
/

Replication and Nested Transactions

in the Eden Distributed System

Calton Pu

Department of Computer Science
Columbia University
:\ew 'York, NY 10027

Ahstract

lIardware redundancy in distributed systems offers the potential for increased availability and
performance, but this requires soft\vare support if the full potential is to be realized. We have
designed and implemented two mechanisms for such support. The first provides crash-resistant
resources. replicated transparently and consistently to increase the availability of distribllted data.
To update multiple copies despite down nodes, we have introduced the Rt>generation method.
used in the implementation of a replicated system directory. Regeneration restores inaccessible
copies elsewhere in the netv,·ork, maintains the availability of resources, and adapts to configuration
changes.

The second mechanism is a system supporting nested transactions. which can manage the
complex failure modes in a distribllted system, synchronize concllrrent resource access internal to
applications. and facilitate safe module composition. In the tree-structured nesting. each transac­
tion has a Transaction Manager (T\I), responsible for the concurrency control and crash recovery
of its subtransactions. \lany concurrency control and recovery techniques can be combined in this
TM Tree design frarne\vork. We chose locking and versions for the first implementation. Using
Eden objects and the replicated directory, our nested transactions provide consistent concurrent
access to locat ion-independent, c rash- resistant reSOll rces.

In summary, the principal contributions of this research are the Regeneration method and the
T\[Tree framework. Regeneration Ilses the separation of hardware repair from data restoration
to increase replicated data availability. T\[Tree composes existing techniques to derive many
differellt designs for nested transacti()ns. l30th have been proven in the design and implemelltation
of actllal systems.

"A di,;:ertation :ubmitted in partial fulfillment of the reqllirernents for the degree of DoctN of Philo:ophy, llni­
versity of \\iashingt·:.n.

"This work was supported in pa rt by the National Science Foundation under gran t :\0, \\CS-800411 t.

Contents

1 Introduction
1.1 Motivation
1.2 Model and Definitions
1.3 The Eden System . . .

2 Transactions for Consistency
2.1 The Transaction Concept .

2.1.1 Single-Level Transactions
2.1.2 Nested Transactions

2.2 Concurrency Control
2.2.1 Two-Phase Locking
2.2.2 Timestamps.....
2.2.3 Optimistic Concurrency Control

2.3 Crash Recovery.
2.3.1 Versions
2.3.2 Logging...
2.3.3 Distributed Commit

3 Replication for Availability
3.1 Crash-Resistant Resources
3.2 Multiple-Copy Update

3.2.1 Asymmetric - Primary Copy ..
3.2.2 Voting - Majority
3.2.3 Reconfiguration - Available Copies
3.2.4 Comparison With Hardware Redundancy

3.3 Network Partitions
3.3.1 Pessimistic Approach - Voting
3.3.2 Optimistic Approach - Merging

3.4 Replica Location
3.4.1 The Mapping and Its Root .
3.4.2 Full Redundancy
3.4.3 Broadcast...........
3.4.4 Well-Known Fixed Configuration
3.4.5 Summary

ii

1
........ 1

2
........ 2

4
4
4
5
6
6..
i-
8
9

10
10
11

12
12
13
13
14
14
15
16
16
16
17
17
18
18
19
19

4 The Regeneration Algorithm
4.1 The Regeneration Algorithm

4.1.1 Definitions and Assumptions
4.1.2 Conceptual Algorithm
4.1.3 Discussion........
4.1.4 Algorithm Verification .

4.2 Making Regeneration Practical
4.2.1 Network Partitions.
4.2.2 Root Directory
4.2.3 Garbage Collection . . .

4.3 Comparison with Previous Work
4.3.1 Primary Copy ..
4.3.2 Majority Voting
4.3.3 Available Copies

4.4 Availability Analysis ..
4.4.1 The k-out-of-N Model
4.4.2 Primary Copy.
4.4.3 Majority Voting ...
4.4.4 Available Copies and Regeneration
4.4.5 Comparison of The Four Methods

5 Replicated Resource Distributed Database
5.1 Design

5.1.1 R2D2 Client Interface
5.1.2 Eden Objects ..
5.1.3 Core Structure
5.1.4 Access Structure

5.2 Implemenentation .. .
5.2.1 R2D2 Root .. .
5.2.2 R2D2 Transaction Manager .
5.2.3 Replicated Directory . .
5.2.4 Regeneration in R2D2

5.3 Measurements and Evaluation.
5.3.1 Eden System
5.3.2 Experimental Set-Up.
5.3.3 Measurements
5.3.4 Evaluation

6 Eden Resource Management System
6.1 Overview ...•......

6.1.1 The Ideas
6.1.2 Computation Model
6.1.3 Client Interface ...

6.2 System Level Control. . ..
6.2.1 System Lock Manager
6.2.2 Version-Based Crash Recovery
6.2.3 Discussion............

iii

21
21
21
21
22
22
26
26
26
27
27
28
28
28
29
29
30
30
31
31

3~

34-

34
35
36
36
38
38
39
40
40
41
41
43
45
46

48
48
48
49
51
52
53
54
55

6.3 Top-Level ETM
6.3.1 ETM's Data Structures
6.3.2 Resource Management
6.3.3 TransactionBracket.
6.3.4 Discussion.

6.4 Nesting ETMs
6.4.1 ETM Tree
6.4.2 Nested Concurrency Control
6.4.3 Nested Crash Recovery ...
6.4.4 Summary: Structure and Interactions

6.5 Summary of ERMS Features
6.5.1 ERMS Resource Support
6.5.2 ERMS Transaction Support

6.6 Application Example: Smart Bank Machine
6.6.1 Sample Session
6.6.2 A Nested Transaction Example ..
6.6.3 ERMS Features in SmartTransfer .
6.6.4 ERMS Actions Behind the Scenes

6.7 Comparison with Previous Implementations
6.7.1 Argus
6.7.2 LOCUS and Genesis .. .
6.7.3 Distributed Transactions.
6.7.4 Comparison Table

7 Nesting by Composition
7.1 T11 Tree

7.1.1 Nested Atomicity
7.1.2 Combining Different Techniques
7.1.3 Applications of Mixed Techniques

7.2 Superdatabases
7.2.1 Distributed Databases by Composition.
7.2.2 Heterogeneous Databases by Composition

7.3 Performance Issues
7.3.1 Reducing Communication Costs
7.3.2 Inherent Cost ...

7.4 Analyzing Earlier Designs
7.4.1 Moss.
7.4.2 Reed
7.4.3 Jessop
7.4.4 TM Tree Design Space.

8 Conclusion
8.1 Summary of Contributions.

8.1.1 Replication
8.1.2 Nested Transactions
8.1.3 Systems

8.2 Future Work

iv

56
56
57
58
59
60
60
60
63
65
66
67
67
70
70
71
74
77
78
79
79
79-
80

82
82
82
84
86
87
87
88
89
89
90
91
91
92
92
93

94
94
94
95
95
96

r 8.2.1 Replication 96
8.2.2 Transaction Systems 96
8.2.3 Composition 97

Bibliography 98

A Implementation Details 104
A.1 Abstract Types . . . 104

A.1.1 Rep Directory 104
A.1.2 ERMSBasic .. 105
A.1.3 ERMSDebug . 106
A.1.4 TwoPhaseLock 106
A.1.5 TransactionBracket . 107
A.1.6 ResourceManagemen t 108

A.2 Concrete EdenTypes . 109
A.2.1 R2D2Root. 110
A.2.2 R2D2TM 110
A.2.3 ETM 111
A.2.4 RepDir 111
A.2.5 EdenInteger . . 112
A.2.6 Edentype Bankomat 114

A.3 Utility Modules ... 11~

A.3.1 CheckName 118-
A.3.2 Ckpt 119

~ A.3.3 DirMap ... 119
A.3.4 LocationMgr 120
A.3.5 LockMap 120
A.3.6 RoottmMgr 121
A.3.7 SWIMap 121
A.3.8 tdmap ... 121
A.3.9 TID Map .. 122

A.4 Measurement Samples 122

B System Programming with Objects 126
B.1 Object Composition ... , 126
B.2 Separating Mechanism From Implementation 126
B.3 Design for Testability 127
B.4 Composed Messages 128

C Glossary 129
C.1 Eden Terms 129
C.2 R2D2 and ERMS Terms . 130

v

List of Figures

2.1 Standard Model of Nested Transactions

4.1 The Conceptual Algorithm ...
4.2 Write Algorithm with Invariants
4.3 Primary Copy
4.4 Voting
4.5 A vail able Copies and Regeneration
4.6 Regeneration, before and after
4.7 Comparison, 10 copies
4.8 Comparison, 5 remaining copies .

5.1 Eden Object's Two Forms
5.2 Core Structure - A Tree Structured Mapping
5.3 Access Structure - On Top of Core
5.4 R2D2TM Actions in Add{'users/bob') ...
5.5 R2D2TM Replaces an Inaccessible RepDir .
5.6 Eden Hardware (circa Spring 1985) .
5.7 Host and POD .. .
5.8 Reading R2D2 .. .
5.9 Writing Two Copies

6.1 Client and ETM ..
6.2 Hypothetical Transaction Example
6.3 Schematic ERMS Structure
6.4 Top-Level Structure
6.5 ETM Tree Example
6.6 OpenResource: Nested Locking
6.7 OpenResource: Nested Lookup
6.8 Subtransaction Commit
6.9 Relationships between the Parent and Child ETMs
6.10 Communications between Parent and Child ETMs
6.11 Nested Concurrency Control Example
6.12 Nested Reliability Atomicity Example
6.13 Sample Bankomat Session
6.14 Schematic Sample Session
6.15 Procedure BasicTransfer
6.16 Procedure SmartTransfer, checking to Visa Example
6.17 Concurrent Nested Transactions

vi

5

23
25
30
30
32
32
33
33

3~

37-
37
39
41
42
43
44
45

49
50
52
53
61
62
64
65
66
66
68
69
71
72
73
75
76

7.1 Nested OpenResource
7.2 Example of Mixed Concurrency Control
7.3 Simple Superdatabase
7.4 A Not-So-Simple Deadlock.
7.S Simple Example of Heterogeneous Database

A.l The Edenlnteger Edentype
A.2 Summary of EPL Generated Code
A.3 Comparison, Genera.ted to Written Code (lines) .
A.4 The BasicTra.ru;fer Procedure .
A.S The BasicDecrement Procedure
A.6 The SmartTransfer Procedure.

vii

83
86
88
89
90

113
113
114
115
116
117

List of Tables

2.1 A Simple Lock Compatibility Table.

3.1 General Quorum Consensus ..
3.2 Analyzing Concrete Proposals .

4.1 Comparison of Read/Write Actions.
4.2 Majority Voting, Quorum Choices for 10 Copies.

5.1 Informal Eden Timings (in seconds, SUN 4.2)
5.2 Measurement Summary (time in seconds)

6.1 Comparing Implemented Systems

7.1 illustration: Nested Concurrency Control Actions.
7.2 Summary: Nested Crash Recovery Actions.
7.3 Analyzing Nested Transaction Designs

A.1 Abstract Type Rep Directory
A.2 Abstract Type ERMSBasic .
A.3 Abstract Type ERMSDebug .
A.4 Abstract Type TwoPhaseLock
A.5 Abstract Type TransactionBracket
A.6 Abstract Type ResourceManagement .
A.7 Abstract Types Supported by Concrete Types.
A.8 Concrete Edentypes and Utility Modules
A.9 Measurement Sample Data - R2D2.LookupSet
A.lO lvleasurement Sample Data - Non-Replicated Lookup.
A.ll Measurement Sample Data - R2D2.Update
A.12 Measurement Sample Data - Non-Replicated Update.

viii

6

15
19

24
31

43
46

81

84"

85
93

105
106
106
107
107
108
109
118
123
123
124
125

Chapter 1

Introduction

1.1 Motivation

Distributed systems may offer increased availability with independent failure modes and improved
performance with concurrent execution. However, distributed applications with high concurrency
and availability need more than just hardware redundancy. Distributed data must be kept con­
sistent and available despite partial failures in the network. The probability of all data resources
distributed over N nodes in a network being accessible is the product nf:l P(i), where P(i) is.
the probability of node i being accessible. Without data redundancy, partial failures decrease the:.
probability of successful executions of distributed applications.

We have introduced the Regeneration method for data replication. In some cases, data remain
inaccessible for relatively long times - for example, in hard failures requiring manual repair.
Regeneration separates the repair of disabled hardware from the restoration of data. Through a
probabilistic analysis, we show that Regeneration takes advantage of this separation to provide
more availability than other data replication techniques, which wait for hardware repair. Using
Regeneration, we have implemented a replicated directory system, which is used in the replication
support integrated into a nested transaction mechanism.

Nested transactions organize operations on distributed data into atomic sets, which are useful

in several ways. First, partial failures in such an atomic set revert distributed data to their
original state, undoing intermediate changes. This simplification facilitates the handling of the
2N possible failure combinations in a network of N nodes. Second, concurrent resource access
from different atomic sets are synchronized automatically, promoting increased concurrency in
distributed applications. Third, these atomic sets of operations do not interfere with each other,
allowing safe and reliable combination of distributed software.

To support nested transactions, we have designed and implemented the Eden Resource Man­
agement System (ERMS). Unlike previous proposals, which extend specific concurrency control
and crash recovery methods, we shall here separate the concerns of nesting from particular imple­
mentation techniques. Normal, single-level concurrency control and crash recovery techniques are
implemented at each level; careful composition of these modules provides resource access synchro­
nization, failure isolation, and uniform syntax. In addition, the resources are location-independent
Eden objects, which may optionally be replica.ted.

The remaining sections of this chapter introduce our model of distributed systems and the

1

Eden testbed used in the implementation. In chapter 2, we introduce the transaction concept
and its generalization to nested transactions; then, we summarize techniques for the implemen­
tation of transaction systems. In chapter 3, we divide the data replication problem into three
parts: multiple-copy updates, network partitions, and transparent access. Using this analysis,
known replication techniques are described and compared. Chapter 4 introduces the Regeneration
method for consistent multiple-copy updates. Chapter 5 describes our design and implementation
of a replicated directory system using Regeneration. Chapter 6 describes our design choices and
implementation of nested transaction support. Chapter 7 generalizes ERMS to a general design
framework for nested transactions. Finally, chapter 8 concludes the thesis with summaries of
contributions and future work.

1.2 Model and Definitions

Our model of a distributed system is a network of computers with independent failure modes. In
our algorithms, design, and implementation, we give no consideration to malicious behavior, such
as Byzantine faults [71]. Our computers are either up and running, or down and inaccessible.
However, network links may fail, causing network partitions. Within a partition, all resources on
up nodes are accessible. We define availability as the probability of a resource being accessible
at any given time. The number and identification of nodes running and in communication with
each other constitute the system configumtion. We assume that approximate system configuration
data may be obtained.

Resources are encapsulated in objects, which can support arbitrary operations. Although the
model imposes no restrictions on the type of resources, in this dissertation we focus on resources
containing data. To simplify the implementation and presentation, we divide the resource access
operations into two classes. Writes modify the resource's state. Reads get values that are a
function of the resource's state. Usually, our resources are data rather than hardware.

Our model of a database is a set of resources residing in stable storage. The objects may
be bound by some rules, called consistency constmints. If objects all follow the consistency
constraints, the database is in a consistent state. A tmnsaction is a collection of operations on
resources to be performed atomically. We assume the transactions take the database from one
consistent state to another consistent state.

This model adequately describes many practical distributed systems, including those discussed
in chapters 3, 6, and 7. Therefore, the analysis of replication in chapter 3, the Regeneration
method in chapter 4, and the discussion of nesting by composition in chapter 7 are all applicable
to a wide range of distributed systems, transcending the applications implemented in the Eden
system (section 1.3).

1.3 The Eden System

Both replication support and nested transactions mechanism were implemented on top of Eden
[2,17,53]' an experimental distributed operating system used as a test bed. Eden encapsulates
resources in objects and provides location-transparent invocations between objects.

2

,...
!

Eden provides a unique combination of features that are extensions of those found in other
systems. Eden supports user-defined and extensible objects, which communicate with each other
via invocations, in the form of Remote Procedure Calls [13]. In comparison, the Apollo Domain
system [54J is object-oriented, but its objects are pre-defined; Hydra objects [86] are defined by
the users, but Hydra runs on a centralized multicomputer system. Eden objects can also migrate
from one node to another; for example, computation may be distributed for load balancing, or
replicas of a resource placed on separate machines.

Eden objects contain data, procedures, and active processes. They encapsulate files, programs,
and other resources_ The designers of an Eden object can define arbitrary operations to which
the objects respond. Each object is invoked through a capability, which is a system-wide unique
identifier together with a set of access rights defined on the invocations it supports. Remote
invocations have the same syntax and semantics as local ones_ Objects may have an active form
in main memory and a passive representation on disk. An active form of the object services an
invocation immediately. If an invoked object has only a passive representation, the Eden kernel
activates the object. Each Eden object is an instance of an Edentype, a program written in the
Eden Programming Language [16], which is an extension of Concurrent Euclid [43].

Eden objects are the building blocks with which we have implemented the replicated directory
(chapter 5) and the nested transaction mechanism (chapter 6).

3

Chapter 2

Transactions for Consistency

2.1 The Transaction Concept

The transaction concept [39] underlies most of the work described in this dissertation. In this
section, we define the concept and extend it to cover nested transactions [62]. Transaction im­
plementation techniques are described in section 2.2 (concurrency control) and section 2.3 (crash
recovery). These techniques will be used in our implementation (chapters 5 and 6), and discussed
in hypothetical designs (chapter 7).

2.1.1 Single-Level Transactions

A transaction is a collection of operations on resources that is "all or nothing"; either all or none
of the operations result in permanent resource changes. Transactions that do not alter the data in
resources are called queries, read-only transactions, or read transactions. Transactions that also
write to resources are called updates or write transactions. We assume that an update takes the
database from one consistent state to another consistent state.

The "all or nothing" property, also called atomicity, implies that transactions executing con­
currently do not see intermediate results produced by other transactions. Techniques called con­
currency control methods, described in section 2.2, synchronize interleaved transactions so they
observe the concurrency atomicity requirement. The main benefit of concurrency atomicity is that
transactions may execute in parallel, and as long as the database starts from a consistent state,
all transactions are guaranteed to read consistent values from the database. The intermediate
results, which may be temporarily inconsistent, are hidden by the concurrency control.

Atomicity also requires that transactions interrupted by machine crashes should not leave any
intermediate, potentially inconsistent results. Crash recovery techniques, described in section 2.3,
achieve this goal, called reliability atomicity, by either rolling the transactions back to their initial
state, or forward to their final state. The combination of concurrency atomicity and reliability
atomicity maintain the database consistency despite concurrent accesses and machine failures.

Unlike traditional definitions where a transaction is a sequence of operations, we allow con­
currency within a transaction. Multiple threads of control, called processes, may execute the
operations in parallel to take advantage of a distributed system. Although atomicity guaran­
tees consistent access and crash recovery between transactions, more structure is needed within

4

Top-level-l Top-level-2

sub-l-l sub-1-2 sub-2-1 sub-2-2

sub-1-1-2 sub-l-l-l

Figure 2.1: Standard Model of Nested Transactions

a transaction. To synchronize resource access by internal processes and recover from individual
process failures, nested transactions introduce a natural extension of structured atomicity into.
transactions.

2.1.2 Nested Transactions

Subtransactions are subcollections of operations performed atomically within a transaction. Es­
waran et aI. [30] defined a transaction as a sequence of operations. Unlike their transactions, our
subtransactions may run concurrently, as in the standard nested transaction model defined by
Moss [61]. The top-level transaction and its subtransactions form a tree (figure 2.1). The top-level
transaction is at the root of the tree; subtransactions are the internal nodes and leaves. We will
use tree terminology to denote the relationship among transactions: ancestors and descendants,
parent, siblings, and children. Intermediate states produced by a sub transaction are hidden from
its siblings and parent. If a subtransaction aborts, none of its operations leave any effect, but the
parent and siblings may continue executing and commit eventually.

In distributed systems, there are several advantages in using the structure of nested trans­
actions. First, sub transactions abort independently of their parent and siblings, helping the
programmer to recover from the 2N possible failure combinations in N nodes. Second, resource
accesses from different processes are automatically synchronized for concurrent subtransactions.

Third, composition of atomic su btransactions into a structured enclosing transaction facilitates
construction and maintenance.

In the rest of this chapter, we describe the implementation techniques of single-level trans­
actions. Since our nested transaction design and implementation rely only on the techniques
summarized in the following sections (2.2, 2.3), the discussion of other early designs of nested
transactions will be summarized later in section 6.7.

5

read write

read Y N

write N N

Table 2.1: A Simple Lock Compatibility Table

2.2 Concurrency Control

The commonly accepted correctness criterion for concurrent database access is serializability, de­
fined as an execution of concurrent transactions that produced the result equivalent to a sequential
execution of those transactions [68]. A concurrency control method guarantees the serializability
of resource access despite concurrent access from several transactions.

In this section, we provide background material on concurrency control for our work on both
replication and nested transactions. We describe two-phase locking in section 2.2.1, timestamps

in section 2.2.2, and optimistic concurrency control in section 2.2.3. Readers familiar with these
concurrency control methods can safely skip to section 2.3. The survey of these well-known
concurrency control methods is based on works by Kohler [48], Bernstein and Goodman [9], and'
Mohan [60]. Other concurrency control methods found in the literature, such as tickets, conflict­
analyses, and reservations, have been omitted since they are not pertinent to this dissertation.

2.2.1 Two-Phase Locking

One way to synchronize concurrent access to a resource is to lock the resource to prevent conflicting
access. Before a transaction can access a resource, it requests a lock on the resource from the
system lock manager. If the lock is granted, the lock manager guarantees that the transaction
has a consistent view of the resource. When the transaction ends, the locks it held are released.

The simplest way to achieve consistency is to allow only one transaction to access the resource
at any given time. The exclusive access, sufficient for update consistency, is not necessary when

transactions are only reading the resource. A common lock convention allows either multiple,
concurrent readers (shared lock) or an exclusive writer (exclusive lock). Readers do not alter the
resource state, so they are able to share access without compromising consistency. In contrast, a
writer may take a resource through some intermediate, inconsistent states, therefore the resource
must be exclusively locked. Table 2.1 shows the compatibility between the two kinds of locks. A
write lock is granted only if no other transaction holds locks of any kind on the resource. A read
lock is granted whenever the resource is not exclusively locked.

Although these rules guarantee the consistency of each resource, more care is needed when a
transaction accesses multiple resources. Eswaran et al. [30] have proved that all transactions must
be two-phase in order to assure multiple resource access consistency. A two-phase transaction locks
all the resources it needs before unlocking any of them. In other words, the transaction can be
divided into two phases, the growing phase, in which it locks all its resources, and the shrinking

6

phase, when it only unlocks. Such two-phase transactions are serializable, so two-phase locking
maintains database consistency.

Avoiding the formal treatment, which can be found in the literature [30,68], we use an example
to illustrate the way two-phase locking works. Let transactions Tl and T2 be two-phase according
to the above description. If Tl holds a lock on a resource, and T2 requests an incompatible lock
on the same resource, two actions are possible. We can make T2 wait, or we can reject its request.
We will consider waiting in this section, and request rejection in section 2.2.2. If Tl finishes and
releases its locks, T2 gets the desired lock, and everything ends well. However, in an alternative
scenario, Tl locks resource A exclusively at the same time T2 locks resource B; and later Tl tries
to lock B, while T2 attempts to lock A. Transactions T} and T2 will keep waiting for each other,
in° a situation called deadlock.

There are several ways to handle deadlocks. First, deadlocks may be avoided by preclaiming
all resources at the very beginning of every transaction. The disadvantage is that some resources
may be locked longer than necessary, since the transaction may access only a subset of all resource
in a given run. Its advantage is that since all resources have been locked, the transaction will
not be aborted because of resource contention. So by preclaiming all resources, we trade system
concurrency for freedom from deadlocks.

Second, deadlocks may be detected by finding cycles in the transaction wait-for graph, defined
as follows:

• Each vertex in the wait-for graph corresponds to a transaction .

• Each arc in the wait-for graph links a transaction with a blocked request for a resource to
the transaction currently holding the lock on the resource.

The lock manager maintains the wait-for graph according to the lock requests. If a cycle is formed
in the wait-for graph, the transactions in the cycle are waiting for each other indefinitely. To break
the deadlock, the lock manager uses some kind of heuristics to decide which transaction in the
cycle must be aborted. In the next section, we outline a third deadlock resolution technique where
unsuccessful lock requests are rejected instead of blocked. Many papers [60] exist on deadlock
detection and resolution, and we will use these known techniques in our work.

Thus far, we have described two-phase locking of centralized databases. The distribution
of lock management and deadlock detection in a distributed database requires further develop­
ment. Since distribution in Eden is hidden by location-independent capabilities, we omit the
discussion on these topics. For more details, we refer interested readers to the referenced survey

papers [9,48,60].
Additional rules on top of two-phase locking have been proposed by Moss [61,62], and imple­

mented in Argus [56] and LOCUS [63,84], to control concurrency in nested transactions. These
extensions will be discussed in section 6.7.

2.2.2 Timestamps

In contrast to two-phase locking where each resource is locked to prevent conflicting access, the
timestamp method serializes the transactions directly. Each transaction is given a system-unique
number, called a timestamp, which determines its place in the serialization. From the timestamp

7

attached to each read and write request, resource access conflicts are detected and resolved as
follows. Instead of a lock, each resource remembers the timestamps of the latest reader (TS r) and
writer (TSw). If a read request has a timestamp earlier than the resource's TS w , it means that the
writer with timestamp TSw , which must follow the reader, has overwritten the value the reader
needed. Since the reader has been superseded, it must be aborted. Similarly, a v..'rite request fails
if its timestamp is earlier than either TS w or TS r •

In a distributed database, several techniques to generate global timestamps are known. The
existence of a global clock certainly solves the problem. Lamport [50] has shown that a central
clock is not required, and some communication between nodes can maintain global time. In cases
where strict global time ordering is not necessary, system-unique identifiers can be more easily
produced by concatenating local timestamps with node identification numbers.

The usual way to implement timestamp concurrency control relies on versions. Each resource
is made of a series of versions, created by successive update transactions writing on the resource.
At each moment in time, the resource is represented by the most recent version at that time.
For example, let us consider a resource with three versions, Vi created at Tb V2 created at T2,

and V3 created at T3, where Ti precedes Tj, i < j. From Tl to T2, reading the resource would
get Vi, and from T2 to T3, V2 represents the resource. The resource becomes V3 after T3. Since
read requests with earlier timestamps can read earlier versions instead of aborting, the versions
decrease the number of aborts. Versions are also useful for crash recovery and will be discussed
further in section 2.3.1.

The main technical difference between two-phase locking and timestamps is that the serializa­
tion order determined by timestamps eliminates deadlocks. Actually, timestamps can be used for
deadlock resolution. Rosenkrantz et al. [75] have proposed the wait-die and wound-wait deadlock
resolution schemes based on timestamps. In systems using wait-die or wound-wait, unsuccessful
lock requests do not block, but return with the timestamp of the conflicting lock holder. Based
on the comparison between the returned timestamp and its own, the transaction decides whether
to continue or abort.

The basic timestamp method described above assigns the timestamps at the beginning of each
transaction. Two transactions, Tl and T2, may be serializable in a particular order, for instance,
Tl followed by T 2 • If Tl happens to have been assigned a timestamp later than T 2 , one of
them would have been aborted. To remedy these situations, Bayer et al. [7] introduced dynamic
allocation of timestamps, or timestamp intervals. The timestamp interval method does not assign
timestamps a priori; it allows transactions to run optimistically, with a range of possible times­
tamps in an interval. When conflicts arise, the timestamp intervals of the conflicting transactions
are refined to make the serialization explicit. In the above example, this improvement allows both
Tl and T2 to commit.

2.2.3 Optimistic Concurrency Control

Optimistic concurrency control methods [21,49] assume that the probability of conflicts between
transactions is low. Consequently, greater concurrency may be obtained by postponing the conflict
detection and possible abort of transactions to the last possible moment. Basically, they analyze
the transaction dependency graphs just before each transaction commits. The transaction depen-

8

,...
I

dency graph is defined by the following rules to show the relationships between the transactions
running in the system .

• The resources read by a transaction is called its input, and the resources being written,
output .

• If a transaction's input contains a resource from another's output, they are linked by an arc
in the transaction dependency graph.

An acyclic graph shows a partial ordering of transactions from which an equivalent serial schedule
can be constructed. A cycle in the graph indicates conflicting transactions that cannot be serial­
iz~d. The optimistic concurrency control method detects the formation of cycles in the graph, and
prevents the transaction closing the cycle from committing, thus maintaining the graph of com­
mitted transactions acyclic. An acyclic graph induces a total ordering of the nodes, so transactions
on an acyclic dependency graph are serializable.

The optimistic method differs from locking in both amount and moment of aborts. Compared
to locking, the optimistic method allows more concurrency, since no restrictions are placed on the
transactions. However, the price paid for the added concurrency is that aborts now waste whole
transactions instead of just parts of them. In cont~ast, two-phase locking may abort a transaction
during the growing phase, but once into the shrinking phase, no aborts due to conflicts are possible.

In contrast to the optimistic method, which aborts a transaction only when absolutely neces~
sary, some methods using timestamps tend to abort more transactions. However, it is not obvious­
how the optimistic method compares to a more refined timestamp method such as timestamp
intervals. Other ongoing work [66] is studying the problem.

2.3 Crash Recovery

In this section, we provide background material on crash recovery, which guarantees transaction
atomicity despite node crashes. Readers familiar with the literature can safely skip to chap­
ter 3. The survey of these crash recovery techniques is based on work by Bernstein et al. [11],
Haerder [40], Kohler [48], and Verhofstadt [81].

The basic idea underlying most recovery methods is to save the database state on stable storage
before the transaction changes it. Since the database state is consistent at the beginning and the
end of each transaction, these are the best occasions to save state information. First, before a
transaction starts, the database state exists on disk, so if the transaction aborts, the database
can be rolled back to its initial state. Second, before the transaction commits, the database state
produced by the transaction is saved on disk, so if the node crashes and the database is lost, the
committed state can be recreated by rolling forward from some earlier checkpoint.

Two basic techniques to implement the abstract algorithm above are summarized here. The
first stores multiple versions of each resource at critical moments, so recovery consists simply
of choosing the right version. The second writes the recovery information on a sequential log,

requiring more sophisticated recovery.

9

,...
I

2.3.1 Versions

The main idea of version-based recovery is to maintain a consistent picture of the database at
all times. The temporary inconsistent states created by update transactions are hidden in new
versions of each resource [48,81]. Consequently, the database always has the most recent version of
all resources written by the committed transactions. Aborting a transaction leaves the previous
version in place, and committing a transaction switches from the old version to the new one.
Care must be taken to ensure atomic switch of all resources written by a transaction, even if the
machine crashes in the middle of such operation.

One way to achieve atomicity of the switching relies on idempotent operations [51]. An
idempotent operation can be executed many times, but its effects happen only once, during the
first successful execution. When re-executed, it has no effect, and returns the results obtained by
the first execution.

Atomic commit with idempotent switch operations is relatively simple. At the beginning of
transaction commit, we write a commit record atomically to disk. The commit record contains all
the' switch operations which must be executed to make the new versions official. If the commit is
interrupted by a machine crash, a recovery procedure is executed before the transaction processing
resumes. The recovery simply restarts the idempotent switch operations from the beginning. Once
all new versions have been installed, the commit completes. This is the method chosen for the
atomic commit of our nested transaction support (chapter 6).

