
A Methodology for Specification-Based

Performance Analysis of Protocols

Nihal Muhammad Nounou

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Science

COLUMBIA UNIVERSITY

1986

© 1986

Nihal Muhammad Nounou

ALL RIGHTS RESERVED

To my parents

Aida Bughdady and Muhammad Nounou

with love

Table of Contents

1. Introduction
1.1. Protocols and Their Development
1.2. Motivations of This Research
1.3. Problem Statement
1.4. Contributions of This Research
1.5. The Organization of Subsequent Chapters

PART I:Survey of Related Work

2. Development Tools for Communication Protocols
2.1. Introduction
2.2. Specification Tools

2.2.1. Requirements of Specification Tools for Protocols
2.2.2. Survey of Specification Tools

2.2.2.1. Finite State Machines
2.2.2.2. State Machine Models
2.2.2.3. Formal Grammars and Sequence Expressions
2.2.2.4. Petri Net-Based Models
2.2.2.5. Algebraic Models
2.2.2.6. Temporal Logic Models
2.2.2.7. Procedural Languages

2.2.3. A Taxonomy of Specification Tools
2.3. Verification Tools

2.3.1. State Exploration
2.3.2. Assertion Proof

2.4. Performance Analysis Tools
2.4.1. Tools for Analyzing Protocol Timing Requirements
2.4.2. Tools for Analyzing Protocol Performance Measures

2.4.2.1. Analytic Techniques
2.4.2.2. Simulation

PART II:Methodology

3. Protocol Functional Specification and Analysis
3.1. Introduction
3.2. A Specification Algebra

3.2.1. Trees Can Provide an Operational Model of Protocols
3.2.2. Execution Trees Form an Algebra
3.2.3. The Algebra of ETs is Different From the Algebra of Regular

Events
3.2.4. The Algebra of ETs Meets Most Specification Requirements

3.3. Protocol Processes Can Be Specified Algebraically

11

1
2
.t
5
6
7

9

10
10
11
12
12
12
15
17
19
22
2.t
27
27
28
31
3.t
35
36
37
38
41

... 2

.t3
43
43
44
45
.t8

.t8
49

3.4. Progress Errors Can Be Detected Through Concurrent Composition
3.5. Protocol Concurrent Behavior Can Be Computed Algebraically
3.6. A Protocol Designer Needs to Study Sub-Behaviors
3.7. Summary
Appendix 3.1. Equivalence of Expressions in the Algebra of ETs
Appendix 3.ll. A Formal Definition of Scope
Appendix 3.III. Algebraic Specifications of Behaviors of the Connection

Establishment Protocol

4. Protocol Performance Specification and Analysis
4.1. Introduction
4.2. A Timing Model of Protocols
4.3. Attributes of a Protocol Timing Model
4.4. Specification and Analysis of Timing Requirements and Performance

Measures
4.4.1. A Timing Requirement of the Connection Establishment

Protocol: Minimize Probability of Premature Terminations
4.4.2. A Performance Measure of the Connection Establishment

Protocol: Probability of Call Collisions
4.5. Summary
Appendix 4~ Proof of Lemma 4.1
Appendix 4.II. Proofs of Theorems 4.1, 4.2, and 4.3
Appendix 4.ill. Proof of Corollary 4.1

5. ANALYST: A Software Environment for Protocol Performance
Analysis

5.1. Introduction
5.2. Using ANALYST to Analyze the Performance of Protocols
5.3. A Scenario of Using ANALYST for Performance Analysis of the

Connection Establishment Protocol
5.3.1. Functional Specification and Analysis

5.3.1.1. Specify Protocol and Involved Processes
5.3.1.2. Compute Concurrent Behavior
5.3.1.3. Debug and Iterate
5.3.1.4. Compute Protocol Sub-Behaviors

5.3.2. Performance SpecifLCation and Analysis
5.4. Logical Architecture

5.4.1. Parser
5.4.2. Compiler
5.4.3. Verifier
5.4.4. Performance Analyzer

Appendix 5~ A Grammar for ANALYST's Command Language
Appendix 5.IL Using UNIX Programming Development Tools in

Producing ANALYST's Parser
Appendix 5lII. Definitions of Terminal Symbols in ANALYST's

Command Language
Appendix 5.IV. Key Algorithms used in ANALYST

iii

50 -.,
~-
53
58
58
59
60

64
64
65
67
71

72

73

75
75
77
77
79

79
80
81

83
83
84
86
88
91
93
94
9S
96
97
98

101

102

105

PART III:Applications

6. Performance Analysis of the Alternating Bit Protocol
6.1. Introduction
6.2. A Send-and-Wait Protocol

6.2.1. Functional Specification and Analysis
6.2.1.1. An Algebraic Specification
6.2.1.2. The Concurrent Behavior

6.2.2. Performance Specification and Analysis
6.2.2.1. Computation of Optimal Time-out Rate
6.2.2.2. Specification and Analysis of Mean Waiting Time and

Maximum Throughput
6.3. The Alternating Bit Protocol

6.3.1. Functional Specification and Analysis
6.3.1.1. An Algebraic Specification
6.3.1.2. The Concurrent Behavior

6.3.2. Performance Specification and Analysis
6.3.2.1. Specification and Analysis of Mean Cycle Time

6.4. Summary
Appendix 6.1. Algebraic Specifications of the Behaviors of the Send-and

Wait Protocol
Appendix 61I. Algebraic Specifications of the Behaviors of the

Alternating Bit Protocol
7. Performance Analysis of a Two Phase Locking Protocol

7.1. Introduction
7.2. Functional Specification and Analysis

7.2.1. An Algebraic Specification
7.2.2. The Concurrent Behavior

7.3. Performance Specification and Analysis
7.3.1. Computation of Optimal Time-out Rate
7.3.2. Specification and Analysis of Probability of Deadlock
7.3.3. Analysis of Mean Response Time

7.4. Summary
Appendix 7.1. Algebraic Specifications of the Behaviors of the Two Phase

Locking Protocol

PART IV:ConcIusions

8. Summary and Directions for Future Research
8.1. Summary
8.2. Directions for Future Research

References
Index

iv

111
112
112
114
114
114
116
117
119
121

125
125
125
129
130
130
133
134

138

143
143
145
145
148
152
153
154
158
160
161

166
167
167
168
170
l82

List of Figures

Figure 1-1: IIIustration of protocol layers
Figure 1-2: A local view of a protocol layer
Figure 2-1: A protocol specification of the send-and-wait protocol using

FSMs (a) Sender (b) Receiver (c) Medium
Figure 2-2: A service specification of the send-and-wait protocol using

FSMs
Figure 2-3: A partial state machine specification of the sender process of

a modified send-and-wait protocol with binary sequence
numbers

Figure 2-4: A formal grammar specification of the sender process of the
send-and-wait protocol

Figure 2-5: A send-and-wait protocol specification using Petri nets
Figure 2-6: A state-based temporal logic specification of the sender

process of the send-and-wait protocol
Figure 2-7: An illustration of the proposed taxonomy of specification

tools
Figure 2-8: A reachability graph of the send-and-wait protocol
Figure 2-9: A modified reachability graph of the send-and-wait protocol
Figure 2-10: Transfer time versus arrival rate of the send-and-wait

protocol
Figure 3-1: Trees describing the execution behavior of the processes in

the connection establishment protocol
Figure 3-2: Sequential and non-deterministic compositions of ETs
Figure 3-3: ET resulting from the concurrent composition of the two

ETs of terminal T and channel R
Figure 3-4: Configuration of the connection establishment protocol
Figure 3-5: ETs of the terminal and network in the revised connection

establishment protocol
Figure 3-6: ET of the concurrent behavior INRT
Figure 3-7: An illustration of the Terminate function
Figure 3-8: An illustration of the Precedence function
Figure 3-9: An illustration of the Restrict function
Figure 3-10: Configuration of the revised connection establishment

protocol
Figure 4-1: The timing behavior of INRT T

Figure 4-2: The probability of premature terminations versus A&term for
two different values of mean delay

Figure 4-3: The probability of call collisions versus A&req for two
different values of A&illC

Figure 5-1: The flow of activities in using ANALYST for protocol
performance analysis

Figure 5-2: Logical architecture of ANALYST
Figure 5-3: Using Y ACC and LEX to generate a parser of ANALYST's

command language

v

2
3

14

14

16

18

20
25

29

32
39
40

44

45
47

50
52

53
55
56
57
60

66
73

74

82

94
102

Figure 6-1: ETs describing the execution of the processes in the send
and-wait protocol

Figure 6-2: Configuration of the send-and-wait protocol
Figure 6-3: ET of the terminating behavior of the send-and-wait

protocol
Figure 6-4: ET describing the execution of the send-and-wait protocol

with no premature time-outs
Figure 6-5: (a) Queueing model of the send-and-wait protocol

(b) Timing behavior of AMSR T

Figure 6-6: The probability of premature time-outs versus the time-out
rate for three different rates of loss

Figure 6-7: The mean roundtrip delay versus the time-out rate for three
different rates of loss

Figure 6-8: The mean roundtrip delay versus the probability of
premature time-outs

Figure 6-9: The mean waiting time versus bit error probability for
various channel bandwidths

Figure 6-10: Maximum Throughput versus message and
acknowledgment lengths for various values of bit error
probability

Figure 6-11: Configuration of the Alternating Bit protocol
Figure 6-12: ETs describing the execution of the sender and receiver in

the Alternating Bit protocol
Figure 6-13: The mean cycle time versus the time-out rate for three

values of! with rate of loss equal to 3.91 occurrence/sec.
Figure 6-14: The mean cycle time versus the time-out rate for three

values of I with the rate of loss equal to 1.0 occurrence/sec.
Figure 7-1: Communications between a process and a data item

scheduler in :i distributed data base system
Figure 7-2: A simplified ET of a process in the 2PL protocol
Figure 7-3: A simplified ET of a data item scheduler in the 2PL protocol
Figure 7-4: ET of the terminating behavior C

lerm
of the two phase

locking protocol
Figure 7-5: ET describing the execution of the two phase locking

protocol "ithout unnecessary time-outs of transactions
running on PI

Figure 7-6: ET of the terminating behavior C
tUod

of the two phase
locking protocol

Figure 7-7: Transaction mean response time versus probability of
unnecessary time-outs

Figure 7-8: Probability of deadlock versus commit rate A&c for various
1

A&c
2

Figure 7-9: Probability of deadlock versus mean delay °11 for various

A&Pll =A&PI2
Figure 7-10: Probability of deadlock versus 011 for various A&p /A&p

11 12
Figure 7-11: Transaction mean response time versus commit rate A&c

1
Figure 7-12: Transaction mean response time versus ell

vi

115

115
117

118

118

120

122

123

126

127

128
128

132

133

146

147
148
150

151

152

155

156

157

158

159

160

List of Tables

Table 6-1: Optimal time-out rate of the send-and-wait protocol for three
different rates of loss

Table 6-2: The number of equations in the concurrent behavior of the
Alternating Bit protocol for several values of I

Table 7-1: Glossary of identifiers used in the specification of the two
phase locking protocol

Table 7-2: Number of identifiers and summands in a process'
specification of the two phase locking protocol

Table 7-3: Number of identifiers and summands in the data item
scheduler's specification of the two phase locking protocol

vii

123

129

149

163

164

ACKNOWLEDGMENTS

I would like to express my sincere thanks and gratitude to all the people who

contributed to the completion of this work. I thank my advisor, Yechiam Yemini, for his

constant guidance and advice. He introduced me to communication protocols and

performance analysis, and provided valuable criticism and comments during the course of

my research. I also wish to thank the other members of my thesis committee. Gerard

Holzmann, Gail Kaiser, Gerald Maguire, Mischa Schwartz and Henryk Wozniakowski,

for their interest in this work. I am fortunate to have had such a distinguished committee.

Special thanks are due in particular to Professors Leitner. Maguire, and Schwartz for

many helpful discussions and suggestions while this work was in progress.

Several members of the Computer Science Deparunent offered invaluable support and

friendship that helped greatly during the course of my graduate work; to all of them I

express my gratitude. I am especially thankful to Naser Barghouti, Abby Burton. Andrea

Danyluk, David Glaser, and John Ment.

I dedicate this work to my parents who always encouraged me to seek the joy of

learning and who provided me with constant emotional support. Last. but certainly not

least, lowe an immeasurable amount of thanks to my husband. Hussein Ibrahim. whose

understanding, tolerance, and encouragement are beyond words. His support, both

professional and emotional, contributed greatly to this work. He helped me in revising

earlier drafts of this dissertation and in preparing the figures. I probably have spent much

time working when we could have been together, and I look forward to correcting this in

the future.

viii

Chapter 1

Introduction

1

The design of communicating distributed processes involves a rather complex set of problems.

The processes are allowed to concurrently access shared resources and to proceed asynchronously:

they may be executed by heterogeneous processors; their communication channels incur random

message delays and are often unreliable; and their behavior is time-dependent. Protocols,

constituting a set of rules, are thus required to regulate the communication between distributed

processes in a computer network.

The first step in designing a protocol is to formally specify the behavior of the various

communicating processes involved in it. The concurrent behavior of the protocol can be then

computed by following the processes at every state and shuffling the events that can occur at this

state, and having a rendezvous event for each corresponding send and receive events. This

concurrent behavior then has to be examined to ensure that it satisfies the functional and

performance objectives of the protocol. Even for a simple protocol with few communicating

processes, the concurrent behavior typically includes too many possibilities to be analyzed

manUally. Consequently, there has been great demand for automated development tools to aid the

protocol designer in verifying the functional requirements and analyzing the performance of such

concurrent behaviors.

In this research, we address some of the issues involved in the design of automated protocol

development tools. In panicular, a methodology for formally specifying and automatically

analyzing timing requirements and performance measures of protocols based on their formal

specifications is developed. This combination is natural since both problems require a timing

model of protocols. The methodology is implemented in AJ.'l"AL YST: an interactive software

development environment which is used to automatically analyze the performance of sample

protocols.

2

In the rest of this chapter, we first discuss the nature of protocols and their development. The

motivations for this research are described in section 1.2, and the central issues related to

perfonnance analysis of protocols are examined in section 1.3. The major contributions of this

work are then stated in section 1.4, and in section 1.5 the organization of subsequent chapters is

outlined.

1.1. Protocols and Their Development

The International Standards Organization (ISO) has proposed a reference model of protocol

architecture [Zimm 80]. The model has seven hierarchical layers as illustrated in Fig. 1-1.

Protocols at layers 1 through 4 are referred to as low-level protocols whereas those at layers 5

through 7 are referred to as high-level protocols.

protocol layers virtual medium

/
APPLICATION 7 l-

PRESENTATION 6 I-

SESSION 5 l-

TRANSPORT 4 I-

NETWORK 3 l-

DATA LINK 2 I-

PHYSICAL 1 I-

physical medium

Figure 1-1: lllustration of protocol layers

The purpose of each protocol layer is to provide services to the layers above while concealing

the details of the layers below. A description of these services including the service interaction

3

primitives, their possible orders, and their possible parameter values, is referred to as the layer's

service specification. In addition to the serlice provided by a protocol, a protocol designer is also

concerned with the internal structure and operation of the layer's black box which is illustrated in

Fig. 1-2. In this figure each protocol process resides typically at a different site and communicates

with other peer processes according to the protocol rules. These rules describe how the processes

respond to commands from the upper layer, messages from other peer processes (through the

lower layer), and internally initiated actions (e.g .• time-outs). They are referred to as a protocol

specification. Finally, the protocol specification refined into actual code that describes aspects of

internal behavior related to inter-process communication and detailed external behavior of each

protocol process is referred to as protocol implementation. This successive refinement of

protocols indicates that they develop in three main phases: service statement, protocol design, and

implementation.

N+l LAYER

N LAYER

N-l LAYER

N USER CORRESPONDENT N USER

N SERVICE (PROVIDED)

PROCESS LAYER N
(HOST A) -----------------------

PROCESS
(HOST B)

PROTOCOL ~---,----~

SERVICE (USED)

MEDIUM

Figure 1-2: A local view of a protocol layer

Development tools are required to support the evolution of protocols from specifications into

working systems. Protocol development tools can be classified iiuo construction tools for

developing and refining protocol specifications, and validation tools for assessing how a

specification meets its functional (e.g., deadlock freedom) and performance (e.g., maximizing

throughput) design objectives [Noun 85]. Functional requirements of a protocol assert that its

4

behavior is safe, i.e., any goal achieved actually satisfies its functional objectives, and live, i.e.,

such goals are guaranteed to be eventually achieved. That is, verifying functional requirements of

protocols is concerned with assessing qualitatively their functional behavior.

On the other hand, analyzing the performance of protocols is concerned with assessing

quantitatively their timing behavior. More specifically, we view performance analysis of

protocols as consisting of 1) analyzing the requirements to be met by its timing behavior (timing

requirements) to ensure that the protocol performs efficiently. and 2) analyzing key measures that

indicate how efficiently the protocol performs (performance measures). For example, consider a

protocol using time-out to recover from message loss in the transmission medium. Such a

protocol performs efficiently if it has a minimal probability of time-out occurring before a loss and

a minimal time between a loss and a time-out. (As will be shown later in chapter 6, these two

timing requirements are contradictory and some balanced requirement can be defined and

analyzed.) One key measure of the efficiency of this protocol is the mean time starting with the

sender sending a message until it receives its successful acknowledgment.

1.2. lVlotivations of This Research

Considerable attention has been given in the past decade to the development of automated tools

for verifying functional requirements of protocols [Suns 83]. Works on performance analysis of

protocols, however, have not addressed the issue of analyzing their timing requirements and have

used manual analyses of their performance measures (see for instance [Tows 79, Bux 82)). The

specification and analysis of protocol timing requirements are important to optimally set the

protocol parameters, such as the time-out rate in the protocol example discussed above.

Moreover, without specifying and analyzing timing requirements, verifying safety properties may

be unnecessarily complicated and verifying live ness properties may not be enough. Verifying

safety properties may be unnecessarily complicated by considering event sequences in the

concurrent behavior that would have a negligible probability if the protocol parameters were

optimally set. Verifying liveness properties may not be enough since the eventual goals may take

an infinite time to achieve if the protocol parameters are not properJyset. This indeed has been

shown for such retransmission on time-out protocols [Yemi 82].

Past analyses of protocol performance have been performed manually by deducing the timing

5

behavior of the possible event sequences of the protocol from a human understanding of its

operation (see for example [Gele 78, Tows 79. Bux 80. Bux 82]). Such analyses are protocol

dependent, Le., a completely new analysis is required for every new protocol to be examined, and

cannot be integrated with other tools in a protocol development environment. In this research, we

address the specification and analysis of timing requirements and performance measures of

protocols. Such a combination is in fact natural since both problems require a model of the timing

behavior of protocols. It also provides the protocol designer with a complete view of the

performance of the protocol under analysis.

Instead of following the manual approach we propose a specification-based approach where the

protocol timing behavior is extracted from its formal specification augmented with timing

information. The main advantage of this approach is that it utilizes the formal specification of the

ptotocol, which is required anyhow for verifying its functional requirements, and thus is protocol

independent and can be readily automated.

1.3. Problem Statement

The key problems to be addressed in this research can be divided into three main categories:
1. Develop a methodology for performance analysis of protocol based on their formal

specification. This involves the following tasks:
i. formally specify protocol processes and their communicatio.n,

ii. compute the concurrent behavior of the protocol and detect any progress
errors,

iii. develop a model of the timing behavior of the protocol,

iv. devise rules for mapping the formal specification of the protocol and
probability distributions of its event times into attributes of its timing model.
and

v. demonstrate how timing requirements and performance measures can be
formally specified in terms of these attributes. and how the rules can be used
to automatically analyze them.

2. Implement this methodology in a protocol development environment.

3. Use the developed software environment in automatically analyzing the performance
of several protocols. both low-level and high-level. to demonstrate its wide
applicability .

1.4. Contributions of This Research

Contributions of this research fall into three main categories.
1. The development of a methodology that supports fonnai specification and automatic

anaLysis of two aspects of protocol performance: timing requirements and
performance measures. Rules that map an algebraic specification of a protocol, and
the exponential rates of its events times, to probability and time attributes of its
timing behavior are devised. Timing requirements and performance measures of a
protocol that can be formally specified in terms of attributes of its timing model are
thus automatically analyzed. The analysis of timing requirements yields optimal
settings of the protocol's performance parameters, whereas the analysis of its
performance measures provides an assessment of the efficiency of its performance.

2. The design and development of ANALYST: a software environment that supports
automated performance analysis of protocols. Compared to current protocol
development environments, see for instance [Holz 84, Chow 85], the design of
ANAL YST is novel in two main respects. First, it integrates functional and
performance specification and analysis of protocols. Since protocol performance is
extracted automatically from its functional specification, this integration allows a
protocol designer to analyze protocol performance without requiring much expertise
in the field. More specifically, a protocol designer is not required to engage in
performance modeling of the protocol under analysis, but just to specify
performance in terms of timing attributes of the protocol. Second, it facilitates and
enhances the design process of protocols. It supports an interactive user interface
that allows the protocol designer to readily debug a protocol and iterate through
functional and performance specification and analysis thus facilitating experimental
protocol design. It also provides the designer with a friendly and uniform user
interface to the different modules that perform functional and performance analysis,
i.e., the user does not have to explicitly switch from one module to the other to
obtain different services.

3. The automated derivation of performance analysis and optimum timing of a simple
connection establishment protocol. the Alternating Bit protocol. and a two phase
locking protocol. In the case of the connection establishment protocol. an upper
bound on the rate of terminating connections is computed in order to limit the
probability of unsynchronized operation of the connecting parties, and the
probability of call collisions is analyzed. A cycle time performance measure for the
Alternating Bit protocol that captures a well-known timing error related to the
protocol's time-out rate is specified and analyzed. An optimal time-out rate of a
simplified version of the protocol is computed, and its maximum throughput and
mean delay are analyzed producing results that agreed remarkably well with those
obtained manually by other researchers. An automated performance analysis of the
two phase locking protocol demonstrates that time-outs may be an alternative to
elaborate checks for detecting deadlocks. An optimal setting of the time-out rate is
computed, and the protocol's probability of deadlock and mean response time are
analyzed.

6

7

1.5. The Organization of Subsequent Chapters

The rest of this dissertation is divided into four parts. The first pan, chapter 2, is a survey of

related works. The survey covers specification tools, verification tools, and performance analysis

tools for protocols. The underlying issues and various approaches are examined for each.

The second pan, including chapters 3, 4, and 5, presents the methodology of specification-based

performance analysis of protocols. The first step of the methodology: functional specification and

analysis, is described in chapter 3. A specification algebra is introduced and its use in specifying

the functional behavior of protocols is demonstrated. The algebra supports the computation of the

concurrent behavior of a protocol which is then analyzed to detect any progress errors. Three

functions on protocol behaviors that are used to isolate sub-behaviors of a protocol which a

protocol designer is particular interested in for functional and performance analysis, are defined.

In chapter 4, the second step of the methodology: performance specification and analysis, is

described. A timing model of protocols is presented and some of its key attributes are defined.

The use of these attributes to formally specify timing requirements and performance measures of

protocols is then demonstrated. In chapter 5, ANALYST: a software development environment

that implements the methodology, is described. The functions supported by ANALYST are

examined, and a sample scenario for using it for automated performance analysis of protocols is

presented. Also, the various elements of its logical architecture are described. Throughout this

second part, a simple connection establishment protocol is used to demonstrate the methodology.

The third pan, including chapter 6 and 7, describes the application of the proposed methodology

to two other protocols. In chapter 6, the Alternating Bit protocol, which provides simple data

transfer functions, is considered. In chapter 7, a two phase locking protocol used for concurrency

control in data base systems is considered. These protocols together with the simple connection

establishment protocol examined in chapters 3, 4, and 5. are chosen to provide a spectrum of

different protocol functions. The connection establishment protocol and Alternating Bit protocol

are low-level protocols concerned with connection establishment and data transfer functions,

respectively. These two functions are common among low-level protocols which are concerned

primarily with efficient communications over unreliable transmission channels. The twO phase

locking protocol is an example of high-level protocols whose functions, on the other hand, are

8

diverse. ANALYST is used to automatically analyze the perfonnance of these protocols.

Finally, the fourth pan, including chapter 8, presents some concluding remarks. A summary of

this work is given, and limitations of the proposed methodology and its applicability to

perfonnance analysis of protocols are discussed. Directions for future research are then outlined.

9

Part I

Survey of Related Work

10

Chapter 2

Development Tools for Communication Protocols

2.1. Introduction

In this chapter we survey related works on protocol development tools that are involved in the

methodology proposed in this dissertation. The survey covers specification tools, verification

tools, and performance analysis tools for protocols. The underlying issues and various approaches

are examined for each.

The protocols considered are those that are implemented as software systems, which belong

mostly to layers 2 and above in the ISO protocol hierarchy. Although development tools for

general software systems have been studied extensively (see for instance [Lond 80, Ridd 80, Wass

81], their application to protocols is not straightforward. Protocols involve processes that are

distributed, concurrent, asynchronous, and whose behavior is often time-dependent. This

communication nature of protocols becomes the prime concern underlying the tools. An important

objective of protocol verification tools, for example. is to assure robustness of the communication

between the protocol processes.

Throughout this chapter, a simple send-and-wait protocolwill be used as an example. The basic

function of the protocol is to provide robust message transfer between a source process C and a

destination process D over an unreliable transmission channel. There are three distributed

processes involved in the protocol: a sender S, a receiver R, and a transmission channel M. The

operation of the protocol is as follows. If the sender is idle and receives a new message m from a

source C, it sends it to the receiver through the channel which either delivers or loses it. The

sender waits for an acknowledgment a to arrive, upon which it again" waits for a new message

from the source. A new message arriving at the sender that is busy waiting for the

acknowledgment of the previous message, is queued. To recover from cases of message loss, if

the sender does not receive an acknowledgment after a time-out period T, it retransmits the same

11

message and then waits again for either an acknowledgment or a time-out.

The receiver process waits for the new message m to arrive from the channel, after which it

delivers it to a destination D and then sends an acknowledgment a to the sender through the

channel. For the sake of simplicity, it is assumed that the channel does not lose acknowledgments,

and that the time-out period is ideally set such that the probability that a time-out occurs only after

a message is lost is equal to 1. If the sender and receiver processes are at one protocol layer N.

then the source and destination processes would be at the next higher layer N+ 1 representing the

user of the services of the layer N, and the channel process represents the next lower layer N -1.

It should be noted that this is not the most efficient data transfer protocol. For example, in order

to make full use of the channel's bandwidth, a more sophisticated protocol would send several

messages successively instead of one at a time. In this case it is necessary to assign sequence

numbers to messages in order to differentiate between them.

2.2. Specification Tools

Specification tools are construction tools required to describe a protocol at each of its three

development phases as a service specification, protocol specification, and protocol

implementation. Programming languages are used for describing implementation specifications.

These will not be discussed here; throughout the rest of this chapter we limit our discussion to

specification tools required for the service statement and protocol design phases.

Experience has shown that protocols specified informally are error-prone even when augmented

with some graphical illustrations. For example, 21 errors have been found [West 78a] in the

informal specification of the X21 protocol [X.21 76] (a protocol at layer 2 in Fig. 1-1); they are

generally due to the ambiguity and incompleteness of the informal specifications. Formal

specifications, on the other hand, are concise. clear, complete, unambiguous, and often used as the

basis for other protocol development tools. Protocol development tools are indeed highly

dependent on the specification tool used. For example, a different. verification tool may be

required if the specification tool used in the protocol environment is changed.

In the following section. requirements of specification tools for protocols are outlined. The

12

various specification tools are surveyed in section 2.2.2, and a taxonomy of the these tools is

proposed in section 2.2.3.

2.2.1. Requirements of Specification Tools for Protocols

For a specification tool to adequately describe protocols, it should support the following:

1. Abstract descriptions such that implementation-dependent parts can be left
unspecified.

2. Modeling of concurrency.

3. Modeling of nondeterminism, which is a behavior exhibited typically by protocols
(e.g., the sender is waiting for either the arrival of an acknowledgment or time-out in
the send-and-wait protocol example).

4. Description of the two categories of functions involved in protocols: control
fimctionswhich involves connection initialization and inter-process synchronization,
and data transfer functions which involves processing of messages texts and related
issues such as message sequence numbt;ring.

5. Modular descriptions to facilitate readability and ease of use of specifications.

6. Features to facilitate the application of other protocol development tools. For
example, to facilitate performance analysis tools based on formal specifications, a
specification method has to be augmented with some timing information.

The extent to which a specification tool exhibits these requirements will be examined next while

surveying these tools.

2.2.2. Survey of Specification Tools

2.2.2.1. Finite State Machines

A finite state machine (FSM) consists of the following components: 1) finite set of states, 2)

finite set of input commands, 3) transition functions (command x state -+state), and 4) an initial

state. A FSM is a natural choice for describing protocol processes whose behavior consist

primarily of simple processing in response to commands to or from peer processes in the same

layer, and/or the upper and lower protocol layers. A FSM responds to a command according to

the input and its current state representing the history of past commands. FSMs have been used in

early work on specification of protocols [Bart 69, Suns 75].

Consider using FSMs to describe a protocol specification. Each local process involved in the

protocol can then be modeled as a FSM. The behavior resulting from the concurrent execution of

13

these local processes can be obtained by considering alI possible shufflings of the executions of

these processes. It is in effect a global description of the operation of the protocol layer. To

describe the mode of communication between the distributed processes, three approaches are

possible. The simplest assumes that the distributed processes communicate synchronously

through rendezvous interactions (also referred to as direct coupling by Bochmann [Boch 78]).

That is, the process issuing a send event should wait for the destination process to issue a

corresponding receive event (and vice versa) at which time a rendezvous is said to occur and

message exchange takes place. Since messages are not queued in this approach, no modeling of

channels between the processes is required. This approach is too restrictive for protocols in which

the communicating processes operate asynchronously, or for protocols in which the behavior of

the transmission channel is integral to its operation. In the second approach, channels are modeled

implicitly by specifying their characteristics such as queueing policy (e.g., FIFO) and bound on the

number of messages allowed in transit at anyone time. Protocols with a number of messages in

transit can thus be modeled using this approach. The FSMs specifications in this approach are

referred to as communicating finite state machines [West 78a, Goud 84a]. In the third approach.

channels behavior are specified explicitly as FSMs in which case only channels with a low bound

on the number of messages can be feasibly assumed. Even then their FSM specifications are

considerably more complex than in the second approach. Their advantage lies in the explicit

modeling of channel events such as loss. which can be used in stating functional and timing

requirements of protocols.

Following the latter approach. specifications of the three communicating processes in the send

and-wait protocol are shown in Fig. 2-1. In this figure. states are represented by circles, transitions

by directed arcs, the initial state is the state labeled 1, and input commands are either events with

an over-bar denoting send events or events with an under-bar denoting receive events. Events'

subscripts are used such that for event e jJ the flow of data is from process i to process j. Non

deterministic behavior at a state, for example the choice between receiving a time-out or an

acknowledgment at state 3 of the sender, is modeled by multiple output arcs from that state. The

medium (channel) has a capacity of only one message or acknowledgment. A service

specification for the same protocol is shown in Fig. 2-2 in which the service primitive events GET

and DELIVER between the protocol system and its users (source and destination processes) and

their order. are described.

(a)

(c)

(b)

~.s

DROP m

Figure 2-1: A protocol specification of the send-and-wait
protocol using FSMs (a) Sender (b) Receiver

(c) Medium

GET DELIVER

Figure 2-2: A service specification of the send-and-wait protocol using
FSMs

14

15

In specifying this simple protocol, and control functions of more complex real-life protocols,

e.g., the X.21 interface [West 78b], FSM specifications have proven adequate. They are simple,

easy to understand and analyze. They fail, however, to describe data transfer functions that

include decision (e.g., priority of messages) or timing considerations (e.g., specification of a time

out period). This is because no mechanisms are provided for expressing such features. Moreover,

in order to specify messages with sequence numbers using this approach, a state is required for

each possible value of a pending message and/or sequence number. This leads to an explosion in

the number of states; a phenomena known as the state explosion problem. Extensions of the

model, as described next, alleviate most of these limitations.

2.2.2.2. State Machine Models

State machines are FSMs augmented with variables and high-level language statements. These

statements are associated with transitions and can refer to the variables and input commands.

They are either predicates representing conditions for the transition to occur, or actions to be

performed upon its occurrence. The state of the machine is represented either by the values of all

the variables, or by one of the variables. Consider, for example. extending the send-and-wait

protocol with a binary sequence number mechanism for messages so that the receiver can

distinguish between messages and their duplicates. A partial state machine specification (whose

constructs are adapted from [Boch 83]) of the sender process of this extended protocol, is given in

Fig. 2-3. In this specification a variable representing the current message sequence number should

be defined at the sender and the receiver. The transition out of a sender's state in which it is

waiting for an acknowledgment can have a predicate stating that it should not be corrupted and its

sequence number is the one expected; and an action that increments the sequence number of the

next message to send.

Bachmann and Gesci [Boch 77a] first used this specification model to specify a simple data

transfer protocol and later to specify the HDLC [Boch 77b] and X.25 [Boch 79] protocols.

Various other specification systems based on this model have been also developed. They differ

essentially in the way they structure the protocol system into sub-processes which are then

specified as state machines.

A state machine model proposed by the ISO TC97/SCI6IWG 1 subgroup B on formal description

module Sender

var
state (statel, state2, state3):

(* same states labels as in Fig. 2-1(a) *)

corrupted : boolean;

next-msg-to-snd : integer;

ack-received : integer:

trans (* transitions are described in the general
form of a predicate given by:
when <input command> provided
<boolean expression> from <current state>,
followed by an action given by:
to <next state>
begin <statement> end; *)

when RECEIVE-A
provided {not (corrupted)

and ack-received next-msg-to-snd}
from state3
begin

next-msg-to-snd := (next-msg-to-snd+l) mod 2:
end;
to statel

end module Sender

Figure 2-3: A partial state machine specification of the
sender process of a modified send-and-wait protocol with

binary sequence numbers

16

techniques (FDT) [ISO 83, Boch 84] employs Pascal-like constructs in extending FSMs.

Channels are specified separately from the protocol processes using abstract data types [Gutt 78].

Certain queuing mechanisms can be modeled and time delays before transitions can be specified.

A Specification and Description Language (SDL) [Rock 81] which is primarily represented

graphically has been proposed by another standard body, the International Consultative

Committee for Telephones and Telegraphs (CCITT). Specifications of channels and timing are

not supported. Dickson [Dick 80a], [Dick 80b] has used SDL to specify the packet level of the

17

X.25 interface [X.25 80].

Examples of other works based on the state machine model for specification have been reported

by Schwabe [Schw 8Ia], Divito [Divi 82] and Shankar and Lam [Shan 84]. These efforts differ in

the following. Schwabe differentiates between the specification of the topology describing the

connectivity of the processes from the specification of the protocol processes. This feature can be

especially desirable in the specification of high level protocols. Divito uses queue histories to

record process interactions. This facilitates the specification of certain desirable protocol

properties such as the number of messages sent is the same as those received whereas other

properties involving order of messages in the histories, for example, are not as naturally expressed.

Shankar and Lam allow time variables to be included and time operations to age them. This

facilitates the specification of certain protocol real-time requirements such as an upper bound on

the time a message can occupy a transmission channel.

Combining the two formalisms of FSMs and high-level languages provides a rich specitication

tool in which one can express the syntax and the semantics of protocols. On the other hand. such a

combination is informal and there is no rule of how much of each to use.

2.2.2.3. Formal Grammars and Sequence Expressions

A formal grammar is defined by a set of terminal symbols. a set of nonterminal symbols, a start

symbol and a set of production rules. The nonterminal symbols are defined recursively in terms of

each other and terminal symbols using the production rules. The start symbol belongs to the set of

nonterminal symbols and denotes the language generated by the grammar. In a formal grammar

specification of a protocol, nonterminal symbols denote states and terminal symbols denote

transitions and operations (e.g., nondeterministic composition). The start symbol denotes protocol

behaviors generated by the grammar and production rules define how the various protocol

behaviors are generated. A formal grammar specification of the sender process of the send-and

wait protocol is given in Fig. 2-4. It is a direct translation of its FSM in Fig. 2-1(a) with terminal

symbols (represented by upper-case letters) denoting input commands and non-terminal symbols

(represented by lower-case letters) denoting states.

