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Ahstract 

lIardware redundancy in distributed systems offers the potential for increased availability and 
performance, but this requires soft\vare support if the full potential is to be realized. We have 
designed and implemented two mechanisms for such support. The first provides crash-resistant 
resources. replicated transparently and consistently to increase the availability of distribllted data. 
To update multiple copies despite down nodes, we have introduced the Rt>generation method. 
used in the implementation of a replicated system directory. Regeneration restores inaccessible 
copies elsewhere in the netv,·ork, maintains the availability of resources, and adapts to configuration 
changes. 

The second mechanism is a system supporting nested transactions. which can manage the 
complex failure modes in a distribllted system, synchronize concllrrent resource access internal to 
applications. and facilitate safe module composition. In the tree-structured nesting. each transac­
tion has a Transaction Manager (T\I), responsible for the concurrency control and crash recovery 
of its subtransactions. \lany concurrency control and recovery techniques can be combined in this 
TM Tree design frarne\vork. We chose locking and versions for the first implementation. Using 
Eden objects and the replicated directory, our nested transactions provide consistent concurrent 
access to locat ion-independent, c rash- resistant reSOll rces. 

In summary, the principal contributions of this research are the Regeneration method and the 
T\[ Tree framework. Regeneration Ilses the separation of hardware repair from data restoration 
to increase replicated data availability. T\[ Tree composes existing techniques to derive many 
differellt designs for nested transacti()ns. l30th have been proven in the design and implemelltation 
of actllal systems. 

"A di,;:ertation :ubmitted in partial fulfillment of the reqllirernents for the degree of DoctN of Philo:ophy, llni­
versity of \\iashingt·:.n. 
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Chapter 1 

Introduction 

1.1 Motivation 

Distributed systems may offer increased availability with independent failure modes and improved 
performance with concurrent execution. However, distributed applications with high concurrency 
and availability need more than just hardware redundancy. Distributed data must be kept con­
sistent and available despite partial failures in the network. The probability of all data resources 
distributed over N nodes in a network being accessible is the product nf:l P( i), where P( i) is. 
the probability of node i being accessible. Without data redundancy, partial failures decrease the:. 
probability of successful executions of distributed applications. 

We have introduced the Regeneration method for data replication. In some cases, data remain 
inaccessible for relatively long times - for example, in hard failures requiring manual repair. 
Regeneration separates the repair of disabled hardware from the restoration of data. Through a 
probabilistic analysis, we show that Regeneration takes advantage of this separation to provide 
more availability than other data replication techniques, which wait for hardware repair. Using 
Regeneration, we have implemented a replicated directory system, which is used in the replication 
support integrated into a nested transaction mechanism. 

Nested transactions organize operations on distributed data into atomic sets, which are useful 

in several ways. First, partial failures in such an atomic set revert distributed data to their 
original state, undoing intermediate changes. This simplification facilitates the handling of the 
2N possible failure combinations in a network of N nodes. Second, concurrent resource access 
from different atomic sets are synchronized automatically, promoting increased concurrency in 
distributed applications. Third, these atomic sets of operations do not interfere with each other, 
allowing safe and reliable combination of distributed software. 

To support nested transactions, we have designed and implemented the Eden Resource Man­
agement System (ERMS). Unlike previous proposals, which extend specific concurrency control 
and crash recovery methods, we shall here separate the concerns of nesting from particular imple­
mentation techniques. Normal, single-level concurrency control and crash recovery techniques are 
implemented at each level; careful composition of these modules provides resource access synchro­
nization, failure isolation, and uniform syntax. In addition, the resources are location-independent 
Eden objects, which may optionally be replica.ted. 

The remaining sections of this chapter introduce our model of distributed systems and the 
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Eden testbed used in the implementation. In chapter 2, we introduce the transaction concept 
and its generalization to nested transactions; then, we summarize techniques for the implemen­
tation of transaction systems. In chapter 3, we divide the data replication problem into three 
parts: multiple-copy updates, network partitions, and transparent access. Using this analysis, 
known replication techniques are described and compared. Chapter 4 introduces the Regeneration 
method for consistent multiple-copy updates. Chapter 5 describes our design and implementation 
of a replicated directory system using Regeneration. Chapter 6 describes our design choices and 
implementation of nested transaction support. Chapter 7 generalizes ERMS to a general design 
framework for nested transactions. Finally, chapter 8 concludes the thesis with summaries of 
contributions and future work. 

1.2 Model and Definitions 

Our model of a distributed system is a network of computers with independent failure modes. In 
our algorithms, design, and implementation, we give no consideration to malicious behavior, such 
as Byzantine faults [71]. Our computers are either up and running, or down and inaccessible. 
However, network links may fail, causing network partitions. Within a partition, all resources on 
up nodes are accessible. We define availability as the probability of a resource being accessible 
at any given time. The number and identification of nodes running and in communication with 
each other constitute the system configumtion. We assume that approximate system configuration 
data may be obtained. 

Resources are encapsulated in objects, which can support arbitrary operations. Although the 
model imposes no restrictions on the type of resources, in this dissertation we focus on resources 
containing data. To simplify the implementation and presentation, we divide the resource access 
operations into two classes. Writes modify the resource's state. Reads get values that are a 
function of the resource's state. Usually, our resources are data rather than hardware. 

Our model of a database is a set of resources residing in stable storage. The objects may 
be bound by some rules, called consistency constmints. If objects all follow the consistency 
constraints, the database is in a consistent state. A tmnsaction is a collection of operations on 
resources to be performed atomically. We assume the transactions take the database from one 
consistent state to another consistent state. 

This model adequately describes many practical distributed systems, including those discussed 
in chapters 3, 6, and 7. Therefore, the analysis of replication in chapter 3, the Regeneration 
method in chapter 4, and the discussion of nesting by composition in chapter 7 are all applicable 
to a wide range of distributed systems, transcending the applications implemented in the Eden 
system (section 1.3). 

1.3 The Eden System 

Both replication support and nested transactions mechanism were implemented on top of Eden 
[2,17,53]' an experimental distributed operating system used as a test bed. Eden encapsulates 
resources in objects and provides location-transparent invocations between objects. 
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Eden provides a unique combination of features that are extensions of those found in other 
systems. Eden supports user-defined and extensible objects, which communicate with each other 
via invocations, in the form of Remote Procedure Calls [13]. In comparison, the Apollo Domain 
system [54J is object-oriented, but its objects are pre-defined; Hydra objects [86] are defined by 
the users, but Hydra runs on a centralized multicomputer system. Eden objects can also migrate 
from one node to another; for example, computation may be distributed for load balancing, or 
replicas of a resource placed on separate machines. 

Eden objects contain data, procedures, and active processes. They encapsulate files, programs, 
and other resources_ The designers of an Eden object can define arbitrary operations to which 
the objects respond. Each object is invoked through a capability, which is a system-wide unique 
identifier together with a set of access rights defined on the invocations it supports. Remote 
invocations have the same syntax and semantics as local ones_ Objects may have an active form 
in main memory and a passive representation on disk. An active form of the object services an 
invocation immediately. If an invoked object has only a passive representation, the Eden kernel 
activates the object. Each Eden object is an instance of an Edentype, a program written in the 
Eden Programming Language [16], which is an extension of Concurrent Euclid [43]. 

Eden objects are the building blocks with which we have implemented the replicated directory 
(chapter 5) and the nested transaction mechanism (chapter 6). 
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Chapter 2 

Transactions for Consistency 

2.1 The Transaction Concept 

The transaction concept [39] underlies most of the work described in this dissertation. In this 
section, we define the concept and extend it to cover nested transactions [62]. Transaction im­
plementation techniques are described in section 2.2 (concurrency control) and section 2.3 (crash 
recovery). These techniques will be used in our implementation (chapters 5 and 6), and discussed 
in hypothetical designs (chapter 7). 

2.1.1 Single-Level Transactions 

A transaction is a collection of operations on resources that is "all or nothing"; either all or none 
of the operations result in permanent resource changes. Transactions that do not alter the data in 
resources are called queries, read-only transactions, or read transactions. Transactions that also 
write to resources are called updates or write transactions. We assume that an update takes the 
database from one consistent state to another consistent state. 

The "all or nothing" property, also called atomicity, implies that transactions executing con­
currently do not see intermediate results produced by other transactions. Techniques called con­
currency control methods, described in section 2.2, synchronize interleaved transactions so they 
observe the concurrency atomicity requirement. The main benefit of concurrency atomicity is that 
transactions may execute in parallel, and as long as the database starts from a consistent state, 
all transactions are guaranteed to read consistent values from the database. The intermediate 
results, which may be temporarily inconsistent, are hidden by the concurrency control. 

Atomicity also requires that transactions interrupted by machine crashes should not leave any 
intermediate, potentially inconsistent results. Crash recovery techniques, described in section 2.3, 
achieve this goal, called reliability atomicity, by either rolling the transactions back to their initial 
state, or forward to their final state. The combination of concurrency atomicity and reliability 
atomicity maintain the database consistency despite concurrent accesses and machine failures. 

Unlike traditional definitions where a transaction is a sequence of operations, we allow con­
currency within a transaction. Multiple threads of control, called processes, may execute the 
operations in parallel to take advantage of a distributed system. Although atomicity guaran­
tees consistent access and crash recovery between transactions, more structure is needed within 
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Top-level-l Top-level-2 

sub-l-l sub-1-2 sub-2-1 sub-2-2 

sub-1-1-2 sub-l-l-l 

Figure 2.1: Standard Model of Nested Transactions 

a transaction. To synchronize resource access by internal processes and recover from individual 
process failures, nested transactions introduce a natural extension of structured atomicity into. 
transactions. 

2.1.2 Nested Transactions 

Subtransactions are subcollections of operations performed atomically within a transaction. Es­
waran et aI. [30] defined a transaction as a sequence of operations. Unlike their transactions, our 
subtransactions may run concurrently, as in the standard nested transaction model defined by 
Moss [61]. The top-level transaction and its subtransactions form a tree (figure 2.1). The top-level 
transaction is at the root of the tree; subtransactions are the internal nodes and leaves. We will 
use tree terminology to denote the relationship among transactions: ancestors and descendants, 
parent, siblings, and children. Intermediate states produced by a sub transaction are hidden from 
its siblings and parent. If a subtransaction aborts, none of its operations leave any effect, but the 
parent and siblings may continue executing and commit eventually. 

In distributed systems, there are several advantages in using the structure of nested trans­
actions. First, sub transactions abort independently of their parent and siblings, helping the 
programmer to recover from the 2N possible failure combinations in N nodes. Second, resource 
accesses from different processes are automatically synchronized for concurrent subtransactions. 

Third, composition of atomic su btransactions into a structured enclosing transaction facilitates 
construction and maintenance. 

In the rest of this chapter, we describe the implementation techniques of single-level trans­
actions. Since our nested transaction design and implementation rely only on the techniques 
summarized in the following sections (2.2, 2.3), the discussion of other early designs of nested 
transactions will be summarized later in section 6.7. 
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read write 

read Y N 

write N N 

Table 2.1: A Simple Lock Compatibility Table 

2.2 Concurrency Control 

The commonly accepted correctness criterion for concurrent database access is serializability, de­
fined as an execution of concurrent transactions that produced the result equivalent to a sequential 
execution of those transactions [68]. A concurrency control method guarantees the serializability 
of resource access despite concurrent access from several transactions. 

In this section, we provide background material on concurrency control for our work on both 
replication and nested transactions. We describe two-phase locking in section 2.2.1, timestamps 

in section 2.2.2, and optimistic concurrency control in section 2.2.3. Readers familiar with these 
concurrency control methods can safely skip to section 2.3. The survey of these well-known 
concurrency control methods is based on works by Kohler [48], Bernstein and Goodman [9], and' 
Mohan [60]. Other concurrency control methods found in the literature, such as tickets, conflict­
analyses, and reservations, have been omitted since they are not pertinent to this dissertation. 

2.2.1 Two-Phase Locking 

One way to synchronize concurrent access to a resource is to lock the resource to prevent conflicting 
access. Before a transaction can access a resource, it requests a lock on the resource from the 
system lock manager. If the lock is granted, the lock manager guarantees that the transaction 
has a consistent view of the resource. When the transaction ends, the locks it held are released. 

The simplest way to achieve consistency is to allow only one transaction to access the resource 
at any given time. The exclusive access, sufficient for update consistency, is not necessary when 

transactions are only reading the resource. A common lock convention allows either multiple, 
concurrent readers (shared lock) or an exclusive writer (exclusive lock). Readers do not alter the 
resource state, so they are able to share access without compromising consistency. In contrast, a 
writer may take a resource through some intermediate, inconsistent states, therefore the resource 
must be exclusively locked. Table 2.1 shows the compatibility between the two kinds of locks. A 
write lock is granted only if no other transaction holds locks of any kind on the resource. A read 
lock is granted whenever the resource is not exclusively locked. 

Although these rules guarantee the consistency of each resource, more care is needed when a 
transaction accesses multiple resources. Eswaran et al. [30] have proved that all transactions must 
be two-phase in order to assure multiple resource access consistency. A two-phase transaction locks 
all the resources it needs before unlocking any of them. In other words, the transaction can be 
divided into two phases, the growing phase, in which it locks all its resources, and the shrinking 
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phase, when it only unlocks. Such two-phase transactions are serializable, so two-phase locking 
maintains database consistency. 

Avoiding the formal treatment, which can be found in the literature [30,68], we use an example 
to illustrate the way two-phase locking works. Let transactions Tl and T2 be two-phase according 
to the above description. If Tl holds a lock on a resource, and T2 requests an incompatible lock 
on the same resource, two actions are possible. We can make T2 wait, or we can reject its request. 
We will consider waiting in this section, and request rejection in section 2.2.2. If Tl finishes and 
releases its locks, T2 gets the desired lock, and everything ends well. However, in an alternative 
scenario, Tl locks resource A exclusively at the same time T2 locks resource B; and later Tl tries 
to lock B, while T2 attempts to lock A. Transactions T} and T2 will keep waiting for each other, 
in° a situation called deadlock. 

There are several ways to handle deadlocks. First, deadlocks may be avoided by preclaiming 
all resources at the very beginning of every transaction. The disadvantage is that some resources 
may be locked longer than necessary, since the transaction may access only a subset of all resource 
in a given run. Its advantage is that since all resources have been locked, the transaction will 
not be aborted because of resource contention. So by preclaiming all resources, we trade system 
concurrency for freedom from deadlocks. 

Second, deadlocks may be detected by finding cycles in the transaction wait-for graph, defined 
as follows: 

• Each vertex in the wait-for graph corresponds to a transaction . 

• Each arc in the wait-for graph links a transaction with a blocked request for a resource to 
the transaction currently holding the lock on the resource. 

The lock manager maintains the wait-for graph according to the lock requests. If a cycle is formed 
in the wait-for graph, the transactions in the cycle are waiting for each other indefinitely. To break 
the deadlock, the lock manager uses some kind of heuristics to decide which transaction in the 
cycle must be aborted. In the next section, we outline a third deadlock resolution technique where 
unsuccessful lock requests are rejected instead of blocked. Many papers [60] exist on deadlock 
detection and resolution, and we will use these known techniques in our work. 

Thus far, we have described two-phase locking of centralized databases. The distribution 
of lock management and deadlock detection in a distributed database requires further develop­
ment. Since distribution in Eden is hidden by location-independent capabilities, we omit the 
discussion on these topics. For more details, we refer interested readers to the referenced survey 

papers [9,48,60]. 
Additional rules on top of two-phase locking have been proposed by Moss [61,62], and imple­

mented in Argus [56] and LOCUS [63,84], to control concurrency in nested transactions. These 
extensions will be discussed in section 6.7. 

2.2.2 Timestamps 

In contrast to two-phase locking where each resource is locked to prevent conflicting access, the 
timestamp method serializes the transactions directly. Each transaction is given a system-unique 
number, called a timestamp, which determines its place in the serialization. From the timestamp 
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attached to each read and write request, resource access conflicts are detected and resolved as 
follows. Instead of a lock, each resource remembers the timestamps of the latest reader (TS r ) and 
writer (TSw). If a read request has a timestamp earlier than the resource's TS w , it means that the 
writer with timestamp TSw , which must follow the reader, has overwritten the value the reader 
needed. Since the reader has been superseded, it must be aborted. Similarly, a v..'rite request fails 
if its timestamp is earlier than either TS w or TS r • 

In a distributed database, several techniques to generate global timestamps are known. The 
existence of a global clock certainly solves the problem. Lamport [50] has shown that a central 
clock is not required, and some communication between nodes can maintain global time. In cases 
where strict global time ordering is not necessary, system-unique identifiers can be more easily 
produced by concatenating local timestamps with node identification numbers. 

The usual way to implement timestamp concurrency control relies on versions. Each resource 
is made of a series of versions, created by successive update transactions writing on the resource. 
At each moment in time, the resource is represented by the most recent version at that time. 
For example, let us consider a resource with three versions, Vi created at Tb V2 created at T2, 

and V3 created at T3, where Ti precedes Tj, i < j. From Tl to T2, reading the resource would 
get Vi, and from T2 to T3, V2 represents the resource. The resource becomes V3 after T3. Since 
read requests with earlier timestamps can read earlier versions instead of aborting, the versions 
decrease the number of aborts. Versions are also useful for crash recovery and will be discussed 
further in section 2.3.1. 

The main technical difference between two-phase locking and timestamps is that the serializa­
tion order determined by timestamps eliminates deadlocks. Actually, timestamps can be used for 
deadlock resolution. Rosenkrantz et al. [75] have proposed the wait-die and wound-wait deadlock 
resolution schemes based on timestamps. In systems using wait-die or wound-wait, unsuccessful 
lock requests do not block, but return with the timestamp of the conflicting lock holder. Based 
on the comparison between the returned timestamp and its own, the transaction decides whether 
to continue or abort. 

The basic timestamp method described above assigns the timestamps at the beginning of each 
transaction. Two transactions, Tl and T2, may be serializable in a particular order, for instance, 
Tl followed by T 2 • If Tl happens to have been assigned a timestamp later than T 2 , one of 
them would have been aborted. To remedy these situations, Bayer et al. [7] introduced dynamic 
allocation of timestamps, or timestamp intervals. The timestamp interval method does not assign 
timestamps a priori; it allows transactions to run optimistically, with a range of possible times­
tamps in an interval. When conflicts arise, the timestamp intervals of the conflicting transactions 
are refined to make the serialization explicit. In the above example, this improvement allows both 
Tl and T2 to commit. 

2.2.3 Optimistic Concurrency Control 

Optimistic concurrency control methods [21,49] assume that the probability of conflicts between 
transactions is low. Consequently, greater concurrency may be obtained by postponing the conflict 
detection and possible abort of transactions to the last possible moment. Basically, they analyze 
the transaction dependency graphs just before each transaction commits. The transaction depen-

8 



,... 
I 

dency graph is defined by the following rules to show the relationships between the transactions 
running in the system . 

• The resources read by a transaction is called its input, and the resources being written, 
output . 

• If a transaction's input contains a resource from another's output, they are linked by an arc 
in the transaction dependency graph. 

An acyclic graph shows a partial ordering of transactions from which an equivalent serial schedule 
can be constructed. A cycle in the graph indicates conflicting transactions that cannot be serial­
iz~d. The optimistic concurrency control method detects the formation of cycles in the graph, and 
prevents the transaction closing the cycle from committing, thus maintaining the graph of com­
mitted transactions acyclic. An acyclic graph induces a total ordering of the nodes, so transactions 
on an acyclic dependency graph are serializable. 

The optimistic method differs from locking in both amount and moment of aborts. Compared 
to locking, the optimistic method allows more concurrency, since no restrictions are placed on the 
transactions. However, the price paid for the added concurrency is that aborts now waste whole 
transactions instead of just parts of them. In cont~ast, two-phase locking may abort a transaction 
during the growing phase, but once into the shrinking phase, no aborts due to conflicts are possible. 

In contrast to the optimistic method, which aborts a transaction only when absolutely neces~ 
sary, some methods using timestamps tend to abort more transactions. However, it is not obvious­
how the optimistic method compares to a more refined timestamp method such as timestamp 
intervals. Other ongoing work [66] is studying the problem. 

2.3 Crash Recovery 

In this section, we provide background material on crash recovery, which guarantees transaction 
atomicity despite node crashes. Readers familiar with the literature can safely skip to chap­
ter 3. The survey of these crash recovery techniques is based on work by Bernstein et al. [11], 
Haerder [40], Kohler [48], and Verhofstadt [81]. 

The basic idea underlying most recovery methods is to save the database state on stable storage 
before the transaction changes it. Since the database state is consistent at the beginning and the 
end of each transaction, these are the best occasions to save state information. First, before a 
transaction starts, the database state exists on disk, so if the transaction aborts, the database 
can be rolled back to its initial state. Second, before the transaction commits, the database state 
produced by the transaction is saved on disk, so if the node crashes and the database is lost, the 
committed state can be recreated by rolling forward from some earlier checkpoint. 

Two basic techniques to implement the abstract algorithm above are summarized here. The 
first stores multiple versions of each resource at critical moments, so recovery consists simply 
of choosing the right version. The second writes the recovery information on a sequential log, 

requiring more sophisticated recovery. 
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2.3.1 Versions 

The main idea of version-based recovery is to maintain a consistent picture of the database at 
all times. The temporary inconsistent states created by update transactions are hidden in new 
versions of each resource [48,81]. Consequently, the database always has the most recent version of 
all resources written by the committed transactions. Aborting a transaction leaves the previous 
version in place, and committing a transaction switches from the old version to the new one. 
Care must be taken to ensure atomic switch of all resources written by a transaction, even if the 
machine crashes in the middle of such operation. 

One way to achieve atomicity of the switching relies on idempotent operations [51]. An 
idempotent operation can be executed many times, but its effects happen only once, during the 
first successful execution. When re-executed, it has no effect, and returns the results obtained by 
the first execution. 

Atomic commit with idempotent switch operations is relatively simple. At the beginning of 
transaction commit, we write a commit record atomically to disk. The commit record contains all 
the' switch operations which must be executed to make the new versions official. If the commit is 
interrupted by a machine crash, a recovery procedure is executed before the transaction processing 
resumes. The recovery simply restarts the idempotent switch operations from the beginning. Once 
all new versions have been installed, the commit completes. This is the method chosen for the 
atomic commit of our nested transaction support (chapter 6). 

An alternative way is to build a hierarchical structure pointing to the resource [64]. A tree-:" 
structured directory stores the pointers to the versions. When the transaction commits, a cammi t 
record containing the pointers to the new version of several resources is written. The commit 
protocol then proceeds to construct a new tree with the new pointers. Writing the root page of 
the tree is atomic and it switches to the new tree with new versions. If the commit protocol is 
interrupted by a crash, the recovery procedure rebuilds the new tree and completes the switch. 

2.3.2 Logging 

The main motivation for log-based recovery is the trade-off between normal processing overhead 
and recovery time. Usually, the more time we spend during the normal processing storing infor­
mation for crash recovery, the less time recovery takes. If crashes are relatively rare events, we 
should optimize the normal processing, even though the recovery time may be lengthened some­
what. For update operations, disk accesses constitute a significant part of the cost in database 
operations, often the limiting factor [38]. Since writing the recovery operations to a sequential 

output is usually faster than to random places on a disk, logging has become the most popular 
method for practical databases. 

The main advantage oflogging is that it allows the update transactions to write in-place on the 

database. If a transaction does not abort, writing in-place bypasses the creation of new versions 
altogether. However, writing in-place introduces intermediate and inconsistent information into 
the database. Logging relies on a recovery manager to reconstruct a consistent database after a 
crash has occurred, using the information on the log. The recovery manager reads the log and 
repairs the database as soon as inconsistencies are detected. The normal transaction processing 
can resume only after the recovery manager has finished the repair. 
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Typically, there are two ways to save information on a log [77]. The first method writes 
either the old or the new value of a resource on the log in an update. In case of a crash, 
aborted transactions have their old values rewritten into the database, in an operation called 
undo. Committed transactions which did not propagate their results to the actual database have 
their new values written on the database, in an operation called redo. 

The second method records the operation performed on the resource, instead of the values 
being changed. Since either the old value or the new value of the resource always exists on disk. 
recording the operation is sufficient for recovery. For undoing an update, a reverse operation is 
required to recover the old value from the current state in the database. For redoing an operation. 
if its result was lost in the system buffer and the database contains old values, it suffices to execute 
the logged operation again. 

In either case, the transactions must obey the "write-ahead" protocol. Before the write in­
place is executed, the transaction must ensure that recovery information needed to that write has 
been written on the log. If the recovery information is not in the log before the inconsistent data 
are introduced to the database, a crash at precisely that moment may preserve the inconsistency. 
Since the log record on that change has been lost, the recovery manager will be unable to repair 
the inconsistent database. The write-ahead protocol avoids these problems by keeping enough 
information to reconstruct a consistent database on log. 

In addition to the write-ahead protocol, if all the write requests of a transaction are written on 
disk before the commit record is written, some simplifications are possible [11]. In this case, onc~ 
the commit record is written, all the updates are in place. So in case of machine crashes, only undo 
operations are necessary to roll back aborted transactions. Similarly, if the update operations are 
carried out only after the commit record is written, aborting them requires no work. We only need 
to redo the committed transactions interrupted in their writing. If transactions are allowed to 
write to disk at any time, the recovery manager must be able both to undo and redo transactions 
from the log. 

2.3.3 Distributed Commit 

Thus far, we have described crash recovery in centralized databases. The distribution of logs 
and versions requires further development. Since distribution in Eden is hidden by location­
independent capabilities, we omit the discussion on these topics. However, in a distributed 
transaction, its components must agree on the transaction's outcome. One such protocol is the 
twcrphase commit protocol [9]. 

The twcrphase commit protocol assumes there is a transaction coordinator, and subtrans­
actions run as servers. During the first phase, the coordinator sends out messages asking the 

final results of the servers. Servers respond with their outcome, whether they have committed 
or aborted. If some servers have aborted, the distributed transaction aborts and the coordinator 
sends the abort message to the servers. If all servers agree on commit, the protocol enters the 
second phase. The coordinator writes the commit decision to stable storage and sends the commit 
message to all servers. The most important feature of the protocol is that all participants agree 
on the outcome of the distributed transaction. 
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Chapter 3 

Replication for Availability 

3.1 Crash-Resistant Resources 

Definition 1 A resource is k-crash-resistant if and only if the following three conditions hold: 

1. Accessibility: the resource remains accessible despite k nodes being shutdown. 

• Since k copies may be down, a k-crash-resistant resource must have at least k+ 1 copies 
distributed over distinct nodes. 

2. Consistency: the resource access has one-copy semantics. 

• Writing to the resource is atomic; reading from the resource returns the value either 
before or after the write. 

• Between writes, a read always gets the same value. 

3. Transparency: the resource access has one-copy syntax. 

• Resource access syntax is the same regardless of k. 

• Resource access syntax is independent of node crashes. 

Notation: A crash-resistant resource is k-crash-resistant for some k, k > o. 
A O-crash-resistant resource is non-replicated and therefore vulnerable to the crash of a single 

node. For crash-resistant resources, the Accessibility condition implies replication. The Consis­
tency condition, equivalent to I-serializability [10], stipulates that the replicated resource should 
contain only one value at any given moment, just like a single-copy resource. The Transparency 
condition means that the number and location of copies should be transparent to clients. 

In published works on replication [10], the Accessibility and Consistency conditions appear 
routinely, but not Transparency. We impose Transparency for two reasons. The first is encapsula­
tion. We want to hide the details of replication from clients, so clients do not have to re-implement 
the replication algorithms each time. The second is flexibility. Distributed systems have many 
independent parts, so we want a replicated resource to be adaptable to configuration changes 
without affecting the clients. 
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With crash-resistant resources, we want to increase resource availability, maintaining one-copy 
resource access syntax and semantics. We divide the support for crash-resistant resources into 
three parts: consistent multiple-copy update, network partitions, and transparent access. 

The three parts of the replication problem handle different failure conditions and consistency 
requirements. The first part, multiple-copy update, handles consistent concurrent updates of 
multiple copies, recovery from nodes crashes, and availability despite node shutdowns. The second 
part, network partitions, deals with communication failures resulting in machines running in 
separate partitions, and unable to communicate. The third part, transparent access, concerns a 
crash-resistant root directory, which provides the mapping of resource names into their copies. \Ve 
analyze the consistent multiple-copy update problem in section 3.2, briefly consider the network 
partitions problem in section 3.3, and discuss the crash-resistant root directory in section 3.4. 

