
\\,\1) ~ y \.J.' \ c\~~, I) L(~ v\ t:X- t'"~.;;,,-() l V\ , (_~ ,~!a -'l.'"r /-i;b
\..U,- r r- J ,V \ ' , ", I ..u '2 ...

I'. e...' \'''' Lo.'\IIt,~re.r ::::'C,e.V'Le/ 'JO\.-.JM£.... ".;aO-
L-e.~ Wfe,. t-..l<- T J ., l

~"~~(-\Je(\k~J I \'\~). __ _ _ _ "
"A~t(~\::~ te. (; t'''';~(l-V'\leO'~ ",,,,,(I ~;:,~:c~. -.+t, ~I..-fl..e -tf,,·'Slu tl;:;,·,

Translating Between Programming Languages
Using A Canonical Representation And Attribute Grammar Inversion

Rodney Farrow and Daniel Yellin

Cc\v""b;~ \j1A;ve.("~;+~ ~ De.~+. o~ CoMp0 ~ ~·t.·I~"'<..e....
~ 't I tJ 'I \ OOd-. -::r

Extended Abstract
\~~t-

Automatic translation between programming languages is an important tool for increasing

program reusability. Often the need arises to transport a large software system from one source

language environment to another. Performing such a translation by hand is a large undertaking.

costly in manpower and very error-prone. For this reason, several researchers have built

automated tools to aid them in particular such projects [3, 1].

In this paper we present a new methodology for building source-to-source translators. This

methodology involves designing a canonical form to represent programs of all source languages

involved, and using attribute grammars (AGs) and automatic AG-inversion to build bi­

directional translators between the various source languages and the canonical form. To test the

feasibility of these ideas, we have created a system to translate between the C and Pascal

programming languages.

The basic idea behind using AG inversion to translate between programming languages is

illustrated by the diagram of figure 1. In this example we would like to translate between the

four programming languages, A, B, C, and D. In order to do so, we flrst write four invertible

AGs, T A' T E' T c> and T D' specifying the translation of each language into a canonical form. We

then automtically invert these specifications, obtaining the inverse AGs TA-I, TB-I, TC- I, and

T D- I, specifying the translation from the canonical form back to each programming language.

By composing the translators obtained by this method we are able to produce a translator

between any pair of languages. For example, the translator from language A to language D can

be obtained by composing the specifications TD-I and T A' Similarly, its inverse, the translator

from language D to language A, is obtained by forming the composition T A-loT D'

For this method to succeed, we must have a canonical form in which all source language

+------------- -------------+
I programming I I programming I
I language A I I language B I

+------------=r~---- ------ ----~~i'----------+
I CANONICAL FORM I _I

+------------~~---- ------ ----~------------+
I programming I
I language C I
+-------------~----

I programming I
I language D I
-------------+

Figure 1: Using AG inversion to translate between languages

programs can be expressed. We must also be able to write invertible AGs describing the

translation from the source languages to the canonical form. In the rest of this paper, we

examine these issues in depth. We also describe how the method outlined above was applied to

build a bi-directional translator between the Pascal and C programming languages. This was

done by formulating a canonical representation in which most Pascal and C constructs can be

expressed and then writing invertible AGs from the source languages into this canonical form.

These AGs were automatically inverted using the INVERT system we have developed. This

work has given us a better understanding of how to construct a canonical form suitable for

several source languages, and of how AG inversion can be used to express complex bi­

directional translations.

Our results show that AG inversion is a realistic paradigm in which to formulate the problem

of translating between programming languages. It provides a useful factorization of the

translation problem, helps to identify the trouble spots where the languages are incompatible,

simplifies the building of complex translators, and places more of the software burden on the

computer and less on the user.

1. Introduction

As described above, our method for source-to-source translations calls for defining a canonical

form in which to represent all programs and for then writing invertible AGs from the source

languages into the intermediate form. The success of this method hinges upon (i) our ability to

find an adequate canonical form and (ii) our ability to write invertible AGs from each

programming language into this canonical form. When judging the practicality of the method, a

third issue must also be considered: the efficiency of the constructed translators.

It is not hard to see that the method will work well if all the languages are closely related to

one another. In such a case it is fairly obvious what the canonical form should look like, and the

invertible AGs of [11] are adequate to express the translations into this canonical form. Hence

this strategy can be used to build translators between dialects of a programming language or

between closely related formats for representing processed manuscripts [8].