An alternative way is to build a hierarchical structure pointing to the resource [64]. A tree-:"
structured directory stores the pointers to the versions. When the transaction commits, a cammi t
record containing the pointers to the new version of several resources is written. The commit
protocol then proceeds to construct a new tree with the new pointers. Writing the root page of
the tree is atomic and it switches to the new tree with new versions. If the commit protocol is
interrupted by a crash, the recovery procedure rebuilds the new tree and completes the switch.

2.3.2 Logging

The main motivation for log-based recovery is the trade-off between normal processing overhead
and recovery time. Usually, the more time we spend during the normal processing storing infor­
mation for crash recovery, the less time recovery takes. If crashes are relatively rare events, we
should optimize the normal processing, even though the recovery time may be lengthened some­
what. For update operations, disk accesses constitute a significant part of the cost in database
operations, often the limiting factor [38]. Since writing the recovery operations to a sequential

output is usually faster than to random places on a disk, logging has become the most popular
method for practical databases.

The main advantage oflogging is that it allows the update transactions to write in-place on the

database. If a transaction does not abort, writing in-place bypasses the creation of new versions
altogether. However, writing in-place introduces intermediate and inconsistent information into
the database. Logging relies on a recovery manager to reconstruct a consistent database after a
crash has occurred, using the information on the log. The recovery manager reads the log and
repairs the database as soon as inconsistencies are detected. The normal transaction processing
can resume only after the recovery manager has finished the repair.

10

Typically, there are two ways to save information on a log [77]. The first method writes
either the old or the new value of a resource on the log in an update. In case of a crash,
aborted transactions have their old values rewritten into the database, in an operation called
undo. Committed transactions which did not propagate their results to the actual database have
their new values written on the database, in an operation called redo.

The second method records the operation performed on the resource, instead of the values
being changed. Since either the old value or the new value of the resource always exists on disk.
recording the operation is sufficient for recovery. For undoing an update, a reverse operation is
required to recover the old value from the current state in the database. For redoing an operation.
if its result was lost in the system buffer and the database contains old values, it suffices to execute
the logged operation again.

In either case, the transactions must obey the "write-ahead" protocol. Before the write in­
place is executed, the transaction must ensure that recovery information needed to that write has
been written on the log. If the recovery information is not in the log before the inconsistent data
are introduced to the database, a crash at precisely that moment may preserve the inconsistency.
Since the log record on that change has been lost, the recovery manager will be unable to repair
the inconsistent database. The write-ahead protocol avoids these problems by keeping enough
information to reconstruct a consistent database on log.

In addition to the write-ahead protocol, if all the write requests of a transaction are written on
disk before the commit record is written, some simplifications are possible [11]. In this case, onc~
the commit record is written, all the updates are in place. So in case of machine crashes, only undo
operations are necessary to roll back aborted transactions. Similarly, if the update operations are
carried out only after the commit record is written, aborting them requires no work. We only need
to redo the committed transactions interrupted in their writing. If transactions are allowed to
write to disk at any time, the recovery manager must be able both to undo and redo transactions
from the log.

2.3.3 Distributed Commit

Thus far, we have described crash recovery in centralized databases. The distribution of logs
and versions requires further development. Since distribution in Eden is hidden by location­
independent capabilities, we omit the discussion on these topics. However, in a distributed
transaction, its components must agree on the transaction's outcome. One such protocol is the
twcrphase commit protocol [9].

The twcrphase commit protocol assumes there is a transaction coordinator, and subtrans­
actions run as servers. During the first phase, the coordinator sends out messages asking the

final results of the servers. Servers respond with their outcome, whether they have committed
or aborted. If some servers have aborted, the distributed transaction aborts and the coordinator
sends the abort message to the servers. If all servers agree on commit, the protocol enters the
second phase. The coordinator writes the commit decision to stable storage and sends the commit
message to all servers. The most important feature of the protocol is that all participants agree
on the outcome of the distributed transaction.

11

,..
(

Chapter 3

Replication for Availability

3.1 Crash-Resistant Resources

Definition 1 A resource is k-crash-resistant if and only if the following three conditions hold:

1. Accessibility: the resource remains accessible despite k nodes being shutdown.

• Since k copies may be down, a k-crash-resistant resource must have at least k+ 1 copies
distributed over distinct nodes.

2. Consistency: the resource access has one-copy semantics.

• Writing to the resource is atomic; reading from the resource returns the value either
before or after the write.

• Between writes, a read always gets the same value.

3. Transparency: the resource access has one-copy syntax.

• Resource access syntax is the same regardless of k.

• Resource access syntax is independent of node crashes.

Notation: A crash-resistant resource is k-crash-resistant for some k, k > o.
A O-crash-resistant resource is non-replicated and therefore vulnerable to the crash of a single

node. For crash-resistant resources, the Accessibility condition implies replication. The Consis­
tency condition, equivalent to I-serializability [10], stipulates that the replicated resource should
contain only one value at any given moment, just like a single-copy resource. The Transparency
condition means that the number and location of copies should be transparent to clients.

In published works on replication [10], the Accessibility and Consistency conditions appear
routinely, but not Transparency. We impose Transparency for two reasons. The first is encapsula­
tion. We want to hide the details of replication from clients, so clients do not have to re-implement
the replication algorithms each time. The second is flexibility. Distributed systems have many
independent parts, so we want a replicated resource to be adaptable to configuration changes
without affecting the clients.

12

With crash-resistant resources, we want to increase resource availability, maintaining one-copy
resource access syntax and semantics. We divide the support for crash-resistant resources into
three parts: consistent multiple-copy update, network partitions, and transparent access.

The three parts of the replication problem handle different failure conditions and consistency
requirements. The first part, multiple-copy update, handles consistent concurrent updates of
multiple copies, recovery from nodes crashes, and availability despite node shutdowns. The second
part, network partitions, deals with communication failures resulting in machines running in
separate partitions, and unable to communicate. The third part, transparent access, concerns a
crash-resistant root directory, which provides the mapping of resource names into their copies. \Ve
analyze the consistent multiple-copy update problem in section 3.2, briefly consider the network
partitions problem in section 3.3, and discuss the crash-resistant root directory in section 3.4.

3.2 Multiple-Copy Update

Consistent multiple-copy update can be divided into two sub-problems: atomic update of replicas,
and node shutdowns. To guarantee that all replicas contain the same value (one-copy semantics),
we need to make each update atomic, so all copies will reflect either the old or the new value
uniformly. Traditional transaction techniques are well-suited for the atomic update sub-problem,
as Gifford has pointed out in his thesis. More concretely, we can use concurrency control (sec­
tion 2.2) to serialize concurrent updates, and atomic commit (section 2.3) to recover from node:
crashes.

Insisting that all copies be updated atomically does maintain resource consistency, but this
policy may prevent an update from completing because a copy is inaccessible in a down node.
Additional refinements must be introduced to allow updates to proceed despite some nodes be­
ing dov.'O, making some copies inaccessible. In this section, we describe some known techniques
which allow consistent and atomic update of multiple copies to complete, despite a limited num­
ber of inaccessible copies. These techniques are classified into three groups, Asymmetric, Voting,
and Reconfiguration. For later comparison with the Regeneration method in chapter 4, we de­
scribe representative examples from each group, without attempting a comprehensive survey of
replication techniques.

3.2.1 Asymmetric - Primary Copy

Asymmetric replication methods distinguish some copies from others, giving special functions to
the distinguished ones. The Primary Copy method for data replication [3] is such an example,
where one copy, the primary, is distinguished from the secondary copies. Clients read from any
copy. All writes are sent to the primary, which propagates the updates to the secondary copies.
Inaccessible secondary copies are removed from the chain of communication and re-initialized

when they join the network.
Primary Copy is an asymmetric method for multiple-copy update, because the primary copy

has a special meaning not shared by the secondary copies. If a secondary copy happens to be
inaccessible, the update propagation simply bypasses it. Consequently, Primary Copy is tolerant
to any combination of failures of secondary copies.

13

,,.. The main difficulty of the Primary Copy method arises when the primary copy becomes
inaccessible. In case the primary site is down, a reassignment is in order. However, if the
network has partitioned, a reassignment would compromise consistency. Minoura's True-Copy
Token scheme [59] improves the primary copy method in several ways. However, the reassignment
of primary copy is possible only when all involved sites have come back online. Alsberg and Day [3]
have left this problem to the application programmer. In this dissertation, we v.rill consider the
Primary Copy method with a fixed primary site, because no general solution exists to create a
new primary when the original is down.

3.2.2 Voting - Majority

Voting algorithms [34,80] are symmetric, in the sense that all copies are equal. The basic idea of
Majority Voting [80] is to read and write subsets of the total number of copies (N). Consequently,
read and write can proceed even though some copies are inaccessible. In the simplest case, to
access a replicated resource, a read quorum (RQ < N) and a write quorum (WQ < N) are defined
such that RQ + W Q > N. A read operation requires the access of RQ copies, a write operation of
WQ copies. Because there must be an overlap between RQ and WQ, the most recent version will
always be found and accessed. The number of inaccessible copies tolerated in a read is N - RQ,
and in a write, N - WQ. If the resource needs to be read and written, the fault tolerance is
min(N - RQ,N - WQ).

In Voting, resource access requires a subset of copies. The advantage of accessing a large~
number of copies is the tolerance to Byzantine failures [71]. If the subset is large compared to
N, not only the access becomes expensive, but also the fault-tolerance decreases. Since the read

quorum and write quorum must intersect, they have minimal sizes bound by RQ + ll'Q >]V.

The trade-off is between read/write availability and cost: large read quorums allow smaller write
quorums and vice-versa. An additional feature of Voting is that it guarantees resource consistency
despite network partitions, topic of section 3.3.

There are several refinements of Voting methods. Gifford [36] adds weights to the votes,
where each vote may weigh more or less depending on some criteria of client choice. Herlihy's
General Quorum Consensus [41] increases further the number of quorum choices. Instead of the
read/write dichotomy, he divides the operations on objects into three kinds: read-only, write­
only, and read-write. His generalized quorums provide individual quorum choices for each kind
of operation (table 3.1), allowing for more diversified availability trade-offs. If an operation is
read-only, then an Initial Quorum must be gathered. Similarly, only a Final Quorum is necessary
for the write-only operations. For read-write operations, the Initial Quorum is necessary for read,

and the Final Quorum for write.

Gifford used Voting in the Violet Calendar System [35]. Weighted Voting was also used in an

experimental study of replicated directories at CMU [19,24].

3.2.3 Reconflguration - Available Copies

Reconfiguration methods do not rely on access to subsets to provide fault-tolerance. They change
the configuration (the number and/or location) of the copies to adapt to new situations created by
node crashes or recoveries. The Available Copies method [8] is an example of symmetric method

14

Initial Quorum Final Quorum

read-only RQ 0

write-only 0 WQ

read-write RQ WQ

Ta.ble 3.1: General Quorum Consensus

based only on reconfiguration. It reads any copy and writes all accessible copies (if at least one is
accessible), those being defined as copies residing on accessible nodes. When a node crashes, all
copies of all data items in that node are excluded by updating a replicated directory containing
the number and location of copies. A crashed node recovers by copying up-to-date data items
and updating the replicated directory to include those copies on the recovering node. A copy of
the directory itself may become inaccessible when a node goes down. A special directory-include

operation updates the local copy of the directory during node recovery.
Because a resource can be read or written with only one copy, network partitions may allow

different copies to diverge. This problem will be discussed further in section 3.3. Also, since only ~
one copy is necessary for reads, the Available Copies method is vulnerable to Byzantine faults.
Another important feature of Available Copies is the explicit use of a directory, facilitating the
implementation of one-copy resource access syntax.

DD1.! [22] is a distributed database system which replicates resources using the Available
Copies method. The Isis project [12] has different design and implementation strategies, but the
availability provided by Isis would be the same as Available Copies.

3.2.4 Comparison With Hardware Redundancy

Redundancy has been used in hardware to increase reliability of computers for a long time [74,82].
The three main techniques are, triple modular redundancy, duplex redundancy, and stand-by
redundancy. Triple modular redundancy requires three identical modules which vote for the
output. Duplex redundancy uses two identical modules to detect and isolate failures. Stand­
by redundancy has two kinds, the cold stand-by operates with one module, and brings up the
stand-by unit when the first fails. The warm stand-by redundancy keeps all modules online, and

switches off the ones that have failed.
Several of the data replication techniques we have discussed in this section have hardware coun­

terparts. Primary copy offers only partial redundancy, since the primary copy is not replicated.
The secondary copies are similar to warm stand-bys, adding read availa.bility. Voting generalizes
the triple modular redundancy. Available Copies method is the software analog of stand-by re­
dundancy. In DDM [23], online copies are maintained up-to-date if they remain accessible, like
warm stand-bys. Oflline copies are brought online when necessary, like cold stand-bys.

15

3.3 Network Partitions

Network partitions happen when some communication links fail, while individual nodes and parts
of network keep running. We consider the partitioning to be a temporary situation, and each par­
tition an integral component of the distributed system. Consequently, we want to keep resources
consistent across partition boundaries.

The main difficulty is that nodes from different partitions cannot communicate with each
other. So if the update activity continues independently in each partition, copies may diverge
with different update histories. In face of network partitions [28], there are two choices in handling
resource consistency, pessimistic, briefly described in section 3.3.1, and optimistic, summarized in
section 3.3.2.

3.3.1 Pessimistic Approach - Voting

The pessimistic approach is conservative, allowing updates in only one distinguished partition.
The distinguished partition can be chosen in many ways. For example, majority voting chooses
the majority partition, while Primary Copy chooses the partition in which the primary copy
is located. In the distinguished partition, reads and writes proceed as usual, but in the other
partitions updates are disallowed. \Vhen the partitions merge, the updates are propagated from
the distinguished partition to the other partitions.

The pessimistic approach maintains update consistency since read and write transactions ar~
still serializable. In the distinguished partition, transactions proceed as usual. In the other parti-­

tions, all read transactions are serialized before any updates which occurred after the partitioning.
Consequently, copies in other partitions may become out-of-date, but updates on the "official"
partition will prevail when partitions merge. The resource consistency is preserved, but we lose

resource update availability in all partitions except the distinguished one. In addition, for ma­
jority Voting. if we cannot gather a majority of votes in any partition, no updates are allowed

anywhere.
Dynamic Voting [25] improves on the simple (and weighted) majority voting because it allows

resource update when further partition occurs. Basically, the number of majority votes is not fixed
as the majority of total number of copies, but it is defined as the majority of the accessible copies.
The redefinition of majority quorum follows the detection of a network partition, in the partition
that maintained a majority. So if each network partition left a majority survivor, systems using
Dynamic Voting may operate with as few as two nodes. Only one partition is, however, allowed to
update a resource at any given moment. Also, if the network partitions into three equal portions,

Dynamic Voting will not allow updates in any of them.

3.3.2 Optimistic Approach - Merging

The second approach is optimistic -allowing each partition to update the resource independentlY,
Resource availability is increased, but, when partitions merge back into the network, ways must

be found to handle conflicting updates. This problem is very difficult in general. For example.
usually it is impossible to merge two djfferen t versions of a text file without loss of information.

16

However, for specific operation classes, such as the commutative operations, merging algo­
rithms already exist. Promising contributions to operation classification and corresponding algo­
rithms include dissertations by Davidson [27] at Princeton, Faissol [31] and Thiel [79] at UCLA,
Wright [85] at Cornell, and many other papers [18,26,33]. Some work on the detection of incon­
sistencies, such as version vectors [69], also has been done.

Optimistic approaches to network partitions cannot be used in conjunction with some multiple­
copy update methods, such as Primary Copy and Voting. The reason is that Primary Copy
distinguishes the primary copy, and consequently also the partition containing it. Similarly, Voting
distinguishes the partition with the majority of votes. However, Available Copies is a multiple­
copy update method that may be combined with the optimistic partition merging algorithms.
Since the optimistic algorithms allow updates to proceed in many partitions, resource availability
will be higher than pessimistic approaches implied by Voting or Primary Copy.

3.4 Replica Location

Techniques to handle mUltiple-copy updates and network partitions enable a client to create
and use a consistent, replicated resource. The third condition for a crash-resistant resource is
Transparency. Without it, the use and access of replicated resources is cumbersome. For example,
giving the clients the number and location of copies makes future changes difficult, either as to the

number or the location of copies. In addition, each client would have to implement the algorithms.
to handle IQultiple-copy updates, and maybe network partitions.

Ideally, clients should be able to access crash-resistant resources transparently, as if they
were "normal" resources. There are two advantages in the encapsulation offered by transparent
access. The first is flexibility, since the number of location of copies can be changed without
affecting the clients. In particular, the same syntax would be used for both replicated and non­
replicated resources. The second advantage is a more general service, since any client can use

the replicated resources without implementing replication algorithms themselves. In providing
transparent access independent of failures and resource reconfiguration, the main mechanism is a
mapping of resource names into their corresponding replicas.

3.4.1 The Mapping and Its Root

To provide Transparency on behalf of the client, a mapping must translate the resource name into
its copies. The client would always use the resource name, which is the same regardless of the
number and location of the copies. An intermediary mechanism (for example, the file system) uses

the mapping to forward the client request to actual copies. Since the directory implementing this
mapping is in the access path of the crash-resistant resources, it must be replicated for availability.

The directory may be replicated using the techniques described in the previous two sections,

but finding the root directory presents a special bootstrapping problem. On the one hand, the
root directory must be replicated for availability. On the other hand, there is no other directory
to translate a unique root directory name into the replicated addresses. If we allow clients to read
replicas of the root directory directly, then updating the root directory becomes more difficult.
Since a potentially unlimited number of clients may hold the address(es) of the root directory in

17

order to use the mapping, the address(es) cannot be easily changed; otherwise a large number of
clients would have to update their pointer(s) to the root. In our discussion, we assume that we
want to avoid the thorny problem of changing a pointer in the possession of an unlimited number
of clients.

There are three ways to provide a root. First, we can maintain a copy of root directory at
each node, removing the need for a pointer. Second, we can use a broadcast operation to find
the root. Third, we can fix the root directory to a pre-specified configuration.

Read-only access to the root can be simpler. Clients need only a superset of pointers to root.
and a way to check whether a pointer is valid. If the superset if reasonably small, then they
can simply check the pointers until one current copy of root is found. This method permits easy
finding of one root for reading, but another method is needed to find all copies of root for updates.

3.4.2 Full Redundancy

One way to implement a root directory is to replicate it fully. Bernstein and Goodman [8] describe
a replicated directory in which each update is applied to all accessible directory replicas. In this

scheme, all update messages to the root directory are sent to all operating nodes. But the clients
only read the local copy of the root directory. If a node was down when the root was updated,

its copy of the root is carefully re-initialized before its node becomes accessible and clients are
allowed to run on that node.

Full redundancy is expensive in terms of disk space and update traffic. Each node must store ~
a copy of the root, and execute the updates on it. On the other hand, hierarchical directory
structures may reduce the size of and the need to update the root. Since root directories are
consulted often, having local access at every node may even payoff because of reduced network

traffic for reads.

Fully replicated, the configuration of the root directory follows the system configuration. The
clients always read the local copy, and write to all accessible replicas. During network parti­
tions, the root directories of different partitions may diverge. Anyone of the partition handling

techniques delineated in section 3.3 will solve this problem.

3.4.3 Broadcast

If we choose to replicate the root only partially, some nodes will not have a copy of it. Gifford [34]
has suggested broadcast as the mechanism to locate replicas of the root. Typically, clients need
not be aware of the root configuration a priori, since they can broadcast a message asking for the
root. The network must understand the broadcast message for the root directory, and forward
the message to the current copies of the root. From the copies which answered the call, the client

selects a current copy. Any information on the copies of the root is treated as a hint, validated
by access. If the hint proves to be wrong, the broadcast locates the new copies.

Because the root is found dynamically through the broadcast, a reconfiguration merely invali­

dates some hints. Consequently, copies of the root may be deleted and created. Using a broadcast
mechanism eliminates the need to replicate the root everywhere. Only a subset of nodes will have
resident copies of the root. So trade-offs between disk space and network traffic to access the root

become possible.

18

Replication Gifford Bern./Good. [8] LOCUS [84]
Proposals Thesis [34J DDM [22] root directory

Multiple-
Available Primary

Copy Voting
Copies Copy

Update

Network Pessimistic - Open - Pessimistic
Partitions

Root
Broadcast

Full Full
Location Redundancy Redundancy

Table 3.2: Analyzing Concrete Proposals

3.4.4 Well-Known Fixed Configuration

Another method to implement the root directory is to place its copies on a number of well-known
fixed nodes. If a broadcast mechanism is not available in the network, and disk space is scarce
-precluding full redundancy-, this may be the only alternative. The main problem of fixing thE>
root to a specific configuration is the difficulty in the reconfiguration of the root, which may­
restrict the utility of this method to experimental systems with a limited life expectancy.

There are no problems with reading, since the copies are hardwired to well-known nodes.
However, it is harder to update the root if one of the nodes happens to be down. The simplistic

solution aborts the update. A more elaborate solution ignores the down copy, and brings it up-to­
date during that node's recovery, just as in the full-redundancy case. Voting is a more expensive
solution to read and write the root directory. Voting provides fault-tolerance, but also makes

remote access mandatory in each read.
Forward pointers [32] could be used to move the content of the root directory, but the root

address remains the same. Moreover, all nodes in the forwarding chain must be up and running
for the access to succeed. Therefore, the use of forwarding addresses decreases the availability of
the root directory, although it allows the content of the root to be moved.

The main problem with a fixed configuration is that the root configuration cannot be changed
easily. The nodes which contain the root will have to stay as long as the system itself. Substitution

of new hardware is sometimes possible, but the number of copies is hard to change.

3.4.5 Summary

Compared to the many replication techniques proposed for multiple-copy updates and handling
of network partitions (one-copy semantics), transparent access to crash-resistant resources (one­
copy syntax) deserves more attention. Table 3.2 compares the root directory locations of some
proposed or implemented systems. The Bernstein and Goodman proposal [8] explicitly excludes
network partitions from their model, but it seems possible to adapt either the pessimistic or the

19

optimistic approach to handle partitions in the concrete system DDM [22].
Each one of the techniques to find the root has advantages and disadvantages. The broadcast

mechanism, if available in the system, can be used to find the root in any replication scheme.
However, for large distributed systems, the implementation of broadcast presents difficult prob­
lems. A fully redundant root directory allows read-onefwrite-all access. Since the cost in disk
space and update traffic will escalate with the scale of the system, a hierarchical structure should
be used to minimize the size and updates of the root. In this case, reading of the root becomes
cheaper as the system grows larger. Finally, a well-known fixed set of copies for root can be used,
bu t this presents serious difficulties in the reconfiguration of root. Although this limitation may

be acceptable in experimental systems, the growth of a distributed system will be hampered by
fixing the set of copies for root.

20

Chapter 4

The Regeneration Algorithm

4.1 The Regeneration Algorithm

The Regeneration algorithm is motivated by the fact that data restoration can be done indepen­
dently of hardware repair. Each multiple-copy update method described in chapter 3 -Primary
Copy, Voting, and Available Copies- considers copies resident on down nodes to be inaccessible
until the nodes are repaired. The main idea of Regeneration is that we can replace those inac­
cessible copies with new replicas on running machines, even before the down nodes are repaired.
In addition to maintaining replica consistency, Regeneration also increases resource availability i~
hardware repair takes longer than the making of a new copy.

4.1.1 Definitions and Assumptions

A replicated resource consists of several identical copy objects. Copies may become discrepant
during an update. A replica is a copy reflecting the desired state of the replicated resource.

Each replicated resource has some configuration dala stored in a directory: the number, names.

and location of its replicas. A resource whose configuration data may be changed is reconfigurable.

The directory is replicated to increase its own availability. The directory's configuration data may
thus form a hierarchy with many levels of indirection and a root.

\\'e assume that an underlying transaction mechanism, such as the ones described in chapter 2,
will perform an atomic update of a set of replicas. We also assume that the directories are

reconfigurable, including the root. In chapter 3, we have divided the replication problem into
three parts: multiple-copy update, network partition, and root directory. The Regeneration
algorithm solves the multiple-copy update problem. Network partitions and root directory will

be discussed in section 4.2.

4.1.2 Conceptual Algorithm

The key idea of the Regeneration algorithm is to make new, accessible replicas to replace the
inaccessible copies. Two benefits arise from regeneration: first, replacing the inaccessible copies
eliminates the potential inconsistency caused by the update. Second, new replicas restore the repli­
cated resource availability to its maximum specified level, even before the hardware is repaired.

21

Previous data replication methods, described in chapter 3, also maintain resource consistency,
bu t they all wait for the hard ware repair to restore their data.

Figure 4.1 describes the two basic operations: read and write of resources. These operations
should be used when accessing replicated resources, analogous to the way one would read and
write a non-replicated resource; each of these operations returns abort or success. There are
three additional technical observations. First, application data transfer is omitted for clarity.
Second, updating the directory makes it point to up-to-date replicas. Third, the directory is itself
replicated using Regeneration, up to the root directory, which will be discussed in section 4.2.

4.1.3 Discussion

The Regeneration method provides high resource availability in three ways. First, reading requires
only one accessible replica. Second, writing succeeds if one replica is accessible and enough spare
nodes and disk space are available for regeneration. Third, restoring the full complement of
replicas decreases resource vulnerability to multiple failures. In section 4.4, we will analyze and

compare the availability offered by the multiple-copy update methods described in section 3.2.
Regeneration also adapts the replicated resources to system configuration changes. The above

conceptual algorithm (figure 4.1) uses a 'lazy' regeneration strategy, in which a resource is restored

to its full complement only when it is being updated. In systems where the configuration changes
frequently, compared with the frequency of writes to all objects, some resources might dwindl~
and disappear before regeneration occurs. To avoid this, one could create a 'resource restoration ~
operation which would go through the directory, identify resources some of whose replicas have
become inaccessible, and replace the lost replicas by new copies of the surviving replicas.

However, there is a price to the added availability provided by Regeneration. To restore
inaccessible copies, Regeneration consumes spare disk space on accessible nodes with failure modes

independent from the down ones. For example, if a maximum of two nodes and 100 megabytes

of data are expected to be down at any given moment, we need two independent, accessible
nodes with 100 megabytes of spare disk space to assure successful regeneration of all down data.

In general, Regeneration works by moving inaccessible data out of down nodes, so the "extra"

resource requirements are no more than the amount of expected unavailable hardware.

Another resource management problem is garbage collection. The out-of-date copies in the

down nodes become garbage because they have been replaced. Methods to reclaim the disk space,
such as garbage collection and queued delete messages, are summarized in section 4.2.3.

Table 4.1 compares Regeneration to Voting (section 3.2.2) and Available Copies (section 3.2.3).
The first two rows show the number of copies accessed for read and write operations. The last

row compares actions taken on the inaccessible copies to maintain resource consistency.

4.1.4 Algorithm Verification

Since the Regeneration algorithms are enclosed in transactions, the one-copy semantics of repli­
cated resources are guaranteed. All read requests and write requests are serialized by the trans­
action mechanism, and write requests update all copies atomically, when they succeed. If they

abort, all copies are left in their original state.

22

Rt.ad:

Write:

1. Find current replicas from the directory.

2. Send the Read request to successive replicas until one services the request.

3. if all replicas fail

then return abort

else return success

end if

1. Find current replicas from the directory.

2. Send the Write request to all replicas.

3. if the request failed on all replicas, t hen ret urn abort

elseif the request succeeded on some but not all replicas,

then 3.1. Find available nodes with failure modes independent

from machines holding exjsting copies

3.2. Make new replicas to reach the specified number

3.3. if (3.1. or 3.2.) not successful then return abort

else ret urn the result from

Writt.(new configuration) to parent directory

end if

else {Request succeeded in all replicas. }

ret urn success

end if

Figure 4.1: The Conceptual Algorithm

23

update method => Available
operation Voting

Copies
Regeneration

.... . '

Read Read Quorum 1 1

Write \Vrite Quorum all copies all copies

inaccessible
ignore exclude replace

copies

Table 4.1: Comparison of Read/Write Actions

Although transactions assure resource consistency, we are still interested in finding out under
which conditions the Regeneration succeeds in reading or writing a resource. Theorem 1, below.
shows that a resource replicated with Regeneration needs only k + 1 copies to be k-crash-resistan t
for read access. Theorem 2 says that if enough spare nodes with disk space are available, then the
same resource would be k-crash-resistant for write access. The number of spare nodes necessary

is equal to the number of copies lost since last regeneration.
\\'e define some terms before the theorems are stated.

Definitions: For a k-crash-resistant resource, we define:

Copies == The set of copies.
ActiveCopies == The subset of Copies that is accessible.
FailedCopies == The subset of Copies that is not accessible.
ActiveCopiesNodes == The set of nodes on which ActiveCopies reside.
TotalN odes == The set of all independent nodes in the network.

FailedN odes == The set of nodes which are not accessible.
SpareNodes ==The set of accessible nodes without a copy of the resource,

but with enough storage to accept a new copy.

Immediate relationships from Definitions:

ActiveCopies ~ Copies.

FailedCopies ~ Copies.

ActiveCopies U FailedCopies = Copies.

ActiveCopies n FailedCopies = 0.
SpareNodes = (Total Nodes - FailedNodes) - ActiveCopiesNodes.

Theorem 1 For a k-crash-resistant resource with k + 1 copies, if IFailedCopiesl < k. then a

read request succeeds.

Proof: First we calculate the number of accessible copies after k copies have been lost.

24

1. Find current replicas from the directory.

2. Send the Write request to every c E Copies.

3. if the request failed on all replicas, then abort

{ Inv.I: IActiveCopiesl ~ 1.}

elseif request succeeded in some but not all replicas

-- case IActiveCopiesl < k + 1.

then repeat

{ Inv.2: ISpareN odesl + I A.ctiveCopiesl ~ k + 1.}

Take n' E SpareN odes,

endif

-- initially k $ ISpareN odesl so this succeeds up to k times.

Make copy l! on n',

such that content{c') = content(c).c E ActiveCopies.

{ActiveCopies ¢::= .4.ctiveCopies U {c'}}

{SpareNodes ¢::= SpareNodes - {n'}}

until { Inv.3: IActiveCopiesl = k + l.}

Write(new configuration) to directory.

Figure 4.2: Write Algorithm with Invariants

IActit!eCopiesl = ICopiesl - I FailedCopiesl
= (k + 1) - IFailedCopiesl
~ (k + 1) - k

defini tions

hypothesis
hypothesis

~1.

Therefore, at least one copy remains accessible after k copies have been lost. Since Regeneration
tries all copies, the read request succeeds when the accessible copy is found.

Theorem 2 Fora k-crash-resistant resource with k+I copies, iflFailedCopiesl $ k $ISpare.I\'odesl
and enough disk space is available on SpareN odes, then a write request succeeds.

Proof: First. we rewrite the algorithm, inserting some invariants (in curly brackets). Then we

show that the invariants hold under the assumptions.
Figure 4.2 contains the write algorithm with the invariants in which we are interested. The

first assertion near the beginning, { Inv.I: IActiveCopiesl ~ I}, is true if the request did not fail

on all replicas:

25

ICopiesl > k ~ IFailedCopiesl hypothesis
IActiveCopiesl "= ICopiesl - IFailedCopiesl definitions

~ (k + 1) - k combining
~1.

In other words, since not all copies have failed, there is one that does succeed.

The second assertion, { Inv.2: ISpareN odesl + IActiveCopiesl ~ k + 1.}, is true at the
beginning of the repeat loop:

ISpareN odesl
IActiveCopiesl

ISpareN odesl + IActiveCopiesl

~k

~ 1

~k+1.

hypothesis
the first assertion
adding two inequalities.

Through each iteration in the loop, ISpareNodesl decreases by one, and IActiveCopiesl increases
by one. Hence, the sum remains constant and Inv.2 is maintained.

The third assertion at the end of repeat loop, { Inv.3: IActiveCopiesl = k + I}, will become
true at some time, because at each iteration we create a new copy, increasing the set ActiveCopies.
Once the set ActiveCopies reaches k + 1 copies, it substitutes the old Copies set in the directory
and the regeneration completes.

