 
--=--+----
OPI api atN api 

( 11 ) 

The derivative O~~N is taken "explicitly" with respect to p, treating iN as 

an independent variable. Noting that 00• [" = 0 one obtains for the first term in 11 
Pl 

that 
a·zN ----ap ~ tN ZN ( 1 ~) 

The second term in 11 can be written as follows 

( 13) 



Since t N is defined in terms of PI by the equation!, (t N) = 0, we have by 

the implicit function theorem 

1 a-!,(tN) 

II/(tN) OPI 

1 
( 14) 

II/(tN) 

Equations 12 - 14 imply 8. To prove 9, let us rewrite 8 as follows 

(15 ) 

Since 

and 

we obtain 

Therefore, 

• 
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CHAPTER 8 

SUMMARY AND DIRECTIONS 
FOR FUTURE RESEARCH 

8.1. SUMMARY OF THIS WORK 

In this thesis we analyzed a variety of distributed systems modelled by 

time-reversible Markov chains: multihop packet radio networks, database systems. 

(single-class) closed queueing networks and interconnection networks. We intro

duced a new method of canonical approximation to compute the partition function 

and performance averages for these systems. The technique is based on a method 

of steepest descent, which was introduced by Darwin and Fowler ([Darw22J) into 

statistical mechanics. 

The new method is computationally simple and gives closed form approxi

mation to a variety of performance measures. The computational complexity of the 

method is independent of the system size, whereas the precision increases with the 

system size. We showed how it can be applied to analyze a variety of distributed 

systems. A detailed summary of the results of this thesis was presented in Chapter 

1 (section 1.3). 

Finally, let us note that the grand partition function Zc(t) is just a :

transform of ZN. Therefore, one can view canonical approximation as a new method 

to approximately "invert" the :-transform. 

8.2. POSSmLE EXTENSIONS 

There are a number of interesting extensions which are of major interest 

:.: 11 



in the analysis of computer systems discussed in this thesis. 

• It should be interesting to investigate if one can extend this approximation 

for the case where the grand partition function is a function of several variables. 

Many of the results of classical one-variable analysis are not easily generalizable to 

multi-variable case. Multi-dimensional complex analysis is currently a very active 

area of research ([Aize83]). 

If canonical approximation can be extended, this may give a pmverful 

method for inverting multi-dimensional transforms. This will allow to solve a num

ber of interesting problems. For example, of major theoretical and practical interest 

are computational algorithms to analyze multi-class closed queueing networks. It 

can be shown that the grand partition function for markovian multi-class queue

ing models is a meromorphic function of several variables (the number of variables 

equals to the number of classes). Thus, if canonical approximation could be ex

tenaed to multi-dimensional case, it may give an algorithm to compute the perfor

mance averages for such networks in time independent of the population sizes. This 

would be a major accomplishment in the field of performance analysis. 

• It is possible to consider asymmetric interference, non-exclusive intE'rference 

(i.e. agents are allowed to proceed concurrently with some probability), and syn

chronous mode of operation .. I~ the analysis of systems presented in this work. it 

is assumed that blocked arrivals are cleared. The obvious way to modify this is to 

assume that blocked arrivals are regenerated from the same statistics as new ar

rivals. Such an approximation is routinely used in analyzing multi-access schemes 

([Klei76J). A more adequate solution is to introduce a blocked state and somehow 

account for it in the expression for the partition function. 

• In the analysis of static locking models for database systems, it was assumed 

that locks are acquired in exclusive mode only. It is more realistic and interestiD~ 

(certainly more difficult) to try to analyze that model when both exclusive and 

non-exclusive locks are allowed. Some results have been obtained ([Lave84]). 



• In the analysis of packet radio networks, only CSMA and C-BTMA were 

considered. There are a number of protocols which admit the product form solution 

and which could be analyzed by the new method. It should be interesting to analyze 

different network topologies such as random graphs. Finally, one should apply 

similar ideas to analyze these protocols in synchronous mode. 

• In the analysis of interconnection networks, no multi-stage networks (e.g. 

shuffle-exchange, delta, cube) were analyzed. Interestingly, there are "similar" 

problems in statistical mechanics such as the dimer problem of placing diatomic 

molecules on multi-partite graphs. Are there any approximations to analyze such 

systems ? 