The work described in this paper shows that even when the languages are not directly related

to each other, such as Pascal and C, the method described above is still a feasible approach to

building source-to-source translators. We have built a pair of translators, from C to Pascal and

from Pascal to C, according to this paradigm. The canonical intermediate form used by these

translators is called ABSIM and is discussed later. Besides designing ABSIM, we wrote two

AGs, one translating from C to ABSIM and the other translating from Pascal to ABSIM. We

then used our INVERT program! to automatically generate the inverse AGs. All four AGs (two

originals and two generated by INVERT) were then run through the Linguist [7] AG-based

translator-writing-system to produce four translators: Pascal-to-ABSIM, ABSIM-to-Pascal, C­

to-ABSIM, and ABSIM-to-c. The composition of appropriate pairs of these are the Pascal-to-C

and C-to-Pascal translators. Example translations that these perform are listed in the appendix.

The Pascal-to-ABSIM AG is 2085 lines long, has 85 nontenninal symbols, 248 attributes, 157

productions, and 485 semantic rules. It is evaluable in 2 alternating passes. The inverse AG,

automatically generated by INVERT, is 2100 lines long, has 89 nonterminal symbols, 254

attributes, 169 productions, and 521 semantic rules. It is also evaluable in 2 alternating passes.

The C-to-ABSIM AG is 2769 lines long, has 98 nonterminal symbols, 339 attributes, 175

productions, and 686 semantic rules. It is evaluable in 4 alternating passes. The inverse AG,

automatically generated by INVERT, is 2873 lines long, has 98 non terminal symbols, 321

lINVERT takes an AG in appropriacely restricced form and produces ano£her AG £hac describes £he inverse
translation.

attributes, 195 productions, and 807 semantic rules. It is also evaluable in 4 alternating passes.

In building these translators we found that it was crucial to carefully design the canonical

form, ABSTh1. Furthermore, since the translations from the source languages into ABSIM are

fairly complex, it was also neccessary to enhance the expressiveness of invertible AGs, allowing

for a more powerful paradigm than the one given in [11]. Finally, in order to achieve an

acceptably efficient translator with the tools at hand we were forced to deal specially with the

syntactic ambiguity that AG inversion can introduce.

Before proceeding to a discussion of these issues, we must mention that the paradigm we

outline here will not perform magic; if there are constructs in language A which cannot be

modeled by language B, then we cannot realistically hope to translate those portions of language

A into language B (such constructs are called non-portable in [6]). For example, complex

pointer arithmetic in C cannot be handled by our C-to-Pascal translator since there is just no

good way of describing such operations in Pascal. This is not related to the inversion method of

translating between languages but to the inherent difference in expressibilty between the

languages.

2. Choosing the correct canonical form

Since all source language programs must be representable in the canonical form, one might

think that it should contain only very low level constructs, such as assignment and goto

statements, as found in many intermediate codes used in compilers. This was our opinion at the

beginning of the project, however, our experience supports the opposite view.

If the canonical form is very low level, it is hard to retain program structure when translating

from source to source2. Translating from the original program into the canonical form will

essentially be the same as compiling, whereas translating from the canonical form to the target

program will be similar to decompiling. In the end, there is little likeliehood that the two

programs will share much in common, even though they will be semantically equivalent. By

2PreserYing program strucrure is important to insure code readability, maintainability, and efficiency [6]

making the canonical fonn too low level, we are throwing away more infonnation than we need

to.

Instead of minimalizing the canonical representation, we want it to serve as the greatest

common denominator between the languages (in the tenninology of [6], we place a maximality

requirement on the canonincal fonn). As an example, consider the for-loops of Pascal and the

for-loops of C. Every for-loop in Pascal has a C for-loop counterpart but the converse is not true.

Because we want to maintain program structure as much as possible, our intennediate

representation takes the greatest common denominator between the two; in this case, it would

include, upto syntactic isomorphism, the Pascal for-loop. Note that this will place a greater

burden on our translators. Instead of blindly translating C for-loops into lower level constructs,

it must now distinguish whether or not the C for-loop qualifies as a canonical fonn for-loop. If

so, it translates it to that construct; otherwise it has no choice but to replace the for-loop by some

other compatible structure (such as a while-loop).