4.2 Making Regeneration Practical

For simplicity, we have excluded three non· trivial problems from the conceptual algorithm: net­
work partitions, the reconfiguration of the root directory, and garbage collection. We shall consider
each in turn.

4.2.1 Network Partitions

Network partitions happen when communication links fail, but the nodes continue to function. In
each partition, the Regeneration algorithm, as stated, would regenerate independently, even when

as few as one replica is accessible. This is the optimistic approach to network partitions, and we
will have to rely on merging algorithms (some of which have been mentioned in section 3.3.2) to
restore consistency after merging the partitions.

The alternative, pessimistic approach (section 3.3.1), would alter the Regeneration update
slightly. Suppose we allow updates only in the majority partition, defined as the partition with
the majority of nodes. Then, in the write algorithm described in figure 4.1, a conditional state­

ment should be added before step 1: if the update is in the majority partition, proceed as usual,
otherwise, abort. The same alteration works with any criterion defining the distinguished parti­

tion.
Finally, there are networks where partitions are unlikely, such as local area networks. In these

environments Regeneration can be applied directly; Eden offers such an example.

4.2.2 Root Directory

Although the partition problem may be avoided in some situations, the root directory problem
cannot. To use Regeneration in the implementation of crash-resistant resources, we need a repli-

26

cated root directory that can be updated. However, a replicated directory that can be updated is
not necessarily reconfigurable (allowing changes to the number or location of copies). If we want
to replicate the root itself using Regeneration, it has to be reconfigurable.

In section 3.4, we have discussed three solutions to the location of root directory in the
implementation of crash-resistant resources -broadcast, full redundancy, and fixed configuration.
Of these three, broadcast and full redundancy allow reconfiguration. Fixed-configuration, as its
name indicates, fixes the configuration of the root. \Ve shall consider each alternative in turn.

Broadcast allows reconfiguration of the root directory, so it may be implemented with Regen­
eration. If parts of the root directory become inaccessible and are replaced during a regeneration,

broadcast will find the new copies of the root directory.
Full redundancy eliminates the root reconfiguration problem altogether. Updating the root

directory writes on all accessible copies. The inaccessible ones are brought up-to-date when they
join the network. So, a fully redundant root directory requires a recovery mechanism independent
of the multiple-copy update method used in the replication of other resources.

Fixed configuration restricts the root reconfiguration. So, although crash-resistant resources

may be implemented with Regeneration in a system with a fixed set of copies for the root, the
root should be replicated using some other technique, for example, Available Copies. Otherwise
the update of the root would fail if one (or more) of its copies is inaccessible.

In our experimental implementation, ultimately we rely on Eden kernel's broadcast to find
our root directory replicated with a different technique, to be described in section 5.2.L

4.2.3 Garbage Collection

Regeneration replaces inaccessible copies with new ones on accessible nodes_ Therefore, when the
down nodes recover, we need to reclaim the disk space occupied by the old copies. This problem
is relevant to resource management, and does not cause inconsistency in resources replicated with

Regeneration.
There are two ways to recover the disk space. The first is a system garbage collector, which

eliminates the problem. For example, our implementation in Eden, described in chapter 5, relies
on the Eden garbage collector. However, garbage collection in distributed systems remains a

research problem [47J, so this option may be unavailable in some systems.
The second alternative is to queue delete messages in some other nodes, to be delivered when

the down nodes recover. The copies are then deleted and the disk space released. As long as the
replicas have their own unique identifiers, each generation is distinct from the predecessors and the
messages will delete only the intended copies. There may be some delay in the delivery of queued
messages because the nodes holding the messages may be down or busy. These situations may
slow down disk space reclamation. If the problem becomes severe, messages may be replicated to

decrease the probability of delay to any desired level.

4.3 Comparison with Previous Work

The most important idea in Regeneration is the separation of data restoration from hardware
repair. Other replication methods, in particular those described in section 3.2, can adopt the idea.

27

but to the the best of our knowledge. this separation has not been reported before. In section 4.4.

we will show, using a probabilistic analysis. that this separation increases resource availability. In
this section, we compare the algorithmic aspects of Regeneration with other multiple-copy update
techniques.

4.3.1 Primary Copy

\Vith a fixed primary site, a resource replicated with the Primary Copy method increases read
availability only, through secondary copies; its write availability is the same as the availability of
the primary site. In contrast, Regeneration and the other methods in this section all provide some
way of increasing write availability. Also, unlike Primary Copy, which is an asymmetric replication
method because of the distinguished primary copy, Regeneration and the other methods are
symmetric, i.e., all copies are equal.

For network partitions, Primary Copy solves the problem by imposing the pessimistic ap­
proach, restricting the updates to the partition containing the primary copy. Regeneration. as
stated in section 4.1, requires some other technique to handle partitions, which may be either
optimistic or pessimistic.

Primary copy may use the idea of regeneration with respect to secondary copies. During
an update, if some secondary copies are inaccessible, other secondary copies can be created.
However, regeneration of the primary copy is not easy. For example, Minoura's True-Copy Token.

scheme [59] requires that we certify all true copy tokens as lost before a regeneration can take­
place.

4.3.2 Majority Voting

Regeneration, like Available Copies. reads one and ' rites all copies, while Majority Voting reads
and writes subsets of copies. Because of the read/write trade-off in Voting, to preserve fault­

tolerance in write, the read quorum must be at least two. Consequently, if remote accesses are
more expensive than local access, Voting would impose higher access costs. In compensation,

Regeneration requires spare nodes and storage to regenerate new copies, and space occupied by

replaced copies needs to be reclaimed.
Voting and Regeneration also differ in their handling of network partitions. Regeneration needs

some additional method to guarantee resource consistency, while Voting imposes the pessimistic
approach by the selection of a majority quorum for updates.

Voting can use the idea of regeneration to increase resource availability. For example. in

gathering a write quorum, the quorum collector can copy the current version onto obsolete rep­
resentatives [36]. What we suggest is that in the absence of partitions, and given the flexibility
to update configuration data, new replicas can be created on spare nodes to obtain either a read
or a write quorum.

4.3.3 Available Copies

Regeneration and Available Copies share three characteristics. First, they are both multiple-copy
udpate algorithms based on reconfiguration. A directory is used to indicate which copies are

28

,'"
up-to-date. Second, both algorithms read one and write all copies. Finally, they are both "pure"

multiple· copy update algorithms, which allow the adoption of optimistic approaches to handle
network partitions. If used in a network in which partitions are likely, they must be combined
with some network partition handling technique.

As with other multiple-copy update methods, Regeneration differs from Available Copies
because of the replacement of inaccessible copies. In addition, there are two important differences
between them. The first is the amount of work done at crash detection and recovery. The Available
Copies algorithm is pessimistic, excluding all potentially out-of-date copies, while Regeneration
is optimistic, replacing only actually inconsistent copies.

The second difference lies in the scope of adaptation: Available Copies may exclude out-of­
date copies, which remain inaccessible until their nodes recover. In contrast, Regeneration can
migrate copies out of retired nodes into new hardware. However, Regeneration requires more
sophisticated resource management: spare nodes and storage are required for regeneration. and
space occupied by replaced copies needs to be reclaimed.

Since the Available Copies algorithm requires the capability for reconfiguration, it is easy to
add regeneration to resources replicated with Available Copies. DDM [23] uses Available Copies,
and it includes the concept of offline copies that can be switched online. Although the offline
copies are more like hardware cold stand-bys than regeneration, the final result is equivalent to

some degree. The offline copies decrease resource vulnerability to multiple failures. up to the.
number of offline copies. Regeneration is free from the limitation of the number or location of­
offline copies.

4.4 Availability Analysis

In section 4.3, we have compared the algorithmic differences of several multiple-copy update
methods. Now we proceed to compare the availability they provide, using a probabilistic analy­

sis. Four replication techniques, Primary Copy (PC), Voting (VT), Available Copies (AC), and

Regeneration (RG) are analyzed and compared in this section.
Performance characteristics like throughput or response time are beyond the scope of this

analysis, concerned with availability. The cost of replication, in terms of disk storage space, is

fixed in the analysis, since we use the same number of copies to allow a fair comparison. With a

fixed number of copies, the disk space required would be the same for all methods. Execution over­
head depends on other factors such as the read/write mix, and impacts the overall performance.
Integrated performance and availability analysis remains a subject of future research.

4.4.1 The k-out-of-N Model

The availability of replicated resources can be analyzed using results in reliability theory on k­

out-of-N systems [4]. The assumptions of the k·out-of-N model are:

1. The resource and its copies are 2-state: either accessible or inaccessible.

2. State changes of the copies are statistically independent.

3. The resource is accessible if and only if at least k of its N copies are accessible.

29

Resource
A vailabili ty

.4 .6

Copy A vailabili ty

.8 1.0

Figure 4.3: Primary Copy

Resource
Availability

1.0
r', . /

. 8
/ . . /

/ . . /
.6 VTRS / ;'

/ .
. /

.4 / .
;' .' VTwG

.2
. /

/ . . /
/ .
',/

0 .2 .4 .6 .8

Copy A vailabili ty

Figure 4.4: Voting

1.0

The main result of k-out-of-N model we will use is that, given the availability of each copy, we

can combine all possible system configurations to calculate the availability of the resource. ~r

analysis will be illustrated by a series of diagrams showing the resource availability as a function

of copy availability. In these diagrams, all copies are assumed to have the same availability, which

appears on the horizontal axis; the curves show how the resource availability improves when the

copy availability covers the probability range from 0 to 1.

For concreteness, we study the availability of a resource with 10 copies. The analysis applies

to systems in which:

• Nodes are either up or down (no Byzantine failures; e.g. fail-stop processors [76]).

• Copies reside on independent nodes.

• Nodes have same probability of survival (e.g. in a homogeneous network).

4.4.2 Primary Copy

A replicated resource with 10 copies using the Primary Copy method allows writes on the primary

copy and reads on any of 10 copies. Consequently, its write availability is the same as the primary

copy, shown in figure 4.3 by the straight line (PCw). Its read availability is much higher, since

anyone out of 10 copies would do; this is depicted by the left curve (PCR) in the same figure.

4.4.3 Majority Voting

For 10 copies, simple Majority Voting allows 8 choices of read and write quorums, from (read 2.

write 9) to (read 9. write 2). Of the 8 choices, the 4 in table 4.2 are useful when the transaction

reads the resource before the update. We will consider two representative examples:

30

Number of Copies curves in

Read Quorum Write Quorum figure 4.4

2 9 VTR2, VTW9

3 8 omitted

4 7 omitted

5 6 VTR5, VTW6

Table 4.2: Majority Voting, Quorum Choices for 10 Copies

1. The solid lines in figure 4.4 show the 2-out-of-IO read availability (VTR2) and 9-out-of-IO

write availability (VTW9) of a read quorum of 2 and write quorum of 9. In this case, the
resource read availability is high, but write availability is correspondingly low, demonstrating

the read/write availability trade-off in Voting.

2. A read quorum of 5 and write quorum of 6, is shown in figure 4.4 by broken lines (5 -out-~
of-IO and 6-out-of-IO, marked VTR5 and VTW6, respectively). In this case, both read and

write availability are higher than VTW9, but lower than VTR2.

4.4.4 Available Copies and Regeneration

Given 10 copies, Available Copies offers the (I-out-of-IO) read and write availability, shown in
figure 4.5. Assuming there are enough resources to allow successful regeneration, the Regeneration

method provides the same (I-out-of-IO) read and write availability.

The difference between Available Copies and Regeneration arises after a successful regenera­
tion. Let us consider the situation where a number of copies have been lost, for example, five. Out

of the remaining five, Available Copies provides I-out-of-5 availability, the right curve (RG B / AC)

in figure 4.6. With five remaining copies, Regeneration also provides I-out-of-5 availability. How­

ever, after successful regeneration, the resource availability is restored to I-out-of-IO (RGA)'
Figure 4.6 shows the availability increased by regeneration, which the Available Copies algorithm
does not provide. In the figure, a lO-copy resource's read and write availability before the re­

generation (RGB/AC with 5 accessible copies) is compared to its availability after regeneration
(RGA with 10 accessible copies).

4.4.5 Comparison of The Four Methods

We can compare the four methods, Primary Copy, Voting, Available Copies, and Regeneration, by
superimposing the figures 4.3, 4.4,4.5 to obtain figure 4.7. The solid curve to the left, representing
read and write availability provided by Available Copies and Regeneration (and Primary Copy

31

Resource
A vailabili ty

1.0

RG/AC

.8

.6

.4

.2

o .2 .4 .6 .8 1.0

Copy A vailabili ty

Figure 4.5: Available Copies and
Regeneration

Resource
Availability

1.0 RG,A

.8

.6 RGB/AC

.4

.2

o .2 .4 .6 .8 1.0

Copy Availability

Figure 4.6: Regeneration, before
and after

read-only), is higher than the whole range of availability covered by the Voting quorum choices.
exemplified by four dot-dash lines. Also note that although VT lines show high resource availabil-­
ity at high copy availability, they all cross the straight line, representing non-replicated resource
(and Primary Copy write) availability. This means that for sufficiently low copy availability levels,
Voting actually offers less availability than a non-replicated resource.

In order to clarify this point and examine different replication techniques performing "under
stress," let us consider a la-copy resource of which 5 copies are not accessible. Of the figures
considered so far, 4.3, 4.4, 4.5, and 4.7 have been calculated based on the initial resource con­
figuration, where 10 copies have been created and are accessible. Figure 4.8 shows the resource
availability provided by the four methods, when only 5 copies remain accessible.

First, we observe that Voting write availability for either a write quorum of 6 or 9 is zero.
since such quorums cannot be gathered with only 5 copies. This offers an intuitive explanation
for the low Voting availability at low levels of copy availability: the copies are more likely to be
down, making the vote gathering less likely to succeed.

Second, the dotted line (PCw) represents the primary copy availability if it is among the 5
accessible copies. Otherwise the primary copy is simply inaccessible. The reason PCw remains
constant is that the availability of a non-replicated resource is always the same as the availability

of the node on which it resides.
Third, the solid curves (from right to left) show the 5-out-of-5 read availability (VTRS) from

a read quorum of 5, the 2-out-of- 5 read availability (VTR2) from a read quorum of 2, and l-out­
of-5 read and write availability (AC / RGB / PCR) of Available Copies and Regeneration (Primary
Copy read-only). It is relatively easy to see that the 5-out-of-5 curve drops quickly as the copy
availability drops a little. The 2-out-of-5 curve is intermediate, while 1-out-of-5 is the highest of

the three solid lines.
Finally, the dashed curve represents the 1-out-of-l0 read and write availability (RG.4) offered

32

r Resource
Availability C

1.0 ~G \ ~ -/~--/...,..-. """'-"7

//
;" .I

;' /
.8

.6
/

.4

i / / . I
.I / VT I

.~./ /
o .2.4.6.8 1.0

Copy A vailabili ty

Figure 4.7: Comparison, 10 copies

Resource
Availability

1.0 RGA .-

.8 /

I
.6 I

.2

o

/

.2 .4 .6 .8 1.0

Copy Availability

Figure 4.8: Comparison, 5 re­
maining copies

by Regeneration, assuming enough nodes allowed successful regeneration. The l-out-of-IO curve
is clearly higher than all other curves, showing the availability increase due to regeneration. •

So, system degradation decreases resource availability for all four methods, but Regeneration­
is the only one to repair the resources even before the nodes recover. In order to take advantage
of this feature, if Regeneration is used in an application where the ratio of writes to reads is very
low, one should force regeneration often enough to prevent loss of the last copy. There are two
ways this can be implemen ted. First, the read algorithm in figure 4.1 may be modified to perform
a regeneration whenever a copy (or a certain number of crashes) is found inaccessible. Second, a
daemon can run in the background checking for inaccessible copies. The daemon could run from
time to time, or after the detection of a node crash (or a certain number of them) in the network.

Regeneration has two strong points:

1. Increased availability allows fewer initial copies, reducing disk space requirements.

2. The ability to adapt resources in a changing environment permits more flexibility in system

configuration.

However, regeneration may fail for insufficient disk space on spare nodes. In this case, we could
regenerate up to the number of operable nodes, instead of aborting the update. This can be viewed
either as the Available Copies method with regeneration added, or as the Regeneration method
with a variable number of required copies. The optimal number of copies is a function of the

storage cost, the execution overhead, the probability of crashes, and the frequency ofregeneration.
One should regenerate up to a replication level that provides an acceptable availability of the

resource, and not beyond.

33

Chapter 5

Replicated Resource Distributed
Database

5.1 Design

We have implemented the Replicated Resource Distributed Database (R2D2) to supply a repli­
cated directory to the nested transactions mechanism, described in chapter 6, which supports
crash-resistant resources. R2D2 is a crash-resistant mapping of string names into sets of capabil­
ities. Using the Regeneration method for replication, R2D2 also demonstrates the practicality of:
the Regeneration method.

In section 5.1.1, we describe the client interface to R2D2. Since R2D2 is built with Eden
objects, we introduce some internal structures of Eden objects in section 5.1.2. In section 5.1.3,
we summarize the Core Structure in which the directory mapping of R2D2 is replicated. The
one-copy syntax and semantics are assured by the Access Structure, summarized in section 5.1.4.

5.1.1 R2D2 Client Interface

R2D2 is an atomic data type [56,83], in the sense that each invocation to R2D2 is atomic de­
spite concurrent access and system crashes. The main R2D2 operations (invocations) access the

mapping of resource names into sets of capabilities:

• LookupSet(in: StringName; out: CapaSet, Status)
- returns the set of capabilities named by string name.

• AddSet(in: StringName, CapaSet; out: Status)
- add the pair (resource name, capabili ty set) into the mapping.

• DeleteSet(in: StringN arne; out: Stat us)
- delete the entry named from the mapping.

• ReplaceSet(in: StringName, CapaSet; out: Status)
- replace the named mapping entry with a new capability set.

These operations are part of the abstract type Rep Directory, defined in appendix table A.1.

34

r

I

incoming invocations

outgoing invocations
Checkpoint

,-------...,

Eden
kernel

" /

I Passive
Repres.

Figure 5.1: Eden Object's Two Forms

R2D2 is also a crash-resistant resource. Components of R2D2 are replicated using Regenera­
tion. The degree of replication (the number of copies) varies from component to component, and
can be changed any time. The replication in R2D2 is completely transparent to its clients. All
requests are sent to R2D2Root, and the internal structures described in this chapter are hidden.~

5.1.2 Eden Objects

In section 1.3 we have outlined the main concepts of the Eden system. Now we describe the
current implementation of Eden, making these concepts more concrete.

The most important characteristic of Eden objects is the distinction between an object's active
form and passive representation (see figure 5.1). An object's active form is a Unix process running
the object's Edentype code, on a node with an Eden host. Invocations delivered by the host to
that object are serviced by its active form. The active form can decide to checkpoint, causing
the object's entire state to be written into the passive representation, on stable storage. The
checkpoint replaces an earlier version of the long-term state atomically; either the old version or
the new version is accessible to the object at all times.

If the active form crashes, the Unix process goes away, and only the passive representation
remains. Eden kernel is capable of reactivating the object, given the passive representation. For
example, invoking an inactive object causes it to be reactivated by the kernel. Since the checkpoint
is an atomic operation, there is always a consistent version of the passive representation.

We have mentioned that each object is an instance of an Edentype, a program written in Eden

Programming Language (EPL) [16]. EPL is an extension of Concurrent Euclid, which is a Pascal
derivative. The fundamental unit of program in Concurrent Euclid is a module. Modules may be
put together to form larger programs, and there are well-defined rules for information sharing and
hiding between modules. Basically, data structures are internal to a module and cannot be shared
across modules, but operations can be invoked from another module. In this aspect, modules are

similar to instances of abstract data types.

35

Each module may have several processes to express multiple threads of control. A process
starts at the beginning of progr~m execution, and ends when executable commands run out. The
program exits when all of its processes end. A process may stop in the middle of its execution,
however. Processes may wait on condition variables for certain events to occur. These condition
variables, protected by monitors, constitute the basis of synchronization between processes.

The original Concurrent Euclid, as defined by Holt [43], provides only static declaration of pro­
cesses. The Concurrent Euclid compiler used in the Eden project, enhanced by Norm Hutchinson,
supports dynamic creation of processes. At run time, a declared process may fork as many pro­
cesses as necessary. All processes are equal, since there is no child/parent relationships between
forked and declared processes.

Processes are used in two ways: First, active processes do real work. For example, Eden
objects that interact with human users have a process that collects keyboard input. Second,
passive processes service invocation procedures. They wait for invocation messages to arrive, and
then execute the especially designated "invocation procedure" for that invocation.

To illustrate the structure of an Eden object, a simple Edentype, the Edenlnteger has been
written and its EPL program included in appendix section A.2.S. Although EdenInteger has
only passive processes, the active ones are syntactically and semantically the same as the passive
processes declared to service invocations.

R2D2 is implemented with Eden objects more complex than EdenInteger, but the basic struc­
ture and language primitives are the same. In the rest of this chapter, we describe the R2D2~
components in terms of their function. More implementation details of the Edentypes involved­
can be found in appendix section A.2.

5.1.3 Core Structure

R2D2's core structure is a replicated tree (figure 5.2 shows the tree's top portion). Each box in the
figure represents an object of Edentype RepDir, a mapping of strings into sets of capabilities, which
point to replicas at the next level in the tree. The double arrows denote the sets of capabilities for
the replicated resources in the mapping. For example, the root of the tree in figure 5.2 is called
'/'. The mapping in the root has two entries, one with name 'users', and the other 'system'. Both
'users' and 'system' have two copies, so each name maps into two capabilities.

An instance of RepDir is unaware of its replicas (shadow boxes in the figure). For example,

it does not contain any concurrency control. Therefore, RepDir is not an atomic data type. The
atomicity of R2D2 operations are assured by the transaction managers in the Access Structure
(section 5.1.4). RepDir's only salient feature is the idempotency of all write operations (Add,
Delete, and Replace). Section 5.2.3 describes the implementation of RepDir, and more details are

in appendix section A.2.4.

5.1.4 Access Structure

In order to keep the replicas in the core structure consistent, we have an access structure on top
of the core (figure 5.3), composed of an R2D2 Root, and several identical instances of the R2D2
Transaction Manager (R2D2TM). Each R2D2 request is received by the Root, and forwarded to

36

,..

'I' set of
capabili ties

Figure 5.2: Core Structure - A Tree Structured Mapping

8 -Clients

~ y \ R2D2TM

~
set of

capabilities

invocation

Figure 5.3: Access Structure - On Top of Core

an idle R2D2TM. The main function of an R2D2TM is to keep replicas in the core structure
consistent during an update, using the Regeneration method.

The Root forwards the invocations to R2D2TM for two reasons: separation of functions, and
load distribution. R2D2TMs can be seen as local or remote processes "forked" by the Root to
take care of individual requests. At the time the decision was made, we felt that Eden should
be used as a tool for distribution. From this point of view, the R2D2TMs take advantage of
transparent distribution of Eden objects to offload work from the Root. However, the attempts
to measure the load balancing effects of distributed R2D2TMs met practical difficulties. Since
the objective of our study is replication for availability, not efficiency, those measurements have
not been completed.

Separating the Root and R2D2TMs into individual objects seemed natural at the time the
decision was made, because of potential load balancing benefits. However, the immediate conse­
quence has been that each R2D2 request is handled by an intermediary object (R2D2TM), whose

37

,'"

only job is to maintain concurrency and reliability atomicity of R2D2 as a crash-resistant atomic
data type. The introduction of an intermediary adds two Eden invocations in the processing of
each R2D2 request. Since Eden invocations are expensive, the resulting impact on R2D2 per­
formance, as compared to the non-replicated case, became noticeable. In section 5.3.4, we will
discuss this further.

5.2 Implemenentation

The implementation of R2D2 reflects our analysis of crash-resistant resources. The Root, de­
scribed in section 5.2.1, provides the one-copy resource access syntax. The R2D2TM, described
in ,section 5.2.2, assures the integrity of one-copy resource access semantics. Finally, the RepDir,
described in section 5.2.3, replicates the data.

The design of R2D2 proceeded concurrently with the design of ERMS (chapter 6) and the
development of the Regeneration method, taking about one man-year. Coding and debugging of
R2D2 took slightly over three man-months.

5.2.1 R2D2 Root

The Root serves two functions: transparent access to the replicated core structure and lock
management. Since the Root has a fixed capability, clients use one single capability to address
R2D2. However, the fixed capability prevents the use of the Regeneration method to replicate~
Root data at the object level. Nevertheless, the Root's data must be replicated somehow, since
it participates in every access to the replicated database. We solve this problem by making the
Root a replect [65,72], a special kind of replicated object that we now describe briefly.

A replect's passive representation is replicated on several disks, using a variant of Gifford's
Voting scheme, and is implemented within the kernel, rather than at the object level. There is
only one active form for each replect at any time. If the active form crashes, and should enough
replicas of passive representation be accessible, the next invocation automatically reactivates the
replect on another node.

The main advantage of a replect is transparent access, since it is invoked with a single ca­
pability, in exactly the same way as non-replicated objects. However, to achieve a given level of
availability, a replect needs more copies of its data than an object replicated by the Regeneration
method (see analysis in section 4.4). The transparent access was instrumental in the decision to
adopt the replect for R2D2Root.

To implement the Root directory, there are inherent difficulties with the other alternatives
discussed in section 3.4. Broadcast was used at the Eden kernel level, but it was not available to
Eden object programmers as a primitive. In other words, Eden objects cannot send a message
to a group, or all of the objects in the system. Full redundancy was also unavailable to object
programmers, since each capability is mapped by the kernel into only one object. So there is
no manner in which a specific capability can address several objects residing on different nodes.
Finally, since we need only an updatable root, a fixed configuration could have worked, and would
have been chosen by default. The implementation of replects by A. Proudfoot [72] provided a
superior solution than fixed configuration for two reasons. First, only one capability is necessary

38

r Add('userslbob '}

1 () 10

Add('userslbob '}

9()2
Lookup('users '}

Root 4() 3 RepDir 'I' copy #1

R2D2TM Add{'bob'}

6 ()5 RepDir 'users' #1

s()7 RepDir 'users' #2

Figure 5.4: R2D2TM Actions in Add{'userslbob')

to invoke the replect Root. Second, the replect provides some fault-tolerance for updating the
Root.

The Root's lock table is a mapping from string names to the unique identifiers of the trans­
actions holding the locks on the names. (More details of LockTable are in appendix section A.3.5).~
Currently, exclusive locks are used to serialize updates. Other concurrency control methods could­
have been used, but this simple approach was taken because the main focus of the work was
replication rather than concurrency control. RepDirs have internal synchronization to ensure
consistent read access, so no external read locks are necessary. In order to update an entry, the
name corresponding to the parent mapping is locked. For example, Delete('userslbob'} requires
a lock on 'users '.

5.2.2 R2D2 Transaction Manager

The R2D2TM receives a request from the Root, and keeps the core structure consistent. The way
an R2D2TM works is best illustrated by the following example. Figure 5.4 shows the work done
in R2D2 to service the invocation Root.Add('userslbob'}; the actions are numbered in the order
in which they happen and their numbers either appear above an arrow (an invocation) or below
(a reply to an invocation).

Upon receipt of the client request (1), the Root finds an idle R2D2TM, and forwards the
invocation (2). Since this is an update, the R2D2TM receives an implicit lock and proceeds to
find the RepDirs containing the map entry (3). This search goes down the tree as many levels as
necessary, and returns the capability set corresponding to the RepDir which is to be updated, in
this case 'users' (4). The real update invocations are now sent to all the replicas of 'users' (5 and
7). If these are successful (6 and 8), then the R2D2TM returns the success status to Root (9),
unlocking implicitly. Finally, Root forwards the result to the client (10). This no-crash scenario
is the normal case. Cases involving crashes or inaccessible copies are analyzed in section 5.2.4.

39

5.2.3 Replicated Directory

The core structure objects (RepDirs) are essentially composed of two mappings. The first, Dir~fap
(appendix section A.3.3) maps strings into sets of capabilities. The second, TIDMap (appendix
section A.3.9), maps unique transaction identifiers (TIDs) associated with updates into their
return status codes. Updates are made idempotent by searching the TIDMap first. If the update's
TID is found, the corresponding status code is returned and no action taken. Otherwise the update
is performed and the result status associated with the new TID.

The RepDir objects themselves are unaware of the replication of their data. Rather, the
replication information is stored in their parents in the directory hierarchy, in the mapping of
each string into a set of copies. Consequently, RepDirs can be seen as simple abstract machines
that implement a mapping.

5.2.4 Regeneration in R2D2

There are several places where R2D2 may have to replace an inaccessible object by a working
alternative. In the above example, figure 5.4, the first time this can happen is between actions
2 and 9. If the Root detects a crash of the R2D2TM servicing the request, the Root simply
allocates another R2D2TM, sending it the same request with exactly the same TID. Since RepDir
invocations are idempotent, the re-execution does no harm. This is a case where programs are
replicated to increase fault-tolerance.

The second time an inaccessible object may be encountered is between actions 3 and 4. If one­
replica of the RepDir named 'I' is not accessible, the R2D2TM will try the next replica. Since we
are only reading, our "lazy" regeneration strategy bypasses regeneration. As long as one replica
remains accessible in the chain, we continue going down the tree structure.

The third time an object may be replaced is between actions 5 and 8. For example, suppose

that action 8 resulted in failure instead of success. Figure 5.5 describes the additional R2D2T11
actions required by the Regeneration method to recover and proceed. The R2D2TM asks an

up-to-date replica to make a copy of itself (8.1), and the capability of a new replica is returned
(8.2). The R2D2TM finds a suitable new node (which does not currently hold a copy, and contains
enough spare disk space) for the new copy, and makes sure the new replica stores its state on

disk in the new node (8.3). When the new replica is securely established (8.4), the R2D2TM
sends a request to Root (8.5), changing the mapping to reflect the new configuration. Note that
now the R2D2TM assumes the role of client in figure 5.4, and another R2D2TM will be allocated

to service the Replace request. When the configuration change is completed (8.6), the R2D2TM

proceeds in its original course (figure 5.4, action 9).

The Root maps the distinguished resource name'/, into the top layer of the core structure.

In the above example, the R2D2TM servicing Replace('users') may find a replica of 'I' inaccessi­
ble. In this case, the root intercepts the resulting regeneration request Replace('j'), changes its

mapping, and checkpoints the new mapping. This ends the recursion. Thus, every recoverable
crash within R2D2 is invisible to clients, and although a crash of the Root cannot be hidden, its
recovery consists of simply re-invoking the Root with exactly the same parameters. If the Root

reactivation succeeds, R2D2 will start up again.

40

r

Root

Replace (,users/bob ')

8.5 () 8.6

CopySelJ I
L _____ ~8.1 RepDir 'users' #1

8.2'(.

CheckpointAt I
1R2D2TM () 8.3

8.4 L..-_______ ----'
new 'users' #2

Figure 5.5: R2D2TM Replaces an Inaccessible RepDir

The client re-invocation is important, because a catastrophe might have crashed the Root and
all R2D2TMs in service, leaving some RepDirs temporarily inconsistent. We rely on the clients
to recover the consistency in R2D2 for three reasons:

1. In Eden, since a costly checkpoint is the only primitive to access stable storage (see figure 5.2
for some numbers), maintaining consistent data on stable storage is very expensive.

2. Client retry is easy (a simple loop) and in the normal case adds no extra cost.

3. The multi-workstation catastrophic crash is rare; since the Root and R2D2TMs are dis­
tributed, single-node crashes mean the survival of either the Root or the R2D2TM, and~
R2D2 consistency is assured.