These are just some of the immediate extensions stemming from this thesis. 

It is believed that some of these questions can be solved based on the ideas developed 

in this work. 

8.3. OTHER DIRECTIONS FOR FUTURE RESEARCH 

In this work we introduced a new method of approximation similar to 

that developed in statistical mechanics. Interestingly, the main criticism of using 

the statistical mechanics analogies to systems analysis has been the skepticism COD

cerning the ability of computing the partition function ([Bene65J). This work has 

shown how one can use the methods developed in statistical physics to compute the 

partition function and apply it to the analysis of a variety of systems. 

On the other hand, we considered only product-form solution modec; 

whose analysis required the computation of the partition ;unction Z.v and hr which 

the grand partition function Zc(t) is easily computable. Although many intere;tin~ 

product-form solution models can be analyzed using canonical a.pproximation. it 1:

of major interest to develop new approximations for other product-form and n()Q-

~13 



product form solution models. It would be interesting to see if one can use other 

approximation methodst from statistical mechanics in the performance analysis. 

One of such methods of statistical mechanics to consider is the method 

of Cluster Expansions. Fo"r -a number of interacting physical systems, one can 

obtain the approximation for the partition function in the form of series expansion. 

The main terms in this expansion denote the corresponding non-interfering results, 

whiJe the subsequent terms denote the corrections arising from intercomponent 

interactions in the system. A systematic method of carrying out these expansions, 

in the case of real gases obeying classical statistics, was first developed by Meyer 

([Maye37]) and is called the cluster expansion ([Path84]). It would be interesting 

to see if we can apply the same ideas to analyze some non-product form models 

(e.g. finite buffer queueing networks). For example, consider a Jackson network of 

queues. Under the assumption that no interference occurs between any two queues 

in the system, the partition function of a network is the product of the partition 

functions of the respective queues. As soon as queues start interacting with each 

other (e.g. by blocking if the buffers are finite at corresponding nodes), the non

interference model is no longer valid. By analogy to cluster expansions, one can try 

to admit such interference by including adequate terms in the partition function: 

the first term in the series will be the Jacksonian non-interference element while 

higher order terms reflect mutual blocking configurations. 

8.4. CONCLUSION 

It is often believed that cross-fertilization of ideas from different areas of 

science leads to fruitful results and future directions of scientific research. This 

t To avoid repetition of the previous section, we do not mention multi

dimensional saddle point and the (approximate) integral expansion of the Laplace 

inversion formula. 
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work has demonstrated the use of the methods and ideas from statistical mechanics 

in the performance analysis of computer systems. These analogies give a powerful 

computational method of canonical approximation for systems analysis. 

This thesis presented an approach of applying the methods of statistical 

mechanics to performance analysis of computer systems. Future work will extend 

the applications to more complex and realistic models of interference and import 

other powerful computational methods for performance analysis. 

:?15 
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APPENDIX 1 

A STATISTICAL MECHANICS OF 
CONCURRENCY 

In this appendix we present an analogy between the model of interference 

presented in Chapter 3 and the interaction (hard sphere) models of a lattice gas 

([RueI69]) in statistical mechanics. 

The general theory of statistical mechanics states that all the equilibrium 

properties of a system of interacting components are known if one can calculate the 

system partition function: 

( 1.1 ) 

where the summation is over all microstates of the system (enumerated by i): £, is 

the energy of i-th microstate and j3 = l/kT. Here T is the absolute temperature 

and k is the Boltzmann constant. This is the generating function, with one term for 

each permissible configuration of the components, each term being given a weight 

related to the energy of the corresponding configuration. 

All thermodynamic functions describing the system (energy, entropy. pres

sure) are obtained in terms of the partition function and its derivatives. Th(' l'<lui

librium probability that the system is in microstate i is given by the Gibbs caIH'[lical 

distribution: 

( I. '2) 

This is "similar" to the form of probability distribution for the interfer('nce 

model given by theorem 3.1. In fact, if p = 1 (only one class of requests) and we st't 

T = -1/ klogp, the partition function of an interference model can be rewritten a..,: 

Z = L: e-\,,"\lkT 

AEJ 

( 1 .. 1) 
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in complete analogy to the statistical mechanics model. Note that p = 0 corresponds 

to T = 0, and p = 1 corresponds to T = 00, so that traffic increase is associated 

with a rise in "temperature". Thus, "temperature" measures the activity level of 

an interference system. 

