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o. Abstract 

The complltatioual complexity of ("oBst.ructing the imbeddings of a given graph int.o surfaccs 

of different genus is not well-understood. In t.his paper, topological method:! and a reduction to 

linear matroid parity are u~cd to develop a polynoIllial-time algorithm to find a ma.ximum-genus 

cellular imbedding. This seems to be the fin;t imbedding algorithm fot' which the mUlling time is 

not expollential in the genus of the imbctlding surface. 

1. Introduction 

Lower-dhnensional topology has long been approached ·combillatorially. For most questions 

about imbeddings, there exist exhau::;tive algorithms. Since the Humher of combillatorial equiva­

lence classes of graph imbed dings is a super-exponential.function of the number of vertices, such 

exhaustive algorithm::! are computationally infeasible. 

There have been several a.lgorithmic achievements. Hopcroft and Tarjan [lIT] obtained a 

linear-time algorithm to test planarity of graphs, while Gross and Rosen [GR] showed how to 

test planarity of 2-complexes. Filotti [F] found a polynomial-time algorithm to determine if a 

cubic graph can be imbedded in the torus, and Filotti, Miller, and Reif [FMR] gen~ralized this 

work with an algorithm to imbed a graph in a surface of minimum genus G in time O(vO(G»). 

All these algorithms are balled on extending partially imbedded graphs, and they all produce an 
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ilUb('tldill~ whC'llI'vc'r iL l'xi:!t.:!. IlI·if [H.7D] :;\towl'd t.hat t.lWfl' an' lilllit:! 1.0 t.hi:; ;\pproach hy proving 

that till! problem of deciliing whetlll'f i\ parLial illllH·ddinJ; ill :;Ollll! :i1Irfa(~e C;UI lw extl'lIdl!lI lo a 

fllll illll)('dtling in that aurfn<'c i:t NP-cOIllpletc, 

Our prC'!lC'nt cou(:<'rn is t.he cit·it'rlllillat.ioll of 1.11(: "lIIaxiIIIIIIll ~C'uu:!" of a ~r"ph. ThC'r<: ill no 

limit t.o t.he llIuuhc'c of h;ultllC':t OIl<' lI1ight acid 10 a :;I\rran' ill whidl a graph i:; aln·acly illlbl~lued. 

For t.lw n>llrept of maximulII gC'lIl1S to hI! IIII'auiugflll, ouc' 1IIl1st. stiplllalt! t.hat. every regiou (If the 

iwl)('(lclillg he celllllar -- that. is, tht· iutC'rior (If t.11I! rC'giou IIJIl:;t. hc' homeolllorphic to rul 0}lC'U disk. 

Sud. a restriction ill ill uo way "rlilkial. It correspouus to r(!:ttridillg llancll<,:! to be "(,ssc·uti'll". 

Maximmn-gc'lIu:t imbcddiu~:;, ,,11<1 t.he cc·lat.ell lIotion of IIpppr-imhC'c1clahle graphs, have re­

ceived considerable attelltion ill l'C'('t·Ut. years. A graph is callt·d uP1JCr-imbctldable if it h~ a 

maximum-genus imhl'(lding wit.h OIW or t.wo fac(,lI, Nordhaml, StC'wart, and Whitt! [NSW], Ringeisen 

[R70,R72], and Zaks [ZI showl'd that. various cla:;8~ of graph~ were lIppcr-illlbeddable. Nebesky 

[N] cwd Jungerman (JI d~crih<.'tl eomhiuatorial invariants of IIpper-imbed(lable graphs, Xllong 

[X79b] showed that all graph~ with two disjoint spanning trce~, snch as 4-edge connected graphs, 

are upper-imbeddable. 

We consider the computatiollal complexity of obtaining a maximum-geIlus imbedding. Our 

~tarting point is the combinatorial charartcrization by Xuong [X79a] of the maximum gellus of 

a graph. This involves the consideration of all spmming trees of a graph, of which there can be 

exponentially many. We improve the obvious exponential-time algorithm to a polynomial-time 

algorithm. 