Since regular grammars and FSMs are equivalent, they share the same limitations. The state

G= {V,T,S,P},

where the set of nonterminal symbols
V={statel,state2,state3},
the set of terminal symbols
T={GET-M,SEND-M,T,RECEIVE-A},
the start symbol S is statel, and
the set of production rules P is given by

statel GET-M state2

state2 ::= SEND-M state3

state3 .. = T state2
! RECEIVE-A statel

, , t I , denotes nondeterministic composition.

Figure 2-4: A formal grammar specification of the sender process of
the send-and-wait protocol

18

explosion problem is manifested here as an explosion in the number of production rules. To

overcome this problem, Harangozo [Hara 77] has used a regular grammar in which indices are

added to terminals and nonterminals to allow the representation of sequence numbers. A formal

grammar specification of HDLe can be found in [Hara 77]. Teng and Liu [Teng 78] have used a

context-free grammar, which provides more expressive power than a regular grammar. They also

uses a shuffle operation to integrate grammars defining processes in the same protocol layer by

computing all possible shufflings of their behavior A substitution operation is used to integrate

grammars defining different protocol layers by substituting terminal symbols in the grammar of

the high-level protocol by nonterminal symbols in the grammar of the low-level protocol to form a

new integrated grammar.

These two approaches to formal grammar specification for protocols do not support the

specification of any predicates or actions associated with protocol behavior. This limitation is

overcome by Anderson and Landweber [Ande 84] by using context-free attribute grammars.

which are formal grammars in which terminal and nonterminal symbols have attributes associated

with them. For example, the terminal symbol SEND-M in the send-and-wait protocol can have

the attribute address associated with it to determine the address of the addressee. The semantics of

protocol operation can then be specified in terms of attribute assignment statements associated

19

with production rules.

In contrast to formal languages, sequence expressions define directly the valid sequences

resulting from protocol execution and not how they are generated. A protocol behavior can be

described in one expression where no nontenninal symbols are used. The sender process of the

send-and-wait protocol, for example, can be specified as a sequence expression given by

SENDER = {GET-M ~ SEND-M ~ {T ~ SEND-Mf
~ RECEIVE-A}

where operations .,*" and .. ~" denote the Kleene star and sequential composition operations,

respectively.

Sequence expressions have been used by Bochmann for service specification [Boch 80a]. Other

examples include work done by Schindler, et al. [Schi 80, Schi 81] to specify the X.25 layer 3

protocol.

2.2.2.4. Petri Net-Based Models

A Petri Net (PN) (see [pete 77] for a comprehensive survey) graph contains two kinds Of nodes:

places and transitions. Directed arcs connect places and transitions. Arcs from places to

transitions are called input arcs, and arcs from transitions to places are called output arcs. The

execution of the net is controlled by the position and movement of tokens which reside in the

places. The distribution of tokens in the net at any certain time, known as a marking, specifies the

state of the net at that time. A PN specification includes a PN graph and an initial marking. A

transition in the graph is enabled if there are tokens residing in all the input places (i.e., places

connected with the transition through input arcs). It can fire any time after it is enabled, upon

which tokens are removed from input places and deposited into output places of the transition.

PN s are in many ways similar to FSMs, with places in a PN corresponding to states or inputs in a

FSM and transitions in a PN corresponding to transitions in a FSM. However unlike FSMs, PNs

can directly model interactions between the concurrent processes by merging output arcs from one

process to an input arc of another process. Also the concurrent execution of the distributed

processes is naturally captured by the presence of more than one token in the net -- a token for

each distributed process.

20

In a protocol modeled as a Petri net, the presence of a token in a place typically indicates that the

protocol is waiting for a certain condition to be satisfied, and the firing of a transition represents

the occurrence of an event enabled by the condition. Examples of using PNs to model protocols

can be found in [post 76, Azem 78, Dam 80]. A PN specification of the send-and-wait protocol is

given in Fig. 2-5. Places are represented as circles, transitions as bars and tokens as filled circles.

It should be noted that this PN specification follows the assumption that time-out is ideally set

such that a time-out occurs only after a message loss and that acknowledgments are not lost.

SENDEI
(RUDY)

RECEIVI:-A

RECEIVI:-W

DEl.IVl:l-l,I

SEND-A

RECEIVl:1
(RUDY)

Figure 2-5: A send-and-wait protocol specification using Petri nets

Similar to FSMs, PNs cannot adequately model the complex data transfer of a protocol without

suffering from explosion of the net size. Two major extensions to PNs that add to their power in

modeling protocols lead to hybrid PNs and timed PNs. The price for these extensions is more

complex. validation.

Hybrid Petri Nets

Hybrid Petri nets are extended PNs in which tokens can have identities and transitions can have

predicates and actions associated to them. Adding predicates to PNs produces predicate/transition

nets formalized by Genrich and Lautenbach [Genr 79], where transitions fire only after they are

enabled and their associated predicate (i.e., some condition in terms of tokens values) is true.

Berthelot and Terrat [Bert 82] have used predicate/transition nets to model the ECMA (European

Computer Manufacturer Association) [ECMA 80] transport protocol.

21

Adding actions to predicate/transition nets produces predicate/action nets. Actions are associated

with transitions such that when a transition fires, the action is executed and new tokens are put in

the output places. For example, data transfer protocols can be modeled as predicate/action nets

such that the arrival of a message m with certain parameters is described in a predicate, and the

transmission of m is described in the action [Diaz 82].

Keller's model for parallel programs [Kell 76] and numerical PN (NPN) [Symo 80] belong to

this category of hybrid PNs. Keller divides systems into a control part and a data part, with places

representing control states and transitions representing the changes between states. Variations of

this model have been used in modeling protocols [Boch 77a, Azem 78, Baue 82]. N!'Ns

introduced by Symons are similar to Keller's model with the variation of allowing tokens to have

any identity not just integer values, and associating read and write memory with the net.

Billington has used NPNs to model a Transport service [Bill 82].

Timed Petri Nets

A Timed PN is a PN extended to support some description of time. Timed PNs that have been

used for protocols include time PNs (TPNs) introduced by Merlin ~ferl 76] and stochastic PNs

(SPNs) introduced by Molloy [Moll 81]. In a TPN, a pair of deterministic time values (t . ,t) is
mllJ. max

added to each transition of a PN. The pair defines the interval of time in which the transition must

fire after it is enabled. This extension allows the modeling of time-out actions of protocols by

specifying the t . of the retransmission transition to be equal to the time-out value. Danthine
171m

[Dant 80] has used a combination of TPNs and Nutt's evaluation nets [Nutt 72] (a kind of

abbreviated PN) to model the transport protocol of the Cyclade network.

SPNs are PNs extended by assigning to each transition a random variable representing the firing

delay of that transition. State changes occur in the SPN model with some probability rather than

arbitrarily as in a PN. Distributions of the transition delays are restricted to exponential in the

continuous case, or geometric in the discrete case. This is because a Markov chain is extracted

from the PN graph describing the global protocol behavior; in a Markov chain all transitions

should be either exponentially or geometrically distributed. The random representation of time

involved in protocol events is used in SPNs to allow for quantitative performance analysis.

22

2.2.2.5. Algebraic Models

Algebraic specification derives its name from its relationship to universal algebra [Grat 68]. An

algebra consists of a nonempty set of objects and a set of operations. Each operation takes a finite

number of objects and produces an object. The meaning of operations is defined in terms of

equational-axioms. The interpretation of objects and operations when specifying protocols

depends on the specific algebraic approach used. We examine next two examples of algebraic

systems used for specification of protocols.

In the calculus of communicating systems (CCS) introduced by Milner [Miln 80}, objects are

expressions describing protocol behaviors; they are generated from a set of send and receive

events exchanged between the communicating processes. Operations include "." denoting

sequential composition, .. +" denoting nondeterministic composition, "I" denoting concurrent

composition, and "NIL" (a nullary operation) denoting deadlock. The concurrent composition of

interacting processes produces a new composite process whose behavior includes rendezvous

interactions for corresponding send and receive events and shuffling of all other events generated

by the interacting processes.

The main characteristic of CCS is that it supports the concurrent composition of processes

involved in a protocol as an operation in the algebra to obtain a concurrent behavior of the

protocol. This is opposed to the concurrent composition of finite state machines or Petri nets,

which is performed by a separate procedure and not part of the specification. The result of the

concurrent composition of a set of processes in the algebra is a also process. which allows

hierarchical specification of processes. This makes CCS especially suitable for modeling protocols

that belong to the ISO hierarchy. For example, a transmission channel process in a protocol at

some layer in the ISO architecture can be simply produced or specified as the concurrent

composition of the processes providing service from the lower layers.

A CCS specification of the sender process of the send-and-wait protocol is given next. Let 't

denote a rendezvous event produced from a previous concurrent composition of the sender with a

timer process (for time-out). Also, let m represent a send pon for messages and a represent a

receive port for acknowledgments on the channel between Sand M. In addition, let d represent a

receive pon for message incoming from the source. The sender specification S is described

23

recursively as follows:

S =d.m.S1

Capabilities for value passing and high-level language statements are also provided. To

overcome the imposed synchronous mode of inter-process communication in CCS, one has to

explicitly model transmission mediums between any two processes communicating

asynchronously.

Many concepts from CCS are employed in the specification language LOTOS Qanguage fQr

1emporal Qrdering §,pecification) proposed by ISO TC97/SC16/WGl subgroup C [ISO 85, Brin

86]. Holzmann [Holz 82] has also introduced a CCS-variant algebraic model with a division

operation used to represent send events and message queues used to allow for asynchronous inter

process communication.

In the AFFIRM system [Muss 80, Suns 82a], the objects of the algebraic model are abstract data

types [Gutt 78]. The system can be used to specify protocols modeled conceptually as state

transition machines as follows: each protocol model is defined as an abstract machine data type.

with its variables as selectors of the type, and its state transition as constructors of the type. A set

of axioms defines the effects of each transition on the variables. Abstract data types can also be

used in specifying protocol message formats. Desired properties of the protocol are expressed as

theorems that refer to the elements of the given specifications. An advantage of this system is its

use of abstract data types which provide only abstract description of the systems under

consideration. Experience with modeling several protocols in AFFIRM [Suns 82b] has shown the

following system limitations: no support for true modeling of concurrency; difficulty in dealing

with exception handling, separate specification of local protocol processes, and difficulty in

specifying of protocols with more than two processes.

One advantage of algebraic specifications is their rigorous formal base from algebra. Elements

of other development tools in a protocol environment can be viewed as an algebra that is

homomorphic to the specification algebra [Yemi 82]. One basic limitation of algebraic

specifications is the difficulty in dealing with exception handling (for more information on this see

[Berg 82]).

24

2.2.2.6. Temporal Logic Models

Temporal logic [pnue 77] is an extension of predicate calculus to support the specification of

temporal propenies of systems (Le., properties that change during the system execution).

Invariant properties that must hold throughout the execution can be stated using predicate calculus.

Wiihin the temporal logic framework, the meaning of a computation is considered to be either the

sequence of states (state-based approach) or the sequence of events (event-based approach)

resulting from the system's execution. The two basic temporal operations in temporal logic

besides predicate calculus operations are hencefonh ,. 0" and eventually "0 ". Let P be any

predicate, then OP is true at time i (representing the i-th instance of the execution sequence) if and

only if P is true at all times j , where j~ i, and 0 P is true at time i if and only if P is true at some

time j, where j~ i. A specification in temporal logic consists of a set of axioms that assert

properties which must be true of all sequences resulting from a system's execution [Lamp

80, Mann 81].

Temporal logic specifications can be classified into state-based and event-based approaches

according to the underlying model of the execution of the protocol. Three different approaches to

state-based temporal logic have been pursued by Lamport [Lamp 83], Schwartz and Melliar-Smith

[Schw 81b], and Hailpern and Owicki [Hail 80]. The three approaches differ essentially in how

close they are to the state machine model with the first being the closest followed by the second

and then the third.

Schwartz and Melliar-Smith use a model in which state variables are introduced in the

specification only when it is more convenient to express temporal properties in terms of finite

history of the past rather than using temporal formulas. The variables used are assumed to be

bounded. A specification of the Sender process of the send-and-wait protocol in this approach is

given in Fig. 2-6 (adapted from [Schw 82]). Besides the temporal operations eventually and

henceforth, the following constructs have also been used in the specification: Until and

Latches-Until-After. P Until Q is interpreted as P must remain true until Q becomes true if ever,

and P Latches-Until-After Q is interpreted as P when becoming true, remains true until after Q

becomes true if ever. Also the predicates at, in, and after, have been used to reason about the

currently active control point of each process. The interpretation of at S, in S, or after S is true if

control is at the beginning, within, or at the end of the execution of statement S respectively.

Al. So=p implies (So=q*p
Latches-Until-After after RECElVE-A
and So=q*p Latches-Until-After Si=q)

A2. DO (Sj=So=P) implies
{O -empty (InQ) implies 0 (So*P and at SEND-M)}

A3. So=P and 0 So=q*p implies
o (So=q*p and at SEND-M) Until (Sj=q*p)

A4. 0 at SEND-M Until 0 empty (InQ)

Where Sand S. are two variables of the underlying o ,
state transition model used to record the last message
value transmitted by the Sender, and the last
acknowledgment value received from the medium,
respectively. InQ is a sequence variable representing
the queue of message ready at the source. Labels for
events are the same as those used in Fig. 2-l(a).

Figure 2-6: A state-based temporal logic specification
of the sender process of the send-and-wait protocol

25

The axioms in Fig. 2-6 have the following interpretations. Axiom A 1 states that a message value

remains in S until both its successful acknowledgment is received and a new message is fetched o

from the source. Axiom A2 states that whenever the sender gets a message from the source while

it is not busy, it eventually sends that message. Axiom A3 states that whenever a new message is

placed in So' it is infinitely often transmitted until its successful acknowledgment is received.

Axiom A4 ensures that message transmission continues until all messages available in InQ are

serviced.

The above described approach to temporal logic specifications does not consider the complete

set of a system's state space; some of the states are excluded if temporal axioms can be used to

reason about them. This sometimes leads to complex specifications requiring several additional

constructs (such as Until and Latches-Until-After) and thus rendering specifications complex and

difficult to understand. In subsequent work [Schw 83] another approach has been followed in

which the protocol required properties are stated on intervals of the protocol's execution

sequences. It is claimed that this allows higher level temporal logic specifications.

26

Lamport has considered the complete set of system' s variables, and all state transitions are

specified in terms of the changes they are allowed to affect the variables. This is done by using an

•. allowed changes" construct in addition to the other basic temporal operations. Although

specifications based on this approach are easier to transform into implementations, they are

lenghtier than those based on the former approach. Hailpem and Owicki have used unbounded

history variables, without employing' any states, to record the sequences of messages that are

inputs or outputs of the systems. Protocol properties such as the number of messages sent equals

number of messages received can be stated quite naturally with this approach, but it would be

difficult to state properties that depend on the ordering of a sequence in a history. Moreover, the

introduced history variables are actually "auxiliary" variables; that is, they are not variables that

are required to describe the protocol implementation and thus cannot be used to reason about its

correctness.

The state-based temporal logic approach has been used to specify and verify a multidestination

protocol [Sabn 82a], and in [Kuro 82] both history variables and internal states have been used in

specifying and verifying the three way handshake connection protocol. Shankar and Lam [Shan

84] have used a variant of the eventually operator in stating temporal properties of a bounded

length of the global state sequence resulting from a systems' execution.

In the event-based approach, protocol desirable properties are specified using temporal

assertions that define constraints on the possible sequences of interaction events. No variables are

considered in this approach. Establishing context, meaning a record of the history of previous

events, in event-based specifications is much more difficult than in state-based specifications,

where states naturally provide the required context. This leads to specifications that are somewhat

complicated and lengthy. Vogt [Vogt 82] has used a history variable to represent the sequence of

past events and thus establish the required context. In another event-based approach, Wolper

[Wolp 82] has introduced extended propositional temporal logic, in which temporal logic is

extended with operators corresponding to properties definable by a right linear grammar. This

allows the specification of some properties that otherwise cannot be expressed in temporal logic

such as stating a proposition that is to hold in every other state in a sequence.

27

2.2.2.7. Procedural Languages

The unit of specification in a procedural language is a procedure containing type declarations

and statements describing detailed computational steps of the system under consideration. Much

of the early work done on protocol or service specifications used this approach. Examples of such

works can be found in [Sten 76, Haje 78, Krog 78].

The Gypsy programming language [Good 78, Good 82], is a procedural language that includes

most of the basic facilities of a Concurrent PASCAL. and has the unique feature of supporting the

specification of protocols at any of the three design phases using the same language. Descriptions

of service or protocol specifications make use of queue histories to record all send and receive

operations executed on a system's queue. One limitation of specifications employing queue

histories, is the difficulty in modeling unreliable communication mediums [Divi 82] since

processes communicate through message queues that do not model loss or corruption of messages.

Another limitation is the difficulty of stating properties on a history if the properties depend on the

ordering of messages in the queue.

While procedural languages are a natural choice for coding implementation specifications, there

has been much controversy regarding their use for service and protocol specifications because of

the detailed descriptions of a systems' operation. This makes it rather difficult to specify abstract

protocol operation without getting into the details. There is also a biasing effect to implement the

protocol in the same language used for specification. The other side of the controversy, though,

can argue that such languages, with their rich expressive power, support the specification of both

control and data transfer functions of protocols.

2.2.3. A Taxonomy of Specification Tools

Specification tools can be classified along two axes. Along the first axis, they are either

state-based or event-based. The underlying model of a protocol in state-based tools is concerned

with the states through which the protocol passes during its operation and with the events that

cause changes in its state. States can be either explicitly represented or described by variables. On

the other hand, the underlying model in event-based tools is only concerned with the events

generated by a protocol without any mention of its state. They include sequence expressions and

28

event-based temporal logic specifications whereas the remaining specification tools covered in this

section belong to the state-based class. Since state-based specifications describe the actions and

responses of protocol operation, they can be directly executable. Event-based tools can at best be

first transformed into an executable form. However, they seem to be more abstract than state

based tools since they are not concerned with the internal state of the protocol model.

Alternatively, specification tools can be classified into behavioral and assertional tools.

Specifications belonging to the former class describe the flow of execution of protocols and how it

proceeds after each event They constitute a description of the cause and effect of all modeled

protocol events. Assertional specification tools, on the other hand, state the requirements of

protocol behavior in terms of desired properties of its possible execution sequences. The more a

specification tool is behavioral the more it is executable, and the more a specification tool is

assertional the better support it provides for formal verification.

Most specification tools actually exhibit features belonging to both the behavioral and

assertional classes. Also, each of these classes constitute a spectrum of specification tools. The

extent to which a specification tool is behavioral depends on how much support it provides for the

specification of protocol semantics besides its syntax. The extent to which a specification tool is

assertional depends on how much support it provides for the statement of functional properties

including liveness and safety, and timing properties. Furthermore, specification tools belonging to

any of these classes can be either state-based or event-based. Therefore, we illustrate in Fig. 2-7

the relative positions of the various specification tools covered in this section.

2.3. Verification Tools

Protocol verification consists of logical proofs of the correctness of each of the specifications of

the protocol, and the mapping between the service and the protocol specifications and between the

protocol and implementation specifications. Proof of correctness of a specification constirutes

proving the validity of certain desirable properties that would assure its correct operation. under all

conditions. Proof of mapping constitutes proving that a specification of a protocol refined at a

certain development phase correctly implements the specification input to that phase. Proof of

mapping between the service statement phase and the protocol design phase is referred to as

design verification, and between the design phase and implementation phase is referred to as

Ho',.; much
assertional

:10',ol much
assertional

State-based
temporal logic

X

:SMs
formal languages PNs

Procedural
languages

X
State machines

X

L------------~x~----------~*----------------------~.~

How much behavioural

(a) State-based specification tools

Event-based
temporal logic

X

Sequence expressions

How much behavioural

(b) Event-based specification tools

Figure 2-7: An illustration of the proposed taxonomy of
specification tools

29

30

implementation verification [Boch 80b J.

To prove that a specification is correct, one has to prove that it satisfies protocol safety and

liveness propenies [Lamp 77]. Safety propenies state the design objectives that a specification

must meet if the protocol ever achieves its goals. Liveness properues state that the specification is

guaranteed to eventually achieve these goals. For example, an informal description of a safety

property S and aliveness propeny L for the send-and-wait protocol specification can be stated as

S the order of messages received is the same as the
order of the messages sent.

L having received a new message, then
retransmission must continue until an
acknowledgment is received at the sender.

Safety and live ness properues such as those listed above are highly dependent on the protocol

under consideration. However, there are some general properues that are common to any protocol.

They require the given specification of a protocol to be free from general design errors, such as

those listed below .

• Unspecified receptionwhich indicates that a message reception that can take place is
missing in the specification.

• Nonexecutable interaction which is a reception or a transmission interaction that is
included in the specification but that cannot be exercised under normal operating
conditions.

• Deadlock which occurs when during the concurrent execution of a protocol, each and
every process has no possible transition out of its current state.

• Tempo-blocking which indicates that the protocol enters an infinite cycle
accomplishing no useful work.

• Channel overflow which means that the number of messages in transit in the channel
is more than a specified upper bound.

The approach used in proving a mapping between a specification output from a protocol

development phase and the specification input to the phase, depends on the specification tool used.

Consider the design verification problem. If behavioral specifications are used to describe the

protocol service, proof of mapping would be equivalent to proving that the components of the

ser.'ice specification are correctly implemented by those of the protocol specification. On the

other hand. if assertional specifications are used, then the ser.'ice specification constitutes safety

and liveness assertions of protocol specification; and design verification coincides with proving

31

the correctness of protocol specification. That is, since proving the correctness of protocol

specification in this case constitutes proving that the protocol specification meets its service

assertions, it proves at the same time that the protocol specification is a correct implementation of

the service specification.

Since protocol implementations are specified using high-level languages, they can be verified

using traditional program verification tools. We will limit our discussion throughout the rest of

this section to surveying tools for the verification of service and protocol specifications, and for

design verification.

2.3.1. State Exploration

State exploration examines all possible behaviors of a protocol. It is used in verifying

specifications belonging to the state-based and behavioral class of Fig 2-7(a). State exploration of

the concurrent execution of the processes local to a protocol layer produces a reachability graph.

In this graph, each node represents the combined states of all the local processes, and each arc

represents a local transition. Starting from the initial state of the graph, interactions of the

processes are examined by exploring all possible ways in which the initial states and all

subsequent states can be reached. Each node the protocol can reach is checked for deadlock and

unspecified receptions. The whole graph can be then checked for other general desirable

properties of the protocol such as progress, absence of tempo-blocking and channel overflow

[Suns 75, West 78a]. In the case of Petri nets specifications, each state in the reachability graph

corresponds to a marking of. the net [Ayac 81, Diaz 82, Jurg 84].

The reachability graph for the send-and-wait protocol is depicted in Fig. 2-8. All send events in

the graph are followed by the corresponding receive event, thus indicating absence of unspecified

receptions, and all the transitions in the FSM specification of the communicating processes in Fig.

2-1 have corresponding links in the reachability graph indicating absence from nonexecutable

interactions. Also, there is no tempo-blocking because the only cycle in the graph which involves

time-out (other than the repetition of the entire protocol behavior) performs useful work each time

a message is lost. In addition, since all nodes in the reachability graph have outgoing links, then

there is no deadlock in the global behavior of the protocol. To see how a deadlock behavior would

be detected by this approach, consider removing the time-out transition from the Sender process in

32

Fig. 2-1. The system would then deadlock at state 5 in Fig. 2-8 if the channel loses a message.

Note that in producing the graph of Fig. 2-8, we followed the idealistic assumption that time-outs

only occur after a message loss. However, if one assumes that the time-out period can have any

time duration, then one would get another reachability graph that differs from that in Fig. 2-8 in

that there would be a time-out transition from each of states 4, and 7 through 12 back to state 2.

There would be then a possibility of tempo-blocking due to any of these time-out loops. This

illustrates how the behavior of protocols can be time-dependent and the importance of integrating

the verification of timing requirements with functional verification.

!!!c,s

Drop m

Figure 2-8: A reachability graph of the send-and-wait protocol

Using this verification tool, design verification consists of demonstrating how the protocol's

reachability graph can be mapped to its service specification. Such a mapping for the send-and

wait protocol is defined as follows: in Fig. 2-2 states 1 and 2 are implemented by states 1 and 8 in

Fig. 2-8 respectively, and events GET and DELIVER in Fig. 2-1 correspond to '!!c,s and mR,D in

Fig. 2-8 respectively.

33

The principal advantage of state exploration is that it can be readily automated. Automated state

exploration tools have been used successfully in discovering errors in several protocols; see for

example [West 78c, Boch 79]. An automated and interactive verification tool called OGIVE [prad

79] has been used successfully in proving certain general properties of Petri nets [Jurg 84].

A principal limitation of the state exploration is the explosion in the number of states as the the

complexity of the protocol analyzed increases. Note that the number of states in the reachability

graph is equal to the product of the number of states in the FSM specifications of each of the

communicating processes. In fact, Brand and Zafiropulo proved that the problem of verifying the

general properties of communicating FSMs, is generally undecidable [Bran 83] except for a

restricted class of communicating FSMs [Bran 83, Goud 84b]. The state explosion problem can

be partially overcome by verifying each protocol process separately and then the protocol as a

whole [Goud 84b], or limiting the number of messages in the channel [West 82]. Other

approaches include assuming direct coupling between corresponding send and receive transitions

such that there concurrent composition involves just one rendezvous interaction instead of two

possibilities due to the shuffling of the two transitions, or using some equivalence relation to

minimize the reachability graph [Rubi 82]. In addition, instead of verifying the complete global

behavior of a protocol, considerable simplification can be achieved by verifying projections of that

behavior according to the various distinct functions of the protocol (for example separate

connection establishment from data transfer functions of data link protocols) [Lam 82]. Symbolic

execution in which states are grouped into classes that are specified by assertions [Bran 78, Haje

78, Bran 82] is another approach to alleviate the state exploration problem. Various reduction

techniques have been also used in verifying Petri net specifications [Diaz 82].

Although state exploration is usually adequate in verifying general properties of protocols, it

cannot be used for the verification of specific protocol safety and liveness properties such as

properties S and L given above for the send-and-wait protocol. These are addressed by the

verification tool discussed next.

34

2.3.2. Assertion Proof

Assertion proof follows the Floyd/Hoare [Floy 67, Hoar 69] technique for program verification.

Safety and liveness properties of a protocol can be expressed as assertions, which are attached to

different control points of a specification. To verify an assertion means to demonstrate that it will

always be true whenever the control point it is attached to is reached, regardless of the execution

path taken to reach that point

When a protocol specification is decomposed into a number of local process specifications. local

invariants are first verified for each process directly from their specifications. Global service

invariants can be then verified using the already proven local assertions. Invariants of a

specification are special assertions which describe properties that are true at every control point in

the specification. To prove assertions of a local process, the introduction of auxiliary variables.

which are variables not required in implementing the protocol, is often required. For example,

arrays of data sent and received are required in a data transfer protocol employing sequence

numbers, in order to make precise statements about the order in which messages are sent and

received [Sten 76].

Assertion proof is related to the class of assertional specification tools described in the taxonomy

of section 2.2.3. In particular, it is used in verifying assertions associated with specification using

procedural languages [Krog 78, Sten 76], state machines [Boch 77a], hybrid Petri nets [Diaz 82],

and temporal logic [Hail 80, Schw 82, Sabn 82a, Schw 83]. In the case of procedural languages.

inference rules (Le. rules that define the effect of each statement type on the assertions preceding

it) for each type of statement are used in proving local assertions. This also applies to the high

level statements in a state machine specification. In the case of Petri net-based models, net

invariants deduced directly from the net structure, are used in proving local assertions. Within the

temporal logic framework, temporal axioms, which constitute a temporal logic specification, are

used in specifying and verifying safety and liveness assertions. Temporal logic has the unique

feature of supporting the specification and verification of Ii veness properties.

Formulating assertions and proving them require a great deal of user ingenuity. This difficulty

can be partially alleviated by using some proof strategy such as induction on the structure of

specifications [Suns 81] and by automation as is provided by several verification systems;

35

examples of verification systems that have been applied to protocols are described in [Good

82, Suns 82a, Divi 82]. It should be noted though that automating assertion proof is considerably

more complex than automating state exploration. For a detailed comparison of verification

systems used for protocols, the reader is referred to [Suns 82b, Suns 83].

2.4. Performance Analysis Tools

Performance analysis of protocols includes specification and analysis of timing requirements and

performance measures. Protocol behavior is typically time-dependent (as shown in section 1.2),

and their efficient performance hence depend on certain timing requirements. Performance

measures are used as indications of how well a protocol performs. The combination of these two

performance analysis problems is natural since both problems are concerned with the timing

behavior of protocols. This allows the protocol designer to study the effect of various performance

parameters on their timing behavior. We first examine some issues common to the two

performance analysis problems and then survey approaches to each of them.

In order to analyze protocol performance, it is necessary to establish a model of the

communication medium and the timing behavior of the protocol. The former is provided in the

form of data specifying the medium's characteristics. For example, in the case of data link

protocols (at layer 2 of Fig. 1-1), the following medium characteristics should be specified:

bandwidth, bit error probability, topology, medium configuration (Le., half or full duplex). and the

upper bound on the number of messages in transit at anyone time.

A model of the timing behavior of a protocol can be either formulated directly from first

principles, or extracted from a formal specification of the protocol. We will refer to the former

approach as direct and to the latter as specification-based. In both approaches, the model should

specify the global view of protocol operation. It should also include the specifications of the

following features. First, since a protocol's timing behavior is often non-deterministic, the

probabilities of all possible protocol events at the various instants of its behavior should be

specified. Second, a representation of the times involved in each of the events is also required.

Typically, they are represented by their bounds or distributions. Bounds on an event time specify

the minimum and maximum time before its occurrence. This time representation has been used in

[Mer! 76, Sabn 82b, Krit 84, Shan 84]. Distributions of event times provide more complete

36

description of their random nature. This time representation is often used especially in evaluating

protocol performance measures; see for example [Suns 75, Moll 81, Rudi 84]. Third, some

statistics for message lengths should be provided. These are typically considered as constants or

represented by their distributions.

2.4.1. Tools for Analyzing Protocol Timing Requirements

Protocol timing requirements are conditions on the protocol's timing behavior to ensure its

efficient performance. Consider, for example, a retransmission on time-out protocol such as the

send-and-wait protocol. The efficient perfonnance of the protocol depends on the requirement that

time-out would occur after a message loss only with a very small probability and that the time

between a loss and a time-out is minimized. Another example of a protocol timing requirement is

to restrict the lifetime of messages occupying the pIl)tocol system [Sloa 83]. A third example of a

timing requirement that underlies the behavior of many protocols is that if they do not achieve

progress within a specified amount of time, then they either reset or abort. Such a requirement is

crucial to prevent protocols from being stalled due to exceptional situations such as when one of

the protocol process has crashed, or when the transmission links are heavily loaded.

Specification and analysis of protocol timing requirements can also affect the verification of

protocol functional properties. In particular, if timing requirements are ignored, then verification

of safety may be unnecessarily expensive and verification liveness may be not enough.

Verification of safety properties may be complicated by the consideration of unrealistic protocol

behaviors that do not satisfy the given protocol timing requirements. Also, proving that the

protocol's goals will be eventually achieved is not enough if these goals are achieved after a very

long time. In fact, a timing error has been found in the Alternating Bit protocol [Bart 69], which

has been proven safe and live [Yemi 82]. It has been shown that the protocol would never achieve

its eventual goal if the time-out rate is not properly set. By specifying and analyzing protocol

timing requirements, performance parameters of the protocol (such as the time-out rate in the

send-and-wait protocol) can be properly set. The resulting timing behavior would thus be (time

wise) realistic and estimates of its duration can be computed.

Early work on the specification of timing requirements has been done by Merlin [Merl 76] using

time PNs (see section 2.2.2.4). A bounds representation of time has been used to describe

37

minimum and maximum firing times for a time-out transition in the Alternating Bit protocol.

Similar time representation has been used by Sabnani [Sabn 82b] but for FSM specifications.

Note that in both of these cases, the state exploration of the concurrent behavior of the local

processes resulting in a description of the protocol global behavior, should be modified. Consider

a state in the global state description where n possible transitions are possible. Let ti.min and ti.max

denote the minimum and maximum time for transition i, respectively. The corresponding

transition in the global description has the bounds of (Min[ti.min],Min[ti.minD, where Min is an

n-ary operation to compute the minimum. A transition in one of the local processes with tmin

greater than the upper bound on the corresponding transition in the global behavior, would be then

time-wise unrealizable. The limitation of these two efforts stems from the state explosion problem

associated with the specification tools used.

Shankar and Lam [Shan 84] assume a constant time representation and use time variables to

refer to the occurrence times of events. By including time variables in the enabling condition of an

event e, time constraints of the form "event e can only occur after a given time interval" or

"event e will occur within a certain elapsed time interval" are stated as safety properties and

verified accordi ngly.

2.4.2. Tools for Analyzing Protocol Performance Measures

Protocol performance measures are indications of how well the protocol will perform. Examples

of such measures include execution time, delay, and throughput. The execution time is the time

required by the protocol to reach one of its final states, starting from the initial state. It would be a

valuable performance measure for terminating protocols such as a connection establishment

protocol where it represents the time required for the distributed processes involved in the protocol

to get connected. Throughput is the transmission rate of useful data between processors,

excluding any control information or retransmission required by the protocol. It indicates how

efficiently the transmission channel is utilized. Delay is the time from starting a message

transmission at the sender to the time of successful message arrival at the receiver. It is useful in

indicating the degree of service that the protocol provides.

Two tools are typically used in evaluating protocol performance measures: analytic tools, and

simulation tools.

38

2.4.2.1. Analytic Techniques

Various instances of resource contention and the related queueing delays are often witnessed in

the operation of communication protocols. For example, in the send-and-wait protocol a new

message arriving at the sender has to be queued if the sender is busy waiting for the successful

acknowledgment of a previously sent message. Therefore, queueing theory provides a convenient

mathematical framework for fonnulating and solving protocol perfonnance models [Klei 75, Koba

78, Reis 82]. In such a queueing model, the server denotes the protocol system under consideration

which is typically modeled as a stochastic process.

Let us demonstrate how the delay of the send-and-wait protocol can be computed using basic

probability laws and the protocol's FSM specification. Assume that the time involved in each

transition of the reachability graph in Fig. 2-8 is an exponentially distributed random variable.

Also, assume that a negligible delay is involved at both the sender and receiver ends of the

medium. Based on these assumptions and considering a single cycle operation of the protocol, a

modified reachability graph is shown in Fig. 2-9. The problem can be stated as follows: evaluate

the mean value of delay d between state 2 to 8 in Fig. 2-9. The following data is used next:

medium bandwidth of 9600 bits/sec. (for terrestrial links), mean message and acknowledgment

lengths I of 1024 bits (therefore the mean transmission time ts is 0.0 17sec./message), bit error

probability Pb of 10-5, mean propagation delay td of 0.0 13 secJmessage, and mean time-out tT of 1

secJmessage.

Recall from section 2.1 our assumption that time-out occurs only after the medium has lost a

message. This indicates that the probability of time-out is the same as the probability of a lost

message. Therefore, the probability of the time-out loop denoted by p is given by

p = 1 - (1 - Pb)l

which is approximately 1 - e-1Pb if [Pb « 1

The mean delay is given by

E[d] = p/(l-p) CtT + ts) + 3ts +2td
= 0.357 secJmessage

and the second moment of d is

(2.1)

(2.2)

E[d2] = p/(l-p) (2tl + 21s 2)

+ 2p2/(I_p)2 (tT + ts)2 + 6t/ +4tl
= 0.09

39

2.3

Assume that messages arrive at state 2 in Fig. 2-9 with rate A, then the protocol's mean transfer

time T which is the sum of delay and a waiting time is given by the Pollaczek-Khinchine formula

[Klei 75]:

T - E[d] + (A. E[d2])/(2[I-A. E[d]]) (2.4)

In Fig. 2-10, we plot T versus A. for various message lengths. As expected. T increases as A.

increases and the system becomes saturated when A. approaches IIE[d]. Also, as I increases T

increases due to the increases in transmission times and p.

Figure 2-9: A modified reachability graph of the sendcand-wait
protocol

u
(!J
II')

1.5

1 '"' 1. 5 K bit

1 .. 0.5 K bit

o
o 0.5 1.0 1.5 2.0 2.5 3.0

A message/sec.

