
Superdatabases
for Composition of Heterogeneous Databases

Calton Pu

Department of Computer Science
Columbia University

Abstract

Superdatabases are designed to compose and extend databases.
In particular, superdatabases allow consistent update across het-
erogeneous databases. The key idea of superdatabase is hierarhi-
cal composition of element databases. For global crash recovery,
each element database must provide local recovery plus some kind
of agreement protocol, such as two-phase commit. For global con-
currency control, each element database must have local synchro-
nization with an explicit serial order, such as two-phase locking,
timestamps, or optimistic methods. Given element databases sat-
isfying the above requirements, the superdatabase can certify the
serializability of global transactions through a concatenation of lo-
cal serial order. Combined with previous work on heterogeneous
databases, including unified query languages and view integration,
now we can build heterogeneous databases which are consistent,
adaptable, and extensible by construction.

1 Introduction
For both zfliciency and extensibility, integiated and consistent
access to a set of heterogeneous databases is desirable. How-
ever, current commercial databases running on mainframes are,
by and large, centralized systems. Physical distribution of data
in distributed homogeneous databases has been demonstrated in
several systems, such as R* [15] and INGRESS/STAR [18]. Nev-
ertheless, the research on integrated heterogeneous databases has
been limited to query-only systems.

Good examples of heterogeneous database research on unify-
ing query languages and data view integration are MULTIBASE
and MERMAID. MULTIBASE [5,13] is a retrieve-only system,
developed at the Computer Corporation of America. Through the
functional language DAPLEX, MULTIBASE provides uniform ac-
cess to heterogeneous and distributed databases. The prototype
implemented a t CCA supports a CODASYL database and a hi-
erarchical database. The focus of MULTIBASE is on query opti-
mization and reconciliation of data, and consistent updates across
databases were not part of their goals. More seriously, no global
concurrency control was employed in the retrievals, so inconsis-
tent data (from the global point of view) may be obtained in a
query.

MERMAID [3,25] is also a retrieve-only system, but developed
at the System Development Corporation (now part of UNISYS).
Unlike MULTIBASE, MERMAID supports the relational view of

data directly, through a query language, the ARIEL, which is a
superset of SQL and QUEL. Another project providing a common
query language to access databases using different data models is
SIRIUS-DELTA [8].

In contrast to the relative success of research on query process-
ing and optimization over heterogeneous databases, few results
have been reported on consistent update across heterogeneous da-
tabases. To the best of our knowledge, only one paper [lo] has
discussed the properties of concurrency control mechanisms in
heterogeneous database systems.

Our answer to this challenge is the building of superdatabases.
Unlike earlier works on uniform query access through a single lan-
guage, our emphasis is on consistent update across heterogeneous
databases. A superdatabase is conceptually a hierarchical compo-
sition of element databases, which may be centralized, distributed,
or other superdatabases.

Update support in homogeneous databases relies on two sets
of fundamental techniques: concurrency control and crash recov-
ery. We propose the construction of a superdatabase through
hierarchical composition of concurrency control and crash recov-
ery. Many years of research on nested transactions [16,19,22,27]
have produced several particular ways to implement nested trans-
actions organized into a hierarchy. Systematic use of hierarchical
composition has been used to derive the design and implementa-
tion of a nested transaction mechanism in the Eden system [21].
Work reported here applies hierarchical composition to general
databases.

In Section 2 we summarize the general architecture of super-
databases. In Section 3 we describe some sufficient conditions to
make element databases composable. In Section 4, we explain the
design of a superdatabase capable of gluing the element databases
together. Section 5 sketches an implementation plan. In Section 6
we summarize related work on many different aspects of hetero-
geneous databases, comparing and constrasting them with ours.
Finally, Section 7 concludes the paper.

2 Hierarchical Composition
2.1 General Structure

The superdatabase composes element databases hierarchically. In
figure 1, DBj (the leaves) represent different element databases
glued together by superdatabases (the internal nodes). A trans-
action spanning several element databases is called a supertmns-
action. When participating in a supertransaction, the local trans-
action on each element database is called a subtransaction. For
simplicity of presentation, we assume that there is only one sub-
transaction per element database for each supertransaction. Al-
though this is a standard assumption [IO], there are cases (e.g.
element databases running strict two-phase locking) in which this
assumption is not necessary.

CH2550-2/88/0000/0548$01.00 0 1988 IEEE
548

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161439071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I I I

1f-l

Figure 1: The Structure of Superdatabases

The main reason for the tree-structured organization is to
minimize amount of data transfer, both in terms of message size
and quantity. Since we will show in section 5.2 that we only
need to piggyback a small amount of information on messages
already required for distributed commit protocols, this goal has
been achieved. Research to distribute the functions of superdata-
base is outlined in section 5.4.

We divide this hierarchical composition into two parts. In sec-
tion 2.2, we summarize the conditions an element database must
satisfy, so the superdatabase can handle it. These conditions are
described in further detail in section 3. In section 2.3, we out-
line the design ideas of the superdatabase to connect composable
element databases. The design is detailed in section 4.

2.2 Composable Element Databases

An element database is said to be composable if it satisfies two re-
quirements. The first is on crash recovery: the element database
must understand some kind of agreement protocol, for example,
two-phase commit. As we will see in section 4.1, this necessary
requirement is a consequence of distributed control, not hetero-
geneity.