2. Preliminaries about Topological Graph Theory 

In topological graph theory, a "graph" is defined to be a (possibly) nOll-simplicial I-complex, 

In other words, multiple adjacencies and self-loops are permitted. There are many reasons for 

this generality. In particular, the most powerful presently-known way to construct an imbedding 

of a large simplicial graph into a large-genus surface is to derive it as a branched covering of an 

imbedding of a smaller, non-simplicial graph - ideally with one vertex and many self-loops - into 

a smaller-genus surface. (See Gros~ and Tucker [GT] or White [W].) 

In this paper, we consider only simplicial (simple) graphs: those without self-loops or multiple 

adjacencies. Any graph containing self-loops and multiple adjacencies can be transformed into a 

simplicial graph by inserting one or more vertices in the interior of these edges. Moreover, the 

resulting graph is homeomorphic to the original graph, and accordingly, it has the same maximum 

genus. This enables us to simplify the notation. 
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2.1. Graph terminology 

Vtlrticc., V and i\ finite !let of edge., F, and all t'dg(' IIIay Ill' n·prt':o;(·ut.t'd a~ an IllIonlt·n·t! pair of 

v(·rt.icc~ (u, w), i.e. its {!IltipoilltS. All ('dg(' il'i ~aid to \,(' incidcTlt Oil il.~ t·lIdpoillt.~. Two di~Hud 

edge'::! arc said to he adjf&(:cnt if tllC'Y ;1It' ilwici('lIt ou i\ ('OIlIIllOll VPrt.('x. 

The dcyrcc of a v('rtex i~ the' 11I1IIIb('r.llr ('d~('s irwid('I1t Oil it. A IJtLl.h rroll1 v('rtC'x 11 t./) V<'rt.(·x W 

iH a ll(!qllt'nrc of edg('~ (1J, ud, (Ul, 'IL:d, ... , ('lLk, 10) ill E, :HlC"l1 that till' v<'rt.icC'll v, 'ILl, U2, ... , Uk, 

and ware clist.iIlet. Howev('r, if the ~t.MtilJg point 11 i~ t.11<! ~alllc i\.~ tIl<! lillal poiut w, Lhe ~<!ql1(!Il(:e 

i!! called a cyde. A graph iH connected if t.ll('re ill a }l<l.lh hctwcc~ll eV('ry pair of its v<'rtires. A 

connected, acyclic gr:\ph is ('aIIt·d. a tree. Dy a .Q1)(mniny tree of graph (:, we mean a :;u!>gr:\ph that 

ill a tree ancI contain::! every vertex. 

The notation G + e is iUl ahbreviation for the graph (V, E U {e} ), and the uotation G - e is an 

abbreviation for the graph (V, E - {e}). 

A graph is directed if (':\<:h edge ill thought to have :\ beginning and an end. We represent a 

directed edge as an ordered pair. Unless it is otherwise obviolls from coutext, the graphs discussed 

will be connected and undirected. 

2.2. Surfaces Our terminology is compatible with th~t of Gross and Tucker [GTI :\u<1 of White 

[WI· 

The topological $paces of interest here arc all homeomorphic to wbspaces of E3. A homeomor­

phism between two topological spaces is a ~ontinuous bijedive mapping with a continuous inverse. 

A connected topological space is a surface if every point has a neighborhood that is llOIDeomorphic 

to the clo~ed unit disk. A surface S is orientable if it does not contain a Mobius ban<1. 

We deal only with close<1 orientable surfaces. Every such surface 8 is homeomorphic to a 

generalized tOnIS. The number of handles is denoted 1(8) aud is called the genus of the surface. A 
. " 

sphere, for example, is a surface of genus 0, a torus is a surface of genus 1, and a 2-handled toms 

is a surface of genus 2. 