Pursuing the analogy further (see [Yemi83]), let us interpret the energy as

sociated with a microstate. Define the following pair-interaction potential function 

U(x, y) (lRueI69, Presi 4]) between nodes x, y of the interference graph 

. {' ~ logp if x = y 
U(x, y) = 0':"00 if x is a neighbor of y 

otherwise 

(1.4) 

The potential represents a fixed "charge" of logp associated with an ac

tivity and an infinite repulsion among interfering agents. This fixed charge can be 

represented as 10gA - logp. Thus, one can think that it reHects the energy of 10gA 

gained by an arrival and the energy logp lost by a departure. 

If we define the potential of the set of nodes A to be 

¢>(A) = L U(x, y) ( \.5) 

r.yE.~ 

the partition function of the interference model (equation 1.3) can be 

rewritten as follows 

( 1.6) 

The potential ¢(A) is similar to that associated with a lattice interactIon 

model of a "hard balls" gas ([RueI69]). In that model molecules are confin('d to 

the-vertices of a lattice and the interaction between molecules depends only lin 



the distance between them. Pursuing this analogy, we can think of an activity in 

progress as a ball occupying some lattice space, thus excluding some other activities, 

namely those which interfere with the original one. This analogy will be used 10 

deriving the concept of pressure for an interference system. 

From the above discussion it follows that a physical system is completely 

described by the respective interaction potential. The steady-state distribution 

(and thus any macroscopic property) is given in terms of this potential. Statistical 

mechanics analyzes systems by identifying the microscopic interaction potential, 

computing the respective partition function, and deriving from it the macroscopical 

properties of the system. Much of the theory of statistical mechanics can be viewed 

as calculating or approximating the partition function for different interaction po

tentials. It is the ability to estimate the partition function that is the key to any 

system analysis in physics. 

Let us pursue the analogy further. It is clear that the number of concurrent 

activities in an interference system is analogous to the energy of the microstate of a 

physical system. The average concurrency of a system ucorresponds" to the average 

energy of a microstate. The global energy thus corresponds to the average number of 

concurrent transactions processed by the distributed system. Obviously, utilization 

corresponds to the probability of a non-zero energy microstate. 

In statistical physics, entropy and pressure are defined ID terms of the 

free energy function. Pursuing the analogy with physics further, we can define the 

Helmholtz free energy function 

F :; -kTlogZN (1.7) 

In physics, pressure P can be obtained from the relation P = g[ where 

V is the volume of the system. What is an analogue of volume for an interference 

system? To define the concept of volume for our model, let us pursue further the 

analogy to the uhard balls" gas ([Yenli83]). Consider a regular interference graph 



with N vertices, each vertex having degree d. Assume that the number N of node3 

is large, in fact so large that °oZ: is meaningful. Now consider an active node of the 

interference graph. The expected number of activities blocked by that node is Ad. 

In thermodynamics, when deriving Van der- Waals equation of state, one thinks of 

this node as the center of a hard baU, creating an excluded volume in which other 

balls cannot exist ([RueI69]). Therefore, by analogy with physics, Ad denotes the 

volume occupied by an active node. The total number of such nodes (that is. the 

number of moles in gas) is ~~. If the volume of one mole of gas is kT, then the 

total volume is 

v = NkT = -N 
Ad Adlogp 

( 1.8) 

With this definition of the mlume, the pressure of the interference system 

IS 

p = _ 8F = __ I_81ogZN 8N = Ad 8ZN 
8V logp 8N 8V ZN 8N 

( 1.9) 

As an immediate result, one can obtain the following "equation of state" 

for an interference system (similar to the Van der- Waals equation of state of a gas): 

PV _ _ I 8logZN 

N logp 8N 
(1.10) 