The second requirement is on concurrency control: the ele-
ment database must present an explicit serial ordering of its local
transactions. This may seem a serious requirement, demanding
extensive modifications on the concurrency control mechanisms
on the element databases. Actually, as we will see in section 3.3,
all major concurrency control methods (two-phase locking, times-
tamps, and optimistic concurrency control) provide an easy way
to capture the serial order they impose on the transactions. Fur-
thermore, since any agreement protocol implies communication
between participants, passing the explicit serial order of subtrans-
actions (local to each element database) may piggyback on these
messages, reducing the performance impact of the second require-
ment.

For consistent updates, these two are the only requirements
we make on the element databases. An element database may
be centralized, distributed, or as we shall see, another super-
database. Unfortunately, in practice most centralized databases
do not support any kind of agreement protocol. Similarly, most
distributed databases do not supply the transaction serial order.
Consequently, our results cannot be applied directly to existing
databases without modification. Nevertheless, we believe that
these relatively mild requirements, once identified, can be feasi-
bly incorporated into current and future database systems. The
pay-off is significant: extensibility and accommodation of hetero-
geneity.

2.3 The Superdatabase Glue

We have three design goals for the superdatabase that glue the
composable element databases together. The main function of
the superdatabase is to support consistent update across hetero-
geneous element databases.

1. Composition of element databases with many kinds of crash

2. Composition of element databases with many kinds of con-

3. Recursive composibility; i.e. the superdatabase must satisfy

The realization that we need only an agreement protocol for crash
recovery made the first goal easy. The key idea that achieved the
second goal is to use the explicit serial ordering of transactions, the
common denominator of best known concurrency control meth-
ods. The third goal was accomplished through careful design of
the agreement protocol and explicit passing of the serial order.

The superdatabse itself does not contain data, which are stored
in the element databases. However, it does have to maintain the
information to recover from crashes and serialize supertransac-
tions. In Section 4.1, we describe the log management to guard
the structure of the supertransaction against crashes. For concur-
rency control, we describe in section 4.4 the certification of serial
order of each subtransaction involved in a supertransaction.

recovery methods.

currency control techniques.

the requirements of an element database.

3 Composibility Conditions

3.1 Declarative Interface for Superdatabase

Since the superdatabase is a general-purpose glue to connect el-
ement databases of different construction, the interface to the
superdatabase must be declarative and independent of particular
implementation methods. It should specify what is needed, in-
stead of what to do. The two requirements on the interface are
that it should be simple enough to minimize adaptation effort on
existing database systems, and general enough to allow composi-
tion of heterogeneous databases.

Currently, we use the following tentative interface, divided
into two groups, the Zhwaction group and the Resource group.

BeginTransaction(in: ParentID, out: TID)

CommitTransaction(in: TID)

AbortTransaction(in: TID)

OpenResource(in: TID, ... other parameters ...)
CloseResource(in: TID, ... other parameters ...)

The Transaction declarations bracket the extent of the trans-
action, which starts a t
BeginTransaction,andendsinCommitTransactionorAbortTraneaction
depending on the outcome of the transaction. These declarations
are standard except for the ParentID parameter in BeginTransaction
to allow run-time composition.

The Resource declarations correspond to the first and last ac-
cess of a specific resource, defined as a portion of the database.
These declarations are redundant, in that the information in them
usually can be deduced from a mechanical analysis of the program.
We make these declaration explicit for two reasons. First, we can
avoid mentioning actions specific to particular concurrency con-
trol methods, for example, lock and unlock. Second, declarations

549

bracketing the resource access seem to be sufficient for the im-
plementation of superdatabase. Since these declarations may be
generated by a pre-processor on the transaction program, we can
preserve the compatibility of the superdatabase with the applica-
tion programs.

3.2 Distributed Transaction Commit and Recovery

The usual model of a distributed transaction contains a coordi-
nator and a set of subtransactions. Each subtransaction main-
tains its local undo/redo information. At transaction commit
time, the coordinator organizes some kind of agreement with sub-
transactions to reach a uniform decision. The two-phase commit
protocol is the most commonly used because of its low message
overhead. In phase one, the coordinator sends the message “pre-
pare to commit” to the subtransactions, and these vote “yes” or
“no”. If all votes are “yes”, the coordinator enters the phase two,
sending the message “committed” to all subtransactions. Other-
wise the coordinator decides to abort and sends “aborted” to all
subtransactions.

superdatabase certification is to require that each element data-
base provide the ordering of its local transactions to the super-
database. Please note that this assumption provides a sufficient
condition for composition of heterogeneous databases, but it is not
necessary, since implicit serialization is possible under restricted
circumstances (section 5.3). The serial order of each local trans-
action is represented by an order-element, or 0-element for short.
In Section 4, we shall describe the composition of 0-elements for
certification. Here, we only discuss how the concurrency control
methods produce the 0-elements.