2.3. Graph imbeddings and faces Although a gI'aph is an abstract combinatorial object, 

there is a topological representation of it: in Euclidean 3-space, we represent each vertex by a 

distinct point and each edge by a distinct curve between the two endpoints, where a curve means 

a homeomorphic image of the unit interval [0,11. We require that the interior of an edge intersect 

no other edge or vertex of the graph. When referring to a graph in a topological 8etting, we mean 

such a representation. 

3 



All imin:rltli"y (; - :" of a ~raplt (; ill t.h(· ~Ilrfa('(! ,..,. ill a ("Oil I illll()l1~ UIJI'-l.o-0[JI' JIIi\ppi[I!~' TIll! 

COlllpOIlC.'utli of S - G ILre (:allc.~d rr.yi()n.~. If (';\('h n'gioll iH hOlllcolllOrphie to ;U\ opeudi:-lk, the 

iIllheddill~ ill cellultlr, and tilt! rC'giollH are ca.ll(·cl fflr.r.,~. AU om i[lIb(~ddil1~H an' !'l'I\III..r, TIl!! :,('t of 

fru-C':I of au imbeddiug i~ (1t~lloted F. 

A nlllximum-ycTlll., iTllherlrliny of a ("Ollflt·c.'h·d graph iH a c('lllllar illll)('dclilll!; of t.ll!' ~ra\lh ill all 

ori('ut.nblt! surface havill~ lIIaximulIl );('Iln~ ;\IUUUl!; all ~lIch illll)('dcJilJ~ HlIrfac(':i, Tht! Euler po\ylH'(lral 

equation 

IVI - lEI + IFI = 2 - 2"1(S) 

holt1~ for all ccllular illll)('tldillg~. ThuM, a IDaxilUlIIn-gcllus imbedding i~ the ~ame thing as a 

miniUlUlIl-facCC01In t imb<.'llding. 

2.4. Rotation systems A rotation at a vertex v is a cyclic permntation of the L'(lges incident 

on it. Since our graph:! are ~impli('ial, we may spccify a rotation at v in the format 

where the vertices U1, .,., Ud are the opposite endpoints of the edges incident on v. It follows that 

a vertex v with degree d admits (d - 1)! different rota.tions. 

A list of rotations, one for pach vertex, is call a rotation system for the graph. This concC'pt is 

due to Heffter [HI. Starting with a graph imbedding in an oriented surface, there corresponds an 

obvious rotation system, namely, the one in which the rotatlon at each vertex is consistent with 

the cyclic order of the neighboring vertices in that imbedding. 

Edmonds [El was first to call attention explicitly to a method for inverting t~at correspondence. 

To each oriented edge (u, v), one assigns the oriented edge (v, tu) such that. vertex w is the immediate 

successor of vertex U in the rotation at vertex v. The result is a permutation on the set f)f oriented 

edges, that is, on the set in which each undirected edge appears twice. once with each possible 

direction. In each edge-orbit under this permutation, the consecutive oriented edges line up head 

to tail, from which it follows that they form a directed cycle in the graph. We obserye that it is 

possible for both orientatioM of the same edge to appear twice in the same edge-orbit. If there are 

n oriented edges in the orbit, then an n-sided polygon can be fitted into it. Fitting a polygon to 

every such edge-orbit results in a polygon on both sides of each edge, and collectively the polygons 

form a surface in which the graph is cellularly imbedded. 

Sometimes one describes the rotation system of a graph pictorially, as in Figure 2.1. The graph 

is drawn in the plane so that the incidence of edges at each vertex is consistent with the rotation 
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~y~t.cm. Ohvi()lI~ly. 11III(~:-I!'l 1.111' rot.at.ioll :,y~I('1I1 h;IPIH'II~ til ("orrl':;polICl t.o a plallar illll)('ddiIl~, there 

will be cclg('-('rotl:iill~:-I in til!! (lrawill~. Sill'll a drawill~ IH'rJlIihol O[IC to t \'arc: al(lll~ tlw I'd~('-()rbit:i, 