What does the above expression (1.9) for the pressure mean? What is 

ol~'1zN? As before, consider an interference graph, which is regular of degree d and 

whose number of vertices is very large. Let G' be the graph obtained from G by 

adding one more vertex v of degree d. The number of independent sets with i-nodes 

will grow by QGI - QG' This number represents the number of configurations having 

i independent nodes, one of which is the added node. Therefore, 

( 1.11 ) 

is the probability that the added node is busy. Hence, Ad()I~WN is the rate at 

which an activity generated by a neighbor of v is blocked by v. Tilerefore, the pres-



\. 

sure of an interference system represents a measure of the average rate of blocking 

experienced by activities in progress. 

Consider -now a general interference graph. Assume that there are n 1 

nodes of degree d1 , n2 nodes of degree d2 , ..• , np nodes of degree dp . ~odes of the 

same degree represent molecules of the same gas, and so the model is analogous 

to that of a mixture of gases. The volume occupied by nodes of degree i is clearly 

Vi = ~ii~:' Total volume V = VI + V2 + ... + Vp. The pressure is then 

(1.1~) 

But ,JV = ..!L and thus, ~ = ~. Therefore, the following expression an. >'. d, av kT 

for the pressure is obtained: 

(1.13) 

Just as in the previous case, from this we can write the "equat ion of 

state". \Vhat is al~~~N ? As before, let G' be an interference graph obtained from 

G by adding a vertex of degree n,. Using the arguments above, we can show that 

Pi = Ad, al~~~N is a measure of averaged blocking from nodes of degree di. Hence, 

we can rewrite (11) as 

(1.14) 

This is what one intuitively expects! The average rate of blocking experi

enced by activities is the sum of the rates of blocking from different types of nodes. 

The above equation (1.14) corresponds to Dalton's gas law in physics: the pressu re 

exerted by a mixture of gases equals the sum of pressures exerted by those gases 

23·1 



taken separately. In our model, an analogous conclusion can be drawn: The block

ing experienced by an activity from all other activities of classes 1, ... ,p equals to 

the sum of blocking experienced from agents of each class - which is intuitively what 

one expects !!! 

Finally, the entropy S is defined (up to an additive constant) as follows 

1 
S = - (E - F) 

T 
(1.15) 

One of the fundamental laws of statistical mechanics is that the entropy 

of an isolated system in equilibrium cannot decrease. An analogous statement for 

the interference model is the H-theorem for reversible Markov chains ([Bene63]). It 

is possible to show that given an interference graph G and the concurrency ECT for 

the agents of class (J, the equilibrium probability 7r( A) given by theorem 3.1. is the 

unique distribution over the independent subsets of G maximizing the entropy S 

subject to the constraint that the average concurrency of class (J is Ea. The proof 

is a simple exercise in the Lagrange's method of constrained optimization. 



APPENDIX 2 

THE CONCEPT OF ENSEMBLE EQUIVALENCE 

In this appendix we introduce the concept of Gibbs canonical ensembles 

and discuss the concept of their equivalence. This equivalence is the main idea 

of the canonical approximation. We will continue to use the analogy between an 

interference system and a physical system. 

To start, consider a large physical system. It is clear that for a gi\'en 

macrostate (e.g. given energy), such a system is equally likely to be in anyone of 

a large number of microstates. As time passes, the system continuously switches 

over from one microstate to another. Over a reasonable amount of time all that one 

observes of the system is a behavior "averaged" over the variety of microstates. One 

may therefore consider at single period of time a large number of identical systems 

("mental" copies). This collection is called a microcanonical ensemble. It is assumed 

that these systems are characterized by the same macrostate as that of the original 

system but are in different possible microstates. Thus, one would intuitively expect 

that the average behavior of this ensemble would be identical with time-averaged 

behavior of the given system. In other words, the thermodynamical averages of 

a physical system (e.g. energy, pressure) can be derived from the corresponding 

ensemble. Similarly, the performance averages of an interference model (e.g. average 

concurrency) can be derived from the corresponding ensemble. 

