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ABSTRACT. We study the probabilistic (~, o)-complexity for linear problems equipped with 
Gaussian measures. The probabilistic (e, o)-complexity, compp,.ob(~, 0), is understood as the min
imal cost required to compute approximations with error at most e on a set of measure at least 
1 - O. We find estimates of compp,.ob(~, 0) in terms of eigenvalues of the correlation operator of 
the Gaussian measure over elements which we want to approximate. In particular, we study the 
approximation and integration problems. The approximation problem is studied for functions of 
d variables which are continuous after r times differentiation with respect to each variable. For 
the Wiener measure placed on rth derivatives, the probabilistic compp"ob(e,o) is estimated by 

e (h/2ln (1/0)/e) l/(,.+a) (In( V2ln (1/0)/~)) (d-l)(,.+1)/(,.+a») where a = 1 for the lower bound 

and a = 0.5 for the upper bound. The integration problem is studied for the same class of 
functions with d = 1. In this case, compprOb(e,6) = e((V2In(1/6)/e)1/(r+l»). 

1. INTRODUCTION 

Information-based complexity is the study of the intrinsic difficulty of approximately 
solved problems. It deals with the minimal cost which is required to compute approxima
tions with error at most e, where e 2: O. Different settings of information-based complexity 
are obtained depending on how the error and the cost are defined. 

In the worst case setting, the error and cost are defined by a hardest element. In the 
average case setting, the error and cost are similarly defined with the exception that the 
hardest element is replaced by the "average" one, the average being with respect to a given 
probability measure. 

In the probabilistic setting, we relax the worst case requirement that the error be at most 
e for all elements. Instead, we require that the error be at most e for a set of elements of 
measure at least 1 - 8. Here 8 is a given parameter, 8 E [0,1J. Thus, in the probabilistic 
setting we agree that the error can be arbitrarily bad for a set of measure at most 8. 

The cost in the probabilistic setting can be defined in various ways. It can be defined as 
in either the average case or worst case settings. One can also disregard a set of measure 
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at most 8 for which the error exceeds e and then define the cost as in the average case or 
worst case settings. 

The worst and average case settings of information-based complexity have been studied 
in many papers. A recent survey of these two settings may be found in Wozniakowski 
(1986). 

The probabilistic setting of information-based complexity has been recently studied in 
Wasilkowski (1984,1986) and in Lee and Wasilkowski (1986). This setting has been an
alyzed for linear problems and Gaussian measures. The main result can be explained as 
follows. Let 1/ be a probability measure of elements which we want to approximate. Dur
ing the computation we learn more and more about the elements we want to approximate. 
Mathematically, this means that we change the measure 1/. After n evaluations, we have 
a conditional measure I/n • Let B~ be a ball of center zero and radius e. For large n, 
the measure I/n resembles an atomic measure concentrated over the exact solution and 
therefore for a positive e, I/n(B~) tends to one. For a positive 8, there exists n for which 
I/n(B~) ~ 1 - 8. Then we can compute approximations with error at most e on a set of 
measure at least 1 - 8. Under some assumptions, Was ilkowski (1986) found lower and 
upper bounds on the probabilistic (e, 8)-complexity in terms of the smallest n for which 
I/n(B~) ~ 1 - 8. 

In this paper we specialize general estimates on the probabilistic (e,8)-complexity for 
two cases. In the first case, we approximate elements Sf for f from a separable Banach 
space F equipped with a Gaussian measure J.L. Here S is a continuous linear operator 
into a separable Hilbert space. We assume that arbitrary linear continuous functionals 
on f can be computed. We find estimates on the probabilistic (e, 8)-complexity in terms 
of eigenvalues of the correlation operator 01/ of the Gaussian measure 1/ = J.LS- 1 • In 
particular, for the approximation problem defined as in Papageorgiou and Wasilkowski 
(1986) for functions of d variables which are continuous after r times differentiation with 
respect to each variable, see Section 4, and which are equipped with the Wiener measure 
placed on rth derivatives, we find that the probabilistic (e,8)-complexity is at least pro-

portional to (y'2In (1/8)/e) 1/(1'+1) (In y'2 In(1/8)/e) (d-1) and is at most proportional to 

(y'2In (1/8)/e) 1/(1'+0.5) (In y'2In(I/8)/e) (d-1)(I'+1)/(I'+0.5). This exhibits the dependence 
of the complexity on e, 8, the smoothness parameter r and the dimension d. 