Although R2D2 is replicated for availability, there are three cases in which R2D2 may be
unable to service a request:

1. Every object in a capability set may be inaccessible (insufficient replication).

2. The Root activation may fail because of insufficient replect replication.

3. Regeneration may fail because of insufficient spare nodes or disk space (insufficient re-

sources).

In the first case the resource will remain inaccessible until a node containing a replica recovers;
in the second, the R2D2 will remain inaccessible until the Root replect recovers. In the third
case, with insufficient resources, R2D2 may be unable to restore the full complement of copies,
so regeneration cannot complete successfully. A modification of R2D2 to use variable number
of copies may overcome this difficulty (section 4.4.5), although it remains to be implemented.
Another approach is to use Regeneration in a system with enough resources so that this problem

will not arise.

5.3 Measurements and Evaluation

5.3.1 Eden System

Eden has been running on an Ethernet of SUN workstations since Spring of 1984. The current
hardware configuration includes 12 diskless workstations and 4 disk servers (figure 5.6). There

41

File
Server

SUN-150/170

Ethernet

work­
station

SUN-100/120

1

16

Figure 5.6: Eden Hardware (circa Spring 1985)

are two kinds of Eden kernels running as Un..ix processes on the SUNs, the host and the POD
(Permanent Object Database). The host takes care of inter-object and inter-node communica­
tions, and the POD manages stable storage. An Eden object's active form runs also as a Unix
process, and communicates with its Eden host through IPC calls. An object is always activated~
by "attaching" it to a host. All communications between the object and outside world (other­
objects and Eden kernel), is handled by the object's host.

PODs function as virtual back-end processors and they only talk to other PODs and hosts.
There is always a "responsible POD" for each object's passive representation. \Vhen an object
asks the Eden kernel to checkpoint its passive representation, the host receives the message and
forwards the data to the responsible POD for processing. An object's passive representation data
are stored in a Unix file. If the responsible POD runs on the same machine as the object's host, the
POD is given the file. Otherwise the Eden Message Module transfers the file through Ethernet to
the POD (see figure 5.7). Once in possession of the new passive representation file, the POD uses
the atomic Berkeley Unix 4.2 command "rename" to switch from the old passive representation
to the new one.

To an object programmer, the two most important Eden primitives are invocations and check­
points. Invocations are the only way to communicate with other objects, and checkpoints are the
only way to write to stable storage. Since R2D2 contains many objects, we use invocations. Of
these objects, RepDirs need to store their state on stable storage, so they use checkpoints.

In the current prototype implementation of Eden, the costs of invocations and checkpoints
are considerable. Eden timings indicate a local invocation between Eden objects on the same
machine takes about 68 ms. Invoking an object on another machine (a remote invocation) takes
about 103 ms. These numbers refer to an "empty" invocation, where there is no user processing.
only the packing, unpacking, copying, sending and receiving of the messages. A checkpoint takes
more than a second for a small amount of data (a few hundred bytes). Table 5.1 contains a
compilation of available performance data on Eden primitives. We should note that the faster

42

,'-'

B POD

~
'- ~

Passive
Active Repres.
Form

workstation file server

Figure 5.7: Host and POD

Operation Local Remote

Invocation
ReceiveAny 0.056 0.084

Invocation
0.068

Normal Case
0.103

Checkpoint
0.9 -

File Server

Checkpoint
1.1 1.3

lV orkstation

Table 5.1: Informal Eden Timings (in seconds, SUN 4.2)

timings, Invocation (ReceiveAny) and Checkpoint (file server), are restricted to specific cases.
In R2D2, we needed and used Invocation (Normal Case) and Checkpoint (workstation). Since
we only use these primitives, no further analysis of their cost will be given in this dissertation.

Interested readers are referred to a Master's Thesis on invocation costs [44] and an internal study

of checkpoints [57J.

5.3.2 Experimental Set- Up

For our measurements, we have put the hosts on diskless workstations and PODs on disk servers.
In other words, each object is activated on a diskless workstation, but its passive representation
resides on a disk server. The above configuration is a natural one. It does not use disk access
from diskless workstations, and uses disk servers only for stable storage. Other configurations are
possible, using Eden hosts and PODs as logical nodes running on top of Unix. However, our goal

43

IEFSMenu I

node 1 node 2

Figure 5.8: Reading R2D2

is to observe the performance of R2D2 as a crash-resistant resource, so we have used the same
configuration in all measurements. Additional experiments with different configurations may shed
light on Eden kernel implementation, but not on replication techniques.

In our measurements, R2D2Root is an ordinary Eden object, instead of a replect (described
in section 5.2.1). There are several reasons for this simplification. First, the R2D2Root does
not checkpoint during our measurements. Since the active form of a replect is indistinguishable­
from the active form of an object, the results must be the same. Second, the loss in availability­
does not affect these experiments, which measure only performance. Third, the implementation
of replects required significant kernel changes, and the "replect kernel" did not have maintenance

support after the graduation of its programmer, 1 following its completion.
In our measurements, the core structure and the access structure of R2D2 are pre-activated to

eliminate the variance introduced by object activation, which may take many seconds. All active
forms of R2D2 objects are concentrated on one node to reduce the number of remote invocations,
which take longer than local invocations. A driver object (EFSMenu) sends the appropriate
invocations to R2D2Root and measures the time it takes for R2D2 to service the invocations. For
historical reasons2 , EFSMenu runs on a separate machine. Therefore, for read requests such as
LookupSet, the active form of objects are concentrated on one node, except for EFSMenu (see

figure 5.8).

The situation is more complicated for write requests such as ReplaceSet, AddSet, or DeleteSet,
because the passive representations and PODs come into play. The passive representations reside
on different file servers to increase availability, so checkpoint requests to different copies can
proceed in parallel. Also for availability the active form of different copies of the same resource
are activated on different nodes. Figure 5.9 shows the configuration of a write request to two

copies.

1 A. Proudfoot did hi8 M.Sc. thesi8 work on replects [72].
2 At the time of first measurement8 (early 1985). our SUNs had only 2 MegaBytes of m&in memory; EFSMenu

caused paging and consequently timing variances if was run on the 8ame machine.

44

I EFSMenu I
l'bob2 '1

node 1 node 2 node 3

Figure 5.9: Writing Two Copies

5.3.3 Measurements

Using the set-up described above, we measure the elapsed time of requests by taking the times­

tamps before and after each invocation. For example, to measure the write request time, the code
in EFSMenu looks like this:

Kernel.TSCurrentCtictime)
RepDir_AddSetCR2D2RootCapa. stringname •...)
Kernel.TSCurrentCtactime)

Since the SUN internal timer advances in ticks of io second, the granularity of timestamps is a
problem. For relatively short invocations, we need to make a bundle of them to decrease rounding
errors introduced by the clock. For example, a LookupSet invocation takes only a fraction of a
second, so usually we repeat it 100 times before we stop the clock.

Typically, a measurement is repeated 10 times and the results averaged to obtain the confidence

interval according to the formula derived from the Student t distribution:

{
S· t /2}

Prob Ix - III ~ ; = 1 - a

where x = sample mean, 8 2 = sample variance, Il = population mean, and n = number of samples.
(In case n = 10 we have to/2 ~ 2.8 for a = 0.02.) An example of actual numbers obtained in such
a run appears in tables A.9, A.10, A.Il, and A.12. These runs are obtained late in the night

with no other activity in the network or nodes.
The performance of R2D2 is compared to the performance of a non-replicated directory

in figure 5.2. In both cases, EFSMenu was used as the timing tool. The read operation was
Lookup('users/bob/mailboz'} and the write operation was Replace(,users/bob/test'). The configu­
ration of the non-replicated directory is analogous to the R2D2 configuration as described above.
All objects in the directory hierarchy run on the same node, while their passive representations

reside on a disk server.

45

r

Non-replicated R2D2 Comparison

Read
number of 1 remote + 1 remote +

invocations 2 local 4 local

Read time 0.23 ± 0.01 0.42 ± 0.01 1.8 times

Write
number of 1 remote + 1 remote +

invocations 2 local 4 local

'Write
number of

checkpoin ts 1 2

Write time 1.43 ± 0.07 2.18 ± 0.08 1.5 times

The measured times show the confidence range at a confidence level of 98%.

Table 5.2: Measurement Summary (time in seconds)

5.3.4 Evaluation

For read invocations, the dominant cost factor is the invocation time. Examining tables 5.1
and 5.2, we see that the time taken by the non-replicated directory to service a Directory.Lookup
can be attributed entirely to the invocations. Since the Regeneration method reads only one
replica, we had hoped that the read overhead would be less. In fact, R2D2 read is 80% more
expensive than non-replicated directory. The additional cost is due primarily to two extra invoca­

tions, introduced by the access structure (Root and R2D2TM), which also added some software
overhead (about 10% of total).

The software overhead could be decreased by carefully recoding the R2D2TM. For example,
the debugging and tracing code could be streamlined to save execution time. However, bypassing
the extra invocations requires modification of R2D2's structure. As we have mentioned earlier
in section 5.1.4, making the R2D2TM take care of concurrency and reliability atomicity intro­
duced the two extra invocations. We could eliminate the two extra invocations by collapsing
the R2D2Root, the R2D2TMs, and the top-level RepDirs into one object (of the replect kind).
Since the purpose of R2D2 is to demonstrate the practicality of the Regeneration method, no
further attempts were made to optimize R2D2 to circumvent this performance problem particular

to Eden.
For updates, the most important cost factor is the checkpoint operation, which atomically

transfers data to stable storage. Checkpoint operations take times at least an order of magnitude
longer than those of invocations. Consequently, the time it takes to service any invocation which
involves checkpoints is dominated by the number of checkpoints used. We speeded up R2D2 write
operations considerably by making the R2D2TM send the RepDir update invocations (which cause
checkpoints) in parallel. Compared to the non-replicated directory that checkpoints only once,

46

R2D2 takes only one and a half the time to checkpoint two copies.
With the performance measurements we have completed the work on data availability through

replication. We have separated the data restoration from hardware repair. \Vhen data restora­
tion can be done faster than hardware repair, Regeneration takes advantage of this separation
to provide higher data availability than other replication methods. Given enough spare nodes
and storage, a probabilistic analysis shows the advantage of Regeneration. The replicated direc­
tory system built with Regeneration, R2D2, will be used in the implementation of the nested

transaction mechanism, described in chapter 6.

47

Chapter 6

Eden Resource Management System

6.1 Overview

Our nested transaction system is called Eden Resource Management System (ERMS). The main
goal ofER!\IS is to investigate the design and implementation of a powerful transaction mechanism

using composition. We use composition in two ways: statically, we compose modules to form
elaborate objects; dynamically, we compose objects to form large structures. Eden objects are
ideally suited for this purpose; since EPL supports modules and invocations, both static and
dynamic composition are easy. _

However, we must recognize the performance limitations of the Eden prototype (table 5.1).
Since Eden object programmers must use a small set of expensive primitives, raw performance is
not our primary goal. Rather, we favor clarity and generality in ERMS. Performance considera­
tions are taken into account at the level of checkpoin ts, whose cost is in the order of seconds.

6.1.1 The Ideas

The key technique used in ERMS is composition. By composition we mean the combination
of objects (and modules) to perform tasks that individual objects (and modules) are unable to
accomplish. In addition, the components used in the combination should be modules - preferably
existing software - implementing well-known algorithms.

The fundamental building block of ER!-.IS is the ERMS Transaction Manager (ETM). Each
ETM handles concurrency control and crash recovery of one transaction.1 ERMS supports nested
transactions in a tree hierarchy by organizing ETMs into trees that reflect the structure of nested
transactions.

The key idea of ERMS is to carefully compose concurrency control and crash recovery infor­
mation in a tree structure isomorphic to the hierarchy of nested transactions. One unique char­
acteristic of ERMS is its adoption of concurrency control and crash recovery methods which are
exactly the same as those used in single-level transaction systems. Although the data structures
and protocols used at each level are the same as the single-level transaction systems, composition

provides nested concurrency atomicity and reliability atomicity.

ITo the best of our knowledge, the idea. of one transaction manager per transaction 11'&11 first suggested by
Jessop [46].

48

B
request access

ETM -'-------_ L.._C_11.,..·e_n_t ---I

give capability

Figure 6.1: Client and ETM

Although various concurrency control methods could be used, we have chosen two-phase lock­
ing and version-based recovery. At the top level, a system lock manager synchronizes resource
access and a system directory handles recovery. For each transaction, the main data structures are
a lock table to manage locks and a mapping to keep track of committed versions. We concentrate
these data structures in the ETM, which in two aspects differs from the transaction managers in
the TMjDM model introduced by Bernstein and Goodman [9]. First, their D~f maintains the
data structures for concurrency control and crash recovery. The ETM contains both. Second;
their transaction manager takes care of all transactions running on that node. In comparison, an
ETM serves only one transaction. However, these differences are in implementation, and the ET11
maintains Bernstein and Goodman's abstraction of transaction manager, relieving concurrency
control and crash recovery from the clients. Using one ETM per transaction facilitates composi­
tion, so the design, implementation, and presentation of ERMS have been simplified considerably.

6.1.2 Computation Model

Figure 6.1 shows the high level model of resource access in ERMS. A client object invokes
the ETM requesting access to resources (one resource is shown in the figure). After taking the
necessary steps to assure concurrency atomicity and reliability atomicity, the ETM gives the
client direct access to the resources, which are sets of Eden objects when replicated. Unlike the
Argus user-defined atomic data types [83], our resource objects do not include any transaction
concurrency control or crash recovery. The ETM is responsible for both concurrency atomicity

and reliability atomicity of all resources in a transaction.
Since ETM is separate from the client, multiple clients may participate in the same transaction.

The client who started the transaction may pass the ETM's capability to other client objects,
or to other processes within the same object. Figure 6.2 contains an example showing multiple
threads of control in a hypothetical transaction example.

In the distribution of client objects and inclusion of multiple processes within each object,
ERMS differs from usual distributed transaction systems. In the Argus language [56] and R· [55]
distributed database, a process corresponds to one transaction. In ERMS, many processes from
many client objects may participate in one single transaction. Distributed client objects com-

49

I Client Object 1\

1
BeginTransaction

OpenResource(Rl)

l
CloseResource(R1)

end process

OpenResource(R2)
OpenResource(R3)

1
CloseResource(R2)
CloseResource(R3)

CommitTransaction
~

I Client Object 2\

invocation

openResorCe(R,)

CloseResource(R1)

invocation
reply

process 1 process 2 process 3

Figure 6.2: Hypothetical Transaction Example

50

municate with each other through Eden's location-transparent invocations. Although resources
internal to an Eden object (an .EPL program) may have their access synchronized by monitors,
resources external to the object cannot. Since there are no inter-object synchronization mecha­
nisms, resource accesses from client objects are controlled by the one ETM for the transaction.
Therefore, the ETM conveniently encapsulates concurrency control and crash recovery.

6.1.3 Client Interface

The interface between ERMS and clients is explicit. At the beginning of the transaction, the
client obtains an ETM that becomes responsible for the transaction, and tells the ETM that the
transaction has started. Simila.rly, at the end of transaction, the ETM must be told explicitly
whether the transaction has committed or aborted. Three TransactionBracket operations
inform the ETM of the beginning and end of the transaction.

• BeginTransaction: beginning of transaction.

• AbortTransaction: end of failed transaction. Rollback all updates performed since Begin­
Transaction.

• CommitTransaction: end of successful transaction. Execute atomically all updates since
BeginTransaction.

At BeginTransaction, it is assumed that all resources are in a consistent state. The client proceedS­
to make temporary changes to resources. When changes are completed, CommitTransaction
atomically makes them permanent. If for some reason the client is unable or unwilling to make
the planned changes, AbortTransaction returns the resources touched by the transaction to their

original state at BeginTransaction.
Resource access during the transaction is also explicit. The client tells the ETM which. how.

and when resources are being accessed. Two ResourceManagement operations inform the
ETM about the beginning and the end of access to each resource.

• Open Resource: request access to a resource.

• Close Resource: return a resource after use.

At OpenResource, the ETM uses a concurrency control method to serialize resource access. If
there are no conflicts, the capability of the resource is returned. The client reads and writes the
opened resource directly with the capability. After use, Close Resource returns the resource to the
ETM so other processes or clients within the transaction may access it. If the transaction ends
(either by commit or abort) before an opened resource is returned with CloseResource, all updates

on that resource are lost; the resource remains in its original state before the OpenResource.
This interface is uniform for top-level and subtransactions. The same syntax is used for both,

and the client chooses which case applies at run-time. The main advantage of this uniformity is
that it allows unrestricted composition of application transactions.

From the client point of view, o pen Resource and CloseResource may seem redundant, since
resource accesses invocations themselves mark the scope of access. The explicit interface has

51

,--~

Section
6.2

System­
Level

Control

R2D2
System

LockMgr.

t--- -+--------------~
I I
I I

I
I

Section Top-Level ~ I

6.3 ETM ~ I

.--.

Section
6.4

ETM
Tree

ETM

._---

Figure 6.3: Schematic ERMS Structure

Section
6.1

client
object

been dictated by the lack of compiler support in ER~lS. Since the EPL compiler does not collect
information on resource access invocations, ER~IS is unable to implicitly open and close a resource
at its first and last invocation, respectively. An effort to partially integrate ERMS and EPL
resulted in a plan, which remains to be executed, however.

The same example in figure 6.2 (page 50) shows a possible execution sequence for a hypothetical
transaction. Client object 1 starts the transaction, and forks two more concurrent processes.
These processes permit the client to exploit the parallelism in a distributed system. For example,
one of the processes invokes a second client object, bringing it into the transaction. The multiple
accesses to resources R}, R2 , and R3 are all synchronized by ETM. All boldface operations shown
in the figure are invocations to the transaction's ETM.

The schematic structure of ERMS is shown in figure 6.3. We have already introduced our
computation model and client interface in sections 6.1.2 and 6.1.3. The highest level of concurrency
control and crash recovery is the system-level control, described in section 6.2. Section 6.3 explains
the top-level transaction manager, and section 6.4 descri bes the nesting of transaction managers
to provide nested concurrency control and crash recovery. \Ve summarize ERMS features in
section 6.5 and give an example application in section 6.6. Finally, we compare ERMS with
other systems in section 6.7.

6.2 System Level Control

Figure 6.4 shows the system level support for concurrency control and crash recovery of top­
level transactions. At top left, a system directory (R2D2) stores the public version of resources,
which may be replicated. At top right, a System Lock Manager (SLM) serializes resource access
of top-level transactions. The double arrow indicates concurrency control links, and the single
inclined arrow between R2D2 and ETM shows communications related to reliability atomicity.
A top-level ETM is shown in the picture; the horizontal arrow represents client requests to the

52

Top-level ETM client
program

Figure 6.4: Top-Level Structure

ETM, such as BeginTransaction or OpenResource.
The building blocks used to construct the top level transactions are well-known single-level

transaction techniques. We have chosen strict two-phase locking [30] and version-based recovery.
In section 6.2.1, we describe the System Lock Manager, which controls the resource access at the
top level. In section 6.2.2, we summarize R2D2's contribution to version-based recovery at the
top level.

6.2.1 System Lock Manager

One Eden object, the System Lock Manager, maintains the lock table for all resources controlled
by ERMS. The System Lock Manager object implements the abstract type TwoPhaseLock:2

• LockName(in: ResourceName. AccessMode, TID; out: Status) - If ResourceName is not
locked, grant requested lock by inserting the triple (ResourceName, AccessMode, TID) into
a lock table. Otherwise grant lock (if possible) according to lock compatibility table 2.1

(shared read, exclusive wri te) .

• UnlockNarne(in: ResourceNarne. TID; out: Status) - Remove the entry that matches (Re­

sourceN arne, TID) from the lock table.

TwoPhaseLock is also implemented by R2D2Root in R2D2 (section 5.2.2), and ERMS Trans­
action Manager (section 6.3). The same software module, LockTable, implements the abstract
data type for System Lock Manager, ET1I, and R2D2Root. LockTable is a mapping of resource
names into the lock holders and their respective access modes (read or write).3

To avoid deadlocks, the System Lock Manager does not block a LockN arne request in case
of conflicts. The invocation returns with a status indicating the type of the conflict (whether it

is read-write, or write-write), and the TID (a unique Transaction Identifier) of the lock holder.
Based on this information, the ETM making the request follows the wait-die deadlock avoidance
scheme of Rosenkrantz et aI. [75].

lTbe return sta.tus codes of TwoPba.seLock ca.n be found in ta.ble A.4.
3More implementa.tion details of LockTa.ble's ma.in da.ta. structure, LockMa.p. C&J1 be found in a.ppendix sec­

tion A.3.S.

53

The current System Lock Manager does not implement any time-out mechanisms for ERMS
resources. Consequently, recovery from crashes usually requires some manual lock releases. There
are two reasons for this omission. First, locking concurrency control was chosen because the
LockTable module had already been implemented. Investigations into problems specifically related
to locking are not part of our research goals. Second, time constraints on the building of an
experimental system like ERMS prevented the exploration of side issues.

Following the strict two phase locking protocol, the ETM consults System Lock Manager
the first time a resource is requested by an Open Resource. The ETM attempts to lock the
resource name on behalf of the client. If there is a conflict, OpenResource fails and the resource
remains inaccessible. If the lock is granted, System Lock Manager assures the serializability of
resource access. Since we wish to enforce strict two phase locking, the lock is not released during
CloseResource. Rather, the locks are released only when the transaction ends, either by commit
or abort.

After appropriate actions making all changes permanent (commit) or reversed (abort), the
ETM invokes System Lock Manager to release all locks held by the transaction. Each ETM has
an internal LockTable module, which remembers the locks being held by this transaction. The
ETM simply goes through the resource names in its own LockTable and releases those locks from

System Lock Manager.
We should emphasize that all transactions in the above discussion refer to top-level trans­

actions_ The synchronization of subtransactions is controlled by parent ETM, to be explained in:
section 6.4. Consequently, the only ETMs that invoke System Lock :Manager directly are those

responsible for top-level transactions.

6.2.2 Version-Based Crash Recovery

The foundation of ER~IS version-based recovery is R2D2, which stores the most recent committed
version of resources_ R2D2 is simply a directory, mapping resource names into sets of capabilities.
The actual disk storage management is handled by Eden kernel (POD). The versions in R2D2 are

"public", i.e., committed by top-level transactions.
Since we have already described R2D2 in detail (chapter 5), here we omit the description of

its implementation. The most important fact is that R2D2 is a mapping - supporting invocations
such as lookup, add, delete, and replace entries in the mapping. These invocations are summarized

in appendix table A.1.
Version management in ERMS is similar to other version-based systems [48]. The first time

a resource is opened, the ETM looks up the current version in R2D2. If the resource is opened
for update, the ETM makes a copy of the resource, and passes the capability of the copy to the

client. The client writes to the new version/copy directly.
At the time of CloseResource, the ETM cannot replace the version in R2D2 by the new one,

since the transaction has not yet committed. The ETM must therefore save the new, temporary
versions of resources, which have been closed in the transaction. In addition, ETM also remembers
the appropriate action to be taken at the commit time. For example, a newly created resource
must be added to R2D2, while an updated resource should be replaced. In any case, R2D2 will

be involved with an opened resource only when the transaction commits.

54

The version mapping in ETM implements the abstract type RepDirectory, also supported
by R2D2. The same software module, RepDirTable, implements the abstract type for both
ETM in ERMS and RepDir in R2D2. More implementation details may be found in appendix
section A.3.3.

If the transaction aborts, the responsible ETM simply discards the new versions created for
that transaction. R2D2 remains untouched by the aborted transaction.

If the transaction decides to commit instead of abort, the new versions must replace the old
versions in R2D2. The ETM makes a ReplaceSet invocation to update each resource being written
with the new versions. It is only after the new versions have been put in R2D2 that the ETM
releases the locks it has on the resources. Since all resources remain locked during the updates, all
the updates of a transaction appear atomic to other transactions. Should the ETM be interrupted
during the commit protocol, R2D2 would contain some of the new versions, and some of the old
versions. Since the resources remain locked, the inconsistency is invisible to other transactions.
This situation is described in more detail in section 6.3.

ERMS relies on the Eden garbage collector to delete the aborted new versions or replaced
old versions. Had we been more interested in distributed garbage collection, we could have
implemented some garbage collection scheme at the object level. In that case, R2D2 would have
to contain a reference counter for each resource, and the ETMs would add and subtract from
the counter as resources were opened and closed for access. \Vhen the counter reaches zero,
ETM would invoke the object asking it to delete itself. With our concentration on the nesting ot
transactions, we left the object level garbage collection problem to future research.

6.2.3 Discussion

We should emphasize that there are no special features in either System Lock Manager or R2D2
that make them especially suitable for a nested transaction mechanism. Both System Lock Man­
ager and R2D2 are standard components which could have been used in a single-level transaction
mechanism. For example, Paxton [70] proposed a client-based transaction system, in which the
underlying server provides three kinds of primitives: random access to files, file locks, and lock
time-outs. R2D2 and System Lock Manager correspond directly to his file access and file lock
services.

From the performance standpoint, we made a few necessary design choices which are subopti­
mal. First, the combination of locking concurrency control and version-based crash recovery does
not take advantage of either. Locks permit write in-place, which usually is faster than creating
a new version. However, write in-place requires a log-based recovery, which would either impose
restrictions on the types of resources managed by ER~IS, or make programmers provide type­
specific recovery for each resource Edentype. In any case, the only Eden primitive to write to disk
is checkpoint, which writes the object's entire state, so there is no kernel support for object-level
logging. Not willing to expand Eden kernel capabilities, we chose version-based recovery instead
of logging.

Once we are resigned to the performance penalties of a version-based system, we could adopt
some other concurrency control mechanism which provides more concurrency. For example, times­
tamp methods may allow more transactions to run in parallel, accessing different versions of a

55

resource. We have used locking simply because the module LockTable had already been imple­
mented, and it represented the shortest path to a working system. Other concurrency control
methods based on timestamp i~tervals [6] have been implemented as part of another work [66],
which rates experimentally effective concurrency allowed by different concurrency control meth­
ods. Another illustration that more concurrency can be obtained is the work by Bayer et al. [7]
showing that two versions are sufficient for the support of multiple readers and an exclusive writer.
With version-based recovery, there is no technical difficulty in introducing this level of concurrency
in ERMS, but it was not essential for the main purposes of this study.

A third performance problem may have been introduced by R2D2, which is a distributed
directory. A centralized directory would provide the same functionality, and require fewer invo­
cations. This is of concern in Eden because invocations are relatively expensive. However, since
EirMS supports replicated resources, the directory must be crash-resistant. We chose R2D2 since
it is the only working crash-resistant directory system in Eden. The alternative, replects [72], is
not in regular use. In the end, due to the number of checkpoints necessary to ensure transaction
reliability atomicity, invocation costs in R2D2 were insignificant compared to total overhead.

Finally, we made an effort to circumvent an obvious bottleneck. Conceptually, a new ETM is
created at the beginning of each transaction and destroyed at the end. However, because Eden

objects are implemented as Unix processes, their creation takes several seconds. For efficiency, we
reuse the ETMs whose transactions have ended. Since the System Lock Manager is a convenient
central resource, it also manages the creation and reuse of ETMs. In practice, ERMS clients ask.
the System Lock Manager for an idle ETM, instead of creating a new one. If the allocated ETM is.
already active from the last transaction, the recycling saves up to several seconds per transaction.
This function of System Lock Manager is unrelated to its role in concurrency control or the nested
transaction mechanism. Some practical difficulties are introduced by this economic measure and

their solution will be described in section 6.3.4.

6.3 Top-Level ETM

The main building block in ER~IS is the ETM transaction manager. An ETM serves one trans­
action, which can be either a top-level transaction or a subtransaction. In this section, we describe
the ETM serving a top-level transaction without subtransactions. ETM's control of a subtransac­
tion and the composition of ETMs to provide nested transactions will be discussed in section 6.4.
For both top-level ETMs and sub transaction ET~Is, the data structures (in section 6.3.1) are the
same. Moreover, the algorithms in sections 6.3.2 and 6.3.3 are independent of nesting aspects;

therefore, they are also the same for both.

6.3.1 ETM's Data Structures

There are three main data structures in ETM: the LockMap, DirMap, and Child List. ChildList
maintains the list of capabilities of the ET~Is serving the child transactions, and will be discussed
in section 6.4. The LockMap and DirMap are used for concurrency control and crash recovery,

respectively.
LockMap is part of the software module LockTable, which has been described in section 6.2.1.

56

The LockTable module implements the abstract type TwoPhaseLock, with the LockName and
UnlockName operations. Although both a top-level ETM and System Lock Manager employ a
LockTable, the function of LockTable in each is different from the other. When a resource is being
locked in the System Lock Manager, an entry is placed in LockTable to signal the placement of a
lock on that resource. In ETM, the same entry is placed in LockTable to remind the ETM that
it has the lock on the resource, so the lock will be released at transaction completion.

As a simple reminder for the ETM, LockTable may appear an overkill. However, as we shall
see in the next section, the top-level ETM also functions as the parent ETM of its subtransactions.
Moreover, even at the top-level, several client processes may try to open the same resource at
the same time. So we need the full power of LockTable to synchronize the resource access from
concurrent processes and subtransactions.

DirMap is a mapping of resource names into sets of capabilities. (If this sounds familiar, it
is because DirMap is also used in the Core Structure of R2D2.) The main function of DirMap
is to remember the most recently closed version of a resource being updated. Since R2D2 stores
only the committed versions, all intermediate versions produced in the transaction must be saved
in DirMap before the transaction commits. In addition to the capability of the most recently
closed version, DirMap also remembers the appropriate action to be taken at commit time. For
example, a newly created resource must be added to R2D2, while an updated resource should
be replaced. In section 6.3.3, we will see how atomic commit is accomplished in ERMS using
DirMap. Appendix section A.3.3 contains more implementation details of DirMap.

6.3.2 Resource Management

In section 6.2.1, we have explained how the System Lock Manager supports TwoPhaseLock. and
how the R2D2 provides a mapping in section 6.2.2. ETM's internal data structures have been
described in section 6.3.1. Now we can put everything together, and using these components,

show how client requests for resource access are made atomic
Resource access is bounded by the operations OpenResource and CloseResource, both spec­

ified in appendix section A.1.6. We describe the algorithms informally here; the operations are

explained more concretely by the example in section 6.6.
OpenResource takes as in parameters the resource name and access mode (either read or

write); it returns the capability of the appropriate version for client access. The most important
part of OpenResource is the careful checking of resource access according to the lock compatibility
(table 2.1) to assure serializable access. The algorithm for Open Resource is:

1. Check LockTable for resource name. There are three cases:

(a) First Time: Resource name is not in LockTable.

(b) Already Open: Resource name is in LockTable, but somebody (another process) has
already opened the resource. In this case, the access is decided by lock compatibility

table 2.1.

(c) Second Time: Resource name is in LockTable, and nobody holds a lock on it, then

the resource has been opened and closed.

57

2. If case la, the First Time, we need to request the appropriate lock from System Lock
Manager. If successful, then insert the resource into LockTable and proceed to step 4.
Otherwise, Open Resource fails (exit).

3. In case lb, the resource is Already Open. If lock request is compatible with the current
access mode - for example, read and read - proceed to step 5. Otherwise, OpenResource
conflicts and fails (exit).

4. In case lc, the Second Time, the ETM already holds a lock from System Lock Manager.
If the LockTable indicates a read lock, and the Open request requires a write lock, then go
back to step 2 to get the right lock. Otherwise, insert the lock holder into LockTable.

5. Check DirMap for resource name. If the resource name is not in DirMap, lookup the name
from R2D2, insert the name and the most recently committed version into DirMap.

6. If resource is being opened for read, choose one capability from the set and returns it;
increment reader count by one. Otherwise, make a copy and return the capability of the
copy (exit).