3.2 Multiple-Copy Update 

Consistent multiple-copy update can be divided into two sub-problems: atomic update of replicas, 
and node shutdowns. To guarantee that all replicas contain the same value (one-copy semantics), 
we need to make each update atomic, so all copies will reflect either the old or the new value 
uniformly. Traditional transaction techniques are well-suited for the atomic update sub-problem, 
as Gifford has pointed out in his thesis. More concretely, we can use concurrency control (sec­
tion 2.2) to serialize concurrent updates, and atomic commit (section 2.3) to recover from node: 
crashes. 

Insisting that all copies be updated atomically does maintain resource consistency, but this 
policy may prevent an update from completing because a copy is inaccessible in a down node. 
Additional refinements must be introduced to allow updates to proceed despite some nodes be­
ing dov.'O, making some copies inaccessible. In this section, we describe some known techniques 
which allow consistent and atomic update of multiple copies to complete, despite a limited num­
ber of inaccessible copies. These techniques are classified into three groups, Asymmetric, Voting, 
and Reconfiguration. For later comparison with the Regeneration method in chapter 4, we de­
scribe representative examples from each group, without attempting a comprehensive survey of 
replication techniques. 

3.2.1 Asymmetric - Primary Copy 

Asymmetric replication methods distinguish some copies from others, giving special functions to 
the distinguished ones. The Primary Copy method for data replication [3] is such an example, 
where one copy, the primary, is distinguished from the secondary copies. Clients read from any 
copy. All writes are sent to the primary, which propagates the updates to the secondary copies. 
Inaccessible secondary copies are removed from the chain of communication and re-initialized 

when they join the network. 
Primary Copy is an asymmetric method for multiple-copy update, because the primary copy 

has a special meaning not shared by the secondary copies. If a secondary copy happens to be 
inaccessible, the update propagation simply bypasses it. Consequently, Primary Copy is tolerant 
to any combination of failures of secondary copies. 

13 



,,.. The main difficulty of the Primary Copy method arises when the primary copy becomes 
inaccessible. In case the primary site is down, a reassignment is in order. However, if the 
network has partitioned, a reassignment would compromise consistency. Minoura's True-Copy 
Token scheme [59] improves the primary copy method in several ways. However, the reassignment 
of primary copy is possible only when all involved sites have come back online. Alsberg and Day [3] 
have left this problem to the application programmer. In this dissertation, we v.rill consider the 
Primary Copy method with a fixed primary site, because no general solution exists to create a 
new primary when the original is down. 

3.2.2 Voting - Majority 

Voting algorithms [34,80] are symmetric, in the sense that all copies are equal. The basic idea of 
Majority Voting [80] is to read and write subsets of the total number of copies (N). Consequently, 
read and write can proceed even though some copies are inaccessible. In the simplest case, to 
access a replicated resource, a read quorum (RQ < N) and a write quorum (WQ < N) are defined 
such that RQ + W Q > N. A read operation requires the access of RQ copies, a write operation of 
WQ copies. Because there must be an overlap between RQ and WQ, the most recent version will 
always be found and accessed. The number of inaccessible copies tolerated in a read is N - RQ, 
and in a write, N - WQ. If the resource needs to be read and written, the fault tolerance is 
min(N - RQ,N - WQ). 

In Voting, resource access requires a subset of copies. The advantage of accessing a large~ 
number of copies is the tolerance to Byzantine failures [71]. If the subset is large compared to 
N, not only the access becomes expensive, but also the fault-tolerance decreases. Since the read 

quorum and write quorum must intersect, they have minimal sizes bound by RQ + ll'Q > ]V. 

The trade-off is between read/write availability and cost: large read quorums allow smaller write 
quorums and vice-versa. An additional feature of Voting is that it guarantees resource consistency 
despite network partitions, topic of section 3.3. 

There are several refinements of Voting methods. Gifford [36] adds weights to the votes, 
where each vote may weigh more or less depending on some criteria of client choice. Herlihy's 
General Quorum Consensus [41] increases further the number of quorum choices. Instead of the 
read/write dichotomy, he divides the operations on objects into three kinds: read-only, write­
only, and read-write. His generalized quorums provide individual quorum choices for each kind 
of operation (table 3.1), allowing for more diversified availability trade-offs. If an operation is 
read-only, then an Initial Quorum must be gathered. Similarly, only a Final Quorum is necessary 
for the write-only operations. For read-write operations, the Initial Quorum is necessary for read, 

and the Final Quorum for write. 

Gifford used Voting in the Violet Calendar System [35]. Weighted Voting was also used in an 

experimental study of replicated directories at CMU [19,24]. 

3.2.3 Reconflguration - Available Copies 

Reconfiguration methods do not rely on access to subsets to provide fault-tolerance. They change 
the configuration (the number and/or location) of the copies to adapt to new situations created by 
node crashes or recoveries. The Available Copies method [8] is an example of symmetric method 
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Initial Quorum Final Quorum 

read-only RQ 0 

write-only 0 WQ 

read-write RQ WQ 

Ta.ble 3.1: General Quorum Consensus 

based only on reconfiguration. It reads any copy and writes all accessible copies (if at least one is 
accessible), those being defined as copies residing on accessible nodes. When a node crashes, all 
copies of all data items in that node are excluded by updating a replicated directory containing 
the number and location of copies. A crashed node recovers by copying up-to-date data items 
and updating the replicated directory to include those copies on the recovering node. A copy of 
the directory itself may become inaccessible when a node goes down. A special directory-include 

operation updates the local copy of the directory during node recovery. 
Because a resource can be read or written with only one copy, network partitions may allow 

different copies to diverge. This problem will be discussed further in section 3.3. Also, since only ~ 
one copy is necessary for reads, the Available Copies method is vulnerable to Byzantine faults. 
Another important feature of Available Copies is the explicit use of a directory, facilitating the 
implementation of one-copy resource access syntax. 

DD1.! [22] is a distributed database system which replicates resources using the Available 
Copies method. The Isis project [12] has different design and implementation strategies, but the 
availability provided by Isis would be the same as Available Copies. 

3.2.4 Comparison With Hardware Redundancy 

Redundancy has been used in hardware to increase reliability of computers for a long time [74,82]. 
The three main techniques are, triple modular redundancy, duplex redundancy, and stand-by 
redundancy. Triple modular redundancy requires three identical modules which vote for the 
output. Duplex redundancy uses two identical modules to detect and isolate failures. Stand­
by redundancy has two kinds, the cold stand-by operates with one module, and brings up the 
stand-by unit when the first fails. The warm stand-by redundancy keeps all modules online, and 

switches off the ones that have failed. 
Several of the data replication techniques we have discussed in this section have hardware coun­

terparts. Primary copy offers only partial redundancy, since the primary copy is not replicated. 
The secondary copies are similar to warm stand-bys, adding read availa.bility. Voting generalizes 
the triple modular redundancy. Available Copies method is the software analog of stand-by re­
dundancy. In DDM [23], online copies are maintained up-to-date if they remain accessible, like 
warm stand-bys. Oflline copies are brought online when necessary, like cold stand-bys. 
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3.3 Network Partitions 

Network partitions happen when some communication links fail, while individual nodes and parts 
of network keep running. We consider the partitioning to be a temporary situation, and each par­
tition an integral component of the distributed system. Consequently, we want to keep resources 
consistent across partition boundaries. 

The main difficulty is that nodes from different partitions cannot communicate with each 
other. So if the update activity continues independently in each partition, copies may diverge 
with different update histories. In face of network partitions [28], there are two choices in handling 
resource consistency, pessimistic, briefly described in section 3.3.1, and optimistic, summarized in 
section 3.3.2. 

3.3.1 Pessimistic Approach - Voting 

The pessimistic approach is conservative, allowing updates in only one distinguished partition. 
The distinguished partition can be chosen in many ways. For example, majority voting chooses 
the majority partition, while Primary Copy chooses the partition in which the primary copy 
is located. In the distinguished partition, reads and writes proceed as usual, but in the other 
partitions updates are disallowed. \Vhen the partitions merge, the updates are propagated from 
the distinguished partition to the other partitions. 

The pessimistic approach maintains update consistency since read and write transactions ar~ 
still serializable. In the distinguished partition, transactions proceed as usual. In the other parti-­

tions, all read transactions are serialized before any updates which occurred after the partitioning. 
Consequently, copies in other partitions may become out-of-date, but updates on the "official" 
partition will prevail when partitions merge. The resource consistency is preserved, but we lose 

resource update availability in all partitions except the distinguished one. In addition, for ma­
jority Voting. if we cannot gather a majority of votes in any partition, no updates are allowed 

anywhere. 
Dynamic Voting [25] improves on the simple (and weighted) majority voting because it allows 

resource update when further partition occurs. Basically, the number of majority votes is not fixed 
as the majority of total number of copies, but it is defined as the majority of the accessible copies. 
The redefinition of majority quorum follows the detection of a network partition, in the partition 
that maintained a majority. So if each network partition left a majority survivor, systems using 
Dynamic Voting may operate with as few as two nodes. Only one partition is, however, allowed to 
update a resource at any given moment. Also, if the network partitions into three equal portions, 

Dynamic Voting will not allow updates in any of them. 

3.3.2 Optimistic Approach - Merging 

The second approach is optimistic -allowing each partition to update the resource independentlY, 
Resource availability is increased, but, when partitions merge back into the network, ways must 

be found to handle conflicting updates. This problem is very difficult in general. For example. 
usually it is impossible to merge two djfferen t versions of a text file without loss of information. 
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However, for specific operation classes, such as the commutative operations, merging algo­
rithms already exist. Promising contributions to operation classification and corresponding algo­
rithms include dissertations by Davidson [27] at Princeton, Faissol [31] and Thiel [79] at UCLA, 
Wright [85] at Cornell, and many other papers [18,26,33]. Some work on the detection of incon­
sistencies, such as version vectors [69], also has been done. 

Optimistic approaches to network partitions cannot be used in conjunction with some multiple­
copy update methods, such as Primary Copy and Voting. The reason is that Primary Copy 
distinguishes the primary copy, and consequently also the partition containing it. Similarly, Voting 
distinguishes the partition with the majority of votes. However, Available Copies is a multiple­
copy update method that may be combined with the optimistic partition merging algorithms. 
Since the optimistic algorithms allow updates to proceed in many partitions, resource availability 
will be higher than pessimistic approaches implied by Voting or Primary Copy. 

3.4 Replica Location 

Techniques to handle mUltiple-copy updates and network partitions enable a client to create 
and use a consistent, replicated resource. The third condition for a crash-resistant resource is 
Transparency. Without it, the use and access of replicated resources is cumbersome. For example, 
giving the clients the number and location of copies makes future changes difficult, either as to the 

number or the location of copies. In addition, each client would have to implement the algorithms. 
to handle IQultiple-copy updates, and maybe network partitions. 

Ideally, clients should be able to access crash-resistant resources transparently, as if they 
were "normal" resources. There are two advantages in the encapsulation offered by transparent 
access. The first is flexibility, since the number of location of copies can be changed without 
affecting the clients. In particular, the same syntax would be used for both replicated and non­
replicated resources. The second advantage is a more general service, since any client can use 

the replicated resources without implementing replication algorithms themselves. In providing 
transparent access independent of failures and resource reconfiguration, the main mechanism is a 
mapping of resource names into their corresponding replicas. 

3.4.1 The Mapping and Its Root 

To provide Transparency on behalf of the client, a mapping must translate the resource name into 
its copies. The client would always use the resource name, which is the same regardless of the 
number and location of the copies. An intermediary mechanism (for example, the file system) uses 

the mapping to forward the client request to actual copies. Since the directory implementing this 
mapping is in the access path of the crash-resistant resources, it must be replicated for availability. 

The directory may be replicated using the techniques described in the previous two sections, 

but finding the root directory presents a special bootstrapping problem. On the one hand, the 
root directory must be replicated for availability. On the other hand, there is no other directory 
to translate a unique root directory name into the replicated addresses. If we allow clients to read 
replicas of the root directory directly, then updating the root directory becomes more difficult. 
Since a potentially unlimited number of clients may hold the address( es) of the root directory in 
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order to use the mapping, the address( es) cannot be easily changed; otherwise a large number of 
clients would have to update their pointer(s) to the root. In our discussion, we assume that we 
want to avoid the thorny problem of changing a pointer in the possession of an unlimited number 
of clients. 

There are three ways to provide a root. First, we can maintain a copy of root directory at 
each node, removing the need for a pointer. Second, we can use a broadcast operation to find 
the root. Third, we can fix the root directory to a pre-specified configuration. 

Read-only access to the root can be simpler. Clients need only a superset of pointers to root. 
and a way to check whether a pointer is valid. If the superset if reasonably small, then they 
can simply check the pointers until one current copy of root is found. This method permits easy 
finding of one root for reading, but another method is needed to find all copies of root for updates. 

3.4.2 Full Redundancy 

One way to implement a root directory is to replicate it fully. Bernstein and Goodman [8] describe 
a replicated directory in which each update is applied to all accessible directory replicas. In this 

scheme, all update messages to the root directory are sent to all operating nodes. But the clients 
only read the local copy of the root directory. If a node was down when the root was updated, 

its copy of the root is carefully re-initialized before its node becomes accessible and clients are 
allowed to run on that node. 

Full redundancy is expensive in terms of disk space and update traffic. Each node must store ~ 
a copy of the root, and execute the updates on it. On the other hand, hierarchical directory 
structures may reduce the size of and the need to update the root. Since root directories are 
consulted often, having local access at every node may even payoff because of reduced network 

traffic for reads. 

Fully replicated, the configuration of the root directory follows the system configuration. The 
clients always read the local copy, and write to all accessible replicas. During network parti­
tions, the root directories of different partitions may diverge. Anyone of the partition handling 

techniques delineated in section 3.3 will solve this problem. 

3.4.3 Broadcast 

If we choose to replicate the root only partially, some nodes will not have a copy of it. Gifford [34] 
has suggested broadcast as the mechanism to locate replicas of the root. Typically, clients need 
not be aware of the root configuration a priori, since they can broadcast a message asking for the 
root. The network must understand the broadcast message for the root directory, and forward 
the message to the current copies of the root. From the copies which answered the call, the client 

selects a current copy. Any information on the copies of the root is treated as a hint, validated 
by access. If the hint proves to be wrong, the broadcast locates the new copies. 

Because the root is found dynamically through the broadcast, a reconfiguration merely invali­

dates some hints. Consequently, copies of the root may be deleted and created. Using a broadcast 
mechanism eliminates the need to replicate the root everywhere. Only a subset of nodes will have 
resident copies of the root. So trade-offs between disk space and network traffic to access the root 

become possible. 
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Table 3.2: Analyzing Concrete Proposals 

3.4.4 Well-Known Fixed Configuration 

Another method to implement the root directory is to place its copies on a number of well-known 
fixed nodes. If a broadcast mechanism is not available in the network, and disk space is scarce 
-precluding full redundancy-, this may be the only alternative. The main problem of fixing thE> 
root to a specific configuration is the difficulty in the reconfiguration of the root, which may­
restrict the utility of this method to experimental systems with a limited life expectancy. 

There are no problems with reading, since the copies are hardwired to well-known nodes. 
However, it is harder to update the root if one of the nodes happens to be down. The simplistic 

solution aborts the update. A more elaborate solution ignores the down copy, and brings it up-to­
date during that node's recovery, just as in the full-redundancy case. Voting is a more expensive 
solution to read and write the root directory. Voting provides fault-tolerance, but also makes 

remote access mandatory in each read. 
Forward pointers [32] could be used to move the content of the root directory, but the root 

address remains the same. Moreover, all nodes in the forwarding chain must be up and running 
for the access to succeed. Therefore, the use of forwarding addresses decreases the availability of 
the root directory, although it allows the content of the root to be moved. 

The main problem with a fixed configuration is that the root configuration cannot be changed 
easily. The nodes which contain the root will have to stay as long as the system itself. Substitution 

of new hardware is sometimes possible, but the number of copies is hard to change. 

3.4.5 Summary 

Compared to the many replication techniques proposed for multiple-copy updates and handling 
of network partitions (one-copy semantics), transparent access to crash-resistant resources (one­
copy syntax) deserves more attention. Table 3.2 compares the root directory locations of some 
proposed or implemented systems. The Bernstein and Goodman proposal [8] explicitly excludes 
network partitions from their model, but it seems possible to adapt either the pessimistic or the 
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optimistic approach to handle partitions in the concrete system DDM [22]. 
Each one of the techniques to find the root has advantages and disadvantages. The broadcast 

mechanism, if available in the system, can be used to find the root in any replication scheme. 
However, for large distributed systems, the implementation of broadcast presents difficult prob­
lems. A fully redundant root directory allows read-onefwrite-all access. Since the cost in disk 
space and update traffic will escalate with the scale of the system, a hierarchical structure should 
be used to minimize the size and updates of the root. In this case, reading of the root becomes 
cheaper as the system grows larger. Finally, a well-known fixed set of copies for root can be used, 
bu t this presents serious difficulties in the reconfiguration of root. Although this limitation may 

be acceptable in experimental systems, the growth of a distributed system will be hampered by 
fixing the set of copies for root. 
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Chapter 4 

The Regeneration Algorithm 

4.1 The Regeneration Algorithm 

The Regeneration algorithm is motivated by the fact that data restoration can be done indepen­
dently of hardware repair. Each multiple-copy update method described in chapter 3 -Primary 
Copy, Voting, and Available Copies- considers copies resident on down nodes to be inaccessible 
until the nodes are repaired. The main idea of Regeneration is that we can replace those inac­
cessible copies with new replicas on running machines, even before the down nodes are repaired. 
In addition to maintaining replica consistency, Regeneration also increases resource availability i~ 
hardware repair takes longer than the making of a new copy. 

4.1.1 Definitions and Assumptions 

A replicated resource consists of several identical copy objects. Copies may become discrepant 
during an update. A replica is a copy reflecting the desired state of the replicated resource. 

Each replicated resource has some configuration dala stored in a directory: the number, names. 

and location of its replicas. A resource whose configuration data may be changed is reconfigurable. 

The directory is replicated to increase its own availability. The directory's configuration data may 
thus form a hierarchy with many levels of indirection and a root. 

\\'e assume that an underlying transaction mechanism, such as the ones described in chapter 2, 
will perform an atomic update of a set of replicas. We also assume that the directories are 

reconfigurable, including the root. In chapter 3, we have divided the replication problem into 
three parts: multiple-copy update, network partition, and root directory. The Regeneration 
algorithm solves the multiple-copy update problem. Network partitions and root directory will 

be discussed in section 4.2. 

4.1.2 Conceptual Algorithm 

The key idea of the Regeneration algorithm is to make new, accessible replicas to replace the 
inaccessible copies. Two benefits arise from regeneration: first, replacing the inaccessible copies 
eliminates the potential inconsistency caused by the update. Second, new replicas restore the repli­
cated resource availability to its maximum specified level, even before the hardware is repaired. 
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Previous data replication methods, described in chapter 3, also maintain resource consistency, 
bu t they all wait for the hard ware repair to restore their data. 

Figure 4.1 describes the two basic operations: read and write of resources. These operations 
should be used when accessing replicated resources, analogous to the way one would read and 
write a non-replicated resource; each of these operations returns abort or success. There are 
three additional technical observations. First, application data transfer is omitted for clarity. 
Second, updating the directory makes it point to up-to-date replicas. Third, the directory is itself 
replicated using Regeneration, up to the root directory, which will be discussed in section 4.2. 

4.1.3 Discussion 

The Regeneration method provides high resource availability in three ways. First, reading requires 
only one accessible replica. Second, writing succeeds if one replica is accessible and enough spare 
nodes and disk space are available for regeneration. Third, restoring the full complement of 
replicas decreases resource vulnerability to multiple failures. In section 4.4, we will analyze and 

compare the availability offered by the multiple-copy update methods described in section 3.2. 
Regeneration also adapts the replicated resources to system configuration changes. The above 

conceptual algorithm (figure 4.1) uses a 'lazy' regeneration strategy, in which a resource is restored 

to its full complement only when it is being updated. In systems where the configuration changes 
frequently, compared with the frequency of writes to all objects, some resources might dwindl~ 
and disappear before regeneration occurs. To avoid this, one could create a 'resource restoration ~ 
operation which would go through the directory, identify resources some of whose replicas have 
become inaccessible, and replace the lost replicas by new copies of the surviving replicas. 

However, there is a price to the added availability provided by Regeneration. To restore 
inaccessible copies, Regeneration consumes spare disk space on accessible nodes with failure modes 

independent from the down ones. For example, if a maximum of two nodes and 100 megabytes 

of data are expected to be down at any given moment, we need two independent, accessible 
nodes with 100 megabytes of spare disk space to assure successful regeneration of all down data. 

In general, Regeneration works by moving inaccessible data out of down nodes, so the "extra" 

resource requirements are no more than the amount of expected unavailable hardware. 

Another resource management problem is garbage collection. The out-of-date copies in the 

down nodes become garbage because they have been replaced. Methods to reclaim the disk space, 
such as garbage collection and queued delete messages, are summarized in section 4.2.3. 

Table 4.1 compares Regeneration to Voting (section 3.2.2) and Available Copies (section 3.2.3). 
The first two rows show the number of copies accessed for read and write operations. The last 

row compares actions taken on the inaccessible copies to maintain resource consistency. 

4.1.4 Algorithm Verification 

Since the Regeneration algorithms are enclosed in transactions, the one-copy semantics of repli­
cated resources are guaranteed. All read requests and write requests are serialized by the trans­
action mechanism, and write requests update all copies atomically, when they succeed. If they 

abort, all copies are left in their original state. 
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Rt.ad: 

Write: 

1. Find current replicas from the directory. 

2. Send the Read request to successive replicas until one services the request. 

3. if all replicas fail 

then return abort 

else return success 

end if 

1. Find current replicas from the directory. 

2. Send the Write request to all replicas. 

3. if the request failed on all replicas, t hen ret urn abort 

elseif the request succeeded on some but not all replicas, 

then 3.1. Find available nodes with failure modes independent 

from machines holding exjsting copies 

3.2. Make new replicas to reach the specified number 

3.3. if (3.1. or 3.2.) not successful then return abort 

else ret urn the result from 

Writt.(new configuration) to parent directory 

end if 

else {Request succeeded in all replicas. } 

ret urn success 

end if 

Figure 4.1: The Conceptual Algorithm 
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update method => Available 
operation Voting 

Copies 
Regeneration 

.... . ' 

Read Read Quorum 1 1 

Write \Vrite Quorum all copies all copies 

inaccessible 
ignore exclude replace 

copies 

Table 4.1: Comparison of Read/Write Actions 

Although transactions assure resource consistency, we are still interested in finding out under 
which conditions the Regeneration succeeds in reading or writing a resource. Theorem 1, below. 
shows that a resource replicated with Regeneration needs only k + 1 copies to be k-crash-resistan t 
for read access. Theorem 2 says that if enough spare nodes with disk space are available, then the 
same resource would be k-crash-resistant for write access. The number of spare nodes necessary 

is equal to the number of copies lost since last regeneration. 
\\'e define some terms before the theorems are stated. 

Definitions: For a k-crash-resistant resource, we define: 

Copies == The set of copies. 
ActiveCopies == The subset of Copies that is accessible. 
FailedCopies == The subset of Copies that is not accessible. 
ActiveCopiesNodes == The set of nodes on which ActiveCopies reside. 
TotalN odes == The set of all independent nodes in the network. 

FailedN odes == The set of nodes which are not accessible. 
SpareNodes ==The set of accessible nodes without a copy of the resource, 

but with enough storage to accept a new copy. 

Immediate relationships from Definitions: 

ActiveCopies ~ Copies. 

FailedCopies ~ Copies. 

ActiveCopies U FailedCopies = Copies. 

ActiveCopies n FailedCopies = 0. 
SpareNodes = (Total Nodes - FailedNodes) - ActiveCopiesNodes. 

Theorem 1 For a k-crash-resistant resource with k + 1 copies, if IFailedCopiesl < k. then a 

read request succeeds. 

Proof: First we calculate the number of accessible copies after k copies have been lost. 
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1. Find current replicas from the directory. 

2. Send the Write request to every c E Copies. 

3. if the request failed on all replicas, then abort 

{ Inv.I: IActiveCopiesl ~ 1.} 

elseif request succeeded in some but not all replicas 

-- case IActiveCopiesl < k + 1. 

then repeat 

{ Inv.2: ISpareN odesl + I A.ctiveCopiesl ~ k + 1.} 

Take n' E SpareN odes, 

endif 

-- initially k $ ISpareN odesl so this succeeds up to k times. 

Make copy l! on n', 

such that content{c') = content(c).c E ActiveCopies. 

{ActiveCopies ¢::= .4.ctiveCopies U {c'}} 

{SpareNodes ¢::= SpareNodes - {n'}} 

until { Inv.3: IActiveCopiesl = k + l.} 

Write(new configuration) to directory. 

Figure 4.2: Write Algorithm with Invariants 

IActit!eCopiesl = ICopiesl - I FailedCopiesl 
= (k + 1) - IFailedCopiesl 
~ (k + 1) - k 

defini tions 

hypothesis 
hypothesis 

~1. 

Therefore, at least one copy remains accessible after k copies have been lost. Since Regeneration 
tries all copies, the read request succeeds when the accessible copy is found. 

Theorem 2 Fora k-crash-resistant resource with k+I copies, iflFailedCopiesl $ k $ISpare.I\'odesl 
and enough disk space is available on SpareN odes, then a write request succeeds. 

Proof: First. we rewrite the algorithm, inserting some invariants (in curly brackets). Then we 

show that the invariants hold under the assumptions. 
Figure 4.2 contains the write algorithm with the invariants in which we are interested. The 

first assertion near the beginning, { Inv.I: IActiveCopiesl ~ I}, is true if the request did not fail 

on all replicas: 
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ICopiesl > k ~ IFailedCopiesl hypothesis 
IActiveCopiesl "= ICopiesl - IFailedCopiesl definitions 

~ (k + 1) - k combining 
~1. 

In other words, since not all copies have failed, there is one that does succeed. 

The second assertion, { Inv.2: ISpareN odesl + IActiveCopiesl ~ k + 1.}, is true at the 
beginning of the repeat loop: 

ISpareN odesl 
IActiveCopiesl 

ISpareN odesl + IActiveCopiesl 

~k 

~ 1 

~k+1. 

hypothesis 
the first assertion 
adding two inequalities. 

Through each iteration in the loop, ISpareNodesl decreases by one, and IActiveCopiesl increases 
by one. Hence, the sum remains constant and Inv.2 is maintained. 

The third assertion at the end of repeat loop, { Inv.3: IActiveCopiesl = k + I}, will become 
true at some time, because at each iteration we create a new copy, increasing the set ActiveCopies. 
Once the set ActiveCopies reaches k + 1 copies, it substitutes the old Copies set in the directory 
and the regeneration completes. 

4.2 Making Regeneration Practical 

For simplicity, we have excluded three non· trivial problems from the conceptual algorithm: net­
work partitions, the reconfiguration of the root directory, and garbage collection. We shall consider 
each in turn. 

4.2.1 Network Partitions 

Network partitions happen when communication links fail, but the nodes continue to function. In 
each partition, the Regeneration algorithm, as stated, would regenerate independently, even when 

as few as one replica is accessible. This is the optimistic approach to network partitions, and we 
will have to rely on merging algorithms (some of which have been mentioned in section 3.3.2) to 
restore consistency after merging the partitions. 

The alternative, pessimistic approach (section 3.3.1), would alter the Regeneration update 
slightly. Suppose we allow updates only in the majority partition, defined as the partition with 
the majority of nodes. Then, in the write algorithm described in figure 4.1, a conditional state­

ment should be added before step 1: if the update is in the majority partition, proceed as usual, 
otherwise, abort. The same alteration works with any criterion defining the distinguished parti­

tion. 
Finally, there are networks where partitions are unlikely, such as local area networks. In these 

environments Regeneration can be applied directly; Eden offers such an example. 

4.2.2 Root Directory 

Although the partition problem may be avoided in some situations, the root directory problem 
cannot. To use Regeneration in the implementation of crash-resistant resources, we need a repli-
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cated root directory that can be updated. However, a replicated directory that can be updated is 
not necessarily reconfigurable (allowing changes to the number or location of copies). If we want 
to replicate the root itself using Regeneration, it has to be reconfigurable. 

In section 3.4, we have discussed three solutions to the location of root directory in the 
implementation of crash-resistant resources -broadcast, full redundancy, and fixed configuration. 
Of these three, broadcast and full redundancy allow reconfiguration. Fixed-configuration, as its 
name indicates, fixes the configuration of the root. \Ve shall consider each alternative in turn. 

Broadcast allows reconfiguration of the root directory, so it may be implemented with Regen­
eration. If parts of the root directory become inaccessible and are replaced during a regeneration, 

broadcast will find the new copies of the root directory. 
Full redundancy eliminates the root reconfiguration problem altogether. Updating the root 

directory writes on all accessible copies. The inaccessible ones are brought up-to-date when they 
join the network. So, a fully redundant root directory requires a recovery mechanism independent 
of the multiple-copy update method used in the replication of other resources. 