Another reason not to make the canonical fonn a low level language concerns the nature of

invertible AGs. Let T A be the AG translating the language A into the canonical fonn and T A- l

its inverse. If the canonical form is very low level, then the translation T A will be many-to-one

in the extreme. For example, if the canonical fonn doesn't contain any iterative loop structure

but uses gotos instead, then one will not be able to tell, looking at a canonical form program

containing gotos, whether the original program used gotos or for-loops. In tenns of the inverse

AG, this means that T A-I will have a very ambiguous context-free grammar. For a given

canonical fonn program, there may be many parses, each producing different translations. Since

each parse may be found to be syntactically or semantically invalid as more of the program is

parsed and the semantic tree is evaluated, this introduces much inefficiency in the generated

translators.

For our Pascal and C translators, we at flrst chose a widely-known intennediate representation

used for compilers (a variant of Ucode) to serve as our canonical fonn. We soon discovered the

pitfalls of this choice, as described above. Instead, we developed our own canonical fonn and

custom designed it to reflect the greatest common denominator between Pascal and C. It omits

any idiosyncrasy peculiar to only one of the languages, while reflecting, as much as possible, the

structure common to both languages. For example, Pascal and C have different conventions on

returning function values. Whereas C uses a "return" statement, Pascal uses function

assignment The C convention provides an implicit transfer of control to the end of the function

whereas the Pascal convention provides an implicit temporary variable. Our canonical form,

being a common denominator between the languages, has neither of these capabilities.

Therefore, when translating a C function into the canonical form, the implicit transfer of control

of the return statement must be made explicit (using a goto). Similarly, the implicit temporary

variable supplied by the function name in Pascal programs must be allocated explicity in the

canonical form.

We found that using a canonical form to represent both Pascal and C programs had several

benefits. First of all, it provided a well-defmed factorization of the problem. Instead of

translating directly between the two languages, translating into the canonical form neatly splits

the problem into two subtasks. Secondly, by demanding a "greatest common divisor" canonical

form, attention is focused very early in the project on identifying differences between the

languages. Those incompatible areas (where there is no good way to mimic the expressiveness

of one language in the other) can then be isolated. The approach to language translation

advocated in [2] has many similarities with our methodology, except that we use a common

canonical form instead of isomorphic sublanguages.

It is interesting to note that both the original and inverted AGs, translating C to and from the

canonical form, requires more semantic processing than the original and inverted AGs for Pascal.

Recall that the generated translators for C required 4 alternating passes, whereas those for Pascal

required only 2 passes. This is because the canonical form we developed bears a closer

resemblence to Pascal than to C. (There are more constructs in C that have no direct conterpart in

Pascal than vice versa).

3. Writing invertible translators

After choosing an appropriate canonical fonn, the next step is to write invertible AGs from the

source languages into this representation. In [11] it is shown how AGs can be inverted if they

conform to a very restricted form. Such AGs are called restricted inverse form grammars

(RIFs). We found the RIF restrictions to be too severe for the complex specifications needed to

translate between Pascal and C.3 For this reason we have loosened the restrictions on RIFs to

obtain generalized restricted inverse form grammars (GRIFs). GRIFs are capable of expressing

much more intricate translations, but can still be inverted to form efficient inverse specifications.

Based on these ideas, we have constructed the INVERT system. It accepts a restricted AG as

input and delivers the inverted AG as output, as indicated in figure 3-1.

+--------------+
+------------+ 1 1 +------------+
1 restricted 1 1 1 1 inverted 1
1 1------->1 INVERT 1------->1 -1 1
1 AG G 1 1 1 1 AG G 1
+------------+ 1 1 +------------+

+--------------+
Figure 3-1: The INVERT system

The basic idea behind RIFs is to associate with each nontenninal a special attribute, called the

TRANS attribute. This attribute will always ex.press the translation of the subtree beneath any

nontenninal in a semantic tree. Furthermore, this attribute must be defined by a restricted

functional form. Although other attributes can be associated to non terminals and can be

computed by arbitrary semantic functions, they can only indirectly influence the translation. A

RIF can be easily inverted, production by production. For details, see [11]. An example

production and the inverse productions that would be generated for it by the INVERT system is

given in figure 3-2. This example is a simplified version of a production found in our C-to­