Figure 2-10: Transfer time versus arrival rate of the send-and-wait
protocol

40

One example of specification-based performance evaluation tools is reported by Molloy [Moll

81]. Molloy introduced stochastic Petri nets (SPN) which are Petri nets extended by assigning a

random firing delay to each transition in the net. The reachability set of the net is first generated

and analyzed for logical correctness, then a Markov chain that is isomorphic to the set, is

generated. The steady-state probabilities of the Markov chain are calculated and used in modeling

and computing throughput and delay. This approach is limited only to exponentially (in the case

of continuous representation of transition firing times) or geometrically (in the discrete case)

distributed firing delays. Other specification-based approaches to protocol performance

evaluation can be found in [Bolo 84, Krit 84, Raze 84, Rudi 84].

The specification-based approach has the advantage of allowing performance evaluation tools to

41

be automated. This would also facilitate its integration with other development tools in a protocol

development environment. However, the approach largely depends on devising a mapping

between protocol specification and the performance model. This mapping may be in some cases

too restrictive as is the case, for example, with the Markovian property of the resulting

performance model of SPNs.

Examples of works based on the direct approach can be found in [Gele 78, Tows 79, Yu 79, Bux

80]. In this approach, all possible behaviors of the protocol under study has to be extracted

directly from a human understanding of its operation.

2.4.2.2. Simulation

Analytic performance models of real-life protocols are usually intractable. In this case,

simulation is used in evaluating protocol performance. Even when an approximate model of the

system is sought, simulation can be a valuable tool in validating the modeling approximations and

assumptions.

In the case of specification-based simulations, the protocol specification used should be

executable. Referring to our taxonomy of Fig. 2-7, a specification that is easily executed is one

that can also be easily transformed into an implementation. An example on specification-based

simulation of protocol can be found in [Regh 82]. Direct protocol simulations, on the other hand,

are based on a protocol implementation. For example, a direct simulation of the HOLe

procedures has been carried out by Bux, et aI. [Bux 82].

The shoncomings of simulation are clearly its high cost in terms of time and effort. and the little

understanding of the system gained. The second problem can be alleviated through a large number

of simulation runs.

Part II

Methodology

42

43

Chapter 3

Protocol Functional Specification and Analysis

3.1. Introduction

The objective of this chapter is twofold. First, to provide an overview of a protocol specification

algebra that will serve as the basis of automated performance analysis in the next chapter. The

algebra is a variant of Milner's calculus of communicating systems (CCS) [Miln 80] (see section

2.2.2.5). Second, to demonstrate how progress errors (e.g., deadlocks) in the protocol can ~

easily detected through algebraic calculations. A connection establishment protocol is used as an

example throughout the chapter.

The algebra is introduced in section 3.2 and applied to specify protocols in section 3.3. In

section 3.4, the algebra is used to detect protocol progress errors which are further classified into

deadlock and unspecified reception errors. These errors are the most common protocol design

errors [Rudi 85]; verification of freedom of other protocol design errors is not addressed in this

work. The use of the algebra in computing the concurrent behavior of a protocol is described in

section 3.5. In section 3.6, three functions which are used to isolate sub-behaviors of a protocol

that a protocol designer may require for functional and performance analysis, are introduced.

Finally, a summary of the issues presented in this chapter, and an outline of how they are used in

the first step of the methodology for specification-based performance analysis of protocols are

presented in section 3.7.

3.2. A Specification Algebra

3.2.1. Trees Can Provide an Operational Model of Protocols

Consider the connection establishment protocol [Rudi 85] between a terminal process T and a

network process N communicating through two half-duplex. FIFO channels R (T to N for call-

44

request messages) and I (R to N for incoming-call messages). The execution of each of the four

processes can be described in terms of a tree as depicted in Fig. 3-1. The nodes of a tree represent

a state of execution. and the branches represent occurrence of events. Several branches emanating

from a node represent alternative events. The terminal starts in a ready state and becomes

connected upon either sending a call-request (!req) to the network (via channel R), or receiving an

incoming-call (!inc') from the network (via channell). When the terminal is in a connected state,

its behavior terminates ($). The two channels simply receive messages (?req or ?inc) and deliver

them (!req' or !inc'). The behavior of the network is similar to the terminal (change req to inc, and

conversely).

Behavior of Terminal T

(Connected)

Behavior of Network N

(Connected)

$

(C onnected)

$
(Connected)

Behavior of Channel R

R (Empty)

?req

!req'

$

Behavior of Channell

I (Empty)

?inc

!inc'

$

Figure 3-1: Trees describing the execution behavior of the
processes in the connection establishment protocol

Generally, an execution tree (ET) is a labeled tree where:

1. Nodes can be labeled with identifiers, denoted by italicized capital letters. The
special symbol . '$" , denoting termination, can only label leaves.

2. Branches are labeled with send, receive, or rendezvous events, denoted by lower
case strings and preceded by a"!", "?", and "&", respectively. Rendezvous
events represent successful interactions of corresponding send and receive events
(co-events) having the same names (name[!e]=name[?e]=e). For example, an
interaction of "!req" and "?req" produces the rendezvous event" &req" .

3.2.2. Execution Trees Form an Algebra

45

ETs form the objects of an algebra [Grat 68]. The operations of the algebra describe composition

of ETs to form new ETs as follows:

Sequential composition: let e denote an event and E an ET. e.E denotes the tree
obtained by attaching a branch labeled e to the tree E. See
Fig. 3-2 (a).

Non-deterministic composition: let A, B be two ETs, A + B denotes the tree obtained by
joining A and B at their roots. See Fig. 3-2 (b).

(a) Sequential comE-osition e. E

(b) Non-deterministic
composition

e • e

+

Figure 3-2: Sequential and non-deterministic compositions of ETS

Two expressions El and E2 in the algebra of ETs are said to be equivalent. El == E2, if and only if,

they represent the same event sequences and the choices at corresponding nodes in their ETs are

the same, A formal definition of equivalence is given in appendix 3.I. The meaning of the

operations in the algebra can be described, in analogy to standard algebras, using equational

axioms as follows:

46

Axioms:

AI. A+B - B+A

A2. A+(B+C) - (A+B)+C

A3. A+$ - A

A4. A+A - A

Since non-detenninistic composition is commutative (AI) and associative (A2), it can be

generalized to an n-ary operation I,7=1' An expression A in the algebra of ETs can then be

represented canonically as a swn of summands I,:I a j • A j • (Note that from A3, $ = L~-I .)

The concurrent execution of two communicating ETs can be simulated by having each pair of

co-events produce a rendezvous event, and considering all possible shufflings of these events.

This concurrent execution can be represented by a new ET. It is formally captured by a

concurrent composition operator" I" in the algebra of ETs. which is defined in terms of the

primitive composition operators below. Let scope(A,B) of communication between two ETs A

and B denote the set of names of events with which they communicate. We assume one-to-one

addressing meaning that each message has unique sender and receiver processes. Thus. the

intersection between two different scope sets should be always equal to 0. (A formal definition of

the scope of any two expressions is given in appendix 3.1I.)

Concurrent Composition Definition:
11 m

LetA= '" a .• A. and B= '" b .• B., then L- I I L- J J
j-I j=l

AlB '" a .• (A·IB) L- I I +
"if a., name(a.) fi! sco'Pe(A)1)

J J

+ '" &e .(A.I B.) L- I J
"if a. and b. where:

J J
(1) name(a.) = name(b.) = ee sco'Pe(A,B)

I J
(2) a. and b. are co-events.

I J

'" b .• (A IB.) L- J J
"if b

j
, name(b)rc scope(A)1)

Concurrent composition is easily shown to be commutative and associative. Also, from A3 and

the definition above, we can deduce that A 1$ = A. The concurrent composition of the terminal T

47

and channel R ETs of Fig. 3-1, produces a new l ET: RT ~ R 1 T depicted in Fig. 3-3. Scope(T,R) is

gi ven to be equal to {req}.

!req'

$

Figure 3-3: ET resulting from the concurrent composition of the
two ETs of terminal T and channel R

Having presented the operations of the algebra, we can now define the syntax of an expression in

the algebra of ETs. Let the set of events be denoted by ~ and the set of identifiers be denoted by

r.

Definition 3.1 An expression E in the algebra of ETs is either: $, IE r, eo E (e E ~), E + E,
or, EIE.

Let the set of expressions in the algebra of ETs be denoted by x. Upper case letters will be used

to range over x. An ET can be described by either one expression or a set of possibly recursive

equations in the algebra. As an example of the latter, the ET describing the behavior of channel R

in Fig. 3-1 corresponds to two equations: R = ?req oR\ and R\ = !req' 0 $.

The algebra of ETs differs from CCS in three key respects. First, all rendezvous events in CCS

are considered to be identical. We differentiate between them according to the names of their send

and receive events since various rendezvous events typically have different perfonnance

properties. Second, addressing is many-to-many in CCS as opposed to one-to-one in the algebra

of ETs. One-to-one addressing is assumed in the algebra of ETs because it simplifies the

expansion of the concurrent composition of processes, and can be used to simulate many-to-many

IWe will adopt the notation that 1\1/2 corresponds to a new identifier that is a concatenation of these identifiers after

sorting !hemin ascending order; that is, 1\12 = 1\1/2 =/21/\.

48

addressing when needed by explicitly modeling the common mailbox as a process. Third, send

and receive events in CCS can be accompanied by data transfer. Only the communication aspect

of these events is considered in the algebra of ETs.

Issues such as completeness of the algebra and existence of a unique solution of expressions in

the algebra are addressed in [Miln 80, Miln 81, Sand 82].

3.2.3. The Algebra of ETs is Different From the Algebra of Regular Events

The algebra of ETs is similar in several respects to the algebra of regular events [Salo 66] whose

terms represent the languages accepted by finite state automata. In fact, comparing the rules of

equivalence between the two algebras indicates that they are virtually the same, except for two

main differences. First, the concurrent composition operation which is not included in the algebra

of regular events but included in the algebra of ETs. Second, the distributive law:

a.(B+C) =a.B+a.C is accepted in the algebra of regular events but rejected in the algebra of

ETs. This is due to the difference in the underlying definition of equivalence between the two

algebras. Expressions in the algebra of regular events are equivalent if they represent the same set

of event sequences. On the other hand, expressions in the algebra of ETs are equivalent if they

represent the same event sequences and the choices at corresponding nodes in their ETs are the

same. In the expression on the left hand side of the law, there is a choice between behavior B or

C. However, on the right hand side the choice is between a and a.

3.204. The Algebra of ETs Meets Most Specification Requirements

The key requirements of a protocol specification method have been introduced in section 2.2.1.

They state that for a specification method to adequately model functional behaviors of pro [Qcols, it

should suppon the modeling of concurrent and non-deterministic behaviors; abstract and modular

descriptions; and the modeling of control (or communication) functions and data transfer functions

of protocols. Funhermore, a specification method should suppon features that facilitate the

application of other protocol development tools such as verification and performance analysis.

The algebra of ETs supports modeling of concurrent and non-deterministic behaviors. It also

supports modeling of modular descriptions of protocol processes in which details of their

49

operation are abstracted; only their communication behavior is considered. However, the algebra

does not meet completely two of the above requirements. First, modeling of data transfer functions

of protocols is not supported (this is a possible extension to the specification algebra as will be

discussed in section 8.2). Second, since the primary objective of the methodology is performance

analysis, only support for performance analysis of protocols is provided. In chapter 4, we will

discuss how the specification algebra can be augmented with timing information needed for

performance analysis.

3.3. Protocol Processes Can Be Specified Algebraically

The functional behavior of a protocol process can be specified by a complete set of equations in

the algebra of ETs. A set of equations is complete if every identifier appearing on the right hand

side of an equation also appears on the left hand side of some equation. For example, algebraic

specifications of the processes (whose ETs were depicted in Fig. 3-1) in the connection

establishment protocol, are given by

PROCESS T
T = !req.$ + ?inc'. $
END

PROCESS R
R=?reqoR\
RI = !req' oS
END

PROCESSN
N=?req' .$+ !inc o$
END

PROCESS I
1= ?inco/ l
II = !inc'.S
END

The configuration of a protocol can be specified by a list of procec;ses and the scope of

communication between each pair of them. A protocol specification is then defined to include a

specification of its configuration, and algebraic specifications of its processes. The configuration

of the connection establishment protocol, which is depicted in Fig. 3-4, is specified as follows:

PROTOCOL Connection Establishment: T,R,N)

scope(T,R) = {req}
scope(N J) = {inc}

END

scope(R,N) = {req'}
scope(/.T) = {inc'}

? , .Inc __ _ ! inc' NETWORK-TO-TERMINAL
CHANNEL

?' I' • inC _ - - • inC

TERMINAL
T

I

NETWORK
N

! req I'- - - ?req TERMINAL-TO-NETWORK ! req' - - - ?req'
CHANNEL

R

Figure 3-4: Configuration of the connection establishment
protocol

3.4. Progress Errors Can Be Detected Through Concurrent Composition

Definition 3.2

50

A progress error in the concurrent execution of A and B exists if

A I B =$ while A;z!:$ and B ;z!:$.

The resulting $ in such cases indicates improper termination as opposed to proper termination

which occurs when concurrently composing two terminating expressions: SIS = S. A progress

error is an indication of either a deadlock error or an unspecified reception errorin the behavior of

one or both of the behaviors being composed, as defined below. A deadlock error is due to an

indefinitely unsatisfied send request, whereas an unspecified reception error is due to an

indefinitely unsatisfied receive request Let the choice set CH be a function: X ""'* power set of ~

such that CH('~ 1 a.· A.) = {a.; i= l. ... ,n}. £_d= I' ,

Definition 3.3

If a progress error occurs while concurrently composing expressions A and B, then there is:

• a deadlock error for each receive event belonging to CH(A)uCH(B), and

• an unspecified reception error for each send event belonging to CH(A)uCH(B).

51

A protocol exhibits a deadlock2 (unspecified reception) error if the concurrent composition of

any pair of its processes exhibits a deadlock (unspecified reception) error. The concurrent

composition of two processes involves the concurrent composition of several pairs of expressions

in their specifications. It should be noted that based on the given specifications and the protocol

designer's decision, some of the progress errors discovered may not be undesirable but can be

considered proper terminations. An example of such cases is shown next.

Using the concurrent composition definition, the concurrent composition of the four processes in

the connection establishment protocol, given in the previous section, is as follows:

RT~RIT
= &req. (R 11$) + ? inc' • (RI$)

RIIS= !req'.$
R I $ = $ (progress error 1)

END

INRT~ RTIIN
=&req~/NIRI +&inc./IIRT

INIRI = INRI =&req' .$+&inc·(lIIR I)

IIIRT=/IRT=&inc' .$+&req.(RII/I)
IIIRI =RII/I =$

IN~ liN
= &inc • (11 1$) + ? req' • (11$)

II I $ = ! inc' • $
II S = $ (progress error 2)

END

(progress errors 3 and 4)

From definition 3.3, the first two progress errors discovered above are found to indicate two

deadlock errors since CH(R)uCH(S) = {?req} and CH(l)uCH($) = {?inc}. These deadlocks occur

when the terminal and network are connected and the two channels are empty which is the normal

final state of the protocol. Therefore, they are not undesirable errors but can be considered as

proper terminations. The third and fourth progress errors discovered, however, indicate four

unspecified reception errors since CH(lI)uCH(RI)={!req',!inc'}. Unlike the deadlock errors,

these are undesirable errors that occur because the specification of the protocol does not handle

situations in which both the network and the terminal attempt to initialize a call concurrently (call

collisions).

2Deadlock errors exhibited by a protocol are assumed subsequently to refer to deadlock of one or more protocol
process. These deadlock errors then may not lead to a protocol deadlock as defmed in section 2.3, where all the protocol
processes are in deadlock.

52

The specification of the protocol can be revised to allow the protocol to recover from such call

collisions. ETs for the revised terminal and network are shown in Fig. 3-5; the complete protocol

specification is given in appendix 3.III.I. The revised specification also models successive

connections where the terminal can send a terminate message (!term) to terminate a current

connection; other connections can be initiated later. The specification of the network covers the

possibility of receiving two successive terminating messages from the terminal. This is due to

premature termination of a connection, which occurs when a call collision occurs and there is an

outstanding terminate and incoming-call messages in the channels. This is caused by having a call

collision occur, then the terminal terminating the connection before receiving the incoming-call

message. Or, a terminate is sent when there is a chance of the network sending an incoming-call

before receiving the terminal's call-request. The terminal assumes that this incoming-call message

is a request for another connection and a second terminate is then required to end this second
,

unnecessary connection.

T

Figure 3-5: ETs of the terminal and network in the revised connection establishment protocol

3.5. Protocol Concurrent Behavior Can Be Computed Algebraically

The concurrent behavior of a protocol can be computed by concurrently composing the

specifications of all the processes involved in it. For example, the concurrent behavior of the

revised connection establishment protocol is obtained by concurrently composing its four

processes T, R, N, and I. The resulting behavior, INRT, is panially shown in Fig. 3-6 and its

algebraic specification is given in appendix 3.III.2. No progress errors were detected and

therefore the revised protocol is free from any deadlock or unspecified reception errors. INRT

53

includes 25 equations and 48 summands. Most of these identifiers and summands are due to call

collisions and premature terminations of connections. The performance of those behavior

sequences belonging to INRT in which there are no call collisions or premature terminations will

be analyzed in the chapter 4. However, it is necessary first to isolate these behaviors in order to be

able to analyze them.

lNRT

Figure 3-6: ET of the concurrent behavior INRT

3.6. A Protocol Designer Needs to Study Sub-Behaviors

Generally, a protocol designer may be interested not only in the entire concurrent behavior of a

protocol, but also in some of its sub-behaviors. A sub-behavior of an ET is obtained by either

pruning some of its branches or chopping some of its sub-trees by replacing them with a leaf

indicating termination ($). An example of the former are behaviors with no call collisions in the

revised connection establishment protocol. An example of the latter are behaviors that terminate

after the terminate message is delivered to the network (term'), and the four processes are in their

initial state. These behaviors represent the execution of the protocol through one cycle.

Let us first classify expressions into terminating and cyclic. Let the set of reachable identifiers

R(E) from an expression E denote the set of all identifiers that can be possibly reached in an

execution of E. It can be defined recursively by R(I?;l ajoA) = {A1}uR(A1)· .. U{A,,}uR(A,,).

where R($) = 0. An expression is said to be terminating if all identifiers in its reachable set are

terminating. An identifier A is terminating if and only if one of its summands is of the fonn a 0 $.

where a is any event, or of the form a 0 B where B is terminating. Otherwise, A is cyclic. For

example, the specification of the processes in the original connection establishment protocol,

54

given in section 3.2.1, are all terminating. They describe the behavior of the protocol for only one

connection after which the processes terminate. Conversely, the specifications of the processes in

the revised version of the protocol are all cyclic. They describe the behavior of the processes

during the course of successive connections.

The concurrent behavior INRT of the revised connection establishment protocol is also cyclic

describing several connections between the terminal and network processes. Suppose we are

interested in its sub-behavior that describe the behavior of the protocol during the course of one

cycle starting from the initial state INRT and ending with &term' when the protocol's state is

INRT. Let this terminating behavior be denoted by INRT r The first function, Terminate, can be

used to derive such behaviors. Terminate maps a given expression and some summand(s) of an

expression, of the form a .A, to another expression in which such summand(s) are changed to a. $.

Thus, it can be used to map a cyclic expression to a terminating one.

Let n represent the power set of a set that includes all pairs of events and identifiers (e ,1), where

eE ~ and IE r.

Definition 3.4

Terminate is a function: Xx n ~ X such that
11

Terminate["" a .• A.,PE n]= "" a .• Terminate[A.,P] + ~" £...J I ,

i-I i~j '<t(Qj.A}eP

a .• $
),

For example, INRT T can be computed by terminating INRT with the delivery of terminate

(&term') to the network when all four processes are in their initial states (lNR1). It can be

specified in terms of the Terminate function as follows:

INRT T= Terminate [INRT, {(&term' ,1NR1)}] (3.1)

An illustration of this mapping from INRT to INRT T is shown in Fig. 3-7. A complete listing of

INRT T is given in appendix 3.III.3.

The Precedence function, defined below, will be used to map a given behavior into a sub

behavior by pruning some of the branches of its ET. This is performed based on given pairs of

55

INRT --+ Terminau [INRT. ((&.rerm'JNRT)}j --. INRT T

$

Figure 3-7: An illustration of the Terminate function

events such that whenever in the given behavior's ET any pair of events label outgoing branches

from some node, then the branch of the second event in the pair is pruned. In such event pairs. the

first event is said to have precedence over the second.

Let <I> denote the power set of a set of all event pairs.

Definition 3.5

Precedence is a function: X x <I> -7 X such that
/I /I

Precedence[A=" a .• A.,S E <1>] = " a .• Precedence[A.,S] L.J l I L..J, ,
i= l.i 'T-j

The Precedence function can be used to compute two sub-behaviors of the concurrent behavior

of the connection establishment protocol(lNR1). In the first sub-behavior there are no call

collisions, and in the second there are no premature terminations. Let INRT PI denote those sub

behaviors in which there are no call collisions. A call collision can be avoided if in INRT T' &req'

has precedence over &inc, and &inc' has precedence over &req. That is, if a call-request message

has been sent by the terminal and pending delivery to the network (&req'), then the possibility of

the network sending an incoming-call (&inc) is excluded. A similar explanation applies to the

second precedence relation. Therefore, INRT PI is formally specified by

INRT PI =Precedence[lNRT T' {(&inc',&req),(&req',&inc)}] (3.2)

56

An illustration of this mapping from INRT T to INRT PI is shown in Fig. 3-8. A complete listing

of INRT PI is given in appendix 3.11I.4.

INRT --+ Precedence [INRT
T

, {(&.inc',&'reqJ.
T (&.req',&'inc J) J

Figure 3-8: An illustration of the Precedence function

Let INRT n denote the sub-behaviors of INRT in which no premature tenninations of

connections occur. As noted in the previous section, premature terminations are caused by those

tenninate messages that are issued by the terminal when there is a chance that there will be

outstanding tenninate and incoming-call messages in the channels at the same time. These

situations are manifested in the behavior INRT T whenever events &inc' and &term are contending,

or whenever events &inc and &tenn are contending since it might lead to the fonner. If the &term

event occurs at such instants, it is premature because it always leads to behaviors where a second

tenninate message is required to end an unintentional second connection. INRT P2 can thus be

computed from INRT T by having both &inc and &inc' take precedence over &term. It is fonnally

specified by

INRT P2 = Precedence [lNRT T' {(&inc,&tenn),(&inc',&tenn)}] (3.3)

A complete listing of INRT n is given in appendix 3.m.5.

Similar to the Precedence function, the Restrict function, defined below, will be also used to

map a given behavior into a sub-behavior by pruning some of the branches of its ET. In the case

of Restrict, the pruning is done based on given event-identifier pairs. Whenever in the given

behavior's ET any event in a given pair labels an outgoing branch from some state other than the

one denoted by the identifier associated with it, then this branch is pruned. In such even-identifier

. 57

pairs, the event is said to be restricted to occur only in its associated state.

Definition 3.6

Restrict is a function: X x IT ~ X such that
II

Restrict[A=" a .• A.,Pe IT] = "a .• Restrict[A. P] £..J I I L... I "
't:j (a.,A.)e P andA.;:A

J J J
i-1 i~j

For example, the ET corresponding to A =&a.A1 +&b.A, where A1 =&b.A +&a.$, and the ET

corresponding to Restrict[A.{(&b,A1)}] are depicted in Fig. 3-9. Here event &b is restricted to

occur only in state A l'

Figure 3-9: An illustration of the Restrict function

Note the following regarding the three functions introduced above:

• The Precedence function is a special case of the Restrict function. A behavior
specified by the former with some precedence relations between pairs of events can
be also specified by restricting the lower precedence events in the states where
contention between event pairs does not occur. However, some behaviors (e.g.,
INRT PI in eq. 3.2) can be more naturally and concisely specified in terms of the
Precedence function than the Restrict function.

• Given a protocol behavior, the functions can be used to map it to sub-behaviors that
are often much smaller. A protocol designer, to save time and effort, may find it
attractive in some instances to concentrate on these sub-behaviors instead of the
complete protocol behavior. One example of such cases is considered in section 6.2.2 .

• The specification obtained from applying one of the three functions to a process
specification may have different properties from the given specification. For
example, Precedence or Restrict may map a given terminating specification to a
cyclic specification. Or, a progress error obtained from concurrent composition may
not be reachable in the resulting specification if a branch leading to that error is

58

pruned, or its sub-tree is chopped, due to the application of these functions.

3.7. Summary

An algebra for specifying the communication behavior of protocol processes modeled by trees

has been presented. Differences between the introduced algebra and both CCS and the algebra of

regular events have been discussed. The algebra is shown to support the concurrent composition

of processes. It is also shown how the concurrent behavior of a protocol can be automatically

computed by concurrently composing the specifications of all the processes involved in it. During

the expansion of these concurrent compositions. any deadlock or unspecified reception errors in

the specifications of the protocol processes can be detected. A protocol specification has been

defined to include algebraic specifications of its processes, and a specification of the scope of

communications between them. Three functions: Terminate, Precedence, and Restrict, have been

defined to be used in isolating interesting protocol sub-behaviors. In the next chapter, we will

show how these functions can be used in specifying and analyzing the performance of a protocol.

A simple connection establishment protocol has been used to demonstrate how these concepts

can be used in the first step of the methodology: to functionally specify and analyze protocols.

This involves algebraic specification of the functional behavior of a protocol, computing its

concurrent behavior, and possibly computing some of its sub-behaviors. If any deadlock or

unspecified errors are detected during the concurrent compositions, few iterations of changing the

specification of the protocol's configuration and/or its processes and then concurrently composing

them again until they are free from errors, may be required. In the next chapter we will present the

second step of the methodology. We will examine how the timing behavior of a protocol can be

automatically extracted from its algebraic specification, and how performance can be formally

specified and automatically analyzed.

Appendix 3.1. Equivalence of Expressions in the Algebra of ETs

Let derivative a be a relation from ~xX ~X such that given an expression A, ae(A) = B if and

only if there is a summand of A of the form e. B, otherwise, it is undefined. Suppose we restrict

expressions in the algebra of ETs to be well formed: expression A = I:l a j • Ai is well formed if

all events aj , i= l, ... ,n are distinct. Then, the derivative of such well formed expressions relative to

59

any event will be always unique, and the derivative would be a function of expressions and events.

Definition 3.7

Expressions A and B are equivaLent (written as A=B) if and only if A=1c B, 'r;f k2.0, where

(i) A=o B always, and

(ii) A= k+1 B, k2. 0 if and only if 'it a E ~:

This equivalence relation is the same as Milner's strong congruence relation defined in ([Miln

80], section 5.7). It is shown to be a congruence relation (theorem 5.4 [Miln 80]) meaning that if

A=B then

(i) a.A =a.B,

(ii) A+C=B+c' and

(iii)AIC=BIC.

Appendix 3.11. A Formal Definition of Scope

Definition 3.8

The scope(A,B) of communication between ETs A and B is defined as the set of names of
events with which they communicate. It is assumed that the scope of communication
between two processes is specified by the protocol designer. Let parent(A) denote the
expression represented by the ET rooted at the parent node of A. The scope of two arbitrary
expressions in the algebra of ETs is computed using the following rules:

(i) scope(A,$) = 0
(ii) scope(l) = scope(E)
(iii) scope(A,B) = scope(parent(A),parent(B))
(iv) scope(A,B) = scope(B,A)
(v) scope(A I B,C) =scope(A,C) u scope(B,C)
(vi) scope(A I B,C I D) =scope(A,C) v scope(B,C)

v scope(A,D) u scope(B.D)

for equation 1= E

Appendix 3.ll!. Algebraic Specifications of Behaviors of the Connection

Establishment Protocol

3.III.I. Protocol Specification

60

The configuration of the revised protocol is depicted in Fig. 3-10. Specifications of the

configuration of the protocol and its four processes follow.

PROTOCOL Connection Establishment: T ,RJlJ

scope(T ,R) = {req , te rm}
scope(N J) = {inc}

END

PROCESS T
T= !req,C l +?inc' ,C l
Cl = ?inc' ,C l + !term. T
END

PROCESS R
R=?req.R l +?term.R2
Rl = !req'.R + ?term .R3
R2 = !term' • R
R3 = !req' .R2
END

?inc
,

! inc
,

... --

scope(R.N) = {req' ,term'}
scope(l,1) = {inc'}

PROCESSN
N = ?req' • C2 + !inc. C2 + ?term' • N
C

2
=?req'.C

2
+?term'.N

END

PROCESS I
I=?inc.I\
I\=!inc'.I
END

NETWORK-TO-TERMINAL ?inc --- line
CHANNEL

I

TERMINAL NETWORK
T

!req ~--

!term ~--

?req TERMINAL-TO-NETWORK ! req' ?req
, ---

CHANNEL
?term R ! term' 1--- ?term

Figure 3-10: Configuration of the revised connection
establishment protocol

N

,

61

3.Ill.2. Concurrent Behavior

The concurrent behavior of the revised connection establishment protocol obtained by

concurrently composing its four processes: T, R, N, and I specified above is given by

INRT= &inc.CzRTIl +&req.ClRlNI
C2RTIl = &req.ClRlCil +&inc' .ClCi
CIRINI = &term.INR3T +&req' .ClRCi+&inc .ClRICil
CIRIC/I = &inc' .ClRlCi+&term.Cf?3TII +&req' .ClRCil
C1RCI = &term.C2R2TI
INR3T = &inc. Cf?3T1l + &req' • CzR2Ti
CIRICi = &term.C2R3TI+&req' .ClRCi
Cf?3T1l = &req' .Cf?2T1l +&inc' .CIR3C/
C1RCil = &inc'.ClRC/+&term.C2R2TI I
C2R2Tl = &term' .INRT
C2R3Ti = &req' • Cf?2TI
Cf?2Tll = &term' .IlNRT +&inc' .ClR2Ci
C1R3Ci = &req' .CIR2Ci
11NRT = &inc' .CIRNI + &req oClRlN11
C1R2Ci = &term'. ClRNI
CIRNI = &termoINR2T+&incoClC/l
C1RINli = &inc' .ClRlNI +&term.l lNR3T +&req' .C1RC!l
INR2T = &inc 0 CzR2T1 1 + &term' .INRT
IlNR3T = &inc' .ClR3NI +&req' oCJ?2Tll
C1R3Nl = &req' .ClR2C/+&incoClR3Cil
C1R3C/1 = &inc' .C1R3Ci+&req' oCIR2C/I
C1R2Cii = &inc' .ClR2C/+&term' oC1RNII
ClRNl l = &inc'.ClRNI+&term ol lNR2T
IlNR2T = &inc' .C1R2NI +&term' ollNRT
C1RI'l = &term' .CIRNI+&incoCIR2C/1

62

3.ID.3. Terminating Behavior

INRT T defined in eq. 3.1 and which represents the behavior of the connection establishment

protocol for one cycle is given by:

INRT T = &inc. CfiTII T+ &req. C IR INI T
C2RTII T = &req.CIRIC/I T+&inc' .CIRCI T
CIRINI T = &term.INR3T T+&req' .CIRCI T

+&inc.CIRIC/I T
CIRIC/I T = &inc'.CIRICI T+&term.C~3TII T

+ &req'.CIRC/I T
CIRCI T = &term. C2R2Tl T

INR3T T = &inc. C~3TI I T+ &req' • C~2TI T
CIRICI T = &term.C~3TI T+&req'. clRCI T
C~3TII T = &req' .C~2TII T+&inc'. CIR3CI T
CIRC/ I T = &inc'.CIRCI T+&term.CzR2TI I T
C2R2Tl T = &term'.$

C2R3Tl T = &req' • C2R 2Tl T

C2R2Tl i T = &term' .IINRT T+ &inc' .CIR2CI T
CIR3CI T = &req'. C IR2CI T
IINRT T = &inc' • C IRNI T+ &req. C IR INII T
CIR2CI T = &term' .CIRNI T

CIRNI T = &term.INR2T T+&inc.CIRC/ I T

C IR INII T = &inc' • C IR INI T+ &term .IINR3T T

+&req' .CIRC/I T

INR2T T= &inc.C~2TII T+&term'.$
IlNR3T T = &inc'.CIR3NI T+&req' .C2R2TII T
C IR3Nl T = &req' .CIR2Ci T+&inc.Cl3C/I T

CIR3Cii T = &inc' .C IR3CI T+ &req'. CIR2Cii T
C IR2C/ I T = &inc' .C1R2CI T+&term' .CIRNII T

CIRNI I T = &inc' .CIRNI T+ &term.IINR2T T

IlNR2T T = &inc' .CIR~1 T+ &term' .IINRT T
CIR~1 T = &term'. C1RNI T+ &inc. C IR2C/I T

3.IDA. Behavior With no Call Collisiol1s

INRT PI specified in eq. 3.2 and which represents behaviors with no call collisions is given by

INR2PI = &inc· C~TI I PI + &req. C IR INI PI

C~TIIPI = &inc' .CIRCi PI

CIRINI PI = &rerm.INR2T PI +&req'.C;RCI PI

CIRCI PI = &term.C~2TI PI

INR2T PI = &req' • C~2TI PI

C~2TI PI = &term' • $

63

3.III.5. Behavior With no Premature Terminations

INRT P2 specified in eq. 3.3 and which represents behaviors with no premature termination of

connections is given by

64

Chapter 4

Protocol Performance Specification and Analysis

4.1. Introduction

In this chapter, an automated approach to performance analysis of protocols based on their

formal algebraic specifications is introduced. Rules are devised to map an algebraic specification

of a protocol, and the probability distributions of its events times, to probability and time attributes

of its timing model. Protocol performance can then be formally specified in terms of these

attributes and automatically analyzed. Two aspects of protocol performance are addressed: timing

requirements and performance measures. Timing requirements of a protocol are conditions that

have to be met by its timing behavior to ensure efficient performance. Their analysis leads to the

evaluation of optimal settings of protocol performance parameters, such as the event rates.

Performance measures are indications of how well a protocol performs. They are automatically

analyzed using the rules for evaluating the probability and time attributes. and possibly queueing

theory. The main contributions of this chapter include: developing a model for protocol timing

behavior, devising rules for automatically computing key attributes of this model, and employing

these rules to formally specify and automatically analyze protocol performance.

The timing behavior of protocols is modeled as a marked point process in section 4.2. Key

attributes of this model are defined. and rules for evaluating them are presented in section 4.3. In

section 4.4, the specification and analysis of timing requirements and performance measures of

protocols using the timing attributes, is demonstrated. As an example, the performance of the

connection establishment protocol of section 3.4, is specified and analyzed. An upper bound on

the rate of terminating connections is computed, and the probability of call collisions is analy-zed.

Finally, a summary of the issues introduced in this chapter, and outline of how they can be used in

the second step of the methodology: performance specification and analysis, are presented in

section 4.5.

65

4.2. A Timing Model of Protocols

Consider the timing of a protocol behavior specified by a set of algebraic equations of the form

A = 2:~=1 ai • Ai' Assume that all the expressions are well-formed: expression A = 2::1 ai • Ai is

well fonned if all events ai' i= 1 , ... ,n are distinct. Subsequently, all expressions are assumed to be

well-fonned. The derivative of such well formed expressions A relative to an event a, denoted by

aaCA), has been defined in appendix 3.1 to be equal to A' if and only if there is a summand of A of

the fonn a. A'; otherwise, it is undefined.

Let us observe the timing behavior of A starting from some initial time to' At this time the

choice set CH(A) = {a1, ... ,a,) is said to be enabled, meaning that any event belonging to this

choice set may occur at the next occurrence time t l • If event ai occurs at t l , then the choice set

CHCa .CA)) is enabled. This continues until tennination of A when the choice set CH($) = 0 is
I

enabled and no events can possibly occur. Generally, if an expression Ei_1 is observed at t i_1

(Eo = A), then any event a E CHCEi-I) may occur at t i . The choice set CHcaaCEi_I)) is then enabled

at ti . Only events belonging to a choice set enabled at ti_ 1
can occur at ti • Also. only one choice

set is enabled at any time instant Note that each occurrence time ti has a collection of expressions

and choice sets associated with it for every event that may occur at ti_ l .