Fixed configuration restricts the root reconfiguration. So, although crash-resistant resources 

may be implemented with Regeneration in a system with a fixed set of copies for the root, the 
root should be replicated using some other technique, for example, Available Copies. Otherwise 
the update of the root would fail if one (or more) of its copies is inaccessible. 

In our experimental implementation, ultimately we rely on Eden kernel's broadcast to find 
our root directory replicated with a different technique, to be described in section 5.2.L 

4.2.3 Garbage Collection 

Regeneration replaces inaccessible copies with new ones on accessible nodes_ Therefore, when the 
down nodes recover, we need to reclaim the disk space occupied by the old copies. This problem 
is relevant to resource management, and does not cause inconsistency in resources replicated with 

Regeneration. 
There are two ways to recover the disk space. The first is a system garbage collector, which 

eliminates the problem. For example, our implementation in Eden, described in chapter 5, relies 
on the Eden garbage collector. However, garbage collection in distributed systems remains a 

research problem [47J, so this option may be unavailable in some systems. 
The second alternative is to queue delete messages in some other nodes, to be delivered when 

the down nodes recover. The copies are then deleted and the disk space released. As long as the 
replicas have their own unique identifiers, each generation is distinct from the predecessors and the 
messages will delete only the intended copies. There may be some delay in the delivery of queued 
messages because the nodes holding the messages may be down or busy. These situations may 
slow down disk space reclamation. If the problem becomes severe, messages may be replicated to 

decrease the probability of delay to any desired level. 

4.3 Comparison with Previous Work 

The most important idea in Regeneration is the separation of data restoration from hardware 
repair. Other replication methods, in particular those described in section 3.2, can adopt the idea. 
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but to the the best of our knowledge. this separation has not been reported before. In section 4.4. 

we will show, using a probabilistic analysis. that this separation increases resource availability. In 
this section, we compare the algorithmic aspects of Regeneration with other multiple-copy update 
techniques. 

4.3.1 Primary Copy 

\Vith a fixed primary site, a resource replicated with the Primary Copy method increases read 
availability only, through secondary copies; its write availability is the same as the availability of 
the primary site. In contrast, Regeneration and the other methods in this section all provide some 
way of increasing write availability. Also, unlike Primary Copy, which is an asymmetric replication 
method because of the distinguished primary copy, Regeneration and the other methods are 
symmetric, i.e., all copies are equal. 

For network partitions, Primary Copy solves the problem by imposing the pessimistic ap­
proach, restricting the updates to the partition containing the primary copy. Regeneration. as 
stated in section 4.1, requires some other technique to handle partitions, which may be either 
optimistic or pessimistic. 

Primary copy may use the idea of regeneration with respect to secondary copies. During 
an update, if some secondary copies are inaccessible, other secondary copies can be created. 
However, regeneration of the primary copy is not easy. For example, Minoura's True-Copy Token. 

scheme [59] requires that we certify all true copy tokens as lost before a regeneration can take­
place. 

4.3.2 Majority Voting 

Regeneration, like Available Copies. reads one and ' .... rites all copies, while Majority Voting reads 
and writes subsets of copies. Because of the read/write trade-off in Voting, to preserve fault­

tolerance in write, the read quorum must be at least two. Consequently, if remote accesses are 
more expensive than local access, Voting would impose higher access costs. In compensation, 

Regeneration requires spare nodes and storage to regenerate new copies, and space occupied by 

replaced copies needs to be reclaimed. 
Voting and Regeneration also differ in their handling of network partitions. Regeneration needs 

some additional method to guarantee resource consistency, while Voting imposes the pessimistic 
approach by the selection of a majority quorum for updates. 

Voting can use the idea of regeneration to increase resource availability. For example. in 

gathering a write quorum, the quorum collector can copy the current version onto obsolete rep­
resentatives [36]. What we suggest is that in the absence of partitions, and given the flexibility 
to update configuration data, new replicas can be created on spare nodes to obtain either a read 
or a write quorum. 

4.3.3 Available Copies 

Regeneration and Available Copies share three characteristics. First, they are both multiple-copy 
udpate algorithms based on reconfiguration. A directory is used to indicate which copies are 
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up-to-date. Second, both algorithms read one and write all copies. Finally, they are both "pure" 

multiple· copy update algorithms, which allow the adoption of optimistic approaches to handle 
network partitions. If used in a network in which partitions are likely, they must be combined 
with some network partition handling technique. 

As with other multiple-copy update methods, Regeneration differs from Available Copies 
because of the replacement of inaccessible copies. In addition, there are two important differences 
between them. The first is the amount of work done at crash detection and recovery. The Available 
Copies algorithm is pessimistic, excluding all potentially out-of-date copies, while Regeneration 
is optimistic, replacing only actually inconsistent copies. 

The second difference lies in the scope of adaptation: Available Copies may exclude out-of­
date copies, which remain inaccessible until their nodes recover. In contrast, Regeneration can 
migrate copies out of retired nodes into new hardware. However, Regeneration requires more 
sophisticated resource management: spare nodes and storage are required for regeneration. and 
space occupied by replaced copies needs to be reclaimed. 

Since the Available Copies algorithm requires the capability for reconfiguration, it is easy to 
add regeneration to resources replicated with Available Copies. DDM [23] uses Available Copies, 
and it includes the concept of offline copies that can be switched online. Although the offline 
copies are more like hardware cold stand-bys than regeneration, the final result is equivalent to 

some degree. The offline copies decrease resource vulnerability to multiple failures. up to the. 
number of offline copies. Regeneration is free from the limitation of the number or location of­
offline copies. 

4.4 Availability Analysis 

In section 4.3, we have compared the algorithmic differences of several multiple-copy update 
methods. Now we proceed to compare the availability they provide, using a probabilistic analy­

sis. Four replication techniques, Primary Copy (PC), Voting (VT), Available Copies (AC), and 

Regeneration (RG) are analyzed and compared in this section. 
Performance characteristics like throughput or response time are beyond the scope of this 

analysis, concerned with availability. The cost of replication, in terms of disk storage space, is 

fixed in the analysis, since we use the same number of copies to allow a fair comparison. With a 

fixed number of copies, the disk space required would be the same for all methods. Execution over­
head depends on other factors such as the read/write mix, and impacts the overall performance. 
Integrated performance and availability analysis remains a subject of future research. 

4.4.1 The k-out-of-N Model 

The availability of replicated resources can be analyzed using results in reliability theory on k­

out-of-N systems [4]. The assumptions of the k·out-of-N model are: 

1. The resource and its copies are 2-state: either accessible or inaccessible. 

2. State changes of the copies are statistically independent. 

3. The resource is accessible if and only if at least k of its N copies are accessible. 
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The main result of k-out-of-N model we will use is that, given the availability of each copy, we 

can combine all possible system configurations to calculate the availability of the resource. ~r 

analysis will be illustrated by a series of diagrams showing the resource availability as a function 

of copy availability. In these diagrams, all copies are assumed to have the same availability, which 

appears on the horizontal axis; the curves show how the resource availability improves when the 

copy availability covers the probability range from 0 to 1. 

For concreteness, we study the availability of a resource with 10 copies. The analysis applies 

to systems in which: 

• Nodes are either up or down (no Byzantine failures; e.g. fail-stop processors [76]). 

• Copies reside on independent nodes. 

• Nodes have same probability of survival (e.g. in a homogeneous network). 

4.4.2 Primary Copy 

A replicated resource with 10 copies using the Primary Copy method allows writes on the primary 

copy and reads on any of 10 copies. Consequently, its write availability is the same as the primary 

copy, shown in figure 4.3 by the straight line (PCw). Its read availability is much higher, since 

anyone out of 10 copies would do; this is depicted by the left curve (PCR) in the same figure. 

4.4.3 Majority Voting 

For 10 copies, simple Majority Voting allows 8 choices of read and write quorums, from (read 2. 

write 9) to (read 9. write 2). Of the 8 choices, the 4 in table 4.2 are useful when the transaction 

reads the resource before the update. We will consider two representative examples: 
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Number of Copies curves in 

Read Quorum Write Quorum figure 4.4 

2 9 VTR2, VTW9 

3 8 omitted 

4 7 omitted 

5 6 VTR5, VTW6 

Table 4.2: Majority Voting, Quorum Choices for 10 Copies 

1. The solid lines in figure 4.4 show the 2-out-of-IO read availability (VTR2) and 9-out-of-IO 

write availability (VTW9) of a read quorum of 2 and write quorum of 9. In this case, the 
resource read availability is high, but write availability is correspondingly low, demonstrating 

the read/write availability trade-off in Voting. 

2. A read quorum of 5 and write quorum of 6, is shown in figure 4.4 by broken lines (5 -out-~ 
of-IO and 6-out-of-IO, marked VTR5 and VTW6, respectively). In this case, both read and 

write availability are higher than VTW9, but lower than VTR2. 

4.4.4 Available Copies and Regeneration 

Given 10 copies, Available Copies offers the (I-out-of-IO) read and write availability, shown in 
figure 4.5. Assuming there are enough resources to allow successful regeneration, the Regeneration 

method provides the same (I-out-of-IO) read and write availability. 

The difference between Available Copies and Regeneration arises after a successful regenera­
tion. Let us consider the situation where a number of copies have been lost, for example, five. Out 

of the remaining five, Available Copies provides I-out-of-5 availability, the right curve (RG B / AC) 

in figure 4.6. With five remaining copies, Regeneration also provides I-out-of-5 availability. How­

ever, after successful regeneration, the resource availability is restored to I-out-of-IO (RGA)' 
Figure 4.6 shows the availability increased by regeneration, which the Available Copies algorithm 
does not provide. In the figure, a lO-copy resource's read and write availability before the re­

generation (RGB/AC with 5 accessible copies) is compared to its availability after regeneration 
(RGA with 10 accessible copies). 

4.4.5 Comparison of The Four Methods 

We can compare the four methods, Primary Copy, Voting, Available Copies, and Regeneration, by 
superimposing the figures 4.3, 4.4,4.5 to obtain figure 4.7. The solid curve to the left, representing 
read and write availability provided by Available Copies and Regeneration (and Primary Copy 
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read-only), is higher than the whole range of availability covered by the Voting quorum choices. 
exemplified by four dot-dash lines. Also note that although VT lines show high resource availabil-­
ity at high copy availability, they all cross the straight line, representing non-replicated resource 
(and Primary Copy write) availability. This means that for sufficiently low copy availability levels, 
Voting actually offers less availability than a non-replicated resource. 

In order to clarify this point and examine different replication techniques performing "under 
stress," let us consider a la-copy resource of which 5 copies are not accessible. Of the figures 
considered so far, 4.3, 4.4, 4.5, and 4.7 have been calculated based on the initial resource con­
figuration, where 10 copies have been created and are accessible. Figure 4.8 shows the resource 
availability provided by the four methods, when only 5 copies remain accessible. 

First, we observe that Voting write availability for either a write quorum of 6 or 9 is zero. 
since such quorums cannot be gathered with only 5 copies. This offers an intuitive explanation 
for the low Voting availability at low levels of copy availability: the copies are more likely to be 
down, making the vote gathering less likely to succeed. 

Second, the dotted line (PCw) represents the primary copy availability if it is among the 5 
accessible copies. Otherwise the primary copy is simply inaccessible. The reason PCw remains 
constant is that the availability of a non-replicated resource is always the same as the availability 

of the node on which it resides. 
Third, the solid curves (from right to left) show the 5-out-of-5 read availability (VTRS) from 

a read quorum of 5, the 2-out-of- 5 read availability (VTR2) from a read quorum of 2, and l-out­
of-5 read and write availability (AC / RGB / PCR) of Available Copies and Regeneration (Primary 
Copy read-only). It is relatively easy to see that the 5-out-of-5 curve drops quickly as the copy 
availability drops a little. The 2-out-of-5 curve is intermediate, while 1-out-of-5 is the highest of 

the three solid lines. 
Finally, the dashed curve represents the 1-out-of-l0 read and write availability (RG.4 ) offered 
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by Regeneration, assuming enough nodes allowed successful regeneration. The l-out-of-IO curve 
is clearly higher than all other curves, showing the availability increase due to regeneration. • 

So, system degradation decreases resource availability for all four methods, but Regeneration­
is the only one to repair the resources even before the nodes recover. In order to take advantage 
of this feature, if Regeneration is used in an application where the ratio of writes to reads is very 
low, one should force regeneration often enough to prevent loss of the last copy. There are two 
ways this can be implemen ted. First, the read algorithm in figure 4.1 may be modified to perform 
a regeneration whenever a copy (or a certain number of crashes) is found inaccessible. Second, a 
daemon can run in the background checking for inaccessible copies. The daemon could run from 
time to time, or after the detection of a node crash (or a certain number of them) in the network. 

Regeneration has two strong points: 

1. Increased availability allows fewer initial copies, reducing disk space requirements. 

2. The ability to adapt resources in a changing environment permits more flexibility in system 

configuration. 

However, regeneration may fail for insufficient disk space on spare nodes. In this case, we could 
regenerate up to the number of operable nodes, instead of aborting the update. This can be viewed 
either as the Available Copies method with regeneration added, or as the Regeneration method 
with a variable number of required copies. The optimal number of copies is a function of the 

storage cost, the execution overhead, the probability of crashes, and the frequency ofregeneration. 
One should regenerate up to a replication level that provides an acceptable availability of the 

resource, and not beyond. 
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Chapter 5 

Replicated Resource Distributed 
Database 

5.1 Design 

We have implemented the Replicated Resource Distributed Database (R2D2) to supply a repli­
cated directory to the nested transactions mechanism, described in chapter 6, which supports 
crash-resistant resources. R2D2 is a crash-resistant mapping of string names into sets of capabil­
ities. Using the Regeneration method for replication, R2D2 also demonstrates the practicality of: 
the Regeneration method. 

In section 5.1.1, we describe the client interface to R2D2. Since R2D2 is built with Eden 
objects, we introduce some internal structures of Eden objects in section 5.1.2. In section 5.1.3, 
we summarize the Core Structure in which the directory mapping of R2D2 is replicated. The 
one-copy syntax and semantics are assured by the Access Structure, summarized in section 5.1.4. 

5.1.1 R2D2 Client Interface 

R2D2 is an atomic data type [56,83], in the sense that each invocation to R2D2 is atomic de­
spite concurrent access and system crashes. The main R2D2 operations (invocations) access the 

mapping of resource names into sets of capabilities: 

• LookupSet(in: StringName; out: CapaSet, Status) 
- returns the set of capabilities named by string name. 

• AddSet(in: StringName, CapaSet; out: Status) 
- add the pair (resource name, capabili ty set) into the mapping. 

• DeleteSet(in: StringN arne; out: Stat us) 
- delete the entry named from the mapping. 

• ReplaceSet(in: StringName, CapaSet; out: Status) 
- replace the named mapping entry with a new capability set. 

These operations are part of the abstract type Rep Directory, defined in appendix table A.1. 
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R2D2 is also a crash-resistant resource. Components of R2D2 are replicated using Regenera­
tion. The degree of replication (the number of copies) varies from component to component, and 
can be changed any time. The replication in R2D2 is completely transparent to its clients. All 
requests are sent to R2D2Root, and the internal structures described in this chapter are hidden.~ 

5.1.2 Eden Objects 

In section 1.3 we have outlined the main concepts of the Eden system. Now we describe the 
current implementation of Eden, making these concepts more concrete. 

The most important characteristic of Eden objects is the distinction between an object's active 
form and passive representation (see figure 5.1). An object's active form is a Unix process running 
the object's Edentype code, on a node with an Eden host. Invocations delivered by the host to 
that object are serviced by its active form. The active form can decide to checkpoint, causing 
the object's entire state to be written into the passive representation, on stable storage. The 
checkpoint replaces an earlier version of the long-term state atomically; either the old version or 
the new version is accessible to the object at all times. 

If the active form crashes, the Unix process goes away, and only the passive representation 
remains. Eden kernel is capable of reactivating the object, given the passive representation. For 
example, invoking an inactive object causes it to be reactivated by the kernel. Since the checkpoint 
is an atomic operation, there is always a consistent version of the passive representation. 

We have mentioned that each object is an instance of an Edentype, a program written in Eden 

Programming Language (EPL) [16]. EPL is an extension of Concurrent Euclid, which is a Pascal 
derivative. The fundamental unit of program in Concurrent Euclid is a module. Modules may be 
put together to form larger programs, and there are well-defined rules for information sharing and 
hiding between modules. Basically, data structures are internal to a module and cannot be shared 
across modules, but operations can be invoked from another module. In this aspect, modules are 

similar to instances of abstract data types. 
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Each module may have several processes to express multiple threads of control. A process 
starts at the beginning of progr~m execution, and ends when executable commands run out. The 
program exits when all of its processes end. A process may stop in the middle of its execution, 
however. Processes may wait on condition variables for certain events to occur. These condition 
variables, protected by monitors, constitute the basis of synchronization between processes. 

The original Concurrent Euclid, as defined by Holt [43], provides only static declaration of pro­
cesses. The Concurrent Euclid compiler used in the Eden project, enhanced by Norm Hutchinson, 
supports dynamic creation of processes. At run time, a declared process may fork as many pro­
cesses as necessary. All processes are equal, since there is no child/parent relationships between 
forked and declared processes. 

Processes are used in two ways: First, active processes do real work. For example, Eden 
objects that interact with human users have a process that collects keyboard input. Second, 
passive processes service invocation procedures. They wait for invocation messages to arrive, and 
then execute the especially designated "invocation procedure" for that invocation. 

To illustrate the structure of an Eden object, a simple Edentype, the Edenlnteger has been 
written and its EPL program included in appendix section A.2.S. Although EdenInteger has 
only passive processes, the active ones are syntactically and semantically the same as the passive 
processes declared to service invocations. 

R2D2 is implemented with Eden objects more complex than EdenInteger, but the basic struc­
ture and language primitives are the same. In the rest of this chapter, we describe the R2D2~ 
components in terms of their function. More implementation details of the Edentypes involved­
can be found in appendix section A.2. 

5.1.3 Core Structure 

R2D2's core structure is a replicated tree (figure 5.2 shows the tree's top portion). Each box in the 
figure represents an object of Edentype RepDir, a mapping of strings into sets of capabilities, which 
point to replicas at the next level in the tree. The double arrows denote the sets of capabilities for 
the replicated resources in the mapping. For example, the root of the tree in figure 5.2 is called 
'/'. The mapping in the root has two entries, one with name 'users', and the other 'system'. Both 
'users' and 'system' have two copies, so each name maps into two capabilities. 

An instance of RepDir is unaware of its replicas (shadow boxes in the figure). For example, 

it does not contain any concurrency control. Therefore, RepDir is not an atomic data type. The 
atomicity of R2D2 operations are assured by the transaction managers in the Access Structure 
(section 5.1.4). RepDir's only salient feature is the idempotency of all write operations (Add, 
Delete, and Replace). Section 5.2.3 describes the implementation of RepDir, and more details are 

in appendix section A.2.4. 

5.1.4 Access Structure 

In order to keep the replicas in the core structure consistent, we have an access structure on top 
of the core (figure 5.3), composed of an R2D2 Root, and several identical instances of the R2D2 
Transaction Manager (R2D2TM). Each R2D2 request is received by the Root, and forwarded to 
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an idle R2D2TM. The main function of an R2D2TM is to keep replicas in the core structure 
consistent during an update, using the Regeneration method. 

The Root forwards the invocations to R2D2TM for two reasons: separation of functions, and 
load distribution. R2D2TMs can be seen as local or remote processes "forked" by the Root to 
take care of individual requests. At the time the decision was made, we felt that Eden should 
be used as a tool for distribution. From this point of view, the R2D2TMs take advantage of 
transparent distribution of Eden objects to offload work from the Root. However, the attempts 
to measure the load balancing effects of distributed R2D2TMs met practical difficulties. Since 
the objective of our study is replication for availability, not efficiency, those measurements have 
not been completed. 

Separating the Root and R2D2TMs into individual objects seemed natural at the time the 
decision was made, because of potential load balancing benefits. However, the immediate conse­
quence has been that each R2D2 request is handled by an intermediary object (R2D2TM), whose 
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only job is to maintain concurrency and reliability atomicity of R2D2 as a crash-resistant atomic 
data type. The introduction of an intermediary adds two Eden invocations in the processing of 
each R2D2 request. Since Eden invocations are expensive, the resulting impact on R2D2 per­
formance, as compared to the non-replicated case, became noticeable. In section 5.3.4, we will 
discuss this further. 

5.2 Implemenentation 

The implementation of R2D2 reflects our analysis of crash-resistant resources. The Root, de­
scribed in section 5.2.1, provides the one-copy resource access syntax. The R2D2TM, described 
in ,section 5.2.2, assures the integrity of one-copy resource access semantics. Finally, the RepDir, 
described in section 5.2.3, replicates the data. 

The design of R2D2 proceeded concurrently with the design of ERMS (chapter 6) and the 
development of the Regeneration method, taking about one man-year. Coding and debugging of 
R2D2 took slightly over three man-months. 

5.2.1 R2D2 Root 

The Root serves two functions: transparent access to the replicated core structure and lock 
management. Since the Root has a fixed capability, clients use one single capability to address 
R2D2. However, the fixed capability prevents the use of the Regeneration method to replicate~ 
Root data at the object level. Nevertheless, the Root's data must be replicated somehow, since 
it participates in every access to the replicated database. We solve this problem by making the 
Root a replect [65,72], a special kind of replicated object that we now describe briefly. 

A replect's passive representation is replicated on several disks, using a variant of Gifford's 
Voting scheme, and is implemented within the kernel, rather than at the object level. There is 
only one active form for each replect at any time. If the active form crashes, and should enough 
replicas of passive representation be accessible, the next invocation automatically reactivates the 
replect on another node. 

The main advantage of a replect is transparent access, since it is invoked with a single ca­
pability, in exactly the same way as non-replicated objects. However, to achieve a given level of 
availability, a replect needs more copies of its data than an object replicated by the Regeneration 
method (see analysis in section 4.4). The transparent access was instrumental in the decision to 
adopt the replect for R2D2Root. 

To implement the Root directory, there are inherent difficulties with the other alternatives 
discussed in section 3.4. Broadcast was used at the Eden kernel level, but it was not available to 
Eden object programmers as a primitive. In other words, Eden objects cannot send a message 
to a group, or all of the objects in the system. Full redundancy was also unavailable to object 
programmers, since each capability is mapped by the kernel into only one object. So there is 
no manner in which a specific capability can address several objects residing on different nodes. 
Finally, since we need only an updatable root, a fixed configuration could have worked, and would 
have been chosen by default. The implementation of replects by A. Proudfoot [72] provided a 
superior solution than fixed configuration for two reasons. First, only one capability is necessary 
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Figure 5.4: R2D2TM Actions in Add{'userslbob') 

to invoke the replect Root. Second, the replect provides some fault-tolerance for updating the 
Root. 

The Root's lock table is a mapping from string names to the unique identifiers of the trans­
actions holding the locks on the names. (More details of LockTable are in appendix section A.3.5).~ 
Currently, exclusive locks are used to serialize updates. Other concurrency control methods could­
have been used, but this simple approach was taken because the main focus of the work was 
replication rather than concurrency control. RepDirs have internal synchronization to ensure 
consistent read access, so no external read locks are necessary. In order to update an entry, the 
name corresponding to the parent mapping is locked. For example, Delete('userslbob'} requires 
a lock on 'users '. 

5.2.2 R2D2 Transaction Manager 

The R2D2TM receives a request from the Root, and keeps the core structure consistent. The way 
an R2D2TM works is best illustrated by the following example. Figure 5.4 shows the work done 
in R2D2 to service the invocation Root.Add('userslbob'}; the actions are numbered in the order 
in which they happen and their numbers either appear above an arrow (an invocation) or below 
(a reply to an invocation). 

Upon receipt of the client request (1), the Root finds an idle R2D2TM, and forwards the 
invocation (2). Since this is an update, the R2D2TM receives an implicit lock and proceeds to 
find the RepDirs containing the map entry (3). This search goes down the tree as many levels as 
necessary, and returns the capability set corresponding to the RepDir which is to be updated, in 
this case 'users' (4). The real update invocations are now sent to all the replicas of 'users' (5 and 
7). If these are successful (6 and 8), then the R2D2TM returns the success status to Root (9), 
unlocking implicitly. Finally, Root forwards the result to the client (10). This no-crash scenario 
is the normal case. Cases involving crashes or inaccessible copies are analyzed in section 5.2.4. 
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5.2.3 Replicated Directory 

The core structure objects (RepDirs) are essentially composed of two mappings. The first, Dir~fap 
(appendix section A.3.3) maps strings into sets of capabilities. The second, TIDMap (appendix 
section A.3.9), maps unique transaction identifiers (TIDs) associated with updates into their 
return status codes. Updates are made idempotent by searching the TIDMap first. If the update's 
TID is found, the corresponding status code is returned and no action taken. Otherwise the update 
is performed and the result status associated with the new TID. 

The RepDir objects themselves are unaware of the replication of their data. Rather, the 
replication information is stored in their parents in the directory hierarchy, in the mapping of 
each string into a set of copies. Consequently, RepDirs can be seen as simple abstract machines 
that implement a mapping. 

5.2.4 Regeneration in R2D2 

There are several places where R2D2 may have to replace an inaccessible object by a working 
alternative. In the above example, figure 5.4, the first time this can happen is between actions 
2 and 9. If the Root detects a crash of the R2D2TM servicing the request, the Root simply 
allocates another R2D2TM, sending it the same request with exactly the same TID. Since RepDir 
invocations are idempotent, the re-execution does no harm. This is a case where programs are 
replicated to increase fault-tolerance. 

The second time an inaccessible object may be encountered is between actions 3 and 4. If one­
replica of the RepDir named 'I' is not accessible, the R2D2TM will try the next replica. Since we 
are only reading, our "lazy" regeneration strategy bypasses regeneration. As long as one replica 
remains accessible in the chain, we continue going down the tree structure. 

The third time an object may be replaced is between actions 5 and 8. For example, suppose 

that action 8 resulted in failure instead of success. Figure 5.5 describes the additional R2D2T11 
actions required by the Regeneration method to recover and proceed. The R2D2TM asks an 

up-to-date replica to make a copy of itself (8.1), and the capability of a new replica is returned 
(8.2). The R2D2TM finds a suitable new node (which does not currently hold a copy, and contains 
enough spare disk space) for the new copy, and makes sure the new replica stores its state on 

disk in the new node (8.3). When the new replica is securely established (8.4), the R2D2TM 
sends a request to Root (8.5), changing the mapping to reflect the new configuration. Note that 
now the R2D2TM assumes the role of client in figure 5.4, and another R2D2TM will be allocated 

to service the Replace request. When the configuration change is completed (8.6), the R2D2TM 

proceeds in its original course (figure 5.4, action 9). 

The Root maps the distinguished resource name'/, into the top layer of the core structure. 

In the above example, the R2D2TM servicing Replace('users') may find a replica of 'I' inaccessi­
ble. In this case, the root intercepts the resulting regeneration request Replace('j'), changes its 

mapping, and checkpoints the new mapping. This ends the recursion. Thus, every recoverable 
crash within R2D2 is invisible to clients, and although a crash of the Root cannot be hidden, its 
recovery consists of simply re-invoking the Root with exactly the same parameters. If the Root 

reactivation succeeds, R2D2 will start up again. 

40 



r 

Root 

Replace (,users/bob ') 

8.5 ( ) 8.6 

CopySelJ I 
L _____ ..... ~8.1 RepDir 'users' #1 

8.2'( . 

CheckpointAt I 
1R2D2TM ( ) 8.3 

8.4 L..-_______ ----' 
new 'users' #2 

Figure 5.5: R2D2TM Replaces an Inaccessible RepDir 

The client re-invocation is important, because a catastrophe might have crashed the Root and 
all R2D2TMs in service, leaving some RepDirs temporarily inconsistent. We rely on the clients 
to recover the consistency in R2D2 for three reasons: 

1. In Eden, since a costly checkpoint is the only primitive to access stable storage (see figure 5.2 
for some numbers), maintaining consistent data on stable storage is very expensive. 

2. Client retry is easy (a simple loop) and in the normal case adds no extra cost. 

3. The multi-workstation catastrophic crash is rare; since the Root and R2D2TMs are dis­
tributed, single-node crashes mean the survival of either the Root or the R2D2TM, and~ 
R2D2 consistency is assured. 

Although R2D2 is replicated for availability, there are three cases in which R2D2 may be 
unable to service a request: 

1. Every object in a capability set may be inaccessible (insufficient replication). 

2. The Root activation may fail because of insufficient replect replication. 

3. Regeneration may fail because of insufficient spare nodes or disk space (insufficient re-

sources ). 