ABSIM AG. Since C provides implicit conversion between the integer and char data types, the

two types can be intermixed. In Pascal, however, explicit conversion via the "ord" and "chr"

functions must be supplied. Whereas production p will translate an expression "e" to "ord(e)" ,

"chr(e)" , or just "e", the inverse productions, pI 1, pI2, and pI3 will translate "ordCe)",

3 Although one can show that any AG can be converted to a R1F [10], the construction produces extremely
inefficient translators and cannot be used in practice.

p: expression ::= expo
expression.TRANS = if (exp.TYPE = intType and

expression.EXPECTED TYPE = charType)
then Concat['chr (', exp.TRANS, ')']
elsif (exp.TYPE = charType and expression.EXPECTED _TYPE = intType)
then concat['ord (', exp.TRANS, ')']
else exp.TRANS;

... (other semantics) ..•

pI!: expressionI ::= "chr" "(" ex pI ")".
experssionL TRANSINV = if NOT(expI.TYPE = intType and

expressionI.EXPECTED TYPE = charType)
then ERROR else expI.TRANSINV;

•.. (other semantics) .•.

pI2: expressionI ::= "ord" "(" ex pI ")".
experssionLTRANSINV = if NOT(expI.TYPE = charType and

expressionI.EXPECTED TYPE = intType)
then ERROR else expI.TRANSINV;

... (other semantics) .••

pI3: expressionI ::= expI.
experssionL TRANSINV = if (expI.TYPE = intType and

expressionI.EXPECTED_TYPE = charType) or
(expI.TYPE = charType and expressionI.EXPECTED TYPE = intType)

then ERROR else expI.TRANSINV; -
... (other semantics) •..

Figure 3-2: A production and its generated inverse productions

"chr(e)" , and "e" all back to the string "e". ~ote that conditions are attached to the semantic

functions of these productions to enforce the proper semantics.

In RIF grammars, each nonterminal has a single trans attribute and at each interior node of the

parse tree, this attribute contains the translation of the subree beneath it. If the translation of a

subtree can best be viewed as two or more parts that are not to be consecutive in the output

string, it is often difficult to express the translation as a RIF. GRIF grammars allow a

nonterminal to have several trans attributes, thereby allowing them to express these sorts of

translations quite easily. The inverse GRIF grammar will contain one nonterrninal for each trans

attribute of a symbol.

Figure 3-3 gives an grammar fragment written as a GRIF. This example translates from a

Pascal-like language, requiring function headings of the form: "function-name (parameter­

declarations): type;" to a C-like language requiring headings of the form: "type function-name (

parameter-names) parameter-declarations". In particular, it would translate strings of the form:

"fCa: integer; b, c: real):integer" to strings of the form: "int fCa, b, c) int a; real b, c;". The reason

why this is difficult to express as a RIF is because, for each parameter declaration, two

translations must be captured. The fIrst gives the names of the identifiers, the second gives the

actual declaration.

PI: funcDec ::= Id "(" parameters ")" ":" type ";".
funcDec.TRANS = Concat[type.TRANS, Id.TRANS, '(', parameters.TRANS!, ')',

parameters. TRANS2];

P2: parametersO ::= parameters! ";" parameter.
parametersO.TRANS! = Concat[parameters1.TRANS!, ',', parameter.TRANS!];
parametersO.TRANS2 = Concat[parameters1.TRANS2, parameter.TRA.NS2];

P3: parameters ::= parameter.
parameters.TRANS! = parameter.TRANS!;
parameters.TRANS2 = parameter.TRAr\S2;

P4: parameter ::= identifiers ":" type.
parameter.TRANS! = identifiers.TRANS;
parameter.TRANS2 = Concat[type.TRANS, identifiers.TRANS, ';'];

Ps: identifiersO ::= identifiers! "," Id.
identifiersO.trans = Concat[identifiers1.TRANS, ',', Id.TRANS];

Figure 3·3: A production using multiple TRANS attributes

If R is a RIF, R-I its inverse, and T a tree in R translating s to m, then in R-l there will exist a

tree 11 isomorphic to T translating m to s. Once we discover the isomorphic tree 1 1, it is easy

to recover the string s since, in essence, we have the parse tree for s. In GRIFs, however, the

process is not quite so simple. If T is a parse tree for a GRlF G, translating s to m, the inverse

parse tree 11 in G-I, will not necessarily be isomorphic to T. In particular, a subtree of T may be

duplicated several times in 1 1, or it may be split apart and reconstructed in 1 1, so that 11 is no

longer recognize able as an isomorphic image of T. Nonetheless, our formulation of GRIFs

ensures that 11 contains enough information to allow us to recover a tree isomorphic to T. This

is done by a process which essentially acts as a tree transformer. It would take the parse tree 11

for m and create a new tree, 1", isomorphic to T. Once this tree is obtained, it is an easy task to

recover the string s. The transformation algorithm is done in one pass over the tree, and is

therefore quite effIcient.