In the second case, we assume that S is a continuous linear functional, S E F" , and that 
only some functionals from F* can be computed. The dependence on e, 8 is, as in the first 
case, through y'21n (1/8) / e. In particular, for the integration problem studied by Lee and 
Wasilkowski (1986), for the same class of functions as for the approximation problem with 
d = 1, the probabilistic (e, 6)-complexity is proportional to (y'2In (1/6)/e) 1/(1'+1). 

For both cases, information computed about the function is nonadaptive. Thus, al
though we permit adaptive information, it turns out it is not essentially more powerful 
than nonadaptive information. This follows from Wasilkowski (1986) who proved that 
even in the general case adaptive information is not more powerful than information which 
is essentially nonadaptive. We do not pursue this subject here. 

In this paper we concentrate on estimates on the probabilistic (e, 6)-complexity and do 
not discuss optimal algorithms. We mention here that for the approximation problem, such 
an algorithm is provided by n terms of the truncated series of Sf in the basis of eigenele-

2 



ments of Gin where n = E>((y'2ln(1/6)/e)l/(r+0.5)(lny'2ln(1/6)/e)(d-l)(r+l)/(r+0.5»). 
For the integration problem, the algorithm is given by the integral of the natural spline 
which interpolates f at n equally spaced points, where n = E>((y'2In (1/6)/e)l/(r+l»). 

We summarize the content of the paper. In Section 2 we precisely formulate the prob
abilistic setting and the probabilistic (e,6)-complexity. In Section 3 we recall general 
estimates on the probabilistic (e, 6)-complexity from Wasilkowski (1986). Sections 4 and 
5 deal with the two cases described above. In the final section we discuss different defi
nitions of the probabilistic cost, relations between average and probabilistic settings and 
some open problems. 

2. PROBABILISTIC SETTING 

In this section we define the probabilistic setting of information-based complexity. This 
setting consists of problem formulation, information and model of computation. 

Let F and G be linear normed spaces over the real field. Consider an operator S, called 
the solution operator, 

(2.1) S: F -+ G. 

Let J.L be a probability measure defined on Borel sets of F. Let e and 8 be given, where 
c ~ 0 and 0 ~ 8 ~ 1. Our problem is: for each f from F, compute an element U(I) from 
G such that 

(2.2) J.L {f E F : \I S (I) - U (I) \I ~ e} ~ 1 - 6. 

That is, we wish to approximate S(I) to within c with probability at least 1 - 8. 
How can we compute an approximation U(I)? We assume that, in addition to knowing 

the problem formulation (2.1) and (2.2), we can gather information about f by computing 
Li(l) for a number of i. Here Li is a continuous linear functional, Li E F*, where F-is 
the dual space of F. Let A be a class of permissible functionals L. Thus A c F*. For 
some problems, one can assume that all continuous linear functionals can be computed, 
i.e., A = F-. This assumption may be reasonable, for instance, for the approximation 
problem S(I) = f. For other problems, one has to impose some conditions on A. For 

instance, for the integration problem, S(I) = f; f(t) dt, we usually can compute only 
function evaluations. Then A consists of L(f) = f(x) for various x, and A is a proper 
subset of F*. 

The approximation U(I) is computed by combining such information operations, U(I) = 
r.p(Ll (I), L 2(1), ... , Ln(l)) where Li E A. We stress that the choice of Li may adaptively 
depend on the previous values Ll (I), L2 (I), ... , Li-l (I). Also the number n of information 
operations may adaptively depend on the values Ll (I), L2 (I), .... Thus, n may vary with 
f. The precise definition of U may be found in Wasilkowski (1986). 