In the first case the resource will remain inaccessible until a node containing a replica recovers; 
in the second, the R2D2 will remain inaccessible until the Root replect recovers. In the third 
case, with insufficient resources, R2D2 may be unable to restore the full complement of copies, 
so regeneration cannot complete successfully. A modification of R2D2 to use variable number 
of copies may overcome this difficulty (section 4.4.5), although it remains to be implemented. 
Another approach is to use Regeneration in a system with enough resources so that this problem 

will not arise. 

5.3 Measurements and Evaluation 

5.3.1 Eden System 

Eden has been running on an Ethernet of SUN workstations since Spring of 1984. The current 
hardware configuration includes 12 diskless workstations and 4 disk servers (figure 5.6). There 
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Figure 5.6: Eden Hardware (circa Spring 1985) 

are two kinds of Eden kernels running as Un..ix processes on the SUNs, the host and the POD 
(Permanent Object Database). The host takes care of inter-object and inter-node communica­
tions, and the POD manages stable storage. An Eden object's active form runs also as a Unix 
process, and communicates with its Eden host through IPC calls. An object is always activated~ 
by "attaching" it to a host. All communications between the object and outside world (other­
objects and Eden kernel), is handled by the object's host. 

PODs function as virtual back-end processors and they only talk to other PODs and hosts. 
There is always a "responsible POD" for each object's passive representation. \Vhen an object 
asks the Eden kernel to checkpoint its passive representation, the host receives the message and 
forwards the data to the responsible POD for processing. An object's passive representation data 
are stored in a Unix file. If the responsible POD runs on the same machine as the object's host, the 
POD is given the file. Otherwise the Eden Message Module transfers the file through Ethernet to 
the POD (see figure 5.7). Once in possession of the new passive representation file, the POD uses 
the atomic Berkeley Unix 4.2 command "rename" to switch from the old passive representation 
to the new one. 

To an object programmer, the two most important Eden primitives are invocations and check­
points. Invocations are the only way to communicate with other objects, and checkpoints are the 
only way to write to stable storage. Since R2D2 contains many objects, we use invocations. Of 
these objects, RepDirs need to store their state on stable storage, so they use checkpoints. 

In the current prototype implementation of Eden, the costs of invocations and checkpoints 
are considerable. Eden timings indicate a local invocation between Eden objects on the same 
machine takes about 68 ms. Invoking an object on another machine (a remote invocation) takes 
about 103 ms. These numbers refer to an "empty" invocation, where there is no user processing. 
only the packing, unpacking, copying, sending and receiving of the messages. A checkpoint takes 
more than a second for a small amount of data (a few hundred bytes). Table 5.1 contains a 
compilation of available performance data on Eden primitives. We should note that the faster 
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Operation Local Remote 

Invocation 
ReceiveAny 0.056 0.084 

Invocation 
0.068 

Normal Case 
0.103 

Checkpoint 
0.9 -

File Server 

Checkpoint 
1.1 1.3 

lV orkstation 

Table 5.1: Informal Eden Timings (in seconds, SUN 4.2) 

timings, Invocation (ReceiveAny) and Checkpoint (file server), are restricted to specific cases. 
In R2D2, we needed and used Invocation (Normal Case) and Checkpoint (workstation). Since 
we only use these primitives, no further analysis of their cost will be given in this dissertation. 

Interested readers are referred to a Master's Thesis on invocation costs [44] and an internal study 

of checkpoints [57J. 

5.3.2 Experimental Set- Up 

For our measurements, we have put the hosts on diskless workstations and PODs on disk servers. 
In other words, each object is activated on a diskless workstation, but its passive representation 
resides on a disk server. The above configuration is a natural one. It does not use disk access 
from diskless workstations, and uses disk servers only for stable storage. Other configurations are 
possible, using Eden hosts and PODs as logical nodes running on top of Unix. However, our goal 
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is to observe the performance of R2D2 as a crash-resistant resource, so we have used the same 
configuration in all measurements. Additional experiments with different configurations may shed 
light on Eden kernel implementation, but not on replication techniques. 

In our measurements, R2D2Root is an ordinary Eden object, instead of a replect (described 
in section 5.2.1). There are several reasons for this simplification. First, the R2D2Root does 
not checkpoint during our measurements. Since the active form of a replect is indistinguishable­
from the active form of an object, the results must be the same. Second, the loss in availability­
does not affect these experiments, which measure only performance. Third, the implementation 
of replects required significant kernel changes, and the "replect kernel" did not have maintenance 

support after the graduation of its programmer, 1 following its completion. 
In our measurements, the core structure and the access structure of R2D2 are pre-activated to 

eliminate the variance introduced by object activation, which may take many seconds. All active 
forms of R2D2 objects are concentrated on one node to reduce the number of remote invocations, 
which take longer than local invocations. A driver object (EFSMenu) sends the appropriate 
invocations to R2D2Root and measures the time it takes for R2D2 to service the invocations. For 
historical reasons2 , EFSMenu runs on a separate machine. Therefore, for read requests such as 
LookupSet, the active form of objects are concentrated on one node, except for EFSMenu (see 

figure 5.8). 

The situation is more complicated for write requests such as ReplaceSet, AddSet, or DeleteSet, 
because the passive representations and PODs come into play. The passive representations reside 
on different file servers to increase availability, so checkpoint requests to different copies can 
proceed in parallel. Also for availability the active form of different copies of the same resource 
are activated on different nodes. Figure 5.9 shows the configuration of a write request to two 

copies. 

1 A. Proudfoot did hi8 M.Sc. thesi8 work on replects [72]. 
2 At the time of first measurement8 (early 1985). our SUNs had only 2 MegaBytes of m&in memory; EFSMenu 

caused paging and consequently timing variances if was run on the 8ame machine. 
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Figure 5.9: Writing Two Copies 

5.3.3 Measurements 

Using the set-up described above, we measure the elapsed time of requests by taking the times­

tamps before and after each invocation. For example, to measure the write request time, the code 
in EFSMenu looks like this: 

Kernel.TSCurrentCtictime) 
RepDir_AddSetCR2D2RootCapa. stringname •... ) 
Kernel.TSCurrentCtactime) 

Since the SUN internal timer advances in ticks of io second, the granularity of timestamps is a 
problem. For relatively short invocations, we need to make a bundle of them to decrease rounding 
errors introduced by the clock. For example, a LookupSet invocation takes only a fraction of a 
second, so usually we repeat it 100 times before we stop the clock. 

Typically, a measurement is repeated 10 times and the results averaged to obtain the confidence 

interval according to the formula derived from the Student t distribution: 

{ 
S· t /2} 

Prob Ix - III ~ ; = 1 - a 

where x = sample mean, 8 2 = sample variance, Il = population mean, and n = number of samples. 
(In case n = 10 we have to/2 ~ 2.8 for a = 0.02.) An example of actual numbers obtained in such 
a run appears in tables A.9, A.10, A.Il, and A.12. These runs are obtained late in the night 

with no other activity in the network or nodes. 
The performance of R2D2 is compared to the performance of a non-replicated directory 

in figure 5.2. In both cases, EFSMenu was used as the timing tool. The read operation was 
Lookup('users/bob/mailboz'} and the write operation was Replace(,users/bob/test'). The configu­
ration of the non-replicated directory is analogous to the R2D2 configuration as described above. 
All objects in the directory hierarchy run on the same node, while their passive representations 

reside on a disk server. 

45 



r 

Non-replicated R2D2 Comparison 

Read 
number of 1 remote + 1 remote + 

invocations 2 local 4 local 

Read time 0.23 ± 0.01 0.42 ± 0.01 1.8 times 

Write 
number of 1 remote + 1 remote + 

invocations 2 local 4 local 

'Write 
number of 

checkpoin ts 1 2 

Write time 1.43 ± 0.07 2.18 ± 0.08 1.5 times 

The measured times show the confidence range at a confidence level of 98%. 

Table 5.2: Measurement Summary (time in seconds) 

5.3.4 Evaluation 

For read invocations, the dominant cost factor is the invocation time. Examining tables 5.1 
and 5.2, we see that the time taken by the non-replicated directory to service a Directory.Lookup 
can be attributed entirely to the invocations. Since the Regeneration method reads only one 
replica, we had hoped that the read overhead would be less. In fact, R2D2 read is 80% more 
expensive than non-replicated directory. The additional cost is due primarily to two extra invoca­

tions, introduced by the access structure (Root and R2D2TM), which also added some software 
overhead (about 10% of total). 

The software overhead could be decreased by carefully recoding the R2D2TM. For example, 
the debugging and tracing code could be streamlined to save execution time. However, bypassing 
the extra invocations requires modification of R2D2's structure. As we have mentioned earlier 
in section 5.1.4, making the R2D2TM take care of concurrency and reliability atomicity intro­
duced the two extra invocations. We could eliminate the two extra invocations by collapsing 
the R2D2Root, the R2D2TMs, and the top-level RepDirs into one object (of the replect kind). 
Since the purpose of R2D2 is to demonstrate the practicality of the Regeneration method, no 
further attempts were made to optimize R2D2 to circumvent this performance problem particular 

to Eden. 
For updates, the most important cost factor is the checkpoint operation, which atomically 

transfers data to stable storage. Checkpoint operations take times at least an order of magnitude 
longer than those of invocations. Consequently, the time it takes to service any invocation which 
involves checkpoints is dominated by the number of checkpoints used. We speeded up R2D2 write 
operations considerably by making the R2D2TM send the RepDir update invocations (which cause 
checkpoints) in parallel. Compared to the non-replicated directory that checkpoints only once, 
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R2D2 takes only one and a half the time to checkpoint two copies. 
With the performance measurements we have completed the work on data availability through 

replication. We have separated the data restoration from hardware repair. \Vhen data restora­
tion can be done faster than hardware repair, Regeneration takes advantage of this separation 
to provide higher data availability than other replication methods. Given enough spare nodes 
and storage, a probabilistic analysis shows the advantage of Regeneration. The replicated direc­
tory system built with Regeneration, R2D2, will be used in the implementation of the nested 

transaction mechanism, described in chapter 6. 
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Chapter 6 

Eden Resource Management System 

6.1 Overview 

Our nested transaction system is called Eden Resource Management System (ERMS). The main 
goal ofER!\IS is to investigate the design and implementation of a powerful transaction mechanism 

using composition. We use composition in two ways: statically, we compose modules to form 
elaborate objects; dynamically, we compose objects to form large structures. Eden objects are 
ideally suited for this purpose; since EPL supports modules and invocations, both static and 
dynamic composition are easy. _ 

However, we must recognize the performance limitations of the Eden prototype (table 5.1). 
Since Eden object programmers must use a small set of expensive primitives, raw performance is 
not our primary goal. Rather, we favor clarity and generality in ERMS. Performance considera­
tions are taken into account at the level of checkpoin ts, whose cost is in the order of seconds. 

6.1.1 The Ideas 

The key technique used in ERMS is composition. By composition we mean the combination 
of objects (and modules) to perform tasks that individual objects (and modules) are unable to 
accomplish. In addition, the components used in the combination should be modules - preferably 
existing software - implementing well-known algorithms. 

The fundamental building block of ER!-.IS is the ERMS Transaction Manager (ETM). Each 
ETM handles concurrency control and crash recovery of one transaction.1 ERMS supports nested 
transactions in a tree hierarchy by organizing ETMs into trees that reflect the structure of nested 
transactions. 

The key idea of ERMS is to carefully compose concurrency control and crash recovery infor­
mation in a tree structure isomorphic to the hierarchy of nested transactions. One unique char­
acteristic of ERMS is its adoption of concurrency control and crash recovery methods which are 
exactly the same as those used in single-level transaction systems. Although the data structures 
and protocols used at each level are the same as the single-level transaction systems, composition 

provides nested concurrency atomicity and reliability atomicity. 

ITo the best of our knowledge, the idea. of one transaction manager per transaction 11'&11 first suggested by 
Jessop [46]. 
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give capability 

Figure 6.1: Client and ETM 

Although various concurrency control methods could be used, we have chosen two-phase lock­
ing and version-based recovery. At the top level, a system lock manager synchronizes resource 
access and a system directory handles recovery. For each transaction, the main data structures are 
a lock table to manage locks and a mapping to keep track of committed versions. We concentrate 
these data structures in the ETM, which in two aspects differs from the transaction managers in 
the TMjDM model introduced by Bernstein and Goodman [9]. First, their D~f maintains the 
data structures for concurrency control and crash recovery. The ETM contains both. Second; 
their transaction manager takes care of all transactions running on that node. In comparison, an 
ETM serves only one transaction. However, these differences are in implementation, and the ET11 
maintains Bernstein and Goodman's abstraction of transaction manager, relieving concurrency 
control and crash recovery from the clients. Using one ETM per transaction facilitates composi­
tion, so the design, implementation, and presentation of ERMS have been simplified considerably. 

6.1.2 Computation Model 

Figure 6.1 shows the high level model of resource access in ERMS. A client object invokes 
the ETM requesting access to resources (one resource is shown in the figure). After taking the 
necessary steps to assure concurrency atomicity and reliability atomicity, the ETM gives the 
client direct access to the resources, which are sets of Eden objects when replicated. Unlike the 
Argus user-defined atomic data types [83], our resource objects do not include any transaction 
concurrency control or crash recovery. The ETM is responsible for both concurrency atomicity 

and reliability atomicity of all resources in a transaction. 
Since ETM is separate from the client, multiple clients may participate in the same transaction. 

The client who started the transaction may pass the ETM's capability to other client objects, 
or to other processes within the same object. Figure 6.2 contains an example showing multiple 
threads of control in a hypothetical transaction example. 

In the distribution of client objects and inclusion of multiple processes within each object, 
ERMS differs from usual distributed transaction systems. In the Argus language [56] and R· [55] 
distributed database, a process corresponds to one transaction. In ERMS, many processes from 
many client objects may participate in one single transaction. Distributed client objects com-
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OpenResource(R3) 

1 
CloseResource(R2) 
CloseResource(R3) 

CommitTransaction 
~ 

I Client Object 2\ 

invocation 

openResorCe(R,) 

CloseResource(R1) 

invocation 
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Figure 6.2: Hypothetical Transaction Example 
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municate with each other through Eden's location-transparent invocations. Although resources 
internal to an Eden object (an .EPL program) may have their access synchronized by monitors, 
resources external to the object cannot. Since there are no inter-object synchronization mecha­
nisms, resource accesses from client objects are controlled by the one ETM for the transaction. 
Therefore, the ETM conveniently encapsulates concurrency control and crash recovery. 

6.1.3 Client Interface 

The interface between ERMS and clients is explicit. At the beginning of the transaction, the 
client obtains an ETM that becomes responsible for the transaction, and tells the ETM that the 
transaction has started. Simila.rly, at the end of transaction, the ETM must be told explicitly 
whether the transaction has committed or aborted. Three TransactionBracket operations 
inform the ETM of the beginning and end of the transaction. 

• BeginTransaction: beginning of transaction. 

• AbortTransaction: end of failed transaction. Rollback all updates performed since Begin­
Transaction. 

• CommitTransaction: end of successful transaction. Execute atomically all updates since 
BeginTransaction. 

At BeginTransaction, it is assumed that all resources are in a consistent state. The client proceedS­
to make temporary changes to resources. When changes are completed, CommitTransaction 
atomically makes them permanent. If for some reason the client is unable or unwilling to make 
the planned changes, AbortTransaction returns the resources touched by the transaction to their 

original state at BeginTransaction. 
Resource access during the transaction is also explicit. The client tells the ETM which. how. 

and when resources are being accessed. Two ResourceManagement operations inform the 
ETM about the beginning and the end of access to each resource. 

• Open Resource: request access to a resource. 

• Close Resource: return a resource after use. 

At OpenResource, the ETM uses a concurrency control method to serialize resource access. If 
there are no conflicts, the capability of the resource is returned. The client reads and writes the 
opened resource directly with the capability. After use, Close Resource returns the resource to the 
ETM so other processes or clients within the transaction may access it. If the transaction ends 
(either by commit or abort) before an opened resource is returned with CloseResource, all updates 

on that resource are lost; the resource remains in its original state before the OpenResource. 
This interface is uniform for top-level and subtransactions. The same syntax is used for both, 

and the client chooses which case applies at run-time. The main advantage of this uniformity is 
that it allows unrestricted composition of application transactions. 

From the client point of view, o pen Resource and CloseResource may seem redundant, since 
resource accesses invocations themselves mark the scope of access. The explicit interface has 
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been dictated by the lack of compiler support in ER~lS. Since the EPL compiler does not collect 
information on resource access invocations, ER~IS is unable to implicitly open and close a resource 
at its first and last invocation, respectively. An effort to partially integrate ERMS and EPL 
resulted in a plan, which remains to be executed, however. 

The same example in figure 6.2 (page 50) shows a possible execution sequence for a hypothetical 
transaction. Client object 1 starts the transaction, and forks two more concurrent processes. 
These processes permit the client to exploit the parallelism in a distributed system. For example, 
one of the processes invokes a second client object, bringing it into the transaction. The multiple 
accesses to resources R}, R2 , and R3 are all synchronized by ETM. All boldface operations shown 
in the figure are invocations to the transaction's ETM. 

The schematic structure of ERMS is shown in figure 6.3. We have already introduced our 
computation model and client interface in sections 6.1.2 and 6.1.3. The highest level of concurrency 
control and crash recovery is the system-level control, described in section 6.2. Section 6.3 explains 
the top-level transaction manager, and section 6.4 descri bes the nesting of transaction managers 
to provide nested concurrency control and crash recovery. \Ve summarize ERMS features in 
section 6.5 and give an example application in section 6.6. Finally, we compare ERMS with 
other systems in section 6.7. 

6.2 System Level Control 

Figure 6.4 shows the system level support for concurrency control and crash recovery of top­
level transactions. At top left, a system directory (R2D2) stores the public version of resources, 
which may be replicated. At top right, a System Lock Manager (SLM) serializes resource access 
of top-level transactions. The double arrow indicates concurrency control links, and the single 
inclined arrow between R2D2 and ETM shows communications related to reliability atomicity. 
A top-level ETM is shown in the picture; the horizontal arrow represents client requests to the 
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Top-level ETM client 
program 

Figure 6.4: Top-Level Structure 

ETM, such as BeginTransaction or OpenResource. 
The building blocks used to construct the top level transactions are well-known single-level 

transaction techniques. We have chosen strict two-phase locking [30] and version-based recovery. 
In section 6.2.1, we describe the System Lock Manager, which controls the resource access at the 
top level. In section 6.2.2, we summarize R2D2's contribution to version-based recovery at the 
top level. 

6.2.1 System Lock Manager 

One Eden object, the System Lock Manager, maintains the lock table for all resources controlled 
by ERMS. The System Lock Manager object implements the abstract type TwoPhaseLock:2 

• LockName(in: ResourceName. AccessMode, TID; out: Status) - If ResourceName is not 
locked, grant requested lock by inserting the triple (ResourceName, AccessMode, TID) into 
a lock table. Otherwise grant lock (if possible) according to lock compatibility table 2.1 

(shared read, exclusive wri te) . 

• UnlockNarne(in: ResourceNarne. TID; out: Status) - Remove the entry that matches (Re­

sourceN arne, TID) from the lock table. 

TwoPhaseLock is also implemented by R2D2Root in R2D2 (section 5.2.2), and ERMS Trans­
action Manager (section 6.3). The same software module, LockTable, implements the abstract 
data type for System Lock Manager, ET1I, and R2D2Root. LockTable is a mapping of resource 
names into the lock holders and their respective access modes (read or write).3 

To avoid deadlocks, the System Lock Manager does not block a LockN arne request in case 
of conflicts. The invocation returns with a status indicating the type of the conflict (whether it 

is read-write, or write-write), and the TID (a unique Transaction Identifier) of the lock holder. 
Based on this information, the ETM making the request follows the wait-die deadlock avoidance 
scheme of Rosenkrantz et aI. [75]. 

lTbe return sta.tus codes of TwoPba.seLock ca.n be found in ta.ble A.4. 
3More implementa.tion details of LockTa.ble's ma.in da.ta. structure, LockMa.p. C&J1 be found in a.ppendix sec­

tion A.3.S. 
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The current System Lock Manager does not implement any time-out mechanisms for ERMS 
resources. Consequently, recovery from crashes usually requires some manual lock releases. There 
are two reasons for this omission. First, locking concurrency control was chosen because the 
LockTable module had already been implemented. Investigations into problems specifically related 
to locking are not part of our research goals. Second, time constraints on the building of an 
experimental system like ERMS prevented the exploration of side issues. 

Following the strict two phase locking protocol, the ETM consults System Lock Manager 
the first time a resource is requested by an Open Resource. The ETM attempts to lock the 
resource name on behalf of the client. If there is a conflict, OpenResource fails and the resource 
remains inaccessible. If the lock is granted, System Lock Manager assures the serializability of 
resource access. Since we wish to enforce strict two phase locking, the lock is not released during 
CloseResource. Rather, the locks are released only when the transaction ends, either by commit 
or abort. 

After appropriate actions making all changes permanent (commit) or reversed (abort), the 
ETM invokes System Lock Manager to release all locks held by the transaction. Each ETM has 
an internal LockTable module, which remembers the locks being held by this transaction. The 
ETM simply goes through the resource names in its own LockTable and releases those locks from 

System Lock Manager. 
We should emphasize that all transactions in the above discussion refer to top-level trans­

actions_ The synchronization of subtransactions is controlled by parent ETM, to be explained in: 
section 6.4. Consequently, the only ETMs that invoke System Lock :Manager directly are those 

responsible for top-level transactions. 

6.2.2 Version-Based Crash Recovery 

The foundation of ER~IS version-based recovery is R2D2, which stores the most recent committed 
version of resources_ R2D2 is simply a directory, mapping resource names into sets of capabilities. 
The actual disk storage management is handled by Eden kernel (POD). The versions in R2D2 are 

"public", i.e., committed by top-level transactions. 
Since we have already described R2D2 in detail (chapter 5), here we omit the description of 

its implementation. The most important fact is that R2D2 is a mapping - supporting invocations 
such as lookup, add, delete, and replace entries in the mapping. These invocations are summarized 

in appendix table A.1. 
Version management in ERMS is similar to other version-based systems [48]. The first time 

a resource is opened, the ETM looks up the current version in R2D2. If the resource is opened 
for update, the ETM makes a copy of the resource, and passes the capability of the copy to the 

client. The client writes to the new version/copy directly. 
At the time of CloseResource, the ETM cannot replace the version in R2D2 by the new one, 

since the transaction has not yet committed. The ETM must therefore save the new, temporary 
versions of resources, which have been closed in the transaction. In addition, ETM also remembers 
the appropriate action to be taken at the commit time. For example, a newly created resource 
must be added to R2D2, while an updated resource should be replaced. In any case, R2D2 will 

be involved with an opened resource only when the transaction commits. 
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The version mapping in ETM implements the abstract type RepDirectory, also supported 
by R2D2. The same software module, RepDirTable, implements the abstract type for both 
ETM in ERMS and RepDir in R2D2. More implementation details may be found in appendix 
section A.3.3. 

If the transaction aborts, the responsible ETM simply discards the new versions created for 
that transaction. R2D2 remains untouched by the aborted transaction. 

If the transaction decides to commit instead of abort, the new versions must replace the old 
versions in R2D2. The ETM makes a ReplaceSet invocation to update each resource being written 
with the new versions. It is only after the new versions have been put in R2D2 that the ETM 
releases the locks it has on the resources. Since all resources remain locked during the updates, all 
the updates of a transaction appear atomic to other transactions. Should the ETM be interrupted 
during the commit protocol, R2D2 would contain some of the new versions, and some of the old 
versions. Since the resources remain locked, the inconsistency is invisible to other transactions. 
This situation is described in more detail in section 6.3. 

ERMS relies on the Eden garbage collector to delete the aborted new versions or replaced 
old versions. Had we been more interested in distributed garbage collection, we could have 
implemented some garbage collection scheme at the object level. In that case, R2D2 would have 
to contain a reference counter for each resource, and the ETMs would add and subtract from 
the counter as resources were opened and closed for access. \Vhen the counter reaches zero, 
ETM would invoke the object asking it to delete itself. With our concentration on the nesting ot 
transactions, we left the object level garbage collection problem to future research. 

6.2.3 Discussion 

We should emphasize that there are no special features in either System Lock Manager or R2D2 
that make them especially suitable for a nested transaction mechanism. Both System Lock Man­
ager and R2D2 are standard components which could have been used in a single-level transaction 
mechanism. For example, Paxton [70] proposed a client-based transaction system, in which the 
underlying server provides three kinds of primitives: random access to files, file locks, and lock 
time-outs. R2D2 and System Lock Manager correspond directly to his file access and file lock 
services. 

From the performance standpoint, we made a few necessary design choices which are subopti­
mal. First, the combination of locking concurrency control and version-based crash recovery does 
not take advantage of either. Locks permit write in-place, which usually is faster than creating 
a new version. However, write in-place requires a log-based recovery, which would either impose 
restrictions on the types of resources managed by ER~IS, or make programmers provide type­
specific recovery for each resource Edentype. In any case, the only Eden primitive to write to disk 
is checkpoint, which writes the object's entire state, so there is no kernel support for object-level 
logging. Not willing to expand Eden kernel capabilities, we chose version-based recovery instead 
of logging. 

Once we are resigned to the performance penalties of a version-based system, we could adopt 
some other concurrency control mechanism which provides more concurrency. For example, times­
tamp methods may allow more transactions to run in parallel, accessing different versions of a 
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resource. We have used locking simply because the module LockTable had already been imple­
mented, and it represented the shortest path to a working system. Other concurrency control 
methods based on timestamp i~tervals [6] have been implemented as part of another work [66], 
which rates experimentally effective concurrency allowed by different concurrency control meth­
ods. Another illustration that more concurrency can be obtained is the work by Bayer et al. [7] 
showing that two versions are sufficient for the support of multiple readers and an exclusive writer. 
With version-based recovery, there is no technical difficulty in introducing this level of concurrency 
in ERMS, but it was not essential for the main purposes of this study. 

A third performance problem may have been introduced by R2D2, which is a distributed 
directory. A centralized directory would provide the same functionality, and require fewer invo­
cations. This is of concern in Eden because invocations are relatively expensive. However, since 
EirMS supports replicated resources, the directory must be crash-resistant. We chose R2D2 since 
it is the only working crash-resistant directory system in Eden. The alternative, replects [72], is 
not in regular use. In the end, due to the number of checkpoints necessary to ensure transaction 
reliability atomicity, invocation costs in R2D2 were insignificant compared to total overhead. 

Finally, we made an effort to circumvent an obvious bottleneck. Conceptually, a new ETM is 
created at the beginning of each transaction and destroyed at the end. However, because Eden 

objects are implemented as Unix processes, their creation takes several seconds. For efficiency, we 
reuse the ETMs whose transactions have ended. Since the System Lock Manager is a convenient 
central resource, it also manages the creation and reuse of ETMs. In practice, ERMS clients ask. 
the System Lock Manager for an idle ETM, instead of creating a new one. If the allocated ETM is. 
already active from the last transaction, the recycling saves up to several seconds per transaction. 
This function of System Lock Manager is unrelated to its role in concurrency control or the nested 
transaction mechanism. Some practical difficulties are introduced by this economic measure and 

their solution will be described in section 6.3.4. 

6.3 Top-Level ETM 

The main building block in ER~IS is the ETM transaction manager. An ETM serves one trans­
action, which can be either a top-level transaction or a subtransaction. In this section, we describe 
the ETM serving a top-level transaction without subtransactions. ETM's control of a subtransac­
tion and the composition of ETMs to provide nested transactions will be discussed in section 6.4. 
For both top-level ETMs and sub transaction ET~Is, the data structures (in section 6.3.1) are the 
same. Moreover, the algorithms in sections 6.3.2 and 6.3.3 are independent of nesting aspects; 

therefore, they are also the same for both. 

6.3.1 ETM's Data Structures 

There are three main data structures in ETM: the LockMap, DirMap, and Child List. ChildList 
maintains the list of capabilities of the ET~Is serving the child transactions, and will be discussed 
in section 6.4. The LockMap and DirMap are used for concurrency control and crash recovery, 

respectively. 
LockMap is part of the software module LockTable, which has been described in section 6.2.1. 
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The LockTable module implements the abstract type TwoPhaseLock, with the LockName and 
UnlockName operations. Although both a top-level ETM and System Lock Manager employ a 
LockTable, the function of LockTable in each is different from the other. When a resource is being 
locked in the System Lock Manager, an entry is placed in LockTable to signal the placement of a 
lock on that resource. In ETM, the same entry is placed in LockTable to remind the ETM that 
it has the lock on the resource, so the lock will be released at transaction completion. 