An example of this process is presented in the following two figures. Figure 3-4 gives part of

the parse tree for the string "int f(a,b,c) int a; real b,c;" based on the (inverted) GRIF given

above. After this parse is found, it would be transformed to the tree of figure 3-5. This latter

tree is isomorphic to the original parse tree for "fCa: integer; b,c: real): integer,", enabling us to

recover that translation.

+-------+ funcDecI
I I

+-------~:------~-------+ params21
I I I I /-------,

+-----~paramsIl +-----+
I I I I

paramIl +-----~:::::::~-----+
I I I I

+--1--+
+-- --+
I
+--T--+

I
a

+--1--+ +--1--+
paramIl I

/\
b I C

+-- --+
I I
+--T--+

I
I

int~a;

pararnI2

Figure 3-4: The parse tree

+-------+ funcDecI
I I
+---r---+
+--- ---+ paramsI

+-------~-------~-------+
I I I I
+---1---+
+--- ---+ paramI
I I
+-------+

+-------+

Figure 3-5: The transformed tree

+--T--+
I

par amI

pararnI2

It is only possible to transform an inverse tree to an isomorphic representation of the original

tree if sufficient information is present in the inverse tree. Our formulation of GRIFs insures that

any valid inverse tree will always contain enough information. A formal description of GRIFs,

along with the inversion and tree transfonnation algorithms, is given in [10]. Other extensions to

RIFs, as implemented in the INVERT system, are also described there.

4. Dealing with many-to-one translations

An AG G describing a translation T is many-to-one if there exist strings x and y such that (x,s)

E T and (y,s) E T. Similarly, if there exists a string s such that (s,x) E T and (s,y) E T then G is

said to be one-to-many. In such a case G will specify two unique parse trees for s, one

translating it to x, the other to y. If Gis many-to-one then its inverse G-I will be one-to-many.

The method we have described for translating between programming languages often results in

one-to-many inverse AGs. For example, the C strings "X = X + 1", "X += 1", and "X++"

will all be translated to the Pascal string "X := X + 1". The inverse translator therefore will

specify that "X := X + 1" can be translated to anyone of the above strings. Unfortunately, the

ambiguity in the genenerated inverse AG can create problems for our translators if we rely on a

typical deterministic shift/reduce parser. In such a case we have no method for analyzing

multiple parses, but arbitrarily choose one parse. If this parse is later invalidated due to as of yet

unseen syntax or as of yet uncomputed semantics, we have no method for backtracking4•

A general solution for solving this problem would be to build a system for evaluating

ambiguous AGs. Such a system would allow multiple parses for a given input to be maintained

(for example, by using Earley's algorithm for fmding all parses for an ambiguous context-free

grammar). It would throwaway a parse if it (i) determines that the parse is syntactically or

semantically invalid, or (li) determines that a "better" parse exists. Useful metrics for

evaluating how "good" a parse is might be based on the length or amount of structure of the

code generated for the parse.

Unfortunately, our current AG evaluator interfaces with a standard shift/reduce parser (Y ACC)

and assumes that only one parse exists. Part of our ambiguity problem was solved by collapsing

productions [11] to statically remove ambiguity from the grammar. Although this can only solve

4Even if an AG G describes a one-to-one translation and is unambiguous, it is possible that the generated inverse
a-I will be ambiguous. Hence we need to prepared to handle ambiguity even for one-to-one mappings.

the problem in limited circumstances, it was quite useful in practice. In the Tho'VERT-generated

ABSIM-ta-C AG, 16 out of 206 productions were collapsed. The INVERT system also allows

the GRIF writer to specify that a production (or part of a production) is not to be inverted,

thereby allowing one to remove productions causing ambiguity from the inverse grammar.