CloseResource takes as in parameters the resource name and the new version's capability; it
returns a status code. The algorithm for Close Resource is as follows:

1. If the resource has been opened for read, decrement reader count by one.

2. If the resource has been opened for write, from the new version, generate the right number
of replicas at the right nodes. and insert the new version into DirMap. Remember resource
status (new or replacement).

3. If reader count = 0, mark the resource as unlocked in LockTable.

\Ve should observe that CloseResource does not touch R2D2 or System Lock Manager. It does
not move the new version into R2D2 because the transaction has not committed. The lock is not
released in System Lock Manager because of the strict two phase locking protocol, which releases

all locks after the commit.

6.3.3 TransactionBracket

There are three operations in the abstract type TransactionBracket: BeginTransaction, Abort­
Transaction, and CommitTransaction. \Ve now describe the actions taken by the ETM at each
of the three.

First, BeginTransaction tells the ETM whether it is managing a top-level transaction or a
subtransaction. The parameter that points to the parent capability is null in case of a top-level
transaction. If the ETM is managing a top-level transaction, it initializes some variables, and
returns control to the client.

Second, AbortTransaction ends the transaction, requesting the ETM to revert all resource
changes, bringing them back to their original state. Since we have a version-based recovery,
which makes the clients write on new copies, the committed versions always remain undisturbed.

58

Consequently, there is very little work to be done at abort. First, the ETM checkpoints the
decision to abort. (Otherwise, it may crash and "forget" the abort at reactivation.) Then, it
goes through the list of locked resources in LockMap and releases the locks from System Lock
Manager. All temporary versions in DirMap are simply dropped and will be garbage collected by
the Eden garbage collector.

Third, CommitTransaction is more delicate than abort for one reason: all the changes must
appear atomic to the outside world. Our algorithm is very similar to the one described by Lampson
and Sturgis (51J. The main idea is to re-execute the idempotent switching operations as many
times as necessary until all new versions ha"'e replaced the old ones. Since this is the top-level
ETM, the committed versions are installed in R2D2. The algorithm for CommitTransaction is:

1. Checkpoint the ETM: write the commit record, and DirMap writes all new versions to be
committed to disk.

2. For each updated resource in DirMap, invoke R2D2 to replace the old version by the new
version.

3. Once all new versions have been installed in R2D2, release all lock held in LockMap.

4. Checkpoint the successful end of commit.

Since we do not release the locks before all new versions have been installed, the updates in~
the transactions appear atomic to the outside world. The only remaining problem is to make
sure a crash in the middle of the commit protocol will not make R2D2 inconsistent. Because
the ETM checkpoints at the beginning of commit, its passive representation contains the state
at step 1. The next time ETM is invoked, (for example, by the client that inquired about the
outcome of commit) the Eden automatic reactivation will restart the protocol at step 2. Since
R2D2 operations are idempotent, there is no harm in re-executing the initial replace operations
again. Once step 3 has been reached. all versions have been installed and R2D2 has become
consis ten t.

6.3.4 Discussion

The design choice of one ETM per transaction may have introduced a performance problem in
ERMS. The current implementation uses an Eden object for an ETM, and since Eden objects
are Unix processes, we pay a high performance penalty. In section 7.3, we shall see that this
problem is not inherent to the design, and could be removed. The current situation is somewhat
alleviated by the reuse of ETMs, which we mentioned in section 6.2.3. However, since an ETM is
conceptually unique for its transaction, we have to protect this property of ETM carefully.

First, we have to make sure that the ETM does not confuse the clients of a previous transaction
with the clients from the next transaction. Currently, each BeginTransaction returns a unique
TID for the transaction, and clients of that transaction must provide the TID in every request to
ETM (e.g. OpenResource). The ETM simply returns an error if the client's TID does not match

the executing transaction.

59

Second, it may be useful for an ET~1 to remember the outcome of past transactions. For
example, an orphan transaction may inquire about its parent's status. The current implementa­
tion simply returns an error, since the transaction outcome is always stored in the parent ET~I,
and committed transactions have obtained all "interesting" results. If an ETM ever receives the
reply "I am not transaction TID" from its parent, then the child assumes that its own outcome is
immaterial, and the ETM aborts immediately. If the parent receives this reply from a child, the
parent concludes that the child has aborted and proceeds accordingly.

6.4 Nesting ETMs

In the previous sections, we have described the components of ERMS, and how they support
the top-level transactions. Now we are ready to compose ETMs into a tree to provide nested
concurrency and reliability atomicity. In section 6.4.1, we describe the maintenance of the ETM
tree. In section 6.4.2, the nested concurrency atomicity is explained. In section 6.4.3, the nested
rel~ability atomicity is described. Finally, in section 6.4.4, we summarize the structure of ETM.

6.4.1 ETM Tree

As we have suggested in figure 6.3, ETMs form a tree to provide nested transactions. The ETM
tree is isomorphic to the tree-structure of nested transactions which the ETMs control. From the
entire system point of view, all ETMs form a forest, where each top-level ET~1 is the root of i
tree. The ETMs at the lower levels manage subtransactions.

The maintenance of the ETM tree is done by the participant ETMs. Each ETM keeps a
list of capabilities, called ChildList, which contains the capabilities of the ETMs managing the
subtransactions. For example, in figure 6.5, the capabilities of sub-TMI and sub-TM2 will be in
Top-level-TM's ChildList.

Each ETM's Child List is filled by its child transactions. At BeginTransaction, the child ETM

receives the capability of its parent. Immediately, the child ETM invokes its parent ETM, inserting
its own capability into the parent's ChildList. Once on the ChildList, a capability remains there
until the end of transaction. Therefore, the ETM Tree is dynamically constructed to reflect the
current history of the top-level transaction and all subtransactions that ever started.

Each ET~1 in the tree has the capability of its parent ETM, and the capabilities of its child
ETMs. For transactions with nesting level deeper than two, the ETM tree is distributed. In the
following sections, we shall see that the ETM communicates only with its parent and children. so
the distribution of ETM tree information eliminates unnecessary redundancy.

6.4.2 Nested Concurrency Control

In section 6.3.1, we have described the LockMap and summarized the LockTable module imple­
menting the abstract type TwoPhaseLock. Now we proceed to explain the nested concurrency

control by composing LockTables in the ETt-.l tree.
First we state explicitly what we mean by nested concurrency control. By the definition of

nested transactions, all subtransactions at the same level appear atomic to each other, and to
their parent. We interpret this rule the following way. At the same level or above, invocations

60

client

programs

sub-TM2 sub-TMt

Figure 6.5: ET11 Tree Example

enclosed in a transaction must happen atomically, as one operation. In other words, all partial
results in the subtransactions must be hidden. In contrast, from below (a subtransaction poin(
of view), all partial results produced by the hlgher level transactions must be visible.

The main purpose of this section is to demonstrate that we do not need special locking rules
to implement these nested visibility scopes. We show that the composition of ETMs (and their
LockTables) in a tree isomorphic to the tree structure of nested transactions is sufficient to hide
partial results from subtransactions, and make visible partial results from higher transactions.

To facilitate the explanation, we introduce the analogy of "rent". 'When a resource is locked,
we consider the resource to be "rented" to the lock holder. Therefore, at the top level, an ET~I
rents a resource from System Lock Manager the first time the resource is opened. Objects outside
the transaction are locked out by the System Lock Manager, which has already rented the resource
to the ETM. The ETM only sublets its resources to clients holding its capability, synchronizing

their access through its own lock table. Consequently, as long as the resource has been closed,
the ETM sublets the resource to another client process each time the resource is opened.

The key observation is that a child ETM may also open a resource and rent it from its parent,
as ifthe child ETM were a client. There is no difference from the parent ETM point of view, since
it simply sublets the resource according to the lock compatibility table. However, the child ETM
now may sublet the resource to its own clients, and retains the resource when its own client closes
it. The subtransaction's ETM will release the resource in the parent only when it ends, either
by committing or aborting. Consequently, the clients of the parent transaction will be unable to
rent the resource while the child ETM is running. Therefore, the intermediate results produced
by the child transaction are hidden from the parent and sibling transactions.

The algorithms for OpenResource and CloseResource in a subtransaction ETM are exactly
the same as the ones for a top-level ETM, described in section 6.3.2. The only change is that
now the ETM invokes its parent ETM -instead of the System Lock Manager- to obtain the lock.

61

,..
I

LockName

top-ETM

LockName
r---------,

sub-ETM __ O_p_e_n_R_e_s_o_u_rc_e_--;: clien t :

: program :
I I L _________ J

Figure 6.6: OpenResource: Nested Locking

Since the parent cannot sublet a resource without renting it from the grandparent, the chaining
assures serializable resource access at each level. Figure 6.6 shows the lock requests caused by a~
OpenResource in a subtransaction when the resource is being opened for the first time.

In the general case, the cascading of lock requests stops at the lowest ancestor ETM that has
opened the resource once. This ETM has rented the resource from its parent during the open,
so it makes the decision on whether to sublet the resource. In case the resource is opened for
the first time (figure 6.6), the System Lock 11anager makes the decision. The rules for conflict
resolution can be summarized as follows:

1. The parent resolves the conflicts between its children.

2. The lowest common ancestor resolves conflicts between branches in the ETM tree.

3. The System Lock Manager resolves the conflicts between top-level transactions.

The lowest common ancestor is the arbiter because of the cascading of lock requests: the two
different branches are represented by two children of the lowest common ancestor, roots of the
branches, and case two reduces to case one.

The LockMap has some static properties. The first is that each LockMap is a subset of the
parent ETM's LockMap. This happens because every lock granted by the LocU,lap has to be
obtained beforehand from the parent. Second, because we have adopted strict two-phase locking,
the LockMap grows monotonically during the transaction until the commit point. At the end of
a subtransaction, either commit or abort, all locks are released only in the parent's Lock!>.1ap, not
higher in the hierarchy. Third, since we use the wound-wait deadlock avoidance scheme, there is

no need for deadlock detection or resolution.

62

6.4.3 Nested Crash Recovery

Nested crash recovery is analogous to nested concurrency control. By definition, subtransactions
must appear atomic to their siblings and parent. In case a subtransaction aborts, we have to
undo its effects. If a subtransaction commits, we have to make the commit appear atomic to its
siblings and parent.

The main purpose of this section is to show that we do not need special mechanisms to
implement the nested commit and abort. We show that the composition of ETMs (and their
RepDirTables) in a tree isomorphic to the tree structure of nested transactions is sufficient to
commit results atomically, and to undo all effects from aborted transactions.

. To facilitate explanation, we introduce the analogy of caching. The top-level RepDirTable
can be seen as a cache for R2D2; a child ETM's RepDirTable is a cache for the parent's RepDir­
Table. There are two techniques to handle updates in a cache: write-through (or store-through)
propagates the changes immediately, while write-back (or copy-back) makes all the changes at a
later time. The updates in RepDirTable do not write-through to the parent or to R2D2 because
the transaction may abort, but are retained for possible commitment. If the transaction aborts,
its ETM including RepDirTable is simply discarded. If the transaction commits, its RepDirTable
executes write-back to its parent's RepDirTable (or at top-level, R2D2), which retains the changes
until its own commit.

The operations on RepDirTable are thus operations on a cache. If the resource name is no(
found in RepDirTable, it asks the parent for the pair (resource name, set of capabilities). Then
the operation is performed. For a cache with only one update operation -write- one "dirty bit"
is sufficient to signal the need for write-back. However, we have three update operations -add,
replace, delete- so each resource has a small finite automaton ("dirty state") to remember the
appropriate update action to be carried out at transaction commit.

OpenResource is exactly the same as the algorithms described in section 6.3.2. The only
difference is that the subtransaction ETM consults its parent ETM instead of R2D2. The parent's
RepDirTable contains the most recent version for the subtransaction, since the operations on
resources within the higher level transactions are visible to the subtransaction. For example, the
results of an earlier committed sub transaction appear in the parent's RepDirTable, but nowhere

else. If the parent ETM does not have the resource in its RepDirTable, then the resource is being
opened for the first time in the parent transaction. In this case, the parent ETM consults the
grandparent, and so on. Figure 6.7 shows the first time in the entire top-level transaction, when
the cascading lookup requests end at R2D2. In general, the chain of lookup requests stops at the
first ETM that has opened that resource once.

CloseResource does not involve communications with the parent, so the algorithm described

in section 6.3.2 applies directly.
The protocol for a subtransaction commit is exactly the same as the one for a top-level

transaction commit, described in section 6.3.3. The only difference is that the subtransaction ET~1
replaces the committed versions in its parent ETM, instead of R2D2. Putting the new versions in
the parent ETM makes them visible to other sibling subtransactions and client processes in the
parent transaction. At the same time, the parent retains control over the new versions, and so,
should the parent transaction decide to abort, these versions will not be seen outside. Figure 6.8

63

LookupSet

top-ETM

LookupSet
r---------,

sub-ETM t-__ O_p_e_n_R_e_s_o_u_rc_e_ooooo!: clien t ,
: program : , , L _________ J

Figure 6.7: OpenResource: Nested Lookup

shows the commit actions limited to the parent ETM.

The protocol for aborting a subtransaction is more elaborate. A subtransaction ET1f doe~
four things when it is told by its client to AbortTransaction. First, it checkpoints the decision
to abort the transaction. Second, the ETM informs its parent ETM of the abort. This is not
strictly necessary, since the parent would inquire the status of all children at its own commit
time. However, requiring the parent to ask for the children's statuses may be time consuming,
especially when some children may have to ask their descendants. Thus, we choose to inform the
parent immediately on the subtransaction outcome.

The third thing is to go through the ET~I's own ChiidList, telling each child ETM to abort. If
a child transaction has already committed, it remains committed, but as we have seen, its results
will be discarded anyway. A transaction may abort because of crashes, either of its clients or of
its ETM. If an ETM crashes before it can tell its child ETMs to abort, the subtransactions will
continue to run. These run-away subtransactions are called orphans. As soon as the parent ET11
is reactivated, for example, by the completion of an orphan, all orphans are terminated by the
parent.

Having checkpointed the decision to abort, informed its parent of that decision, and aborted
all its children, the ETM proceeds to unlock the resources being locked by the transaction. At
the top level, the ETM unlocks the resources in System Lock Manager. As a subtransaction, the
ETM releases the locks it is holding from the parent ETM, which has 'sublet' the resource to the
child ETM.

The DirMap in RepDirTable has some static properties similar to the LockMap. The first is
that the resource names in the DirMap are a subset of names in the parent ETM's DirMap, since
all resources are "rented" from the parent. However, the sets of capabilities, representing versions,
may differ from ETM to ETM, since each transaction may write to resources independentlY, The
second property is that DirMap grows monotonically through a transaction. The reason is that

64

parent
ETM

r---------,
CommitTransaction I li

sub-ETM : cent I 1----------\: program:
~ ___ ~ I I

L _________ J

Figure 6.8: Sub transaction Commit

DirMap contains the history of updates to the resources, so each entry is used at the transaction:'
commit to decide what action should be taken with respect to the parent's DirMap (add, replace,
or delete).

6.4.4 Summary: Structure and Interactions

Summarizing the discussion of previous sections, the ETM is composed of four modules: Rep­
DirTable, LockTable, TreeManager, and ResourceManager. RepDirTable maintains the
most recent version of the resources being accessed. LockTable keeps track of locks on these
resources. TreeManager takes the appropriate actions at the beginning and end of the trans­
action. ResourceManager implements the Open Resource and CloseResource protocols, hiding
crash recovery (RepDirTable) and concurrency control (LockTable) from clients.

There are some static properties linking a parent ET~rs modules and its children's (see
figure 6.9). First, an ETM's DirMap is a subset of its parent ETM's DirMap. Every resource that
a child controls has its previous version in the parent's DirMap. Similarly, an ETM's LocH,lap is
a subset of its parent ETM's LockMap. Moreover, the locks held by the parent must be equal to
or stronger than those of its children. For example, if a child obtains a write lock on a resource, its
parent must hold a write lock on that resource given by the grandparent. Finally, each parent's
TreeManager keeps a list of its children's capabilities. These lists form the transaction tree.

There are also rules governing the dynamic interactions between a child ETM and its parent.
First, a child knows only its immediate parent, there being no direct communication between
a child ETM and its grandparent; this rule applies to all four modules. Second, if the Rep­
DirTable and LockTable need information from the parent to service some requests, they make
invocations that are serviced by their parent's RepDirTable and LockTable. Consequently. a

65

Parent RepDirTable LockTable TreeManager ResourceManager

set of
versions

set of
locks

set of
child capa.

Child RepDirTable LockTable TreeManager ResourceManager

Figure 6.9: Relationships between the Parent and Child ETMs

Parent RepDirTable LockTable TreeMan ager Resource~lanager

~ ~ ~
Chi ld RepDirTable LockTable TreeManager ResourceManager

t--.:::> ======~J __ -"J
Figure 6.10: Communications between Parent and Child ETMs

ResourceManager needs only call the local RepDirTable and LockTable to synchronize resource
access. Similarly, a TreeManager communicates with the local RepDirTable and LockTable, plus
its parent's TreeManager. The communication paths are shown in figure 6.10.

6.5 Summary of ERMS Features

The strength of ERMS is in the economy of design concepts and the generality of implemented
features. All ERMS components described in the previous sections use well-known techniques
for single-level transactions. Careful composition of these techniques in the ETM tree provides
the key for nesting in ERMS. Not only does the composition facilitate the concrete design and
implementation of ERMS, but also the composition allows other combinations to form new designs
of nested transactions, discussed in chapter 7.

ERMS features may be divided into two groups: resource support and transaction support.

We summarize resource support in section 6.5.1, and transaction support in section 6.5.2.

66

6.5.1 ERMS Resource Support

Resources controlled by ERMS have three characteristics:

1. Type generality.

2. Location transparency.

3. Replica transparency.

First, ERMS resources may be objects of any type. In Eden, this is a necessity rather than
option. As we have mentioned in section 5.1.2, Eden objects can service any invocations that the
Edentype programmer has programmed in. Even if we take into account all current invocations.
new ones may be invented any time. Consequently, ERMS cannot restrict operations supported
by its resources.

Although ERMS controls resource access for any Edentype, it does distinguish 'read' oper­
ations from 'write' operations. Invocations that do not alter resource state are 'read', while
invocations that do, are 'write'. At Open Resource clients must tell ERMS how they want to
access the resource, so appropriate recovery a{:tions may be taken.

In a way similar to Argus user-defined atomic data types [83), some resources may have their
own concurrency control and recovery mechanisms. These resources may be accessed outside o~
ERMS control (bypassing OpenResource and CloseResource), since the use of ERMS is explici~
and voluntary. Currently, there are no such resource types in Eden.

Second, all ERMS resources are Eden objects. Since Eden objects are location-independent,
once in possession of their capabilities a client can access them regardless of their location in the
network. Consequently, ERMS maintains resource location independence in Eden.

Third, ERMS resources are known by a string name, which is mapped into a set of capabilities.
The resource access interface is the same regardless of the number of copies. During CloseResource
of an update, the ETM generates the right number of copies, co-located with the original copies.
The number of copies of a resource is stored in R2D2, and it may be changed at any time.

6.5.2 ERMS Transaction Support

ER~IS transaction support has four components:

1. nested concurrency atomicity,

2. nested reliability atomicity,

3. top/sub syntax transparency,

4. long-term transactions.

First, in regard to its siblings and parent, each su btransaction is atomic. Nest concurrency
atomicity means that intermediate results of a transaction T are invisible to its siblings and
parent. However, T's subtransactions are parts of client processes, and they may read and use

T's intermediate results.

67

I Transaction 11

1
BeginTransaction(1)

BeginTransaction(1.1)
l BeginTransaction(1.2)

OpenResource(in: V d l

1
OpenResource

-wait-
CloseResource(out: V 2)
CommitTransaction(l.l)

(in: V 2)

l
CloseResource(out: V 3)

CommitTransaction(1.2)

CommitTransaction(1)

1 Transaction 21

1
BeginTransaction(2)

OpenResource
-wait-

(in: r3)

CloseResource(V 4)

l
CommitTransaction(2)

Figure 6.11: Nested Concurrency Control Example

68

,..
I

I Transaction 11

1
BeginTransaction(1)

BeginTransaction(1.1)
. ~ BeginTransaction(1.2)

OpenResource(in: VI) ~

1
OpenReso~rce

-Walt­

CloseResource(out: V 2)

CommitTransaction(1.1)

(in: V 2)

l
CloseResource(out: V 3)

r -A b~rl-Tr~~~~~tf~';(i :2-f -:

CommitTransaction(1)

I Transaction 21

1
BeginTransaction(2)

OpenResource
-wait-

CloseResource(V 3)

l
CommitTransaction(2)

Figure 6.12: Nested Reliability Atomicity Example

In figure 6.11, a hypothetical example illustrates the conflict resolution at different levels. In

the example, both Transaction 1 (Ttl and Transaction 2 (T2) open the same resource (name

omitted) for update. TI runs two subtransactions, T1.l and T1.2, and both update the same

resource. In figure 6.11, T 1.1 opens the resource first, and proceeds to generate a new version

(V2). Now both T1.2 and T2 open the resource, and they have to wait for the exclusive lock to

be released. As soon as T1.1 commits, its result (V2) becomes available to T1.2; a horizontal line

shows T1.2 receiving V2 and generating V3 as output. However, T2 has to wait until the end of

T 1 to proceed. In this case it receives V 3 and produces V 4.

The second component is nested reliability atomicity:

• Each subtransaction may abort independently of each other and the parent .

• Each aborted transaction has all the updates within it undone, including the results from

some committed subtransactions.

In the following figure 6.12, we have the same example as figure 6.11, but with subtransaction

T 1.2 aborted instead of committed. As shown in the same figu re, the enclosing transaction T 1

69

can still commit. Since the subtransaction has aborted, the version it produced is dropped, and
the result from T 1.1 prevails. To emphasize the differences from figure 6.11 to 6.12, the new parts
are enclosed in dashed boxes. However, if Tl aborts, the results from the subtransactions do not
matter, and T 2 receives the original version V 1 of the resource.

Thlrd, the syntax for top-level transactions and subtransactions is the same. Since the ETM
is initialized at run-time, the same client program can choose to run as a top-level transaction or
subtransaction, simply by sending the appropriate parameter at BeginTransaction. As we shall
see in chapter 7, this dynamic selection brings new possibilities.

Fourth, long-term transactions were easily added to ERMS. During the first implementation
of ET;\f, we realized that making the ETM "crash-proof" is sufficient for the restart of long­
term transactions after a crash or planned deactivation. Since Eden checkpoint does the job,
we simply introduced optional checkpoints at critical state transitions in ETM (mainly during
OpenResource and CloseResource). The ERMS solution for long-term transactions is extremely
simple. However, long-term transactions are more expensive than normal transactions since both
the client and the ETM will have to checkpoint more often.

With the current strict two-phase locking policy, allowing multiple readers or an exclusive
writer, ERMS long-term transactions may restrict resource access. Resources being updated in
a long-term transaction remain locked for the duration of the transaction, decreasing potential
concurrency in the system. The usef of timestamps, mentioned in section 6.2, would allow more"
transactions to execute in parallel. Some works [5] related to long-term transactions indicate­
the need for non-serializable operations. More research remains to be done on the application of
long-term transactions to determine the necessary ingredients to make them more useful.

6.6 Application Example: Smart Bank Machine

To demonstrate the use of ERMS, we have written a program whlch mimics a bank machine. The
demonstration system consists of two Edentypes: Bankomat and BankAccount . Bankomat is the
client that uses ERMS to access BankAccount resources. A BankAccount object is basically an
integer representing a certain amount of money, and the procedures to operate on the integer.

Each customer of the fictitious "EdenBank" has three accounts, checking, savings, and Visa,
which are all instances of the Edentype BankAccount, but are distinguished by their resource
name (for example, "customer/checking"). The operations a customer can do are:

• \Vithdra.w "money" from any account.

• Deposite "money" to any account.

• Transfer "money" between any accounts.

• Print the balance of any account.

6.6.1 Sample Session

In figure 6.13, we show a sample session with the Bankomat, transcribed from the terminal. The
sequence of activities genera.ted by the conversation is illustrated in the schematic figure 6.14. The

70

r

(1)

(2)

Please enter your account name> calton
w:withdraw, d:deposit, t:transfer,
p:print, h:help, c:comntit, a:abort
EdenBank> t

Transfer from: c=checking, s=savings, v= Visa
EdenBank> > c
Transfer to: c=checking, s=savings, v= Visa
EdenBank> > v

Transfer amount = >$ 100
w:withdraw, d:deposit, t:transfer,
p:print, h:help, c:commit, a:abort

(3) EdenBank> p

{ begin top-level}

Print balance of: c=checking, s=savings, v= Visa, a=all
EdenBank> > a

Balance for account EdenBank/calton
checking savings Visa
$ 40 $ 500 $ 100

w:withdraw, d:deposit, t:transfer,
p:print, h:help, c:comntit, a:abort

(4) EdenBank> 11

(5)

From: c=checking, s=savings, v= Visa
EdenBank> > c

Withdraw amount (integer) = >$ 100
w:withdraw, d:deposit, t:transfer,
p:print, h:help, c:commit, a:abort
EdenBank> c { end top-level}

Figure 6.13: Sample Bankomat Session

whole session is a top-level transaction, composed by operations enclosed in subtransactions. At
the first glance, there is no need for subtransactions, since the operations are sequential. However,
EdenBank allows simultaneous sessions on the same account by different clients (Bankomats).
which become parts of the same top-level transaction. In such cases, sub transactions are necessary
for synchronization.

6.6.2 A Nested Transaction Example

Having explained the outer structure of a session with Bankomat, we now look into nested trans­
actions. We emphasize that in this example, the terms "transaction" and "sub transaction" are
relative. "Transaction" does not imply top-level transaction. Rather, it refers to the transaction
under consideration. In general, we use "transaction" to refer to a transaction in its own context.
and "subtransaction" or parent transaction when related to other transactions.

Let us consider the transfer operation in figure 6.14 as an example. The first program, Basic­
Transfer, transfers a certain amount from an account to another (the program fragment is included

71

,..
I

---------------------------------------,

(1) start top- transaction

!
(2) subtransaction

transfer

~

su btransaction
print

(3)

~

subtransaction
withdraw

(4)

~

(5) commit top-transaction

Figure 6.14: Schematic Sample Session

in appendix figure A.4). To simplify the reading, instead of the program we use a schematic il­

lustration in this section. Figure 6.15 shows two concurrent processes, the first decrements from
one account, and the second increments the other account. No subtransactions are necessary in
the procedure BasicTransfer, since either both succeed and the transaction commits, or one fails
and the whole transaction aborts.

Although BasicTransfer does the job, it does not offer the best possible service. For example,
a customer may try to transfer $100 from checking to Visa account. If the customer does not have
$100 in the checking account, the transfer fails, even though there may be thousands of dollars in
the savings account. To include all three customer accounts into consideration, a new procedure
-SmartTransfer- was written. Figure 6.16 illustrates SmartTransfer, which is described in detail
by the program fragment in appendix figure A.6. For concreteness, instead of variables, we use
the example of a transfer from checking to Visa account. Compared to BasicTransfer, the main
improvement is that SmartTransfer will obtain the amount from savings, in case decrementing
the checking account fails.

In the first place, there are three transactions in figure 6.16, each enclosed in a dashed box.
The whole SmartTransfer is a transaction, which runs as a subtransaction of the entire session.
In addition, SmartTransfer is parent transaction for the other two. We have seen BasicTransfer
in figure 6.15. BasicDecrement is a subtransaction that decrements the amount from the specified
account (program fragment in appendix figure A.S). Although normal implementations of a sim­
ple resource as an integer account would be atomic data types, we use a subtransaction to make a

72

(3)

(4)

(5)

(9)

r-------------------------------------,
I
I

(1) Alloc(newTM)

~

newTM.
(2) BeginTrans~tion

----- ----newTM. newTM.
Open(AccTo) Open(AccFrom)

~ ~

AceTo. AccF'rom.
Increment Decrement , ,

newTM. newTM.
Close(A cc To) Close(AccF'rom)

success failure

newTM. newTM.
Commi tTrans AbortTrans

(6)

(7)

(8)

I (10)
I
I
I

_____________________________________ J

Figure 6.15: Procedure BasicTransfer

73

point. Namely, in terms of concurrency control and crash recovery, ERMS makes no assumptions
on the resources it controls. Since we use the checking account again in the BasicTransfer sub·
transaction, if BasicDecrement fails we expect the checking account to be returned to its original
state.

In contrast, the Visa.Increment operation does not have to be enclosed in a subtransaction,
although it could have been, just like BasicDecrement. Since the Visa account is not invoked
anywhere else in the transaction, and SmartTransfer commits if and only if both Decrement and
Increment succeed, any temporary inconsistency in Visa will not affect Smart Transfer.

6.6.3 ERl\1S Features in SmartTransfer

The above example appears so simple that some useful ERMS features might have been overlooked
by a casual reader. First, client programs only deal with resources using string names. There
is no mention of object location, or the number of copies of a resource. Although there is the
overhead of opening a resource, once the resource is open the client invokes the resource object
directly, using its capability. This situation is similar to systems like Unix.

Second, BasicDecrement and BasicTransfer are building blocks that can run either as top·
level transactions or subtransactions without modification or recompilation. For example, the
Bankomat interface has an option that bypasses the enclosing session transaction, making eac~
subtransaction a top· level transaction. Consequently, BasicTransfer may be used at three rlifferenC
levels: top· level transaction, sub transaction of the session transaction (as the transfer operation
in figure 6.14), or a second-level subtransaction (with SmartTransfer as the transfer operation in
figure 6.14).

Third, as we have mentioned in the previous section, the recovery of account state in Ba­
sicDecrement relies explicitly on nested reliability atomicity. If BasicDecrement fails, the account
is expected to contain its original value. Nested concurrency atomicity is illustrated by a sce­
nario in figure 6.17. In this scenario. a second Bankomat runs at the same time as the first one,
introducing concurrent subtransactions.

In this EdenBank application, there is a dedicated transaction manager for each account
name, so both Bankomats connect to the same transaction manager when they receive the same
account name. All subtransactions controlled by the same transaction manager are parts of the
same parent transaction. Since the first Bankomat that started the top-level transaction will

also commit the top-level transaction, there must be a way to synchronize between the different
Bankomats. The synchronization is done through a dummy subtransaction, which is started at
the beginning of the session and committed at the end. Since the top-level transaction manager
does not finish the commit protocol until all child transactions have terminated, the dummy
synchronization su btransaction assures the completion of the Bankomat 2 session.

This set-up introduces a user-interface problem. Specifically, a decision to abort by Bankomat
1 would also affect Bankomat 2. An option to allow Bankomat 2 start a new top-level transaction
will solve the problem. However, as a result, less sharing will be allowed between Bankomat 1

and Bankomat 2.

74

,..
I

r--- ----------, I ,

(1) Alloc(newTM)

newTM.
(2) BeginTransaction

__ /_., (6) ~
newTM. Alloc(sub Tlvl) r -- -- - ---~-~~~- --,

(3) : Open(Visa)

I
I
I

(4) : Visa.Incremen t

newTJH.
(5) Close(Visa)

I r----'----.
I
I
I

(8) :
I

: _------'

sub TM.Begin T

Open(check)

check. Decrement

Close(check)

Commit/ Abort

NewTM.AbortT

BasicTransfer
from to

savings check

Try Once

(9)

L ___ --------

Figure 6.16: Procedure SmartTransfer, checking to Visa Example

75

Bankomat 1 Bankomat 2

r--,
I
I

enter account:calton
start top- transaction

t
su btransaction

print

~

su btransaction
transfer

subtransaction
withdraw

I commit top-transaction
I

enter acco unt:calton
ync-subt register s

t
subtran saction

raw withd

!
subtran saction

osit dep

~

commit s ync-subt

J

L ___ _

Figure 6.17: Concurrent Nested Transactions

i6

6.6.4 ERMS Actions Behind the Scenes

In figure 6.16 we have seen an example of ERMS use. Now we describe how the ETM provides
concurrency atomicity and reliability atomicity both of which are transparent to the client. The
following description is based on the program in appendix figure A.6, which provides more details
than figure 6.16; for instance, the parameters for invocations are described only in the program
fragment.