We assume that we are charged for each computation of L(I) and that each L(I) costs 
c, where c > O. We also assume that we can perform certain operations in the space G, 
called combinatory operations, such as the addition gl + g2 of two elements gl, g2 from 
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G, and multiplication by scalars exg for ex E IR and g E G. The cost of such operations is 
taken as unity. 

The probabilistic setting is formalized as follows. 
Problem: For each f in F, compute an element U(I) from G such that 

J.L{f E F : IIS(I) - U(I)II ~ e:} ~ 1 - 8. 

Information: 

(i) We know the problem formulation, i.e., the solution operator S, the spaces F and G, 
the probability measure J.L on F, the class A and the parameters e: and 8. 

(ii) We can compute L(I) for any LEA and any f E F. 

Model of Computation: 

(i) Each information operation L(I) costs c. 
(ii) We can perform certain combinatory operations at unit cost. Examples of such oper-

ations include addition of two elements from G and multiplication by scalars. • 

We want to compute U(I) with minimal average cost. The cost of computing U(I), 
cost(U, J), is defined as the sum of the cost of information operations and the cost of 
combinatory operations needed to compute U(J). The average cost of U, U : F -+ G, is 
defined as 

(2.3) costatJg{U) = 1 cost(U, J) J.L(dJ). 

See Section 6 where different definitions of the cost of U are discussed. 
The probabilistic (e:, b)-complexity is defined as the minimal average cost of U provided 

that U(I) approximates S(J) to within e: with probability at least 1 - b. That is, 

(2.4) compprOb (e:,8) = inf {costatJg(u) : U satisfies (2.2)}. 

3. GENERAL CASE 

In this section we briefly recall estimates of the probabilistic (e:,8)-complexity from 
Wasilkowski (1986). Then in Section 4 we specialize them to the case where S is an 
arbitrary linear operator and· there is no restriction on the class A, A = F". In Section 
5 we deal with the case where S is a linear continuous functional and A is an arbitrary 
subset of F". 

Assume that F is a separable Banach space and G is a separable Hilbert space, both 
over the real field. The space F is equipped with a Gaussian measure J.L of mean zero and 
correlation operator C~, C~ : F* -+ F. The definition and basic properties of Gaussian 
measures can be found in Kuo (1975), Parthasarathy (1967) and Vakhania (1981). 

We assume that the solution operator S, S : F -+ G, is a continuous linear operator. 
Then LI = J.LS- 1 is a probability measure on the separable Hilbert space G. The measure 
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v tells us about the distribution of solution elements Sf. It is a Gaussian measure with 
mean zero and correlation operator Cv , Cv : G - G, such that 

(3.1) Cvg = S(CIl(LgS)), 9 E G, 

where Lg(h) = (h,g) for h E G. Note that LgS E F*. The correlation operator CV IS 

symmetric, nonnegative definite and has a finite trace. 
Let N = [L 1, ... ,Lnl, with Li E A.. Given N, define K1,K2, ... ,Km such that 

Ki E span(Lb L2,· . . , Ln) 

Ki(CIlKj) = Oi,j i,j = 1,2, ... ,m. 
Thus K11 K 2, ... , Km are linear combinations of L 1, L2, ... , Ln which are orthonormalized 
in the sense Ki(CIlKj) = Oi,,.. Here m ~ n. If L 1 ,L2, ... ,Ln are linearly independent and 
C Il is one-to-one then m = n. 

Define the Gaussian measure VN on the space G with mean zero and correlation operator 
CN given by 

m 

(3.2) CNg = Cvg - L(gj,g)gj, 
j=1 

where Cvis given by (3.1) and gj = S(CIlK,.). 

9 E G, 

Let Be = {g E G: Ilgll ~ e} be the ball of radius e in G. Let 

(3.3) b(n, e) = sup{vN(BI!) : N = [L 1, L2, ... , Ln], Li E A}. 