5. Conclusions

In this paper we have presented a new methodology for building source-to-source translators

and described a prototype system that we have implemented for translating between the

languages C and Pascal. Our research has identified the importance of designing a greatest

common denominator intennediate language and has ex.tended the capabilities of automatic

attribute grammar inversion beyond those originally proposed in [11]. By actually writing and

inverting two large grammars (using the INVERT system), we have demonstrated the feasibilty

of this approach.

Our ex.perience has also helped us understand just where in the system the real work is being

done. Source-to-source translation is, in many respects, just an extended series of pattem­

matching and replacement, and that is what our translators do. The patterns to be found in the

source string are described by the syntax and (some of the) semantics of the AG that translates

from source to canonical intennediate fonn. Furthennore, these are the same source string

patterns that will be generated in the output of the intennediate fonn to source translation. The

intennediate fonn is essentially a catalogue of the high-level, language-independent patterns out

of which all programs in any of the languages is constructed. The rest of the semantics of the

AGs (those semantic rules that tell how to synthesize the TRANS attributes) describe the

correspondence between the patterns of a particular language and the high-level patterns of the

intennediate fonn.

Our research concerning a greatest common divisor canonical fonn is similiar, in many

respects, to the work of [2]. Although there has been much research on source-ta-source

translations. the idea of automatically inverting a translation specification to fonn an inverse

specification has not been widely studied. It was proposed in [9] for generalized syntax-directed

translation schemata and first fonnulated for a restricted class of attribute grammars (RIFS) in

[11]. It has recently been suggested [8] that bi-directional translators formed from AG inversion

be used in a system to support the exchange of electronic manuscripts. The basic principle

behind AG-inversion, interpreting certain semantic rules of an AG as themselves being context­

free rules of another AG, is similar to efforts described in [4,5] to compose two AGs rather than

invert one.

References

[1] G. Arango, 1. Baxter, P. Freeman, C. Pidgeon.
TMM: Software Maintenance by Transformation.
IEEE Software 3(3):May, 1986.

[2] P. F. Albrecht, P. E. Garrison, S. L. Graham. R. H. Hyerle, P. Ip, and B. Krieg-Bruckner.
Source-to-Source Translation: Ada to Pascal and Pascal to Ada.
SIGPLAN Notices 1S(11):183-193, 1980.

[3] James M. Boyle and Monagur N. Muralidharan.
Program Reusability through Program Transformation.
IEEE Transactions on Software Engineering SE-10(S):S7S-S88, 1984.

[4] Harald Ganzinger and Robert Giegerich.
Attribute Coupled Grammars.
In Proceedings of the SIGPLAN ' 84 Symposiwn on Compiler Construction. ACM­

SIGPLAN, June, 1984.
Published as Volume 19, Number 6, of SIGPLAN Notices.

[S] Robert Giegerich.
On the Relation between Descriptional Composition and Evaluation of Attribute Coupled

Grammars.
Technical Report, University of Dortmund, D-4600 Dortmund SO, West Germany,

February, 1986.
Preliminary version.

[6] Bernd Kreig-Bruckner.
Language Comparison and Source-To-Source Translation.
In P. Pepper (editor), Program Transformation and Programming Environments, pages

299 - 304. Springer-Verlag, 1984.

[7] Rodney Farrow.
User Manual for Linguist, version 3.0.
Technical Report, CS Division, EECS Dept., University of California, Berkeley,

December, 1984.

[8] S. Marnrak, M. Kaelbling, C. Nicholas, and M. Share.
A Software System To Suppon The Exchange Of Electronic Manuscripts.
Technical Report, Department of Computer and Information Science, Ohio State

University, June, 1986.
Submitted for publication.

[9] Steven P. Reiss.
Inverse Translation: The Theory of Practical Automatic Programming.
PhD thesis, Yale University, December, 1977.

[10] Daniel M. Yellin.
Source-To-Source Translations Using Automatic Attribute Grammar Inversion.
PhD thesis, Columbia University, New York, New York, 1986.
In preparation.

[11] Daniel M. Yellin and Eva-Maria M. Mueckstein.
The Automatic Inversion of Attribute Grammars.
IEEE Transactions on Software Engineering SE-12(5):590 - 599, May, 1986.