First, we consider element databases with two-phase locking
concurrency control. Locking says that a lock on a resource must
be acquired before it may be accessed. Transactions using two-
phase locking =quire all locks in a growing phase, and then release
them during a shrink phase, in which no additional locks may
be acquired. Eswaran et al. [7] showed that two-phase locking
guarantees serializability of transactions because SHRINK(T;),
the timestamp of transaction Ti’s lock point, indicates Ti’s place
in the serialization. We take advantage of this fact and designate

The distributed database system R’ [15] provides a tree-structured sHRINK(Ti) as the @element for eiement databases withtwo-
computation. which refines the above flat coordinator/subtransactions Phase locking.
model. Subtransactions in R’ are organized in a kerarchy, and
the two-phase commit protocol is extended to the tree structure.
At each level, the parent transaction serves as the coordinator.
During phase one, the root sends the message “prepare to com-
mit” to its children. The message is propagated down the tree,
until a leaf subtransaction is reached, when it responds with its
vote. At each level, the parent collects the votes; if all its own
children voted “yes”, then it sends “yes” to the grand-parent. If
every subtransaction voted “yes”, the root decides to commit and
sends the “committed” message, propagated down the tree. Be-
tween the sending of its vote and the decision by the root, each
child subtransaction remains in the prepared state, ready to either
undo the transaction if aborted, and to redo the transaction if the
child crashed and the root decided to commit.

Since heterogeneous databases are distributed by nature, it is
necessary that each element database maintains the undo/redo in-
formation locally. Since the superdatabase stores only the global
information, it has to rely on element databases for local recov-
ery. In addition, it is necessary that each element database un-
derstands some kind of agreement protocol, such as the two-phase
commit outlined above, three-phase commit, and the various fla-
vors of Byzantine agreements. The following simple example
demonstrates that the need for agreement comes from distribu-
tion, not heterogeneity.

Consider a distributed transaction T with two subtransactions,
TI and Tz. Suppose that T commits if and only if both TI and
T2 commits, and that there is no agreement protocol between TI
and Tz at commit time. Therefore, one of them will decide to
commit before the other. As soon as the first one decides to com-
mit, the other crashes, aborting. Consequently, T cannot com-
mit, since one subtransaction aborted. However, T cannot abort
either, since the other subtransaction committed. Having shown
the necessity of agreement protocol for distributed databases, in-
cluding the heterogeneous ones, we proceed to compose different
concurrency control methods.

3.3

We assume the element databases maintain serializability of 1c+
cal transactions. The question is whether the superdatabase can
maintain global serializability given local serializability. The an-
swer is yes, if the superdatabase certifies that all local serial orders
are compatible in a global serial order. One way to implement the

Explicit Serialization for Concurrency Control

The second most popular concurrency control method uses
timestamps for serialization. Since transactions serialized by times-
tamps have their serialization order explicitly represented in their
timestamps, these serve well as 0-elements. Timestamp inter-
vals [l] or multidimensional timestamps [14] can be passed as
0-elements as well. The important thing is to capture the serial-
ization order of committed local transactions.

As another alternative, optimistic concurrency control meth-
ods also provide an explicit serialization order. Kung and Robin-
son [ll] assign a serial transaction number after the write phase,
which can be used directly as 0-element. Ceri and Owicki [4] pro-
posed a distributed algorithm in which a two-phase commit fol-
lows a successful validation. Taking a timestamp from a Lamport-
style global clock [12] at that moment will capture the serial order
of transactions. Since the write phase has yet to start, all follow-
ing transactions will have a later timestamp. Similarly, all pre-
ceding transactions must have obtained their timestamps before
the validation phase has ended.

There is no constraint on the format of the 0-element. Each
element database may have its own representation. We only re-
quire that two 0-elements from the same element database be
comparable, and that this comparison recover the serialization
guaranteed by local concurrency control methods. More formally,
let the serialization produced by the coucurrency control method
be represented by the binary relation p e d e (denoted by 5). We
require that 0-element(T1) _< 0-element(%) if TI 5 Tz in the
local serialization.

If an element database is centralized, its 0-element can be
easily obtaineg as described above. If an element database is dis-
tributed in nature, the timestamp will have to come from a global
clock to assure total ordering. Ceri and Owicki’s distributed op-
timistic algorithm is an example.

4 Algorithms Used in Superdatabase De-
sign

Having established the composibility conditions in the previous
section, now we proceed to use them in the superdatabase. For
crash recovery, we describe a hierarchical commit protocol and its
use in the recovery of supertransactions. For concurrency control,
we describe a hierarchical certification algorithm that guarantees
serializability given the 0-vectors.

550

4.1 Hierarchical Commit

Given that some form of agreement is necessary (section 3.2),
the question is whether it is sufficient for hierarchical commit.
In R', two-phase commit implements hierarchical commit. Since
the only function of two-phase commit protocol is to reach agree-
ment, and no recovery information is involved, we conclude that
any agreement protocol will do. Examples we have mentioned
in section 3.2 include three-phase commit and Byzantine agree-
ments. All these agreement protocols have a natural extension
to tree-structured computations. The important thing is that
for each element database, the superdatabase must understand
and use the appropriate protocol. If all element databases use the
same protocol, the superdatabase has the obvious role in the hier-
archical protocol. Interesting cases arise when element databases
support different kinds of agreement protocols. In the discussion
below, references on the Byzantine agreements can be found in
the several PODC Proceedings; the other protocols are described
in the recent book by Bemstein et al. [2].)