Such protocol timing behavior can be modeled as a marked point process [Snyd

75] [{t., m.},i ~ 0], where t. is the i-th occurrence time and m. is the i-th mark denoting the set of , " ,
possible events that may occur at t i . Each mark mi is a collection of choice sets CH(Ei-I) for each

expression Ei-I associated with li_l (mo = 0). For example, the occurrence times and marks of the

timing of the connection establishment protocol's terminating behavior INRT T (whose ET is

depicted in Fig. 3-7) is shown in Fig. 4-1. The figure describes the timing behavior of the protocol

during the course of one cycle.

Let us assume that the occurrence times of a protocol timing behavior are continuous random

variables. Computing statistics of these occurrence times is very complex because they are

dependent on the marks associated with them and the event that occurred at the previous

occurrence time. The computations can be simplified by assuming that the occurrence time of an

event, is independent of the other events in it's choice set. The occurrence time of an event is

measured from the time its choice set is enabled until it occurs.

&req &inc &inC~inC'

~
to t1 t2

mo=0

m 1={ {&req,&inc}}

m2={ {&inc,&req',&term},{&req,&inc'}}

m
lt
={ {&term', ... } ... }

&term'

st/
t
It

Figure 4-1: The timing behavior of INRT T

66

time

Suppose that expression C is observed at some time ti_I" Let 'ta denote the occurrence time of

event a E CH(C) measured from t. l' and F (t) denote the probability distribution of't . Then. the
~ a a

probability that one such event a occurs at t., and the mean and variance of the time until it occurs
I

are given by the following lemma.

Lemma 4.1

1. The probability that event aE CH(C) occurs at t. conditioned on the fact that CH(C)
I

is enabled at ti-I' is given by

pc(a)=f
OO

II [l-F (t)]dF(t) o a. a
aiE CH(e) • ai",a I

2. The time duration from ti-l when CH(C) is enabled until a E CH(C) occurs (at t) has
a conditional mean, denoted by J.1.c(a) , and variance, denoted by ada), which are
given by

J.1.c(a) = FO II [1- Fa.(t)]dt
o a.E CH(e) I

I

ac(a) = foo t II [l-Fa.(t)] dt - ~(a)
o a.E CH(e) I

I

(4.1)

(4.2)

(4.3)

Proof: The complete proof is given in appendix 4.1. An outline of the proof is as follows. The

67

events belonging to a choice set CH(C) enabled at ti-l are actually contending with each other for

occurrence at tj" However, only one of them can occur since when one occurs, for example a. it

then enables the choice set CH(aa(C)' This implicitly means that the choice set CH(C) is disabled

since only one choice set can be enabled at anyone time. As a consequence of the contention

between the events for occurrence at tj and their mutual exclusion, the conditional probability of a

occurring is given by

pC<a)=Pr(isMin{1: ,\/a.E CH(C»}
a aj J (4.4)

This is shown in appendix 4.1 to lead to the first equation in the lemma. From the contention of

events for an occurrence time and their mutual exclusion, the time duration from t. 1 to t. is mven
j_ ,(:I'"

by

t.-t. 1 =Min{1: ,\/a.E CH(C)}
I l- aj J (4.5)

The mean and variance of this is shown in appendix 4.1 to lead to the second and third equations

in the lemma, respectively.

4.3. Attributes of a Protocol Timing lHodel

We are interested in distinguishing those attributes of a protocol timing model that are often

required in specifying protocol perfonnance. Let C and A be tenninating and well-fanned

expressions such that A represents a subset of the summands of C, to be denoted by Sum(C). A

probability attribute P c(A) denotes the conditional probability of A occurring relative to the

sample space Sum(C), given that the choice set of C is enabled. Let the time duration of A relative

to C be defined as the length of time staning from when CH(C) is enabled until A terminates. A

mean-time attribute MC(A), and a variance-time attribute V c(A) are the mean and variance of the

duration time of A relative to C, respectively.

Note that each of these attributes is a function from terminating and well-formed expressions in

the algebra of ETs, denoted by X ex, to positive real numbers: X xX ~9t+, (In the case of the
I (t.

probability attribute. the real numbers are bounded by 0 and 1.) Theorems 4.1, 4.2. 4.3 given next

define mappings from operations in the algebra of ETs to arithmetics operations on the

probability. mean-time, and variance-time attributes, respectively. The proofs of the theorems are

68

given in appendix 4.1. Similar rules have been devised for directed graphs [Elma 64, Beiz

70] although they are defined in an algorithmic manner.

Theorem 4.1

Theorem 4.2

pcCa). Pa (C)(A)
a

n

L PcCa i
o A)

i-I

n

L PC(a)' MC(a i 0 A)
i-I

The only assumptions made so far regarding the timing behavior of protocols are that the

occurrence times are continuous random variables and that the events occurrence times of

contending events are independent. No assumptions were made regarding the kind of their

probability distribution. Hence, the above theorems for computing the probability and mean-time

attributes of protocol timing model can be applied to any distribution of the events occurrence

times for which a first moment exists. However, with such a general assumption, the rules for

computing the variance-time attribute would be considerably complex; in particular, the

computation of V C(a 0 A). Therefore, for the sake of simplifying these computations, the

occurrence times of events will be assumed throughout the rest of the dissertation to be

exponentially distributed. Note, that such exponentially distributed occurrence times of event are

independent on the time from which they are enabled. Consequently, a particular event would

have just one value for the rate for its occurrence time.

Theorem 4.3

11

V2. VC(2)ioA)
i21

11

L pc(a)· [V C(a i 0 Ai) + ME(a i • A)1
i-I

69

Let Aa denote the exponential rate of event a. In terms of the exponential rates of the occurrence

time of events, pc(a), Ilc(a), and ac(a) of lemma 4.1 are reduced to

pc(a)
Aa

if and only if a E CH(C) (4.6)

!lc(a)
L Aa.

if and only if a E CH(C) (4.7)

0iE CH(C)
I

acCa)
1

(L A)2 a.
ifandonlyifaE CH(C) (4.8)

0iE CH(C)
I

By inspection, it is clear that the rules for computing the timing attributes of given well-formed,

tenninating expressions respect axioms AI-A3 of the algebra of ETs given in section 3.2.2. That

is, given A=B, then PC(A)=PcCB), McCA)=~c(B), and V c(A)=V c(B). This is not true though

for Axiom A4 (A+A=A) since the timing attributes are not defined for A+A which is not well

fanned.

An interesting result of theorems 4.1, 4.2, and 4.3, is that given a recursively defined expression

A =X 0 A + B, the number of repetitions of behavior X is a random variable with a modified

geometric distribution.

70

Corollary 4.1

LetA=a. A+B, then

(4.9)

(4.10)

A proof is given in appendix 4.III. The corollary can be easily generalized for any recursive

expression A = X ·A + B, where X is a summation of a sequence of events.

Given a set of algebraic equations describing a protocol behavior. the rules in theorems 4.1, 4.2,

and 4.3 can be used to map them into a set of linear equations. In these linear equations. the

variables are the attributes and the coefficients are arithmetic expressions in the event rates. Note

that since the values of mean-time attributes are required in order to compute a variance-time

attribute of V2 in theorem 4.3, these means should be first computed and then used as constants in

the equations of the variance-time attribute.

It should be also noted that if the rates of certain (critical) events in a given terminating

expression are set to zero such that the expression becomes cyclic, then any timing anribute of this

expression is by definition undefined. This is manifested when solving a set of linear equations in

an attribute, by either having no unique solution to the equations or getting an invalid solution. In

the case of computing the mean :\1X<X) or variance V X(X) for some expression X, if such critical

events are set to zero causing X to be cyclic, then always the set of linear equations obtained in the

attribute will not have a unique solution. One example is X = a • X + b. $ and Ab = O. In the case of

probability attribute P c(A), or conditional mean Mc(A) or variance V c(A), if the rates of such

critical events are zero, then either the equations in the attribute has no unique solution, or a

solution is obtained but due to the violation of the attributes' definitions is invalid. For example,

consider computing PC(A) for

C=a·C+b.D

The critical events here, by inspection. are band c. If Ab=O or Ac=Ad=O. then there is no

71

unique solution for the set of linear equations in the probability attribute. However, if only Ac = 0,

but Ab and Ad are non-zero, then by solving the equations we get PC(A) =0. But this solution is

unacceptable since by definition, the attributes can be computed using the rules of theorems

4.1.4.2, and 4.3 only if the given expressions are terminating.

4.4. Specification and Analysis of Timing Requirements and Performance

Measures

Any timing requirement or performance measure that can be specified in terms of the attributes

of the timing model of protocols, can be computed using the mapping rules of theorems 4.1, 4.2,

and 4.3, and lemma 4.1. Only an algebraic specification of the protocol and the exponential rates

of events involved in it are used in these computations. As an example, let us analyze some

aspects of the performance of the revised connection establishment protocol.

Two interesting phenomenon were exhibited by the connection establishment protocol of section

3.4. First, call collisions where both the terminal and the network attempt to concurrently

initialize a connection. Second, premature terminations where after a call collision, a terminal

sends a terminate message before receiving the incoming-call message from the network to

initialize this same connection. Or, a terminate is sent when there is a chance of the network

sending an incoming-call before receiving the terminal's call request. Then, there is a

combination of an outstanding terminate and incoming-call message in the channels leading to a

similar situation as the former. It was shown in section 3.4 that such premature terminations cause

the terminal to erroneously interpret the incoming-call message when it arrives as a request for a

second connection. By varying the rate of terminating messages, the probability of such

premature terminations can be limited to a very small value. A timing requirement that captures

this objective is formally specified in section 4.4.1; its analysis yields an upper bound on the rate

of terminations. The probability of call collisions is also formally specified and automatically

analyzed in section 4.4.2.

4.4.1. A Timing Requirement of the Connection Establishment Protocol: Minimize

Probability of Premature Terminations

72

The probability of premature terminations, to be denoted by PI' is the probability that a call

collision occurs and there is an outstanding terminate message in the channel. Premature

terminations of connections cause the transmission of unnecessary messages since a second

terminate is always required to end the second erroneous connection. This may contribute to

congestion in the network and overflow of buffers. In addition premature terminations cause

unsynchronized operation of the terminal and network: the former assumes that two connections

were set up (one initialized by it and the other by the network), whereas the latter assumes just one

connection. Such problems are avoided in more sophisticated connection establishment protocols

such as the three way handshake [post 79] where acknowledgments are used to ensure that both

processes are in the connected state before proceeding with their operation. Note that the

connection establishment protocol we are studying is a one way handshake.

Our objective is then to compute the rate of terminating connections A.&term that would limit PI to

a small value £ as specified in the following timing requirement:

(4.11)

Since INRT P2 (whose algebraic specification is given in appendix 3.III.5) represents the sub

behaviors of the protocol (whose terminating behavior INRT T is given in appendix 3.I1U) without

premature terminations. PI can be specified by

(4.12)

PI is plotted versus A.&rerm in Fig. 4-2 for two different values of the mean communication delay

between the terminal and network which is equal to lIA.&req' = l/A.&inc' = lIA.&term'. The figure

shows that as the delay in the channels increases, PI increases. This can be explained as follows: a

large delay means more time for incoming-call to arrive at the terminal and thus a higher

probability of sending a terminate before it arrives. For the given data and £=0.01, the upper

bound on the rate of terminations with an accuracy of 2 decimal place is given by

~

171
c:
0

::;
~
c: .-
S
'" a,)

~

Q)

'" = ~

CIS
CJ

'" ("I -
'-
0

~
~

:Q
CIS

.Q
0

'" .. -

.n'
0

...
0

'" .;

N

0

...
0

0

o 0.0

\!Z =A&' =10 reg inC

mean delay=1/20

mean delaY=l/lOO

10.0 20.0 30.0 40.0

A&term

Figure 4-2: The probability of premature tenninations
versus A&term for two different values of mean delay

A&Jerm $ 0.3 occurrences/sec. for mean delay = 1120

A&term $ 1.86 occurrences/sec. for mean delay = III 00

50.0

4.4.2. A Performance Measure of the Connection Establishment Protocol:

Probability of Call Collisions

73

(4.13)

(4.14)

The probability of call collisions, denoted by Pc' is the probability that both the terminal and

network attempt concurrently to initialize a connection. i.e., a call collision occurs. A high Pc

would degrade the perfonnance of the protocol in two respects. First, since premature terminations

may occur after a call collision and in such situations a second termination of the same connection

74

is required, then the time to terminate a connection would increase. Second, assuming that the

call-request and incoming-call messages carry information for initializing a call, such as channel

number, some data transferred before the terminal and network synchronize such set-up

information would be lost Again this particular hazard is eliminated in more sophisticated

connection establishment protocol.

Since INRT PI (whose ET is given in Fig. 3-8 and algebraic specification is given in appendix

3.III.4) represents the sub-behaviors of the protocol's terminating behavior INRT T in which no call

collisions occur, Pc is formally specified by

'" Q.

III
c:
0 -III -
0
C.l

CI5
C.l

~

0

~ .. --..a
co
'"' -0
L. ,. -

...
o

""
=

'"
0

-
0

o

I-

o 0.0

\
A&' = 40.0 Inc

A&' = 10.0 'Inc

Figure 4-3:

I I I
100.0 200.0 300.0

A&req
The probability of call collisions versus A&req

for two different values of A&inc

(4.15)

400.0

75

In Fig. 4-3, Pc is plotted versus A&req for two different values of A&inc' The figure shows that

the probability of collisions is saturated for a wide range of A&rerr It decreases when the ratio

A&ret/A&inc is very low or very high.

4.5. Summary

Protocol timing behavior has been modeled as a marked point process. Probability, mean-time,

and variance-time attributes of this timing model have been defined. Rules for mapping

operations in the algebra of ETs into operations on the attributes have been given. To simplify the

computations involved in evaluating the attributes, all occurrence times of events are assumed to

be exponentially distributed.

Using a connection establishment protocol, the second step in the methodology of specification

based performance analysis of protocol has been described. It constitutes formally specifying

protocol timing requirements and performance measures in terms of the probability, mean-time, or

variance time attributes, and automatically analyzing them. This analysis uses the algebraic

specification of the protocol and the exponential rates of events involved in it. A timing

requirement necessary for the efficient performance of the connection protocol has been specified

as an inequality relation that sets an upper bound on the probability of behaviors with no

premature termination of connections. The analysis of this timing requirement has resulted in the

computation of an upper bound on the rate of terminating connections. In addition. one

performance measure of the protocol, the probability of call collisions has been formally specified

and analyzed. It has been shown that this probability becomes large when the rates of call-requests

issued by the terminal and incoming-calls issued by the network are comparably close; otherwise.

it remains low.

Appendix 4.1. Proof of Lemma 4.1

From eq 4.4, the probability that event a E CH(C) occurs at some ti' conditioned on the fact that

CH(C) has been enabled at t i_ I
, is given by

pC<a)=Pr('t isMin{'t ,r/a.E CH(C»)} a aj)

which can be also stated as

pc(a)=Pr(ta<ta) 'VajE (CH(C)-{a})
J

=S"" Pr(t >1 It =t) dF (t) 'Va.E (CH(C)-{a})) o aj a a J

76

(4.16)

Using the independence assumption of the occurrence times of contending events, we get the

first equation of the lemma:

pc(a) = f"" IT [1-F a.(t)] dFa(t)
o j=l .a.~a J

J

In order to prove the second and third equations of the lemma: the time duration from ti-! when

some CH(C) is enabled until a E CH(C) occurs (at t.) and whose mean and variance are denoted
I

by ~c(a) O"c(a), respectively, is shown in eq. 4.5 to be given by

t.-t. 1 = Min{t ,'Va.E CH(C)}
I J- a

j
J

which has a probability distribution given by

Pr(Min{t ~t, 'Va.E CH(Cn) = I-Pr(Min{t >t, 'Va.E CH(C)})
aj J ~j J

= I-Pr(t >t, 'Va.e CH(C)
aj)

(4.17)

From the independence assumption of the occurrence times of contending events, this is reduced

to

1- IT [I-Fa. (t)]
a.E CH(C) J
J

By computing the mean and variance of this time duration we get the second and third equations

in the lemma, respectively.

Appendix 4.ll. Proofs of Theorems 4.1, 4.2, and 4.3

• Proof of PI, Ml, and VI:
PdaeA) is the probability of a occurring and then A. Using Baye's rule,
P c(a e A) can be computed by multiplying the probability of a occurring, pc(a).
with the conditional probability Pa,,(C)(A) (which is conditioned on the

occurrence of a since the choice set of da(C) is only enabled after a occurs).
This proves PI. Ml follows directly from the sequential composition of a and
A. By the exponential assumption of the occurrence times of events, successive
occurrence times are independent. From this and the sequential composition of a
and A, V 1 is proven.

• Proof of n, M2, and V2:
P2, M2, and V2 follow from the mutual exclusion of contending events in a
choice set. M2 and V2 also follow from noting that the distribution of the time

duration of 2::7=1 a i eAi is conditioned on the occurrence of any of the events
a., i=l,n. ,

Appendix 4.llI. Proof of Corollary 4.1

and

From M2 in theorem 4.2 we get

m

PA(a). MA(aeA) + (LPA(b)) . MA(B)
j-l

m

PA(a) + LPA(bj)

j=1

Since from P2 in theorem 4.1

m

PA(a) + LPA(b))= 1
j-l

77

(4.18)

(4.19)

and from Ml in theorem 4.2

then eq. 4.18 is reduced to

PA(a)
MA (A) = [)] .).LA (a) + l\IA (B)

I-PA(a

78

(4.20)

(4.21)

thus proving the first equation of corollary 4.1. To compute the variance in the second

equation:

From V2 in theorem 4.3 we get

m

PA(a)· [V A(a .A) + M~(a.A)] + (LPA(b)). [V A(B) +M~(B)]
j=l

- M~(A)

m

PA(a) + LPA(b)
j%l

(4.22)

then by using Ml in theorem 4.2, VI in theorem 4.3, eq. 4.19, and the first equation in

corollary 4.1 just proven, we get

(4.23)

thus proving the second equation of corollary 4.1.

5.1. Introduction

Chapter 5

ANALYST: A Software Environment
for

Protocol Performance Analysis

79

ANALYST is an implementation of the specification-based methodology for performance

analysis of protocols presented in chapters 3 and 4. Compared to current protocol development

environments, see for instance [Holz 84, Chow 85], the design of ANALYST is novel in two main

respects. First, it integrates functional and performance specification and analysis of protocols in

one environment. Since protocol performance is extracted automatically from its functional

specification, which is augmented with rates of occurrence times of events, this integration allows

a protocol designer to analyze protocol performance without requiring much expertise in the field.

More specifically, a protocol designer is not required to engage in performance modeling of the

protocol under analysis, but just to specify performance in terms of timing attributes of the

protocol.

Second, ANALYST facilitates and enhances the design process of protocols. It supports an

interactive user interface that allows the protocol designer to readily debug a protocol (and

processes) specification(s) and iterate through functional and performance specification and

analysis. Thus, the environment facilitates experimental protocol design where discovered design

errors or results of predictions of protocol performance would necessitate variations in the

protocol's (and processes') specification(s). It also provides the designer with a friendly and

uniform user interface to the different modules that perform functional and performance analysis.

i.e., the user does not have to explicitly switch from one module to the other to obtain different

services. To assist the designer in understanding and debugging a protocol specification, the

environment allows access to details of the steps performed automaticaIIy, and provides

80

infonnation about the protocol and processes under analysis. Other protocol development

environments typically support a collection of tools for functional specification and analysis of

protocols. They do not support perfonnance specification and analysis, nor provide a unifonn user

interface to all the supported tools.

The key functions supported by ANALYST, and how they can be used in analyzing protocol

perfonnance, are examined in the next section. A complete scenario of using ANALYST to

analyze the perfonnance of the connection establishment protocol of section 3.4, is presented in

section 5.3. ANALYST's logical architecture, the key algorithms used in implementing the

functions supported by each of its modules (tools), and their time and space complexities are

described in section 5.4.

5.2. Using ANALYST to Analyze the Performance of Protocols

The key functions supported by ANALYST include:

• Maintenance of protocol specifications. The protocol designer can either load these
from previously created files, or define them on-line. He can then edit these
specifications, request infonnation about them (such as the number of identifiers in a
process specification), or save them in files.

• Concurrent composition of processes specifications as described in section 3.5. The
protocol designer is notified of the presence, number, and origin of any deadlock or
unspecified reception errors.

• Creation of new behaviors from given ones using the Terminate, Precedence, or
Restrict functions defined in section 3.6. These new behaviors can be used in
specifying timing requirements or perfonnance measures of the protocol.

• Constrained concurrent composition. By this we mean that concurrent composition is
constrained with the precedence or restriction relations among the events and
identifiers involved. The result is not the complete concurrent behavior of the
protocol, but a sub-behavior of it as specified. Thus, constrained concurrent
composition can be one way of overcoming the explosion in the size of the concurrent
behavior, if the designer is mostly interested in a sub-behavior of it (A more detailed
discussion is in section 5.4.2.)

• Evaluation of arithmetic expressions in which the variables can be the event rates or
any of the timing attributes. Thus any timing requirement or perfonnance measure
expressed as an arithmetic expression in these variables can be analyzed. A "FOR"
statement is also supported for evaluating a given arithmetic expression for several
values of an index variable, which can be an event rate for example. This produces
data that can be readily ploned.

The flow of activities throughout the interaction between a protocol designer and ANALYST are

81

depicted in Fig. 5-1. In this figure, the dashed lines denote automatically produced output and the

continuous lines denote data provided by the protocol designer. Constrained concurrent

composition is not shown explicitly in the figure; it is basically a combination of the two steps of

concurrent composition and application of the Precedence, or Restrict functions to the concurrent

behavior. Note that the step of applying the Terminate, Precedence, and Restrict functions is

optional. The protocol designer is allowed to iterate between the steps shown in the figure.

ANALYST has been implemented in C and running on a VAXJ750 under UNIX3, 4.2BSD

operating system. It has been used to automatically analyze the performance of the connection

establishment protocol, the Alternating Bit protocol, and a two phase locking protocol.

Performance results of the second and third protocols are given in chapters 6 and 7, respectively.

A complete scenario of using ANALYST to analyze the performance of the connection

establishment protocol is given next.

5.3. A Scenario of Using ANALYST for Performance Analysis of the

Connection Establishment Protocol

The two main steps in the methodology for specification-based performance analysis of protocol

have been described in chapters 3 and 4. They constitute functional specification and analysis

followed by performance specification and analysis. In tIlis section we show how a protocol

designer follows these steps for the connection establishment protocol using ANALYST. The

same steps followed have been described before when using this protocol as an example in

chapters 3 and 4.

All input commands are shown in italics; otherwise, the rest are output from the environment.

Comment lines are preceded by a "#". The exponential rate of an event a is represented here by

. '-a". We stan by invoking the ANALYST environment.

% analyst

Welcome to ANALYST

ANAL Y S T> # ANALYST is now ready for user commands.

3UNIX is a trademark of AT&T Bell Labs.

Specify protocol configuration and
processes execution I specifications

Concurrently compose ---------.
processes

1

1

1 concurrent behavior
1

1

1---------------------
specifications of
sub-behaviors using
Terminate,

1

1

1

1
Precedence,
or Restrict

performance
specification in
terms of timing
attributes

rates of

1

..
Use Terminate,

Precedence, or Restrict
(optional step)

1 1
1 1 protocol
1 1 behaviors
1 1

t ~
Apply attributes mapping rules

I
I
I a set of simultaneous
1 linear equations

event times ,
Use Gaussian Elimination to

solve the equations
1

I
t

performance evaluation

Figure 5-1: The flow of activities in using

Notification
of errors

ANAL YST for protocol performance analysis

82

5.3.1. Functional Specification and Analysis

5.3.l.1. Specify Protocol and Involved Processes

ANALYST> # The specification of the initially described connection

ANALYST> # establishment protocol and the involved processes

ANALYST> # have been created using an editor

ANALYST> # and stored infiles. The protocol is named CEo

ANALYST> # We demonstrate next that these specifications can be

ANALYST> # loadedfrom the files and the user can list them.

ANALYST> load CE

CE> # Note the change in the prompt to indicate the name of

CE> # the current protocol. The specification of the protocol's

CE> # configuration is listed next,

CE> # then all the processes specifications are loaded and listed.

CE> list

PROTOCOL CE : T,R,N,I
scope(R,T) {req}
scope (N, R) {req' }
scope(I,N) {inc}
scope(I,T) {inc'}
END

CE> load all

CE> List all

PROCESS T
T = ?inc' .Cl+!req.Cl
Cl = $
END

Number of identifiers in process T = 2
Number of summands in process T = 2

PROCESS R
R = ?req.Rl
Rl = !req'. $
END

Number of identifiers in process R = 2
Number of summands in process R = 2

83

PROCESS N
N = ?req'. C2+!inc. C2
C2 = $
END

Number of identifiers in process N = 2
Number of summands in process N = 2

PROCESS I
I = ?inc.11
11 = !inc'.$
END

Number of identifiers in process I = 2
Number of summands in process I = 2

5.3.1.2. Compute Concurrent Behavior

CE> # We turn the SHOW variable On to follow the details of the

CE> # concurrent composition of the processes. Note that the detailed

CE> # output from the concurrent composition module is indented a

CE> # number of spaces according to how far it is from the top of the

CE> # Us of the given processes.

CE> # Also note the deadlock and unspecified reception errors

CE> # discovered. and how they are reported with their source

CE> # and number.

CE> showon

CE> comp T.R

scope(R,T) = {req}

compose expressions ?req.Rl and ?inc' .Cl+!req.Cl
rendezvous case starting with &req

compose_expressions Rl and Cl
compose expressions $ and !req'.$
shuffle-case starting with !req'

compose expressions $ and $
shuffle case starting with ?inc'

compose_expressions Cl and ?req.Rl
compose_expressions $ and ?req.Rl

**** PROGRESS ERROR ****
** Found a deadlock error due to event ?req **

84

** Found 1 Deadlock Error(s) **

RT = &req. !req' . $+?inc' . $
Creating a new composite process RT

PROCESS RT
RT = &req. !req' . $+?inc' . $
END

Number of identifiers in process RT = 1
Number of summands in process ~T = 2

** Found 1 Deadlock Error(s) **

CE> comp NJ

scope(I,N) = {inc}

compose expressions ?inc.Il and ?req' .C2+!inc.C2
rendezvous case starting with &inc

compose expressions II and C2
compose-expressions $ and !inc'.$
shuffle-case starting with !i~c'

compose_expressions $ and $
shuffle case starting with ?req'

compose expressions C2 and ?inc.Il
compose=expressions $ and ?inc.Il

**** PROGRESS ERROR ****
** Found a deadlock error due to event ?inc **

** Found 1 Deadlock Error(s) **

IN = &inc. linc' . $+?req' . $
Creating a new composite process IN

PROCESS IN
IN = &inc. !inc' . $+?req' . $
END

Number of identifiers in process IN = 1
Number of summands in process IN = 2

** Found 1 Deadlock Error(s) **

CE> comp RTJN

scope(IN,RT) = {req' , inc'}

compose_expressions &inc. !inc' . $+?req' . $
and &req. !req' . $+?inc' . $
shuffle case staring with &inc
compose_expressions !inc'.$ and &req.lreq' .$+?inc'.$

85

rendezvous case starting with &inc'
compose_expressions $ and $

shuffle case starting with &req
compose_expressions !req'. $ and !inc' . $

**** PROGRESS ERROR ****
** Found an unspecified reception error due to event !req' **
** Found an unspecified reception error due to event !inc' **

shuffle case starting with &req
compose_expressions !req'. $ and &inc. !inc' . $+?req' . $
rendezvous case starting with &req'

compose_expressions $ and $
shuffle ease starting with &inc

compose_expressions !inc'. $ and !req' . $

**** PROGRESS ERROR ****
** Found an unspecified reception error due to event line' **
** Found an unspecified reception error due to event !rcq' **

INRT = &inc. (&inc' . $+&req. $) +&req. (&req' . $+&inc. $)
Creating a new composite process INRT

PROCESS INRT
INRT = &inc. (&inc' .$+&req.$)+&req. (&req' .$+&inc.$)
END

Number of identifiers in process INRT = 1
Number of summands in process INRT = 4

** Found 4 Unspecified Reception Error(s) **

5.3.1.3. Debug and Iterate

CE> # The specifications of the protocol and the processes are revised

CE> # below to avoid the design errors discovered. This time the

CE> # editing is done on-line.

CE> process T
T=!req.Cl +?inc' .Cl
Cl =?inc' .Cl + !term.T
end
You will overwrite another process
Do you want to do that? answer with y or n y

CE> process R
R= ?req'.R 1 + ?term.R2
R 1 = !req' .R + ?term.R3
R2 = !term' .R
R3 = !req' .R2
end
You will overwrite another process

86

Do you want to do that? answer with y or n y

CE> process N
N = !inc.C2 + ?req' .C2 + ?term'.N
C2=?req' .C2+ ?term'.N
end
You will overwrite another process
Do you want to do that? answer with y or n y

CE> process I
1=!inc.11
11 =!inc'./
end
You will overwrite another process
Do you want to do that? answer with y or n y

CE> scope(T,R) = {req,tenn}

CE> scope(R,N) = {req' .term'}

CE> # Next we concurrently compose the processes again. This time

CE> # we will suppress the details of the output. Note that no errors

CE> # are reported this time.

CE> show off

CE> comp T.R,N J

scope(R,T) = {req , term}

scope(N,RT) = {req' , term'}

scope(I,NRT) = {inc, inc'}

Creating a new composite process INRT

PROCESS INRT
INRT = &inc.C2RTI1+&req.C1R1NI
C2RTIl = &req.C1R1C2Il+&inc' .C1RC2I
C1R1NI = &term.INR3T+&req' . C1F.C2I+&inc. C1R1C2Il
C1R1C2Il = &inc' .C1R1C2I+&term.C2R3TI1+&req' .C1RC2Il
C1RC2I = &term.C2R2TI
INR3T = &inc.C2R3TI1+&req' .C2R2TI
C1R1C2I = &term.C2R3TI+&req' .C1RC2I
C2R3TIl = &req' .C2R2TI1+&inc' .C1R3C21
C1RC2Il = &inc' .C1RC2I+&term.C2R2TIl
C2R2TI = &term' .INRT
C2R3TI = &req' .C2R2TI
C2R2TIl = &term' . I1NRT+&inc' .C1R2C2I
C1R3C2I = &req' .C1R2C2I
I1NRT = &inc' .C1RNI+&req.C1R1NIl
C2R2TI = &term' .INRT
C2R3TI = &req' .C2R2TI
C2R2TIl = &term' . I1NRT+&inc' .C1R2C21

87

CIR3C21 = &req' .CIR2C21
IINRT = &inc' .CIRNI+&req.CIRINIl
CIR2C21 = &term' .CIRNI
CIRNI = &term.INR2T+&inc.CIRC2Il
CIRINIl = &inc' .CIRINI+&term.IINR3T+&req' .CIRC2Il
INR2T = &inc. C2R2TI1+&term' .INRT
IINR3T = &inc' .CIR3NI+&req' .C2R2TIl
CIR3NI = &req' .CIR2C2I+&inc.CIR3C2Il
CIR3C2Il = &inc' .CIR3C2I+&req' .CIR2C2Il
CIR2C2Il = &inc' .CIR2C2I+&term' .CIRNIl
CIRNIl &inc' .CIRNI+&term.IINR2T
IINR2T &inc' .CIR2NI+&term' . IINRT
CIR2NI &term' .CIRNI+&inc.CIR2C2Il
END

Number of identifiers in process INRT = 25
Number of summands in process INRT = 48

5.3.1.4. Compute Protocol Sub-Behaviors

CE> # The terminating behavior describing the behavior of the revised

CE> # protocol during the course of one connection is specified next.

CE> # It is computed automatically. Identifiers in the new process

CE> # (except the initiaL identifier) are the same as the given

CE> # process with a . '0" appended at the right end.

CE> Trm= Term in [lNR T.((&term' JNRT)}]

Creating a new process Trm

PROCESS Trm
Trm = &inc.C2RTIIO+&req.CIRINIO
C2RTIIO = &req.CIRIC2IIO+&inc' .CIRC2IO
CIRINIO = &term.INR3TO+&req' .CIRC2IO+&inc.CIRIC2IIO
CIRIC2IIO = &inc' .CIRIC2IO+&term.C2R3TIIO+&req' .CIRC2IIO
CIRC2IO = &term.C2R2TIO
INR3TO = &inc.C2R3TIIO+&req' .C2R2TIO
CIRIC2IO = &term.C2R3TIO+&req' .CIRC2IO
C2R3TIIO = &req' .C2R2TIIO+&inc' .CIR3C2IO
CIRC2IIO = &inc' .CIRC2IO+&term.C2R2TIIO
C2R2TIO = &term'.$
C2R3TIO = &req' .C2R2TIO
C2R2TIIO = &term' . IINRTO+&inc' .CIR2C2IO
CIR3C2IO = &req' .CIR2C2IO
IINRTO = &inc' . CIRNIO+&req. CIRINIIO
CIR2C2IO = &term' .CIRNIO
CIRNIO = &term.INR2TO+&inc.CIRC2IIO
CIRINIIO = &inc' .CIRINIO+&term.IINR3TO+&req' .CIRC2IIO
INR2TO = &inc.C2R2TIIO+&term'.$
IINR3TO = &inc' .CIR3NIO+&req' .C2R2TIIO

88

&req' .CIR2C2IO+&inc.CIR3C2IIO CIR3NIO =
CIR3C2IIO
CIR2C2I10
CIRNIIO
IINR2TO
CIR2NIO
End

= &inc' .CIR3C2IO+&req' .CIR2C2IIO
= &inc' .CIR2C2IO+&term' .CIRNIIO
&inc' .CIRNIO+&term.IINR2TO
&inc' .CIR2NIO+&term' . IINRTO
&term' .CIRNIO+&inc.CIR2C2IIO

Number of identifiers in process Trm = 25
Number of summands in process Trm = 48

CE> # The behavior in which no premature time-outs occur is specified next.

CE> A=Prec[Trm.{(&inc.&term),(&inc' .&term})]

event &inc has precedence over event &term

event &inc' has precedence over event &term

Creating a new process A

PROCESS A
A = &inc.C2RTIIOO+&req.CIRINIOO
C2RTIIOO = &req.CIRIC2IIOO+&inc' .CIRC2IOO
CIRINIOO = &req' .CIRC2IOO+&inc.CIRIC2IIOO
CIRIC2IIOO = &inc' .CIRIC2IOO+&req' .CIRC2IIOO
CIRC2IOO = &term.C2R2TIOO
CIRIC2IOO = &term.C2R3TIOO+&req' .CIRC2IOO
CIRC2IIOO = &inc' .CIRC2IOO
C2R2TIOO &term' .$
C2R3TIOO = &req' .C2R2TIOO
End

Number of identifiers in process A 9
Number of summands in process A = 14

CE> # Let us asswne that the protocol designer would like to end this

CE> # session. save all the newly created processes. and return to work

CE> # later.

CE> quit

Do you want to save current protocol CE? y

Do you want to save current processes? y

ANALYST>q
%

%analyst

Welcome to ANALYST

89

ANALYST> # This is a new session with ANALYST. We start by loading

ANAL YS T> # the previously created protocol and processes. A data file

ANALYST> # including assignments of the rates of events of the protocol

ANALYST> # has been created by an editor and saved in afile with the

ANALYST> # same name as the protocol but with extension ··dat". Note thatthis data file

ANALYS T> # will be loaded automatically when the protocol is loaded.

ANALYST> load CE

Data file loaded

CE> list

PROTOCOL CE : T,R,N,I,INRT,Trm,A
scope(R,T) {req, term}
scope (N, R) {req', term'}
scope(I,N) {inc}
scope(I,T) {inc'}
END

CE> loadTrm

CE> # The behavior in which no call collisions occur is specified next.

CE> B=Prec[Trm,((&req' ,&illc).(&inc· .&req))]

event &req' has precedence over event &inc

event &inc' has precedence over event &req

Creating a new process B

PROCESS B
B = &inc.C2RTIIOO+&req.CIRINIOO
C2RTIIOO &inc' .CIRC2IOO
CIRINIOO = &term.INR3TOO+&req' .CIRC2IOO
CIRC2IOO = &term.C2R2TIOO
INR3TOO = &req' .C2R2TIOO
C2R2TIOO = &term'.$
END

Number of identifiers in process B = 6
Number of summands in process B = 8

90

5.3.2. Perfonnance Specification and Analysis

CE> # Now let us start evaluating the probability of call-collisions

CE> # which is defined as I-prob[TrmJ3]. We first list the loaded

CE> # event rates. compute the probability of call-collisions for

CE> # the given values. then compute it for several values of

CE> # call-requests and incoming-calls rates.