The sub transaction to make the transfer is the procedure SmartTransfer in the Bankomat
client. The first operation «1) in figure 6.16 and program in figure A.6) in the client is to
allocate the instance of ETM corresponding to the account name, and then the client sends it the
BeginTransaction invocation (2). At this time, the ETM's TreeManager performs initialization
according to the TimeOutPeriod and Duration parameters. First, it knows the expected time
before which it should commit (TimeOutPeriod). Second, it determines whether it is a long-term
transaction. Long-term transaction ETJI.'is checkpoint their state to stable storage whenever a
resource is opened or closed, so they can resume a transaction even after a crash. In this example,
the ETM remains volatile. Third, the TreeManager invokes the SessionTM to tell it about the
TimeOutPeriod. Finally, the TreeManager invokes the SessionTM to register as its child.

After the ETM returns from BeginTransaction, it is ready to accept requests for resource
access. The Bankomat starts two parallel processes, one to increment "alice/Visa", and th~
other to decrement "alice/checking". We will describe the actions behind the simpler process­
(increment) first. ET~I's ResourceManager in response to OpenResource -(3)- will first try to
obtain a lock from LockTable. Since this is the first time the resource "alice/Visa" is requested, the
LockTable asks the SessionTM for the lock, which in its turn, requests the lock from System Lock
Manager. If there are no conflicts, the System Lock Manager gives out the lock, and SessionTM
does the same. Otherwise the lock is denied and the OpenResource invocation fails. Once the
lock is granted, the ResourceManager tries to Lookup the resource in RepDirTable. Since this
is the first time. RepDirTable receives the capability for resource "alice/Visa" from SessionTM.
passed by R2D2. This is analogous to LockTable. When the result is back, RepDirTable puts the
entry in its own mapping and gives it to ResourceManager. Note that RepDirTable.Lookup and
LockTable.LockName may proceed in parallel in order to achieve better performance. Finally, the
ResourceManager takes the next parameter, \VriteNew, which means that a new version must be
created. Therefore it invokes "alice/Visa" asking it to make a copy of itself, returning the copy's

capability in AccotJntTo.
The client manipulates the resources directly, so any invocations, like Visa.lncrement -(4)-,

are sent to AccotJntTo. When the client has made all the invocations, since increment normally

succeeds, the resource is closed (5). The new version of "alice/Visa" substitutes the old version
in DirMap, and the lock in LockMap released. Note that R2D2 continues to hold the old version
of "alice/Visa", and newTM continues to hold its lock in SessionTM, which holds the lock in the
System Lock Manager. Thus, process one ends successfully.

Process two is similar to process one, except that the Decrement operation is enclosed in a
subtransaction (6). In the subtransaction BasicDecrement, described in the program fragment
in appendix figure A.5, the actions are similar to process one. The resource "alice/checking~
is opened by its own ETM. The locks and resource capabilities are obtained from its parent

77

transaction manager (in this case, newT"'!) instead of SessionTM, or System Lock Manager and
R2D2. If the Decrement invocation succeeds, it is closed and the subtransaction BasicDecrement
and process two terminate with success.

However, if "aJke/ checking" fails, EdenBank does not charge $10 for insufficien t funds. Rather,
Bankomat start a subtransaction (7) to attempt to move money from "alice/savings" to "al­
ice/checking". The procedure BasicTransfer described in appendix figure A.4 simply transfers
Amount from "alice/savings" to "alice/checking". IT the subtransaction succeeds, we try Ba­
sicDecrement again. Since BasicTransfer is a subtransaction, its ETM will obtain its locks and
resource capabilities from the parent transaction manager (newT"'!) .

. If everything fails, (for example, no money in "alice/checking" or "alice/savings") the client
asks newTM to AbortTransaction (9). The TreeManager first checkpoints the abort record,
making sure no other outcome is possible. Then the LockTable is asked to release the locks it is
holding in the parent.

If both processes terminate successfully, the client commits the transaction by sending the
CommitTransaction invocation (8) to the ETM. If the updated resources are replicated, the
right number of copies must be made and distributed (maybe to specific nodes) in the network.
The replicas are made and distributed in the background between the close (with the AdoptNew

parameter) and commit. Although this preprocessing may waste some effort if the transaction
aborts, it saves time during commit. ETM uses the Regeneration method, described in chapter 4,~
to update multiple copies of replicated resources. -

The first step in CommitTransaction is the TreeManager checkpointing the ETM, including
the commit record, the DirMap, and LockMap. Second, RepDirTable replaces previous versions

in SessionT?-.l with the newly committed versions of "alice/checking" and "alice/Visa" (and "al­

ice/savings" if the subtransaction has been executed). Third, the LockTable releases all locks
it held in the SessionTM. Finally, Tree1Ianager again checkpoints, recording the completion of

transaction commit.

6.7 Comparison with Previous Implementations

In this section, we compare ERMS with previously implemented nested transaction systems. Early
designs [46,62,73] will be discussed in chapter 7 with the TM Tree framework.

A unique characteristic of ERMS is its ability to combine different concurrency control meth­

ods and crash recovery techniques. Moreover, ERMS uses unmodified, well-known techniques
for single-level transaction systems as building blocks. In contrast, all other nested transaction

proposals extend specific methods. For example, in their simplicity, ERMS locking rules differ
from earlier work on nested transactions based on locking. Moss [61], Argus [56], and LOCUS [63]

all consider the lock as some kind of token, which is held by one (sub)transaction at a time and

inherited by the parent when the subtransaction terminates. Carefully extended locking rules are
necessary to provide correct synchronization of all levels by one concurrency control. In com­
parison, ERMS uses the normal locking rules for the top-level, and the same rules would then

recursively apply to the nested levels.

78

6.7.1 Argus

Argus is a language that supports nested transactions [56] in a manner similar to Moss's design.
The computation model and client interface in Argus differs significantly from ERMS. First,
Argus has integrated transactions into the language, with implicit transaction termination and
resource access. On the other hand, ERMS adopts an explicit approach for both. Second, explicit
invocations allow ERMS clients with parallel processes to be involved in several transactions
(many to many). In comparison, in Argus an action corresponds to exactly one process.

There are some ERMS features not found in Argus. First, we have a uniform syntax (and
semantics) for a top-level transaction and a subtransaction, so the same program can perform
as a top-level transaction for one invocation, and a subtransaction for the next. In comparison,
Argus requires the programmer to distinguish top-level transactions from subtransactions by using
different keywords (topaction and action). Second, long-term transactions are not part of Argus.
Third,Argus does not support transparent resource replication .

. In compensation, Argus has some language features not supported by ERMS. Argus synchro­
nizes object access for both internal variables and external persistent objects. ERMS relies on
EPL and Concurrent Euclid to maintain program variable consistency.

6.7.2 LOCUS and Genesis

There are some important differences between the two LOCUS implementations of nested trans-­
actions [63,67,84] and ERMS. First, LOCUS nested transactions can handle only Unix (LOCUS)
files; operations on directories, for example, cannot be rolled back [79]. In contrast, ERMS con­
trols resources of any type. Second, LOCUS does not support long-term transactions. Finally,
LOCUS nested transactions support is implemented as part of its kernel, while ERr..fS is built
entirely on objects.

Some other features are comparable. Like LOCUS, ER~IS relies on the kernel for object
location. Unlike LOCUS, ERMS supports replication at the object level. The first implementation
of LOCUS nested transactions [63] supported independent subtransaction abort, but not a uniform
syntax to start and terminate top-level and nested transactions. The second implementation of
LOCUS nested transactions [84], (sometimes called Genesis [67]) now offers a uniform syntax but

not subtransaction failure isolation. ERMS provides both.

6.7.3 Distributed Transactions

Argus and LOCUS have been designed to support nested transactions. Another important area
of research related to our work is transaction support in distributed database systems. (Readers

interested in the development of distributed transactions are referred to a recent survey by Mo­
han [60].) In this section, we describe the nesting features of System R- [55] and TABS [77]. We
have chosen R- and TABS because both have implemented some form of nested computations,
although neither supports the standard model of nested transactions defined by Moss [62].

R- supports remote computations by organizing them into a tree. A process making remote
requests is the parent of remote processes servicing the requests. At commit time, all processes
in the tree participate and the transaction commits only if every participant agrees to commit.

79

Consequently, although R* computations are organized into a tree, R* does not provide failure
isolation of sub-computations other than savepoints, which allow transaction restarts from selected
places. Another restriction in R· is the lack of concurrency control between sub-computations
of the same transaction. Should a transaction have two sUb-computations running on the same
node, resources are protected in a manner similar to monitors.

TABS provides more explicit nested transaction support. For example, a subtransaction is
allowed to abort independently of its parent. In addition, subtransactions obtain their own locks,
making simultaneous threads of control possible. However, resource sharing within a transaction
is difficult, because subtransactions do not release locks before their parent commits. This re­
st.riction also limits the ways subtransactions can be used in the composition of new applications.
In summary, a TABS transaction can be divided into separate concurrency units (subtransac­
tions), but these units cannot be joined again. They terminate only at the top-level transaction

termination.

6.7.4 Comparison Table

Table 6.1 compares the features of implemented nested transactions discussed in this section.
In the LOCUS column, there are some rows with two remarks. For example, for failure isola­
tion, LOCUS has "Yes/No". The first refers to the ability to allow subtransactions to abort.
independently of the parent in their first implementation [63]. The second refers to their second.
implementation [84], in which a subtransaction abort implies the failure of the enclosing top-level

transaction.

80

Feature LOCUS Argus ERMS R- TABS

Resource of Unix file
Yes Yes relations Yes any type only

location
Yes Yes Yes No Yes

transparency

replica
Yes No Yes No No

transparency

top/sub
syntax No/Yes No Yes N/A Yes

transparency

failure Yes/No Yes Yes savepoints XO
isolation

intra- one process
transaction Yes Yes Yes per node Yes
concurrency

long-term No No
transactions

Yes No No

combination
being

of differ. CC No No No No
and recovery

implem.

Table 6.1: Comparing Implemented Systems

81

,.
I

Chapter 7

Nesting by Composition

7.1 TM Tree

At the heart of ERMS is the organization of concurrency control and crash recovery in a tree,
which is isomorphic to the tree-structure of nested transactions. We call this idea TM Tree, since
both concurrency control and crash recovery data structures are encapsulated in the transaction
manager.

In chapter 6, we have used TM Tree with specific techniques, namely two-phase locking ancL
version-based recovery. In this section we generalize TM Tree into a design framework to include
other concurrency control methods and crash recovery techniques. Of particular interest is the
possibility of mixing different methods and techniques in one system. In section 7.1.1, we describe
nested concurrency control and crash recovery in the TM Tree framework. In section 7.1.2, we
discuss combination of different concurrency control and crash recovery methods. In section 7.1.3,
we suggest some potential applications for the mixing of implementation techniques.

For simplicity of presentation, we continue to use a transaction manager for each transaction.
In section 7.3, we shall describe refinements that may eliminate overhead introduced with such a
simplistic design.

1.1.1 Nested Atomicity

In section 6.4.2, we have described the way concurrency control is nested in ERMS. During an
OpenResource, lock requests follow a chain up the tree of transaction managers to obtain nested
serialization of resource access (figure 6.6). Similarly, in section 6.4.3, we explained the way crash
recovery is nested in ERMS. During an OpenResource, lookup requests are sent to parents to find
the appropriate version for that OpenResource (figure 6.7).

Now we combine figures 6.6 and 6.7 into figure 7.1, which illustrates the more general case.
In figure 7.1, we draw a generic concurrency control and a generic crash recovery at the top
level. For the moment, we take the ERMS example, adopting two-phase locking for concurrency
control and versions for crash recovery. As we have seen in section 6.4, the generic OpenCR
operation is LookupSet, and the generic OpenCC is LockN ame. However, communications be­
tween transaction managers have been simplified. The subtransaction manager simply requests
that the parent transaction manager open the resource. In ERMS, the open request is equivalent

82

Crash

top-ETM

Open Resource

sub-ETM

Concurrency
Control

o
r---------,

Open Resource I client I

: program :
I I L _________ J

Figure 7.1: Nested OpenResource

to a LockName and Lookup. More generally, subtransaction managers can communicate witq.
their parent in a way that is independent of particular concurrency control and crash recovery­
techniques.

A natural question is: "With this technique-independent interface, are we able to use other
techniques in our implementation?" The answer is yes.

Let us start by adopting timestamps for concurrency control instead of locking. 'We keep the
version-based recovery since this is the natural combination. At BeginTransaction, the transaction
manager receives the transaction's timestamp (TID). Each resource has several versions (V d;
each version has its last-read and last-write timestamps, denoted by TSr(Vi) and TSw(Vi). At
OpenResource, the transaction manager selects the latest version such that TSw(V;) is less than
TID. Intuitively, that version is the most recent version for the transaction's time.

If the resource has been opened for updates, a new version is created bearing the TID as its
last-write timestamp. At CloseResource, this new version is stored in the transaction manager's
mapping for crash recovery. During the transaction, the same resource may be opened again,
creating another version. The most recent version is made public only at CommitTransaction.
After the transaction manager has checked that no new versions were inserted between TSw(V;)
and TID, the new version is inserted into the resource's list of versions and made visible to other
transactions. In case of AbortTransaction, the new version is simply deleted and forgotten. For
illustration, actions taken by different concurrency control methods at the operations described
above are summarized informally in table 7.1.

Several concurrency control methods based on dynamic timestamp intervals have been im­
plemented for an experimental study comparing their performance, which will be reported else­
where [66J. Unfortunately, this particular implementation did not separate clients from the trans­
action managers, making the adaptation to ERMS more difficult. At the time of this writing,
concurrency control methods other than locking have not been incorporated into ERMS.

83

,..
I

,..
I

Strict Two- Timestamps Optimistic
Phase Lock Cone.Contr.

Begin Trans. - get TID -

OpenCC Lock
read ¥; with

max {iiT S(¥;) < TID}
-

CloseCC - - -

Commit Trans. Unlock write VTID if ,lIVk check
s.t. ¥; < V k < VTID serializability

AbortTrans. Unlock - -

Table 7.1: illustration: Nested Concurrency Control Actions

From recovery techniques known in the literature [11], so far we have only discussed version­
based systems. Now we turn to recovery methods that use nested log records. As explaine<t,
in section 2.3, logs contain the same amount of information as versions, but recovery using logs
requires more work. The recovery mechanism must scan the log, look for data relevant to the
interrupted transactions, and take appropriate corrective actions on the database to restore its
consistency. For example, operations from aborted transactions must be undone, back to the
state at the beginning of those transactions.

Usually, a log record contains two parts. The first part identifies the transaction writing the
record, and the second part contains recovery data. To recover nested transactions properly, the
log must include enough information to allow the reconstruction of transaction hierarchy. \Ve
shall argue informally that the additional information on nesting hierarchy is necessary and suffi­
cient for correct recovery of nested transactions. Without the hierarchy information, the recovery
mechanism would make permanent the results from every committed subtransaction, even those
from a child of an aborted transaction, which must also be aborted. With the hierarchy, the
outcome of each transaction can be resolved correctly. Since the results of committed subtrans­
actions remain conditional on the outcome of parent transactions, the recovery mechanism can
restore the database to a consistent state.

The actions taken by different crash recovery techniques at the TransactionBracket and Re­
sourceManagement operations are summarized in table 7.2. However, the table contains enough
information for illustration purposes only, and the details of a recovery algorithm for log-based
nested transactions remain a research problem.

7.1.2 Combining Different Techniques

All known proposals for nested transaction systems use one concurrency control method and one
crash recovery technique for transactions at all levels. One unexpected result from the TM Tree

84

Versions Logging

Read Write
redo undo redo
only only undo

Begin Trons. - - - - -

OpenCR lookup lookup & lookup
new version

CloseCR
store - - - -

new version

Commit Trons. install write
- - write

new version everything

Abort Trons. drop undo
undo - -

new version from log

Table 7.2: Summary: Nested Crash Recovery Actions

framework is that the uniformity is not necessary. Since each subtransaction manager communi­
cates with the parent through an interface that hides the implementation, the concurrency control
method and crash recovery technique used by the parent transaction manager do not have to be
the same as subtransaction managers.

To illustrate this point, let us consider the example of mixed concurrency control in figure 7.2.
At the system level, we adopt optimistic concurrency control, and the top-level transaction man­
ager uses locking. \\'hen a subtransaction manager attempts to open a resource, the top-level
transaction manager grants locks according to a lock compatibility table (e.g. table 2.1). Since
the system level concurrency control is optimistic, the top-level transaction manager's OpenCC
request translates into a null operation, not shown in the figure. At the time the top-level trans­
action manager attempts to commit, all resource accesses within the transaction will be checked

by the system level concurrency control for conflicts.
The concurrency control mechanisms used by subtransaction managers have been omitted in

the figure, and they could be anyone of the many known techniques for single-level transaction
serialization. Moreover, each one can adopt its own concurrency control method, independently
of the other. For instance, sub-TMI could use locking, and sub-TM2 timestamps.

Analogous to the variety of concurrency control methods, different crash recovery techniques
may be employed. Although all proposed nested transaction mechanisms use versions to recover
from crashes, as we have indicated in section 7.1.1, logging can be used, provided the nesting
hierarchy information is included in the log.

There is one minor complication in mixing version-based recovery with log-based recovery.
For concreteness, let us consider a simplified example of a nested transaction system running on

85

Optimistic
Conc.Control

o
r-___ ---.OpenCC = null

OpenCC = Lock

sub-TM2 sub-TM1

Figure 7.2: Example of 1lixed Concurrency Control

a centralized database with one log device. Although each transaction may choose a different.
recovery technique, the recovery mechanism must have the complete nesting hierarchy informa-­
tion. In other words, regardless of their crash recovery method, if there are transactions relying
on log-based recovery, the final results of each transaction, must be available to the log-based
recovery mechanism. In particular, transactions that use versions for crash recovery may write
no recovery records to the log, but they must write their commit record to the log.

7.1.3 Applications of Mixed Techniques

The ability to mix concurrency control and crash recovery techniques introduces interesting pos­
sibilities for better performance. We delineate two examples here to illustrate the point.

First, mixed concurrency control methods may allow higher effective concurrencyl than one
single method. Let us return to the example in figure 7.1. The system level concurrency control is
optimistic, while the top-level transaction manager uses locking. If the transaction selects a few
records from a large database, the optimistic concurrency control makes sense. However, if the
two sub transactions work intensively on those few records, the probability of conflicts between
the two sub transactions is high. Consequently, optimistic concurrency control in the top-level
transaction manager would be counter-productive, since the subtransactions tend to conflict and
abort. The use of locking at the top-level transaction manager will increase effective concurrency
by avoiding aborts at that level.

Second, mixed crash recovery techniques may reduce the recovery overhead. Version-based
techniques are considered "pessimistic", since they use resources to create versions during the
normal processing, and require little work during recovery. In contrast, logging is "optimistic",

I Inform&l.ly, effective concurrency may be defined &II the average number of concurrent transactions making
progress towards successful commit. Transactions that abort due to confticts, for instance, do not count towards
effective concurrency.

86

r

in that it reduces the normal overhead to a minimum, but need to do more work at recovery.
Consequently, transactions systems with high volume always choose logging.

Now, consider a long, top-level transaction which contains a large number of fast, short sub­
transactions. Logging is the right choice for the short subtransactions, but may be inappropriate
for the long transaction, because a large amount oflog data must be processed for its recovery. So
the mixing ofrecovery methods introduces new ways to avoid this trade-off between long recovery
time and low normal overhead.

In summary, different concurrency control methods and crash recovery techniques have their
own ranges of applicability and boundaries of optimal performance. The complexity of application
systems and access patterns will increase as the size of databases and systems increases. Combi­
nation of different techniques within the system might improve system performance through the
selection of the most adequate technique at each level.

7.2 Superdatabases

Besides the combination of different techniques in the same database system as described in
section 7.1.2, an interesting alternative is to combine entire databases.

7.2.1 Distributed Databases by Composition
-

Past research on distributed databases [60J has produced many distributed algorithms for con-
currency control and crash recovery. Despite a few exceptions like R- (from System R) and Dis­
tributed INGRESS, composition of centralized databases to form a distributed database seems to
be a less explored approach.

TM Tree framework presents a systematic way to build superdatabases from element data­
bases. The elements and the superdatabase can be either centralized or distributed. A natural
combination would be centralized elements and a distributed superdatabase. In the simplest
case, the element databases run the same software. As a basis for discussion, let us consider
each transaction manager as a mini-database, since each includes concurrency control and crash
recovery. If a requested resource is in the mini-database, client access is completely enclosed by
the mini-database. Otherwise, the transaction manager obtains the resource from its parent, and
"moves" the resource into the mini-database for access.

Let us take ERMS as a concrete example. If a transaction aborts, its mini-database is simply

ignored. If a transaction commits, however, its mini-database is merged into the parent's mini­
database. This scenario is suggested by version- based recovery, and log-based recovery achieves
the same effect. The situation repeats at each level of nesting until the top level, when the system
concurrency control and crash recovery take over.

To compose superdatabases out of element databases, each element must be able to imitate the
mini-databases in the TM Tree. In other words, concurrency control and crash recovery in each
element must be conditioned to the parent superdatabase. More concretely, an element database
must support a transaction that has "committed", but which could be rolled back later because
of higher level abort. This situation is not new. In section 2.2, we have described the two-phase
commit protocol for distributed transactions. If the element databases support a "prepared" state

87

p--------- ..
I

superdatabase • client
I

.---------~

Open CC=LOr ~ OpenCC = Lock

element 2 element 1
I lock table I I lock table I

Figure 7.3: Simple Superdatabase

between the transaction commit and the final decision from the superdatabase, it seems that we

can compose them.

A simple example superdatabase is shown in figure 7.3. For concreteness, we show both

elements using two-phase locking, with a client accessing the superdatabase directly. To further

simplify the example, we assume the two element databases -1:!lement 1 and element 2- to contain:

disjoint sets of resources and so they are able to keep their own lock tables. Figure 7.3 shows the

moment a resource is being opened, and the superdatabase obtaining locks from both elements.

At the time the client decides to commit, the superdatabase performs two-phase commit including

both elements.

There are some trade-offs even in this simple example. Splitting lock tables may gain locality of

access, compared to a centralized lock table with the superdatabase. However, deadlock detection

becomes more complex. For example, transaction Tl is local to element 1, and transaction T2

is local to element 2. A deadlock may involve two supertransactions T3 and T4 as shov-/Il in

figure 7.4. Isolatedly, each element is unable to detect this kind of deadlock. Worse yet, the

deadlock cannot be detected by a simple global algorithm which looks only at inter-element

dependencies; it requires the analysis of the wait-for graphs in both element databases.

7.2.2 Heterogeneous Databases by Composition

Since TM Tree framework can combine different techniques, the next natural step in the compo­

sition of databases is to compose heterogeneous databases. Past research on heterogeneous data­

bases has focused on queries. Some examples are: MULTIBASE at the Computer Corporation

of America [29,52], MERMAID at the System Development Corporation [20], and JDDBS at the

Japan Information Processing Development Center [78]. They have solved the problem of trans­

lating a uniform query language into other "native" query languages. Despite the progress made

in query processing, consistent update of heterogeneous databases remains a challenge [37,60].

Of the superdatabases introduced in section 7.2.1, we have assumed that the element databases

are of the same kind. However, using the TM Tree framework, we can combine different imple­

mentation techniques. A simple example is shown in figure 7.5; the element databases use locking

88

,..

TJ T2 T3 T4

locked 1 2 3 4

request 3 4 2 1

Element Database 1 Element Database 2

r-----------, r-----------, , , , ,
: T) , , T~ ,
:1 Resource 11

, , , , 'I Resource 41 : , ,

:-------lJ '-r------'
r-- --------, r-------- --, , , , ,
: T;} : , T2 , , ,
:1 Resource 31' ~I Resource 2\ : , , , , L ___________ J

l ___________ J

Figure 7.4: A Not-So-Simple Deadlock

and timestamps, while the superdatabase adopts optimistic concurrency control. In the example,
the superdatabase has the record of all resources accesses by all transactions. Consequently, it
can check for serializability of all transactions on the superdatabase.

7.3 Performance Issues

Designs derived from the TM Tr~ framework apparently require significant communication over­
head between the TMs in the hierarchy; such is the case of ERMS. However, the performance
penalty is in the implementation, rather than abstract design.

1.3.1 Reducing Communication Costs

There are two ways to look at a low-cost implementation of TM Tr~ designs. First, the non­
object-oriented (traditional) approach would eliminate encapsulation and collapse the TM Tr~
into a single transaction manager per node. Consider ERMS, for example. Instead of one Eden
object per ETM, we could build a Node Transaction Manager containing a tree of LockMap and
DirMap. The tr~ of data structures substitutes the tree of Eden objects. All clients of that
node send their requests to the Node Transaction Manager, accompanied of their TID. With the
system-unique TID, the Node Transaction Manager finds the transaction's LockMap and DirMap,
on wruch the operation is then performed. Invocations between subtransaction managers and
parent transaction managers now translates into simple tree traversal, which is much cheaper
than invocations.

89

Optim.CC

superdatabase • client

Open CC=L~ ~opencc = Timestamp

element 2 element 1
I lock table I ITsl

Figure 7.5: Simple Example of Heterogeneous Database

There are advantages and disadvantages in the traditional approach. For simple designs with
uniform concurrency control and crash recovery, it is clear and practical. However, more general
TM Tree designs with mixed concurrency control and crash recovery are much harder to put
together in a single program.

The second, object-oriented approach may become a good alternative. Some new object-:
oriented languages and systems such as Emerald [14,15] provide efficient communications between
objects, if objects are "sufficiently close". With a language like Emerald, TM Tree designs can be
implemented in full generality, without heavy performance penalty.

7.3.2 Inherent Cost

In section 7.3.1, we have argued that the communication cost between transaction managers is
an artifact of implementation. However, the tree structure is a fundamental part of any TM Tree
design and cannot be eliminated. Compared to single-level transaction systems, the tree in the
TM Tree designs requires a traversal each time concurrency control and crash recovery routines
are called. Consequently, the tree traversal seems to be an inherent additional cost in nested
transaction systems based on TM Tree designs.

Most tree traversal algorithms have a cost dependent on the depth of the tree. Since the T11
Tree is isomorphic to the structure of nested transactions, the additional cost is proportional to
the complexity of application. Although we do not have extensive experience in the use of nested
transactions, current applications seem to be nat urally structured in to a few levels.

The first interesting problem is whether a nested transaction mechanism can be built without
organizing its data structures into a tree. All existing proposals put their crash recovery infor­
mation into trees. Moss has proposed a restriction (see sections 6.7.1 and 7.4.1) with which a flat
lock table suffices.

Once the tree traversal overhead is accepted, the second problem is how much additional
cost we must pay for the tree data structure. The analysis is not straightforward since the
additional cost is not constant in each request. For example, the first time a resource is opened
in a transaction, all ancestor transaction managers must obtain the appropriate lock. However,

90

once the resource has been opened in the transaction, the next request from any descendent
subtransaction can be handled by the transaction manager, since an entry exists in the transaction
manager's lock table. Consequently, the more frequently used a resource is, the less additional
overhead is paid for nested atomicity.

In summary, we are optimistic about the performance of nested transaction mechanisms de­
rived from the TM Tree framework. There are several reasons for this optimism. First, the
obvious communications problem has an easy answer, with more general solutions under way.
Second, the inherent problem of tree traversal is lessened by the usually shallow depth of the
tree. Third, reasonably mild restrictions seem to permit the bypass of even the tree traversal.
Finally, the flexibility of concurrency control and crash recovery combinations may allow a better
combination than past designs.

7.4 Analyzing Earlier Designs

The most important difference between TM Tree framework and earlier designs is in generality.
Many concrete designs of nested transaction mechanisms may be derived from the TM Tree
framework through the selection of specific concurrency control and crash recovery techniques. In
this section, we analyze earlier proposals of nested transactions using the TM Tree framework.

1.4.1 Moss

Moss [61,62] defined the standard model of nested transactions we now use. His design uses
an extension of two-phase locking for concurrency control, and only a specification of what the
nested crash recovery should do. His design was subsequently refined and implemented in the
Argus language [56].

His extension of two-phase locking includes the notion of inherited locks, which are different
from acquired locks. At commit time, a lock held by a leaf transaction is "inherited" by its
parent. The parent may let other subtransactions acquire an inherited lock. However, only
subtransactions holding exclusive locks can write. A parent that inherited a lock cannot access
the resource.

From TM Tree point of view, a lock is a token which migrates from transaction to transaction
up and down the nested transaction tree. Leaf transactions in the tree may acquire locks and access
the resource, while internal transactions can only inherit locks and pass them along. Although
his proposal does not organize lock tables into trees, the nesting hierarchy of transactions must
be maintained somehow, 80 a lock being released by a subtransaction can be correctly inherited

by its parent.
An interesting point is the minor restriction on the actions of the parent. To enforce the

inaction of parent while in possession of inherited locks, Moss allows resource access only from
the leaf transactions. The TM Tree explanation for the restriction is exactly the lack of a tree of
lock tables. Since he has only one lock table, at least an additional bit per level is necessary to
distinguish an inherited but unused lock from an actually "busy" lock. The former can be granted
to another subtransaction, while the latter cannot. To simplify data structures, Moss disallowed
direct parent access to resources, so locks are acquired and resources accessed only at the leaf

91

level.
For transaction roll back, Moss has specified what the nested transactions should do. When­

ever an object is being written, its old content must be saved in an "associated state" with the
transaction. If the transaction aborts, its associated states are used to roll back. When a sub­
transaction commits, its associated states are inherited by its parent to allow roll back if the
parent aborts. TM Tree implements this specification by including the associated state in the
transaction manager tree.

7.4.2 Reed

Reed was probably the first author to describe a detailed design to implement nested trans­
actions [73]. In his design, he used archived, write-once versions for crash recovery. Each object is
composed by a sequence of versions, each called a possibility when created. At transaction commit
time, the possibility becomes a version and part of the object.

Reed used timestamps for concurrency control. Timestamps of transactions in the nesting
hierarchy are concatenated into Pseudo Temporal Environments (PTEs), which also doubled as
version names. All operations within a subtransaction are invisible from outside, since its siblings
and parent cannot access its possibilities, named by its unique PTE.

The PTEs form a tree, isomorphic to the tree structure of the nested transaction hierarchy.
Clearly, a TM Tree design with version-based concurrency control and crash recovery would have:
the transaction managers in a one-to-one correspondence with the PTEs.

Reed did not complete his implementation in the SWALLOW system.

7.4.3 Jessop

To the best of our knowledge, Jessop first suggested the use of one Transaction Manager (T~l)
per transaction [46]. That design, called Eden Transactional File System (EFS), is based on
Bernstein and Goodman's TM/DM model [9]. In EFS, each resource has many versions under
the control of its own Data Manager (DM), which synchronizes top-level access to the resource
and provides crash recovery. At each level of nesting, for every resource, the transaction manager
creates a copy of the data manager called workspace manager, which holds the versions created by
the subtransaction. If the subtransaction commits, the workspace manager passes the committed
versions back to the data manager.