To simplify the discussion, we divide the distributed agree-
ment protocols into two groups: symmetric and asymmetric. Sym-
metric protocols such as Byzantine agreements and decentralized
two-phase commit give all participants equal role. In asymmetric
protocols, a distinguished coordinator decides the outcome based
on information supplied by other participants. For example, in
the centralized and linear two-phase commit, as well as the three-
phase commit, a coordinator initiates the protocol and decides
whether the transaction commits or aborts.

If an element database supports an asymmetric agreement pro-
tocol, the superdatabase assumes the role of coordinator with re-
spect to that element database. Notice that the superdatabase
may have to act as the coordinator for different protocols. Com-
pared to symmetric protocols, this situation is relatively simple
since no information needs to be sent to the participants except
for the final decision.

If some element databases employ symmetric protocols, in or-
der to reach agreement each participant needs to send more in-
formation to all the others. We have two choices for the super-
database. First, it can simulate the protocol by translating the
information received from "asymmetric" element databases and
retransmitting it to the "symmetric" participants. This method
makes it easy to prove the correctness of the combined algo-
rithm, but sends unnecessary messages without additional crash
resiliency. Second, the superdatabase may act as a representative
of the "asymmetric" participants, sending the result of the asym-
metric protocols in one round of messages. The second method
decreases the number of messages, but may increase the response
time slightly. These two choices exist also for the communication
between "symmetric" participants using different protocols.

In summary, the superdatabase functions both as a coordina-
tor for the asymmetric agreement protocols and as a translator
for the symmetric protocols. It collects sufficient information for
supertransaction commit, and provides enough information for
participants using symmetric protocols to reach their own conclu-
sion that matches the superdatabase's.

4.2 Superdatabase Recovery

Since the superdatabase is the coordinator for the element da-
tabases during commit, i t must record the transaction on stable
storage. Otherwise, a crash during the window of vulnerability
would hold resources in the element databases indefinitely.

Of the known recovery methods, logging is the best for super-
database recovery. Since no before-images or after-images need to

be saved, versions are of little utility. Conceptually, the superda-
tabase log is separate from the element database logs, just as the
superdatabase itself. In actual implementation, the superdata-
base log may be physically interleaved with an element database
log, as long as the recovery algorithm can separate them later.

For each transaction, the superdatabase saves the following
information on the log:

Participant subtransactions.

Parent superdatabase, if any.

Transaction state (prepared, committed, or aborted).

The superdatabase should remember the participant subtrans-
actions because the transaction does not necessarily abort when
the superdatabase crashes. Suppose that the superdatabase crashes,
but is brought back online quickly, before its subtransactions have
finished. Since the superdatabase performs no computation, the
supertransaction may still commit. To carry out two-phase com-
mit after such glitches, the participant subtransactions should be
remembered in the log, which is read at restart to reconstruct the
superdatabase state before the crash.

The transaction state is written to the log during the agree-
ment protocol. If a transaction was in the active state when
the superdatabase crashed, the superdatabase simply waits for
(re)transmission of two-phase comm't from the parent. In case
it is the root, it (re)starts the two-phase commit. If a trans-
action was in the prepared state when the superdatabase crashed,
the superdatabase inquires the parent about the outcome of the
transaction. If the transaction has been committed, the results
are retransmitted to the subtransactions.

4.3 Concurrency Control: An Example

Consider the following example, in which subtransactions T1.1 and
2'1.2 run on element databases DB1 and DB2, respectively.

BeginTrans act ion(Top-level, TI)
cobegin

DB 1 .BeginTransact ion(2'1, T1.1) .. . actions . .. CommitTransaction(Tl .1)
DB2.BeginTransaction(Tl, TI.)) ... actions ... CommitTransaction(Tl.2)

coend
CommitTransaction

If both DB1 and DB2 use strict two-phase locking, we have
no problem. Since no lock will be released before the commit
time, the lock point for all data access in the supertransaction
happens when the supertransaction commits a t phase two of two-
phase commit. Consequently, the supertransaction is twephase
and the superdatabase needs to take no action for concurrency
control.

However, if locks may be released before commit agreement,
then in the above example T1.1 may start releasing locks while T1.2
has not reached its lock point. Consequently, the supertransaction
2'1 may lose its two-phase property and become non-serializable.
Although there are other reasons to avoid early lock releases such
as cascading of aborts, this case reveals the crucial problem in
hierarchical composition of two-phase locking mechanisms: we
need to synchronize the lock points of the participating subtrans-
actions. If element databases use strict two-phase locking, the
synchronization comes for free a t commit time. Otherwise, an
explicit synchronization is necessary, which may be pessimistic or
optimistic. In the pessimistic case, unlock requests in the element
databases are blocked. It is only after all subtransactions have

55 1

reached their lock points, indicated by a commit vote or an un-
lock request, that the superdatabase allows the element database
to proceed.

Alternatively, the synchronization may be optimistic. The
subtransactions may be allowed to run independently, without
preventive synchronization. Since two-phase locking provides dy-
namic atomicity [26], the subtransactions from two different su-
pertransactions may interleave in a non-serializable manner. To
check the serializability of all subtransactions, we use the ex-
plicit serialization order of two-phase locking, captured by the
0-elements.