CE> list data

-&term = 1.000000
-&term' = 100.000000
-&req' = 100.000000
-&inc' = 100.000000
-&req = 10.000000
-&inc = 10.000000

CE> I-prob[TrmJ3]

Building set of linear equations ...

Solving set of linear equations ...

0.090909

CE> for (-&req=O.0.10.0.1.0) I-prob[Trm.B]

Building set of linear equations ...

Solving set of linear equations ...

Building set of linear equations ...

Solving set of linear equations ...

Building set of linear equations ...

Solving set of linear equations ...

Do you want to save the result in a file [yin]? n

0.000000
1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000

0.000000
0.017265
0.031491
0.043384
0.053447
0.062049
0.069468
0.075916

91

8.000000
9.000000
10.000000

0.081556
0.086519
0.090909

CE> # Let us evaluate the probability of call collisions for a wider

CE> # range of-&req and store the result in afile to be plotted.

CE> for (-&req=0.0,50.0,1.0) l-prob[Trm,B]

Building set of linear equations ...

Solving set of linear equations .. .

Building set of linear equations .. .

Solving set of linear equations ...

Building set of linear equations ...

Solving set of linear equations ...

Do you want to save the result in a file [yin]? y

file name: prob-col.ansi

CE> # The rate of incoming-calls is changed next and a new set

CE> # of data for the probability of call collisions is computed.

CE> -&inc=40.0

CE> for (-&req=0.0,50.0,l.0) i-prob[Trm.B]

Building set of linear equations ...

Solving set of linear equations ...

Building set of linear equations ...

Solving set of linear equations ...

Building set of linear equations ...

Solving set of linear equations ...

Do you want to save the result in a file [yin]? y
file name: prob-col.ans2

CE> -&inc = 10.000000

92

CE> # Next, we would like to evaluate the probability of premature

CE> # termination of connections defined as l-prob[TrmAJ. Since

CE> # process B is no longer needed, it will be first freed.

CE> free B

CE> loadA

CE> for (-&term=1.0.50.0,l.O) I-prob[TrmA]

Building set of linear equations ...

Solving set of linear equations ...

Building set of linear equations ...

Solving set of linear equations ...

Building set of linear equations ...

Solving set of linear equations ...

Do you want to save the resul~ in a file [yin]? y
file name: prob-prem.ansl

CE> q

Do you want to save current protocol CE? y

Do you want to save current processes? y

Process T has
Process R has
Process N has
Process I has
Process INRT

ANALYST> q
%

no specification. Not
no specification. Not
no specification. Not
no specification. Not

has no specification.

S.4. Logical Architecture

saved
saved
saved
saved

Not saved

ANAL YST consists of the following four logical modules or tools. as illustrated in Fig. 5-2:

1. A parser of commands submitted by a protocol designer.

2. A compiler of expressions in the algebra of ETs, and specifications of protocol
configuration and processes execution.

3. A verifier of freedom from deadlock and unspecified receptions errors.

4. A performance analyzer.

93

performance
evaluation

Protocol Designer

commands

commands I
~----------------;I PARSER

PERFORMANCE
ANALYZER

processes
specifications

commands

COMPILER OF
PROTOCOL AND

PROCESSES
SPECIFICATIONS

requested
information

errors

I------~: VERIFIER I
progress error

Figure 5-2: Logical architecture of ANALYST

5A.I. Parser

94

The parser accepts commands from the protocol designer if they follow the command language

of the environment. and then calls the appropriate module to provide the requested service. The

syntax of the command language of the environment is described by a formal grammar (a Backus

Naur Form (BNF) description of the formal grammar is given in appendix 5.I). The parser was

created automatically from this grammar using compiler generation tools (Y ACC and LEX) of

UNIX as described in appendix 5.II.

95

5.4.2. Compiler

The functions supported by the compiler fall into three categories. First, it maintains data

structures in which infonnation about given expressions in the algebra of ETs (as defined in

definition 3.1), and protocol specifications (as defined in section 3.3) are saved. These dara

structures are used by other modules, such as the perfonnance analyzer. The compiler also uses

these data structures in providing infonnation and answering questions about given expressions

and specifications. For example. to list a given specification, to provide the number of identifiers

or summands in a given process specification, and whether a given process specification is cyclic

or terminating (as defined in section 3.6). The compiler rejects expressions that are not

well-formed (as defined in section 4.2) and processes specifications that are not complete (as

defined in section 3.3).

Second, the compiler implements the concurrent composition definition of section 3.2.2, which

infonnally takes two expressions and produces a rendezvous event for each pair of co-events and a

complete shuffling of these rendezvous events. This is done recursively based on the structure of

the composed expressions. Concurrent composition of complete process specifications. resulting

in a new process describing the concurrent behavior of the processes, is also supported. Since a

process specification may consist of a set of equations, the concurrent composition of two such

specifications continues until all pairs of reachable identifiers in the specifications are composed.

Algorithms used in implementing the concurrent composition of expressions and of processes

specifications are given in appendix 5.IV.1. Let D denote the number of identifiers in an identifier

table, which is an internal data structure. and d. and s. (i = 1,p) denote the number of identifiers and
I I

summands in the specification of process i, respectively. The worst case space and time

complexities for concurrently composing p processes are shown to be of O(IIf=i di + IIfsi s) and

O(IItl Sj+D'''Lf=l dj), respectively.

Third, the compiler supports algorithms for the application of the Terminate, Precedence, or

Restrict functions (as defined in section 3.6) to an expression or a processes specification. Similar

to the concurrent composition of processes specifications, applying one of these functions to a

process specification starts off a series of applications of the function to each equation in the

specification. The three functions are similar in the manner in which they apply to a process

96

specification in that their implementation involves inspecting each equation in the given process

specification and results in the creation of a new process. As an example, the algorithm used for

implementing the Terminate function is given in appendix 5.IV.2. Given an expression P and a

set of pairs of events and identifiers, S = {(e/j), i= l, ... ,n}, let Sum(P) denote the set of -all

summands in process P, and lSI is the size of S. The time complexity of the algorithm is shown to

be of O(lSum(P)I·ISI+D).

The compiler also supports constrained concurrent composition in which the concurrent

composition is guided by some constraints. These constraints are ternary relations between

expressions and either sets of event pairs for the case of the Precedence function, or sets of pairs

of events and identifiers for the case of the Restrict function. Constrained concurrent composition

can be a means of avoiding the high space and time costs involved in computing the entire

concurrent behavior of a complex real-life protocol with numerous states, summands, or

processes. However, the protocol designer would only obtain a subset of the entire protocol's

concurrent behavior. For example, the concurrent composition of the processes in the revised

connection establishment protocol when constrained by the same Precedence relation in eq. (3.2)

directly produces INRT PI which represents protocol behaviors without call-collisions (with the

exception that it will be cyclic). This is a reduction in the number of identifiers from 48 to 6

(87.5%) and a reduction in the number of summands from 25 to 8 (68%).

5A.3. Verifier

If during the course of concurrently composing two expressions, a progress error is detected (as

defined in definition 3.2), the compiler calls the verifier to check for any deadlock or unspecified

reception errors (as defined in definition 3.3). The verifier notifies the protocol designer of the

presence of any of these errors. When concurrently composing several process specifications. the

verifier keeps track of all the errors detected during the concurrent composition of every pair of

expressions. It then notifies the protocol designer of the total number of deadlock and unspecified

reception errors detected.

If the designer wishes to track down the exact event sequence leading to an error, he can request

to see details of the step-by-step concurrent composition by setting a SHOW variable ON. In this

case, the designer is notified of the events that cause each error.

97

5.4.4. Performance Analyzer

The performance analyzer supports the evaluation of probability, mean-time, and variance-time

attributes of a protocol's timing model. Given complete sets of equations that specify some

expressions A and C, and the exponential rates of the events involved in them, algorithm 5.4 given

in appendix 5.lV.3 maps these equations to a set of linear equations in terms of a requested

attribute. This is performed using lemma 4.1 and the rules of theorems 4. L 4.2, and 4.3. In

computing PC<A), MC(A), or V c(A), where the specification of A involves d identifiers, the

algorithm produces d + 1 equations in any of the requested attributes. The algorithm is shown to

have worst case space and time complexities of O(d2) and O(d3), respectively. A Gaussian

elimination algorithm with pivoting [Rals 78] is then used for solving the set of linear equations.

Given d+ 1 equations in an attribute, the time complexity of this algorithm is known to be of

O(d3).

The performance analyzer also supports the computation of arithmetic expressions and

assignment statements, in which the attributes and the rates of events are considered as variables.

Using the assignment statements, the designer can assign values to the rates of events and possibly

other variables (such as length of messages for example). Then, he can specify performance

measures as arithmetic statements in these variables and request their evaluation. The analyzer

also supports a FOR statement to evaluate an arithmetic expression for several values of a chosen

index variable. A list of values of the index variable and attribute is produced and can be easily

plotted. The current version of the analyzer does not support the analysis of inequality equations or

minimizatiOn/maximization functions. Timing requirements that are specified in such formats can

be analyzed manually with the assistance of the analyzer in computing any attribute value.

It should be noted that although an analytic approach is followed in evaluating the performance

attributes of protocols as opposed to a simulation approach, the performance analyzer performs the

evaluations !,!umerically and not symbolically.

Appendix 5.1. A Grammar for ANALYST's Command Language

/* This is the precedence of the operations (in ascending */
/* order) and their associativity. */

%right
%left
%left
%left
%left
%left
%left

EQUAL
CONC
CHOICE
SUB
MULT
DIV
SEQ

/* Now begins the set of grammar rules. */
/* Each rule has the form <non-terminal symbol> : <rule> */
/* A "I" indicates alternative rules and a successive*/
/* list of symbols within a rule indicates concatenation. */
/* Each rule ends with a";". */
/* Symbols are either terminal symbols in upper case */
/* letters or non-terminal symbols in lower case */
/* letters. */
/* Terminal symbols are returned by LEX; their definitions */
/* are given following the grammar. Non-terminal symbols */
/* are defined by rules in the grammar */

lines

unstr line

exp

/* emp~y case */
lines unstr line CR
lines struct line CR
lines CR
lines QUIT CR
lines error CR

exp
equation
arith_stat
SHOW ON
SHOW OFF
CONSTRAINT open-paren IDENTIFIER COMMA
IDENTIFIER close-paren EQUAL cons
scope_def
CONSTRAINT open-paren IDENTIFIER COMMA
IDENTIFIER close-paren
SCOPE open-paren IDENTIFIER COMMA
IDENTIFIER close-paren
DERIVATIVE open-paren exp COMMA event
close-paren
CHOICE open-paren exp closeyaren

DEAD NOP
IDENTIFIER
event SEQ exp

98

;

event

open-paren

close-paren

equation

arith stat

cons

exp CHOICE exp
exp CONC exp
open-paren exp close-paren

SEND EVENT
RCV EVENT
RND EVENT

OPENl PAREN
OPEN2 PAREN
OPEN3_PAREN

CLOSEl ?AREN
CLOSE2-PAREN
CLOSE3_PAREN

IDENTIFIER EQUAL exp

arith exp
VARIABLE EQUAL arith exp
FOR open-paren VARIABLE EQUAL REAL CO~~~.
REAL COMMA REAL close-paren arith_exp

VARIABLE
REAL
INTEGER
PROBABILITY open-paren exp COMMA exp
closeyaren
MEAN open-Paren exp COMMA exp
closeyaren
VARIANCE openyaren exp COMMA exp
close paren
arith-exp CHOICE arith exo
arith=exp SUB arith_exp -
arith_exp MULT arith_exp
arith_exp DIV arith_exp
open-paren arith_exp close-paren

event-pair_str
event_id_str

SCOPE openyaren IDENTIFIER COMMA
IDENTIFIER close-paren EQUAL open-paren
name_str close-paren

NAME
name st r COMMA NAME

99

struct line

processes_list

prot actions

prot_begin prot_actions QUIT

LOAD IDENTIFIER CR prot_spec
prot_spec

PROTOCOL IDENTIFIER COLON processes_list
scope_l:'st END

/* empty case */
processes_list COMMA IDENTIFIER
IDENTIFIER

/* empty case */
scope_list CR
scope_def
scope_list scope_def

/* empty case */
prot_actions p_action CR
prot_actions CR
prot_actions errOr CR

unstr line·
proc_action
data action
LIST

proc_spec
LOAD IDENTIFIER
LOAD ALL
COMPOSE comp_list
IDENTIFIER EQUAL TERMINATE open-pa=en
IDENTIFIER COMMA OPEN3 PAREN
event id str CLOSE3 PAREN

- - -
IDENTIFIER EQUAL PRECEDENCE open-paren
IDENTIFIER COMMA OPEN3 PAREN
event-pair_str CLOSE3_P~~EN
IDENTIFI~R EQUAL RESTRICT open-paren
IDENTIFIER COMMA OPEN3 PAREN
event id str CLOSE3 PAREN
LIST IDENTIFIER -
LIST ALL
SUMS open-paren IDENTIFIER close-paren
IDS open-paren IDENTIFIER close-paren
CYCLIC open-paren IDENTIFIER close-paren
QUESTION
TERMINATE open-paren IDENTIFIER
close-paren QUESTION
FREE IDENTIFIER

100

event id str

data action

PROCESS IDENTIFIER CR

/* the empty case */
spec_lines equation CR
spec lines CR
spec=lines error CR

/*empty case */
comp list COMMA IDENTIFIER
IDENTIFIER

open-paren event COMMA IDENTIFIER
close-paren
event_id_str COMMA open-paren event
COMMA IDENTIFIER close-paren

open-paren event COMMA event close-paren
event-pair_str COMMA open-paren event
COMMA event close-paren

LOAD DATA IDENTIFIER
DATA
LIST DATA

101

Appendix 5.11. Using UNIX Programming Development Tools in Producing

ANALYST's Parser

Y ACC (Yet Another Compiler-Compiler) [John 79] and LEX (LEXical analyzer generator)

[Lesk 79], which are programming development tools supported by UNIX, were used in

automatically producing the parser. Y ACC is a parser generator that accepts some formal

grammar written in BNF describing the syntax of some language and produces a parser of

statements in that language. The rules of the grammar are accompanied by actions which are

invoked when an instance of a rule in the grammar is recognized in the input commands being

parsed. LEX can be used by the Y ACC program to read the input commands and divide them into

syntactical units referred to as terminal symbols, which are then passed to the YACC program.

102

The input to LEX are regular expressions defining the formats of these terminal symbols. The

rules in the grammar input to Y ACC are written in terms of these terminal symbols and

non-terminal symbols which are defined by other rules in the grammar.

Y ACC and LEX have been used to generate the parser for the command language of

ANALYST, as illustrated in Fig. 5-3. The command language is specified as a formal grammar

(its BNF description is in appendix 5.1), in which each rule specifies some service supported by

the environment The actions accompanying the rules provide this service. These actions are

written in the C language. The syntax of the terminal symbols used in ANALYSTs command

language is given in appendix 5.III.

Lexical rules grammar rules

t) ~
LEX I l YACC

A Parser For ANALYST's
Input comm ands Command Language Outp

Figure 5-3: USIng YACC and LEX to generate a parser of ANALYST's
command language

ut

Appendix S.III. Definitions of Terminal Symbols in ANALYST's Command

Language

/* In what follows, terminal symbols are defined as regular */
/* expressions. These definitions are input to LEX and a */
/* C function is produced. */
/* This C function is called by the parser (produced by */
/* YACC from the above given grammar) to transform the */
/* input commands into a sequence of terminal symbols. */
/* In each definition, "c" matches the character "c", */
/* [c i Cz ..• c

ll
] matches any */

/* "c i " (i=l,n), and [c l] [c z] */
/* matches a concatenation of characters */
/* "c I " and "cz".]? */

/* indicates an optional matching of the character "C
ff */

.\n

[\] +

"'nil

tI (n

If) 11

1f [II

"] II

"{tI

II } "

"+"

"_11

11*"

"I"

" I"

" If

U$"

"=11

/* comments */

/* tabs and blank spaces */

return (CR) :

retur~(OPEN1_PAREN) :

retur~(CLOSE1_P&~N) :

return (OPEN2_PAREN) ;

return (CLOSE2_PAREN):

return(CLOSE3_PAREN):

return(CHOICE);

return (SUB) ;

return(MULT):

return (DIV) ;

return(CONC);

return (SEQ) ;

return(DEAD_NOP):

return (EQUAL) ;

[Pp] [Rr] [Ee] [Cc]?[Ee]?[Dd]?[Ee]?[Nn]?[Cc]?[Ee]?
return(PRECEDENCE):

[Rr] [Ee] [Ss]?[Tt]?[Rr]?[Ii]?[Cc]?[Tt]?
return(RESTRICT):

[Ff] [Rr] [Ee]?[Ee]? return (FREE) :

[Tt] [Ee] [Rr] [Mm] [Ii] [Nn]?[Aaj?[Tt]?[Ee]?
return(TE&~INATE):

[Cc] [Yy] [Cc]?[Ll]?[Ii]?[Cc]?

[?]

II fI
f

ft. 11

return (CYCLIC) ;

return(QUESTION);

return (COMMA) ;

return (COLON) :

103

[Ii] [Od] [85]? return (IDS):

[Ss] [Uu] [MIn]? [S5]? return (SUMS) ;

[S5] [Cc] [Oo]?[Pp]?[Ee]? return (SCOPE) ;

rOd] [Aa] [Tt]?[Aa]? retur~(OATA):

[Aa] [Ll] [Ll]? return (ALL) ;

fCc] [00] [MIn] [Pp]?[00]?[S5]?[Ee]?
return(COMP08E):

[Pp] [Rr] [00] [Cc] [Ee]?[S5]?[S5]?
return(PROCES8);

[Pp] [Rr] [00] [Tt] [Oo]?[Cc]?[Oo]?[Ll]?
return (PROTOCOL) ;

[Ll] [00] [Aa]? rOd]?

[Ll] [I i] [85]? [Tt] ?

[Ee] [Nn] rOd]

return (LOAD) :

return (LIST) :

return (END) ;

fCc] [Hh] [Oo]?[Ii]?[Cc]?[Ee]?
return (CHOICE) ;

rOd] [Ee] [Rr]?[Ii]?[Vv]?[Aa]?[Tt]?[Ii]?[Vv]?[Ee]?
return (DERIVATIVE) :

fCc] [00] [Nn]?[8s]?[Tt]?[Rr]?[Aa]?[Ii]?[Nn]?[Tt]?[S5]?
return(CONSTRAINT);

[S5] [Hh] [Oo]?[Ww]? return(SHOW);

[Pp] [Rr]?[Oo]?[Bb]?[Aa]?[Ll]?[Ii]?[Tt]?[Yy]?
return(PROBABILITY);

[MIn] [Ee]? [Aa]? [Nn]? return (MEAN) ;

[Vv] [Aa]?[Rr]?[Ii]?[Aa]?[Nn]?[Cc]?[Ee]?
return(VARIANCE);

[00] [Ff] [Ff]?

[00] [Nn]

[S5] [00] [Rr] ?[Tt]?

[Ee] [Xx] [Ii]?[Tt]?

[Qq] [Uu]?[Ii]?[Tt]?

[F f] [00] [Rr]

return (OFF) ;

return (ON) ;

return(SORT):

return (QUIT) ;

return(QUIT):

return (FOR) ;

104

[0 -9] + 11 • " [0- 9] * (E) ?

[0-9] +

[a-z] [a-zO-9' '] *

[!) [a-z] [a-zO-9' ']*

[?] [a-z] [a-zO-9' ') *

[&] [a-z] [a-zO-9' '] *

[#-] [a-z] [a-zO-9' ']+

[A-Z] [A-Za-zO-9&] *

return (REAL) ;

return (INTEGER) ;

return (NAME) ;

return(SEND_EVENT);

return (RCV_EVENT) ;

return (RND_EVENT) ;

return(VARIABLE);

return(IDENTIFIER);

Appendix 5.IV. Key Algorithms used in ANALYST

5.lV.!. Algorithms for Concurrent Composition of Expressions and Processes:

105

Algorithms used in implementing the concurrent composition of expressions and of processes.

Compose-Expressions and Compose-Processes, respectively, are given next. In

Compose-Expressions, the function verify is caIIed if a progress error is detected. The algorithm

for implementing this function is straightforward following definitions 3.2 and 3.3.

Before presenting the algorithms, a brief description of the main data structures used is required.

Three key data structures maintained by the compiler include an identifier table, a protocol

structure, and a process table. The identifier table is a linked list of identifier records in which the

identifier and the corresponding expression are saved. In the protocol structure, information about

the current protocol are saved including its name and a linked list of the names of processes

involved in it The scope of communication between pairs of processes are saved in the identifier

table where identifier records have optional entries for a communicating identifier (the name of the

communicating process) and the corresponding scope. The process table includes the process

name and a linked list of the identifiers involved in it.

Algorithm 5.1 Compose-Expressions

Input:

Output:

Two expressions A and B.

A composite expression produced by the concurrent composition of the
two input expressions following concurrent composition definition.

Method:
1. Initialize the return expression to the empty string. Set the current scope to be

equal to scope(A,B).

2. For every summand ai .Ai of expression A do the following:

i. (Shuffle case) If a i is not an element of the current scope, then
concatenate ,. + a .• (A .IB)" to the return string and go to step 2(i).

I I

Otherwise, go to 2(ii).

ii. (Rendezvous case) If there exists a summand b.o B. of B such that b. is not
J) J

an element of the current scope, a. and b. are co-events, and
I J

e=name(a.)=name(b.), then concatenate "+&eo(A·IB.)" to the return
I J I J

string.

3. For every summand b .• B. of B:
(Shuffle case) if bj i~ n~t an. element of the current scope, then concatenate
, , + b

j
• (AIBl' to the return stnng.

4. If the return string is equal to the empty string, then replace it by "S". If A;t:$
and B ;t:$, then there is a progress error; call function verify with the two
expression A and B as input arguments to detect any deadlock or unspecified
reception errors. Return with the return string.

106

The expansion of the concurrent composition of the input expressions for only one step was

considered in the algorithm. In the implementation of the algorithm, the expansion is carried

further if the two expressions to be concurrently composed next are found not to be recursive.

Otherwise, the protocol designer should then explicitly request the expansion of each step to

obtain the complete expansion. This a procedure is performed automatically if the protocol

designer requests the concurrent composition of process specifications.

Algorithm 5.2 Compose-Processes

Input:

Output:

Method:

A list of processes names whose specifications are to be concurrently
composed.

A new composite process specification, whose name is a concatenation of
the input processes names.

To concurrently compose two processes PI and P 2:

1. Create a new entry in the process table for the new concurrent process PIP 2

(concatenating the identifiers after sorting their names in ascending order).
Assign the identifier P /2 as the first element in its list of identi fiers. Set the
current scope to scope(P \.P 2) as set in the identifier table.

2. Initialize 1\ to P \ and 12 to P 2' Create a list of reachable-identifiers that includes
identifier pairs. Add the pair of identifiers 11 and 12 to it and mark them.

3. Create a new entry for identifier 1/2 in the identifier table and assign the empty

string to it.

4. Look up the expressions assigned to the current identifier II and 12 in the
identifier table and call Compose-Expressions (see algorithm 5.1) to concurrently
compose them. Scan the resulting expression for any <identifier
name>l<identifier-name>. Replace all such strings with a concatenation of the
identifiers and add the identifiers to the list of reachable-identifiers. Assign the
resulting expression to 1/2 in the identifier table.

S. If all pairs of identifiers on the reachable-identifiers list are marked, then return.
Otherwise assign the next unmarked pair of identifiers on the list to II and 12,

Mark this pair and go to step 3.

107

In order to concurrently compose several process specifications, the above algorithm is called

several times. Given a list of processes, the first pair of processes in the list are concurrently

composed using the algorithm. then the resulting composite process is concurrently composed

with the third process on the list This procedure is repeated until the list of processes is

exhausted.

The concurrent composition of even simple process specifications often leads to an explosion in

the size of the resulting composite specification. Let us compute the space and time complexities

of computing such concurrent behaviors; that is. the time and space complexities of algorithm 5.2.

Consider a protocol involving p processes. Let dj and Sj (i = l,p) denote the number of identitiers

and summands in the specification of process i, respectively. The space complexity for computing

the concurrent behavior of a protocol involving p communicating processes is then of

O(Df~l d j + Df.1 s). The first term corresponds to the space allocated for the reachable-identifiers

lists. The second term corresponds to the size of the resulting composite process. The time

complexity is of ocIIf.1 sj+D· :L.f.1 d j), where D is the number of identifiers in the identifier table.

The first term represents the time spent in concurrent composition in step 4 since all combinations

of the summands in the processes may have to be considered. The second term represents the time

spent in searching for the identifiers of the processes in the identifier table using a simple linear

search. If a hashing algorithm is used instead, then D would be reduced to a constant.

These are worst case complexities when every identifier in a process is reachable from every

other identifier, and there are no rendezvous interactions produced. On the average, the number of

summands and identifiers in a composite specification are usually much less than that computed

108

by the product form above. For example, I1~1 Sj for the revised connection establishment

protocol is equal to 240. However, the actual number of summands in the concurrent behavior of

the protocol is only 48; that is about 80% less. Also, I1~1 d j is equal to 48, but the actual number

of identifiers in the concurrent behavior is 25; that is about 50% less.

S.IV.2. Algorithm for the Terminate function:

Applying the Terminate, Precedence, and Restrict functions to a process P starts off a series of

applications of the function to each equation in the process specification. Algorithms for

implementing these functions are similar in many respects. An algorithm for implementing the

Terminate function is given below as a representative. The same data structures described in

appendix 5.IV are used here. Identifiers in the produced process specification have the same

names as those in the given process specification with a "0" concatenated at the right end.

Algorithm 5.3 Terminate

Input:

Output:

Method:

A process name P, a set S = {(e..J) , i= l, ... ,n} of pairs of events and
identifiers, and a new process name N.

A terminating process, named N, following definition 3.4.

1. Create a new entry in the process table for the new concurrent process N. Assign
the identifier N as the first element in its list of identifiers. Set the current
identifier I to P.

2. Look up the expression assigned to the current identifier I in the identifier table.

3. Create a new entry in the identifier table for a new identifier 10 (except initially
where it is named with the new process name N) and assign the empty string to
it.

4. For every summand a .• A. in the expression assigned to I, if (a.,A.)e: S then
I I I I

concatenate the string assigned to 10 with "+a .• A.". Otherwise, if (a.,A.)e S
I I I I

then concatenate the string assigned to 10 with "+a j .$".

5. If the the string assigned to 10 is the empty string, then replace it by "$". If I is
the last identifier in the identifier list of process P then return, otherwise, goto
step 6.

6. Let the current identifier I be the next identifier in the identifier list of process P
and goto step 2.

Let Sum(P) denote the set of all summands in the specification of process P, and D denote the

number of identifiers in the identifier table. The time complexity of this algorithm is then of

109

O(ISum(P)I'ISI+D), where ISum(P)I'ISI is the time spent in step 4 since for every summand in

process P all the elements of the set S are examined. and D is the time spent in step 2 searching the

identifier table using a simple linear search.

S.IV.3. Algorithm for Building Set of Linear Equations in a Timing Attribute

In this algorithm, it is assumed that the user has assigned values to the exponential rates of

events in the given expressions. These rates are stored in an array called variable-list. In the case

of the variance-time attribute, it is assumed that this algorithm has been called once before to

compute the mean-time attributes of the identifiers involved in the given expression. These are

then used as constants that are fetched from a pre-stored array.

Algorithm 5.4 Build-Set-oJ-Attribute-Equations

Input: Two complete sets of algebraic equations describing some behaviors A
and C, and a request to compute either PC(A), MC(A) , or V C<A). All
expressions in the given specifications are well-formed, and have
summands of the form a .A, where A is an identifier.

Output: The coefficient matrix (X) and the right hand side vector (Y) of the set of
linear equations (XA= Y) in a requested attribute (A). If the given
specification of A includes d identifiers. then the dimension of X is a
(d+ l)x(d+ 1) matrix, and the dimension of both A and Y is (d+ l)x 1.
The addition of 1 to d is for the termination symbol $.

Method:

1. Check if A is cyclic. If yes, then return "undefmed -- expression is cyclic".
Else. go to step 2.

2. Initialize all entries of Y to zero, diagonal entries of X to 1. and all other entries
of X to zero. Initialize the current index k to 1. and the current pair of identifiers
At and Ct to A and C, respectively. Initialize a list of identifier-pairs to include A
and C. Mark this entry in the list.

3. Look up the expressions assigned to At and Ck' Compute the choice set CH(Ck).

Look up in the variable-list the rates of all the events in this set, and assign their
sum to a sum-of-rates variable.

4. For each summand a • A' of A k' do the following:

i. Compute da (Ck). If its value is undefined, then return with "undefined
-- A is not a summand of C". Otherwise, assign its value to C' and go to
step 4 (ii).

ii. Look up the pair A', C' in the identifier-pairs list; add it to the list if not
found. Let j be the index of it in the list.

iii. Add to coefficient x
k

· of matrix X the value "-A.Jsum-of-rates". If the
requested attribute"" is mean-time, then add to Yk the value

"AJ(sum-of-rates2)". Else. if the requested attribute is variance-time,
then add to Y" the value:

"AJ(sum-of-rates3) + [\!(sum-of-rates)] . {1I(sum-of-rates2
)

+ [2/(sum-of-rates)]· Me-(A') + Mb,(A')}"

5. If the requested attribute is the variance-time, then add to y" the value

"-MC<A)2" .

6. If all identifier pairs on the identifier-pairs list are marked, then return.
Otherwise, increment k, and assign the next unmarked identifier pair on the list
to A" and CA:' Mark this pair and go to step 3.

110

In the worst case, the given expression C is the same as A, and the number of summands in the

set of algebraic equations describing A is equal to d2, where d denotes the number of identifiers in

the equations. The worst case space complexity of the algorithm is then of O(d2) since d2 + d units

of space are required for the matrix and vector. The worst case time complexity of the algorithm

is of O(~) since the time spent in step 4 (ii) is in the order of the number of summands in A

multiplied by r dl21 (the time spent in linearly searching the identifier-pairs list).

Part III

Applications

111

Chapter 6

Performance Analysis of the Alternating Bit
Protocol

6.1. Introduction

112

In this chapter we apply the methodology and tools developed in the previous chapters to study

the performance of the Alternating Bit protocol [Ban 69]. The Alternating Bit protocol is a simple

data transfer protocol that belongs to the family of protocols employed in the data link layer of the

ISO hierarchy of Fig. 1-1. It has been used in some actual networks such as the Advanced

Research Project Agency (ARPA) network and the European Informatics Network (EIN) [Davi

79]. It is also widely considered as a benchmark among researchers in the area of protocol

development tools.

The function of the protocol is to ensure reliable transfer of messages between a sender and a

receiver communicating through an unreliable channel. The sender sends a message and waits for

its acknowledgment to arrive from the receiver before sending another message (send-and-wait

flow control). If the sender does not get an acknowledgment within a certain time-out period, it

would retry transmission. A binary numbering scheme (where a control bit of 0 or 1 is used) is

used to differentiate between new and old messages or acknowledgments.

The protocol behavior is identical for each cycle with control bit 0 or 1. Therefore. a simplified

version of the protocol, a send-and-wait protocol, in which there are no message numbers is first

considered in the next section. The complete Alternating Bit protocol is then considered in section

6.3. Two performance problems of the send-and-wait protocol, and one performance problem of

the Alternating Bit protocol are addressed. First, the effect of varying the rime-out rate on the

performance of the send-and-wait protocol is analyzed. A too short time-out period causes the

sender to flood the medium unnecessarily with retransmissions. A too long time out period causes

the recovery from a message or acknowledgment loss to be unnecessarily delayed. This trade-off

involves a few performance parameters:

1. Time-out rate A.&touJ: the rate at which the sender retransmits.

2. Probability of premature time-out Pp: the probability that the sender will time out
prior to a loss occurring. It is used as a measure of unnecessary retransmissions.

3. Mean roundtrip delay t; the mean time from sending a message until the successful
arrival of its acknowledgment.

113

Typically, the time-out period is a constant equal to the mean of the roundtrip delay. This setting

aims at responding efficiently to loss while avoiding premature time-outs. However, it has been

shown to be adequate only if the variance of the roundtrip delay is very small [Suns 75]. We

propose an alternative approach for computing an optimal value of the time-out rate by

maximizing the ratio (l-pp)lt
d

, which is analogous to the power measure used to study delay

throughput trade-off in queueing theory [Schw 80]. This timing requirement would yield an

optimal value of the time-out rate even if the variance of the roundtrip delay is not small. It also

does not require a constant setting of the time-out period; an exponential distribution is assumed in

this study.

Second. two performance measures of the send-and-wait protocol: maximum throughput and

mean waiting time, are formally specified and automatically analyzed. Maximum throughput

denotes the maximum rate of delivering messages to the receiver when the sender has always a

message to send. The mean waiting time denotes the average of the time duration that a message

arriving at the source of messages has to be queued until the sender can service it. This queueing

delay is due to the send-and-wait nature of the protocol. These two measures are specified for an

approximation of the send and wait protocol in which time-outs occur only after a loss. Results

obtained are shown to agree remarkably well with past results reported in the literature using

manual analysis.

Third, a mean cycle time performance measure is defined for the complete Alternating Bit

protocol to capture the effect of improper settings of the time-out rate on the timing behavior of

the protocol. Yemini and Kurose [Yemi 82] have shown that if the rate of loss in the channels is

equal to zero, then a non-zero time-out rate would cause the number of message transmissions to

increase eventually to 00. They did not, however, analyze these timing errors for an arbitrary value

of the rates of time-out and loss in the channels. In section 3, the mean cycle time measure is

114

formally specified, and the effect of variations in the rate of loss, and the upper bound on the

number of messages in the channels on it, are analyzed.

6.2. A Send-and-'Vait Protocol

6.2.1. Functional Specification and Analysis

6.2.1.1. An Algebraic Specification

A send-and-wait (SW) protocol can be used for message transfer between a sender process Sand

a receiver process R communicating through two half-duplex, FIFO, and unreliable channels: M (S

to R for messages) and A (R to S for acknowledgments). An upper bound of 2

messages/acknowledgments in the channels is assumed. (The sensitivity of the results to this

assumption is analyzed in section 6.2.2.1.) The sender process is a composite process resulting

from an original sender concurrently composed with a source of messages and a time-out timer.

Two rendezvous events: &get (get a message from the source) and &tout (time-out interrupt). are

obtained from these compositions, respectively. The two channels also result from concurrent

composition with a loss process producing the rendezvous events &lm (loss of a message) and &la

(loss of an acknowledgment).

ETs describing the execution of the four processes involved in the protocol are shown in Fig.

6-1. Initially, the sender and receiver processes are ready for data transfer, and the two channels

are empty. Channel M simply receive messages (?msg) and either delivers (!msg') or loses (&Im)

them. Channel A behaves similarly (change msg to ack and 1m to la). When the sender process S

gets a message (&get) from the source, it sends it (!msg), and waits for its acknowledgment (?ack')

before transmitting another message. If time-out occurs before that. the sender retransmits the

same message and waits again for acknowledgment or time-out. The receiver process R loops

through the following behavior: when it receives a message (?msg') from channel M, it sends an

acknowledgment (!ack) to channel A and becomes ready again. Note that this protocol is similar

to the send-and-wait protocol of chapter 2, with the exception that here acknowledgments can be

lost and time-outs can occur before a loss. The configuration of the protocol is depicted in Fig.

6-2. Algebraic specifications of the processes are given in appendix 6.1.1.