Thus b( n, c) denotes the maximal measure of the ball of radius c among Gaussian measures 
VN obtained by different choices of n functionals from A. 

Define the probabilistic (e, 0 )-cardinality number as 

(3.4) m(c,o) = min{n : b(n, c) ~ 1 - o}. 
Thus m(c,o) denotes the smallest n for which there exists a Gaussian measure generated 
by n functionals from A. for which the ball of radius c has measure at least 1 - O. 

Recall that one evaluation of L(J) costs c. We are ready to present estimates of the 
probabilistic complexity which follow from Wasilkowski (1986, Section 5 with the error 
functional E: G - ffi.+ given by E(g) = 1 if IIgll > c and E(g) = ° for Ilgll ~ c). 

THEOREM 3.1. The probabilistic (e, 0 )-complexity satisfies the inequalites 

(3.5) c sup min{m(c, xo) , x - 1 m(c, O)} ~ compprob(c, 0) ~ (c + 2)m(c, 0) - 1. • 
1 $. x '.5.1/6 x 

The probabilistic complexity is estimated in terms of the probabilistic cardinality num
ber. In particular, if 

(3.6) m(c,0In~)=m(c,0)(1+0(1)), as 0-0, 

then applying (3.5) with x = In (1/0) we have 

(3.7) compprob(c,o) = (c + a) m(c,o) (1 + 0(1)), as 0 - 0, 

where a E [0,2]. Since usually c ~ 1, we have tight bounds on compprob(e,O). 'rVe 
summarize this in 
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COROLLARY 3.1. The probabilistic (c, b)-complexity is approximately equal to 

compprob(c, 8) ~ cm(c, b) 

whenever c ~ 1 and (3.6) holds. • 

We now indicate how to achieve the upper bound in Theorem 3.1. Assume that (3.3) 
and (3.4) are achieved for N~ = [Li, L2, . .. , L~l with n = m(c, b). Obviously, L; are 
now linearly independent. They can be orthonormalized by the Gram-Schmidt method by 
taking K; = l:{=l ai,jLi, the coefficients ai,j being chosen such that K;(C~Kn = bi,j 

for i, i = 1, ... ,n. This corresponds to the solution of n linear equations whose matrix is 
nonsingular and lower triangular. Define the elements 

n 

qi = L ailjS(C~Kn· 
j=i 

Note that qi do not depend on elements f and they can be precomputed. The approximation 
U (f) is defined by 

n 

(3.8) U(f) = L LHf)qi. 
i=l 

The cost of computing U(f) is equal to n c + 2 n - 1 = (c + 2) m(c, 6) - 1. Furthermore 

Thus U solves the problem with cost given by the upper bound of Theorem 3.1. 

4. A = F· AND S ARBITRARY 

In this section we specialize estimates of the probabilistic complexity given in Theorem 
3.1 for A = F- and an arbitrary continuous linear S. To do this, we express the probabilistic 
cardinality number in terms of eigenvalues of the covariance operator C"" see (3.1). 

The operator C'" is symmetric, nonnegative definite and has a finite trace. Therefore 
there exists an orthonormal basis {~i} of G which consists of eigenelements of C"" 

(4.1) 

where Al ~ A2 ~ ... ~ a for i = 1,2, ... , dim G. If dim G is finite then we formally set 
~i = a,Ai = a for i > dim G. The trace of C'" is the sum of Ai, trace(C",) = I:~lAi. 

We need to find the maximal measure of vN(Be), see (3.3). It is known, see Wasilkowski 
(1984), that vN(Be) is maximized for N = N~, where 

(4.2) 
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The measure LIn := LIN- is Gaussian with mean zero and correlation operator Cn given by 
n 

n 

(4.3) Cng = Cvg - I: Ai (g, s"i) s"i, g E G. 
i=1 

Thus Cng = 0 for g E span(s"1,s"2, ... ,s"n) and Cng = Cvg for g orthogonal to 
span(s"1, s"2, .•. , s"n). Obviously, Cn = C~ ~ 0, trace(Cn ) = l::n+1 Ai which goes to 
zero as n goes to infinity. If dim G is finite and n ~ dim G, then Cn = o. The measure 
LIn is then atomic, i.e., L1n(B) = 1 if 0 E B, and L1n(B) = 0 if 0 ~ B. 