Other EFS design features include resource protection based on access control lists, resource
replication, a user environment, and the concept of split and join of transactions. Unlike the
earlier two designs, EFS encapsulates the concurrency control in the data managers, making the
transaction managers independent of any specific method. After building a simulation of EFS
with immutable versions and timestamp-based concurrency control, Jessop did not implement the

actual system.
TM Tree designs do not follow the TM/DM separation. Rather, the functions of the data

manager are merged into the transaction manager. In Jessop's design, besides the tree of trans­
action managers, in a top-level transaction, the workspace managers for each resource form a
tree that is a subgraph of the transaction manager tree. Conceptually coalescing these workspace

92

I~ h control Two-Phase Locking Timestamps Optimistic
cras

(3 others
recoveij'

Moss [61]

Version- Based
Argus [56] Reed [73]

-
LOCUS [63,84] Jessop [46]

ERMS (chapter 6)

Logging - - -

Table 7.3: Analyzing Nested Transaction Designs

managers, data managers, and transaction managers, we see the transaction manager tree emerge
as the main structure in Jessop's design.

7.4.4 TM Tree Design Space

In table 6.1, we have compared the features of implemented nested transaction systems. Usini,

the TM Tree framework, we can also compare the implementation techniques proposed by early

designs. Table 7.3 shows the concurrency control mechanisms and crash recovery techniques
chosen for each design, simulation, or implementation.

Several interesting observations can be derived from table 7.3. First, all current systems use

versions for recovery. As we have pointed out in section 7.1.1, no detailed algorithms for log­

based nested recovery is known. Second, no system uses a concurrency control method other

than locking or timestamps. This is not surprising since single-level transaction systems have

the same situation. Third, both TABS and R- use locking and log-based recovery, but neither

provides nested reliability atomicity. Since the combination of locking and log-based recovery is

considered the most efficient for single-level transaction systems, it should be a good candidate

for the implementation of an efficient nested transaction mechanism.

93

r

Chapter 8

Conclusion

8.1 Summary of Contributions

This dissertation concentrates on software support to increase availability, reliability, and perfor­
mance in distributed systems. From this focus, we divide our contributions into three parts: First,

we have studied consistent replication to increase the availability of distributed data. Second, we
have devised powerful nested transaction mechanisms to promote reliable software composition, to
facilitate recovery from partial failures, and to increase concurrency at all levels of software. Third,
we have built prototype systems to demonstrate the practicality of the concepts. We summarizti
the contributions to consistent replication in section 8.1.1, nested transactions in section 8.1.2,
and systems building in section 8.1.3.

8.1.1 Replication

On data replication, we have observed the separation between hardware repair and data restora­
tion. Concretely, we have introduced the Regeneration method, which takes advantage of this
separation to update multiple copies consistently. The main idea of Regeneration is to make new
copies to replace inaccessible copies. New copies maintain replicated resource consistency and
reduce resource vulnerability to multiple failures. In contrast, other replication methods have
limited or no ability to replace inaccessible copies.

Analytically, we have applied the k-out-of-N theory to show that Regeneration provides higher
availability than other methods. To the best of our knowledge, and despite abundant literature
on reliability and performance analysis, our availability analysis is the first application of the
k-out-of-N theory to practical data replication methods.

However, the higher availability requires additional disk space on spare nodes to yield success­
ful regeneration. The storage requirements are bounded by the maximum amount of inaccessible
data. Updates may be allowed to complete without the additional storage, but the resource
availability decreases to the same level of the Available Copies method.

Empirically, we have employed Regeneration in the implementation of R2D2, a replicated
distributed directory system. R2D2 serves two purposes. First, it demonstrates the practicality
of Regeneration. Second, it provides the basis for supporting replicated resources in the nested
transaction mechanism we now describe.

94

r

8.1.2 Nested Transactions

We have designed and implemented a nested transaction mechanism, ERMS. Its strength is in
the economy of design concepts and generality of implemented features. The key idea in ERMS
design is the composition of known techniques for single-level transactions at each level to provide
nested concurrency and reliability atomicity. For example, the locking rules in ERMS are the
same as in many single-level transaction systems (table 2.1). In contrast, all other proposed
nested transaction systems extend specific concurrency control and crash recovery techniques.

Using composition, we have introduced the TM Tree framework. Unlike previous proposals for
nested transactions, TM Tree allows and suggests combinations of different concurrency control
methods and crash recovery techniques. Not only is the framework a template for many nested
transaction designs, but it also opens the door to more general compositions of database systems.
We have just started working on a method of systematic composition of centralized databases to
form distributed databases.

The ERMS implementation of nested transactions presents several important general features:
Resources of any type are accessible transparently across the network. Transparent resource

replication increases data availability. Subtransactions isolate partial failures to improve system
reliability, while long-term transactions survive planned and unplanned shutdowns. For better
performance, subtransactions execute in parallel, with consistent resource access. Finally, uniform.
syntax for top-level transactions and subtransactions permits easy and safe composition of super~
transactions out of previously separate ones.

8.1.3 Systems

In Eden, the addition of R2D2 and ER1-1S addressed fault-tolerance and large scale system struc­
turing, issues with which the Eden kernel and Eden Programming Language are less concerned.
Like the Edmas mail system [1] and Eden Calendar system [42], both built on top of Eden, R2D2

and ERMS benefited from Eden's object orientation, abstract types, and location-independent
objects. Unlike Edmas and Eden Calendar, R2D2 and ERMS are general-purpose tools support­
ing other applications. Transparent replication and nested transactions significantly augmented
Eden's support for writing reliable distri bu ted applications.

Granted, the performance of R2D2 and ERMS leaves room for improvement. That is the price
we pay for building on top of Eden, an experimental prototype that is, in turn, built on top of
Unix. However, it does not imply inherent inefficiency in the Regeneration algorithm or TM Tree
framework, which are independent of the Eden system. For example, Regeneration reads one copy
and writes all copies; for resources often read but seldom written, it should perform better than

Voting.
Beyond Eden, both the Regeneration method and the TM Tree framework have wide appli­

cation. The design and implementation of any replicated resource may adopt Regeneration, since
most replication methods can incorporate the idea of Regeneration to improve data availability.
From the TM Tree framework, many different designs and implementations of nested transactions
may be derived. ERMS is a simple and general example of such a nested transaction mechanism.
We have briefly analyzed the ways to improve the performance of designs derived from TM Tree
framework, but only more work can confirm or contradict our optimistic outlook.

95

.r

8.2 Future Work

8.2.1 Replication

Compared to hardware replication and availability, current understanding of data replication is less
methodical. Although no attempt was made to survey data replication methods systematically,
our analysis dividing the consistent replication problem into three parts - multiple-copy update,
network partitions, and replica location - seems promising. In particular, table 3.2 captures
the essential features of some important data replication proposals. A recent survey on network
partitions [28] reinforces the plausibility of such classification. A taxonomy of data replication
techniques will facilitate further studies that compare the range of applicability and cost of the
techniques.

A more specific problem in data replication is the lack of theoretical analysis. Fortunately,
there is a large body of literature on reliability theory (e.g. IEEE Transactions on Reliability).

Nevertheless, existing theory is seldom applied to the analysis of replication algorithms. Applying
reliability theory to data replication appears to be a fruitful area of research.

Another interesting phenomenon in data replication is the dichotomy between replication for
availability and replication for performance (sometimes called caching). Although there are theo­
retical studies on the integrated analysis of system performance and availability, called perform a­
bility [58], we have not found a replication algorithm or protocol designed for both performance:.
and availability. Regeneration and Available Copies are both algorithms that read one copy and

write "all" copies, allowing potential performance gains with exclusively local read. Research
directed at replication methods for both performance and availability gains seems ready to take
off.

In this dissertation, we have chosen to maintain resource consistency in the available portion of
the system. In many practical systems. temporary connections between nodes form the network.
In these cases, consistency can be achieved only after the elapsed time allowed eventual connection
of all participant nodes. This problem increases with network size and heterogeneity. Replication
techniques for eventually connected systems remain an interesting area of research.

8.2.2 Transaction Systems

Although the availability and performance potential of distributed systems have been recog­
nized, partial degradation continues to be a serious problem. Despite productive research on
fault-tolerant computing, a standard model for fault-tolerant computations remains to be found.
Recovery blocks and nested transactions are possible building blocks, but considerable research
separates the building blocks from a complete model.

The TM Tree framework opens a design space, allowing many different combinations of concur­
rency control methods and crash recovery techniques. This design space grows with the ongoing
research in single-level transaction systems. A systematic exploration of the TM Tree design space
in terms of applicability and performance characteristics will provide the foundation for practical

implementations of nested transactions.
Built on top of Eden, ERMS is not particularly fast. Without sacrificing the generality of

features, efficient implementations of nested transactions remain a challenge. In particular, nested

96

reliability based on logging offers the best promise, since efficient single-level transaction systems
rely on logging.

A more specific problem we have left for future research is multi-level deadlock detection.
Since we use known techniques in TM Tree designs, we can include a known deadlock detection
algorithm with each lock table, solving the problem (except for performance). However, if the
lock tables are implemented in a distributed manner, distributed deadlock detection must be
employed. The interplay of mixed concurrency control methods and distribution warrants further
investigation.

8~2.3 Composition

Softvlare reuse is among the major software engineering tenets. There are many ways to reuse
software, and composition is one of them. In this dissertation, we have confirmed the ease of
composition offered by object-oriented systems, specifically Eden. We did not, however, remove
the doubt on the performance of object-oriented systems. Efficient implementation of object­
oriented systems and languages that facilitate composition is another important area of research.
The Emerald project [14,15] is an example of such work.

Integrated and consistent access to a set of heterogeneous databases is useful in many ways.
First, consistent access to different databases allows powerful information sharing and pooling~
Second, data from an old database can be migrated gradually to new technology databases. Third,­
running smaller databases on specialized machines may be more cost effective than concentrating
all data on one extremely fast and reliable general-purpose system.

We have described some simple cases of composition in which distributed databases and het­
erogeneous databases have been constructed from element databases. Our discussion has been
informal and only suggests the plausibility of the approach. However, potential practical ap­
plications provide strong motivation for pursuing this line of research. Composition of element
databases of the same kind is simpler and should be the first step towards the composition of
heterogeneous databases.

Finally, our nested transactions have the unusual property of running the same program with­
out recompilation at any level of nesting. Transactions with this property can be composed with
other transactions at run-time, preserving the consistency of resources. We call these transactions
composable transactions. A better understanding of composable transactions and efficient imple­
mentation will provide useful tools for the construction of reliable distributed applications.

97

Bibliography

[1] G.T. Almes, A.P. Black, C. Bunge, and D. Wiebe. Edmas: a locally distributed mail system.
In Proceedings of Seventh International Conference on Software Engineering, pages 56-66,
ACMjSIGSoft and IEEE Computer Society, March 1984.

[2] G.T. Almes, A.P. Black, E.D. Lazowska, and J.D. Noe. The Eden system: a technical review.
IEEE Transactions on Software Engineering, SE-11(I):43-58, January 1985.

[3] P.A. Alsberg and J.D. Day. A principle for resilient sharing of distributed resources. In
Proceedings of the Second International Conference on Software Engineering, pages 562-570,
1976.

[4] R.E. Barlow and K.D. Heidtmann. Computing k-out-of-n system reliability. IEEE Trans­
actions on Reliability, R-33(4):322-323, October 1984.

[5] D.S. Batory and W. Kim. Modeling concepts for VLSI CAD objects. ACM Transactions on
Database Systems, 10(3):322-346, September 1985.

[6] R. Bayer, K. Elhardt, J. Heigert, and A. Reiser. Dynamic timestamp allocation for trans­
actions in database systems. In H. J. Schneider, editor, Distributed Data Bases, North­
Holland, 1982.

[7] R. Bayer, H. Heller, and A. Reiser. Parallelism and recovery in database systems. ACM
Transactions on Database Systems, 5(2):139-156, June 1980.

[8] P.A. Bernstein and N. Goodman. An algorithm for concurrency control and recovery in
replicated distributed databases. A CM Transactions on Database Systems, 9(4):596-615,
December 1984.

[9] P.A. Bernstein and N. Goodman. Concurrency control in distributed database systems. ACM
Computing Surveys, 13(2):185-222, June 1981.

[10] P .A. Bernstein and N. Goodman. The fail ure and recovery problem for replicated databases.
In Proceedings of Second Annual ACM Symposium on Principles of Distributed Computing,
pages 114-122, August 1983.

[11] P.A. Bernstein, N. Goodman, and V. Hadzilacos. Recovery algorithms for database systems.
In Information Processing 83, pages 799-807, Elsevier Science Publishers B.V., 1983. Also
appeared in IFIP Congress 1983 Proceedings.

[12] Ken Birman. Replication and fault-tolerance in the Isis system. In Proceedings of the Tenth
Symposium on Operating Systems Principles, pages 79-86, ACMjSIGOPS, December 1985.

[13J A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM Transactions on
Computer Systems, 2(1):39-59, February 1984.

98

[14) A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure in the Emerald system.
In Proceedings of the First Annual Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ACM, September 1986.

[15] A. Black, N. Hutchinson, E. Jul, H. Levy, and 1. Carter. Distribution and abstract types
in Emerald. IEEE Transactions on Software Engineering, SE-12(12), December 1986. To
appear.

[16) A.P. Black. The Eden Programming Language. Technical Report 85-09-01, Department of
Computer Science, University of Washington, September 1985.

[17] A.P. Black. Supporting distributed applications: Experience with Eden. In Proceedings
of the Tenth Symposium on Operating Systems Principles, pages 181-193, ACM/SIGOPS,
December 1985.

[18] B.T. Blaustein and C.W. Kaufman. Updating replicated data during communication failures.
In Proceedings of the Eleventh International Conference on Very Large Data Bases, pages 49-
58, Stockholm, August 1985.

[19] J. Bloch, D. Daniels, and A. Spector. Weighted Voting for Directories: A Comprehensive
Study. Technical Report CMU-CS-84-114, Computer Science Department, Carnegie-Mellon
University, April 1984.

[20) D. Brill, M. Templeton, and D. Yu. Distributed query processing strategies in mermaid, a
frontend to data management systems. In Proceedings of the First International Conference
on Data Engineering, 1984. ~

[21] S. Ceri and S. Owicki. On the use of optimistic methods for concurrency control in distributed
databases. In Proceedings of the Sixth Berkeley Workshop on Distributed Data Management
and Computer Networks, pages 117-129, Lawrence Berkeley Laboratory, University of Cali­
fornia, Berkeley, February 1982.

[22) A. Chan, S. Fox, T.A. Landers, A. Nori, and D. Ries. The implementation of an integrated
concurrency control and recovery scheme. In Proceedings of SIGMOD Conference on Man­
agement of Data, pages 184-191, June 1982.

[23) A. Chan and D. Skeen. The Reliability Subsystem of a Distributed Database Manager. Tech­
nical Report CCA-85-02, Computer Corporation of America, February 1986.

[24) D. Daniels and A. Spector. An algorithm for replicated directories. In Proceedings of the
Second Annual ACM Symposium on Principles of Distributed Computing, pages 104-113,
August 1983.

[25] D. Davcev and W. Burkhard. Consistency and recovery control for replicated files.
In Proceedings of the Tenth Symposium on Operating Systems Principles, pages 87-96,
ACM/SIGOPS, December 1985.

[26] S.B. Davidson. Optimism and consistency in partitioned distributed database systems. ACM
Transactions on Database Systems, 9(3):457-481, September 1984.

[27) S.B. Davidson. An Optimistic Protocol for Partitioned Distributed Databases. PhD thesis,
Department of Computer Science, Princeton University, August 1982.

[28) S.B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a partitioned network. ACM
Computing Surveys, 17(3):341-370, September 1985.

[29) U. Dayal. Processing queries over generalization hierarchies in a. multidatabase system.
In Proceedings of the Ninth International Conference on Very Large Data Bases, October­
November 1983.

99

" :

[30] K.P. Eswaran, J.N. Gray,. R.A. Lorie, and 1.1. Traiger. The notions of consistency and
predicate locks in a database system. Communications of ACM, 19(11):624-633, November
1976.

[31] S.2. Faissol. Operation of Distributed Database Systems Under Network Partitions. PhD
thesis, Department of Computer Science, University of California, Los Angeles, 1981.

[32] R.J. Fowler. Decentralized Object Finding Using Forwarding Addresses. PhD thesis, Depart­
ment of Computer Science, University of Washington, December 1985.

[33] H. Garcia-Molina; T. Allen, B. Blaustein, R.M. Chilenskas, and D.R. Ries. Data-Patch:
integrating inconsistent copies of a database after a partition. In Proceedings of the Third
Symposium on Reliability in Distributed Software and Database Systems, pages 38-44, IEEE,
October 1983.

[34] D.K. Gifford. Information Storage in a Decentralized Computer System. Technical Re­
port CSL-81-8, Xerox PARC, March 1982. Revised version of his Ph.D. thesis.

[35] D.K. Gifford. Violet, an Experimental Decentralized System. Technical Report CSL-79-12,

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Xerox PARC, September 1979.

D.K. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh Symposium
on Operating Systems Principles, pages 150-162, AC:M/SIGOPS, December 1979.

V. Gligor and G.L. Luckenbaugh. Interconnecting heterogeneneous database man age­
mentsystems. Computer, 17(1}:33-43, January 1984.

-
J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and I. Traiger.
The recovery manager of the System R database manager. ACM Computing Surveys,
13(2):223-242, June 1981.

J.N. Gray. The transaction concept: virtues and limitations. In Proceedings of the Seventh
International Conference on Very Large Data Bases, pages 144-154, September 1982.

T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Com­
puting Surveys, 15(4):287-317, December 1983.

M.P. Herlihy. Replication Methods for Abstract Data Types. PhD thesis, Massachusetts
Institute of Technology, May 1984.

C. Holman and G.T. Almes. The Eden Shared Calendar System. Technical Report 85-05-02,
Department of Computer Science, University of Washington, June 1985.

R.C. Holt. Concurrent Euclid, The Unix System, and Tunis. Addison-Wesley Publishing
Company, 1983.

F.S. Hsu. Reimplementing remote procedure calls. 1985. Department of Computer Science,
University of Washington, M.Sc. Thesis.

N. Hutchinson. The Emerald Language and Compiler. PhD thesis, Department of Computer
Science, University of Washington, Fall 1986.

W.H. Jessop, J.D. Noe, D.1L Jacobson, J.L. Baer, and C. Pu. The Eden transaction-based
file system. In Proceedings of the Second Symposium on Reliability in Distributed Software
and Database Systems, July 1982.

[47] E.B. Jul. Distribution and Mobility in Emerald. PhD thesis, Department of Computer
Science, University of Washington, Fall 1986.

100

r-

,...

r

[48] W.H. Kohler. A survey of techniques for synchronization and recovery in decentralized
computer systems. ACM Computing Surveys, 13(2):149-184, June 1981.

[49] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. Trans­
actions on Database Systems, 6(2):213-226, June 1981.

[50] L. Lamport. Time, clocks and ordering of events in a distributed system. Communications
of ACM, 21(7):558-565, July 19i8.

[51] B. Lampson and H. Sturgis. Crash recovery in a distributed data storage system. 1979.
Unpublished, Xerox PARC; to appear in CACM.

[52] T. Landers and R.L. Rosenberg. An overview of multibase. In H.J. Schneider, editor, Dis­
tributed Data Bases, North Holland Publishing Company, September 1982. Proceedings of
the Second International Symposium on Distributed Data Bases.

[53] E.D. Lazowska, H.M. Levy, G.T. Almes, M.J. Fischer, R.J. Fowler, and S.C. Vestal. The
architecture of the Eden system. In Proceedings of the Eighth Symposium on Operating
Systems Principles, pages 148-159, ACMjSIGOPS, December 198!.

[54] P. Leach et al. Architecture of an integrated local area network. IEEE Journal on Selected
Areas in Communications, SAC-1(5):842-857, November 1983.

[55] B. Lindsay, L.M. Haas, C. Mohan, P.F. Wilms, and R.A. Yost. Computation and commu­
nication in R-: a distributed database manager. ACM Transactions on Computer Systems,
2(1):24-38, February 1984.

[56] B.H. Liskov and R.W. Scheifler. Guardians and Actions: linguistic support for robust, dis­
tributed programs. In Proceedings of the Ninth Annual Symposium on Principles of Pro­
gramming Languages, pages i-19, January 1982.

[57] Peter Ma. A look at the Eden checkpoint protocol. January 1985. Eden Internal Document.

[58] J.F. Meyer. Unified Performance-Reliability Evaluation. Technical Report CRL-TR-27-84,
University of Michigan, Computing Research Laboratory, April 1984.

[59] T. Minoura and G. Wiederhold. Resilient Extended True-Copy Token scheme for a dis­
tributed database system. IEEE Transactions on Software Engineering, SE-8(3):173-189,
May 1982.

[60] C. Mohan. Tutorial: Recent Advances in Distributed Database Management. IEEE Computer
Society Press, December 1984.

[61] J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. Vol­
ume 1 of Information Systems, The 1UT Press, 1985. Revised version of his Ph.D. thesis
[62].

[62] J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. PhD
thesis, Massachusetts Institute of Technology, April 198!.

[63] E.T. Mueller, J.D. Moore, and G. Popek. A nested transaction mechanism for LO­
CUS. In Proceedings of Ninth Symposium on Operating Systems Principles, pages 71-89,
ACMjSIGOPS, October 1983.

[64] S.J. Mullender and A.S. Tanenbaum. A distributed file service based on optimistic con­
currency control. In Proceedings of the Tenth Symposium on Operating Systems Principles,
pages 51-62, ACMjSIGOPS, December 1985.

101

[65] J.D. Noe, A. Proudfoot, and C. Pu. Replication in distributed systems: the Eden experience.
In Proceedings of the ACM/IEEE Computer Society Fall Joint Computer Conference, AC11
and IEEE/Computer Society, Dallas, November 1986.

[66] J.D. Noe and D. Wagner. Performance comparison of concurrency control methods. 1986.
In preparation.

[67] T.W. Page, M.J. Weinstein, and G. Popek. Genesis: a distributed database operating sys­
tem. In Proceedings of 1985 SIGMOD International Conference on Management of Data,
pages 374-387, ACM/SIGMOD, 1985.

[68] C.H. Papadimitriou. Serialjzability of concurrent updates. Journal of ACM, 26(4):631-653,
October 1979.

[69] D.S. Parker, G.J. Popek, G. Rudisin, A. Stoughton, B. Walker, E. Walton, J. Chow, D.
Edwards, S. Kiser, and C. Kline. Detection of mutual inconsistency in distributed systems.
IEEE Transactions on Software Engineering, SE-9:24G-247, May 1983.

[70] W.H. Paxton. A client-based transaction system to maintain data integrity. In Proceedings
of the Seventh Symposium on Operating Systems Principles, pages 18-23, ACM/SIGOPS,
December 1979.

[71] M. Pease, R. Shostack, and 1. Lamport. Reaching agreement in the presence of faults.
Journal of ACM, 27(2):228-234, April 1980.

[72] A. Proudfoot. Replects: data replication in the Eden System. Technical Report 85-12-04,.
Department of Computer Science, University of Washington, December 1985. M.Sc. thesis. :..

[73] D.P. Reed. Naming and Synchronization in a Decentralized Computer System. PhD thesis,
Massachusetts Institute of Technology, September 1978.

[74] D.A. Rennels. Fault-tolerant computing - concepts and examples. IEEE Transactions on
Computers, C-33(12):1116-1129, December 1984.

[75] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis II. System level concurrency control for
distributed database systems. ACM Transactions on Database Systems, 3(2):178-198, June
1978.

[76] R.D. Schlichting and F.B. Schneider. Fail-stop processors: an approach to designing fault­
tolerant computing systems. A CM Transactions on Computer Systems, 1(3):222-238, August
1983.

[77] A.Z. Spector, D.S. Danjels, D.J. Duchamp, J.L. Eppinger, and R. Pausch. Distributed trans­
actions for reliable systems. In Proceedings of the Tenth Symposium on Operating Systems
Principles, pages 127-146, ACM/SIGOPS, December 1985.

[78] M. Takizawa. Heterogeneneous distributed database system: jddbs. Database Engineering
Bulletin, 6(1), March 1983.

[79] G.!. Thiel. Partitioned Operation and Distributed Data Base Management System Catalogs.
PhD thesis, Department of Computer Science, University of California, Los Angeles, 1983.

[80] R.H. Thomas. A majority consensus approach to concurrency control. ACM Transactions
on Database Systems, 4(2):180-209, June 1979.

[81] J.S.M. Verhofstadt. Recovery techniques for database systems. ACM Computing Surveys,
10(2):149-184, June 1978.

102

r

[82] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable
components. In Automata Studies, pages 43-98, Princeton Unversity Press, 1956.

[83] W.E. Weihl. Specification and Implementation oj Atomic Data Types. PhD thesis, Mas­
sachusetts Institute of Technology, March 1984. Tech.Report MIT jLCSjTR-314.

[84] M. Weinstein, T. Page, B. Livezey, and G. Popek. Transactions and synchronization in a
distributed operating systems. In Proceedings oj the Tenth Symposium on Operating Systems
Principles, pages 115-126, ACMjSIGOPS, December 1985.

[85] D.O. Wright. Merging Partitioned Databases. PhD thesis, Department of Computer Science,
Cornell University, September 1983. Tech.Report No. 83-575.

[86] W.A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. Hydra:
the kernel of a multiprocessing operating system. Communications oj ACM, 17(6):337-345,
June 1974.

103

Appendix A

Implementation Details

A.I Abstract Types

The concept of abstract types has not been completely formalized in EPL [16J, but it has been
formally incorporated into the Emerald'language [15J. Informally, an abstract type is a set of
invocations, supported by concrete Edentypes. Edentypes are EPL programs, and some of them
are summarized in section A.2. In this section, we summarize the invocations, which define the
following abstract types:

• Rep Directory - section A.1.1.

• ERMSBasic - section A.1.2.

• ERMSDebug - section A.1.3.

• TwoPhaseLock - section A.1.4.

• TransactionBracket - section A.1.5.

• Resource11anagement - section A.1.6.

A.I.1 RepDirectory

Table A.1 summarizes the invocations that define the abstract type Rep Directory. The list of

main failure status codes follows:

• Some common return status codes are:

- Success - opera.tion succeeded.

- lllegalString - operation refused; string name contains non-ASCII characters.

- KernelError - opera.tion failed; Kernel.Checkpoint failed for some reason a.nd no change
was made to the passive representation.

- NoSuchNa.me, NoSuchPath - operation failed; string name/pa.th is not in R2D2.

• AddSet:

104

r

invocation .input action output

newnarne: String
insert pair

AddSet capaset: Capas
into mapping status: EdenStatus

uid: Uniqueld

DeleteSet
oldname: String delete pair

status: EdenStatus uid: Uniqueld from mapping

LookupSet
oldname: String delete pair capaset: Capas

uid: Uniqueld from mapping status: EdenStatus

oldname: String
replace capaset

ReplaceSet newset: Capas
in mapping

status: EdenStatus
uid: Uniqueld

ListNames
list names output: Stream -
in mapping status: EdenStatus

Table A.l: Abstract Type RepDirectory

- NameAlreadyExists - insertion failed; newname is already in R2D2.

• ReplaceSet:

- PathBlocked, NotYourLock - replacement failed; temporary lock conflict in R2D2, try
again later.

• ListN ames:

- ListError - Listing failed; EdenIOStream package failed to establish listing channel.

A.1.2 ERMSBasic

Table A.2 summarizes the mvocations that define the abstract type ER11SBasic. The list of

main failure status codes follows:

• Some common return status codes are:

- Success - operation succeeded.

- KernelError - operation failed; Kernel.Checkpoint failed for some reason and no change
was made to the passive representation.

• CheckpointAt

- NoCheckSite - operation failed; specified node for checkpoint is not recognized.

105

r

invocation input action output

CheckpointAt node: Capabili ty checkpoint status:
on node EdenStatus

CheckpointSelf - checkpoint
status: EdenStatus

to disk

CopySelf - make copy newcopy: Capability
on disk status: EdenStatus

Table A.2: Abstract Type ERMSBasic

A.1.3 ERMSDebug

invocation input action output

SetCkptLimit max: Integer
ckpt. after

status: EdenStatus max updates

SetNoiseLevel level: Integer
write debug

status: EdenStatus messages

SetPathName
name: String object name,

status: EdenStatus copy: Integer copy #

Table A.3: Abstract Type ERMSDebug

Table A.3 summarizes the in vocations that define the abstract type ERMSDebug. The list of

main failure status codes follows:

• The return status codes are:

- Success - operation succeeded.

- KernelError - operation failed; KerneJ.Checkpoin t failed for some reason and no change

was made to the passive representation.

A.1.4 TwoPhaseLock

Table AA summarizes the invocations that define the abstract type TwoPhaseLock. The list

of main failure status codes follows:

• Some common return status codes are:

106

invocation input action output

name: String
grant lock conflict: UruqueId LockName exclusive: Boolean

owner: UniqueId to owner status: EdenStatus

UnlockName
name: String delete lock newcopy: Capability

owner: UniqueId from table status: EdenStatus

Table A.4: Abstract Type TwoPhaseLock

- Success - operation succeeded .

• LockName

- NameLockedRead - exclusive lock denied; name already shared locked.

- ExclusivelyLocked - share lock denied; name exclusively locked.

- NameAlreadyLocked - exclusive lock denied; name already locked.

• U nlockN arne

- NameNotLocked - unlock failed; name is not locked.

- NotYourLock - unlock failed; not owner of lock.

A.loS TransactionBracket

invocation input action output

parent: Capability register, tid: Capability
Begin Ihmsaction longterm: Boolean initialize, status:

expire: Timestamp return tid EdenStatus

A bort Transaction
release locks, status:

-
clean up EdenStatus

update parent
status:

CommitTmnsaction - mapping,
release locks

EdenStatus

Table A.5: Abstract Type TransactionBracket

Table A.5 summarizes the invocations that define the abstract type TransactionBracket. The
list of main failure status codes follows:

107

• Some common return status codes are:

- Success - operation succeeded.

- KernelError - operation failed; Kernel.Checkpoint failed for some reason and no change
was made to the passive representation.

- xWrongState - operation x failed; attempted operation impossible at this state; for
example, BeginTransaction on a transaction already begun.

• AbortTransaction

LockMergeFailed - transaction aborted anyway; some locks were not released from the
parent, (if top-level, then System Lock Manager).

• CommitTransaction

LockMergeFailed - transaction aborted; some locks were not released from the parent
(if top-level, then System Lock 1·fanager).

- DirMergeFailed - transaction aborted; some versions were not installed in the parent
(if top-level, then R2D2).

- TimedOut - transaction aborted; time-out period expired.

A.1.6 ResourceManagement

invocation input action output

OpenResource
name: String

section 6.3
resource: Capability

access: Pattern status: EdenStatus

name: String save resource
CloseResourtt resource: Capability release locks status: EdenStatus

do: action

Table A.6: Abstract Type ResourceManagement

Table A.6 summarizes the invocations that define the abstract type ResourceManagement.
The list of main failure status codes follows:

• Some common return status codes are:

- Success - operation succeeded.

illegalString - operation refused; string name does not conform to the convention.

KernelError - operation failed; Kernel.Checkpoint failed for some reason and no change

was made to the passive representation.

108

- xWrongState - operation x failed; attempted operation impossible at this state; for
example, Open Resource on a transaction already aborted.

• Open Resource

- NameLockedRead, ExclusivelyLocked. NameAlreadyLocked - open failed; unable to
obtain the right lock.

- NoSuchName, NoSuchPath - open failed; unable to find the resource name (up to
R2D2).

- AllCopiesDown - open failed; unable to find an operational copy.

• CloseResource

- NotYourLock, NameNotLocked - close failed; resource name not open by you.

- NoSuchName - close failed; unable to find the resource name in local Dir!\lap.

A.2 Concrete EdenTypes

A concrete Edentype is an EPL program. Section A.2.S contains a simple and complete example.
of an Edentype. When an Eden object is activated. the kernel runs the EPL program. Each­
Edentype has two main parts. First, invocation procedures must be written to service the invo­
cations supported by the Edentype. Second, the rest of the program contains internal procedures
and processes that execute within the program. The invocations supported by an Edentype are
sometimes grouped into abstract types (section A.l). A cross reference of Edentypes with their
abstract types is summarized in table A.7. The implementation of each Edentype is described in
subsequent sections.