SENDER
S

!msg'

S
&get

T
!msg

?msg
M

s

M

&lm

?ack

R
?msg'

Rl
!ack'

R

A

Figure 6-1: ETs describing the execution of the processes
in the send-and-wait protocol

115

?ack' ___ ! ack' RECEI~R-TO-SENDER ? ack ~ - - ! ack
caANNEL

A

!msg ___ ?msg SENDER-TO-RECEIVER
CHANNEL

M

RECEIVER
R

!msg' --- ?msg'

Figure 6-2: Configuration of the send-and-wait protocol

116

6.2.1.2. The Concurrent Behavior

The concurrent behavior of the protocol, AMSR, computed by concurrently composing the above

given specifications of its four processes, is given in appendix 6.1.2. AMSR is a cyclic behavior

that describes the execution of the protocol through several cycles. Each cycle starts with the

sender getting a message from the source (&get) and ends with the first acknowledgment delivered

to the sender (&ack'). That is, at the start of a cycle the sender process is at state S but the other

processes can possibly be at any state. Let these global states of the protocol be denoted by

"*** S" , where each "*" matches any state of the receiver, and the two channels. Note that other

than the initial state AMSR, all such states would lead to erroneous behaviors in which old

messages and acknowledgments in the protocol can not be distinguished from new ones. But then

this is expected since the protocol specification does not consider such situations.

One interesting behavior of the protocol is that which starts at AMSR and terminates with the

delivery of acknowledgment at the sender (&ack') when the protocol is at any state "***S". This

behavior, to be denoted by AMSR 1" is a representative of the time a message and its

acknowledgments occupy protocols that use the send-and-wait flow control mechanism, such as

the Alternating Bit. AMSR T can be specified in terms of the Terminate function (see definition

3.4) as follows:

AMSR T= Terminare[AMSR,{(&ack',***S)}] (6.1)

The ET of AMSR T is shown in Fig. 6-3: its algebraic specification is given in appendix 6.II.3.

AMSR T includes 37 equations each with, on the average, three summands. Most of these are due

to unnecessary retransmissions of messages caused by premature time-outs.

Let us compute the sub-behavior, to be denoted by AMSR P' of AMSR T in which there are no

premature time-outs. A premature time-out can be avoided if whenever in AMSR T a time-out is

contending with any other event in the protocol, then the possibility of this time-out occurring is

excluded. The reason is that any time-out that occurs before a loss or before allowing a message

or its acknowledgment to reach its destination is premature. In other words, events &lm, &ack,

&la, &msg, &msg', and &ack' should have precedence over &tout. Therefore, using the

Precedence function (see definition 3.5), AMSR p is formally specified by

AJfSR ~ AMSR
T

'\ &ack'

\ "***5" ~ 5

Figure 6-3: ET of the tenninating behavior of the send-and-wait protocol

AMSR p = Precedence[AMSR T' {(&lm,&tout),(&ack,&tout),
(&la,&tout),(&msg,&tout),
(&msg',&tout),(&ack',&tout)}]

117

(6.2)

The ET describing the execution of AMSR p is shown in Fig. 6-4. The figure shows three time

out branches that were pruned from AMSR p as dashed lines, The algebraic specification of

Alv[SR p is given in appendix 6.I.4. There is a reduction in the number of identifiers in AMSR P'

cqmpared to AMSR T' from 37 to just 6. Thus, if the protocol designer is only interested in those

behaviors of the protocol with no premature time-outs, he can consider the simpler behavior of

AMSR p instead of AMSR T AMSR T and AMSR p will be used next in specifying the perfonnance

of the protocol.

6.2.2. Performance Specification and Analysis

The timing behavior of AMSR T is depicted in Fig. 6-5 (b). The behavior starts at to when a

message arrives at the source. A message arriving at the source when the protocol system is busy

is queued for a waiting time duration 't..., before being served. The protocol system is busy if the

sender is waiting for the acknowledgment of a previously sent message. The roundtrip delay 'td is

the time starting with sending a message at the sender until receiving its acknowledgment. Let (w'

and td denote the mean of the waiting time and roundtrip delay, respectively.

(a)

(b)

A,\1SR P

&ger
AMRTp

&msg

(premature)

&tour
(premature) //

"

&tour (premature)

Figure 6-4: ET describing the execution of the send-and-wait
protocol with no premature time-ours

message queue protocol system

~ ~----------~~----------~ .. ~ 1111:

a message arrives &get &msg

at the source t t
&msg' &lm &tout &ack'

...---~---,----_\J/~. W ----"iI~... ----....
to t1 t2 time t

/I

~ 't~
Figure 6-5: (a) Queueing model of the send-and-wait protocol

(b) Timing behavior of AMSR T

118

119

The rates of the various events of the protocol can be explained as follows. A.&msg and A.&ack

represent message and acknowledgment transmission rates, respectively. For a transmission

channel bandwidth b, and assuming that the length of messages and acknowledgments are

exponentially distributed with mean I, A.&msg=A.&ack= b/!. A.&msg' and A.&acK represent the average

communication delay of messages and acknowledgments in the channels, respectively. /..&lm and

A.&la represent the rate of losing messages and acknowledgments. respectively. A.&tOUl represents

the exponential rate of occurrence of time-outs.

The data used throughout this chapter are variations from those used by Molloy [Moll 81] in

analyzing a simplified version of the send-and-wait protocol (in which time-out only occurs after a

loss). The events' rates are set as follows: A.&msg=A.&ack=9.375. A.&msg'=A.&acK=74.22,

A.&lm=A.&la=3.91, and A.&tOUl= 1.0 occurrences/sec. Molloy computed the mean roundtrip delay for

this one set of data; the result he obtained using stochastic Petri nets will be shown to agree with

ours in section 6.2.2.2.

6.2.2.1. Computation of Optimal Time-out Rate

Time-out is used in the SW protocol to recover from loss of messages and acknowledgments.

For the protocol to perform efficiently, the time-out rate has to be set such that both the probability

of premature time-outs p p' and the mean roundtrip delay t d' are minimized. A minimal probability

of premature time-outs ensures that the number of unnecessary retransmissions is minimized. A

minimal roundtrip delay ensures that time-out occurs promptly after a loss. However, these two

goals are contradictory as shown next. The trade-off between them is studied, and a balanced

timing requirement of the protocol is then specified.

Since AMSR p depicted in Fig. 6-4 represents the behaviors of the protocol in which no

premature time-outs occur, then p can be specified by
p

p = 1-PAMSR (AMSR p)
p T

(6.3)

p p is plotted against the time-out rate for three different rates of loss in Fig. 6-6. The figure

indicates that a change in the rate of loss has a negligible effect on the probability of premature

time-outs. This can be explained as follows. Consider the choice sets involved in AMSR p of Fig.

6-4 in which there is a choice between loss and time-out. In these cases there is also the choice of

120

&msg' or &ack' which have a much higher rate then the rates of loss used in the graph. Therefore,

the probability of premature time-outs is mostly unaffected by a change in the rate of loss if the

communication delay in the channels is small relative to 11A.&lm' which is the most likely case.

-~

"'" o

~ --:a
II
~
o ... a.

IJ)

o

oJ)

o

...
o

....
o

~

'-........ >. .tIm - >. .tIll =- 8.00365

\\zlm - >. .tIll - 3.91

~~&lm - ~&l. - 0.00738

b - 9600 bit.:s/see.
1- 1024 bits
)..tm,t -)..t4ck' --74.22

o 0.0 20.0 40.0 60.0 80.0

1..&IOuJ (occurrences/sec.)

Figure 6-6: The probability of premature time-outs versus
the time-out rate for three different rates of loss

100.:l

The mean roundtrip delay t d has been defined to represent the mean time duration of the protocol

behavior that starts with sending a message at the sender and ends with receiving its

acknowledgment. The protocol state corresponding to sending the first copy of a message is

AMRT r td can be then specified by

(6.4)

121

td is plotted against the time-out rate for three different rates of loss in Fig. 6-7. For small values

of the time-out rate, td decreases with an increase in the time-out rate because it takes less time to

recover from a loss situation. However, for large values of the time-out rate, the mean roundtrip

delay starts to increase. This interesting phenomenon can be attributed to a combination of two

factors. First, as is described in the specification of the sender process, an arriving

acknowledgment does not preempt a retransmission due to a time-out. Therefore, for a very high

time-out rate, there will be a delay until the sender realizes an acknowledgment has arrived.

Second, and most imponant, is the delay of retransmissions because the channels are full with 2

messages/acknowledgment. This delay increases and its effect becomes more noticeable for small

values of the rate of loss since the probability of a premature time-out is large. This phenomenon

can be avoided if the sender's specification is changed such that it can accept acknowledgments

after a time-out occurs and before it retransmits.

Fig. 6-6 and Fig. 6-7 indicate a trade-off between the two performance goals of the protocol for

small and medium range values of the time-out rate. This trade-off is also evident in Fig. 6-8 in

which by varying the rate of time-out A.&JOUl' the mean roundtrip delay, t d' is plotted against the

probability of premature time-outs p p' for two different rates of loss.

Power [Schw 80] defined as (l-pp)/td can be used as a balanced performance measure in this

case. The objective is then to compute the optimal value of the time-out rate in order to meet the

following timing requirement of the protocol:

SW-Timing-Requirement
(l-p)

Maximize --p
td

The optimal time-out rate for three different values of the rate of loss are listed in table 6-1.

Time-out rates are computed with an accuracy of at least 1 decimal digit.

6.2.2.2. Specification and Analysis of Mean Waiting Time and Maximum Throughput

Assume that the time-out rate A.&toul is set equal to 0.2 occurrences/sec. The probability of

AMSR p relative to AMSR T is then more than 90% even for a wide range of the other rates of

events in the protocol. Then, the former behavior can be considered as an approximation of latter

behavior. This approximation will be assumed throughout this section. The mean roundtrip delay

1 d would then be respecified as

c: ...

U ~ ~
III ... --
~ -
>.
lIS

1) ~ "'0 ...
Q., -...
~

"'0
I:
:::I ~
~ ...

I:
lIS
~

~ ...
...

o
.... 0.0

b = 9600 bits/sec.
r = 1024 bit,.,
X g' =- X == 74 I).., &ma &ack'

\
X&lm == X&la = 3.91

\
X &lm =- X &la =- 0.00736

4.0 8.0 12.0 16.0

A.&JOui (occurrences/sec.)

Figure 6-7: The mean roundttip delay versus the
time-out rate for three different rates of loss

122

20.0

(6.5)

For the same data given before, Molloy computed td for this protocol using stochastic Petri nets

to be 0.3662 sec/message. Using ANAL Y ST 1 d is equal to 0.36618 sec/message.

The Pollaczek-Khinchine formula [Klei 75] gives the mean waiting time of Fig. 6-5 to be

....-;-
u
OJ
1tl --"'S -

>.
lIS -4)

~

Q, -...
~

~
C
:l
0 ...
CI
IIIl
4)

~

b =- 9600 bits/~ec.
I =- 1024 bits
).&m6' ,..).&(j~ 74.22

'Z!
0

~
0

~
0

'" c:i

~
0.0.0

\
).&/". -).~14 - 3.91

). &lm --).&14 - 0.00736

0.2 0.4 0.6 0.8 1.J

Figure 6-8: The mean roundtrip delay versus the probability of premature
time-outs

Rate of loss A&lm=A&Ia

occurrences/sec.

0.00736

3.91

8.00365

Optimal time-out rate A&IOUI

occurrences/sec.

0.07

1.4

1.9

123

Table 6-1: Optimal time-out rate of the send-and-wait protocol for three different rates of loss

124

(6.6)

where A denotes the rate of message arrivals, and ad denotes the variance of the roundtrip delay

'td starting from state AMRT p and thus is given by

(6.7)

Now let us analyze the effect of varying the bit error probability Pber of the channels, which is

the probability of at least one bit-error (an incorrect message or acknowledgment is considered lost

in our specification), on the protocol's waiting time. Pbu is related to the rate of loss A&/m as

shown below.

GivenPb4!r' then

Pr(message loss) = 1-(1-PbeY

and from AMSR p in appendix 6.1.4

Pr(message loss) = P tLH RW (& 1m)
1 p

which using Lemma 4.1 is equal to

A&lm
Pr(message loss) A A

&msg'+ &lm

(6.8)

(6.9)

(6.10)

Thus, for a given Pber and A&msg" eq. 6.8 and eq. 6.10 above can be used to compute the

corresponding A&lm' The same applies to the rate of acknowledgment loss assuming that P ber for

both channels is the same.

A plot of the mean waiting time lw against Pber for several values of channel bandwidth is given

in Fig. 6-9. The figure shows that tw is not affected by a change in Pber for small values of Pber' but

then it increases sharply for large values of Pber due to the delay incurred in the retransmissions. A

similar result has been obtained by manual analysis [rows 79].

Maximum throughpul TH is the average transmission rate of useful data between the sender and

125

receiver (i.e., excluding any acknowledgments or retransmissions required by the protocol)

achieved when the sender always has a new message to send [Bux 80]. Since for each roundtrip

delay, only one message can be delivered to the receiver, TH is given by

(6.11)

A plot of TH against mean message length I for several P ~r in Fig. 6-10 shows a degradation in

TH for large values of I. This is due to the increase in probability of channel loss for large I, as

indicated in eq. 6.8. As Pbtr decreases this degradation is evident for very long messages and TH

saturates for a range of I. A similar result has been reported by Bux et al., [Bux 80] from manual

analysis of the effect of changing the channels error bit probability on maximum throughput of a

more complex data link protocol: a class of HOLe procedures.

In summary, for terrestrial channels (where Pbcr is very small e.g., 1O-1~, maximum throughput

of the given data link protocol only suffers degradation at large message lengths. The mean

waiting time of the protocol is also not affected by any slight change in bit error probability.

However, for satellite channels with higher bit error probability, all the protocol parameters should

be considered.

6.3. The Alternating Bit Protocol

6.3.1. Functional Specification and Analysis

6.3.1.1. An Algebraic Specification

The configuration of the Alternating Bit (AB) protocol is depicted in Fig. 6-11. The protocol

involves four processes: a Sender S, a Receiver R, a sender-to-receiver channel M, and a receiver

to-sender channel A. As in the above send-and-wait protocol, the channels are assumed to be

FIFO and unreliable. Also, the sender and channel processes are results from concurrent

compositions with a time-out process, and a loss process, respectively. The former composition

produces the time-out event (&tout), and the latter composition produces loss events for messages

and acknowledgments with both values of control bit (&lmO, &lml, &IaO, both &lal). It is

assumed that the protocol system is operating under full load, i.e., the sender always has a message

u
~
III -
;:

c:l a -~
be
e -~ -~
~

e
~
Q,)

~

to send.

'"
o

....
0

o

I = 1024 bits
). = 0.8 arrivals/sec.
).&m8' =).&ack' = i4.22

).&tOtlt = 0.2

~ _________ \~4~ ___ b_its_l_se_c ________ -~
l-

~ ____ b\~9_OOO __ b_its_/s_ec __________ --~~
b=48000 bits/sec

\ L ~ I
/

o 0.000001 0.000010 0.000100 0.001000 0.0 10000 0.10000

Figure 6-9: The mean waiting time versus bit error probability
for various channel bandwidths

126

ETs describing the execution of the sender and receiver processes are shown in Fig. 6-12. The

sender and receiver processes are assumed to be initially synchronized. That is, the sender is

ready to send a message with a control bit 0 and the receiver is expecting a copy of this message to

be delivered to it. The sender starts by sending such a message and waits for one of three events

to occur. If it receives the expected acknowledgment with control bit 0; it sends the next message

in its buffer with a control bit 1. Otherwise, if it receives an old acknowledgment with control bit

1 or a time-out occurs, the same message with control bit 0 is retransmitted. After sending the

.-....
c..i ...
f/l

"" ",
oW

..Q

....
~ ..
= Co

..c:
be

= 0
L. --~
s
= E -><

'" ~

~
0
0
.~ ,.,

Pber = 10-5

~ \ "::l -0
"::l ,.,

~
0 -0

'" b = 9600 bits/sec

A& g' = A - "4 .,.,
~

m8 &ack' - ,
A -0" 0 r-I &tout - ... a

a
'"

~
Pber = 5X 10-5 0

0 \ '" ..;

V ~
0

\"" = 10-< 0
0

I{
~
:l I-

Pb = 10-3 0

\"" = 5XIO-<
,~ \er

'- • L 0,

00.0 1024.0 2048.0 3072 .0 4096.C

I (bits)

Figure 6-10: Maximum Throughput versus message and acknowledgment
lengths for various values of bit error probability

127

message with control bit 1, the above procedure is repeated with the value of the control bit

reversed (Le., 0 changed to I and I changed to 0). The receiver's behavior is basically to send

acknowledgments for every message received. The values of the control bit of these

acknowledgments are the same as those of the received messages.

Generalized specification of the channels that allow an arbitrary bound of I on the number of

messages/acknowledgments are given in appendix 6.II.I as pan of the protocol specification. The

basic behavior of the channels is similar to the channels employed in the data link protocol

discussed in the previous section with the exception that the channels can handle

messages/acknowledgments with a 0 or I control bit. The channels at any time can only have a

SENDER
S

128

?ackO' r--- ! ackO' RECEIVER-TO-SENDER ?ackO r--- ! acJ..{)
?ack1' r- -- ! ackl' CHANNEL ?ackl 1--- lack1

A

RECEIVER
R

!msgO !--- ?msgO SENDER-TO-RECEIVER !msgO' 1--- ?msgO'
!msgl 1--- ?msgl CHANNEL ! msgl' !- -- ?msgl'

M

Figure 6-11: Configuration of the Alternating Bit protocol

s

!msgO ?msg ,

JackO

R

!msgl

?ackO'

Figure 6-12: ETs describing the execution of the
sender and receiver in the Alternating Bit protocol

queue of messages (acknowledgments) with a control bit of 0 followed by a queue of messages

(acknowledgments) with a control bit of I, or vice versa. The reason is the send-and-wait nature of

the protocol and the FIFO nature of the channels.

It should be noted that having the sender and the receiver react to receiving an old

acknowledgment and an old message, as described above, is not necessary for the correct

129

functioning of the protocol. The arrival of old messages/acknowledgments can be safely ignored.

Such reactions, though, provide a faster error recovery in cases when message or

acknowledgments are lost in the channels. Since the channels are FIFO, a receipt of an old

message or acknowledgment indicates that the more recently s(;!nt one has been lost. The effect of

these extra messages and acknowledgments on the performance of the protocol will be analyzed in

section 6.3.3.

6.3.1.2. The Concurrent Behavior

The concurrent behavior of the protocol, AMSR, for I equal to 1 is given in appendix 6.II.2.

From algorithm 5.2 in appendix 5.IV.2 for concurrent composition, the number of equations in the

concurrent behaVIor in the worst case is equal to the product of the number of identifiers in the

protocol's processes. By inspection of the protocol specification in appendix 6.II.1. there are 4,3,

21+1, and 21+1 identifiers in S, R, M, and A respectively. Therefore, the number of equations

included in AMSR is bounded by 12(21+1)2. The actual number of equations in AMSR for I equal

to 1, 2, and 3, is given in Table 6-2.

I
1

2

3

Number of equations

70

238

558

Table 6-2: The number of equations in the concurrent behavior
of the Alternating Bit protocol for several values of 1

The table shows a drastic increase in the number of equations in the protocol's concurrent

behavior. This can be attributed to two factors. The first is premature time-outs which had a

similar effect in the SW protocol discussed in the previous section. The second is having extra

messages and acknowledgments occupying the protocol system. These are caused by the sender's

response to the receipt of an old acknowledgment and the receiver's response to the receipt of an

old message. Note that there would be no extra messages and acknowledgments if there were no

premature time-outs. The effect of these two factors on the size of the concurrent behavior of the

protocol increases as the upper bound on the number of messages in the channels increases.

130

This same phenomenon has been described by Yemini and Kurose [Yemi 82]. They have shown

that it is in its worst form when the channels rates of loss is equal to zero, but the time-out rate is

not. In this case, by following the specification of the processes, one finds that the number of

message transmissions with control bit equal to 1 (0) is at least equal to the number of previous

message transmissions with control bit equal to 0 (1). However, each time a time-out occurs, the

former increases by lover the latter. This means that eventually the number of message

transmissions increases to 00. Next, we propose a performance measure that would capture this

timing error and analyze the effect of the time-out rate, loss rate, and upper bound of number of

messages in the channel, on it

6.3.2. Performance Specification and Analysis

6.3.2.1. Specification and Analysis of Mean Cycle Time

Consider the time the protocol takes to complete one cycle starting at the initial state AMSR, and

ending with the delivery of acknowledgment with control bit 1 (&ackl') and all four processes are

in their initial states. The mean of this cycle lime is a good measure of the delays caused by

time-outs and extra transmissions which have the effect of increasing the time until the protocol

system returns to its initial state. It also measures the duration of the cycle repeated by the

protocol behavior.

The terminating behavior, AMSR T' which represents the behavior of each of these cycles can be

computed by applying the Terminate function to the protocol's concurrent behavior, AlvISR, such

that it terminates with event &ackl'. It is given by

AMSR T = Terminale[AMSR,{(&ackl' ,AMSR)}] (6.12)

The mean cycle time Ie is then formally specified by

(6.13)

Let us compute those behaviors of the protocol. to be denoted by AMSR P' in which there are no

premature time-outs. The mean cycle time of this ideal behavior will be compared with that of

AMSR below. Similar to the SW protocol of the previous section, the ideal behavior of the

131

protocol can be obtained by having all events in the protocol, except time-out, take precedence

over time-out. This ideal behavior, with no premature time-outs, and therefore, no extra messages

or acknowledgments, is specified by

AMSR p = Precedence [AMSR T' {(&lmO,&tout),(&ackO,&tout),
(&laO,&tout),(&msgO,&tout),
(&msgO',&tout),(&ackO',&tout),
(&lm 1 ,&tout),(&ack 1 ,&tout),
(&la 1 ,&tout),(&msg 1 ,&tout),
(&msgl',&tout),
(&ackl',&tout)}]

The algebraic specification of AMSR p is given in appendix 6.11.3.

(6.14)

te is plotted against the time-out rate A&tOUI in Fig. 6-13 and Fig. 6-14 for a loss rate

(A&lmO = A&lml = A&laO = A&lal) equal to 3.91 occurrences/sec and 1.0 occurrences/sec ,

respectively. In both figures, three different values of I = 1, 2, and 3, are considered. Also

included in the two figures are te for the protocol's ideal behavior with no premature time-outs.

Both figures show that for small values of the time-out rate (in which case the effect of premature

time-outs is not yet evident), te decreases as the rate of time-out increases since this means a faster

recovery from loss situations. Variations in the value of I has a negligible effect on te for these

small time-out rates. Comparing the two figures shows that variations in te occurs at smaller

values of the time-out rate when the rate of loss is smaller. The reason for this is apparently that as

the rate of loss decreases, a premature time-out occurs for a smaller value of the time-out rate.

The two figures also show that t starts to increase as the time-out rate increases and in fact
c

explodes for large values of the time-out rate. This is partly due to the delay of retransmissions

when the channels are full as explained in section 6.2.2.1. However, if this was the only reason,

then an increase in I should have caused a decrease in t. But this is not the case. Therefore,
c

another reason for the increase of t is the increasing effect of premature time-outs and extra c

transmissions on extending the duration of the protocol's cycle time. The increase becomes larger

for larger values of I and smaller values of rate of loss in the channels.

The following insights have been gained from the above analysis of the cycle time of the AB

protocol:
1. Increasing I results in an explosion in the cycle time for large values of the time-out

-u
U
III -

(,,) -
q)

E -..ol

q)

to)

~
to)

c
cO
Q.l

~

:;)

ill

o

'"

o ..

o
N

o
00.0

b ::::::a 9800 bits/sec.
I = 1024 bits

A&m"gO"' = A&acl..o' = 74.22
A - A - 74 'l'l &m"gl' - &ackl' -

>'&lmO = A&laO = 3.91

A&lml = A&lal = 3.91

5.0 10.0

I :=z 1

J..&roUl (occurrences/sec.)

AMSRlp

\

15.0

Figure 6-13: The mean cycle time versus the time-out
rate for three values of I

with rate of loss equal to 3.91 occurrence/sec.

20.0

rate because the number of message retransmissions increases. However, for small
values of the time-out rate the cycle time is not significantly affected by a change in
I.

2. Decreasing the rate of loss in the channels also causes an increase in the cycle time
of the protocol especially for large values of the time-out rate. This is due to the
delay incurred by retransmissions when the channels are full.

132

A~suming that the time-out is set such that AMSR p is a suitable approximation of AMSR T' then

the AB protocol's behavior is similar to the behavior of the SW protocol examined in the previous

section repeated twice (for values 0 and 1 of the control bit). This becomes also apparent from

comparing the behavior of the two protocols given in appendix 6.1.4 and appendix 6.II.3.

~
IJ'l ..,

~
0 ..,

--..; ~
u .n
en " -

u -
0

~

=
0

" ---
Q,)

~
Col ;JI

>-
Col

= 115 ~
~ 0

l ..

~
IJ'l

~
o 0.0

b = 9600 bits/sec.
I = 1024 bits
A&m~gO' = A&ack()l = 74.22

A&m~gl' = A&ackl' = 74.22

A &lmO = A &laO = 1.0

A &lml = >. &lal = 1.0

1=3

2.0 4.0 6.0

A. &low (occurrences/sec.)

AAfSR Ip
\

B.O

Figure 6-14: The mean cycle time versus the time-out
rate for three values of!

with the rate of loss equal to 1.0 occurrence/sec.

133

:0.0

Therefore, in this case the results of the analyses of maximum throughput and mean waiting time

of SW protocol in section 6.2.2.2 would also be valid for the AB protocol.

6.4. Summary

An automated performance analyses of a send-and-wait and the Alternating Bit protocols using

ANAL YST, has been provided. An optimal setting of the time-out rate of the send-and-wait

protocol has been computed. Maximum throughput and mean waiting time performance measures

of the protocol have been formally specified and analyzed. Results from these analysis have been

134

shown to agree remarkably well with results reponed in the literature using a manual approach.

The cycle time of the Alternating Bit protocol has been defined and formally specified. It has

been shown that it is an adequate measure of the performance of the protocol that captures the

effects of premature time-outs and extra transmissions. These two aspects of the behavior of the

protocol has been shown previously by Yemini and Kurose to result in a timing error. We

provided for the first time a performance analysis of these effects. The effects of the rate of loss,

and the upper bound on the number of messages/acknowledgments in the channels on the mean

cycle time have been analyzed.

The performance analyses of the send-and-wait and Alternating Bit protocols provided in this

chapter are novel in three respects. First, a specification-based performance analysis of these

protocol is provided for the first time. Second, a general timing requirement of the send and wait

protocol has been specified, and optimal settings of the time-out rate have been computed. Third, a

performance analysis of the timing error exhibited by the Alternating Bit protocol reponed

previously in the literature has been provided.

Appendix 6.1. Algebraic Specifications of the Behaviors of the Send-and-Wait

Protocol

6.I.1. Protocol Specification

The specification of the configuration of SW protocol and algebraic specifications of its

processes are as follows:

PROTOCOL SW: S,M.R,A

scope(S,M) = {msg}
scope(R,A) = {ack}

END

PROCESSS
S = &get.T
T= !msg.W
W = &tout. T + ?ack'.S
END

scope(M,R) = {msg'}
scope(A,S) = {ack'}

PROCESS R
R = ?msg' .R l
Rl = !ackoR

END

PROCESSM
M = ?msgeM\
M\ = !msg'eM+&lmeM

+?msg eM2
M2 = !msg' eM\ +&lmeM\
END

6.I.2. Concurrent Behavior

AMSR=&geteAMRT
AMRT=&msgeAM\RW

PROCESS A
A = ?ack-A\
A\ = !ack' eA + &la eA

+ ?ack eA2
A2 = !ack' eA\ +&laeA\
END

AM\RW = &msg' eAMR\ W + &lm eAMRW + &touteAM\RT
AMR \ W = &ack e A\MRW + &tout eAMR\ T
AMRW = &tout eAMRT
AM\RT=&msg' eAMR\T +&lmeAMRT +&msg oAM2RW
A1MRW=&ack' eAMSR+&laeAMRW+&touteA\MRT
AMR\T=&ackoAIMRT+&msgoAM\R\W
AMI?W = &msg' eAM\R I W + &lm 0 AM \RW + &tout eAM2RT
A\MRT = &la oAMRT + &msg eAIM \RW
AM\R \ W = &ack-A\M \RW + &lm eAMR\ W + &tout eAMIR \ T
AM2RT=&msg' eAM\RIT +&lmeAM\RT
A\M\RW=&ack' eAM\RS+&laoAM\RW +&msg' oA\MR\W

+ &lmeA\MRW +&toutoA\M\RT
AM \R \ T = &ack-A\M \RT + &lm eAMR \ T + &msg eAM2R \ W
AM\RS = &msg' oAMR\S + &lmeAMSR +&getoAM\RT
A\MR\W=&ack' eAMR\S +&laoAMR\W + &ack 0 AjvlRW

+&toutoA\MR\T
A\M\RT = &la oAM\RT + &msg' oA\MR1 T + &lm oA\MRT

+ &msgoA\M:!W
AM~lW=&ackeA\M~W+&lmeAMIRIW+&toutoAM2R\T
AMR1S =&ack-A1MRS +&getoAlvlR1T
AiWRW=&ack' oA1MRS+&laoA1MRW+&touroAjvlRT
AIMRIT=&/a oAMR l T +&ackoAjvlRT + &msgoA1M1R 1 W
AIM~W = &ack' oAM2RS + &la oAM~W +&msg' oA1M1R \ W

+&lm oA 1M\RW+&tout oA\M2RT
AM2R \ T = &ack oA\M2RT + &lm 0 AM \R \ T
A\MRS=&laoAMSR+&geroA\MRT
AjvlRT=&/aoA\MRT +&msgoAjvI\RW
A\M\R\W =&ack' oAM\R\S + &laoAJ\.-f\R\W +&ack-AjvI\RW

+&lm oA\MR I W +&toutoA\M\R\T
AM2RS=&msg' oAM\R\S + &lmoA1W\RS+&getoAM2RT
A\M~T=&laoAMzRT +&msg' oA\M\R1T +&lmoA\M\RT
AjvI\RW = &ack' oA\M \RS + &la oA \M \RW + &msg' oAjvlR \ W

+ &lmoAjvlRW + &tout 0 AjvI\RT
AMl\S=&ackoA\M\RS + &lmeAMR\S +&getoAM\R1T

135

AIMIRIT=&laoAMlRlT + &ackoAJrflRT
+&lmoA1MR1T +&msg oA IM2R1W

A 1M IRS = &la oAM1RS + &msg' oA)MR)S
+ &lm oAIMRS + &get.A 1M IRT

A#RIW =&ack' oA1MR1S +&laoAIMRl W +&toutoAz.MRlT
A}1IRT=&la oA lM lRT +&msg' o Az.MR1T

+&lm oAz.MRT +&msgoAIJJ?W
AIM~lW=&ack'oAM~lS+&laoAM2RlW

+&ackoAz.M~W +&lmoAlMlRIW +&toutoA\M~lT
A IMR 1S =&laoAMR\S +&ackoAf/RS +&get oA IMR\T

A}1R\T =&la oA\MR\T +&msg o Az.M\R\ W
Af/~W -&ack' oA IM 2RS + &laoA\M2RW

+&msg' oAz.M\R IW + &lmoAf/IRW + &toutoAz.M2RT
AM~IS=&ackoAIM2RS+&lmoAMIRIS+&getoAM2RIT
AIM z.R I T = &la 0 AM 2R) T + &ack 0 Az.M 2RT

+&lm oA IM\R IT
A-JdRS=&IaoAIMRS+&getoA-JdRT

A/dIRIW=&ack' oAIM\RlS+&IaoAIMlRIW
+ &lm o Az.MR I W + &tout 0 AJrf)R I T

AIMzRS=&laoAM~S +&msg' oA)M\R1S
+ &lmoA IM\RS +&get oA\M2RT

Af/~T=&laoAIMzRT +&msg' oA/vflRIT + &Im 0 Az.MIRT
A1M\RIS = &la oAM\R\S +&ack-Az.MIRS

+ &Im oA\MR \S + &getoA \M lR \ T

A-JdlR\T=&faoAIM\R1T +&lm o Az.MR IT + &msgoAz.M~\ W
A.JvflS=&laoAIM1RS +&msg' o Az.MRIS

+ &lm o Az.MRS + &get 0 A.Jvf IT
A.JvfzR\W=&ack' oA)MzRlS +&laoA)MZR\W

+&1m oAz.M\R\W +&toutoAtW2R\T
A.JvfRlS=&laoA/vfR\S +&getoAz.MRl

A ld ~ IS .. &la oAi\1 ~ I S + &ack 0 Az!v! 2RS

+ &fmoAIM\R\S +&getoAIMllT

A#~1 T "" &la oAIM~ 1 T + &lm oAfllRI T
AJvI~S=&laoAIMzRS +&msg' o AfllRIS

+ &lm o Az.M\RS + &getoAz.M2RT
A.Jvf\R\S =&la oAIM1R1S +&lmoAz.MRIS

+ &geteAz.M1R\T

6.1.3. Terminating Behavior

AMSRT=&getoAMRT T

Ai\1RT T=&msgoAM\RW T

AM1RW T=&msg' oAMR\W T+&lmoAMRW T+&toutoAM\RT T

AMRIW T=&ackoA1MRW T+&toutoAMR1T T

AMRW T= &toutoAMRT T

AMIRT T=&msg' oAMR1T T+&lmoAMRT T+&msg oAM2RW T

136

A\MRW T=&ack' o$+&laoAMRW T+&toutoA\MRT T
AMR\T T=&ackoA\MRT T+&msgoAM\R1W T
AM2RW T=&msg' oAMl\ W T+&lm oAMlW T

+ &tour oAM2RT T
A\MRT T=&laoAMRT T+&msgoA\MrRW T
AM\RrW T=&ackoA\M\RW T+&lmoAMRrW T

+&toutoAMll T
AM~T T=&msg' oAM\R\T T+&lmoAMlRT T
A\M\RW T=&ack' .$+&la.AM\RW T+&msg' .A\MR\W T

+ &lmoA\MRW T+&toutoA\M\RT T
AM\R\T T=&ackoAIM\RT T+&lm.AMR\T T

+&msg.AM~\W T
A\MR1W T=&ack' .$+&la.AMR\W T+&ackoAz!viRW r

+&tout.A1MR\T T
A\MlT r=&la.AM1RT r+&msg' oA\MR\T T+&lmoA1MRT T

+&msg.A1M2RW r
AM2R1W r=&ackoAIM2RW T+&lmoAM\R\W T

+&tout.AM2R\T r
Az!v1RW r=&ack' o$+&laoA1MRW r+&tout.Az!viRT T
AIMRIT r=&la.AMR\T r+&ack.Az!viRT r

+&msg.A1M\R\W r
AIM~W r=&ack' .$+&la oAM2RW r+&msg' oA\M\R\W r

+&lm.A1MlW r+&tout.A\M~T r
AM2R rT r=&ackoAIM~T r+&lm.AMrR1T T
Az!viRT r= &la oA1MRT r+ &msg o Az!v1lW T
A1MrR\W T=&ack' .$+&la.AM\RrW T

+&ackoAtw\RW r+&lm.A1MR\W T
+&tout.A\MrR\T T

AIM~T r=&la.Alvf~T r+&msg' .A\M\R\T r
+&lm.A\M\RT r

AzMrRW T=&ack' .$+&la.A\MrRW r+&msg' oAzMR\W r
+&lm.AIIlRW r+&toutoAzMlRT T

AIMIR\T r=&laoAM1R\T r+&ack.Az!vilT T
+&lm .ArMR\T T+&msg .ArM~\ W T

Az!v1R1 W r=&ack' .$+&la.A1MR\ W r+&tout.AIIlR1T r
Az!vi\RT r=&la.A1M\RT r+&msg' oA.J1R1T T

+&lm.Az!v1RT r+&msg·Az!vi2RW T
AIM~\W T=&ack' o$+&la oAM2R\W r

+&ack.Atw~W r+&lmoArM\R1W r
+&tour oA\M2R 1T r

Az!viR\T T=&laoA1MR\T r+&msg.Az!vi\R\ W T
Az!vi~W r=&ack' o$+&la oA1M2RW T+&msg' oA.jvf\R\ W r

+&lm·Atw1RW r+&toutoA1:M~T r
A\M~\T T=&la.AM~IT T

+&ackoAz!vi~T T+&lmoA1M\R\T T
Ar\11R 1W T=&ack' .$+&laoA1M1R\W r

137

+ &lmoAz.MR I W T+&touteAz.MlRIT T
A#zRT T=&laoAlM~T T+&msg' oAZ\11R 1T T

+ &lm • Al'-1IRT T
A#IRIT T=&laoA1M1RIT T+&lmoAflR1T T

+ &msgoAz.MzRIW T
AfI~IW T=&ack' 0$+&la.A 1M 2R 1W T

+ &lmoAz.MIRI W T+&tout.Az.M2R IT T
Ajvf~IT T=&la oA 1M 2R 1T T+&lm oA.J4IR1T T

6.1.4. Behavior With no Premature Time-outs

AMSR p=&get.AMRT p

AMRT p=&msgoAM1RW p
AM1RW p=&msg' oAMRlW p+&/moAMRW p
AMRIW p=&ackoA1MRW p
AMRW p=&tout.AMRT p
A1MRW p=&ack' o$+&laoAMRW p

Appendix 6.II. Algebraic Specifications of the Behaviors of the Alternating

Bit Protocol

6.11.1. Protocol Specification

138

The specification of the configuration of Alternating Bit protocol and algebraic specifications of

its processes are as follows:

PROTOCOL AB: SM.R.A

scope(S,M) = {msgO ,msgl}
scope(R.A) = {ackO, ackl}

END

PROCESS S
S=!msgOoWo
Wo = ?ackO',SI +&tout.S+&ackl'.S

Sl = !msgl o WI
WI "" ?ackl' oS + &touteS I + &ackO' ,SI
END

scope(M ,R)= {ms gO' ,ms g 1 '}
scope(A,S) = {ackO' , ack 1 '}

PROCESSR
R = ?msgO'.Ko+?msgl' .K1
Ko = !ackO·R
KI = !ackl .R

END

Generalized specifications of channels M and A with an arbitrary bound of I on the number of

messages/acknowledgments are given below. For channel M, the queues of messages with a

139

control bit of 0 and 1 are denoted by 110 and Ill' respectively. Similarly, for channel A, the queues

of acknowledgments with a control bit of a and 1 are denoted by <lo and al' respectively. Two

operations on these queues are used: "+" for adding a message to a queue, and "-" for removing

a message from a queue. Note that the channels at any time can only have a queue of messages

(acknowledgments) with a control bit of 0 followed by a queue of messages (acknowledgments)

with a control bit of 1, or vice versa. The reason is the send-and-wait nature of the protocol and the

FIFO nature of the channels.