We now estimate the measure LIn (Bt;) in terms of eigenvalues Ai. From Vakhania (1981, 
p.40) we know that there exists a constant C1 such that 

(4.4) 

It is easy to show that one can take C1 = 5. Thus to guarantee that L1n(Bt;) ~ 1 - 6, 
it suffices to take n such that trace( Cn) ~ e2 / (21n ~). Thus the upper bound on the 
probabilistic cardinality number m(e,6) is given by 

(4.5) mu(e,6) = min{n: f Ai ~ ~}. 
. 21n-t=n+1 S 

We now obtain an upper bound on L1n(Bt;). Observe that Bt; C {g : I(g,!:'n+dl ~ e}. 
Thus 

where ~ is the probability integral. Therefore a lower bound of m( e, 6) is given by 

(4.6) mL(e,6) = min{ n: ~(~) ~ 1-6}. 

For large x, ~(x) = (1- ~~e-X~/2) (1 + 0(1)). Thus, for small 6 we have 

(4.7) mL(e,6) = min{n : An+1 ~ ~} (1 + 0(1)). 
2ln "6 

From this and Theorem 3.1 we have 

COROLLARY 4.1. For A. = F*, the probabilistic (e,6) complexity is bounded by 

(4.8) c sup min{mL(e, x6), x - 1 mde, 8)} ~ compprob(e, 6) ~ (c+2) mu(e, 8) -1.1 
1<;;x<;;1/6 x 
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As in Section 3, if mL satisfies (3.6) then the left hand side of (4.8) is approximately 
equal to c mL(c, o).The upper bound in (4.8) is achieved for 

mu (e,8) 

U(J) = L (SI, ~d~i' 
i=l 

This corresponds to the truncated series of SI with respect to eigenelements of the covari
ance operator C v of the measure l/ = jJ.S -1. 

REMARK 4.1. 

From Wasilkowski (1986) we know that the average c-complexity of approximating SI 
is given by 

c m Qtl9 (c) ~ compQtl9(c) ~ (c + 2) m Qtl9 (c) - 1, 

where m Qtl9(c) = min{ n . ~c:o ).. < c2} • L...,=n+l I - • • 

Comparing this to (4.8) we see that the upper bound on the probabilistic (c,o)-comp-
lexity corresponds to the average c1-complexity with C1 = c/V2ln (5/0). I 

We illustrate Corollary 4.1 by assuming that ).k = (ak)-P for some positive a and 
p> 1, i = 1,2, .... Then (4.7) yields 

(4.9) 

where 771 = c2 /(2In (I/O)). From (4.5) we have 

(4.10) mu(c,o) = r 1 1/(p-l) 1- x, 
a [a(p - 1)772] 

for some x E [1,2], 

where 772 = c2/(2In(5/0)). 

We now consider the approximation problem defined as in Papageorgiou and Wasilkowski 
(1986). Let I : D = [O,l]d -+ IR be a function of d variables. By 1(iI,i'1., ... ,id.) we mean i j 

times differentiation of I with respect to Xi, j = 1,2, ... , d. Let r be a given nonnegative 
integer. 

Define the Banach space F as the class of functions I for which I(r,r, ... ,r) is continuous 
and l(il ,i2 , ... ,id.) (t) = 0, Vi; = 0,1, ... , r and any t for which one of the components is zero. 
The space F is equipped with the norm Ilfll = SUPtED I/(r,r, ... ,r) (t) I and with the Wiener 
measure placed on rth derivatives. That is, JL(A) = w(DrA), where Drl = I(r,r, ... ,r) and 
w is the classical Wiener measure. 