As a simple reminder for the ETM, LockTable may appear an overkill. However, as we shall 
see in the next section, the top-level ETM also functions as the parent ETM of its subtransactions. 
Moreover, even at the top-level, several client processes may try to open the same resource at 
the same time. So we need the full power of LockTable to synchronize the resource access from 
concurrent processes and subtransactions. 

DirMap is a mapping of resource names into sets of capabilities. (If this sounds familiar, it 
is because DirMap is also used in the Core Structure of R2D2.) The main function of DirMap 
is to remember the most recently closed version of a resource being updated. Since R2D2 stores 
only the committed versions, all intermediate versions produced in the transaction must be saved 
in DirMap before the transaction commits. In addition to the capability of the most recently 
closed version, DirMap also remembers the appropriate action to be taken at commit time. For 
example, a newly created resource must be added to R2D2, while an updated resource should 
be replaced. In section 6.3.3, we will see how atomic commit is accomplished in ERMS using 
DirMap. Appendix section A.3.3 contains more implementation details of DirMap. 

6.3.2 Resource Management 

In section 6.2.1, we have explained how the System Lock Manager supports TwoPhaseLock. and 
how the R2D2 provides a mapping in section 6.2.2. ETM's internal data structures have been 
described in section 6.3.1. Now we can put everything together, and using these components, 

show how client requests for resource access are made atomic 
Resource access is bounded by the operations OpenResource and CloseResource, both spec­

ified in appendix section A.1.6. We describe the algorithms informally here; the operations are 

explained more concretely by the example in section 6.6. 
OpenResource takes as in parameters the resource name and access mode (either read or 

write); it returns the capability of the appropriate version for client access. The most important 
part of OpenResource is the careful checking of resource access according to the lock compatibility 
(table 2.1) to assure serializable access. The algorithm for Open Resource is: 

1. Check LockTable for resource name. There are three cases: 

(a) First Time: Resource name is not in LockTable. 

(b) Already Open: Resource name is in LockTable, but somebody (another process) has 
already opened the resource. In this case, the access is decided by lock compatibility 

table 2.1. 

(c) Second Time: Resource name is in LockTable, and nobody holds a lock on it, then 

the resource has been opened and closed. 
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2. If case la, the First Time, we need to request the appropriate lock from System Lock 
Manager. If successful, then insert the resource into LockTable and proceed to step 4. 
Otherwise, Open Resource fails (exit). 

3. In case lb, the resource is Already Open. If lock request is compatible with the current 
access mode - for example, read and read - proceed to step 5. Otherwise, OpenResource 
conflicts and fails (exit). 

4. In case lc, the Second Time, the ETM already holds a lock from System Lock Manager. 
If the LockTable indicates a read lock, and the Open request requires a write lock, then go 
back to step 2 to get the right lock. Otherwise, insert the lock holder into LockTable. 

5. Check DirMap for resource name. If the resource name is not in DirMap, lookup the name 
from R2D2, insert the name and the most recently committed version into DirMap. 

6. If resource is being opened for read, choose one capability from the set and returns it; 
increment reader count by one. Otherwise, make a copy and return the capability of the 
copy (exit). 

CloseResource takes as in parameters the resource name and the new version's capability; it 
returns a status code. The algorithm for Close Resource is as follows: 

1. If the resource has been opened for read, decrement reader count by one. 

2. If the resource has been opened for write, from the new version, generate the right number 
of replicas at the right nodes. and insert the new version into DirMap. Remember resource 
status (new or replacement). 

3. If reader count = 0, mark the resource as unlocked in LockTable. 

\Ve should observe that CloseResource does not touch R2D2 or System Lock Manager. It does 
not move the new version into R2D2 because the transaction has not committed. The lock is not 
released in System Lock Manager because of the strict two phase locking protocol, which releases 

all locks after the commit. 

6.3.3 TransactionBracket 

There are three operations in the abstract type TransactionBracket: BeginTransaction, Abort­
Transaction, and CommitTransaction. \Ve now describe the actions taken by the ETM at each 
of the three. 

First, BeginTransaction tells the ETM whether it is managing a top-level transaction or a 
subtransaction. The parameter that points to the parent capability is null in case of a top-level 
transaction. If the ETM is managing a top-level transaction, it initializes some variables, and 
returns control to the client. 

Second, AbortTransaction ends the transaction, requesting the ETM to revert all resource 
changes, bringing them back to their original state. Since we have a version-based recovery, 
which makes the clients write on new copies, the committed versions always remain undisturbed. 
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Consequently, there is very little work to be done at abort. First, the ETM checkpoints the 
decision to abort. (Otherwise, it may crash and "forget" the abort at reactivation.) Then, it 
goes through the list of locked resources in LockMap and releases the locks from System Lock 
Manager. All temporary versions in DirMap are simply dropped and will be garbage collected by 
the Eden garbage collector. 

Third, CommitTransaction is more delicate than abort for one reason: all the changes must 
appear atomic to the outside world. Our algorithm is very similar to the one described by Lampson 
and Sturgis (51J. The main idea is to re-execute the idempotent switching operations as many 
times as necessary until all new versions ha"'e replaced the old ones. Since this is the top-level 
ETM, the committed versions are installed in R2D2. The algorithm for CommitTransaction is: 

1. Checkpoint the ETM: write the commit record, and DirMap writes all new versions to be 
committed to disk. 

2. For each updated resource in DirMap, invoke R2D2 to replace the old version by the new 
version. 

3. Once all new versions have been installed in R2D2, release all lock held in LockMap. 

4. Checkpoint the successful end of commit. 

Since we do not release the locks before all new versions have been installed, the updates in~ 
the transactions appear atomic to the outside world. The only remaining problem is to make 
sure a crash in the middle of the commit protocol will not make R2D2 inconsistent. Because 
the ETM checkpoints at the beginning of commit, its passive representation contains the state 
at step 1. The next time ETM is invoked, (for example, by the client that inquired about the 
outcome of commit) the Eden automatic reactivation will restart the protocol at step 2. Since 
R2D2 operations are idempotent, there is no harm in re-executing the initial replace operations 
again. Once step 3 has been reached. all versions have been installed and R2D2 has become 
consis ten t. 

6.3.4 Discussion 

The design choice of one ETM per transaction may have introduced a performance problem in 
ERMS. The current implementation uses an Eden object for an ETM, and since Eden objects 
are Unix processes, we pay a high performance penalty. In section 7.3, we shall see that this 
problem is not inherent to the design, and could be removed. The current situation is somewhat 
alleviated by the reuse of ETMs, which we mentioned in section 6.2.3. However, since an ETM is 
conceptually unique for its transaction, we have to protect this property of ETM carefully. 

First, we have to make sure that the ETM does not confuse the clients of a previous transaction 
with the clients from the next transaction. Currently, each BeginTransaction returns a unique 
TID for the transaction, and clients of that transaction must provide the TID in every request to 
ETM (e.g. OpenResource). The ETM simply returns an error if the client's TID does not match 

the executing transaction. 
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Second, it may be useful for an ET~1 to remember the outcome of past transactions. For 
example, an orphan transaction may inquire about its parent's status. The current implementa­
tion simply returns an error, since the transaction outcome is always stored in the parent ET~I, 
and committed transactions have obtained all "interesting" results. If an ETM ever receives the 
reply "I am not transaction TID" from its parent, then the child assumes that its own outcome is 
immaterial, and the ETM aborts immediately. If the parent receives this reply from a child, the 
parent concludes that the child has aborted and proceeds accordingly. 

6.4 Nesting ETMs 

In the previous sections, we have described the components of ERMS, and how they support 
the top-level transactions. Now we are ready to compose ETMs into a tree to provide nested 
concurrency and reliability atomicity. In section 6.4.1, we describe the maintenance of the ETM 
tree. In section 6.4.2, the nested concurrency atomicity is explained. In section 6.4.3, the nested 
rel~ability atomicity is described. Finally, in section 6.4.4, we summarize the structure of ETM. 

6.4.1 ETM Tree 

As we have suggested in figure 6.3, ETMs form a tree to provide nested transactions. The ETM 
tree is isomorphic to the tree-structure of nested transactions which the ETMs control. From the 
entire system point of view, all ETMs form a forest, where each top-level ET~1 is the root of i 
tree. The ETMs at the lower levels manage subtransactions. 

The maintenance of the ETM tree is done by the participant ETMs. Each ETM keeps a 
list of capabilities, called ChildList, which contains the capabilities of the ETMs managing the 
subtransactions. For example, in figure 6.5, the capabilities of sub-TMI and sub-TM2 will be in 
Top-level-TM's ChildList. 

Each ETM's Child List is filled by its child transactions. At BeginTransaction, the child ETM 

receives the capability of its parent. Immediately, the child ETM invokes its parent ETM, inserting 
its own capability into the parent's ChildList. Once on the ChildList, a capability remains there 
until the end of transaction. Therefore, the ETM Tree is dynamically constructed to reflect the 
current history of the top-level transaction and all subtransactions that ever started. 

Each ET~1 in the tree has the capability of its parent ETM, and the capabilities of its child 
ETMs. For transactions with nesting level deeper than two, the ETM tree is distributed. In the 
following sections, we shall see that the ETM communicates only with its parent and children. so 
the distribution of ETM tree information eliminates unnecessary redundancy. 

6.4.2 Nested Concurrency Control 

In section 6.3.1, we have described the LockMap and summarized the LockTable module imple­
menting the abstract type TwoPhaseLock. Now we proceed to explain the nested concurrency 

control by composing LockTables in the ETt-.l tree. 
First we state explicitly what we mean by nested concurrency control. By the definition of 

nested transactions, all subtransactions at the same level appear atomic to each other, and to 
their parent. We interpret this rule the following way. At the same level or above, invocations 
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sub-TM2 sub-TMt 

Figure 6.5: ET11 Tree Example 

enclosed in a transaction must happen atomically, as one operation. In other words, all partial 
results in the subtransactions must be hidden. In contrast, from below (a subtransaction poin( 
of view), all partial results produced by the hlgher level transactions must be visible. 

The main purpose of this section is to demonstrate that we do not need special locking rules 
to implement these nested visibility scopes. We show that the composition of ETMs (and their 
LockTables) in a tree isomorphic to the tree structure of nested transactions is sufficient to hide 
partial results from subtransactions, and make visible partial results from higher transactions. 

To facilitate the explanation, we introduce the analogy of "rent". 'When a resource is locked, 
we consider the resource to be "rented" to the lock holder. Therefore, at the top level, an ET~I 
rents a resource from System Lock Manager the first time the resource is opened. Objects outside 
the transaction are locked out by the System Lock Manager, which has already rented the resource 
to the ETM. The ETM only sublets its resources to clients holding its capability, synchronizing 

their access through its own lock table. Consequently, as long as the resource has been closed, 
the ETM sublets the resource to another client process each time the resource is opened. 

The key observation is that a child ETM may also open a resource and rent it from its parent, 
as ifthe child ETM were a client. There is no difference from the parent ETM point of view, since 
it simply sublets the resource according to the lock compatibility table. However, the child ETM 
now may sublet the resource to its own clients, and retains the resource when its own client closes 
it. The subtransaction's ETM will release the resource in the parent only when it ends, either 
by committing or aborting. Consequently, the clients of the parent transaction will be unable to 
rent the resource while the child ETM is running. Therefore, the intermediate results produced 
by the child transaction are hidden from the parent and sibling transactions. 

The algorithms for OpenResource and CloseResource in a subtransaction ETM are exactly 
the same as the ones for a top-level ETM, described in section 6.3.2. The only change is that 
now the ETM invokes its parent ETM -instead of the System Lock Manager- to obtain the lock. 
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Figure 6.6: OpenResource: Nested Locking 

Since the parent cannot sublet a resource without renting it from the grandparent, the chaining 
assures serializable resource access at each level. Figure 6.6 shows the lock requests caused by a~ 
OpenResource in a subtransaction when the resource is being opened for the first time. 

In the general case, the cascading of lock requests stops at the lowest ancestor ETM that has 
opened the resource once. This ETM has rented the resource from its parent during the open, 
so it makes the decision on whether to sublet the resource. In case the resource is opened for 
the first time (figure 6.6), the System Lock 11anager makes the decision. The rules for conflict 
resolution can be summarized as follows: 

1. The parent resolves the conflicts between its children. 

2. The lowest common ancestor resolves conflicts between branches in the ETM tree. 

3. The System Lock Manager resolves the conflicts between top-level transactions. 

The lowest common ancestor is the arbiter because of the cascading of lock requests: the two 
different branches are represented by two children of the lowest common ancestor, roots of the 
branches, and case two reduces to case one. 

The LockMap has some static properties. The first is that each LockMap is a subset of the 
parent ETM's LockMap. This happens because every lock granted by the LocU,lap has to be 
obtained beforehand from the parent. Second, because we have adopted strict two-phase locking, 
the LockMap grows monotonically during the transaction until the commit point. At the end of 
a subtransaction, either commit or abort, all locks are released only in the parent's Lock!>.1ap, not 
higher in the hierarchy. Third, since we use the wound-wait deadlock avoidance scheme, there is 

no need for deadlock detection or resolution. 
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6.4.3 Nested Crash Recovery 

Nested crash recovery is analogous to nested concurrency control. By definition, subtransactions 
must appear atomic to their siblings and parent. In case a subtransaction aborts, we have to 
undo its effects. If a subtransaction commits, we have to make the commit appear atomic to its 
siblings and parent. 

The main purpose of this section is to show that we do not need special mechanisms to 
implement the nested commit and abort. We show that the composition of ETMs (and their 
RepDirTables) in a tree isomorphic to the tree structure of nested transactions is sufficient to 
commit results atomically, and to undo all effects from aborted transactions. 

. To facilitate explanation, we introduce the analogy of caching. The top-level RepDirTable 
can be seen as a cache for R2D2; a child ETM's RepDirTable is a cache for the parent's RepDir­
Table. There are two techniques to handle updates in a cache: write-through (or store-through) 
propagates the changes immediately, while write-back (or copy-back) makes all the changes at a 
later time. The updates in RepDirTable do not write-through to the parent or to R2D2 because 
the transaction may abort, but are retained for possible commitment. If the transaction aborts, 
its ETM including RepDirTable is simply discarded. If the transaction commits, its RepDirTable 
executes write-back to its parent's RepDirTable (or at top-level, R2D2), which retains the changes 
until its own commit. 

The operations on RepDirTable are thus operations on a cache. If the resource name is no( 
found in RepDirTable, it asks the parent for the pair (resource name, set of capabilities). Then 
the operation is performed. For a cache with only one update operation -write- one "dirty bit" 
is sufficient to signal the need for write-back. However, we have three update operations -add, 
replace, delete- so each resource has a small finite automaton ("dirty state") to remember the 
appropriate update action to be carried out at transaction commit. 

OpenResource is exactly the same as the algorithms described in section 6.3.2. The only 
difference is that the subtransaction ETM consults its parent ETM instead of R2D2. The parent's 
RepDirTable contains the most recent version for the subtransaction, since the operations on 
resources within the higher level transactions are visible to the subtransaction. For example, the 
results of an earlier committed sub transaction appear in the parent's RepDirTable, but nowhere 

else. If the parent ETM does not have the resource in its RepDirTable, then the resource is being 
opened for the first time in the parent transaction. In this case, the parent ETM consults the 
grandparent, and so on. Figure 6.7 shows the first time in the entire top-level transaction, when 
the cascading lookup requests end at R2D2. In general, the chain of lookup requests stops at the 
first ETM that has opened that resource once. 

CloseResource does not involve communications with the parent, so the algorithm described 

in section 6.3.2 applies directly. 
The protocol for a subtransaction commit is exactly the same as the one for a top-level 

transaction commit, described in section 6.3.3. The only difference is that the subtransaction ET~1 
replaces the committed versions in its parent ETM, instead of R2D2. Putting the new versions in 
the parent ETM makes them visible to other sibling subtransactions and client processes in the 
parent transaction. At the same time, the parent retains control over the new versions, and so, 
should the parent transaction decide to abort, these versions will not be seen outside. Figure 6.8 
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Figure 6.7: OpenResource: Nested Lookup 

shows the commit actions limited to the parent ETM. 

The protocol for aborting a subtransaction is more elaborate. A subtransaction ET1f doe~ 
four things when it is told by its client to AbortTransaction. First, it checkpoints the decision 
to abort the transaction. Second, the ETM informs its parent ETM of the abort. This is not 
strictly necessary, since the parent would inquire the status of all children at its own commit 
time. However, requiring the parent to ask for the children's statuses may be time consuming, 
especially when some children may have to ask their descendants. Thus, we choose to inform the 
parent immediately on the subtransaction outcome. 

The third thing is to go through the ET~I's own ChiidList, telling each child ETM to abort. If 
a child transaction has already committed, it remains committed, but as we have seen, its results 
will be discarded anyway. A transaction may abort because of crashes, either of its clients or of 
its ETM. If an ETM crashes before it can tell its child ETMs to abort, the subtransactions will 
continue to run. These run-away subtransactions are called orphans. As soon as the parent ET11 
is reactivated, for example, by the completion of an orphan, all orphans are terminated by the 
parent. 

Having checkpointed the decision to abort, informed its parent of that decision, and aborted 
all its children, the ETM proceeds to unlock the resources being locked by the transaction. At 
the top level, the ETM unlocks the resources in System Lock Manager. As a subtransaction, the 
ETM releases the locks it is holding from the parent ETM, which has 'sublet' the resource to the 
child ETM. 

The DirMap in RepDirTable has some static properties similar to the LockMap. The first is 
that the resource names in the DirMap are a subset of names in the parent ETM's DirMap, since 
all resources are "rented" from the parent. However, the sets of capabilities, representing versions, 
may differ from ETM to ETM, since each transaction may write to resources independentlY, The 
second property is that DirMap grows monotonically through a transaction. The reason is that 
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Figure 6.8: Sub transaction Commit 

DirMap contains the history of updates to the resources, so each entry is used at the transaction:' 
commit to decide what action should be taken with respect to the parent's DirMap (add, replace, 
or delete). 

6.4.4 Summary: Structure and Interactions 

Summarizing the discussion of previous sections, the ETM is composed of four modules: Rep­
DirTable, LockTable, TreeManager, and ResourceManager. RepDirTable maintains the 
most recent version of the resources being accessed. LockTable keeps track of locks on these 
resources. TreeManager takes the appropriate actions at the beginning and end of the trans­
action. ResourceManager implements the Open Resource and CloseResource protocols, hiding 
crash recovery (RepDirTable) and concurrency control (LockTable) from clients. 

There are some static properties linking a parent ET~rs modules and its children's (see 
figure 6.9). First, an ETM's DirMap is a subset of its parent ETM's DirMap. Every resource that 
a child controls has its previous version in the parent's DirMap. Similarly, an ETM's LocH,lap is 
a subset of its parent ETM's LockMap. Moreover, the locks held by the parent must be equal to 
or stronger than those of its children. For example, if a child obtains a write lock on a resource, its 
parent must hold a write lock on that resource given by the grandparent. Finally, each parent's 
TreeManager keeps a list of its children's capabilities. These lists form the transaction tree. 

There are also rules governing the dynamic interactions between a child ETM and its parent. 
First, a child knows only its immediate parent, there being no direct communication between 
a child ETM and its grandparent; this rule applies to all four modules. Second, if the Rep­
DirTable and LockTable need information from the parent to service some requests, they make 
invocations that are serviced by their parent's RepDirTable and LockTable. Consequently. a 
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Figure 6.9: Relationships between the Parent and Child ETMs 
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Figure 6.10: Communications between Parent and Child ETMs 

ResourceManager needs only call the local RepDirTable and LockTable to synchronize resource 
access. Similarly, a TreeManager communicates with the local RepDirTable and LockTable, plus 
its parent's TreeManager. The communication paths are shown in figure 6.10. 

6.5 Summary of ERMS Features 

The strength of ERMS is in the economy of design concepts and the generality of implemented 
features. All ERMS components described in the previous sections use well-known techniques 
for single-level transactions. Careful composition of these techniques in the ETM tree provides 
the key for nesting in ERMS. Not only does the composition facilitate the concrete design and 
implementation of ERMS, but also the composition allows other combinations to form new designs 
of nested transactions, discussed in chapter 7. 

ERMS features may be divided into two groups: resource support and transaction support. 

We summarize resource support in section 6.5.1, and transaction support in section 6.5.2. 
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6.5.1 ERMS Resource Support 

Resources controlled by ERMS have three characteristics: 

1. Type generality. 

2. Location transparency. 

3. Replica transparency. 

First, ERMS resources may be objects of any type. In Eden, this is a necessity rather than 
option. As we have mentioned in section 5.1.2, Eden objects can service any invocations that the 
Edentype programmer has programmed in. Even if we take into account all current invocations. 
new ones may be invented any time. Consequently, ERMS cannot restrict operations supported 
by its resources. 

Although ERMS controls resource access for any Edentype, it does distinguish 'read' oper­
ations from 'write' operations. Invocations that do not alter resource state are 'read', while 
invocations that do, are 'write'. At Open Resource clients must tell ERMS how they want to 
access the resource, so appropriate recovery a{:tions may be taken. 

In a way similar to Argus user-defined atomic data types [83), some resources may have their 
own concurrency control and recovery mechanisms. These resources may be accessed outside o~ 
ERMS control (bypassing OpenResource and CloseResource), since the use of ERMS is explici~ 
and voluntary. Currently, there are no such resource types in Eden. 

Second, all ERMS resources are Eden objects. Since Eden objects are location-independent, 
once in possession of their capabilities a client can access them regardless of their location in the 
network. Consequently, ERMS maintains resource location independence in Eden. 

Third, ERMS resources are known by a string name, which is mapped into a set of capabilities. 
The resource access interface is the same regardless of the number of copies. During CloseResource 
of an update, the ETM generates the right number of copies, co-located with the original copies. 
The number of copies of a resource is stored in R2D2, and it may be changed at any time. 

6.5.2 ERMS Transaction Support 

ER~IS transaction support has four components: 

1. nested concurrency atomicity, 

2. nested reliability atomicity, 

3. top/sub syntax transparency, 

4. long-term transactions. 

First, in regard to its siblings and parent, each su btransaction is atomic. Nest concurrency 
atomicity means that intermediate results of a transaction T are invisible to its siblings and 
parent. However, T's subtransactions are parts of client processes, and they may read and use 

T's intermediate results. 
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Figure 6.11: Nested Concurrency Control Example 

68 



,.. 
I 

I Transaction 11 

1 
BeginTransaction( 1) 

BeginTransaction(1.1 ) 
. ~ BeginTransaction(1.2) 

OpenResource(in: VI) ~ 

1 
OpenReso~rce 

-Walt­

CloseResource(out: V 2 ) 

CommitTransaction(1.1 ) 

(in: V 2 ) 

l 
CloseResource(out: V 3 ) 

r -A b~rl-Tr~~~~~tf~';(i :2-f -: 

CommitTransaction( 1) 

I Transaction 21 

1 
BeginTransaction(2) 

OpenResource 
-wait-

CloseResource(V 3) 

l 
CommitTransaction(2) 

Figure 6.12: Nested Reliability Atomicity Example 

In figure 6.11, a hypothetical example illustrates the conflict resolution at different levels. In 

the example, both Transaction 1 (Ttl and Transaction 2 (T2 ) open the same resource (name 

omitted) for update. TI runs two subtransactions, T1.l and T1.2, and both update the same 

resource. In figure 6.11, T 1.1 opens the resource first, and proceeds to generate a new version 

(V2). Now both T1.2 and T2 open the resource, and they have to wait for the exclusive lock to 

be released. As soon as T1.1 commits, its result (V2) becomes available to T1.2; a horizontal line 

shows T1.2 receiving V2 and generating V3 as output. However, T2 has to wait until the end of 

T 1 to proceed. In this case it receives V 3 and produces V 4. 

The second component is nested reliability atomicity: 

• Each subtransaction may abort independently of each other and the parent . 

• Each aborted transaction has all the updates within it undone, including the results from 

some committed subtransactions. 

In the following figure 6.12, we have the same example as figure 6.11, but with subtransaction 

T 1.2 aborted instead of committed. As shown in the same figu re, the enclosing transaction T 1 
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can still commit. Since the subtransaction has aborted, the version it produced is dropped, and 
the result from T 1.1 prevails. To emphasize the differences from figure 6.11 to 6.12, the new parts 
are enclosed in dashed boxes. However, if Tl aborts, the results from the subtransactions do not 
matter, and T 2 receives the original version V 1 of the resource. 

Thlrd, the syntax for top-level transactions and subtransactions is the same. Since the ETM 
is initialized at run-time, the same client program can choose to run as a top-level transaction or 
subtransaction, simply by sending the appropriate parameter at BeginTransaction. As we shall 
see in chapter 7, this dynamic selection brings new possibilities. 

Fourth, long-term transactions were easily added to ERMS. During the first implementation 
of ET;\f, we realized that making the ETM "crash-proof" is sufficient for the restart of long­
term transactions after a crash or planned deactivation. Since Eden checkpoint does the job, 
we simply introduced optional checkpoints at critical state transitions in ETM (mainly during 
OpenResource and CloseResource). The ERMS solution for long-term transactions is extremely 
simple. However, long-term transactions are more expensive than normal transactions since both 
the client and the ETM will have to checkpoint more often. 

With the current strict two-phase locking policy, allowing multiple readers or an exclusive 
writer, ERMS long-term transactions may restrict resource access. Resources being updated in 
a long-term transaction remain locked for the duration of the transaction, decreasing potential 
concurrency in the system. The usef of timestamps, mentioned in section 6.2, would allow more" 
transactions to execute in parallel. Some works [5] related to long-term transactions indicate­
the need for non-serializable operations. More research remains to be done on the application of 
long-term transactions to determine the necessary ingredients to make them more useful. 

6.6 Application Example: Smart Bank Machine 

To demonstrate the use of ERMS, we have written a program whlch mimics a bank machine. The 
demonstration system consists of two Edentypes: Bankomat and BankAccount . Bankomat is the 
client that uses ERMS to access BankAccount resources. A BankAccount object is basically an 
integer representing a certain amount of money, and the procedures to operate on the integer. 

Each customer of the fictitious "EdenBank" has three accounts, checking, savings, and Visa, 
which are all instances of the Edentype BankAccount, but are distinguished by their resource 
name (for example, "customer/checking"). The operations a customer can do are: 

• \Vithdra.w "money" from any account. 

• Deposite "money" to any account. 

• Transfer "money" between any accounts. 

• Print the balance of any account. 

6.6.1 Sample Session 

In figure 6.13, we show a sample session with the Bankomat, transcribed from the terminal. The 
sequence of activities genera.ted by the conversation is illustrated in the schematic figure 6.14. The 
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(1) 

(2) 

Please enter your account name> calton 
w:withdraw, d:deposit, t:transfer, 
p:print, h:help, c:comntit, a:abort 
EdenBank> t 

Transfer from: c=checking, s=savings, v= Visa 
EdenBank> > c 
Transfer to: c=checking, s=savings, v= Visa 
EdenBank> > v 

Transfer amount = >$ 100 
w:withdraw, d:deposit, t:transfer, 
p:print, h:help, c:commit, a:abort 

(3) EdenBank> p 

{ begin top-level} 

Print balance of: c=checking, s=savings, v= Visa, a=all 
EdenBank> > a 

Balance for account EdenBank/calton 
checking savings Visa 
$ 40 $ 500 $ 100 

w:withdraw, d:deposit, t:transfer, 
p:print, h:help, c:comntit, a:abort 

(4) EdenBank> 11 

(5) 

From: c=checking, s=savings, v= Visa 
EdenBank> > c 

Withdraw amount (integer) = >$ 100 
w:withdraw, d:deposit, t:transfer, 
p:print, h:help, c:commit, a:abort 
EdenBank> c { end top-level} 

Figure 6.13: Sample Bankomat Session 

whole session is a top-level transaction, composed by operations enclosed in subtransactions. At 
the first glance, there is no need for subtransactions, since the operations are sequential. However, 
EdenBank allows simultaneous sessions on the same account by different clients (Bankomats). 
which become parts of the same top-level transaction. In such cases, sub transactions are necessary 
for synchronization. 

6.6.2 A Nested Transaction Example 

Having explained the outer structure of a session with Bankomat, we now look into nested trans­
actions. We emphasize that in this example, the terms "transaction" and "sub transaction" are 
relative. "Transaction" does not imply top-level transaction. Rather, it refers to the transaction 
under consideration. In general, we use "transaction" to refer to a transaction in its own context. 
and "subtransaction" or parent transaction when related to other transactions. 

Let us consider the transfer operation in figure 6.14 as an example. The first program, Basic­
Transfer, transfers a certain amount from an account to another (the program fragment is included 
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Figure 6.14: Schematic Sample Session 

in appendix figure A.4). To simplify the reading, instead of the program we use a schematic il­

lustration in this section. Figure 6.15 shows two concurrent processes, the first decrements from 
one account, and the second increments the other account. No subtransactions are necessary in 
the procedure BasicTransfer, since either both succeed and the transaction commits, or one fails 
and the whole transaction aborts. 