(~ i1lust.ratc~d. Since the graph :-I\tOWIl 11;\'; (j v(·rl.i("('~ nlld 10 ('dgC'tI. aile! :-oj 1IC1! t.he rotat.ion HY:itelll 

lU\.~ 2 ecl~e-orhit:-l, t.he ilJlbeddi1J~ ~lIrfa("(' ltiL:; 1':lilc-r rharaclPri:;tic G - 10 +:!, wltkh p(jllaJ:i -2, froUl 

which it follow,; I.hat. t.hl! ilTlhC'(ldill~ ,;llrfan' ha;o; g('IIII:-I t.wo. 

u 

II 

x 

• 

Figure 2.1. A graph with two edge·orbits in its rotat.ion system. 

The existence of the bijective corresponuence between the cellular imbeddings of a graph 

and the rotation systems enables us to reformulate the problem· of nllding the maximum genus 

of the graph as a problem of finding a rotation system with the minimum lIumber of edge-orbits. 

Since edge-orbits correspond to boundary-walks of faces, this is equival<.·nt to seeking a minimum­

facecount imbedding. 

We can depict the boundary-walk of each face of an imbedding as a rlirected graph with one 

directed edge for each traversal of the underlying undir~cted edge, and multiple copies of each 

vertex; the boundary-walks for the rotation system of Figure 2.1 are shown in Figure 2.2. Any 

closed boundary·wnlk can also be written as an alternating (cyclic) sequence of vertices and edges 

vlelv2e2 .•. ekVl. A subsequence eivei+l of a walk is callecl a corner, corresponding in an obvious 

way to the geometric corner of a face of a polygonal imbedding. 

2.5. Adding and deleting edges If an euge is added to, or deleted from, an imbedded graph, 

then all faces in the imbedding are unchanged except those incident on that edge. Furthermore, 

either two faces are merged or one face is split into two faces. 
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Fi6'llre 2.2. The' bOlll\d:Lry-walk~ of tlw il1lbe<l<iili~ iii Figure 2.1. 

Suppose that an edge e = (u, t1) il' added to a graph and it.s illllwddiug, so that its (~IlCh are 

inserted between two corners of aile face. If the' h()\111~lary-walk :uound t.he original face Wil.S of 

the form VQIWQ2V, wherc Qi is a ~I\bwalk, then as illllstratc(l hy Figure 2.3. the new edge ~plits 

the 01<1 boundary-walk into two walks: VQI weI v and WQ2VC2W. Similarly, if :U1 edge e that is 

common to two faces is deleted from all imbedding, then two bOlllldary-walkl:! nrc merged and the 

new imbedding has one less face. 

w 

az 

Figure 2.3. Adding an edge across a face. 

If an t.>dge is added to a graph and its cnds are inserted between corners of two different faces, 

then both those faces are merged into one larger face. III particular, suppose that new edge e runs 

from the corner of v ill boundary-walk VQI v to the corner of W in boundary-walk WQ2W' Then a 

merged face results. with boundary-walk vel wa2we2al v, as depicted in Figure 2.4. Likewise, the 

deletion of an edge e occurring twice on one boundary-walk splits the corresponding face into two 
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Fib'llre 2.4. Adding au edge bdwe(~n two face~. 

ttmnller faces. 

3. Maximum-Genus Imbeddings 

We now direct our attention to the problem of constructing a maximum-genus imbedding. 

Xuollg [X79aJ proved that calculating the maximum genu~ of a graph is reducible to calculating 

the value of a combinatorial invariant which he called its deficiency. 

The deficiency e(G, T) of a -,panning tree T in a graph G is defined to be the number of 

connected components of G - T that contain an odd n\lm~er of edges. The deficiency e(G) of 

a graph G is defined to be the minimum tree deficiency over all spanning trees T of G. We call 

a spanning tree that realizes e(G) a Xuong tree. I:igure 3.1 shows a graph and one of its Xuong 

trees. Since the complement of the Xuong tree has two odd components, it follows that the graph 

has deficiency two. 