4.4 Hierarchical Certification with 0-vectors

The main problem that the superdatabase has to detect is when
subtransactions from different element databases were serialized
in different ways. In our example, this happens when a second
transaction T2 with the same subtransactions produces the order-
ing: 0-element(T1.1) < 0-element(Tz.1) and 0-element(T2.2) <
0-element(Tl.2).

To prevent this kind of disagreement from happening, we de-
fine an order-vector (0-vector) as the concatenation of all 0-
elements of the supertransaction. In the example, 0-vector(T1)
is (O-element(TI.l), 0-element(Ti.2)). The order induced on 0-
vectors by the 0-elements is defined strictly: 0-vector(T1) < 0-
vector(T2) if and only if for all element database j, 0-element(T1.j)
5 O-element(Tz,j). If a supertransaction is not running on all el-
ement databases, we use a wild-card 0-element, denoted by *
(star), to fill in for the missing element databases. Since its or-
der does not matter, by definition, 0-element(any) < *, and, * <
0-element(any).

From this definition, if 0-vector(&) < O-vector(T2) then all
subtransactions are serialized in the same order, ordering the su-
pertransactions. Therefore, we can serialize the supertransac-
tions by checking the 0-elements of a committing supertransac-
tion against the history of all committed supertransactions. If the
new 0-vector can find a place in the total order, i t may commit.

The comparison with all committed supertransactions may be
expensive, both in terms of storage and processing. Fortunately,
it is not necessary to compare the 0-vector with all committed
supertransactions. Since a transaction trying to commit cannot
be serialized in the ancient history, it is sufficient to certify the
transaction with a reasonably “recent history” of committed su-
pertransac tions.

The part of the serialization history we have to look at is lim-
ited by the oldest active transaction in each element database.
Suppose we are certifying an 0-vector whose subtransactions are
older than the currently oldest active transaction on all element
databases. Comparing this 0-vector to the history of all commit-
ted supertransactions, we may not be able to certify this 0-vector
because of some other older transaction, in which case it must be
aborted. Alternatively, we may find a place in the serialization
history for the 0-vector. Once we find such an 0-vector(T0) pre-
ceding all active subtransactions, it must precede the 0-vectors
of all serializable supertransactions that have yet to commit.

The above claim follows from the observation that any sub-
sequent 0-vector must have one component preceded by the cor-
responding component in TO. (The component that was active
when TO was certified.) Consequently, either the new 0-vector
cannot be serialzed with respect to TO and is aborted, or all its
components are preceded by TO, QED. From this claim, in the cer-
tification process we need only to compare the new 0-vector with
TO and 0-vectors more recent than TO. Therefore, the 0-vectors
preceding TO are not necessary and can be released.

From the composition point of view, the key observation is
that the certification based on 0-vectors is independent of partic-
ular concurrency control methods used by the element databases.
Therefore, a superdatabase can combine two-phase locking, times-
tamps, and optimistic concurrency control methods in any way.
As long as we can make the serialization in element databases
explicit, the superdatabase can certify the serializability of super-
transactions .

More importantly, the certification gives the superdatabase
itself an explicit serial order (the 0-vector) allowing it to be re-
cursively composed as an element database. Thus we have found
a way to hierarchically compose database concurrency control,
maintaining serializability at each level.

The certification method is optimistic, in the sense that it
allows the element databases to run to completion and then certi-
fies the serial ordering. In particular, the 0-vector is constructed
only after the subtransactions have committed. Since b m e con-
currency control techniques (such as time-interval based and op-
timistic) decide the transaction ordering only a t the transaction
commit time, it is difficult for the superdatabase to impose an
ordering during subtransaction execution. In other words, the
superdatabase has to be as optimistic as its element databases.

5 Implementation and Performance

5.1 Superdatabase

Although in principle a superdatabase must check the serializabil-
ity of all subtransactions, there are important cases that permit
some optimization. As we have observed in section 4.3, if all el-
ement databases use strict two-phase locking, the lock points of
the subtransactions are synchronized by the agreement protocol,
and no certification will be necessary. However, the certification
algorithm should be used if simple two-phase locking, timestamps,
or optimistic concurrency control is introduced into the superda-
tabase.

In crash recovery, since in practice all distributed databases
use two-phase commit, the introduction of more sophisticated
agreement protocols into the superdatabase will await their use
in the element database first.

Currently, several groups of students are implementing parts
(query translation and execution, concurrency control and storage
management) of an element database and a prototype superdata-
base. Another prototype based on the Camelot transaction sys-
tem [24] is under way. Camelot runs on top of Mach, a Berkeley/Unix-
compatible operating system. Transaction functions supported by
Camelot include a full nested transactions mechanism, fast and
reliable logging, and many utility packages.

Taking advantage of Camelot’s Unix compatibility, we intend
to adopt existing distributed databases running on Unix, for ex-
ample, the public domain INGRES. In this case, we need to add
both 0-element passing and two-phase commit. Another can-
didate element database is the one mentioned above being im-
plemented by project students on top of the Synthesis operating
system [ZO].

5.2 Run-Time Cost

We have argued in Section 4.4 that the certification process is lim-
ited to the recent history of committed supertransactions. Since
the certification occurs in a central location (the superdatabase),
and is limited by the recent history, the message overhead is small.
Postponing the question of distributing superdatabase to the next
section, we turn our attention to possible sources of delay in the
element databases or communications.