PROCESSM
M = ?msgOoMo+?msgloMI

CIllo I >0) M~0'J.11 = !msgO' oMIlo-O'~I
+&lmO 0 M" -0"

'"a ''-1

+&lmloMIlo'~I_1

+?msg l o MIlo·J.1I+1

(11111 >0) MJ.1l'llo = !msgl' oM.,_I.1lo

+&lmO 0 M J.1I'~O-O
+&lmloM" -I"

r-I ''-0

END

END

+?msgloM" I"
'"I + '''0

6.II.2. Concurrent Behavior

This is for the case of an upper bound of I = 1 on the number of messages in the channels.

AMSR=&msgooAMoWaR

AMoWoR = &msgO' oAKoMWb + &lmo oAMW aR + &tout 0 AMaRS
AKoMWo = &acko oAoMW oR + &tout 0 AKoMS
AMW aR = &tout 0 AMSR

AMaRS=&msgO'oAKoMS+&lmooAMSR
Arf1W oR = &ackO' oAMSlR + &lao oAMW aR + &tout o Arf1RS
AKoMS = &acko o Arf1RS + &msgo oAKrf1oWo
AMSlR=&msgloAMlWlR
AoMRS = &lao oAMSR + &msgo o ArJvfoW ~

AKoMoWo= &acko o ArJvfoWaR + &lmo oAKrf1Wo+&toutoAKrf1oS
AM1WlR=&msgl'oAK1MWl +&/mloAMWlR+&toutoAMlSlR

AoMoWoR=&ackO'oAlWaSlR+&/aooAMoWaR+&msgO' o AaKPo
+ &lmo 0 Arf1WoR + &tout 0 ArjWaRS

AKrf1 as = &acko 0 ArJvf aRS + &lmo 0 A KrlfS
AKlMWl =&ackl oAlMWlR+&toutoAKlMSl
AMW1R=&toutoAMS1R
AM1S1R=&msgl'oAK1MSl +&lmloAMS1R

AMaSlR = &msgO' oAKrf1S t + &lmooAMStR
AaKoMWo=&ackO' oAKoMSl + &lao oAKr!fWo+&toutoAaKrJvfS
AoMaRS=&laooAMaRS +&msgO' o AaKJ1S + &lmo o Arf1RS
AIMWl=&ack1'oAMSR+&laloAMW\R+&toutoAtMStR

AKtMSt =&acktoAtMStR+&msgtoAKtMtWt
AKoMSt =&ackooAoMStR+&msgloAKoMlWt
AaKoMS = &laooAKrJvfS + &msgooAaKrf1oWo
AtMSlR=&laloAMStR+&msgtoAtMlWlR
AKtMlWt =&ackloAtMtWtR+&lmloAKlMWt +&toutoAKtMtSt
AoMSIR=&laooAlWStR + &msgt oArf1t WtR

AKaMtWt =&ackooAaMtWlR+&lmloAKPl + &tout 0 AKaMtSl
AaKaMoWo=&ackO' oAKaMaSt +&laooAKrf1oWo

+&lmooAaKPo+&toutoAaKrf1aS
A1M1W1R=&ackl' oAMlRS+&la1oAMtWlR+&msgl'oAtKtMWt

+&lmloAlMWtR+&toutoAlMtStR
AK1MlS1 =&acklOAtMtStR+&lm1oAKlMSt
AaMtWIR=&ackO'oAMtStR+&laooAMlWtR+&msgl'oAaKtMWt

+&lml oArf1WtR +&toutoAoMtSlR

AKrf1Wt = &ackooAptR + &toutoAKaMSt

AKaMlSt =&ackooAaMtSlR +&lml oAKJrlSt

AKaMaSt =&ackooArf1aSl R + &lmooAKrf1S t
AaKrf1aS = &lao oAKoMaS + &lmo o AaKrJvlS
AlWtRS = &msg l' oAKtMS +&lm1oAMSR
AtK1MWt =&ackl' oAK1MS +&/aloAKtMW l + &toutoAtK1MSt
AlMtStR=&laloAMtStR+&msgl' oAtKlMSl +&lmloAtMS1R
AaKIMWl =&ackO' oAK1MSt + &laooAKjMWt +&toutoAaKtMSl

140

ArJvfW)R ~ &ackO' 0 AMS)R + &lao 0 AMlV)R + &tout oAJvfS tR
AJvftStR=&laOoAMtStR+&msgl' o AaKtMSt +&lmloAJvfStR
AJ.1cP)R= & lao oAMaS)R +&msgO' o AaKJ.1S) + &lmooAJvfStR
AK,MS=&ack}oAtMRS+&msgooAKtMOWo
AtKtMS) =&laloAKtMS) +&msg,oAtKtMI Wt
AaKtMS) = &laooAK)MS) +&msgloAaK}M)W)
Arf<JvfSI =&laooAKJvfSI +&msgloArf<JvfIWI
A}MRS=&laloAMSR+&msgooAIMoWaR
AK)MOWo=&ack).A)MoWaR+&lmooAK)MWo+&tout.AKjMaS
A1KIMIWI =&ackl' .AKjMIS+&laloAKlMIWj

+&lmloAIK1MWj + &toutoAtKIMjS)
AaKjMIWj =&ackO' oAKjM)Sj +&lao·AK}MjWj

+ &lm 1 0 AaK}MW) + &tout oAaK 1M IS I

Arf<JvfI WI = &ackO' .AKJvfIS 1+ &lao oAKJvfl WI
+&lmloAaKJvfWI +&toutoArJ<JvfISI

A)MoWaR = &ackl' oAMaRS+&laloAMoWaR+&msgO' oAIKoMWo
+&lmOoA}MWaR+&touroAIMaRS

AKIMWo=&ackt oAIMWaR + &toutoAK1MS
AK 1M cP = &ack} 0 A}M aRS + &lmo oAK tMS
AKtMtS=&ack)oAtM,RS+&lmloAK)MS
A)KtMtS1 =&laloAKtMISt +&lmloAtK1MS1
ArJ<tMISt =&laO·AK1M1SI +&lmloArf<IMS)
Arf<JvfWI =&ackO' oAKJvfSI +&laOoAKJvfWI +&touroArJ<JvfS)
Arf<rflIS) =&laooAKrfI)SI +&lmloArf<rflSI
A)KJvfWo = &ackl' oAKrflS +&laloAKoMWo+ &touroAIKrflS
A)MWaR=&ackl' .AMSR+&laloJ\iVfWaR+&touroAIMRS
AIMaRS=&laloAMaRS+&msgO' oA)K(fWS+&lmOoA)MRS
A)M)RS = &laloAMIRS + &msgl' oAIK)'WS + &/ml oA)MRS
A)KrflS = &laloAKrJv!S + &msgo oAIKrJ4oWo
A)KIMS=&laloAKIMS +&msgooAIK)MOWO
A)KrJv!oWo = &ackl' oAKrJvfaS + &lal oAKrJvfoWo

+ &lmo oAIKpo + &touroA)KrflaS
A)K)MOWo=>&ackl' oAK)MaS+&laloAK1MoWo

+ &lmo oA)K)MWO + &routoAtKIMaS
A}KrJv!cP =&lal.AKJvfaS +&lmo·AtKrJ4S
A tK IMWo=&ackl' oAKtMS+&laloAKtMWo+&toutoAtKtMS
AtKjMaS=&laloAK)MaS+&lmooAIKIMS

141

6.II.3. Behavior With no Premature Time-outs

AMSR p = &msgO oAMoWoR p
AMoWrf? p=&msgO' oAKr;MWop+&lmOoAMWr! p
AKr;MW op = &ackO 0 AJrfW oR p
AMW aR p = &toutoAMSR p
AJrfW oR p = &ackO' • AMS lR p + &laO 0 AMW oR p
AMS1R p=&msgloAMlWlR p .
AM1W1R p=&msgl' oAKlMWlP+&lmloAMWlR p
AKIMWIP=&ackloAlMWlR p
AMWIR p=&toutoAMS1R p
AIMWIR p=&ackl' o$+&lal oAMW1R p

142

Chapter 7

Performance Analysis of a Two Phase Locking
Protocol

7.1. Introduction

143

In a distributed data base system, data items are distributed among several sites. User processes,

at possibly different sites, execute transactions that are allowed to concurrently access and modify

the data items. OearJy, such concurrent access has to be controlled in order to maintain a

consistent state of the data base. Locking is one policy that has been used for that purpose. In a

locking protocol, access to a data item is exclusive for the transaction that owns its lock. Eswaren,

et. aI., [Eswa 76] have shown that consistency is maintained by locking protocols if transactions

do not request new locks after releasing a lock.

In this chapter we apply the methodology and tools developed to study the performance of a two

phase locking (2PL) protocol used for concurrency control in data base systems [Bern 79J. In a

2PL protocol, each transactions passes through a growing phase, commits, and then goes through a

shrinking phase. In the growing phase, a transaction goes through a loop of performing some

processing actions. Whenever it needs a data item, it sends a locking request to the concerned data

item, then continues processing after its request is granted. The growing phase ends when the

transaction commits i.e., all its actions are guaranteed even if the transaction later aborts (due to

failure of its process, for example). In the shrinking phase, a transaction releases all acquired

locks in the same order in which they were acquired and terminates.

The 2PL protocol ensures consistency of the data items, but it does not guarantee absence of

deadlock situations. Such situations may arise between two transactions if each is waiting for a

lock acquired by the other. Deadlock can be avoided if each transaction locks all data items

required by a transaction before initiating it (static locking). Otherwise, a mechanism has to be

employed to recover from deadlock situations. The typical mechanism used for deadlock

144

detection and recovery involves elaborate computations and checks of wait-for graphs [Nlena 79].

In this study, time-outs, as suggested in [Bait 82, Ceri 84], are used for deadlock recovery. That

is, if a time-out occurs while a transaction is waiting for lock acquisition. it suspects that it is

involved in a deadlock, aborts, and restarts. The choice of a time-out rate that would ensure that

the probability of a time-out occurring unnecessarily is minimal and that a time-out occurs

promptly after a deadlock is clearly an important performance problem.

The first performance problem of the two phase locking protocol to be examined in this chapter

is to analyze the effect of varying the time-out rate on the performance of the protocol. No

previous work has been reported in that respect A too large time-out rate would cause a

transaction to unnecessarily abort and restart thus decreasing the effective throughput of the

protocol (thrashing effect). A too small time-out rate would cause a transaction to wait for a long

time after a deadlock situation has occurred before aborting and restarting. As a consequence. the

response time of the transaction would be degraded. Similar to the send-and-wait protocol of

section 6.2, this trade-off involves few performance parameters:

1. Time-out rate A.Bu: the rate at which the transaction aborts.

2. Probability of unnecessary time-out P,: the probability that a transaction will time
out without being involved in a deadlock. It is used as a measure of unnecessary
aborts and restarts.

3. Transaction mean response time t,.: the mean time from the start of a new
transaction until it commits and releases all its locks, including aborts and restarts.

By varying the time-out rate. the trade-off between the two objectives of a minimal probability

of unnecessary time-outs and mean response time of a transaction, is demonstrated. Then, similar

to the approach followed in chapter 6, a balanced objective is chosen to maximize the power

measure of transactions running on a process defined as (I-p,)!t,.. An optimal value of the time-out

rate that meets this timing requirement is thus computed. Note that being able to compute an

optimal setting of the time-out rate suggests that it may be an alternative for the elaborate

computations involved in the deadlock detection mechanism of the wait-for graphs. The advantage

of the former over the latter is that much less time is involved in the detection.

Several performance measures of the two phase locking protocol, such as the probability of

deadlock, are also of key importance. Work reported on analyzing such performance measures of

145

the protocol used either simulation or a manual analytic approach, see for instance [Poti 80. Shum

81, Ches 83, Mitr 84, Morr 84]. The second objective of this chapter is then to use the

methodology and the developed tools to automatically analyze a transaction's mean response time

and probability of deadlock. The effects of varying several performance parameters of the

protocol, such as the access rates of different data items or the length of transactions, on these

performance measures are examined.

The rest of this chapter is organized as follows. In the next section, an algebraic specification of

the protocol is provided, its concurrent behavior is computed, and sub-behaviors of this concurrent

behavior that are required for performance specification are specified and derived. In section 7.3,

the timing behavior of the protocol is examined, and the two performance problems described

above are studied. A summary of the results presented in this chapter is given in section 7.5.

7.2. Functional Specification and Analysis

7.2.1. An Algebraic Specification

Consider a distributed data base system with M logical processes, and N distinct data items each

with a scheduler process associated with it. Let M denote the set {i; i=i , ... ,~I}, and N denote the

set {j; j=i , ... ,N}. The communications between a process P j and a data item Dj are depicted in

Fig. 7 -1. There are three ports through which they interact: a port a ij for messages to acquire a new

lock to the data item, a port lij for messages to grant a lock, and a port rij for messages to release a

lock. No distinction is drawn between read and write locks.

Simplified versions of the ET of a process and a data item scheduler are depicted in Fig. 7-2 and

Fig. 7-3, respectively. I~ these figures, events denoting communications between a process Pi and

data item scheduler D. are described by a subscript ij. Internal events (produced from previous
J

concurrent compositions) in a process Pi are associated with subscript i (except &Pij representing

transactions on process P. deciding it needs to lock data item J).
I

The execution of Pi' as shown in Fig. 7-2, starts by running a new transaction which may execute

some internal processing and then decides it needs a lock to data item j (&Pi)' A transaction

attempts to lock a data item only when it is required during the growing phase (dynamic locking).

Process P.
I

!a .. ?I .. !r ..
IJ IJ IJ

I I I
I I I
I I I
I I I

?aij !lij ?rij

Data Item Scheduler D.
J

Figure 7-1: Communications between a process and a data item scheduler in a distributed
data base system

146

It sends a request to it (!a ..) and waits for a grant of its request (?I ..) upon which it either continues
IJ IJ

processing and acquiring more locks, or decides to commit (&c.). If after a certain waiting period
I

the locking request is not granted, the transaction decides to try again (&8) and sends another

request However, if the time-out occurs (&t) before the locking request is granted, the

transaction suspects that it is involved in a deadlock, aborts, and restarts it. When aborting or

committing, a transaction releases all the acquired locks (!r ij) in the same order in which they have

been acquired. We assume that there is always a transaction waiting to be executed on each

process; therefore, after a transaction commits and tenninates a new transaction is staned

immediately. In addition, we assume that the behavior of a restarted transaction is independent of

that of the previously aborted transactions.

The behavior of a data item scheduler D., as shown in Fig. 7-3, starts at a state in which it is
I

waiting for a locking request. The first locking request it receives (?ai) is granted and the

scheduler is then in a locking state. Subsequent locking requests received while it is still locking

are ignored. A grant of the first received locking request (!/yl is sent to the source process and the

data item is locked. The data item remains locked until it receives a release request from the

transaction on that process (?r ..). Release requests received from transactions on other processes,
IJ

which are aborting, are ignored.

Pi (start a new transaction)

&p ..
IJ

Send

!a ..
I';

&t.
1

Abort

!r ..
IJ

jorall &p .. ,
I';

acquired locks Send

Restart

&p ..
I';

Send

wherej:t=j';jJ'e N;andie M

Commit

! r.fior all
• 1 I acquired locks

P.
1

Figure 7-2: A simplified IT of a process in the 2PL protocol

147

Algebraic specifications of a process and a data item scheduler are given in appendix 7.1.1.

These specifications follow the simpler corresponding ETs in Fig. 7-2 and Fig. 7-3, but with the

following additions. First, since a transaction may be involved in deadlock only if it has already

locked one data item, time-out is not allowed when a transaction is waiting for its first lock.

Second, identifiers of a process specification, except for the initial identifier, are associated with

an ordered list of acquired, and awaited, data item numbers. This allows the order of acquiring

locks to be remembered and thus to release them in that order in the shrinking phase. In addition.

identifiers of a data item scheduler specification are associated with the process number running

the transaction owning its lock in order to distinguish between release requests to respond to when

the data item is locked. A glossary of the identifiers used in the algebraic specifications, and the

?a., .
I J

Dj (UnLocked)

?a ..
IJ

? r.,.
I J

Locking

?r., .
I J

Locked

where i:;t: i' ; i,i',Ie EM; andj E N

D.
J

Figure 7-3: A simplified ET of a data item scheduler in the 2PL protocol

148

D.
J

states they represent, are given in Table 7-1. Identifiers are associated with subscripts denoting

the identity of the process or data item scheduler whose behavior they describe.

7.2.2. The Concurrent Behavior

The concurrent behavior C of the specified 2PL protocol with M processes and N data item

schedulers is given by

(7.1)

The concurrent behavior for IV1= 1 and N=2 is given in appendix 7.1.2. Generally, the time and

space complexities of obtaining the concurrent behavior of the protocol are shown to be of

O(N!~1·M2N).

These explosive time and space complexities are due largely to that every process has a different

P.
I

Li j.j2·"j"

Cj j.j2".j"

Ai j.j2".j"
R.

I

where n ~ N

149

process P j is starting a new transaction.

transaction on process Pi has acquired locks for data items jl j2 ... j,,-l and
has decided to send a locking request to data item j .

"
transaction on process Pi has acquired locks for data items jl j2 ... j,,-l and
is waiting for lock of data item j".

transaction on process Pi has acquired locks for data items jl j2 ". j".

transaction on process P. has decided to commit
I

transaction on process Pi is aborting.

transaction on process P. is restarting.
I

data item Dj is unlocked.

data item D. is being locked by transaction on process P ..
1 I

data item D. is locked by transaction on process P ..
1 I

Table 7-1: Glossary of identifiers used in the specification of the two phase locking protocol

identifier to describe its behavior for every possible sequence of locks acquired. Every data item

scheduler has also a different identifier for every possible process running a transaction that may

lock it. In addition, there are behaviors in which transactions unnecessarily time-out and abort

even though they are not involved in deadlock, and unnecessarily retry for awaited locks even

though they are not yet available. Consequently, generating the concurrent behavior of the 2PL

protocol with large numbers of communicating processes and data items is very expensive.

Subsequently in this chapter, we will examine only cases of both M and N equal to at most 2.

Even in this case the concurrent behavior includes 580 equations which makes its algebraic

specification too large to list.

The concurrent behavior C is cyclic describing the execution of several successive transactions

on the processes in the data base. Four sub-behaviors of C will be derived next to be used in

performance specification. The first two will be used in specifying a transaction' s mean response

time and the probability that it would unnecessarily time-out. The last two will be used in

specifying the probability that a transaction becomes involved in a deadlock.

150

The first behavior is the terminating behavior C
I

' which starts at C and ends with the erm

transaction executing on process PI releasing its last lock (&rll or &rI2) and terminating. This

behavior describes the execution of one transaction from start (when transactions on the other

process also starting and the data items are available) until termination, and the effects of the

execution of the other transaction on it. The termination of a transaction running on process PI is

represented in the concurrent behavior C by identifier "* PI **,,4, where ,*, matches any identifier

of the other processes and data items schedulers. Therefore, using the Terminate function (see

definition 3.4), Clum as depicted in Fig. 7-4 can be specified by

Clerm = Terminale[C, {(&rll'*PI **), (&rI2, *P j **)}] (7.2)

c

""p "
I ~s

~ 5

Figure 7-4: ET of the terminating behavior C
I

of the two phase locking protocol erm

The second behavior, to be denoted by Cl , that we are interested in deriving represents those

sub-behaviors of Clum in which the executions of the transaction running on PI is restricted such

that it times-out (&/1) only if it is involved in a deadlock. Two identifiers in Cltrm, correspond to

the protocol being in a deadlock state: "Fj 1 WI 12 F22 W2 21" and "Fj 2 Wl 2l F21 W2 l2".

For the first identifier, the transaction on process PI has locked data item D I and is waiting to

acquire the lock to D2, whereas the transaction on process P 2 has locked data item D2 locked and

is waiting to acquire the lock to D I . The same description applies to the second identifier with the

exception that the data items are interchanged. Using the Restrict function (see definition 3.6), C 1

as depicted in Fig. 7-5 is then specified by

4Global identifiers of the 2PL protocol are assumed to be a concatenation of the identifiers of D I' P j' D2, and P 2'

C I = Resrrict[Ct<!rnI,{(&tl.FI 1 WI 12 F22 W2 21) ,
(&tl.F12 WI 21 F21 W212)})

~
~c

1

non-deadlock state

" &r (pruned)
" 1 .,

"
Figllre 7-5: ET describing the execution of the two phase locking protocol

without unnecessary time-outs of transactions running on PI

151

(7.3)

The third behavior, to be denoted by C dead' is derived from C by tenninating when a deadlock

occurs. Thus, the deadlock behavior of the protocol without giving a chance for time-outs to

resol ve these deadlocks can be examined. C dead is gi ven by

Cdead = Terminate[C, {(&a12.FI 1 WI 12 F22 W2 21),
(&all.Fj 2 WI 21 F21 W2 12),
(&~I.Fjl WI 12F22 W2 21),
(&a22.F j 2 WI 21 F21 W2 12)}

An illustration of the mapping from C to C dead is shown in Fig. 7-6.

(7.4)

Now let us derive the fourth behavior, to be denoted by C2, which includes only those events

sequences in which a transaction running on PI would be involved in a deadlock. C2 can be

derived from C chad by restricting the locking requests &a
11

and &a12 such that the transaction on

process PI does not lock the two available data items and therefore there would be no possibility

of deadlock. That is, &a ll should not occur if the protocol is in state "D I SI12**·'. and &all

should not occur if the protocol is in state "*SI12 D2 *". Also, committing (&c l) and time-outs

(&t
1
), should not be allowed to avoid committing or restarting before allowing deadlock to occur.

152

~
..

. , F1 1 W 12 F 2 W,21 ~ 5
12.;.

F 2 W 21 F 1 w 12 ~ S
1 1 2 2

Figure 7-6: ET of the tenninating behavior C dLad of the two phase locking protocol

Ifl denotes the set of all identifiers in C dead' then C2 is given by

C2 = Restrict[Cdead , {(&allJ E (I -D 1 SI 21 **», (&a I2 ,! E (1 -* SI 12D2*))'

(&c 1 J E 0) , (&t I,! E 0)}) (7.5)

7.3. Performance Specification and Analysis

The rates of the events included in C are described as follows:

A &p ..
I]

A&l.
I

A&g. ,
A&c. ,
A &a ..

A

A

I]

&1 ..
l}

&r ..
I]

rate of transactions on process P. accessing data item D.
I]

rate oftime-out of transactions on process Pi'

rate of polling of transactions on process Pi for awaited lock.

rate of committing of transactions on process Pi"

rate of transmission plus communication delay of locking request from

transactions on process Pi to scheduler Dj"

rate of transmission plus communication delay of a lock grant from scheduler

D. to transactions on process P ..
] I

rate of transmission plus communication delay of a release request from

transactions on process P to scheduler D .
I)

Let the mean delay incurred in the transmission and communication of a lock request, lock grant,

or release request be denoted by 0iJ = IIA&a .. = 1IA&I . . = 1IA,&r . . for any i,j. Each process is
'.] I.) t.]

assumed to be running transactions belonging to the same class, and therefore has the same rates

153

of events for various transactions running on it. The time-out rates for the two transaction classes

will be assumed equal. Thus, the probability that either of the transactions involved in a deadlock

would abort is the same. Note that one transaction dass could be given a priority over the other by

setting its time-out rate to be less, and thus in a deadlock situation the other transaction would be

more likely to abort.

In the next section, the trade-off involved in setting the time-out rate of a transaction class is

studied, and an optimal setting is computed. The probability of deadlock and the mean response

time of a transaction are then specified and analyzed in section 7.3.2.

7.3.1. Computation of Optimal Time-out Rate

Time-out is used in the 2PL protocol to recover from deadlock situations. For the protocol to

perform efficiently, the time-out rate has to be set such that both the probability of unnecessary

time-outs P
t

and the transaction's mean response time tr are minimized. A minimal probability of

unnecessary time-outs ensures minimal thrashing of a transaction where it enters a cycle of

abortions and restarts. A minimal mean response time ensures that a transaction times-out

promptly after a deadlock occurs. However, these two goals are contradictory as shown next. The

trade-off between them is studied, and a balanced timing requirement of the protocol is then

specified.

Since Cl' whose ET is depicted in Fig. 7-5, represents the sub-behaviors of Cterm in which no

unnecessary time-outs occur, then Pt can be specified by

(7.6)

The transaction's mean response time tr corresponds to the mean-time attribute of behavior Cterm

whose duration represents the time from the start of a new transaction on PI until that transaction

commits and releases all its acquired locks. This time duration includes delays incurred by

abortions and restarts due to time-outs. tr can be then specified by

(7.7)

154

It should be noted that P, and tr specified above are for the case when the transaction on PI starts

only in the initial global state (D1PP2P2)' In the general case, unconditional P, and tr can be

specified by considering terminating behaviors given in eq. 7.2 from any state "'*P1 **". Then if

the probabilities of being in these states relative to the the cyclic behavior of the protocol C are

given, the theorem of total probability can be used to compute unconditional P, and tr • The

methodology, though, does not support the evaluation of such state probabilities; this is an issue

for future research as is outlined in section 8.2.

By varying the time-out rate, tr is plotted versus P, in Fig. 7-7. The figure shows the trade-off

between the two performance objectives of the protocol: minimizing both tr and P,. Similar to the

approach followed in chapter 6, the power measure defined as (l-p,)/tr can be used to specify a

balanced timing requirement for a transaction class as follows:

2PL-Timing-Requirement :

The optimal time-out setting for the data of Fig. 7-7 is equal to 4.6 occurrences/sec (with

accuracy of 1 decimal digit). This if for the transaction class of process PI' In order to compute

the optimal time-out settings for transaction classes of all processes, an iteration procedure must

be employed in which each transaction class computes its optimal time-out rate and then the others

follow. Convergence of such an iteration is an open research problem.

7.3.2. Specification and Analysis of Probability of Deadlock

The probability of deadlock P d is defined as the probability that a transaction, without any

restarts, would be involved in a deadlock. Other transactions running on other processes are

allowed to commit or abort. Recall that C2, specified in eq. 7.5, represents the sub-behavior of

C ckad that lead to deadlock. P d can then be given by

(7.8)

This specification of P d is conditioned on having the transaction start only when other processes

and data items schedulers are in their initial state. An unconditional P d can be specified in the same

manner discussed in the previous section.

-u
Co>
<Il -

o
<r

o ,.,

o

'"

o ...

o
o 0.0 0.1 0.2 0.3

Figure 7-7: Transaction mean response time versus probability of unnecessary time-outs

155

P d is plotted in Fig. 7-8 versus the rate of committing &cl' for several values of the rate of

committing of the transaction class on P2 (&cz). As the rate of committing of a transaction class

increases the transactions belonging to it are shorter. Such transactions are less likely to need to

lock all the data items available in the data base. The figure shows that the probability of deadlock

increases sharply as the length of transactions increase, especially if long transactions are running

on both processes.

In Fig. 7-9, the probability of deadlock is ploned against mean delay 8
11

for various rates of

access A&p = A&p . Increasing the access rates leads to a smaller time spent in processing
11 12

actions, to be denoted by tpc' The two rates are maintained equal to analyze the effect of varying

-~

o
~

o

o
<:'

o

0 ..,
0

0
N

0

o
o

o
o
o 1.0

A& =100
c2

10.0 100.0

A&c (occurrences/sec.)
1

1000.0

Figure 7-8: Probability of deadlock versus commit rate A&c for various A&c
1 2

156

tpc on the probability of deadlock while holding the access ratio constant. The figure shows that as

811 increases, the probability of deadlock increases and saturates for very large values. A large

mean delay means that a lock request sent by a transaction takes a long time to reach the data item

during which the other transaction may have the chance to lock it, thus increasing the probability

of deadlock. However, for a mean delay that is already larger than the mean delay between the

other transaction and the data items, this increase disappears. Additionally, as the processing time

tpc increases, the probability of deadlock decreases because of the higher probability that the

transaction decides to commit instead of needing another lock.

In Fig. 7-10, the effect of varying the access ratio on the probability of deadlock is demonstrated.

o
~

o

a
III

a

a ...,
a

o
'"
a 0.0100 0.1000

A& =A& =80
P~1 P~2

021 =40

°12=°22=40

A&tl =A&t2 =0

1.0000

8
11

(sec.)

A& =Ao. =160'
'PU U:P12

/ I

10.0000 100.0

Figure 7-9: Probability of deadlock versus mean delay 811 for various A.&P11 =A.&P12

157

It is shown that as the access ratio increases, the probability of deadlock decreases. The reason is

that by increasing the access ratio, the transactions running on process PI would more likely need

to lock only one data item, and thus the probability of it being involved in a deadlock decreases.

In summary of the above three figures. the probability of a transaction becoming involved in a

deadlock is small when any of the following is true:

1. The transaction itself is short.

2. The transaction's mean delay is small.

3. The transaction's processing time is small.

4. The transaction's rate of accessing data items are not comparable in value to each

~
~

o
-D

o

o
"l

o

0 ...
0

0 ,.,
0

A =A =80
&p~1 &P22

821=,10

812=822=40

\~tl =A&t2 =0

A& =80,A& =80
Pll PI2

/
A& =40,A& =120

Pll PI2

A&p =8,A& =152
11 'PI2

o
'"
o

o
o 0.0001 0.0010 0.0100 0.1000

011 (sec.)

1.0000 10 .0000 100.00

Figure 7-10: Probability of deadlock versus 011 for various A.&p lA.&p
11 12

other.

7.3.3. Analysis of Mean Response Time

158

The mean response time tr specified in eq. 7.7 is plotted in Fig. 7-11 versus the commit rate A.&c
1

for various access rates A.&p =A.&p . As expected, the mean response time decreases as the
11 12

commit rate increases since transactions are shorter. Increasing the access rates, which means

smaller processing time tpc' results in a lower mean response time. However, for very large access

rates, the rate of decrease of tr is much less than for small access rates. This can be explained by

noting that the probability of the transactions running on PI committing is given by

A.&c 1(A.&c +A.&p +A.&p +A.s)' where A.s represents a sum of the rates of some other contending
1 1 11 12

159

events. Therefore, for very large access rates, the rate of decrease in the mean response time is

less since the effect of a change in A&c on the probability of committing is much less.
1

...;

....
Vl -.. -

a
~.

a
a

a
~
a

a
~
a

a ...
a

a
'"
a 1.0 10.0 100.0 lOCO.:

A&C (occurrences/sec.)
1

Figure 7-11: Transaction mean response time versus commit rate A&c
1

In Fig. 7-12, the mean response time is plotted against mean delay 8
11

for M=2,N= 1; M= 1 ,N=2:

and M=2,N=2 where A&p =1600 and A&p =80. The mean response time of M=2.N=1 is
11 12

obtained by setting rates of all rendezvous events in C, between one data item and other erm

processes to O. Similarly, for the case of M=I,N=2. The figure shows that the mean response time

for M= I,N =2 is larger than the other two cases due to less interference between transactions. The

mean response time for M=2,N=2, where A&p =1600 and A&p =80. is very close to that of
11 12

M=2,N=1. especially when 8
11

is high, since one of the data items is much more likely to be

accessed than the other.

-u
~
til

...

o
a
o
o
o ...

a
a
a
a ...

0

~
0 ...

a
a

a
00.0001 0.0010 0.0100 0.1000

011 (sec.)

Figure 7-12: Transaction mean response time versus 0Il

7.4. Summary

160

1.0000 10.00

An automated performance analysis of a two phase locking protocol has been presented.

Algebraic specifications of processes running user transactions and data item schedulers involved

in the protocol have been provided, and their concurrent behavior automatically has been

computed. Factorial time and space complexities for the computation of such concurrent behavior

have been demonstrated. Consequently, at most two processes and data items have been

considered. Nevertheless, the performance results presented provide insights into the performance

161

of the protocol involving many processes and data items schedulers when the conflicts are mostly

between two processes and data items.

A timing requirement necessary for the efficient performance of a transaction class running on

one process has been specified, and an optimal time-out rate has been computed. In addition, the

probability of deadlock and the mean response time of a transaction have been specified and

analyzed. The effects of several performance parameters of the protocol on these performance

measures have been demonstrated. The given specifications of the various performance measures

of a transaction, assumed that it starts when the protocol is in its initial state. An extension of the

methodology in which a state probability attribute is added to the timing attributes has been

suggested to allow for the specification of unconditional performance measures of a transaction.

The performance analysis of the 2PL protocol presented in this chapter is novel in two main

respects. First, it is the first specification-based performance analysis of this protocol. Second, for

the first time, an optimal setting of the time-out rate of one transaction class has been computed.

This suggests that time-out may be a feasible mechanism for deadlock detection. Note that the use

of time-outs for deadlock detection involves local decisions to restart a transaction, i.e., there is a

minimal overhead in the response time compared with other detection mechanisms which invol ve

elaborate computations and checks of wait-for graphs.

Appendix 7.1. Algebraic Specifications of the Behaviors of the Two Phase

Locking Protocol

7.1.1. Protocol Specification

A specification of the configuration of the 2PL protocol and algebraic specifications of a typical

process and data item scheduler are as follows.

PROTOCOL 2PL: PI' P2 , .. ·, PM' Dl ,D2 ,· .. , DN

scope(P.,D') = {a .. , I .. , r . .}
I) I) IJ I)

END

1 ~i~ M and 1 ~j~N

162

PROCESS Pi
1 SiS~I

P.
I

(7.9)

S)lj2··· jn ' W·· . (7.10) . a .. o .jlh ... j Yn I n

Wd ?/ .. oL.j + &g.oS.j I)n I I I
(7.11)

Wdlj2··· jn ?lij oLdlj2 .. · jn + &gioSdljZ ... jn
n

+ &tioAdljZ···jn (7.12)

LdljZ···jn 12 &PjJ; oSdl jz··· jn k
ke N-{jl:. .. jn}

+ &cioC)1 jZ··· jn (7.13)

C)ljZ···jn ' C· . (7.14) .r .. 0 .}z ... J
YI I n

C) !r .. oP.
Y I

(7.15)

A)ljZ···jn ' A· . .rijlo i}z···Jn (7.16)

Ad !r ..• R. (7.17)
I) I

S
R. 12 &PijoS) (7.18)

I

j-I

END

PROCESSD.

D.
J

F.i
J

END

J

163

M M
" ?a ..• E. i + "?r ..• D.
L..J IJ J L..J IJ J

(7.19)
i~l i-I

~1

" ?a ..• E. i + " ?rj,;.E. i + !1 ..• F.j
L..JIJJ £.J ""J IJ I
isl ke M-{i}
+ ?r ..• D.