Let G = L2(D) and let the solution operator S, S: F -+ G, be given by the embedding 
SI = I. The eigenvalues ).k of the measure v = jJ.S-1 are given by 

( 
(Ink)d-1 )2r+2 

).k = 1I"d (d _ 1)1 k (1 + 0(1)), as k -+ 00. 
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From (4.7) we have 

(4.11) ( C) _ (J2In(1/h))r:h (1 J21n(1/6))d-l 
mL £, U - al n , 

£ £ 

where 

From (4.5) we have 

(4.12) 

where 

Applying Corollary 4.1 with x = In h we have 

COROLLARY 4.2. For A = F*, the probabilistic (£, 6)-complexity for the approximation 
problem is bounded by 

( 4.13) 

where a1 and a2 are given above and x = J2In(1/6)/e. I 

Observe the difference in the exponents of x. For the lower bound we have (r+ I)-I, for 
the upper bound we have (r + ~) -1. This difference is essential for small r. For the extreme 
case, r = 0, the upper bound exponent is twice as big as the lower bound exponent. For 
large r, the difference between the upper and lower bounds becomes less significant. We 
believe that the upper bound of Corollary 4.2 is sharp. 

REMARK 4.2. 

We stress that compPrOb (e,6) depends on J2In{1/6)/e. Thus, it depends on 6 through 
In (1/6) and it depends on e through l/e. The dependence on e is therefore much more 
crucial than the dependence on 6. I 

REMARK 4.3. 

The same approximation problem has been studied in the average case setting by Pa
pageorgiou and Wasilkowski (1986). They proved that the average £-complexity is given 
by 

9 



Comparing this to (4.13) we see that the upper bound on the probabilistic (c, a)-complexity 
corresponds to the average cl-complexity with Cl = c/ V2ln (1/ a). For further relations 
between average case and probabilistic settings see Section 6 (ii). I 

5. A ARBITRARY AND S E F" 

In this section we specialize estimates of the probabilistic complexity for an arbitrary 
class A and a continuous linear functional S. Thus, G = rn. and the measure l/ is a 
one dimensional Gaussian measure with mean zero. Its covariance operator Cv is just a 
number. It is its variance varv = Cv = S{CJl.S). As in Lee and Wasilkowski (1986), define 
the semi-inner product and the semi norm 

(5.1) IILIIJI. = (L, L)y2 

for L 1 ,L2 ,L E F*. 
The maximal measure of the ball Be = [-c, +c! is obtained for the measure l/n which is 

a one dimensional Gaussian measure with mean zero and variance varn, 

n 

(5.2) varn = inf{ II S - L aiLi II! : ai E IR, Li E A}, 
i=1 

see Lee and Wasilkowski (1986, Section 2). Thus, varn is the square of the approximation 
error of S by a linear combination of n functionals from 11.. We now have, see (3.3), 

The probabilistic (c, a)-cardinality number, see (3.4), is now given by 

(5.3) m( c, a) = min {n : <P ( ~) ~ 1 - a }. 

For small a, we have 

(5.4) m(c, a) = min { n : varn::; 2In~:/a)} (1 + 0(1)). 

We now find m(c,8) for the integration problem studied by Lee and Wasilkowski (1986). 

Consider the class F as in Section 4 with d = 1. Let G = IR and Sf = 101 
f(t) dt. 

The class A consists of function evaluations, i.e., L(J) = f(x) for some x. From Section 
5.4 of Lee and Wasilkowski (1986) we get 

{ 
rl ( (1 _ tY+l n ) 2 

varn = inf Jo (r + I)! - t; ai (t - ti)~ dt 
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Sacks and Ylvisaker (1970) showed that 

(5.5) 

This is achieved by the equally spaced points ti = ij(n + 1), i = 1,2, ... ,no From (5.4) 
and (5.5) we conclude that 

(5.6) 

The formula (3.8) is now the integral of the natural spline of degree 2r + 1 which in
terpolates the function values f(ij(n + 1)) for i = 1,2, ... , nand n = m(c,8). Applying 
Theorem 3.1 and (3.6) we have 