552

In the element databases, we require only that the serial order
of transactions be made explicit. With some concurrency control
methods, such as timestamps, this is trivial. If the element da-
tabase is centralized, then the cost of taking a timestamp is also
low. However, if the element database is a distributed database
with internal concurrency control, then a global clock will be nec-
essary to capture the serial order. Fortunately, the maintenance
of a global clock is independent of the number of transactions,
and therefore can be amortized.

Finally, the additional piece of information that the super-
database requires from the element databases is the 0-element.
Since we have demonstrated the necessity of an agreement proto-
col for recovery purposes, a t least one message must be exchanged
between the superdatabase and each element database at commit
time. The certification occurs only at commit time, so the sub-
transaction serial order information can piggyback on the commit
vote message. Therefore, the superdatabase does not introduce
any extra message overhead during transaction processing.

5.3 Transaction Concurrency

The superdatabase design using 0-vectors in section 4 is min-
imal in the sense that it receives only the explicit serialization
order from the element databases. Consequently, supertransac-
tions that are in reality unrelated, but apparently conflict due to
their serialization order, will be aborted.

Fortunately we have found methods to increase concurrency in
the superdatabase by taking into account the particular informa-
tion provided by each concurrency control method. Two examples
are two-phase locking and timestamps.

In the first place, element databases using strict two-phase
locking do not have to participate in the certification. Since they
hold their locks, and their lock points are synchronized by the
hierarchical commit protocol, they are serialized with respect to
each other and all other component transactions. This observa-
tion applies even to the minimal design.

Second, we can avoid unnecessary aborts involving element da-
tabases using general two-phase locking concurrency control. All
it takes is an agreement protocol to synchronize the lock point of
participating component transactions. If a supertransaction has
several component transactions under general two-phase locking,
it could use two-phase agreement once to synchronize the lock
points, and a second time to commit the supertransaction. How-
ever, we have to be careful and take into account the ordering of
these component transactions with respect to other component
transactions synchronized through different concurrency control
methods.

Third, timestamp-based element databases could provide the
superdatabase with additional information. For example, time-
interval based concurrency control methods would allow the super-
database to serialize some transactions that would have been
aborted in the minimal design.

Finally, we observe that serializability is itself more restrictive
than optimal scheduling. We use serializability as the best trade-
off in overhead and number of transactions unnecessarily aborted.
Similarly, in the design of supertransactions, we strive for a good
trade-off between run-time overhead and the additional restriction
on concurrency.

5.4 Symmetric Distribution

As we have seen in previous sections, hierarchical organization
of superdatabases results in low message overhead. However, the
main disadvantage of the hierarchical structure is its centralized

organization. Shutting down any of the internal nodes will iso-
late part of the tree. More concretely, if any node running a
superdatabase crashes, all element databases connected to that
superdatabase will remain inaccessible.

We are investigating two research directions to distribute the
functions of superdatabase, which consists of participation in agree-
ment protocols for recovery and serialization certification for con-
currency control. On the recovery side, any node can assume
the different roles in different agreement protocols, so distribut-
ing crash recovery seems relatively straightforward. The situation
is more complicated for concurrency control.

First, we can replicate the superdatabase nodes, resulting in
higher message overhead to keep the replicas consistent. Sim-
ple replication comes close to being the "brute force" method to
distributed functions in a distributed system. In principle, just
about any program or data can be distributed this way, provide-
that they are kept consistent. Unfortunately, consistent replica-
tion is expensive and this approach then loses the low-overhead
advantage of hierarchical superdatabase.

Second, we can circulate the concurrency control certification
information among several sites. This approach is similar to the
work by Ceri and Owicki [4] in distributing the optimistic con-
currency control certification algorithm. Again, higher message
overhead will be necessary. Perhaps the hierarchical organization
with low overhead functions best under normal situations, and a
distributed algorithm should be added if more fault-tolerance is
desired in the heterogeneous database.

6 Comparisons

6.1 Crash Recovery

The hierarchical commit algorithm described in section 4.1 is a
direct descendent of distributed commit protocols such as R' [15]
and commit protocols for nested transactions [21]. Our conclu-
sion is that heterogeneity does not introduce additional difficulty,
compared to homogeneous distributed databases.

Gligor and Luckenbaugh [9] have described the recovery prob-
lem in heterogeneous databases. Using a terminlogy based on two-
phase commit protocol, they suggested that the prepared state
may be necessary for any recovery algorithm. Since we know that
the window of vulnerability always exists in distributed commit,
and that the prepared state of two-phase commit corresponds to
the window of vulnerability, we have confirmed their conjecture.
In addition, our work shows that any agreement protocol will do,
not just two-phase commit.

6.2 Concurrency Control

Gligor and Popescu-Zeletin [lo] studied concurrency control in
heterogeneous databases with emphasis on deadlock detection.
Through an example, they showed that there exist some dead-
locks which escape hierarchical distributed deadlock detection al-
gorithms. Consequently, either we employ some deadlock avoid-
ance mechanism such as time-outs, or we must pass local depen-
dency information to global deadlock detection algorithms. They
also specified five conditions which should be satisfied by any con-
currency control mechanisms for heterogeneous databases.