IJ J
(7.20)

M

L ? F' "? F' .ajk. j 1+ L..J .rkj. j Z

ke M-{i} ke M-{i}
+ ?r ..• D.

IJ J
(7.21)

The number of identifiers and summands in a process' specification are given in Table 7-2.

Also, the number of identifiers and summands in a data item scheduler's specification are given in

Table 7-3. By inspection, the total number of identifiers and summands in a process specification

are both of O(N!). Similarly, the total number of identifiers and summands in a data item

specification are of OeM) and 0(M2), respectively.

Equation Number of identifiers Number of summands
7.9 1 N

7.10 N+N(N-l)+ ... N! N+N(N-l)+ ... N!

7.11 and 7.12 N+N(N-l)+ ... N! 3(N+N(N-l)+ ... N!)-N

7.13 N+N(N-l)+ ... N! N(1+(N-l))+(N-l)(1+(N-2))
+ ... N!

7.14 and 7.15 N+N(N-l)+ ... N! N+N(N-l)+ ... N!

7.16 and 7.17 N+N(N-l)+ ... N! N+N(N-l)+ ... N!

7.18 N

Table 7-2: Number of identifiers and summands in a process' specification of
the two phase locking protocol

Equation

7.19

7.20

7.21

Number of identifiers

1

M

M

Number of summands

2M

1\I(2M+l)

M(2~1-1)

Table 7-3: Number of identifiers and summands in the
data item scheduler's specification of the two phase locking protocol

7.1.2. Concurrent Behavior

This is for case of M= 1 and N=2.

DlP2=&Pll-D1S\lD2 + &P I2- D \S12D2
D 1S\ID2=&all -D2E\IW\1
D\S! W 2=&a12 -D\W l 2E2 1

D~ll W\ 1 = &111 -D2F\ lL\ 1 + &g\ - D2E\ lS11
D\W\2E2 1 =&112- D lL I 2F2 1 + &gl-D!SI2E2 1
D~llLll =&cl -C1 1Fl lD2 + &P12 -D2F\lSI12
D~\lS\1=&all-D2E\lWll
DlL\2F21=&cl-CI2DlF21 + &Pl1-D\SI21F21
D\S1 2E2 1 =&aI2 -D lW\2E2 1
C\lF\lD2=&rll - Dl\D2
D~\lS112=&a12-E21F\lW\12
C l W\F2 1 =&r\2- D lP2
D\S121F2 1 =&a ll -E\lW\21F2 1
E2 1Fl IWI 12=&112 -F\ lL\12F21 + &t\-E2 1F\lT\12

+ &g\ -E2 1F\IS\ 21
E\IW\21F2 1 =&11\-F\lL\21F2 1 + &t\-E11T\21F2 1

+ &g\ -E\ lS\ 21F2 1
F\ ILl 12F21 =&c\-C\I2F11F2 1

E21F\lT\ 12=&r\\-D\T\ 2E21
E21F\lS\12=&a12 -E2 1F\lW\ 12
F\ 1L\ 21F21 =&c\ -C\ 21F\ IF21
E}lT\21F21 =&r12 -D}PP2
E\lS}21F21 =&a1\-E\lW\21F2 1
C\12F\lF2 1 =&rll-C l W\F2 1

Dl\2E21 =&r\2 -DlP\D2
C\21F\ IF21 =&r\2 -DlP2

164

Following algorithm 5.2 in appendix 5.lV.2 for concurrent composition, and using the figures of

Tables 7-2 and 7-3, the time and space complexities of obtaining the concurrent behavior of the

165

2PL protocol are both of O(N!M.M2N).

Part IV

Conclusions

166

Chapter 8

Summary and Directions for Future Research

8.1. Summary

Contributions of this research can be summarized into three main categories:
1. The development of a methodology that supports formal specification and automatic

analysis of two aspects of protocol performance: timing requirements and
performance measures. Rules that map an algebraic specification of a protocol, and
the exponential rates of its events times, to probability, mean-time, and variance
time attributes of its timing behavior have been devised. Timing requirements and
performance measures of a protocol that can be formally specified in terms of
attributes of its timing model are thus automatically analyzed. The analysis of
timing requirements yields optimal settings of the protocol's performance
parameters, whereas the analysis of its performance measures provides an
assessment of the efficiency of its performance.

2. The design and development of ANALYST: a software environment that supports
automated performance analysis of protocols. Compared to current protocol
development environments, see for instance [Holz 84, Chow 85], the design of
ANAL YST has been shown to be novel in two main respects. First. it integrates
functional and performance specification and analysis of protocols. Since protocol
performance is extracted automatically from its functional specification, this
integration allows a protocol designer to analyze protocol performance without
requiring much expertise in the field. More specifically, a protocol designer is not
required to engage in performance modeling of the protocol under analysis, but just
to specify performance in terms of timing attributes of the protocol. Second, it
facilitates and enhances the design process of protocols. It suppons an interactive
user interface that allows the protocol designer to readily debug a protocol and
iterate through functional and performance specification and analysis thus
facilitating experimental protocol design. It also provides the designer with a
friendly and uniform user interface to the different modules that perform functional
and performance analysis, i.e., the user does not have to explicitly switch from one
module to the other to obtain different services.

3. The automated derivation of performance analysis and optimum timing of a
connection establishment protocol. the Alternating Bit protocol, and a two phase
locking protocol. In the case of the simple connection establishment protocol, an
upper bound on the rate of terminating connections has been computed in order to
limit the probability of unsynchronized operation of the connecting parries, and the
probability of call collisions has been analyzed. A cycle time performance measure
for the Alternating Bit protocol that captures a well-known timing error related to the
time-out rate has been specified and analyzed. An optimal time-out rate of a
simplified version of the protocol has been computed, and its maximum throughput

167

and mean delay have been analyzed producing results that agreed remarkably well
with those obtained manually by other researchers. An automated performance
analysis of the two phase locking protocol has demonstrated that time-outs may be
an alternative to elaborate checks for detecting deadlocks. An optimal setting of the
time-out rate has been computed, and the protocol's probability of deadlock and
mean response time have been analyzed.

8.2. Directions for Future Research

168

Directions for future research can be divided into two categories: those related to the

methodology and those related to the applications.

1. Methodology: The specification algebra and the timing model used in the
methodology can be extended along several avenues. The main limitation of the
specification algebra has been shown to be the state explosion suffered when
computing the concurrent behavior of a real life protocol. This was evident in the
case of the two phase locking protocol studied in chapter 7 which typically involves
numerous processes and data items. To overcome this limitation, the algebra can be
extended such that events and identifiers can be associated with parameters. For
example, a transmission channel that allows any number of messages to be resident
simultaneously can be specified with the number of messages as a parameter in a
way similar to writing balance equations in queueing theory. Gouda [Goud 86] has
recently used such parameterized specifications to avoid the state explosion problem
when verifying protocols. It would be an interesting and promising research problem
to examine how they can be also used for specification-based performance analysis.
The specification algebra can be also extended to support the modeling of different
kinds of addressing besides one-to-one such as one-to-many or broadcast addressing.
The extensions just outlined would allow the specification algebra. and the
methodology, to be applied to a wider spectrum of protocols.

The timing model and its attributes can be extended in three respects. First, other
attributes of protocol timing models can be considered. Given a cyclic expression, a
steady state probability attribute can be defmed and used in specifying performance
measures relative to a local process when there is a need to average it over several
global states. This state probability attribute can be then used to compute
unconditional transaction's mean response time. optimal time-out rate, and
probability of deadlock for the two phase locking protocol. Another timing attribute
that may be useful is the Laplace transform of the occurrence times. It can be used to
describe their probability distribution and not just statistics of these times. Second,
allowing for non-exponentially distributed event occurrence times in the case of
evaluating probability or mean-time attributes has to be demonstrated. Although the
exponential assumption may be often acceptable, yet there are events whose times
defy such an assumption and thus relaxing it would allow for more realistic analysis
of protocols employing such events. Third, further study of timing requirements of
protocols in terms of when they are needed, and whether they have some common
formats, would be interesting.

The software environment, ANALYST, can be also extended along four main lines.
First, since the specification algebra describes communication trees, a state-of-the
all graphical interface would be highly useful and attractive. It would provide the
protocol designer with a visual representation of protocols that is probably easier to
understand than the algebraic representation. Second, other protocol specification

methods that can be readily translated into the specification algebra, such as finite
state automata [Miln 81] and Petri nets [Boud 84, Golt 84], can be supported. The
specification algebra would then serve as a canonical representation of protocols on
which other tools in the environment are based. Consequently, such a protocol
development environment would be no more specification-based as is typical of
current environments as noted in chapter 2. Third, an automated analysis of various
formats of timing requirements can be supported. Fourth, two other tools:
specification-based simulation and probabilistic verification of protocols can be
added to the set of tools supported by ANALYST. Specification-based simulation
would be a valuable tool for validating performance results obtained from the
analytic performance analysis tool. In this work, the verification of deadlock and
unspecified reception errors have been considered. It may be useful for the protocol
designer to know the probability of such erroneous behaviors. He can then weigh the
advantages and the costs of correcting such errors. Also, the verification of other
general protocol design errors such as channel overflow can be supported.

2. Applications: In addition to the low-level protoc.ols considered in this research, a
valuable application would be a protocol with a window mechanism since this
mechanism is employed frequently by low-level protocols for flow control.
Furthermore, more high-level protocols with their special functions should be
considered. The methodology can be also applied to various protocols used in local
area and integrated service digital networks.

169

[Ande 84]

[Ayac81]

[Azem 78]

[Balt 82]

[Bart 69]

[Baue 82]

[Beiz 70]

[Berg 82]

[Bern 79]

References

D.Anderson and L.Landweber.
Protocol Specification By Real-Time Attribute Grammars.
In Proceedings of the Fourth IFIP International Workshop on Protocol

Specification. Testing and Verification. North-Holland, June, 1984.

J.Ayache, P.Azema, J.Courtiat, M.Diaz and GJuanole.
On the Applicability of Petri Net-Based Models in Protocol Design and

Verification.
In Proceedings of the First InternationallNWGINPL Workshop: Protocol

Testing - Towards Proop', pages 349-370. 1981.

P.Azema, J.Ayache, and B.Berthomieu.
Design and Verification of Communication Procedures: A Bottom-Up

Approach.

170

In Proceedings of the Third International Conference on Software Engineering,
pages 168-174. 1978.

R.BaJter, P.Berard, and P.Decitre.
Why Control of the Concurrency Level in Distribut~d Systems is More

Fundamental Than Deadlock Management
In Proceedings of Symposium on Principles of Distributed Computing, pages

183-193. ACM, 1982.

K.Bartlett, R.Scantlebury, and P.Wilkinson.
A Note on Reliable Full-Duplex Transmission over Half-Duplex Lines.
CACM 12(5):260-261, May, 1969.

W.Bauerfeld.
A Hybrid Model for Protocols and Services: Verification and Simulation by a

Modified Depth-First Search Algorithm.
In Proceedings of the Second I Fl P I nternational Workshop on Protocol

Specification. Testing and Verification, pages 451-464. May, 1982.

B.Beizer.
Analytical Techniques for the Statistical Evaluation of Program Running Time.
In Fall loint Computer Conference, pages 519:524. ACM-IEEE, 1970.

H.Berg, W.Boebert, W.Franta, and T.Moher.
F onnal Methods of Program Verification and Specification.
Prentice-Hall, 1982.

P.Bernestein. D.Shipman, and W.Wong.
Formal Aspects of Serializability in Data Base Concurrency Control.
IEEE Transactions on Software Engineering SE-5:203-216, May, 1979.

[Bert 82]

[Bill 82]

[Boch 77a]

[Boch 77b]

[Boch 78]

[Boch 79]

[Boch 80a]

[Boch 80b]

[Boch 83]

[Boch 84]

[Bolo 84]

[Boud 84]

rBran 78]

171

G.Berthelot and R.Terrat.
Petri Nets Theory for the Correctness of Protocols.
IEEE Transaction on Communications COM-12:2476-2505, December. 1982.

J.Billington.
Specification of the Transport Service Using Numerical Petri Nets.
In Proceedings of the Second IFIP International Workshop on Protocol

Specification, Testing and Verification, pages 77-100. May, 1982.

G.Bochmann and J.Gecsei.
A Unified Method for the Specification and Verification of Protocols.
In Proceedings of IFlP Congress, pages 229-234. August 8-12, 1977.

G.Bochmann and R.Chung.
A Formalized Specification ofHDLC Classes of Procedures.
In Proceedings of the NTC, pages 03A:2_1-03A:2_11. December. 1977.

G.Bochmann.
Finite State Description of Communication Protocols.
Computer Networks 2:361-372, October, 1978.

G.Bochmann and TJoachim.
Development and Structure of an X.25 Implementation.
IEEE Transactions on Software Engineering SE-5(5):423-439, September,

1979.

G.Bochmann.
A General Transition Model for Protocols and Communication Services.
IEEE Transactions on Communications COM-28(4):643-650, April, 1980.

G.Bochmann and C.Sunshine.
Formal Methods in Communication Protocol Design.
IEEE Transactions on Communications COM-28C 4):624-631, April, 1980.

G.Bochmann.
Distributed Systems Design.
Springer-Verlag, 1983.

G .Bochmann.
Formal Description Techniques for OSI: An Example.
In Proceedings of INFOCOM. IEEE, 1984.

T.Bolognesi and H.Rudin.
On the Analysis of Time-Dependent Protocols by Network Flow Algorithms.
In Proceedings of the Fourth IFIP International Workshop on Protocol

Specification. Testing and Verification. North-Holland, 1984.

C. Boudol, G. roucairol, and R. Simon.
Petri Nets and Algebraic Calculi of Processes.
Technical Report. INRIA. 1984.

D.Brand and W.Joyner,Jr.
Verification of Protocols Using Symbolic Execution.
Computer Networks 2:351-360, October, 1978.

[Bran 82]

[Bran 83]

[Brin 86]

[Bux 80]

[Bux 82]

[Ceri 84]

[Ches 83]

[Chow 85]

[Dant 80]

[Davi 79]

[Diaz 82]

[Dick 80a]

D.Brand and W.Joyner.
Verification of HDLC.
IEEE Transactions on Communications COM-30(5): 1136-1142, May, 1982.

D.Brand and P.Zafiropulo.
On Communicating Finite-State Machines.
Journal of the ACM 30:433-445, April, 1983.

E.Brinksma.
A Tutorial on LOTOS.
In Proceedings of the Fifth IFfP International Workshop on Protocol

Specification. Testing and Verification. Nonh-Holland, 1986.

W.Bux. K.Kummerle. and H.Truong.
Balanced HDLC Procedures: A Performance Analysis.

172

IEEE Transactions on Communications COM-28(l1):1889-1898, November,
1980.

W.Bux and K.Kummerle.
Data Link-Control Performance: Results Comparing HDLC Operational

Modes.
Computer Networks 6:37-51, 1982.

S.Ceri and G.Pelagatti.
Distributed Data Bases: Principles and Systems.
McGraw-Hill Computing Science Series. 1984.

A.Chesnais and E.Gelenbe.
On the Modeling of Parallel Access to Shared Data.
Communication of the ACM 26(3):196-202, March, 1983.

C. Chow.
A Discipline for Verification and Modular Construction of Communication

Protocols.
PhD thesis, Computer Science Dept .• University of Texas at Austin. December,

1985.

A.Danthine.
Protocol Representation with Finite State Models.
IEEE Transactions on Communications COM-28(4):632-643, April, 1980.

D.Davies, D.Barber, W.Price. and C.Solomonides.
Computer Networks and Their Protocols.
John Wiley & Sons, New York, 1979.

M.Diaz.
Modeling and Analysis of Communication and Cooperation Protocols Using

Petri Net Based Models.
In Proceedings of the Second I FIP International Workshop on Protocol

Specification. Testing and Verification. pages 465-510. May, 1982.

G.Dickson.
State Transition Diagrams for One Logical Channel of X.25.
In Switching and Signalling Branch Paper 23,Australian Telecommunications

Commission. July, 1980.

[Dick 80b]

[Divi 82]

[ECMA 80]

[Elma 64)

[Eswa 76]

[Floy 67]

[Gele 78]

[Genr79]

[Golt 84)

[Good 78]

[Good 82]

[Goud 84a]

[Goud 84b]

173

G.Dickson.
Formal Specification Technique for Data Communication Protocol X.25 Using

Processing State Transition Diagrams.
Australian Telecommunication Research 14(2), 1980.

B.Divito.
Verification of Communications Protocols and Abstract Process Models.
PhD thesis, Univ. of Texas at Austin, August, 1982.

ECMAffC23/80/18.
3rd. Draft of Transport protocol.
Technical Report, European Computer Manufacturer Association, 1980.

S.Elmaghraby.
An Algebra For the Analysis of Generalized Activity Networks.
Management Science 10(3):494-514, April, 1964.

K.Eswaren et al.
On the Notions of Consistency and Predicate Locks in a Relational Database

System.
Communications of the ACM 19(11), 1976.

R.F1oyd.
Assigning Meanings to Programs.
Mathematical Aspects of Computer Science 19: 19-32. 1967.

E.Gelenbe.
Performance Evaluation of the HDLC Protocol.
Computer Networks 2:409-415, 1978.

H.Genrich and K.Lautenbach.
The Analysis of Distributed Systems by Means of PredicateITransition Nets.
Semantics of Concurrent Computation, Evian, G. Kahn (ed), Lecture Notes in

Computer Sciences.
Springer-Verlag, 1979, pages 123-146.

U. Golt and A. Mycroft.
On the Relationship ofCCS and Petri Nets.
Technical Report, Lehrstuhl fur Informatik, 1984.

D.Good and R.Cohen.
Verifiable Communications Processing in Gypsy.
In Compcon, pages 28-35. 1978.

D.Good.
The Proof of a Distributed System in Gypsy.
Technical Report 30, The Univ. of Texas at Austin, September, 1982.

M.Gouda and Y. Yu.
Synthesis of Communicating Finite-State Machines with guaranteed Progress.
IEEE Transactions on Communications COM-32(7):779-788. July, 1984.

M.Gouda and Y. Yu.
Protocol Validation by Maximal State Exploration.
IEEE Transactions on Communications COM-32:94-97, January, 1984.

[Goud 86]

[Grat 68]

[Gutt 78]

[Hail 80]

[Haje 78]

[Hara 77]

[Hoar 69]

[Holz 82]

[Holz 84]

[ISO 83]

[ISO 85]

[John 79]

[Jurg 84]

M. Gouda and A. Sastry.
Broadcasting Finite State Machines: For Modeling LAN Protocols.
In Proceedings of INFO COM' 86, pages 58-66. IEEE, 1986.

G.Gratzer.
Universal Algebra.
Springer-Verlag, 1968.

J.Guttag, E.Horowitz, and D.Musser.
Abstract Data Types and Software Validation.
CACM 21(12):1048-1064, December, 1978.

B.Hailpem and S.Owicki.
Verifying Network Protocols Using Temporal Logic.
In NBS Trends and Applications Symposium, pages 18-28. May, 1980.

J.Hajelc.
Automatically Verified Data Transfer Protocol.
In Proceedings of the Fourth International Computer Communications

Conference, pages 749-756. September, 1978.

J.Harangozo.
An Approach to Describing a Link Level Protocol with a Formal Language.

174

In Proceedings of the Fifth Data Communications Symposium, pages 4.37 -4.49.
September, 1977.

C.Hoare.
An Axiomatic Basis for Computer Programming.
Communications of the ACM 12(10):576-583, October, 1969.

G.Holzmann.
A Theory For Protocol Validation.
IEEE Transactions on Computers, August, 1982.

G.Holzmann.
The Pandora System: An imeractive System for the Design of Data

Communication Protocol.
Computer Networks 8:71-79, 1984.

ISO TC97/SCI6 N1347 .
A FDT based on an extended state transition model.
Technical Repon, ISO, July, 1983.

ISO TC97/SC16 WG 1 Subgroup C .
WTS - Description of the Temporal Ordering Specification Language.
Technical Repon, ISO, 1985.

S.Johnson.
Yacc: Yet Another Compiler-Compiler.
Technical Repon, AT&T Bell Labs, 1979.

WJurgensen and S. Vuong.
Formal Specification and Validation of ISO Transpon Protocol Componems,

Using Petri Nets.
In Proceedings ofSIGCOMM Symposium. ACM,1984.

[Kell 76]

[Klei 75]

[Koba 78]

[Krit 84]

[Krog 78]

[Kuro 82]

[Lam 821

[Lamp 77]

[Lamp 80]

[Lamp 83]

[Lesk 79]

[Lond 80]

R.Keller.
Formal Verification of Parallel Programs.
Communications of the ACM 19(7). July. 1976.

L.Kleinrock.
Queueing Systems.
Wiley Interscience, 1975.

H.Kobayashi.
Modeling and analysis: An Introduction to System Performance Evaluation

Methodology.
Addison-Wesley Pub. Co, 1978.

P.Kritzinger.
Analyzing the Time Efficiency of a Communication Protocol.
In Proceedings of the Fourth IF IP I nternational Workshop on Protocol

Specification, Testing and Verification. North-Holland, 1984.

S.Krogdahl.
Verification of a Class of Link-Level Protocols.
BIT 18:436-448, 1978.

J.Kurose.
The Specification and Verification of a Connection Establishment Protocol

Using Temporal Logic.
In Proceedings of the Second I FlP I nternational Workshop on Protocol

Specification. Testing and Verification. pages 43-62. May, 1982.

S.Lam and A.Shankar.
An Illustration of Protocol Projections.
In Proceedings of the Second IFIP International Workshop on Protocol

Specification, Testing and Verification. 1982.

L.Lamport.
Proving The Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering SE-3:125-143. 1977.

L.Lamport.
'Sometime' is Sometimes 'Not Never'.
In Proceedings of the ACM POPL Conference, pages 174-185. 1980.

L.Lamport.
Specifying Concurrent Program Modules.
ACM Transactions on Programming Languages and Systems 5(2):190-222.
. April, 1983.

M.Lesk and E.Schmidt
Lex - A Lexical Analyzer Generator.
Technical Report, AT&T Bell Labs, 1979.

R.London and L.Robinson.
The Role of Verification Tools and Techniques.
Software Development Tools, W.Riddle and R.Fairley ed.
Springer-Verlag, 1980, pages 206-212.

175

[Mann 81]

[Mena 79]

[Merl 76]

[Miln 80]

[Miln 81]

[Mitr 84]

[Moll 81]

[Morr 84]

[Muss 80]

[Noun 85]

[Nun 72]

[pete 77]

Z.Manna and A.Pneuli.
Verification of Concur rem Programs: The Temporal Framework.
Technical Repon STAN-CS-81-836, Stanford University, June, 1981.

D.Menasce and R.Muntz.
Locking and Deadlock Detection in Distributed Data Bases.
IEEE Transactions on Software Engineering SE-5(3):195-202, May, 1979.

P.Merlin and D.Farber.
Recoverability of Communication Protocols - Implications of a Theoretical

Study.

176

IEEE Transactions on Communications COM-24:1036-1043, September. 1976.

R. Milner.
A Calculus of Communicating Systems.
Springer Verlag, 1980.

R.Milner.
A Complete Inference Systemfor a Class of Regular Behaviors.
Technical Repon, University of Edinburgh, September, 1981.

D.Metra and P.Weinberger.
Probabilistic Models of Database Locking: Solutions, Computational

Algorithms, and Asymptotics.
Journal oftheACM 31(4):854-878. October. 1984.

M.Molloy.
On the Integration of Delay and Throughput Measures in Distributed

Processing Models.
PhD thesis, Univ. of California Los Angeles, 1981.

R.Morris and W.Wong.
Performance Analysis of Concurrency Control Algorithms With Nonexclusive

Access.
In Proceedings of Performance' 84, pages 87 -99. Elsevier Science Publishers

B.V. (North Holland). 1984.

D.Musser.
Abstract data Type Specifications in the AFFIRM System.
IEEE Transactions on Sofrware Engineering SE-6(1), January, 1980.

N. Nounou and Y.Yemini.
Development Toolsfor Communication Protocols: A Survey.
Technical Repon, Computer Science Depanment, Columbia university,

February, 1985.

G.Nutt.
Evaluation Nets for Computer System Performance analysis.
AFIPS Conference Proceedings 41,Pan 1:279-286. 1972.

J .Peterson.
Petri Nets.
ACM Computing Surveys 9(3):224-252, September, 1977.

[pnue 77]

[post 76]

[post 79]

[pori 80]

[prad 79]

[Rals 78]

[Razo 84]

[Regh 82]

[Reis 82]

[Ridd 80]

[Rock 81]

[Rubi 82]

A.Pnueli.
The Temporal Logic of Programs.
In The Eighteen Annual Symposium on Foundations oj Computer Science,

pages 46-57. October. 1977.

J.Postel and D.Farber.
Graphic Modeling of Computer Communications Protocols.
In Proceedings of the Fifth Texas Conference on Computing Systems, pages

66-67. 1976.

J. Postel, ed.
Transmission Control Protocol (TCP).
Technical Report, lSI, Marina Del Rey, Ca., 1979.

D.Potier and Ph.Leblanc.
Analysis of Locking Policies in Database Management Systems.
Communications of the ACM 23(23):584-593, October, 1980.

B.Chezaviel-Pradin.
Un Outil Grphiquw Interactifpour la Validation des Systemes a Evolution

Parallele Decrits par Reseaux de Petri.
PhD thesis, Universite Paul Sabatier, December, 1979.

A. Ralston and P. Rabinov.itz.
A First Course in Numerical Analysis.
McGraw-Hill Book Company, 1978.

R.Razouk.

177

The Derivation of Performance Expressions for Communication Protocols from
Timed Petri Net Models.

In Proceedings of the SIGCOMM Symposium, pages 210-217. ACM, June,
1984.

H.Reghbati.
Performance Analysis of Message-Based Systems.
In Proceedings of the Second I FIP International Workshop on Protocol

Specification. Testing and Verification, pages 321-324. May, 1982.

M.Reiser.
Performance Evaluation of Data Communication Systems.
In Proceedings of the IEEE, pages 171-196. February, 1982.

W.Riddle and R.Fairley.
Introduction.
Software Development Tools. W.Riddle and R.Fairley ed.
Springer-Verlag, 1980, pages 1-8.

A.Rockstrom and R.Sarraco.
SDL CCITT Specification and Description Language.
In Proceedings of the NTC, pages G6.3.1-G6.3.5. 1981.

J.Rubin and C.West.
An Improved Protocol Validation Technique.
Computer Networks 6:65-73. 1982.

[Rudi 84]

[Rudi 85]

[Sabn 82a]

[Sabn 82b]

[Salo 66]

[Sand 82]

[Schi 80]

[Schi 81]

[Schw 80]

[Schw 81a]

[Schw 81b]

[Schw 82]

H.Rudin.
An Improved Algorithm for Estimating Protocol Perfonnance.
In Proceedings of the Fourth IFIP International Workshop on Protocol

Specification. Testing and Verification. North-Holland, 1984.

H.Rudin.
An Infonnal View of Formal Protocol Specification.
IEEE Communications Magazine 23(2):46-52, March, 1985.

K.Sabnani and M.Schwartz.
Verification of a Multidestination Protocol Using Temporal Logic.
In Proceedings of the Second IFIP International Workshop on Protocol

Specification. Testing and Verification, pages 21-42. may, 1982.

K.Sabnani.
Multidestination Protocolsfor Satellite Broadcast Channels.
PhD thesis, Columbia University, 1982.

A.Salomaa.
Two Complete Axiom Systems for the Algebra of Regular Events.
jacm 13(1):158:169,1966.

M. Sanderson.
Proof Techniques in CCS.
PhD thesis, University of Edinburgh, November. 1982.

S.Schindler.
Algebraic and Model Specification Techniques.
In Proceedings of the Hawaii International Conference on System Sciences.

1980.

S.Schindler.

178

The OSA Project: Basic Concepts of Fonnal Specification Techniques and of
RSPL.

In Proceedings of the First InternationallNWGINPL Workshop: Protocol
Testing - Towards Proof?, pages 143-176. 1981.

M. Schwanz.
Routing and Flow Control in Data Networks.
Technical Report, IBM Watson Research Center, 1980.

D.Schwabe.
Formal Techniquesfor the Specification and Verification of Protocols.
PhD thesis, Univ. of Cali fomi a Los Angeles, April, 1981.

R.Schwartz and P.MeIIiar-Smith.
Temporal Logic Specification of Distributed Systems.
In Proceedings of the IEEE Distributed Computer Systems Conference, pages

446-454. 1981.

R.Schwartz and P.Melliar-Smith.
From State Machines to Temporal Logic: Specification Methods for Protocol

Standards.
IEEE Transaction on Communications COM 12:2476-2505, December, 1982.

[Schw 83]

[Shan 84]

[Shum 81]

[Sloa 83]

[Snyd 75]

[Sten 76]

[Suns 75]

[Suns 81]

[Suns 82a]

[Suns 82b]

[Suns 83]

[Symo 80]

R.Schwartz, P.Melliar-Smith and F.Vogt.
Interval Logic: A Higher-Level Temporal Logic for Protocol Specification.
In Proceedings of the Third IFIP International Workshop on Protocol

Specification. Testing and Verification. North-Holland, 1983.

A.Shankar and S.Lam.

179

Specification and Verification of Time-Dependent Communication Protocols.
In Proceedings of the Fourth IFfP International Workshop on Protocol

Specification, Testing and Verification. North-Holland, 1984.

A.Shum and P.Spirakis.
Performance Analysis of Concurrency Control Methods In Database Systems.
In Proceedings of Performance' 81, pages 2-19. Elsevier Science Publishers

B.V. (North Holland), 1981.

L.Sloan.
Mechanisms That Enforce Bounds on Packet Lifetimes.
ACM Transactions on Computer Systems 1(4):311-330, November, 1983.

D.Snyder.
Random Point Processes.
Wiley-Interscience, 1975.

N.Stenning.
A Data Transfer Protocol.
Computer Networks (1):99-110, 1976.

C.Sunshine.
1nterprocess Communication Protocols for Computer Networks.
PhD thesis, Stanford University. Digital Systems Laboratory TR 105,

December, 1975.

C.Sunshine.
Formal Modeling of Communication Protocols.
In Proceedings of the First InternationallNWGINPL Workshop: Protocol

Testing - Towards Proof?, pages 29-58. 1981.

C.Sunshine, D.Thompson, R.Erickson, S.Gerhart, and D.Shwabe.
Specification and Verification of Communication Protocols in AFFIRM Using

Stare Transition Models.
IEEE Transactions on Software Engineering SE-8(5):460-489, September,

1982.

C.Sunshine.
Experience with Automated Verification Systems.
In Proceedings of the Second IFIP International Workshop on Protocol

Specification. Testing and Verification. 1982.

C.Sunshine.
Experience with Automated Verification Systems.
In Proceedings of the Third IF I P International Workshop on Protocol

Specification. Testing and Verification. 1983.

F.Symons.
Representation. Analysis & Verification of Communication Protocols.
Technical Report 7380. Australian Telecommunication Research, 1980.

[Teng 78]

[Tows 79]

[Vogt 82]

[Wass 81]

[West 78a]

[West 78b]

[West 78c]

[West 82]

[Wolp 82]

[X2176]

[X.25 80]

180

A.Teng and MLiu.
A Formal Model for Automatic Implementation and Logical Validation of

Network Communication Protocol.
In NBS Computer Networking Symposium, pages 114-123. 1978.

D.Towsley and I.Wolf.
On the Statistical Analysis of Queue Lengths and Waiting Times for Statistical

Multiplexors with ARQ Retransmission Schemes.
IEEE Transactions on Communications COM-27(4):693-702, April, 1979.

F.Vogt.
Event-Based Temporal Logic Specifications of Services and Protocols.
In Proceedings of the Second I FIP International Workshop on Protocol

Specification, Testing and Verification. pages 63-74. May, 1982.

A. Wasserman.
Tutorial: Software Development Environments.
Software Development Tools, W.Riddle and R.Fairley ed.
IEEE Computer Society, 1981, pages 1-2.

C.West.
An Automated Technique of Communications Protocol Validation.
IEEE Transactions on Communications COM-26(8): 1271- 1275, August.

1978.

C.West.
General Technique for Communications Protocol Validation.
IBM Journal of Research and Development 22(4):393-404. July, 1978.

C.West and P.Zafiropluo.
Automated Validation of a Communications Protocol: the CCITT X.21

Recommendation.
IBMJRD 22(1):60-71, January. 1978.

C.West.
Applications and Limitations of Automated Protocol Validation.
In Proceedings of the Second I FIP International Workshop on Protocol

Specification, Testing and Verification. 1982.

P.Wolper.
Specification and Synthesis of Communicating Processes using an Extended

Temporal Logic.
In Proceedings of the Ninth Symposium on Principles of Programming

Languages. January, 1982.

CCITT.
Recommendation X.21 (Revised).
Technical Repon. Geneva, Switzerland, March. 1976.

CCITT.
Recommendation X.25 Packet Switch Data Transmission Services.
Technical Repon, Geneva, Switzerland, 1980.

[Yemi 82]

[Yu 79]

[Zimm 80]

Y.Yemini and 1.Kurose.
Towards the Unification of the Functional and Perfonnance Analysis of

Protocols, or is the Alternating-Bit Protocol Really Correct?
In Proceedings of the Second IFIP International Workshop on Protocol

Specification, Testing and Verification. 1982.

L.Yu and 1.Majthia.
An Analysis of One Direction of Window Mechanism.
IEEE Transactions on Communications COM-27(5):778-788, May, 1979.

HZimmennann.
The ISO Model of Architecture for Open System Interconnection.
IEEE Transactions on Communications COM-28(4), April, 1980.

181

Algebra of execution trees 45
axioms 45

Index

complete set of equations 49
concurrent composition 46
deadlock error 50
equivalent expressions 59
non-deterministic composition 45
process specification 49
progress error 50
protocol specification 49
sequential composition 45
unspecified reception error 50
well-formed expressions 58

Alternating Bit protocol 112
concurrent behavior 129
mean cycle time 130
protocol specification 125
terminating behavior 130

ANALYST 79

Calculus of communicating systems (CCS) 22
Channel ovetlow error 30
Choice set 50
Co-event 45
Connection establishment protocol 44

behaviors without call collisions 55
behaviors without premature terminations 56
call collision 51
concurrent behavior 52
premature termination 52
probability of call collisions 73
protocol specification 49
revised specification 51
terminating behavior 54
timing behavior 65
upper bound on termination rate 72

ConstrUction tools 3
Control functions 12
Cyclic expressions 53

Data transfer functions 12

182

Deadlock error 30
Deadlock symbol $ 45
Derivative relation 58

Event name 45
Execution tree (ET) 44

Functional requirements 3

ISO protocol hierarchy 2

Nonexcutable interaction error 30

Performance analysis tools 35
Performance measures 4
Precedence function 55
Protocol 1
Protocol concurrent behavior 1,52
Protocol design phases 3
Protocol development tools 3
Protocol implementation 3
Protocol specification 3
Protocol sub-behaviors 53
Protocol timing model 65

Reachable identifiers 53
Receive event 45
Rendezvous event 45
Restrict function 57

Scope of communication 46
Send event 45
Send-and-wait protocol 10, 114

behaviors with no premature time-outs 116
concurrent behavior 116
maximum throughput 124
mean roundtrip delay 121
mean waiting time 122
optimal time-out rate 119
protocol specification 114
terminating behavior 116
timing behavior 117

Service specification 3
Specification tools 11

algebraic models 22
finite state machine 12
formal grammars 17
Petri Net-based models 19
Procedural languages 27
sequence expressions 17
state machine models 15
Temporal Logic Models 24

183

Stochastic petri nets 21

Tempo-blocking error 30
Tenninate function 54
Tenninating expressions 53
Timing behavior of protocols 65
Timing model of protocols

attributes 67
mark 65
occurrence time 65
occurrence time of an event 65

Timing requirements 4
Two phase locking protocol 143

behaviors that lead to deadlock 151
behaviors without unnecessary time-outs 150
concurrent behavior 148
mean response time 153, 158
optimal time-out rate 153
probability of deadlock 154
protocol specification 145
tenninating behavior 149

Unspecified reception error 30

Validation tools 3
Verfication tools 28
Verification tools

assertion proof 34
state exploration 31

184