6. Appendix

Example 1: Translating from Pascal to C
The original Pascal program:
program swapper(input, output)j
var a, b: integer;

procedure swap(var x, y :integer);
var temp: integer;
begin

temp := Xi x:= Yi y:= temp
end;

procedure swapAndlncrementLarger(var s, t: integer);
begin

swap(s,t)j
if s > t then s := s + 1 else t := t + 1

endj

begin
writeCenter first integer: ')j read(a)j
write('enter second integer:')j read(b)j
swapAndIncrementLarger(a, b)j
writeCfirst equals', b);
write('second equals', a)
end.

The translated C program:
#include <stdio.h>

void swap(x, y) int *x, *y;
{ int temp;

temp = *Xj *x = *yj *y = temp;
}

void swapAndlncrementLarger (s, t) int *s, *t;
{ swap (s, t)j

if (*s > *t) *s = ·s + Ij
else *t = *t + 1;
}

int a, bj
main ()
{ printf(" %S", "enter first integer:");

scanf (" %d", &a);
printf("%s", "enter second integer:");
scanf("%d", &b)j
swapAndIncrementLarger(&a, &b)j
printf (" %s % d" , "first equals" , b)j
printf("%s%d", "second equals", a);
}

Example 2: Translatin2 from Pascal to C
The original Pascal program:
const maxArraySize = 10;
type intArray = array [1 .. 10] of integer;
var invoice: intArray;

i: integer;

function totalFirstN(var list:intArray; n: integer): integer;
var i, sum: integer;
begin

totalFirstN := 0;
if n <= maxArraySize
then begin

end;

sum := 0; i := 1;
repeat

sum := sum + Iist[i];
totalFirstN := sum;
i := i + 1

until (i > n) or (sum< 0)
end

The translated C program:
#include <stdio.h>

#define maxArraySize 10
typedef int intArray[10];

int totaIFirstN(list, n) intArray list; int n;
{

int i, sum;
int tempFuncVal;
tempFuncVal = OJ
if (n <= maxArraySize)
{ sum = 0 ;

i = 1;
do {

sum = sum + Iist[i - l]j
tempFuncVal = sum;
i = i + 1;
}

while (! «i > n) II (sum < 0)));
}

return tempFuncVal;
}

int i ;
intArray invoice;

Example 3: Translatin~ from C to Pascal:
The original C program:
int overTwoHundred;
int typeT(c) int c;
{

}

if (c >= 'a' && c <='z' II c >= 'A' && c <= 'Z')
return('a');

else if (c >= '0' && c <= '9')
return('O');

else { overTwoHundred = overTwoHundred /I (c> 200); return(c); }

The translated Pascal program:
#include "pasLib.i"
"ar overTwoHundred: integer;
function typeT(c: integer): integer;
label 1;
begin

if «c >= ord('a'» and (c <= ord('z'») or
«c >= ord(, A'» and (c <= ord('Z')))

then
begin

else

typeT := ord('a ');
goto 1
end

if (c >= ord('O'» and (c <= ord('9'»
then

else

begin
typeT := ord('O');
goto 1
end

begin
overTwoHundred := boolToInt(intToBool(overTwoHundred) or (c > 200»;

begin
typeT := C;
goto 1
end

end
1: end;

(NOTE: pasLib.i contains some general pascal routines, such as intToBool and
boolToInt, used in translated programs)

Example 4: Translatin~ from C to Pascal
The original C program:

typedef int intArray[10];
void bubbleSort(S)
intArray S;
{ int beginIndex = 0, endlndex = 9, i;

for (i = beginlndex; i <= endlndex - 1; i++)
{ int j;

}
}

for (j = endIndex; j >= i + 1; j--)
{

if (Sm < SU-l])
{

}

char temp;
temp = SU-l];
SU-l] = Sm;
Sm = temp;
}

The translated Pascal program:
#include "pasLib.i"
type intArray = array [0 .. 9] of integer;

procedure bubbleSort(S : intArray);
label 1;
var beginlndex, endlndex, i : integer;

j : integer;
temp: char;

begin
beginlndex := 0;
endIndex := 9;
for i := begin Index to endIndex - 1 do
begin

end;
1: end;

for j := endIndex downto i + 1 do
begin

if Sm < SU-l] then
begin

end
end

temp := chr(SU-l]);
SU-l] := Sm;
Sm := ord(temp)