Their first condition says that all local concurrency control (of
component databases) must provide local synchronization atom-
icity. We also make this assumption. Their second condition says
that all local concurrency control must preserve the relative order
of execution determined by the global transaction manager. This
corresponds to a pessimistic approach. In contrast, the superda-

553

tabase certifies the serializability after the execution in an opti-
mistic manner. Their thirdcondition says that each site can run
only one subtransaction. Although we also make this assump-
tion for simplicity, we are working to relax this restriction. Their
fourth condition says that the global transaction manager must
be able to identify objects referenced by all subtransactions. Us-
ing explicit serialization order in 0-elements, we have eliminated
the need to check object references. Finally, their fifth condition
refers to global deadlock detection. Deadlocks remain a problem
for further research.

Elmagarmid and Leu [S] have studied the use of a central-
ized optimistic concurrency control to validate each subtrans-
action based on its readset and writeset. Readset and writeset
of subtransactions are sent to the Global Data Manager for vali-
dation a t global transaction commit. Their approach allows more
concurrency between transactions since their validation is sophis-
ticated. In compensation, the superdatabase requires a much
smaller amount of data transfer for concurrency control and the
work necessary for validation is simple.

6.3 Partial Integration

‘In contrast to our “strongly consistent” database composition,
significant work has been done based on weaker consistency con-
straints. Two examples of this approach are MRDSM [17] and
ADMSf [23]. Being developed at INRIA, the prototype multi-
database system MRDSM provides a relational interface to in-
dependent databases. Instead of global schemas, special “depen-
dency schemas” define interdatabase relationships. Since they
avoid integration by design, no consistent updates are included in
MRDSM.

ADMSf takes advantage of current hardware advances to in-
tegrate a mainframe database (ADMS+) with workstation da-
tabases (ADMS-) downloaded from the mainframe. Since each
user typically uses only a portion of the database, local queries on
ADMS- data are very efficient. Updates occur only on ADMS+
and they are incrementally propagated to ADMS- databases of-
fline. In summary, ADMSf can be seen as a systematic decom-
position of a centralized database.

6.4 Other Issues

Deadlock detection is non-trivial for a hierarchical approach. Sim-
ple examples have been exhibited in which distributed deadlocks
cannot be detected in a hierarchical way [lo]. More work on dead-
lock detection and avoidance will be necessary to determine the
advantages and disadvantages of each. Since time-out mechanism
are necessary for network communications, i t seems reasonable to
use i t to avoid deadlocks in distributed systems connected through
superdatabases.

7 Conclusion

We have described the design of superdatabases and the algo-
rithms used to compose consistent databases out of both homoge-
neous and heterogeneous elements. There are four good charac-
teristics in the superdatabase approach to building heterogeneous
databases.

First, superdatabases guarantee the atomicity of global up-
dates acrms the element databases. This atomicity includes both
reliability atomicity through an agreement protocol, such as two-
phase commit, and concurrency atomicity through the certifica-
tion of serialization provided by the element databases.

Second, the design of superdatabase is adaptable to a vari-
ety of crash recovery methods and concurrency control techniques
used in the element databases. We have established the necessity
for an agreement protocol for supertransaction commit. However,
the protocol is independent of particular crash recovery methods
used to undo and redo local transactions in the element data-
bases. We have also shown that as long as the element databases
use concurrency control methods which easily supply an explicit
serial order of their transactions, they can be included under the
superdatabase.

Third, databases built with superdatabases are extensible by
construction. Element databases may be added or deleted with-
out changing the superdatabase. In additon, many interesting
applications can take advantage of the extensibility. For example,
a replicated database can be constructed by connecting two iden-
tical element databases with a superdatabase. Another example
is that given a database X, satisfying the requirements of section
3 for crash recovery and concurrency control, a superdatabase
delivers the distributed version of X.

Fourth, transactions local to element databases run indepen-
dently of the superdatabase, which intervenes only when needed
for synchronization or recovery of supertransactions across differ-
ent element databases. In other words, the additional overhead
introduced by the indirection through superdatabase is paid only
by the direct users of its services. The only interference happens
when a component transaction of a supertransaction conflicts with
a local transaction.

Even though we described the serialization of supertransac-
tions using 0-vectors, the hierarchical approach admits other meth-
ods that explore the properties of particular concurrency con-
trol methods. For example, using an agreement to synchronize
lock points of two-phase locking elements databases and distribut-
ing global timestamps to timestamp-based element databases are
techniques that may improve the concurrency in the superdata-
base.

Global deadlock detection and resolution remains a research
challenge, since it is immune to hierarchical approaches. Observ-
ing that the time-out mechanism is inherent in distributed sys-
tems, we expect it to be useful in avoiding deadlocks.

impressive and substantial progress, especially in query language
translation and view integration. We hope the combination of
our results with previous work on heterogeneous databases will
produce superdatabases which are consistent, adaptable, and ex-
tensible.

Many years of research on heterogeneous databases have achieved

References

[l] R. Bayer, K. Elhardt, J. Heigert, and A. Reiser.
Dynamic timestamp allocation for transactions in database

In H. J. Schneider, editor, Distributed Data Bases, North-
systems.

Holland, 1982.
[2] P.A. Bemstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recove y in Database Systems.
Addison-Wesley Publishing Company, first edition, 1987.