R2D2Root R2D2TM ETM RepDir

ERMSBasic Yes Yes Yes Yes

RepDirectory Yes Yes Yes Yes

TwoPhaseLock Yes Yes Yes No

TransactionBracket No No Yes No

ResourceM anagement No No Yes No

Table A.7: Abstract Types Supported by Concrete Types

109

A.2.1 R2D2Root

• Function: R2D2 root object; receives and forwards R2D2 requests.

• Size: 1964 lines of EPL.

• Supports 20 invocations:

- Abstract Type ERMSBasic: CheckpointAt, CheckpointSelf, CopySelf.

- Abstract Type ERMSDebug: SetCkptLimit, SetNoiseLevel, SetPathName.

- Abstract Type Rep Directory: AddSet, DeleteSet, ReplaceSet, LookupSet,
ListNames.

- Four invocations for upward compatibility with earlier directories:
Lookup, LookupEntry, NextEntry, List.

- Three invocation for regeneration: SwitchRequest, SwitchResult,
Switch Cancel.

- Two invocations for top-level directory management: LookupTop,
UpdateTop.

• The utility modules used in R2D2Root are:

- CheckName (section A.3.1).

- Ckpt (section A.3.2).

- LockMap (section A.3.5).

- LocationMgr (section A.3.4).

- RoottmMgr (section A.3.6).

- SWn.fap (section A.3.7).

A.2.2 R2D2TM

• Function: R2D2 transaction manager in Access Structure.

• Size: 2712 lines of EPL.

• Supports 16 invocations:

- Abstract Type ERMSBasic: CheckpointAt, CheckpointSelf, CopySelf.

- Abstract Type ERMSDebug: SetCkptLimit, SetNoiseLevel, SetPathName.

- Abstract Type Rep Directory: AddSet, DeleteSet, ReplaceSet, LookupSet,
ListNames.

- Four invocations for upward compatibility with earlier directories: Lookup, LookupEn­

try, NextEntry, List.

- One invocation for caching the top-level directory: U pdateTop.

110

• The utility modules used in R2D2TM are:

- Check Name (section A.3.1).

- Ckpt (section A.3.2).

- LocationMgr (section A.3.4).

A.2.3 ETM

• Function: ERMS transaction manager.

• Size: 2574 lines of EPL.

• Supports: 27 invocations:

- Abstract Type ERMSBasic: CheckpointAt, CheckpointSelf, CopySelf.

- Abstract Type ERMSDebug: SetCkptLimit, SetNoiseLevel, SetPathName.

- Abstract Type TwoPhaseLock: LockName, UnlockName.

- Abstract Type TransactionBracket: BeginTransaction, AbortTransaction,
CommitTransaction.

- Abstract Type ResourceManagement: Open Resource, CloseResource.

- Abstract Type RepDirectory: AddSet, DeleteSet, ReplaceSet, LookupSet,

ListNames.

- Four invocations for upward compatibility with earlier directories: Lookup, LookupEn­
try, NextEntry, List.

- Five invocations for internal management: RegisterTM, ReleaseTM,
QueryTM, ListLock, ListChildren.

• The utility modules used in ETM are:

- CheckName (section A.3.1).

- Ckpt (section A.3.2).

- DirMap (section A.3.3).

- LockMap (section A.3.5).

- LocationMgr (section A.3.4).

A.2.4 RepDir

• Function: Mapping from String names into corresponding sets of capabilities; concretely,
elements of R2D2 Core Structure.

• Size: 1654 lines of EPL.

• Supports 15 invocations:

111

- Abstract Type ERMSBasic: CheckpointAt, CheckpointSelf, Copy Self.

- Abstract Type ERMSDebug: SetCkptLimit, SetNoiseLevel, SetPathName.

- Abstract Type RepDirectory: AddSet, DeleteSet, ReplaceSet, LookupSet,
ListNarnes.

- Four invocations for upward compatibility with earlier directories: Lookup, LookupEn­
try, NextEntry, List.

• The utility modules used in RepDir are:

- CheckN arne (section A.3.1).

- Ckpt (section A.3.2).

- Dir}'lap (section A.3.3).

- TIDMap (section A.3.9), including tdmap (section A.3.8).

A.2.5 Edenlnteger

• Function: Example Eden object implementing integer.

• Size: 64 lines of EPL.

• Supports 2 invocations:

- One to read the integer value: Read.

- One to alter the integer value: Add.

• No imported utility modules.

The Edentype Edenlnteger does not use utility modules. Its purpose is to serve as a simple

example of an Eden object. The entirety of Edenlnteger EPL code is included in figure A.I. The
abstraction which Edenlnteger implements is that of a signed integer number. The invocations it

supports are Read, which returns the current value of the integer, and Add, which adds an integer

to the current value.
From the Eden object programmer point of view, one major accomplishment of EPL is lan­

guage support for invocations. Eden invocations have the syntax and semantics of Remote Pro­

cedure Calls, but Eden kernel primitives are message-oriented. EPL generates a considerable

amount of code to translate between two styles of programming. For brevity, we do not list the

code generated, only the word count to show the proportion of generated to programmer written
code. In figure A.2, which is a direct output from the Unix "wc" program, the file Edenlnt.epl

is the source program listed in figure A.I. All the other files are Concurrent Euclid modules
generated by the EPL translator. Excluding coincident files, the total lines of code generated is

280, which is significant compared to the 64 lines of source code. The proportion decreases as the

size of programs increases. Table A.3 shows that all Edentypes listed in this appendix have more
lines of code generated by EPL than those written by the programmer.

112

VAR EdenInteger : MODULE
EXPORTS (Add, Read)
INCLUDE ''l.EjectHead'
VAR amount: Integer := 0

INVOCATION PROCEDURE Read(callrights: EdenRights,
VAR intval: Integer, VAR edstat: EdenStatus) =
IMPORTS (amount)
BEGIN intval := amount
END Read

INVOCATION PROCEDURE Add(callrights: EdenRights,
addval: Integer, VAR edstat: EdenStatus) =
IMPORTS(VAR amount)
BEGIN amount := amount + addval
END Add

PROCESS TakeInvocations
Imports(VAR Dispatcher, Kernel, CallInvocationProcedure)
BEGIN VAR Invoc : Kernel.InvkHandle

VAR WriteOps : Dispatcher.OperationSet
Dispatcher.MakeOperationSet("Read Add", WriteOps)
LOOP Dispatcher. ReceiveOperation(Invoc, WriteOps)

CallInvocat1onProcedure(Invoc) END LOOP
END TakeInvocations
END MODULE { EdenInteger }

Figure A.l: The Edenlnteger Edentype

number of Lines Words Characters Filename

144 348 5080 Cip.e
15 45 467 Defs .e

121 291 4453 Dets.ppe
0 2 101 Interface.code
9 113 569 Interface.deci

15 45 467 Interface.text
64 145 1830 EdenInt.epl
64 170 1555 EdenInt.ppe

Figure A.2: Summary of EPL Generated Code

113

Edentype Written Generated Proportion

EdenInteger 64 280 4.38

RepDir 1654 2860 1.73

R2D2Root 1964 3343 1.70

ETM 2574 3523 1.37

R2D2TM 2712 3068 1.13

Figure A.3: Comparison, Generated to Written Code (lines)

A.2.6 Edentype Bankomat

As part of the example application described in section 6.6, we include the program fragments

of procedures BasicTransfer (figure A.4), BasicDecrement (figure A.5), and SmartTransfer (fig­

ure A.6).

114

(1)

(2)

(3)

(4)

(5)

(6)

(7)
(8)

{A client procedure doing the simple-minded transfer. }
PROCEDURE BasicTransfer(Amount, FromAccount, ToAccount,

VAR status) = BEGIN
{Amount = amount to be transferred, FromAccount ~ ToAccount}

SysLockMgr.Allocate(newTM)
{Allocate a new ETM from System Lock Manager -SD.l- (newTM). }

newTM .BeginTransaction(ParentTM, TimeOutPeriod, ShortDuration)
{ParentTM is parent TM's capability, null capability for top-level. }
{TimeOutPeriod: transaction's max life span, after that TM aborts.}
{ShortDuration tells the TM to bypass checkpoints at each state change. }

COBEGIN {Processes are not subtransactions: no recovery attempted. }
{EPL does not support the cobegin syntax, used here for clarity, }
{but it provides light-weight, concurrent processes. }

BEGIN {First parallel process: increment ToAccount. }
newTM.OpenResource(ToAccount, WriteNew, AceTo)

fMake a new copy of the most recent version of ToAccount; }
{lock the resource name ToAccount in System Lock Manager; }
{and return the capability of the copy in AceTo.}

Ace To.Increment(Amount, status)
{The client manipulates the resource directly, once it is opened.}

newTAf.CloseResource(ToAccount, AdoptNew, AceTo)
{End of access, install the new version.}

END {Of first process.}
BEGIN {Second parallel process: decrement FromAccount.}

newTM.OpenResource(FromAccount, WriteNew, AccFrom)
{Again: get a new copy in AccFrom and lock the resource.}

AccFrom .Decrement(Amount. status)
newTM.CloseResource(FromAccount, AdoptNew, AccFrom)

{Same as above: install the new version.}
END {Of second process.}
COEND
IF both processes succeeded THEN

(9) newTM.CommitTransaction(status)
{Pass the new versions to R2D2; release locks from SLM.}

ELSE {Both checking and savings have insufficient funds.}
(10) newTM.AbortTransaction(status)

{Do not change R2D2; just release locks from SLM.}
END IF
END BasicTransfer

Figure A.4: The BasicTransfer Procedure

115

{A client procedure doing the simple-minded decrement. }
PROCEDURE BasicDecrement(Amount, FromAccount,

VAR status) = BEGIN
{Amount = amount of money to be decremented from FromAccount }

SysLockMgr.Allocate(newTM)
{Allocate a new ET~1 from System Lock Manager -SLM- (newTAf). }

newTM .BeginTransaction(ParentTM, TimeOutPeriod, ShortDuration)
{ParentTM is the capability of parent ETM. }
{TimeOutPeriod: transaction's max life span, after that TM aborts. }
{ShortDuration tells the TM to bypass checkpoints at each state change. }
newT}.{.OpenResource(FromAccount, WriteNew, AccountFrom)

{Get a new copy in AccountFrom and the resource lock.}
AccountFrom.Decrement(Amount, status)
newTM.CloseResource(FromAccount, AdoptNew, AccountFrom)

{Install the new version.}
IF success THEN

newT:\! .CommitTransaction(status)
{Pass the new versions to ParentTMj release locks.}

ELSE {Insufficient funds.}
new TM .AbortTransaction(status)

{Do not change ParentTM; just release locks.}
END IF
END BasicDecrement

Figure A.5: The BasicDecrement Procedure

116

{A client procedure performing operations within a transaction. }
PROCEDURE SmartTransfer(AccountName, Amount, VAR status) = BEGIN

{Amount = amount of money to be transferred from checking to visa. }
{For concreteness, AccountName is shown as "alice" in the following code. }

(1) KerneI.Create(ETM, newTM)
{This kernel call creates an ETM object, returning its capability in newTM. }

(2) newTM.BeginTransaction(SessionTM, TimeOutPeriod, ShortDuration)
{SessionTMis the capability of parent TM; a null capability for top-level.}
{TimeOutPeriod is the transaction's max life span, after which TM aborts.}
{ShortDuration tells the TM to bypass checkpoints at each state change.}

COBEGIN {Each process could be a subtransaction, but not in this case. }
{EPL does not support the cobegin syntax, (used here for clarity), }
{but it provides light-weight, concurrent processes. }

BEGIN {First parallel process: increment "alice/Visa". }
(3) newTM.OpenResource("alice/Visa", WriteNew, AccountTo)

{Make a new copy of the most recent version of "alice/Visa" in R2D2; }
{lock the resource name "alice/Visa" in System Lock Manager; }
{and return the capability of the copy in AccountTo.}

(4) Account To.Increment(Amount, status)
{The client manipulates the resource directly, once it is opened.}

(5) newTM.CloseResource("alice/Visa", AdoptNew, AccountTo)
{End of access, install the new version.}

END {First process.}
BEGIN {Second parallel process: decrement the checking.}

(6) BasicDecrement(AccountFrom, status)
IF status NOT = "Success"
THEN {"alice/checking" does not have sufficient funds.}

(7) BasicTransfer(Amount, "alice/savings", newTM, status);
{BasicTransfer is a nested transaction, }
{moving Amount from "alice/savings"into "alice/checking".}

IF status = "Success"
THEN BasicDecrement(AccountFrom, status) END IF

END IF
END {Second process.}
COEND
IF both processes succeeded THEN

(8) newTM.CommitTransaction(status)
{Pass the new versions to R2D2; release locks in System LockMgr.}

ELSE {Both checking and savings have insufficient funds.}
(9) newTM.AbortTransaction(status)

{Do not change R2D2; just release locks from System Lock Manager.}
END IF
END SmartTransfer

Figure A.6: The SmartTransfer Procedure

117

A.3 Utility Modules

All the utility modules were written in Concurrent Euclid, and contain a fair amount of comments,
debugging code, and blank lines. Table A.8 contains a cross reference of Edentypes with utility
modules they use.

R2D2Root R2D2TM ETM RepDir

Ched:Name Yes Yes Yes Yes

'Ckpt Yes Yes Yes Yes

DirMap No No Yes Yes

LockMap Yes No Yes No

TID Map No No No Yes

tdmap No No Yes No

Table A.8: Concrete Edentypes and Utility Modules

A.3.1 CheckName

• Function: validity check and interpretation of string names.

• Use: check string names in RepDir and other places.

• Size: 219 lines of CE code.

• No data structures.

• 7 exported operations.

- Three name checking operations: Pathlllega!, lllega!, UIDLess.

- Three name interpretation operations: Extractor, RLExtractor,
N estingN urn ber.

- One housekeeping function: UID~1akeNull.

• 1 imported module.

- Ckpt (section A.3.2): debug and identification module.

118

A.3.2 Ckpt

• Function: Edentype debugging and identification module.

• Use: help debug every Edentype and utility module.

• Size: 559 lines of CE code.

• Ivlain data structures: several "global" variables such as trace level and object name.

• 23 exported operations.

- Ten debug operations: ErrorLevel, SetErrorLevel, CheckpointLimit,

SetCheckLimit, CheckLimit, NeedCheckpoint, NeedCheck, SetNeedCheck,

PathName, SetPathName.

- Five printing operations: PrintCapa, PrintTID3, PrintXString, PrintDur,

PrintEFSError .

- Five conversion and macro operations: XStr2Char, Capas1IakeNull, NullTID. ~IakeV~I,

FreeNStr, InitNStr.

- Two housekeeping functions: PRtoAF. AFtoPR.

• No imported modules.

A.3.3 DirMap

• Function: mapping of string names into sets of capabilities.

• Use: implements the mapping in RepDir (R2D2) and ET~l (ER~IS).

• Size: 544 lines of CE code.

• Main data structures: a linked list, each element with a string name and a set of capabilities.

• 14 exported operations.

- Four name manipulation operations: NameFind, Namelnsert, NameDelete,

N ameReplace.

- Six map query operations: ~IapList. MapListNames, MapNext, MapLast,

MapBiggest, MapTranslate.

- Four housekeeping functions: Maplnitialize, MapPrintState, PRtoAF,

AFtoPR.

• 1 imported module.

- Ckpt (section A.3.2): debug and identification module.

119

A.3.4 LocationMgr

• Function: module responsible for location information, specification, and activity: concretely

it provides a higher location abstraction than the kernel location-dependent primitives.

• Use: all programs concerned with location, R2D2Root, R2D2TM, ETM.

• Size: 487 lines of CE code.

• :Main data structures: list of active Eden hosts and PODs.

• 12 exported operations.

- Ten host and POD selection operations: RandomHost, RandomPOD,

AcceptableHost, AcceptablePOD, PublicHost, PublicPOD, Difi1{ost,
DiffPODSet, DiffPOD, ExtractNodes.

- Two creation/activation operations: CreateRandom, RandomActivate.

• 1 imported module.

- Ckpt (section A.3.2): debug and identification module.

A.3.5 LockMap

• Function: mapping of string names (resources) into locks (type of lock and lock holders).

• Use: in the implementation of the abstract type LockTable.

• Size: 1017 lines of CE code.

• ~fain data structures: a two-dimensional linked list. Each element of the outer list contains

a TID, type of lock, and a list of lock holders.

• 14 exported operations.

- Three name entry manipulation operations: NameFind, Namelnsert,

N ameDelete.

- Three lock holder manipulation operations: OwnerFind, Ownerlnsert,

OwnerDelete.

- Four map query operations: ~fapList. MapNext, MapTranslate,

OvmerTranslate.

- Four housekeeping functions: ~laplnitialize, MapPrintState, PRtoAF,

AFtoPR.

• 1 imported module.

- Ckpt (section A.3.2): debug and identification module.

120

A.3.6 RoottmMgr

• Function: module responsible for R2D2TM creation, allocation, activation, and reuse: also
remembers the top-level RepDirs.

• Use: in R2D2Root to manage the instances of R2D2TM and top-level RepDirs ('/,).

• Size: 488 lines of CE code.

• 1fain data structures: list of available R2D2T~ls, each element containing a capability, and
whether it has been allocated.

• 8 exported operations.

- Two top-level RepDir management operations: LookupTop, ReplaceTop.

- Three R2D2TM management operations: AllocateTM, IPAllocateT:\I,
IPDeallocateTM.

- Three housekeeping operations: TMlnitialize, TMAFtoPR, TMPRtoAF.

• 1 imported module.

- Ckpt (section A.3.2): debug and identification module.

A.3.1 SWIMap

• Function: mapping of string names (RepDir names) into locks (type of lock and lock hold­
ers).

• Use: R2D2Root has a SWIl\lap to synchronize regeneration operations within it, in parallel
to normal updates.

• Size: 1044 lines of CE code.

• ~lain data structures: identical to LocHIap.

• 14 exported operations, identical to Lock~lap above. (Concurrent Euclid does not support
"generic" modules, so if two instances of a module are needed, two must be declared.)

• 1 imported module.

- Ckpt (section A.3.2): debug and identification module.

A.3.B tdmap

• Function: mapping of string names (invocation UIDs) into invocation status.

• Use: borrowed from DirMap and used in TID~lap.

• Size: 536 lines of CE code.

• Main data structures: identical to DirMap.

121

,...
I

• 7 exported operations.

- Three name entry manipulation operations: NameFind, NameInsert,
N ameDelete.

- One map query operation: MapTranslate.

- Three housekeeping functions: Maplnitialize, PRtoAF, AFtoPR.

• 1 imported module.

- Ckpt (section A.3.2): debug and identification module.

A.3.9 TID Map

• Function: mapping of string names (invocation UIDs) into invocation status.

• 'l'se: provides idempotency of operations in RepDir.

• Size: 134 lines of CE code.

• 1Iain data structures: tdmap.

• 5 exported operations.

- Two name entry manipulation operations: NameFind, NameInsert.

- Three housekeeping functions: 1IapInitialize, PRtoAF, AFtoPR.

• 2 imported modules.

A.4

tdmap (section A.3.8: the real mapping from name to invocation results.

- Ckpt (section A.3.2): debug and identification module.

Measurement Samples

In this section, we include some sample measurement data we obtained from R2D2. Table A.9
contains sample data from measuring 100 LookupSet invocations as described in section 5.3.3.

Table A.11 contains sample data from measuring 15 pairs of AddSet invocations, each followed by
a DeleteSet invocation. The net result is the same as 30 ReplaceSet invocations. In comparison,
sample data from measurements of the non-replicated directory are in tables A.I0 and A.12. In
these measurements, the string names used always have three levels, such as "/users/bob/test".

122

100 LookupSet invocations

run number elapsed time run number elapsed time

1 41.44 sec 6 41.58 sec

2 41.75 sec 7 41.96 sec

3 42.03 sec 8 42.64 sec

4 41.97 sec 9 41.59 sec

5 41.54 sec 10 41.43 sec

Table A.9: Measurement Sample Data - R2D2.LookupSet

100 non-replicated Lookup invocations

run number elapsed time run number elapsed time

1 23.38 sec 6 23.08 sec

2 23.13 sec 7 23.08 sec

3 23.10 sec 8 23.11 sec

4 22.98 sec 9 23.09 sec

5 23.11 sec 10 23.10 sec

Table A.10: 11easurement Sample Data - Non-Replicated Lookup

123

AddSet DeleteSet

run number elapsed time elapsed time

1 2.03 sec 2.22 sec

2 2.11 sec 2.10 sec

3 2.08 sec 2.32 sec

4 2.14 sec 2.30 sec

5 2.20 sec 2.13 sec

6 2.28 sec 2.24 sec

7 2.20 sec 2.13 sec

8 2.15 sec 2.20 sec

9 2.09 sec 2.18 sec

10 2.35 sec 2.04 sec

11 2.20 sec 2.32 sec

12 2.10 sec 2.18 sec

13 2.15 sec 2.17 sec

14 2.26 sec 2.28 sec

15 2.03 sec 2.18 sec

Table A.ll: Measurement Sample Data - R2D2.Update

124

Add Delete

run number elapsed time elapsed time

1 1.36 sec 1.47 sec

2 1.43 sec 1.43 sec

3 1.40 sec 1.42 sec

4 1.32 sec 1.36 sec

5 1.40 sec 1.44 sec

6 1.38 sec 1.52 sec

7 1.41 sec 1.42 sec

8 1.35 sec 1.40 sec

9 1.44 sec 1.43 sec

10 1.41 sec 1.42 sec

11 1.41 sec 1.33 sec

12 1.38 sec 1.50 sec

13 1.34 sec 1.41 sec

14 1.38 sec 1.47 sec

15 1.40 sec 1.38 sec

Table A.12: Measurement Sample Data - Non-Replicated Update

125

r
I

Appendix B

System Programming with Objects

During the implementation of R2D2 and ER11S. we have gained some experience writing system
software, such as nested transactions and transparent replication support. Since system softv.:are
is not usually written using object-oriented systems and languages, our experience in Eden may

be useful to other object programmers using experimental systems.

B.l Object Composition

The primary benefit of programming in Eden is the ease of object composition. Composition:
is possible at two levels. Statically, modules can be linked together; dynamically, objects can

be invoked. Since invocations have the same syntax and semantics of procedure calls, the main
difference between the two forms of composition is in cost. Linking modules together produces
larger objects. while invocations carry high run-time overhead.

We have mentioned some Eden invocation timing figures in table 5.1. To provide a rough
estimate of Eden object size, the Edenlnteger object described in appendix section A.2.5 occupies

about lOOK bytes of virtual memory when running. Obviously, the program written by the EPL

programmer is small. The minimum size of an Eden object is occupied by parts of Eden kernel.
utility routines, and stack/CE kernel.

The minimum size of Eden objects and the cost of invocations clearly reward a centralized style
of programming, in which all objects are lumped into one to minimize both size and invocation

overhead. Since the purpose of Eden is to experiment with distributed applications. we have had
consciously to break up objects and distribute them. We believe that what we lost in performance
was compensated by the clean composition leading to R2D2 and ERMS. The main tool of dynamic

composition, abstract types, has become a central concept of the Emerald language [15J.

B.2 Separating Mechanism From Implementation

Despite good support for composition of objects, Eden programmers have a relatively small num­
ber of building blocks to work with:

1. All resources are encapsulated in objects.

2. Objects communicate only via invocations.

126

3. The only way to store data on stable storage is checkpoint.

Since there is one and only one way to communicate with other objects or to write on disk, invo­
cations and checkpoints have to be used, no matter how much they cost. Since these operations
are kernel primitives, Eden object programmers cannot use a simpler operation even though the
full generality of these primitives is not being used.

Unfortunately, Eden has only one general, expensive implementation for those general mech­
anisms. A high price is exacted even from simple uses. \Ve maintain that does not have to be the
case. From the point of view of object, an abstract type allows many concrete implementations,
each tailored to a specific need. This is the position taken by the Emerald project [45,47], where
specialized implementations provide efficiency to a general mechanism. Current results [14.15]
seem encouraging.

B.3 Design for Testability

The major problem introduced by the encapsulation in object-oriented systems is debugging.
When we are debugging an application involving several objects and the kernel, encapsulation

may hide useful infonnation. A typical problem in Eden is an invocation that does not return.

All the participant objects and sometimes the kernel are suspects. To find the bug, we need some
ways to see through the encapsulation. •

Tracing is one of the oldest debugging methods. In strategic parts of a program, print state­
ments allow the programmer to check important state changes. \Vhen debugging large programs.
however, the amount of information printed may become overwhelming. Multi-level tracing allows
selection at run-time of different levels of detail.

Normally, tracing statements are considered temporary additions to the program, taken out

when the program is released. In the "normal" software development cycle, the tracing statements
are associated only with the debugging phase. In an experimental environment like Eden. where
the system software (including the kernel, the compiler, and library routines) undergo frequent
changes, tracing information proved to be invaluable and a necessary part of many modules.

During the debugging phase, traces contribute in the normal way. After a program has been

debugged, its traces help to debug other parts of the system.
We will illustrate this point with an example. R2D2 has been operational since February 1985.

In July 1985, some measurements were needed for a paper on Eden replication experience [65].

Occasionally, some objects being measured failed to return the invocations they were supposed

to be servicing. This problem seemed to happen randomly, affecting different objects each time.
Object-level tracing from all objects involved showed that they execute normally, stopping

only at an arbitrary invocation. Apparently the invoker sends the invocation and waits, while
the invokee does not receive the message. The problem, therefore, seems to be with the kernel
delivery of invocation messages. Kernel tracing revealed a message exchange loop involving the
invoker and invokee's hosts and the invokee's POD. Additional tracing commands were put in the
kernel to show that some kernel data structures have been corrupted after the invoked object has
crashed and reactivated in another host. Corrupted data structures caused the loop.

In the above example, all levels of object tracing were used to determine that the objects did

127

not cause the problem, and all levels of kernel tracing were used, plus the additional ones. to
identify it. The kernel bug was introduced in the then-latest kernel update, as part of a perfor­
mance optimization effort, which eliminated some "redundant" data structures. Summarizing. in
an experimental system like Eden, where higher level (object) programmers are expected to help
debug lower level (kernel) software, we found it useful to maintain debugging tools at all levels.
Tracing was simply the particular tool used in Eden.

B.4 Composed Messages

One fundamental difficulty in the debugging of composed objects is to find where the problem is.
Information hiding, which facilitates interface, makes it difficult to locate the source of problems.
In particular, a resource composed of many objects, such as R2D2, may span many nodes. To
find and solve a specific problem requires specific knowledge of details of the system.

For example. if an AddSet request to R2D2 returns "KerneIError", we may want to know
which objects had difficulty checkpointing. Since a chain of invocations is involved in the request,

the Eden standard return status does not provide the detailed information to locate the problem.
Since the problem above is aggravated by the number of objects in the system, a solution

that limits the number of participant objects has limited utility. We have adopted a general
mechanism in the spirit of object composition. The idea was borrowed from recent works in.

Artificial Intelligence on expert systems.
Some expert systems have an explanation facility, which gives the rationale for reaching certain

conclusions. The explanation follows the "line of reasoning" and may have many levels. The
implementation of the explanation mechanism varies from system to system. but the idea is to

keep track of the places the program has visited, and why.

With each invocation in R2D2, a stack of strings is returned. Each object pushes its message to

the stack, and the invoker analyzes the messages in the stack to determine the problem. Usually.
the stack remains empty. IT something does go wrong, the object simply pushes its identification 1

and the explanation -the event. its causes and effect- into the stack. All intermediate objects

perceive the failure and push their own identification into the stack. Finally, the client pops the

stack to retrace the events in search of the problem.

1 Preferably a system-unique, human-readable identification, although in Eden, there is no system support for
that.

128

Appendix C

Glossary

C.1 Eden Terms

.• active form: Unix process executing an Edentype program, which can be invoked using its
capability. Section 5.3.1 on page 41.

• CE: see Concurrent Euclid.

• checkpoint: Eden kernel primitive to write the object state to the passive representation.
This operation is atomic, always preserving a consistent version of the passive representation:
Section 5.3.1 on page 41.

• Concurrent Euclid: the concurrent version of Euclid, a Pascal derivative. Briefly introduced
in section 5.1.2; for more details the reader must consult the CE book [43J.

• Eden host: Unix process running the part of Eden kernel responsible for communications
between kernels and objects. Section 5.3.1 on page 41.

• Eden objects: In Eden. all resources are encapsulated in objects written by object program­
mers. Section 1.3 on page 2 and Section 5.1.2 on page 35.

• Eden Programming Language: language used to write Edentype code. Section 5.1.2 on
page 35.

• Eden system: An object-oriented distributed operating system. Section 1.3 on page 2,

section 5.1.2 on page 35, and section 5.3.1 on page 41.

• Edentype: program written by Eden object programmer. Eden objects run the Edentype
program of which they are instances. Section 5.1.2 on page 35.

• EPL: see Eden Programming Language.

• host: see Eden host.

• passive representation: permanent state of an object stored on stable storage.

• POD: Unix process running the part of Eden kernel that checkpoints an object's passive

representation to disk. Section 5.3.1 on page 41.

129

C.2 R2D2 and ERMS Terms

• Access Structure: R2D2Root and R2D2TMs to access Core Structure. Section 5.1.4.

• Bankomat: Concrete Edentype, EdenBank application. Appendix section A.2.6.

• Check Name: Utility module, checking string name conventions. Appendix section A.3.1.

• Ckpt: Utility module. Appendix section A.3.2.

• Core Structure: tree of RepDir objects containing the actual mapping. Section 5.1.3.

• Didvlap: Utility module, mapping string name into a set of capabilities. Appendix sec­
tion A.3.3.

• Edenlnteger: Concrete Edentype, example of a simple Edentype. Appendix section A.2.5.

• ER1ISBasic: Abstract type; it defines the basic operations in ER~IS. Appendix section A.1.2.

• ERMSDebug: Abstract type; it defines the debugging invocations in ER~IS. Appendix
section A.1.3.

• ETM: Concrete Edentype, ERMS Transaction Manager. Sections 6.3 and 6.4.

• LocationMgr: Utility module, location-related code. Appendix section A.3.4}.

• LocH-lap: Utility module, mapping string names into lock holders. Appendix section A.3.5.

• LockTable: EPL module implementing TwoPhaseLock using LocHlap. Appendix sec­

tion 6.2.1.

• R2D2Root: Concrete Edentype, Root of R2D2, receiver of all R2D2 requests. Section 5.2.1.

• R2D2TM: Concrete Edentype, R2D2 transaction manager; it keeps the replica RepDir ob­
jects consisten t. Section 5.2.2.

• RepDir: Concrete Edentype, R2D2 core structure objects, which contain the mapping from
string names into capability sets. Section 5.2.3.

• RepDirectory: Abstract type; it defines the operations on mapping. Appendix section A.1.1

• RepDirTable: EPL module implementing RepDirec.tory using DirMap.
Section 6.2.2.

• ResourceManagement: Abstract type: it defines the resource access delimiters. Appendix

section A.1.6.

• ResourceManager: EPL module implementing Resource11anagement in ETM. Section 6.4.4.

• SLM: see System Lock 1\lanager.

• System Lock Manager: An Eden object that implements a lock table. Section 6.2.1.

130

• TID: system-unique transaction identification.

• TransactionBracket: Abstract type; it defines the transaction delimiters. Appendix sec­
tion A.1.S.

• TreeManager: EPL module implementing TransactionBracket in ETM.
Section 6.4.4.

• TwoPhaseLock: Abstract type; it defines LockNarne and UnlockNarne. Appendix sec­
tion A.1.4.

131