Figure 3.1. A spanning tree (solid edges) with minimum deficiency. 
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TIlt' ('d~{' l·olIlpi(,!lu'ut. C; - T of any trt~I' l' i:! ("allt'd a cotrr~f.. Tn'(' l' i~ C\ ~pallllilJ~ I.rt~(' if 

:mll oIJiy if G - T ill a minimuJII (·ulrl'e. TIt(, 1l1l1ulH'r of l'(i~el! ill allY lIIillillllllll co/.n't' hi cfltml to 

IEI- IVI -I- 1, am! it i~ (":u.lell I.he cyde TIInk (~IIIll("ilt1(·;\ tht! ilelli 1/.'lI/!ha) of (; alld d(!ullt.l'll{l(G). 

Dy all 11Iljllccncy mfltching ill a :l1tl)~raplt of (;, W(' IlII'HU H ma'chill~ :iIIch 'hal. (';wlt ('d~(' jn 

tIlt' ~llh!!:rilph i!4 pairC'II wilh an adjacl'llt. ('d~('. For PX:LlIlplt" OUI' 1II00Xillllllli adjat't'llcy lIIal("bill~ in 

t.he COt.ft'I' of Fi~ur(' 3.1 coutaillll pair;; (IL, c) al\(I (b, dJ, wit.h cotn'p I'dg('~ (; :lllli J ht'jllg Ilupairt'd. 

TIlt! following r(!orgaubml.ioll of XIIIIII!~'~ Illl~tl\l)(\:l alltl red(·rivat.ioll o[ hi!! r(':.;ult~ i~ lwcded for 

our cOll::ltrudioll of a tnaxiIllu1I1-g(,llU~ algorithm. 

Lr':M MA 3.1. 1/ a grnph (; ha3 Il coml'lcteiy-pllirerl minimum colree, then G ha.~ a one·face imbed­

ding. 

Proof. Dy induction 011 k, the numi>('r of t.uge pairs ill the mini1l1uUl co tree. 

DASE CASE: k = O. In this ca.-.e tht: grnph G is a tree, anll every imbedding has exactly onc 

face. 

INDUCTIVE CASE: k> O. & an induction hypothe:-lis, assume that a graph with k-1 pairs of 

edges in a minimum cotr('e h&l a one-face imbedding. We now argue that we can add a new pair of 

adjacent edge~ e = (v, w) and J = (w, x) to the oIlc-fa.ce imbeddeu graph in -the following manner. 

First ins<'rt edge e into the one face in any way between vertices v amI w, thereby splitting the 

single face ill two. Note that vertex w now h&l coruers on both faces. Then insert edge f between 

some corner of x and a corner of w that lies on a different face (see Figure 3.2). This merges the 

two faces, thereby resulting in a one-facc imbedding of G + e + f. 0 

Figure 3.2. Adding adjacent edges e and J to a one-face imbedding. 

LEMMA 3.2. 1/ a gTaph G ha3 a minimum cotree with k unpaired edges, then G has an imbedding 

with at m03t k + 1 Jace3. 
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Proof. Oht,nin a OUt,-fiW'e' imbt·ddillg of t.lw !'Ipa\lClillg t.re(~ t'dg(':i alld pair('d ("otTl'(! dg<'s of G by 

the ('olllltnidiou in LClllUlIL 3.1. Add ('ach of tIlt! k ullpaired I'd~('!l to t.hat illllJl'dtling, t:r('l'Lt;jJl~ at 

m()~t orle new face for ('nch (!{l~e. 0 

U-mllJiUl 3.1 auu3.2 nrc cOIl!'lt.rndivl', anel giv('11 il ruaxilllllill adjacPllcy lIIaldliIl~ for a millimnm 

cot-n'c, allY rC'l1:!ollahlc iUlplt'I1H'llt.al,ioll of t.lt(~ (·oll!.;t.rudioIl will rtlll ill polYllomial-tilllc. A naive 

. upP('r hOllud 011 the rUlluing t,illlC' for n graph with e ('(lgl':l i:l 0(,:2) . 