COROLLARY 5.1. The probabilistic (c, 8)-complexity for the integration problem is given 
by 

(5.7) 

The integral of the natural spline of degree 2r + 1 which interpolates f at m(c, 8) equally 
spaced points solves the problem with almost minimal cost, where m(c,8) is given by 
{5.6}. I 

REMARK 5.1. From Lee and Wasilkowski (1986) we know that the average c-complexity 
of the integration problem is given by 

Comparing this to (5.7) we note that the probabilistic (c, 8)-complexity corresponds to the 
average cl-complexity with Cl = cj y'21n (1/8), see also Section 6 (ii). I 

6. FINAL REMARKS 

In this section we briefly discuss different definitions of the cost in the probabilistic 
setting, relations between average case and probabilistic settings as well as some open 
problems. 

(i) Different Definitions of Cost. 

We defined costaU9 (U) by the average value of cost(U, I) over all elements from F, see 
(2.3). One may define the cost(U) as in the worst case setting. That is, 

(6.1) cost(U) = sup cost(U, I). 
fEF 
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Let compirob(e, 6) denote the probabilistic (e, 6)-complexity with cost given by (6.1). Then 
it is easy to show that 

(6.2) c m(e, 6) ::; comprOb (e,8) ::; (c + 2) m(e, 6) - 1, 

where m(e,6) is given by (3.4). For c ~ 1, we have 

One can modify the definitions (2.3) and (6.1) by disregarding a set of measure at most 8 
for which U(!) does not approximate S(!) with error at most e. That is, 

(6.3) costatl9(U) = 1 ~ 8 inf { i cost(U, J) p.(dJ) : A such that p.(A) ~ 1 - 8 

and liS! - U(!)II ::; e, for all f E A}. 
Let comp~rOb(e,8) denote the probabilistic (e,8)-complexity with cost given by (6.3). For 
8 < ~, it is easy to show that 

compprOb (e,8d ::; comprob(e, 8) ::; 1 compprob(e:, 8). 
1 - 81 

where 1- 81 = (1- 28)/(1- 8). For small 8,81 = 8 (1 + 0(1)) and therefore comp~rob(e, 8) 
is practically equal to compprob . 

One may also disregard a set of measure at most 8 in the supremum (6.1) as in 
(6.3). Then it is easy to see that the corresponding (e:,8)-complexity will be the same 

prob ( ~) as comPI e:, u . 
(ii) A verage Case and Probabilistic Settings. 
In this paper we indicated that the probabilistic (e,8)-complexity, or its upper bound, 

is related to the average el-complexity with el = e/ y'21n (1/8). This holds for linear 
problems with Gaussian measures for the two cases studied in Sections 4 and 5. For small 
8, el is smaller than e:. Thus, the probabilistic (e, 8)-complexity is larger than the average 
e:-complexity. For arbitrary measures, it is not in general true that the probabilistic (e:,8)
complexity with small 8 is larger then the average e:-complexity. In fact, it may happen that 
the average e-complexity is infinity whereas the probabilistic (e:, 8)-complexity is finite for 
positive e and 8. If, however, the average e:-complexity is finite then Chebyshev's inequality 
yields 

(6.4) 

with e:l = v'o e:. Relations between average case and probabilistic settings seem to be an 
interesting subject of the future research. 

(iii) Open Problems. 
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We indicate a few open problems in the probabilistic setting. It will be interesting to 
improve estimates of Section 4. In particular, better estimates of Gaussian measures of 
balls would be welcome. 

The probabilistic setting should also be analyzed for more general linear problems, i.e., 
for S whose range is not necessarily a Hilbert space, and for nonlinear problems, i.e., for 
nonlinear operators S. It will also be interesting to study more general measures and error 
criteria. For instance, it seems worthwhile to analyze the relative error in which (2.2) is 
replaced by 

II { I E F II S I - U (I) II < } ~ 1 - c5 
fA' IISIII - c 

or by 

Here IIIII is a norm of the space F and S is a linear or nonlinear operator. 
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