Although BasicTransfer does the job, it does not offer the best possible service. For example, 
a customer may try to transfer $100 from checking to Visa account. If the customer does not have 
$100 in the checking account, the transfer fails, even though there may be thousands of dollars in 
the savings account. To include all three customer accounts into consideration, a new procedure 
-SmartTransfer- was written. Figure 6.16 illustrates SmartTransfer, which is described in detail 
by the program fragment in appendix figure A.6. For concreteness, instead of variables, we use 
the example of a transfer from checking to Visa account. Compared to BasicTransfer, the main 
improvement is that SmartTransfer will obtain the amount from savings, in case decrementing 
the checking account fails. 

In the first place, there are three transactions in figure 6.16, each enclosed in a dashed box. 
The whole SmartTransfer is a transaction, which runs as a subtransaction of the entire session. 
In addition, SmartTransfer is parent transaction for the other two. We have seen BasicTransfer 
in figure 6.15. BasicDecrement is a subtransaction that decrements the amount from the specified 
account (program fragment in appendix figure A.S). Although normal implementations of a sim­
ple resource as an integer account would be atomic data types, we use a subtransaction to make a 
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Figure 6.15: Procedure BasicTransfer 
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point. Namely, in terms of concurrency control and crash recovery, ERMS makes no assumptions 
on the resources it controls. Since we use the checking account again in the BasicTransfer sub· 
transaction, if BasicDecrement fails we expect the checking account to be returned to its original 
state. 

In contrast, the Visa.Increment operation does not have to be enclosed in a subtransaction, 
although it could have been, just like BasicDecrement. Since the Visa account is not invoked 
anywhere else in the transaction, and SmartTransfer commits if and only if both Decrement and 
Increment succeed, any temporary inconsistency in Visa will not affect Smart Transfer. 

6.6.3 ERl\1S Features in SmartTransfer 

The above example appears so simple that some useful ERMS features might have been overlooked 
by a casual reader. First, client programs only deal with resources using string names. There 
is no mention of object location, or the number of copies of a resource. Although there is the 
overhead of opening a resource, once the resource is open the client invokes the resource object 
directly, using its capability. This situation is similar to systems like Unix. 

Second, BasicDecrement and BasicTransfer are building blocks that can run either as top· 
level transactions or subtransactions without modification or recompilation. For example, the 
Bankomat interface has an option that bypasses the enclosing session transaction, making eac~ 
subtransaction a top· level transaction. Consequently, BasicTransfer may be used at three rlifferenC 
levels: top· level transaction, sub transaction of the session transaction (as the transfer operation 
in figure 6.14), or a second-level subtransaction (with SmartTransfer as the transfer operation in 
figure 6.14). 

Third, as we have mentioned in the previous section, the recovery of account state in Ba­
sicDecrement relies explicitly on nested reliability atomicity. If BasicDecrement fails, the account 
is expected to contain its original value. Nested concurrency atomicity is illustrated by a sce­
nario in figure 6.17. In this scenario. a second Bankomat runs at the same time as the first one, 
introducing concurrent subtransactions. 

In this EdenBank application, there is a dedicated transaction manager for each account 
name, so both Bankomats connect to the same transaction manager when they receive the same 
account name. All subtransactions controlled by the same transaction manager are parts of the 
same parent transaction. Since the first Bankomat that started the top-level transaction will 

also commit the top-level transaction, there must be a way to synchronize between the different 
Bankomats. The synchronization is done through a dummy subtransaction, which is started at 
the beginning of the session and committed at the end. Since the top-level transaction manager 
does not finish the commit protocol until all child transactions have terminated, the dummy 
synchronization su btransaction assures the completion of the Bankomat 2 session. 

This set-up introduces a user-interface problem. Specifically, a decision to abort by Bankomat 
1 would also affect Bankomat 2. An option to allow Bankomat 2 start a new top-level transaction 
will solve the problem. However, as a result, less sharing will be allowed between Bankomat 1 

and Bankomat 2. 
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6.6.4 ERMS Actions Behind the Scenes 

In figure 6.16 we have seen an example of ERMS use. Now we describe how the ETM provides 
concurrency atomicity and reliability atomicity both of which are transparent to the client. The 
following description is based on the program in appendix figure A.6, which provides more details 
than figure 6.16; for instance, the parameters for invocations are described only in the program 
fragment. 

The sub transaction to make the transfer is the procedure SmartTransfer in the Bankomat 
client. The first operation «1) in figure 6.16 and program in figure A.6) in the client is to 
allocate the instance of ETM corresponding to the account name, and then the client sends it the 
BeginTransaction invocation (2). At this time, the ETM's TreeManager performs initialization 
according to the TimeOutPeriod and Duration parameters. First, it knows the expected time 
before which it should commit (TimeOutPeriod). Second, it determines whether it is a long-term 
transaction. Long-term transaction ETJI.'is checkpoint their state to stable storage whenever a 
resource is opened or closed, so they can resume a transaction even after a crash. In this example, 
the ETM remains volatile. Third, the TreeManager invokes the SessionTM to tell it about the 
TimeOutPeriod. Finally, the TreeManager invokes the SessionTM to register as its child. 

After the ETM returns from BeginTransaction, it is ready to accept requests for resource 
access. The Bankomat starts two parallel processes, one to increment "alice/Visa", and th~ 
other to decrement "alice/checking". We will describe the actions behind the simpler process­
(increment) first. ET~I's ResourceManager in response to OpenResource -(3)- will first try to 
obtain a lock from LockTable. Since this is the first time the resource "alice/Visa" is requested, the 
LockTable asks the SessionTM for the lock, which in its turn, requests the lock from System Lock 
Manager. If there are no conflicts, the System Lock Manager gives out the lock, and SessionTM 
does the same. Otherwise the lock is denied and the OpenResource invocation fails. Once the 
lock is granted, the ResourceManager tries to Lookup the resource in RepDirTable. Since this 
is the first time. RepDirTable receives the capability for resource "alice/Visa" from SessionTM. 
passed by R2D2. This is analogous to LockTable. When the result is back, RepDirTable puts the 
entry in its own mapping and gives it to ResourceManager. Note that RepDirTable.Lookup and 
LockTable.LockName may proceed in parallel in order to achieve better performance. Finally, the 
ResourceManager takes the next parameter, \VriteNew, which means that a new version must be 
created. Therefore it invokes "alice/Visa" asking it to make a copy of itself, returning the copy's 

capability in AccotJntTo. 
The client manipulates the resources directly, so any invocations, like Visa.lncrement -( 4)-, 

are sent to AccotJntTo. When the client has made all the invocations, since increment normally 

succeeds, the resource is closed (5). The new version of "alice/Visa" substitutes the old version 
in DirMap, and the lock in LockMap released. Note that R2D2 continues to hold the old version 
of "alice/Visa", and newTM continues to hold its lock in SessionTM, which holds the lock in the 
System Lock Manager. Thus, process one ends successfully. 

Process two is similar to process one, except that the Decrement operation is enclosed in a 
subtransaction (6). In the subtransaction BasicDecrement, described in the program fragment 
in appendix figure A.5, the actions are similar to process one. The resource "alice/checking~ 
is opened by its own ETM. The locks and resource capabilities are obtained from its parent 
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transaction manager (in this case, newT"'!) instead of SessionTM, or System Lock Manager and 
R2D2. If the Decrement invocation succeeds, it is closed and the subtransaction BasicDecrement 
and process two terminate with success. 

However, if "aJke/ checking" fails, EdenBank does not charge $10 for insufficien t funds. Rather, 
Bankomat start a subtransaction (7) to attempt to move money from "alice/savings" to "al­
ice/checking". The procedure BasicTransfer described in appendix figure A.4 simply transfers 
Amount from "alice/savings" to "alice/checking". IT the subtransaction succeeds, we try Ba­
sicDecrement again. Since BasicTransfer is a subtransaction, its ETM will obtain its locks and 
resource capabilities from the parent transaction manager (newT"'!) . 

. If everything fails, (for example, no money in "alice/checking" or "alice/savings") the client 
asks newTM to AbortTransaction (9). The TreeManager first checkpoints the abort record, 
making sure no other outcome is possible. Then the LockTable is asked to release the locks it is 
holding in the parent. 

If both processes terminate successfully, the client commits the transaction by sending the 
CommitTransaction invocation (8) to the ETM. If the updated resources are replicated, the 
right number of copies must be made and distributed (maybe to specific nodes) in the network. 
The replicas are made and distributed in the background between the close (with the AdoptNew 

parameter) and commit. Although this preprocessing may waste some effort if the transaction 
aborts, it saves time during commit. ETM uses the Regeneration method, described in chapter 4,~ 
to update multiple copies of replicated resources. -

The first step in CommitTransaction is the TreeManager checkpointing the ETM, including 
the commit record, the DirMap, and LockMap. Second, RepDirTable replaces previous versions 

in SessionT?-.l with the newly committed versions of "alice/checking" and "alice/Visa" (and "al­

ice/savings" if the subtransaction has been executed). Third, the LockTable releases all locks 
it held in the SessionTM. Finally, Tree1Ianager again checkpoints, recording the completion of 

transaction commit. 

6.7 Comparison with Previous Implementations 

In this section, we compare ERMS with previously implemented nested transaction systems. Early 
designs [46,62,73] will be discussed in chapter 7 with the TM Tree framework. 

A unique characteristic of ERMS is its ability to combine different concurrency control meth­

ods and crash recovery techniques. Moreover, ERMS uses unmodified, well-known techniques 
for single-level transaction systems as building blocks. In contrast, all other nested transaction 

proposals extend specific methods. For example, in their simplicity, ERMS locking rules differ 
from earlier work on nested transactions based on locking. Moss [61], Argus [56], and LOCUS [63] 

all consider the lock as some kind of token, which is held by one (sub )transaction at a time and 

inherited by the parent when the subtransaction terminates. Carefully extended locking rules are 
necessary to provide correct synchronization of all levels by one concurrency control. In com­
parison, ERMS uses the normal locking rules for the top-level, and the same rules would then 

recursively apply to the nested levels. 
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6.7.1 Argus 

Argus is a language that supports nested transactions [56] in a manner similar to Moss's design. 
The computation model and client interface in Argus differs significantly from ERMS. First, 
Argus has integrated transactions into the language, with implicit transaction termination and 
resource access. On the other hand, ERMS adopts an explicit approach for both. Second, explicit 
invocations allow ERMS clients with parallel processes to be involved in several transactions 
(many to many). In comparison, in Argus an action corresponds to exactly one process. 

There are some ERMS features not found in Argus. First, we have a uniform syntax (and 
semantics) for a top-level transaction and a subtransaction, so the same program can perform 
as a top-level transaction for one invocation, and a subtransaction for the next. In comparison, 
Argus requires the programmer to distinguish top-level transactions from subtransactions by using 
different keywords (topaction and action). Second, long-term transactions are not part of Argus. 
Third,Argus does not support transparent resource replication . 

. In compensation, Argus has some language features not supported by ERMS. Argus synchro­
nizes object access for both internal variables and external persistent objects. ERMS relies on 
EPL and Concurrent Euclid to maintain program variable consistency. 

6.7.2 LOCUS and Genesis 

There are some important differences between the two LOCUS implementations of nested trans-­
actions [63,67,84] and ERMS. First, LOCUS nested transactions can handle only Unix (LOCUS) 
files; operations on directories, for example, cannot be rolled back [79]. In contrast, ERMS con­
trols resources of any type. Second, LOCUS does not support long-term transactions. Finally, 
LOCUS nested transactions support is implemented as part of its kernel, while ERr..fS is built 
entirely on objects. 

Some other features are comparable. Like LOCUS, ER~IS relies on the kernel for object 
location. Unlike LOCUS, ERMS supports replication at the object level. The first implementation 
of LOCUS nested transactions [63] supported independent subtransaction abort, but not a uniform 
syntax to start and terminate top-level and nested transactions. The second implementation of 
LOCUS nested transactions [84], (sometimes called Genesis [67]) now offers a uniform syntax but 

not subtransaction failure isolation. ERMS provides both. 

6.7.3 Distributed Transactions 

Argus and LOCUS have been designed to support nested transactions. Another important area 
of research related to our work is transaction support in distributed database systems. (Readers 

interested in the development of distributed transactions are referred to a recent survey by Mo­
han [60].) In this section, we describe the nesting features of System R- [55] and TABS [77]. We 
have chosen R- and TABS because both have implemented some form of nested computations, 
although neither supports the standard model of nested transactions defined by Moss [62]. 

R- supports remote computations by organizing them into a tree. A process making remote 
requests is the parent of remote processes servicing the requests. At commit time, all processes 
in the tree participate and the transaction commits only if every participant agrees to commit. 
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Consequently, although R* computations are organized into a tree, R* does not provide failure 
isolation of sub-computations other than savepoints, which allow transaction restarts from selected 
places. Another restriction in R· is the lack of concurrency control between sub-computations 
of the same transaction. Should a transaction have two sUb-computations running on the same 
node, resources are protected in a manner similar to monitors. 

TABS provides more explicit nested transaction support. For example, a subtransaction is 
allowed to abort independently of its parent. In addition, subtransactions obtain their own locks, 
making simultaneous threads of control possible. However, resource sharing within a transaction 
is difficult, because subtransactions do not release locks before their parent commits. This re­
st.riction also limits the ways subtransactions can be used in the composition of new applications. 
In summary, a TABS transaction can be divided into separate concurrency units (subtransac­
tions), but these units cannot be joined again. They terminate only at the top-level transaction 

termination. 

6.7.4 Comparison Table 

Table 6.1 compares the features of implemented nested transactions discussed in this section. 
In the LOCUS column, there are some rows with two remarks. For example, for failure isola­
tion, LOCUS has "Yes/No". The first refers to the ability to allow subtransactions to abort. 
independently of the parent in their first implementation [63]. The second refers to their second. 
implementation [84], in which a subtransaction abort implies the failure of the enclosing top-level 

transaction. 
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Feature LOCUS Argus ERMS R- TABS 

Resource of Unix file 
Yes Yes relations Yes any type only 

location 
Yes Yes Yes No Yes 

transparency 

replica 
Yes No Yes No No 

transparency 

top/sub 
syntax No/Yes No Yes N/A Yes 

transparency 

failure Yes/No Yes Yes savepoints XO 
isolation 

intra- one process 
transaction Yes Yes Yes per node Yes 
concurrency 

long-term No No 
transactions 

Yes No No 

combination 
being 

of differ. CC No No No No 
and recovery 

implem. 

Table 6.1: Comparing Implemented Systems 
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Chapter 7 

Nesting by Composition 

7.1 TM Tree 

At the heart of ERMS is the organization of concurrency control and crash recovery in a tree, 
which is isomorphic to the tree-structure of nested transactions. We call this idea TM Tree, since 
both concurrency control and crash recovery data structures are encapsulated in the transaction 
manager. 

In chapter 6, we have used TM Tree with specific techniques, namely two-phase locking ancL 
version-based recovery. In this section we generalize TM Tree into a design framework to include 
other concurrency control methods and crash recovery techniques. Of particular interest is the 
possibility of mixing different methods and techniques in one system. In section 7.1.1, we describe 
nested concurrency control and crash recovery in the TM Tree framework. In section 7.1.2, we 
discuss combination of different concurrency control and crash recovery methods. In section 7.1.3, 
we suggest some potential applications for the mixing of implementation techniques. 

For simplicity of presentation, we continue to use a transaction manager for each transaction. 
In section 7.3, we shall describe refinements that may eliminate overhead introduced with such a 
simplistic design. 

1.1.1 Nested Atomicity 

In section 6.4.2, we have described the way concurrency control is nested in ERMS. During an 
OpenResource, lock requests follow a chain up the tree of transaction managers to obtain nested 
serialization of resource access (figure 6.6). Similarly, in section 6.4.3, we explained the way crash 
recovery is nested in ERMS. During an OpenResource, lookup requests are sent to parents to find 
the appropriate version for that OpenResource (figure 6.7). 

Now we combine figures 6.6 and 6.7 into figure 7.1, which illustrates the more general case. 
In figure 7.1, we draw a generic concurrency control and a generic crash recovery at the top 
level. For the moment, we take the ERMS example, adopting two-phase locking for concurrency 
control and versions for crash recovery. As we have seen in section 6.4, the generic OpenCR 
operation is LookupSet, and the generic OpenCC is LockN ame. However, communications be­
tween transaction managers have been simplified. The subtransaction manager simply requests 
that the parent transaction manager open the resource. In ERMS, the open request is equivalent 
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Figure 7.1: Nested OpenResource 

to a LockName and Lookup. More generally, subtransaction managers can communicate witq. 
their parent in a way that is independent of particular concurrency control and crash recovery­
techniques. 

A natural question is: "With this technique-independent interface, are we able to use other 
techniques in our implementation?" The answer is yes. 

Let us start by adopting timestamps for concurrency control instead of locking. 'We keep the 
version-based recovery since this is the natural combination. At BeginTransaction, the transaction 
manager receives the transaction's timestamp (TID). Each resource has several versions (V d; 
each version has its last-read and last-write timestamps, denoted by TSr(Vi) and TSw(Vi). At 
OpenResource, the transaction manager selects the latest version such that TSw(V;) is less than 
TID. Intuitively, that version is the most recent version for the transaction's time. 

If the resource has been opened for updates, a new version is created bearing the TID as its 
last-write timestamp. At CloseResource, this new version is stored in the transaction manager's 
mapping for crash recovery. During the transaction, the same resource may be opened again, 
creating another version. The most recent version is made public only at CommitTransaction. 
After the transaction manager has checked that no new versions were inserted between TSw(V;) 
and TID, the new version is inserted into the resource's list of versions and made visible to other 
transactions. In case of AbortTransaction, the new version is simply deleted and forgotten. For 
illustration, actions taken by different concurrency control methods at the operations described 
above are summarized informally in table 7.1. 

Several concurrency control methods based on dynamic timestamp intervals have been im­
plemented for an experimental study comparing their performance, which will be reported else­
where [66J. Unfortunately, this particular implementation did not separate clients from the trans­
action managers, making the adaptation to ERMS more difficult. At the time of this writing, 
concurrency control methods other than locking have not been incorporated into ERMS. 
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Begin Trans. - get TID -

OpenCC Lock 
read ¥; with 

max {iiT S(¥;) < TID} 
-

CloseCC - - -

Commit Trans. Unlock write VTID if ,lIVk check 
s.t. ¥; < V k < VTID serializability 

AbortTrans. Unlock - -

Table 7.1: illustration: Nested Concurrency Control Actions 

From recovery techniques known in the literature [11], so far we have only discussed version­
based systems. Now we turn to recovery methods that use nested log records. As explaine<t, 
in section 2.3, logs contain the same amount of information as versions, but recovery using logs 
requires more work. The recovery mechanism must scan the log, look for data relevant to the 
interrupted transactions, and take appropriate corrective actions on the database to restore its 
consistency. For example, operations from aborted transactions must be undone, back to the 
state at the beginning of those transactions. 

Usually, a log record contains two parts. The first part identifies the transaction writing the 
record, and the second part contains recovery data. To recover nested transactions properly, the 
log must include enough information to allow the reconstruction of transaction hierarchy. \Ve 
shall argue informally that the additional information on nesting hierarchy is necessary and suffi­
cient for correct recovery of nested transactions. Without the hierarchy information, the recovery 
mechanism would make permanent the results from every committed subtransaction, even those 
from a child of an aborted transaction, which must also be aborted. With the hierarchy, the 
outcome of each transaction can be resolved correctly. Since the results of committed subtrans­
actions remain conditional on the outcome of parent transactions, the recovery mechanism can 
restore the database to a consistent state. 

The actions taken by different crash recovery techniques at the TransactionBracket and Re­
sourceManagement operations are summarized in table 7.2. However, the table contains enough 
information for illustration purposes only, and the details of a recovery algorithm for log-based 
nested transactions remain a research problem. 

7.1.2 Combining Different Techniques 

All known proposals for nested transaction systems use one concurrency control method and one 
crash recovery technique for transactions at all levels. One unexpected result from the TM Tree 
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Versions Logging 

Read Write 
redo undo redo 
only only undo 

Begin Trons. - - - - -

OpenCR lookup lookup & lookup 
new version 

CloseCR 
store - - - -

new version 

Commit Trons. install write 
- - write 

new version everything 

Abort Trons. drop undo 
undo - -

new version from log 

Table 7.2: Summary: Nested Crash Recovery Actions 

framework is that the uniformity is not necessary. Since each subtransaction manager communi­
cates with the parent through an interface that hides the implementation, the concurrency control 
method and crash recovery technique used by the parent transaction manager do not have to be 
the same as subtransaction managers. 

To illustrate this point, let us consider the example of mixed concurrency control in figure 7.2. 
At the system level, we adopt optimistic concurrency control, and the top-level transaction man­
ager uses locking. \\'hen a subtransaction manager attempts to open a resource, the top-level 
transaction manager grants locks according to a lock compatibility table (e.g. table 2.1). Since 
the system level concurrency control is optimistic, the top-level transaction manager's OpenCC 
request translates into a null operation, not shown in the figure. At the time the top-level trans­
action manager attempts to commit, all resource accesses within the transaction will be checked 

by the system level concurrency control for conflicts. 
The concurrency control mechanisms used by subtransaction managers have been omitted in 

the figure, and they could be anyone of the many known techniques for single-level transaction 
serialization. Moreover, each one can adopt its own concurrency control method, independently 
of the other. For instance, sub-TMI could use locking, and sub-TM2 timestamps. 

Analogous to the variety of concurrency control methods, different crash recovery techniques 
may be employed. Although all proposed nested transaction mechanisms use versions to recover 
from crashes, as we have indicated in section 7.1.1, logging can be used, provided the nesting 
hierarchy information is included in the log. 

There is one minor complication in mixing version-based recovery with log-based recovery. 
For concreteness, let us consider a simplified example of a nested transaction system running on 
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Figure 7.2: Example of 1lixed Concurrency Control 

a centralized database with one log device. Although each transaction may choose a different. 
recovery technique, the recovery mechanism must have the complete nesting hierarchy informa-­
tion. In other words, regardless of their crash recovery method, if there are transactions relying 
on log-based recovery, the final results of each transaction, must be available to the log-based 
recovery mechanism. In particular, transactions that use versions for crash recovery may write 
no recovery records to the log, but they must write their commit record to the log. 

7.1.3 Applications of Mixed Techniques 

The ability to mix concurrency control and crash recovery techniques introduces interesting pos­
sibilities for better performance. We delineate two examples here to illustrate the point. 

First, mixed concurrency control methods may allow higher effective concurrencyl than one 
single method. Let us return to the example in figure 7.1. The system level concurrency control is 
optimistic, while the top-level transaction manager uses locking. If the transaction selects a few 
records from a large database, the optimistic concurrency control makes sense. However, if the 
two sub transactions work intensively on those few records, the probability of conflicts between 
the two sub transactions is high. Consequently, optimistic concurrency control in the top-level 
transaction manager would be counter-productive, since the subtransactions tend to conflict and 
abort. The use of locking at the top-level transaction manager will increase effective concurrency 
by avoiding aborts at that level. 

Second, mixed crash recovery techniques may reduce the recovery overhead. Version-based 
techniques are considered "pessimistic", since they use resources to create versions during the 
normal processing, and require little work during recovery. In contrast, logging is "optimistic", 

I Inform&l.ly, effective concurrency may be defined &II the average number of concurrent transactions making 
progress towards successful commit. Transactions that abort due to confticts, for instance, do not count towards 
effective concurrency. 
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in that it reduces the normal overhead to a minimum, but need to do more work at recovery. 
Consequently, transactions systems with high volume always choose logging. 

Now, consider a long, top-level transaction which contains a large number of fast, short sub­
transactions. Logging is the right choice for the short subtransactions, but may be inappropriate 
for the long transaction, because a large amount oflog data must be processed for its recovery. So 
the mixing ofrecovery methods introduces new ways to avoid this trade-off between long recovery 
time and low normal overhead. 

In summary, different concurrency control methods and crash recovery techniques have their 
own ranges of applicability and boundaries of optimal performance. The complexity of application 
systems and access patterns will increase as the size of databases and systems increases. Combi­
nation of different techniques within the system might improve system performance through the 
selection of the most adequate technique at each level. 

7.2 Superdatabases 

Besides the combination of different techniques in the same database system as described in 
section 7.1.2, an interesting alternative is to combine entire databases. 

7.2.1 Distributed Databases by Composition 
-

Past research on distributed databases [60J has produced many distributed algorithms for con-
currency control and crash recovery. Despite a few exceptions like R- (from System R) and Dis­
tributed INGRESS, composition of centralized databases to form a distributed database seems to 
be a less explored approach. 

TM Tree framework presents a systematic way to build superdatabases from element data­
bases. The elements and the superdatabase can be either centralized or distributed. A natural 
combination would be centralized elements and a distributed superdatabase. In the simplest 
case, the element databases run the same software. As a basis for discussion, let us consider 
each transaction manager as a mini-database, since each includes concurrency control and crash 
recovery. If a requested resource is in the mini-database, client access is completely enclosed by 
the mini-database. Otherwise, the transaction manager obtains the resource from its parent, and 
"moves" the resource into the mini-database for access. 

Let us take ERMS as a concrete example. If a transaction aborts, its mini-database is simply 

ignored. If a transaction commits, however, its mini-database is merged into the parent's mini­
database. This scenario is suggested by version- based recovery, and log-based recovery achieves 
the same effect. The situation repeats at each level of nesting until the top level, when the system 
concurrency control and crash recovery take over. 

To compose superdatabases out of element databases, each element must be able to imitate the 
mini-databases in the TM Tree. In other words, concurrency control and crash recovery in each 
element must be conditioned to the parent superdatabase. More concretely, an element database 
must support a transaction that has "committed", but which could be rolled back later because 
of higher level abort. This situation is not new. In section 2.2, we have described the two-phase 
commit protocol for distributed transactions. If the element databases support a "prepared" state 
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Figure 7.3: Simple Superdatabase 

between the transaction commit and the final decision from the superdatabase, it seems that we 

can compose them. 

A simple example superdatabase is shown in figure 7.3. For concreteness, we show both 

elements using two-phase locking, with a client accessing the superdatabase directly. To further 

simplify the example, we assume the two element databases -1:!lement 1 and element 2- to contain: 

disjoint sets of resources and so they are able to keep their own lock tables. Figure 7.3 shows the 

moment a resource is being opened, and the superdatabase obtaining locks from both elements. 

At the time the client decides to commit, the superdatabase performs two-phase commit including 

both elements. 

There are some trade-offs even in this simple example. Splitting lock tables may gain locality of 

access, compared to a centralized lock table with the superdatabase. However, deadlock detection 

becomes more complex. For example, transaction Tl is local to element 1, and transaction T2 

is local to element 2. A deadlock may involve two supertransactions T3 and T4 as shov-/Il in 

figure 7.4. Isolatedly, each element is unable to detect this kind of deadlock. Worse yet, the 

deadlock cannot be detected by a simple global algorithm which looks only at inter-element 

dependencies; it requires the analysis of the wait-for graphs in both element databases. 

7.2.2 Heterogeneous Databases by Composition 

Since TM Tree framework can combine different techniques, the next natural step in the compo­

sition of databases is to compose heterogeneous databases. Past research on heterogeneous data­

bases has focused on queries. Some examples are: MULTIBASE at the Computer Corporation 

of America [29,52], MERMAID at the System Development Corporation [20], and JDDBS at the 

Japan Information Processing Development Center [78]. They have solved the problem of trans­

lating a uniform query language into other "native" query languages. Despite the progress made 

in query processing, consistent update of heterogeneous databases remains a challenge [37,60]. 

Of the superdatabases introduced in section 7.2.1, we have assumed that the element databases 

are of the same kind. However, using the TM Tree framework, we can combine different imple­

mentation techniques. A simple example is shown in figure 7.5; the element databases use locking 
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Figure 7.4: A Not-So-Simple Deadlock 

and timestamps, while the superdatabase adopts optimistic concurrency control. In the example, 
the superdatabase has the record of all resources accesses by all transactions. Consequently, it 
can check for serializability of all transactions on the superdatabase. 

7.3 Performance Issues 

Designs derived from the TM Tr~ framework apparently require significant communication over­
head between the TMs in the hierarchy; such is the case of ERMS. However, the performance 
penalty is in the implementation, rather than abstract design. 