LI';MMA 3.3. If a graph G Iws (lone-face imllt:dtling, then it ha., a coml1/p.tclY-Twircd minimum 

cotree. 

Proof. Dy inductioJl OIl the nmub('r of edgc~, k, in G. 

BASg CASF. I: k = IVI - 1. In this Ci\8C, t.he graph G is a spanning trCt! for itself, the eotree 

is empty, and trivially all cdgt's are paired. 

BASE CASE II: k = IVI. III this case, the graph G is a spanning tree plus one extra edge. A 

spaIlning tree can only be imbC'<ldt!d with one face, and the addition of the extra edge to such a 

one-face imbedding must break the face in two. Thus, the graph G can only be imbedded with 

two faces, and the lemma holUs vacuously. 

INDUCTIVE CASE I: k > lVI, and G has a vertex v of degree one. Consider the graph G' 

obtained by deleting v and its incident edge e = (v, w) from G. Since G has a one-face imbedding, 

we can readily construct a one-face imbedding of G' by starting '?>'ith the one-face imbedding for 

G and deleting e and v. By induction hypothe:li~, the graph G' has a miuimum cotree C with all 

its edges paired. Since the edge e must be in any spanning tree of G, C is a completely-paired 

minimum cotree of G. 

INDUCTIVE CASE II: k > lVI, and G has no vertex of degree one. Consider the boundary­

walk around the single face. There must be an edge r = (u, v) whose two appearances in the walk 

occur as closely together as the two a.ppearances of any other edge. Give the two 'appearances 

of r the labels ,. and +;:"', so as to minimize the length of subwalk a from r+" to 'T. Subwalk 

a must contain of at least one edge other than r, or el~e G woulU have a vertex of degree one, 

a contradiction. Similarly, if 7 is the edge following 7, then a can not also contain '8, since 

the two appearances of edge s would then'be closer together than those of edge T. Therefore, the 

boundary-walk around G's face must be of the form ur+"vswalv'Tua2w'Sva3u, where s = (v, w) 

is an edge adjacent to T in G, and al, a2, and a3 are subwalks. See Figure 3.3. 

Delete edges T and s from G to obtain the graph G'. Vertices u and v are connected in G' by 

edges tliat appeared in subwalk a3, and vertices v and w are connected by edges that appeared in 
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113 
U r v 5 W .... >-:: ) :.. )T 

• • 
• at • 

~ ~ .... ~ 

v 5 W a z u r v 

Figure 3.3. DOlluuary-walk of G b<'fore (kll'tillg ('uge:! r anu 8 • 

. suhwalk al. Ev('ry oth('r vertex in (;' app<'ar(,ll in Ikl, ~2 Of ~:J and is thus connect.('d to u, v, or 

w by ed-ges in (i'. Since tho:!(~ three V<'rt.in~lI a.re all C"OlIuect.ed, it follow:! that G' ill connected. 

Dy the iuduction hypoth('~ill G' hal! a eotree C that is complet.t'ly paired. Clcarly the tree 

G' - C is also a spanning trcc of C. E(lg(~ r and 8 can be pain'd and added to C to form a 

completely-paired minimum ('otree of G. 0 

LEMMA 3.4. II a graph G ha3 a (k + I)-lace imbedding, then it has a minimum cotree with at 

most k unpaired edges in its maximum fldjacency matching. 

Proof. Dy inuuction on the number k. 

DAS E CAS E: k = O. Thill follows froIn the previolls lemma. 

INDUCTIVE CASE: k > 1. Let e be an edge in G that lies on two different faces in some 

(k + I)-face imbedding. The graph G - e is connected, for otherwise e would lie on only one face, 

and it has a k-face imbedding when cJge e is deleted fr9m the (k + I}-face imbedding of G. By 

the induction hypothesis, the graph G - e has a minim\l~n cotree C with at most k - 1 unpaired 

edges. Thus C + e is a minimum co tree of G with at most k unpaired edges. 0 

A Xuong cotree of graph G is any minimum cotree of G that admits an adjacency matching 

with number of paired edges maximized (over all minimum cotrees). The number of unpaired edges 

in IlUch a cotree it denoted U (G). 