Distributed query processing strategies in MERMAID, a

In Proceedings of the First International Conference on Data

[3] D. Brill, M. Templeton, and D. Yu.

frontend to data management systems.

Engineering, 1984.

554

[4] S. Ceri and S. Owicki.
On the use of optimistic methods for concurrency control in

distributed databases.
In Proceedings of the Sixth Berkeley Workshop on Distributed

Data Management and Computer Networks, pages 117-
129, Lawrence Berkeley Laboratory, University of Cali-
fornia, Berkeley, February 1982.

[5] U. Dayal.
Processing queries over generalization hierarchies in a multi-

In Proceedings of the Ninth International Conference on Ve y
database system.

Large Data Bases, October-November 1983.
[6] A. Elmagarmid and Y. Leu.

An optimistic concurrency control algorithm for heteroge-

Data Engineering Bulletin, 10(3):26-32, September 1987.

The notions of consistency and predicate locks in a database

Communications of ACM, 19(11):624-633, November 1976.

Heterogeneity in the distributed database management sys-
tem SIRIUS-DELTA.

In Proceedings of the Eighth International Conference on
Very Large Data Bases, Mexico City, September 1983.

neous distributed database systems.

[7] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger.

system.

[8] A. Ferrier and C. Stangret.

191 V. Gligor and G.L. Luckenbaugh.
Interconnecting heterogeneneous database management sys-

Computer, 17(1):33-43, January 1984.
V. Gligor and R. Popescu-Zeletin.
Concurrency control issues in distributed heterogeneous da-

tabase management systems.
In F.A. Schreiber and W. Litwin, editors, Distributed Data

Sharing Systems, pages 43-56, North Holland Publishing
Company, 1985.

Proceedings of the International Symposium on Distributed
Data Sharing Systems.

H. T. Kung and John T. Robinson.
On optimistic methods for concurrency control.
Tmnsactions on Database Systems, 6(2):213-226, June 1981.
L. Lamport.
Time, clocks and ordering of events in a distributed system.
Communications of ACM, 21(7):558-565, July 1978.
T. Landers and R.L. Rosenberg.
An overview of MULTIBASE.
In H.J. Schneider, editor, Distributed Data Bases, North Hol-

land Publishing Company, September 1982.
Proceedings of the Second International Symposium on Dis-

tributed Data Bases.
P.J. Leu and B. Bhargava.
Multidimensional timestamp protocols for concurrency con-

trol.
In Proceedings of the Second International Conference on

Data Engineering, pages 482489, Los Angeles, February
1986.

B. Lindsay, L.M. Haas, C. Mohan, P.F. Wilms, and R.A.
Yost.

Computation and communication in R': a distributed data-
base manager.

ACM Tmnsactions on Computer Systems, 2(1):24-38, Febru-
ary 1984.

tems.

B.H. Liskov and R.W. Scheifler.
Guardians and Actions: linguistic support for robust, dis-

tributed programs.
In Proceedings ofthe Ninth Annual Symposium on Principles

of Programming Languages, pages 7-19, January 1982.
W. Litwin and A. Abdellatif.
Multidatabase interoperability.
Computer, 19(12):10-18, December 1986.
R. McCord.
INGRES/STAR: a distributed heterogeneous relational

DBMS.
Vendor Presentation in SIGMOD, May 1987.
J.E.B. Moss.
Nested Tmnsactions: An Approach to Reliable Distributed

PhD thesis, Massachusetts Institute of Technology, April

C. Pu, H. Massalin, J. Ioannidis, and P. Metzger.
The Synthesis System.
Technical Report CUCS-259-87, Department of Computer

Calton Pu.
Replication and Nested Tmnsactions in the Eden Distributed

System.
PhD thesis, Department of Computer Science, University of

Washington, 1986.
D.P. Reed.
Naming and Synchronization in a Decentmlized Computer

System.
PhD thesis, Massachusetts Institute of Technology, Septem-

ber 1978.
N. Roussopoulos and H. Kang.
Principles and techniques in the design of ADMSf.
Computer, 19(12):19-25, December 1986.
A. Spector, J.J. Bloch, D.S. Daniels, D. Duchamp, R.P.

Draves, Eppinger J.L., S.G. Menees, and D.S. Thomp-
son.

Computing.

1981.

Science, Columbia University, February 1987.

The Camelot Project.
Technical Report CMU-CS-86-166, Computer Science De-

M. Templeton, D. Brill, A. Hwang, I. Kameny, and E. Lund.
An overview of the MERMAID system - a frontend to het-

erogeneous databases.
In Proceedings

of EASCON 1983, pages 387-402, IEEE/Computer So-
ciety, 1983.

partment, Carnegie-Mellon University, December 1986.

W.E. Weihl.
Specification and Implementation of Atomic Data Types.
PhD thesis, Massachusetts Institute of Technology, March

Tech.Report MIT/LCS/TR-314.
M. Weinstein, T. Page, B. Livezey, and G. Popek.
Transactions and synchronization in a distributed operating

systems.
In Proceedings of the Tenth Symposium on Opemting Sys-

tems Principles, pages 115-126, ACM/SIGOPS, Decem-
ber 1985.

1984.

555