The idea of analyzing a system from the corresponding ensemble wa...; de

veloped by Gibbs ([Path84]) .. for reasons to be explained below, be introd un.~i 

three kinds of ensembles: 

• Microcanonical - the macrostate of the system is defined by the nUmb('f of 

.molecules N, the volume V, and a range of energy values E - i < E < E + ( 

• Canonical - an infinite number of "mental" copies of the original system \\ hlch 



can share the energy (but cannot share particles). 

• Grand Canonical - the same as canonical, but now the number of particles 

N as well as the energy E can vary. 

In the study of a microcanonical ensemble, the basic problem consists in 

determining the number of distinct microstates accessible to a given system. From 

the asymptotic expressions for these numbers, the complete thermodynamics of the 

system can be derived in a straightforward manner. However for most physical 

systems, the mathematical problem of determining these numbers is quite complex. 

Also, it is difficult to guarantee that the energy is in a particular range since the 

energy of a system is hardly ever measured. A b('~ter alternative is to speak of a 

fixed temperature. This naturally leads to the concept of a canonical ensemble -

a collection of Al identical systems sharing the total energy MU. Thus, U stands 

for the average energy per system. Clearly, a canonical ensemble of interference 

systems is a collection of AI systems of the same size N with the total concurrency 

MU 

In a canonical ense~Ele, the systems are 1D thermal contact with each 

other and can share the energy. Thus, the energy E of a particular physical system 

in such an ensemble is necessarily a variable; in principle, it can take on any value 

from 0 and MU. Similarly, the average concurrency of an interference system in 

the corresponding canonical ensemble can take any admissible value. We can ask 

the following questions: 

(1) What is the probability Pr that a physical system is found in anyone of the 

states characterized by the energy Er? It can be shown ([Path84]) that it must be 

of the form 
P

r 
= exp( -PEr) 

ZN 
(~.l ) 

The same expression would be obtained if we asked the corresponding question for 

an interference system. As we would expect, the answer (equation 2.1) is of the 

same form as the solution to the interference model (theorem 3.1.). 
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(2) How likely it is to find a system in the ensemble whose energy (concurrency) 

deviates "significantly" from U? 

To answer this, we can analyze the manner in which energy (concurrency) 

is distributed among the different systems of the canonical ensemble. To do so, let us 

treat the energy (concurrency) E as a continuous variable (assume that the system 

is large enough for this approximation to hold). Let ( ) denotes the expected value 

of a random variable and let (~E) = (£2) - (E}2. The probability that the system 

has energy (concurrency) E = Er is 

(2.3) 

Here, o~r denotes the number of microstates (configurations) corresponding to 

energy (concurrency) E r . Hence 

P(E)dE ex: exp( -f3E)o~dE (2.4) 

The probability density P(E) of the energy (concurrency) is ~iven by the 

product of two factors: the "Boltzmann"otype factor which monotonically decreases 

with E, and the density of states, which monotonically increases with E. The 

product therefore passes through some extremum. One can show ([Path84]) that for 

a system in a canonical ensemble, this extremum must coincide (for large systems) 

with the average energy (concurrency) U = (E). 

Expanding the logarithm of the probability density P(E) around the value 

U, we obtain 

I a2 

loglexp( -f3E)o~ J = (-j3U + log(o~)) + 2 avlog[exp( -f3E)o~](E - U)2 + ... 

Therefore, 

P(E) ( ~E) E -t3(U-TS) [(E - U)2] 
ex: exp -fJ oN ~ e exp 2((~E)2) (2.5) 



Hence, the distribution of energy (concurrency) in the canonical ensemble 

is of the Gaussian type with' mean value U and the dispersion )((6E)2). For a 

large number of systems, it can be shown that this dispersion becomes smaller and 

smaller. Therefore, for a large ensemble (large AI) we have an extremely sharp 

distribution and as M 1-+ 00 the distribution approaches a delta-function! Because 

the canonical ensemble contains systems of all energies, the fact that the energy is 

sharply peaked around U shows that canonical and microcanonical ensembles are 

equivalent. A similar conclusion holds for canonical and microcanonical ensemble 

of an interference system. 