1.3.1 Reducing Communication Costs 

There are two ways to look at a low-cost implementation of TM Tr~ designs. First, the non­
object-oriented (traditional) approach would eliminate encapsulation and collapse the TM Tr~ 
into a single transaction manager per node. Consider ERMS, for example. Instead of one Eden 
object per ETM, we could build a Node Transaction Manager containing a tree of LockMap and 
DirMap. The tr~ of data structures substitutes the tree of Eden objects. All clients of that 
node send their requests to the Node Transaction Manager, accompanied of their TID. With the 
system-unique TID, the Node Transaction Manager finds the transaction's LockMap and DirMap, 
on wruch the operation is then performed. Invocations between subtransaction managers and 
parent transaction managers now translates into simple tree traversal, which is much cheaper 
than invocations. 
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Figure 7.5: Simple Example of Heterogeneous Database 

There are advantages and disadvantages in the traditional approach. For simple designs with 
uniform concurrency control and crash recovery, it is clear and practical. However, more general 
TM Tree designs with mixed concurrency control and crash recovery are much harder to put 
together in a single program. 

The second, object-oriented approach may become a good alternative. Some new object-: 
oriented languages and systems such as Emerald [14,15] provide efficient communications between 
objects, if objects are "sufficiently close". With a language like Emerald, TM Tree designs can be 
implemented in full generality, without heavy performance penalty. 

7.3.2 Inherent Cost 

In section 7.3.1, we have argued that the communication cost between transaction managers is 
an artifact of implementation. However, the tree structure is a fundamental part of any TM Tree 
design and cannot be eliminated. Compared to single-level transaction systems, the tree in the 
TM Tree designs requires a traversal each time concurrency control and crash recovery routines 
are called. Consequently, the tree traversal seems to be an inherent additional cost in nested 
transaction systems based on TM Tree designs. 

Most tree traversal algorithms have a cost dependent on the depth of the tree. Since the T11 
Tree is isomorphic to the structure of nested transactions, the additional cost is proportional to 
the complexity of application. Although we do not have extensive experience in the use of nested 
transactions, current applications seem to be nat urally structured in to a few levels. 

The first interesting problem is whether a nested transaction mechanism can be built without 
organizing its data structures into a tree. All existing proposals put their crash recovery infor­
mation into trees. Moss has proposed a restriction (see sections 6.7.1 and 7.4.1) with which a flat 
lock table suffices. 

Once the tree traversal overhead is accepted, the second problem is how much additional 
cost we must pay for the tree data structure. The analysis is not straightforward since the 
additional cost is not constant in each request. For example, the first time a resource is opened 
in a transaction, all ancestor transaction managers must obtain the appropriate lock. However, 
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once the resource has been opened in the transaction, the next request from any descendent 
subtransaction can be handled by the transaction manager, since an entry exists in the transaction 
manager's lock table. Consequently, the more frequently used a resource is, the less additional 
overhead is paid for nested atomicity. 

In summary, we are optimistic about the performance of nested transaction mechanisms de­
rived from the TM Tree framework. There are several reasons for this optimism. First, the 
obvious communications problem has an easy answer, with more general solutions under way. 
Second, the inherent problem of tree traversal is lessened by the usually shallow depth of the 
tree. Third, reasonably mild restrictions seem to permit the bypass of even the tree traversal. 
Finally, the flexibility of concurrency control and crash recovery combinations may allow a better 
combination than past designs. 

7.4 Analyzing Earlier Designs 

The most important difference between TM Tree framework and earlier designs is in generality. 
Many concrete designs of nested transaction mechanisms may be derived from the TM Tree 
framework through the selection of specific concurrency control and crash recovery techniques. In 
this section, we analyze earlier proposals of nested transactions using the TM Tree framework. 

1.4.1 Moss 

Moss [61,62] defined the standard model of nested transactions we now use. His design uses 
an extension of two-phase locking for concurrency control, and only a specification of what the 
nested crash recovery should do. His design was subsequently refined and implemented in the 
Argus language [56]. 

His extension of two-phase locking includes the notion of inherited locks, which are different 
from acquired locks. At commit time, a lock held by a leaf transaction is "inherited" by its 
parent. The parent may let other subtransactions acquire an inherited lock. However, only 
subtransactions holding exclusive locks can write. A parent that inherited a lock cannot access 
the resource. 

From TM Tree point of view, a lock is a token which migrates from transaction to transaction 
up and down the nested transaction tree. Leaf transactions in the tree may acquire locks and access 
the resource, while internal transactions can only inherit locks and pass them along. Although 
his proposal does not organize lock tables into trees, the nesting hierarchy of transactions must 
be maintained somehow, 80 a lock being released by a subtransaction can be correctly inherited 

by its parent. 
An interesting point is the minor restriction on the actions of the parent. To enforce the 

inaction of parent while in possession of inherited locks, Moss allows resource access only from 
the leaf transactions. The TM Tree explanation for the restriction is exactly the lack of a tree of 
lock tables. Since he has only one lock table, at least an additional bit per level is necessary to 
distinguish an inherited but unused lock from an actually "busy" lock. The former can be granted 
to another subtransaction, while the latter cannot. To simplify data structures, Moss disallowed 
direct parent access to resources, so locks are acquired and resources accessed only at the leaf 
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level. 
For transaction roll back, Moss has specified what the nested transactions should do. When­

ever an object is being written, its old content must be saved in an "associated state" with the 
transaction. If the transaction aborts, its associated states are used to roll back. When a sub­
transaction commits, its associated states are inherited by its parent to allow roll back if the 
parent aborts. TM Tree implements this specification by including the associated state in the 
transaction manager tree. 

7.4.2 Reed 

Reed was probably the first author to describe a detailed design to implement nested trans­
actions [73]. In his design, he used archived, write-once versions for crash recovery. Each object is 
composed by a sequence of versions, each called a possibility when created. At transaction commit 
time, the possibility becomes a version and part of the object. 

Reed used timestamps for concurrency control. Timestamps of transactions in the nesting 
hierarchy are concatenated into Pseudo Temporal Environments (PTEs), which also doubled as 
version names. All operations within a subtransaction are invisible from outside, since its siblings 
and parent cannot access its possibilities, named by its unique PTE. 

The PTEs form a tree, isomorphic to the tree structure of the nested transaction hierarchy. 
Clearly, a TM Tree design with version-based concurrency control and crash recovery would have: 
the transaction managers in a one-to-one correspondence with the PTEs. 

Reed did not complete his implementation in the SWALLOW system. 

7.4.3 Jessop 

To the best of our knowledge, Jessop first suggested the use of one Transaction Manager (T~l) 
per transaction [46]. That design, called Eden Transactional File System (EFS), is based on 
Bernstein and Goodman's TM/DM model [9]. In EFS, each resource has many versions under 
the control of its own Data Manager (DM), which synchronizes top-level access to the resource 
and provides crash recovery. At each level of nesting, for every resource, the transaction manager 
creates a copy of the data manager called workspace manager, which holds the versions created by 
the subtransaction. If the subtransaction commits, the workspace manager passes the committed 
versions back to the data manager. 

Other EFS design features include resource protection based on access control lists, resource 
replication, a user environment, and the concept of split and join of transactions. Unlike the 
earlier two designs, EFS encapsulates the concurrency control in the data managers, making the 
transaction managers independent of any specific method. After building a simulation of EFS 
with immutable versions and timestamp-based concurrency control, Jessop did not implement the 

actual system. 
TM Tree designs do not follow the TM/DM separation. Rather, the functions of the data 

manager are merged into the transaction manager. In Jessop's design, besides the tree of trans­
action managers, in a top-level transaction, the workspace managers for each resource form a 
tree that is a subgraph of the transaction manager tree. Conceptually coalescing these workspace 
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Table 7.3: Analyzing Nested Transaction Designs 

managers, data managers, and transaction managers, we see the transaction manager tree emerge 
as the main structure in Jessop's design. 

7.4.4 TM Tree Design Space 

In table 6.1, we have compared the features of implemented nested transaction systems. Usini, 

the TM Tree framework, we can also compare the implementation techniques proposed by early 

designs. Table 7.3 shows the concurrency control mechanisms and crash recovery techniques 
chosen for each design, simulation, or implementation. 

Several interesting observations can be derived from table 7.3. First, all current systems use 

versions for recovery. As we have pointed out in section 7.1.1, no detailed algorithms for log­

based nested recovery is known. Second, no system uses a concurrency control method other 

than locking or timestamps. This is not surprising since single-level transaction systems have 

the same situation. Third, both TABS and R- use locking and log-based recovery, but neither 

provides nested reliability atomicity. Since the combination of locking and log-based recovery is 

considered the most efficient for single-level transaction systems, it should be a good candidate 

for the implementation of an efficient nested transaction mechanism. 
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Chapter 8 

Conclusion 

8.1 Summary of Contributions 

This dissertation concentrates on software support to increase availability, reliability, and perfor­
mance in distributed systems. From this focus, we divide our contributions into three parts: First, 

we have studied consistent replication to increase the availability of distributed data. Second, we 
have devised powerful nested transaction mechanisms to promote reliable software composition, to 
facilitate recovery from partial failures, and to increase concurrency at all levels of software. Third, 
we have built prototype systems to demonstrate the practicality of the concepts. We summarizti 
the contributions to consistent replication in section 8.1.1, nested transactions in section 8.1.2, 
and systems building in section 8.1.3. 

8.1.1 Replication 

On data replication, we have observed the separation between hardware repair and data restora­
tion. Concretely, we have introduced the Regeneration method, which takes advantage of this 
separation to update multiple copies consistently. The main idea of Regeneration is to make new 
copies to replace inaccessible copies. New copies maintain replicated resource consistency and 
reduce resource vulnerability to multiple failures. In contrast, other replication methods have 
limited or no ability to replace inaccessible copies. 

Analytically, we have applied the k-out-of-N theory to show that Regeneration provides higher 
availability than other methods. To the best of our knowledge, and despite abundant literature 
on reliability and performance analysis, our availability analysis is the first application of the 
k-out-of-N theory to practical data replication methods. 

However, the higher availability requires additional disk space on spare nodes to yield success­
ful regeneration. The storage requirements are bounded by the maximum amount of inaccessible 
data. Updates may be allowed to complete without the additional storage, but the resource 
availability decreases to the same level of the Available Copies method. 

Empirically, we have employed Regeneration in the implementation of R2D2, a replicated 
distributed directory system. R2D2 serves two purposes. First, it demonstrates the practicality 
of Regeneration. Second, it provides the basis for supporting replicated resources in the nested 
transaction mechanism we now describe. 
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8.1.2 Nested Transactions 

We have designed and implemented a nested transaction mechanism, ERMS. Its strength is in 
the economy of design concepts and generality of implemented features. The key idea in ERMS 
design is the composition of known techniques for single-level transactions at each level to provide 
nested concurrency and reliability atomicity. For example, the locking rules in ERMS are the 
same as in many single-level transaction systems (table 2.1). In contrast, all other proposed 
nested transaction systems extend specific concurrency control and crash recovery techniques. 

Using composition, we have introduced the TM Tree framework. Unlike previous proposals for 
nested transactions, TM Tree allows and suggests combinations of different concurrency control 
methods and crash recovery techniques. Not only is the framework a template for many nested 
transaction designs, but it also opens the door to more general compositions of database systems. 
We have just started working on a method of systematic composition of centralized databases to 
form distributed databases. 

The ERMS implementation of nested transactions presents several important general features: 
Resources of any type are accessible transparently across the network. Transparent resource 

replication increases data availability. Subtransactions isolate partial failures to improve system 
reliability, while long-term transactions survive planned and unplanned shutdowns. For better 
performance, subtransactions execute in parallel, with consistent resource access. Finally, uniform. 
syntax for top-level transactions and subtransactions permits easy and safe composition of super~ 
transactions out of previously separate ones. 

8.1.3 Systems 

In Eden, the addition of R2D2 and ER1-1S addressed fault-tolerance and large scale system struc­
turing, issues with which the Eden kernel and Eden Programming Language are less concerned. 
Like the Edmas mail system [1] and Eden Calendar system [42], both built on top of Eden, R2D2 

and ERMS benefited from Eden's object orientation, abstract types, and location-independent 
objects. Unlike Edmas and Eden Calendar, R2D2 and ERMS are general-purpose tools support­
ing other applications. Transparent replication and nested transactions significantly augmented 
Eden's support for writing reliable distri bu ted applications. 

Granted, the performance of R2D2 and ERMS leaves room for improvement. That is the price 
we pay for building on top of Eden, an experimental prototype that is, in turn, built on top of 
Unix. However, it does not imply inherent inefficiency in the Regeneration algorithm or TM Tree 
framework, which are independent of the Eden system. For example, Regeneration reads one copy 
and writes all copies; for resources often read but seldom written, it should perform better than 

Voting. 
Beyond Eden, both the Regeneration method and the TM Tree framework have wide appli­

cation. The design and implementation of any replicated resource may adopt Regeneration, since 
most replication methods can incorporate the idea of Regeneration to improve data availability. 
From the TM Tree framework, many different designs and implementations of nested transactions 
may be derived. ERMS is a simple and general example of such a nested transaction mechanism. 
We have briefly analyzed the ways to improve the performance of designs derived from TM Tree 
framework, but only more work can confirm or contradict our optimistic outlook. 
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8.2 Future Work 

8.2.1 Replication 

Compared to hardware replication and availability, current understanding of data replication is less 
methodical. Although no attempt was made to survey data replication methods systematically, 
our analysis dividing the consistent replication problem into three parts - multiple-copy update, 
network partitions, and replica location - seems promising. In particular, table 3.2 captures 
the essential features of some important data replication proposals. A recent survey on network 
partitions [28] reinforces the plausibility of such classification. A taxonomy of data replication 
techniques will facilitate further studies that compare the range of applicability and cost of the 
techniques. 

A more specific problem in data replication is the lack of theoretical analysis. Fortunately, 
there is a large body of literature on reliability theory (e.g. IEEE Transactions on Reliability). 

Nevertheless, existing theory is seldom applied to the analysis of replication algorithms. Applying 
reliability theory to data replication appears to be a fruitful area of research. 

Another interesting phenomenon in data replication is the dichotomy between replication for 
availability and replication for performance (sometimes called caching). Although there are theo­
retical studies on the integrated analysis of system performance and availability, called perform a­
bility [58], we have not found a replication algorithm or protocol designed for both performance:. 
and availability. Regeneration and Available Copies are both algorithms that read one copy and 

write "all" copies, allowing potential performance gains with exclusively local read. Research 
directed at replication methods for both performance and availability gains seems ready to take 
off. 

In this dissertation, we have chosen to maintain resource consistency in the available portion of 
the system. In many practical systems. temporary connections between nodes form the network. 
In these cases, consistency can be achieved only after the elapsed time allowed eventual connection 
of all participant nodes. This problem increases with network size and heterogeneity. Replication 
techniques for eventually connected systems remain an interesting area of research. 

8.2.2 Transaction Systems 

Although the availability and performance potential of distributed systems have been recog­
nized, partial degradation continues to be a serious problem. Despite productive research on 
fault-tolerant computing, a standard model for fault-tolerant computations remains to be found. 
Recovery blocks and nested transactions are possible building blocks, but considerable research 
separates the building blocks from a complete model. 

The TM Tree framework opens a design space, allowing many different combinations of concur­
rency control methods and crash recovery techniques. This design space grows with the ongoing 
research in single-level transaction systems. A systematic exploration of the TM Tree design space 
in terms of applicability and performance characteristics will provide the foundation for practical 

implementations of nested transactions. 
Built on top of Eden, ERMS is not particularly fast. Without sacrificing the generality of 

features, efficient implementations of nested transactions remain a challenge. In particular, nested 
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reliability based on logging offers the best promise, since efficient single-level transaction systems 
rely on logging. 

A more specific problem we have left for future research is multi-level deadlock detection. 
Since we use known techniques in TM Tree designs, we can include a known deadlock detection 
algorithm with each lock table, solving the problem (except for performance). However, if the 
lock tables are implemented in a distributed manner, distributed deadlock detection must be 
employed. The interplay of mixed concurrency control methods and distribution warrants further 
investigation. 

8~2.3 Composition 

Softvlare reuse is among the major software engineering tenets. There are many ways to reuse 
software, and composition is one of them. In this dissertation, we have confirmed the ease of 
composition offered by object-oriented systems, specifically Eden. We did not, however, remove 
the doubt on the performance of object-oriented systems. Efficient implementation of object­
oriented systems and languages that facilitate composition is another important area of research. 
The Emerald project [14,15] is an example of such work. 

Integrated and consistent access to a set of heterogeneous databases is useful in many ways. 
First, consistent access to different databases allows powerful information sharing and pooling~ 
Second, data from an old database can be migrated gradually to new technology databases. Third,­
running smaller databases on specialized machines may be more cost effective than concentrating 
all data on one extremely fast and reliable general-purpose system. 

We have described some simple cases of composition in which distributed databases and het­
erogeneous databases have been constructed from element databases. Our discussion has been 
informal and only suggests the plausibility of the approach. However, potential practical ap­
plications provide strong motivation for pursuing this line of research. Composition of element 
databases of the same kind is simpler and should be the first step towards the composition of 
heterogeneous databases. 

Finally, our nested transactions have the unusual property of running the same program with­
out recompilation at any level of nesting. Transactions with this property can be composed with 
other transactions at run-time, preserving the consistency of resources. We call these transactions 
composable transactions. A better understanding of composable transactions and efficient imple­
mentation will provide useful tools for the construction of reliable distributed applications. 
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Appendix A 

Implementation Details 

A.I Abstract Types 

The concept of abstract types has not been completely formalized in EPL [16J, but it has been 
formally incorporated into the Emerald'language [15J. Informally, an abstract type is a set of 
invocations, supported by concrete Edentypes. Edentypes are EPL programs, and some of them 
are summarized in section A.2. In this section, we summarize the invocations, which define the 
following abstract types: 

• Rep Directory - section A.1.1. 

• ERMSBasic - section A.1.2. 

• ERMSDebug - section A.1.3. 

• TwoPhaseLock - section A.1.4. 

• TransactionBracket - section A.1.5. 

• Resource11anagement - section A.1.6. 

A.I.1 RepDirectory 

Table A.1 summarizes the invocations that define the abstract type Rep Directory. The list of 

main failure status codes follows: 

• Some common return status codes are: 

- Success - opera.tion succeeded. 

- lllegalString - operation refused; string name contains non-ASCII characters. 

- KernelError - opera.tion failed; Kernel.Checkpoint failed for some reason a.nd no change 
was made to the passive representation. 

- NoSuchNa.me, NoSuchPath - operation failed; string name/pa.th is not in R2D2. 

• AddSet: 
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invocation .input action output 

newnarne: String 
insert pair 

AddSet capaset: Capas 
into mapping status: EdenStatus 

uid: Uniqueld 

DeleteSet 
oldname: String delete pair 

status: EdenStatus uid: Uniqueld from mapping 

LookupSet 
oldname: String delete pair capaset: Capas 

uid: Uniqueld from mapping status: EdenStatus 

oldname: String 
replace capaset 

ReplaceSet newset: Capas 
in mapping 

status: EdenStatus 
uid: Uniqueld 

ListNames 
list names output: Stream -
in mapping status: EdenStatus 

Table A.l: Abstract Type RepDirectory 

- NameAlreadyExists - insertion failed; newname is already in R2D2. 

• ReplaceSet: 

- PathBlocked, NotYourLock - replacement failed; temporary lock conflict in R2D2, try 
again later. 

• ListN ames: 

- ListError - Listing failed; EdenIOStream package failed to establish listing channel. 

A.1.2 ERMSBasic 

Table A.2 summarizes the mvocations that define the abstract type ER11SBasic. The list of 

main failure status codes follows: 

• Some common return status codes are: 

- Success - operation succeeded. 

- KernelError - operation failed; Kernel.Checkpoint failed for some reason and no change 
was made to the passive representation. 

• CheckpointAt 

- NoCheckSite - operation failed; specified node for checkpoint is not recognized. 
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invocation input action output 

CheckpointAt node: Capabili ty checkpoint status: 
on node EdenStatus 

CheckpointSelf - checkpoint 
status: EdenStatus 

to disk 

CopySelf - make copy newcopy: Capability 
on disk status: EdenStatus 

Table A.2: Abstract Type ERMSBasic 

A.1.3 ERMSDebug 

invocation input action output 

SetCkptLimit max: Integer 
ckpt. after 

status: EdenStatus max updates 

SetNoiseLevel level: Integer 
write debug 

status: EdenStatus messages 

SetPathName 
name: String object name, 

status: EdenStatus copy: Integer copy # 

Table A.3: Abstract Type ERMSDebug 

Table A.3 summarizes the in vocations that define the abstract type ERMSDebug. The list of 

main failure status codes follows: 

• The return status codes are: 

- Success - operation succeeded. 

- KernelError - operation failed; KerneJ.Checkpoin t failed for some reason and no change 

was made to the passive representation. 

A.1.4 TwoPhaseLock 

Table AA summarizes the invocations that define the abstract type TwoPhaseLock. The list 

of main failure status codes follows: 

• Some common return status codes are: 
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invocation input action output 

name: String 
grant lock conflict: UruqueId LockName exclusive: Boolean 

owner: UniqueId to owner status: EdenStatus 

UnlockName 
name: String delete lock newcopy: Capability 

owner: UniqueId from table status: EdenStatus 

Table A.4: Abstract Type TwoPhaseLock 

- Success - operation succeeded . 

• LockName 

- NameLockedRead - exclusive lock denied; name already shared locked. 

- ExclusivelyLocked - share lock denied; name exclusively locked. 

- NameAlreadyLocked - exclusive lock denied; name already locked. 

• U nlockN arne 

- NameNotLocked - unlock failed; name is not locked. 

- NotYourLock - unlock failed; not owner of lock. 

A.loS TransactionBracket 

invocation input action output 

parent: Capability register, tid: Capability 
Begin Ihmsaction longterm: Boolean initialize, status: 

expire: Timestamp return tid EdenStatus 

A bort Transaction 
release locks, status: 

-
clean up EdenStatus 

update parent 
status: 

CommitTmnsaction - mapping, 
release locks 

EdenStatus 

Table A.5: Abstract Type TransactionBracket 

Table A.5 summarizes the invocations that define the abstract type TransactionBracket. The 
list of main failure status codes follows: 
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• Some common return status codes are: 

- Success - operation succeeded. 

- KernelError - operation failed; Kernel.Checkpoint failed for some reason and no change 
was made to the passive representation. 

- xWrongState - operation x failed; attempted operation impossible at this state; for 
example, BeginTransaction on a transaction already begun. 

• AbortTransaction 

LockMergeFailed - transaction aborted anyway; some locks were not released from the 
parent, (if top-level, then System Lock Manager). 

• CommitTransaction 

LockMergeFailed - transaction aborted; some locks were not released from the parent 
(if top-level, then System Lock 1·fanager). 

- DirMergeFailed - transaction aborted; some versions were not installed in the parent 
(if top-level, then R2D2). 

- TimedOut - transaction aborted; time-out period expired. 

A.1.6 ResourceManagement 

invocation input action output 

OpenResource 
name: String 

section 6.3 
resource: Capability 

access: Pattern status: EdenStatus 

name: String save resource 
CloseResourtt resource: Capability release locks status: EdenStatus 

do: action 

Table A.6: Abstract Type ResourceManagement 

Table A.6 summarizes the invocations that define the abstract type ResourceManagement. 
The list of main failure status codes follows: 

• Some common return status codes are: 

- Success - operation succeeded. 

illegalString - operation refused; string name does not conform to the convention. 

KernelError - operation failed; Kernel.Checkpoint failed for some reason and no change 

was made to the passive representation. 
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- xWrongState - operation x failed; attempted operation impossible at this state; for 
example, Open Resource on a transaction already aborted. 

• Open Resource 

- NameLockedRead, ExclusivelyLocked. NameAlreadyLocked - open failed; unable to 
obtain the right lock. 

- NoSuchName, NoSuchPath - open failed; unable to find the resource name (up to 
R2D2). 

- AllCopiesDown - open failed; unable to find an operational copy. 

• CloseResource 

- NotYourLock, NameNotLocked - close failed; resource name not open by you. 

- NoSuchName - close failed; unable to find the resource name in local Dir!\lap. 

A.2 Concrete EdenTypes 

A concrete Edentype is an EPL program. Section A.2.S contains a simple and complete example. 
of an Edentype. When an Eden object is activated. the kernel runs the EPL program. Each­
Edentype has two main parts. First, invocation procedures must be written to service the invo­
cations supported by the Edentype. Second, the rest of the program contains internal procedures 
and processes that execute within the program. The invocations supported by an Edentype are 
sometimes grouped into abstract types (section A.l). A cross reference of Edentypes with their 
abstract types is summarized in table A.7. The implementation of each Edentype is described in 
subsequent sections. 

R2D2Root R2D2TM ETM RepDir 

ERMSBasic Yes Yes Yes Yes 

RepDirectory Yes Yes Yes Yes 

TwoPhaseLock Yes Yes Yes No 

TransactionBracket No No Yes No 

ResourceM anagement No No Yes No 

Table A.7: Abstract Types Supported by Concrete Types 
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A.2.1 R2D2Root 

• Function: R2D2 root object; receives and forwards R2D2 requests. 

• Size: 1964 lines of EPL. 

• Supports 20 invocations: 

- Abstract Type ERMSBasic: CheckpointAt, CheckpointSelf, CopySelf. 

- Abstract Type ERMSDebug: SetCkptLimit, SetNoiseLevel, SetPathName. 

- Abstract Type Rep Directory: AddSet, DeleteSet, ReplaceSet, LookupSet, 
ListNames. 

- Four invocations for upward compatibility with earlier directories: 
Lookup, LookupEntry, NextEntry, List. 

- Three invocation for regeneration: SwitchRequest, SwitchResult, 
Switch Cancel. 

- Two invocations for top-level directory management: LookupTop, 
UpdateTop. 

• The utility modules used in R2D2Root are: 

- CheckName (section A.3.1). 

- Ckpt (section A.3.2). 

- LockMap (section A.3.5). 

- LocationMgr (section A.3.4). 

- RoottmMgr (section A.3.6). 

- SWn.fap (section A.3.7). 

A.2.2 R2D2TM 

• Function: R2D2 transaction manager in Access Structure. 

• Size: 2712 lines of EPL. 

• Supports 16 invocations: 

- Abstract Type ERMSBasic: CheckpointAt, CheckpointSelf, CopySelf. 

- Abstract Type ERMSDebug: SetCkptLimit, SetNoiseLevel, SetPathName. 

- Abstract Type Rep Directory: AddSet, DeleteSet, ReplaceSet, LookupSet, 
ListNames. 

- Four invocations for upward compatibility with earlier directories: Lookup, LookupEn­

try, NextEntry, List. 

- One invocation for caching the top-level directory: U pdateTop. 
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• The utility modules used in R2D2TM are: 

- Check Name (section A.3.1). 

- Ckpt (section A.3.2). 

- LocationMgr (section A.3.4). 

A.2.3 ETM 

• Function: ERMS transaction manager. 

• Size: 2574 lines of EPL. 

• Supports: 27 invocations: 

- Abstract Type ERMSBasic: CheckpointAt, CheckpointSelf, CopySelf. 

- Abstract Type ERMSDebug: SetCkptLimit, SetNoiseLevel, SetPathName. 

- Abstract Type TwoPhaseLock: LockName, UnlockName. 

- Abstract Type TransactionBracket: BeginTransaction, AbortTransaction, 
CommitTransaction. 

- Abstract Type ResourceManagement: Open Resource, CloseResource. 

- Abstract Type RepDirectory: AddSet, DeleteSet, ReplaceSet, LookupSet, 

ListNames. 

- Four invocations for upward compatibility with earlier directories: Lookup, LookupEn­
try, NextEntry, List. 

- Five invocations for internal management: RegisterTM, ReleaseTM, 
QueryTM, ListLock, ListChildren. 

• The utility modules used in ETM are: 

- CheckName (section A.3.1). 

- Ckpt (section A.3.2). 

- DirMap (section A.3.3). 

- LockMap (section A.3.5). 

- LocationMgr (section A.3.4). 

A.2.4 RepDir 

• Function: Mapping from String names into corresponding sets of capabilities; concretely, 
elements of R2D2 Core Structure. 

• Size: 1654 lines of EPL. 

• Supports 15 invocations: 
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- Abstract Type ERMSBasic: CheckpointAt, CheckpointSelf, Copy Self. 

- Abstract Type ERMSDebug: SetCkptLimit, SetNoiseLevel, SetPathName. 

- Abstract Type RepDirectory: AddSet, DeleteSet, ReplaceSet, LookupSet, 
ListNarnes. 

- Four invocations for upward compatibility with earlier directories: Lookup, LookupEn­
try, NextEntry, List. 

• The utility modules used in RepDir are: 

- CheckN arne (section A.3.1). 

- Ckpt (section A.3.2). 

- Dir}'lap (section A.3.3). 