The reason for introducing the grand canonical ensemble in statistical 

physics is that for a number of physical and chemical problems canonical ensemble 

formalism turns out to be severely limited. The motivation to develop the concept 

of a grand canonical ensemble is of the same nature as that which led from the mi

crocanonical to the canonical ensemble. It comes from the realization that not only 

the energy, but also the number of particles can only be measured with difficulty. 

For the grand canonical ensemble, we take a collection of M physical systems of 

N particles just as for the canonical ensemble, but now the systems are allowed to 

exchange particles. The grand canonical ensemble for an interference system of size 

N is a collection of Al such systems, but now we assume that they can "exchange" 

some of the resources between themselves. For example, take a grand canonical 

ensemble of AI database systems, each consisting of N items. The "exchange" of 

resources in this context means that the databases may have variable number of 

items, but the total number of items in the ensemble is Al N. 

Mathematically, the grand canonical distribution is simply the generating 

function for the partition function ZN, that is 

00 

Zc(t) = L ZNt N ("2.6 ) 
N=O 
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In physics, this function is called the grand partition function and the 

variable t is called the fugacity ([Path84J). 

Since the total number oC particles in the ensemble is M N, the number oC 

particles in a system can theoretically vary Crom 1 to M N. However, Cor large At, 

one would expect that a "typical" system in the grand canonical ensemble has N 

particles. One can thereCore consider fluctuations in the number oC particles N in 

the grand canonical ensemble, but the fluctuations will be very small. This can be 

easily established by the law of large numbers ([Path84J). 

This consideration leads us to expect that in the series defining the grand 

partition function (equation 2.6) there is a maximal term corresponding to the most 

probable number oC particles, namely N, whose contribution to ZG(t) is overwhelm

ingly large compared with those from other terms. 

Based on the above consideration, we can find the relation between the 

partition function ZJII and the grand partition function ZG(t). This was shown first 

by Darwin and Fowler ([Darw22]) using the asymptotic method of steepest descent. 

The method allows us to compute ZN from the grand partition function ZG(t). In 

chapter 3 it was shown that using this method, the partition function ZJII can be 

represented as follows: 

(~.7) 

where the relative error lJII decreases with N and is typically of O(l/N). Here iN 

is the unique positive point at which the derivative of ZG(t)/t N + 1 (with respect to 

t) vanishes, and FN (tN) is related to the second derivative oC the grand partition 

function at tN, 

In statistical mechanics, this method establishes the equivalence of canoni

cal and grand canonical ensembles. Therefore, all three ensembles - microcanonical. 

canonical and grand canonical are equivalent and give the same "thermodynamics". 

Similarly, this means that one obtains the same performance measures (e.g. average 

concurrency) for an interference system in any of these ensembles. The performancE:' 



measures are expressed in terms of the derivatives of ZN with respect to some pa

rameters (e.g. load), Therefore, the not only it gives a good approximation to ZN, 

but the derivatives of ZN are also approximated by the corresponding derivatives 

of FN(tN). 

Therefore, the method gives a closed-form approximation to ZN and gives 

a simple way to approximate the corresponding derivatives of ZN. This is important: 

it is not true, in general, that if two functions are very close by their function values 

at any point, then so are their derivatives. For a example, take IN (x) = I and 

gN (x) = X + sin(NZ x)/ N. Then lIN (x) - gN (x)1 ~ 1/ N. On the other hand, 

IIN{x) - g'N(x)1 = INcos(N2 x) is unbounded as N ...... 00. 

It appears that in order to evaluate the grand partition function ZG(t) 

for an interference model, we have to pass through the routine of calculating the 

partition functions ZN. In principle, this is true. In practice, however, an explicit 

evaluation of the partition function is extremely difficult, whereas evaluation of 

thEf grand partition function can often be done with relative ease. The formalism 

of the grand canonical ensemble is of no value if we can evaluate the partition 

function explicitly. Therefore, assuming that the grand partition function ZC (I) 

is easier to evaluate in closed form than Z:v, we can use the method similar to 

that used in physics to approximate the partition function ZN from Zc(t) and then 

calculate the performance averages. We call this Canonical Approximation. 

The method is valid for product form stochastic models, not necessarily de~nibed 

by an interference graph (e.g. closed queueing networks). It is presented in dl'lail 

in Chapter 3. 