- TIDMap (section A.3.9), including tdmap (section A.3.8). 

A.2.5 Edenlnteger 

• Function: Example Eden object implementing integer. 

• Size: 64 lines of EPL. 

• Supports 2 invocations: 

- One to read the integer value: Read. 

- One to alter the integer value: Add. 

• No imported utility modules. 

The Edentype Edenlnteger does not use utility modules. Its purpose is to serve as a simple 

example of an Eden object. The entirety of Edenlnteger EPL code is included in figure A.I. The 
abstraction which Edenlnteger implements is that of a signed integer number. The invocations it 

supports are Read, which returns the current value of the integer, and Add, which adds an integer 

to the current value. 
From the Eden object programmer point of view, one major accomplishment of EPL is lan­

guage support for invocations. Eden invocations have the syntax and semantics of Remote Pro­

cedure Calls, but Eden kernel primitives are message-oriented. EPL generates a considerable 

amount of code to translate between two styles of programming. For brevity, we do not list the 

code generated, only the word count to show the proportion of generated to programmer written 
code. In figure A.2, which is a direct output from the Unix "wc" program, the file Edenlnt.epl 

is the source program listed in figure A.I. All the other files are Concurrent Euclid modules 
generated by the EPL translator. Excluding coincident files, the total lines of code generated is 

280, which is significant compared to the 64 lines of source code. The proportion decreases as the 

size of programs increases. Table A.3 shows that all Edentypes listed in this appendix have more 
lines of code generated by EPL than those written by the programmer. 
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VAR EdenInteger : MODULE 
EXPORTS (Add, Read) 
INCLUDE ''l.EjectHead' 
VAR amount: Integer := 0 

INVOCATION PROCEDURE Read(callrights: EdenRights, 
VAR intval: Integer, VAR edstat: EdenStatus) = 
IMPORTS (amount) 
BEGIN intval := amount 
END Read 

INVOCATION PROCEDURE Add(callrights: EdenRights, 
addval: Integer, VAR edstat: EdenStatus) = 
IMPORTS(VAR amount) 
BEGIN amount := amount + addval 
END Add 

PROCESS TakeInvocations 
Imports(VAR Dispatcher, Kernel, CallInvocationProcedure) 
BEGIN VAR Invoc : Kernel.InvkHandle 

VAR WriteOps : Dispatcher.OperationSet 
Dispatcher.MakeOperationSet("Read Add", WriteOps) 
LOOP Dispatcher. ReceiveOperation(Invoc, WriteOps) 

CallInvocat1onProcedure(Invoc) END LOOP 
END TakeInvocations 
END MODULE { EdenInteger } 

Figure A.l: The Edenlnteger Edentype 

number of Lines Words Characters Filename 

144 348 5080 Cip.e 
15 45 467 Defs .e 

121 291 4453 Dets.ppe 
0 2 101 Interface.code 
9 113 569 Interface.deci 

15 45 467 Interface.text 
64 145 1830 EdenInt.epl 
64 170 1555 EdenInt.ppe 

Figure A.2: Summary of EPL Generated Code 
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Edentype Written Generated Proportion 

EdenInteger 64 280 4.38 

RepDir 1654 2860 1.73 

R2D2Root 1964 3343 1.70 

ETM 2574 3523 1.37 

R2D2TM 2712 3068 1.13 

Figure A.3: Comparison, Generated to Written Code (lines) 

A.2.6 Edentype Bankomat 

As part of the example application described in section 6.6, we include the program fragments 

of procedures BasicTransfer (figure A.4), BasicDecrement (figure A.5), and SmartTransfer (fig­

ure A.6). 
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
(8) 

{A client procedure doing the simple-minded transfer. } 
PROCEDURE BasicTransfer(Amount, FromAccount, ToAccount, 

VAR status) = BEGIN 
{Amount = amount to be transferred, FromAccount ~ ToAccount} 

SysLockMgr.Allocate( newTM) 
{Allocate a new ETM from System Lock Manager -SD.l- (newTM). } 

newTM .BeginTransaction(ParentTM, TimeOutPeriod, ShortDuration) 
{ParentTM is parent TM's capability, null capability for top-level. } 
{TimeOutPeriod: transaction's max life span, after that TM aborts.} 
{ShortDuration tells the TM to bypass checkpoints at each state change. } 

COBEGIN {Processes are not subtransactions: no recovery attempted. } 
{EPL does not support the cobegin syntax, used here for clarity, } 
{but it provides light-weight, concurrent processes. } 

BEGIN {First parallel process: increment ToAccount. } 
newTM.OpenResource(ToAccount, WriteNew, AceTo) 

fMake a new copy of the most recent version of ToAccount; } 
{lock the resource name ToAccount in System Lock Manager; } 
{and return the capability of the copy in AceTo.} 

Ace To.Increment( Amount, status) 
{The client manipulates the resource directly, once it is opened.} 

newTAf.CloseResource(ToAccount, AdoptNew, AceTo) 
{End of access, install the new version.} 

END {Of first process.} 
BEGIN {Second parallel process: decrement FromAccount.} 

newTM.OpenResource(FromAccount, WriteNew, AccFrom) 
{Again: get a new copy in AccFrom and lock the resource.} 

AccFrom .Decrement( Amount. status) 
newTM.CloseResource(FromAccount, AdoptNew, AccFrom) 

{Same as above: install the new version.} 
END {Of second process.} 
COEND 
IF both processes succeeded THEN 

(9) newTM.CommitTransaction(status) 
{Pass the new versions to R2D2; release locks from SLM.} 

ELSE {Both checking and savings have insufficient funds.} 
(10) newTM.AbortTransaction(status) 

{Do not change R2D2; just release locks from SLM.} 
END IF 
END BasicTransfer 

Figure A.4: The BasicTransfer Procedure 
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{A client procedure doing the simple-minded decrement. } 
PROCEDURE BasicDecrement(Amount, FromAccount, 

VAR status) = BEGIN 
{Amount = amount of money to be decremented from FromAccount } 

SysLockMgr.Allocate(newTM) 
{Allocate a new ET~1 from System Lock Manager -SLM- (newTAf). } 

newTM .BeginTransaction(ParentTM, TimeOutPeriod, ShortDuration) 
{ParentTM is the capability of parent ETM. } 
{TimeOutPeriod: transaction's max life span, after that TM aborts. } 
{ShortDuration tells the TM to bypass checkpoints at each state change. } 
newT}.{.OpenResource(FromAccount, WriteNew, AccountFrom) 

{Get a new copy in AccountFrom and the resource lock.} 
AccountFrom.Decrement( Amount, status) 
newTM.CloseResource(FromAccount, AdoptNew, AccountFrom) 

{Install the new version.} 
IF success THEN 

newT:\! .CommitTransaction(status) 
{Pass the new versions to ParentTMj release locks.} 

ELSE {Insufficient funds.} 
new TM .AbortTransaction( status) 

{Do not change ParentTM; just release locks.} 
END IF 
END BasicDecrement 

Figure A.5: The BasicDecrement Procedure 
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{A client procedure performing operations within a transaction. } 
PROCEDURE SmartTransfer(AccountName, Amount, VAR status) = BEGIN 

{Amount = amount of money to be transferred from checking to visa. } 
{For concreteness, AccountName is shown as "alice" in the following code. } 

(1) KerneI.Create(ETM, newTM) 
{This kernel call creates an ETM object, returning its capability in newTM. } 

(2) newTM.BeginTransaction(SessionTM, TimeOutPeriod, ShortDuration) 
{SessionTMis the capability of parent TM; a null capability for top-level.} 
{TimeOutPeriod is the transaction's max life span, after which TM aborts.} 
{ShortDuration tells the TM to bypass checkpoints at each state change.} 

COBEGIN {Each process could be a subtransaction, but not in this case. } 
{EPL does not support the cobegin syntax, (used here for clarity), } 
{but it provides light-weight, concurrent processes. } 

BEGIN {First parallel process: increment "alice/Visa". } 
(3) newTM.OpenResource("alice/Visa", WriteNew, AccountTo) 

{Make a new copy of the most recent version of "alice/Visa" in R2D2; } 
{lock the resource name "alice/Visa" in System Lock Manager; } 
{and return the capability of the copy in AccountTo.} 

(4) Account To.Increment( Amount, status) 
{The client manipulates the resource directly, once it is opened.} 

(5) newTM.CloseResource("alice/Visa", AdoptNew, AccountTo) 
{End of access, install the new version.} 

END {First process.} 
BEGIN {Second parallel process: decrement the checking.} 

(6) BasicDecrement(AccountFrom, status) 
IF status NOT = "Success" 
THEN {"alice/checking" does not have sufficient funds.} 

(7) BasicTransfer(Amount, "alice/savings", newTM, status); 
{BasicTransfer is a nested transaction, } 
{moving Amount from "alice/savings"into "alice/checking".} 

IF status = "Success" 
THEN BasicDecrement(AccountFrom, status) END IF 

END IF 
END {Second process.} 
COEND 
IF both processes succeeded THEN 

(8) newTM.CommitTransaction(status) 
{Pass the new versions to R2D2; release locks in System LockMgr.} 

ELSE {Both checking and savings have insufficient funds.} 
(9) newTM.AbortTransaction(status) 

{Do not change R2D2; just release locks from System Lock Manager.} 
END IF 
END SmartTransfer 

Figure A.6: The SmartTransfer Procedure 

117 



A.3 Utility Modules 

All the utility modules were written in Concurrent Euclid, and contain a fair amount of comments, 
debugging code, and blank lines. Table A.8 contains a cross reference of Edentypes with utility 
modules they use. 

R2D2Root R2D2TM ETM RepDir 

Ched:Name Yes Yes Yes Yes 

'Ckpt Yes Yes Yes Yes 

DirMap No No Yes Yes 

LockMap Yes No Yes No 

TID Map No No No Yes 

tdmap No No Yes No 

Table A.8: Concrete Edentypes and Utility Modules 

A.3.1 CheckName 

• Function: validity check and interpretation of string names. 

• Use: check string names in RepDir and other places. 

• Size: 219 lines of CE code. 

• No data structures. 

• 7 exported operations. 

- Three name checking operations: Pathlllega!, lllega!, UIDLess. 

- Three name interpretation operations: Extractor, RLExtractor, 
N estingN urn ber. 

- One housekeeping function: UID~1akeNull. 

• 1 imported module. 

- Ckpt (section A.3.2): debug and identification module. 
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A.3.2 Ckpt 

• Function: Edentype debugging and identification module. 

• Use: help debug every Edentype and utility module. 

• Size: 559 lines of CE code. 

• Ivlain data structures: several "global" variables such as trace level and object name. 

• 23 exported operations. 

- Ten debug operations: ErrorLevel, SetErrorLevel, CheckpointLimit, 

SetCheckLimit, CheckLimit, NeedCheckpoint, NeedCheck, SetNeedCheck, 

PathName, SetPathName. 

- Five printing operations: PrintCapa, PrintTID3, PrintXString, PrintDur, 

PrintEFSError . 

- Five conversion and macro operations: XStr2Char, Capas1IakeNull, NullTID. ~IakeV~I, 

FreeNStr, InitNStr. 

- Two housekeeping functions: PRtoAF. AFtoPR. 

• No imported modules. 

A.3.3 DirMap 

• Function: mapping of string names into sets of capabilities. 

• Use: implements the mapping in RepDir (R2D2) and ET~l (ER~IS). 

• Size: 544 lines of CE code. 

• Main data structures: a linked list, each element with a string name and a set of capabilities. 

• 14 exported operations. 

- Four name manipulation operations: NameFind, Namelnsert, NameDelete, 

N ameReplace. 

- Six map query operations: ~IapList. MapListNames, MapNext, MapLast, 

MapBiggest, MapTranslate. 

- Four housekeeping functions: Maplnitialize, MapPrintState, PRtoAF, 

AFtoPR. 

• 1 imported module. 

- Ckpt (section A.3.2): debug and identification module. 
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A.3.4 LocationMgr 

• Function: module responsible for location information, specification, and activity: concretely 

it provides a higher location abstraction than the kernel location-dependent primitives. 

• Use: all programs concerned with location, R2D2Root, R2D2TM, ETM. 

• Size: 487 lines of CE code. 

• :Main data structures: list of active Eden hosts and PODs. 

• 12 exported operations. 

- Ten host and POD selection operations: RandomHost, RandomPOD, 

AcceptableHost, AcceptablePOD, PublicHost, PublicPOD, Difi1{ost, 
DiffPODSet, DiffPOD, ExtractNodes. 

- Two creation/activation operations: CreateRandom, RandomActivate. 

• 1 imported module. 

- Ckpt (section A.3.2): debug and identification module. 

A.3.5 LockMap 

• Function: mapping of string names (resources) into locks (type of lock and lock holders). 

• Use: in the implementation of the abstract type LockTable. 

• Size: 1017 lines of CE code. 

• ~fain data structures: a two-dimensional linked list. Each element of the outer list contains 

a TID, type of lock, and a list of lock holders. 

• 14 exported operations. 

- Three name entry manipulation operations: NameFind, Namelnsert, 

N ameDelete. 

- Three lock holder manipulation operations: OwnerFind, Ownerlnsert, 

OwnerDelete. 

- Four map query operations: ~fapList. MapNext, MapTranslate, 

OvmerTranslate. 

- Four housekeeping functions: ~laplnitialize, MapPrintState, PRtoAF, 

AFtoPR. 

• 1 imported module. 

- Ckpt (section A.3.2): debug and identification module. 
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A.3.6 RoottmMgr 

• Function: module responsible for R2D2TM creation, allocation, activation, and reuse: also 
remembers the top-level RepDirs. 

• Use: in R2D2Root to manage the instances of R2D2TM and top-level RepDirs ('/,). 

• Size: 488 lines of CE code. 

• 1fain data structures: list of available R2D2T~ls, each element containing a capability, and 
whether it has been allocated. 

• 8 exported operations. 

- Two top-level RepDir management operations: LookupTop, ReplaceTop. 

- Three R2D2TM management operations: AllocateTM, IPAllocateT:\I, 
IPDeallocateTM. 

- Three housekeeping operations: TMlnitialize, TMAFtoPR, TMPRtoAF. 

• 1 imported module. 

- Ckpt (section A.3.2): debug and identification module. 

A.3.1 SWIMap 

• Function: mapping of string names (RepDir names) into locks (type of lock and lock hold­
ers). 

• Use: R2D2Root has a SWIl\lap to synchronize regeneration operations within it, in parallel 
to normal updates. 

• Size: 1044 lines of CE code. 

• ~lain data structures: identical to LocHIap. 

• 14 exported operations, identical to Lock~lap above. (Concurrent Euclid does not support 
"generic" modules, so if two instances of a module are needed, two must be declared.) 

• 1 imported module. 

- Ckpt (section A.3.2): debug and identification module. 

A.3.B tdmap 

• Function: mapping of string names (invocation UIDs) into invocation status. 

• Use: borrowed from DirMap and used in TID~lap. 

• Size: 536 lines of CE code. 

• Main data structures: identical to DirMap. 
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• 7 exported operations. 

- Three name entry manipulation operations: NameFind, NameInsert, 
N ameDelete. 

- One map query operation: MapTranslate. 

- Three housekeeping functions: Maplnitialize, PRtoAF, AFtoPR. 

• 1 imported module. 

- Ckpt (section A.3.2): debug and identification module. 

A.3.9 TID Map 

• Function: mapping of string names (invocation UIDs) into invocation status. 

• 'l'se: provides idempotency of operations in RepDir. 

• Size: 134 lines of CE code. 

• 1Iain data structures: tdmap. 

• 5 exported operations. 

- Two name entry manipulation operations: NameFind, NameInsert. 

- Three housekeeping functions: 1IapInitialize, PRtoAF, AFtoPR. 

• 2 imported modules. 

A.4 

tdmap (section A.3.8: the real mapping from name to invocation results. 

- Ckpt (section A.3.2): debug and identification module. 

Measurement Samples 

In this section, we include some sample measurement data we obtained from R2D2. Table A.9 
contains sample data from measuring 100 LookupSet invocations as described in section 5.3.3. 

Table A.11 contains sample data from measuring 15 pairs of AddSet invocations, each followed by 
a DeleteSet invocation. The net result is the same as 30 ReplaceSet invocations. In comparison, 
sample data from measurements of the non-replicated directory are in tables A.I0 and A.12. In 
these measurements, the string names used always have three levels, such as "/users/bob/test". 
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100 LookupSet invocations 

run number elapsed time run number elapsed time 

1 41.44 sec 6 41.58 sec 

2 41.75 sec 7 41.96 sec 

3 42.03 sec 8 42.64 sec 

4 41.97 sec 9 41.59 sec 

5 41.54 sec 10 41.43 sec 

Table A.9: Measurement Sample Data - R2D2.LookupSet 

100 non-replicated Lookup invocations 

run number elapsed time run number elapsed time 

1 23.38 sec 6 23.08 sec 

2 23.13 sec 7 23.08 sec 

3 23.10 sec 8 23.11 sec 

4 22.98 sec 9 23.09 sec 

5 23.11 sec 10 23.10 sec 

Table A.10: 11easurement Sample Data - Non-Replicated Lookup 
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AddSet DeleteSet 

run number elapsed time elapsed time 

1 2.03 sec 2.22 sec 

2 2.11 sec 2.10 sec 

3 2.08 sec 2.32 sec 

4 2.14 sec 2.30 sec 

5 2.20 sec 2.13 sec 

6 2.28 sec 2.24 sec 

7 2.20 sec 2.13 sec 

8 2.15 sec 2.20 sec 

9 2.09 sec 2.18 sec 

10 2.35 sec 2.04 sec 

11 2.20 sec 2.32 sec 

12 2.10 sec 2.18 sec 

13 2.15 sec 2.17 sec 

14 2.26 sec 2.28 sec 

15 2.03 sec 2.18 sec 

Table A.ll: Measurement Sample Data - R2D2.Update 
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Add Delete 

run number elapsed time elapsed time 

1 1.36 sec 1.47 sec 

2 1.43 sec 1.43 sec 

3 1.40 sec 1.42 sec 

4 1.32 sec 1.36 sec 

5 1.40 sec 1.44 sec 

6 1.38 sec 1.52 sec 

7 1.41 sec 1.42 sec 

8 1.35 sec 1.40 sec 

9 1.44 sec 1.43 sec 

10 1.41 sec 1.42 sec 

11 1.41 sec 1.33 sec 

12 1.38 sec 1.50 sec 

13 1.34 sec 1.41 sec 

14 1.38 sec 1.47 sec 

15 1.40 sec 1.38 sec 

Table A.12: Measurement Sample Data - Non-Replicated Update 
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Appendix B 

System Programming with Objects 

During the implementation of R2D2 and ER11S. we have gained some experience writing system 
software, such as nested transactions and transparent replication support. Since system softv.:are 
is not usually written using object-oriented systems and languages, our experience in Eden may 

be useful to other object programmers using experimental systems. 

B.l Object Composition 

The primary benefit of programming in Eden is the ease of object composition. Composition: 
is possible at two levels. Statically, modules can be linked together; dynamically, objects can 

be invoked. Since invocations have the same syntax and semantics of procedure calls, the main 
difference between the two forms of composition is in cost. Linking modules together produces 
larger objects. while invocations carry high run-time overhead. 

We have mentioned some Eden invocation timing figures in table 5.1. To provide a rough 
estimate of Eden object size, the Edenlnteger object described in appendix section A.2.5 occupies 

about lOOK bytes of virtual memory when running. Obviously, the program written by the EPL 

programmer is small. The minimum size of an Eden object is occupied by parts of Eden kernel. 
utility routines, and stack/CE kernel. 

The minimum size of Eden objects and the cost of invocations clearly reward a centralized style 
of programming, in which all objects are lumped into one to minimize both size and invocation 

overhead. Since the purpose of Eden is to experiment with distributed applications. we have had 
consciously to break up objects and distribute them. We believe that what we lost in performance 
was compensated by the clean composition leading to R2D2 and ERMS. The main tool of dynamic 

composition, abstract types, has become a central concept of the Emerald language [15J. 

B.2 Separating Mechanism From Implementation 

Despite good support for composition of objects, Eden programmers have a relatively small num­
ber of building blocks to work with: 

1. All resources are encapsulated in objects. 

2. Objects communicate only via invocations. 
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3. The only way to store data on stable storage is checkpoint. 

Since there is one and only one way to communicate with other objects or to write on disk, invo­
cations and checkpoints have to be used, no matter how much they cost. Since these operations 
are kernel primitives, Eden object programmers cannot use a simpler operation even though the 
full generality of these primitives is not being used. 

Unfortunately, Eden has only one general, expensive implementation for those general mech­
anisms. A high price is exacted even from simple uses. \Ve maintain that does not have to be the 
case. From the point of view of object, an abstract type allows many concrete implementations, 
each tailored to a specific need. This is the position taken by the Emerald project [45,47], where 
specialized implementations provide efficiency to a general mechanism. Current results [14.15] 
seem encouraging. 

B.3 Design for Testability 

The major problem introduced by the encapsulation in object-oriented systems is debugging. 
When we are debugging an application involving several objects and the kernel, encapsulation 

may hide useful infonnation. A typical problem in Eden is an invocation that does not return. 

All the participant objects and sometimes the kernel are suspects. To find the bug, we need some 
ways to see through the encapsulation. • 

Tracing is one of the oldest debugging methods. In strategic parts of a program, print state­
ments allow the programmer to check important state changes. \Vhen debugging large programs. 
however, the amount of information printed may become overwhelming. Multi-level tracing allows 
selection at run-time of different levels of detail. 

Normally, tracing statements are considered temporary additions to the program, taken out 

when the program is released. In the "normal" software development cycle, the tracing statements 
are associated only with the debugging phase. In an experimental environment like Eden. where 
the system software (including the kernel, the compiler, and library routines) undergo frequent 
changes, tracing information proved to be invaluable and a necessary part of many modules. 

During the debugging phase, traces contribute in the normal way. After a program has been 

debugged, its traces help to debug other parts of the system. 
We will illustrate this point with an example. R2D2 has been operational since February 1985. 

In July 1985, some measurements were needed for a paper on Eden replication experience [65]. 

Occasionally, some objects being measured failed to return the invocations they were supposed 

to be servicing. This problem seemed to happen randomly, affecting different objects each time. 
Object-level tracing from all objects involved showed that they execute normally, stopping 

only at an arbitrary invocation. Apparently the invoker sends the invocation and waits, while 
the invokee does not receive the message. The problem, therefore, seems to be with the kernel 
delivery of invocation messages. Kernel tracing revealed a message exchange loop involving the 
invoker and invokee's hosts and the invokee's POD. Additional tracing commands were put in the 
kernel to show that some kernel data structures have been corrupted after the invoked object has 
crashed and reactivated in another host. Corrupted data structures caused the loop. 

In the above example, all levels of object tracing were used to determine that the objects did 
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not cause the problem, and all levels of kernel tracing were used, plus the additional ones. to 
identify it. The kernel bug was introduced in the then-latest kernel update, as part of a perfor­
mance optimization effort, which eliminated some "redundant" data structures. Summarizing. in 
an experimental system like Eden, where higher level (object) programmers are expected to help 
debug lower level (kernel) software, we found it useful to maintain debugging tools at all levels. 
Tracing was simply the particular tool used in Eden. 

B.4 Composed Messages 

One fundamental difficulty in the debugging of composed objects is to find where the problem is. 
Information hiding, which facilitates interface, makes it difficult to locate the source of problems. 
In particular, a resource composed of many objects, such as R2D2, may span many nodes. To 
find and solve a specific problem requires specific knowledge of details of the system. 

For example. if an AddSet request to R2D2 returns "KerneIError", we may want to know 
which objects had difficulty checkpointing. Since a chain of invocations is involved in the request, 

the Eden standard return status does not provide the detailed information to locate the problem. 
Since the problem above is aggravated by the number of objects in the system, a solution 

that limits the number of participant objects has limited utility. We have adopted a general 
mechanism in the spirit of object composition. The idea was borrowed from recent works in. 

Artificial Intelligence on expert systems. 
Some expert systems have an explanation facility, which gives the rationale for reaching certain 

conclusions. The explanation follows the "line of reasoning" and may have many levels. The 
implementation of the explanation mechanism varies from system to system. but the idea is to 

keep track of the places the program has visited, and why. 

With each invocation in R2D2, a stack of strings is returned. Each object pushes its message to 

the stack, and the invoker analyzes the messages in the stack to determine the problem. Usually. 
the stack remains empty. IT something does go wrong, the object simply pushes its identification 1 

and the explanation -the event. its causes and effect- into the stack. All intermediate objects 

perceive the failure and push their own identification into the stack. Finally, the client pops the 

stack to retrace the events in search of the problem. 

1 Preferably a system-unique, human-readable identification, although in Eden, there is no system support for 
that. 
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Appendix C 

Glossary 

C.1 Eden Terms 

.• active form: Unix process executing an Edentype program, which can be invoked using its 
capability. Section 5.3.1 on page 41. 

• CE: see Concurrent Euclid. 

• checkpoint: Eden kernel primitive to write the object state to the passive representation. 
This operation is atomic, always preserving a consistent version of the passive representation: 
Section 5.3.1 on page 41. 

• Concurrent Euclid: the concurrent version of Euclid, a Pascal derivative. Briefly introduced 
in section 5.1.2; for more details the reader must consult the CE book [43J. 

• Eden host: Unix process running the part of Eden kernel responsible for communications 
between kernels and objects. Section 5.3.1 on page 41. 

• Eden objects: In Eden. all resources are encapsulated in objects written by object program­
mers. Section 1.3 on page 2 and Section 5.1.2 on page 35. 

• Eden Programming Language: language used to write Edentype code. Section 5.1.2 on 
page 35. 

• Eden system: An object-oriented distributed operating system. Section 1.3 on page 2, 

section 5.1.2 on page 35, and section 5.3.1 on page 41. 

• Edentype: program written by Eden object programmer. Eden objects run the Edentype 
program of which they are instances. Section 5.1.2 on page 35. 

• EPL: see Eden Programming Language. 

• host: see Eden host. 

• passive representation: permanent state of an object stored on stable storage. 

• POD: Unix process running the part of Eden kernel that checkpoints an object's passive 

representation to disk. Section 5.3.1 on page 41. 
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C.2 R2D2 and ERMS Terms 

• Access Structure: R2D2Root and R2D2TMs to access Core Structure. Section 5.1.4. 

• Bankomat: Concrete Edentype, EdenBank application. Appendix section A.2.6. 

• Check Name: Utility module, checking string name conventions. Appendix section A.3.1. 

• Ckpt: Utility module. Appendix section A.3.2. 

• Core Structure: tree of RepDir objects containing the actual mapping. Section 5.1.3. 

• Didvlap: Utility module, mapping string name into a set of capabilities. Appendix sec­
tion A.3.3. 

• Edenlnteger: Concrete Edentype, example of a simple Edentype. Appendix section A.2.5. 

• ER1ISBasic: Abstract type; it defines the basic operations in ER~IS. Appendix section A.1.2. 

• ERMSDebug: Abstract type; it defines the debugging invocations in ER~IS. Appendix 
section A.1.3. 

• ETM: Concrete Edentype, ERMS Transaction Manager. Sections 6.3 and 6.4. 

• LocationMgr: Utility module, location-related code. Appendix section A.3.4}. 

• LocH-lap: Utility module, mapping string names into lock holders. Appendix section A.3.5. 

• LockTable: EPL module implementing TwoPhaseLock using LocHlap. Appendix sec­

tion 6.2.1. 

• R2D2Root: Concrete Edentype, Root of R2D2, receiver of all R2D2 requests. Section 5.2.1. 

• R2D2TM: Concrete Edentype, R2D2 transaction manager; it keeps the replica RepDir ob­
jects consisten t. Section 5.2.2. 

• RepDir: Concrete Edentype, R2D2 core structure objects, which contain the mapping from 
string names into capability sets. Section 5.2.3. 

• RepDirectory: Abstract type; it defines the operations on mapping. Appendix section A.1.1 

• RepDirTable: EPL module implementing RepDirec.tory using DirMap. 
Section 6.2.2. 

• ResourceManagement: Abstract type: it defines the resource access delimiters. Appendix 

section A.1.6. 

• ResourceManager: EPL module implementing Resource11anagement in ETM. Section 6.4.4. 

• SLM: see System Lock 1\lanager. 

• System Lock Manager: An Eden object that implements a lock table. Section 6.2.1. 
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• TID: system-unique transaction identification. 

• TransactionBracket: Abstract type; it defines the transaction delimiters. Appendix sec­
tion A.1.S. 

• TreeManager: EPL module implementing TransactionBracket in ETM. 
Section 6.4.4. 

• TwoPhaseLock: Abstract type; it defines LockNarne and UnlockNarne. Appendix sec­
tion A.1.4. 
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