Although Xuong seemed to be little concerned witli al'gorithmll, Theorem 3.5 is essentially 

contained in [X79aJ. Theorem 3.6, which relates maximu'm genus to deficicncy, is generally regarded 

as Xuong's main result. 

THEOREM 3.5. [X79AJ A connected graph G has maximum genus 

"YM(G} = f3(G) - U(G) . 
2 
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Furthcrmore, yjv/:n II XunTlY winl: G' /lW[ It lIIaximum Ildjfll·t:fLI~y mall'hilllj of C:, UTI imlu;tltliny 

uf G tlwt minimizes fllcccOtl1lt (1Ilttllhcrr.l,y 7rltLximi;;e.~ ycn".~) I:an 1)(: fuuw' in T}(}lynomill{·time. 

Proof. [·'lIl1ow t.he cOII:!t.rudioll ill LI'I1II11a ::.~ to 01>1.ai1l. frolll a III;LXilllllll1 adjarc'lwy lIIat.chill~ of a 

Xll(lllg l'IIt.rc'(' of r:, all iTII1)('ddinl!; with If((:)., L [a("(·:oI. L('IJlIII1l 3..1 ;-;\tow:-c I hat. ;-;111'11 all illlllC'c1cling 

millillli1.('l! t.lw IIll1u!)('r of f;u"P!4. Tll!'f'I-fCl\'('" t.his i:i a JII<lXiruUIJI-gl'llllS illllH'cldill~ ill w lJich. by 1~1I1('r'!! 

polylH'clral ('quat-iou, 1M(G) = (f1(C:) - (I(G))/2" 0 

TIII'!()lmM 3.S. [X7!)A] Let G be II ronncr:tetlyra/lh. The mllXl7nUm yC71".~ III r, i., !livcn by the 

formula 

(G) 
__ {J(G) - ~(G) 

1M oF - 2 . 

Proof. Any Xllong eotree D1U:it contain at ll'a!lt a:; many oeld compOIwllt!! as ~(G). Since every 

odd component must contain at !('f\. ... t one unpaired edge, it follow!! t.hat U (G) ~ ~(G). COllv('r:!<'ly, 

a maximum adjacency matching in the complellwut C ofaXnollg tree D1l1!!t leave at least U (G) 

edges unprured. The eVell compolH'uts of C arc completely pairahle. and t.he ocld COmpOlH'lIts arc­

pairahlc except for one edge left OVl'r, therefore it follows that ~(G) ~ U(G). Thus €(G) = U(G), 

from which Xuollg's equation follow!!. Moreover, we see that Xllong tree:! anel Xllong cotreC'!!, as 

defined here, are indeed compleIIl('\\tary objects. 0 

4. Reduction of Maximum Genus to Linear Matroid Parity 

In order to determine the maximum genus and find a maximuIll imbedlling for an arbitrary 

graph G in polynomial-time, w(' have shown that it suffices to show how to find a Xuong cotree 

and a maximum adjacency matching of its edges in polynomial t.ime. This problem resembles what 

i!! known as the matroid parity pl'Ohlelll for cographic matroid:;. We use the definitions rC'lating to 

matroid parity that arc found in Stallman and Gabow's paper on linear matroid parity [SG]. 

A matroid M = (E,1) consists of a finite ground set E and a family 1 of "independent" 

subsets of E satisfying the following axioms: 

1. If A E I and B ~ A, then DEI. 

2. If A, BEl and IAI = IBI + 1, then there exists a E A such that B + a E 1. 

The matroid parity problem [La711 is the following. Given a matroid }.;[ = (E, 1) and a perfect 

pairing of the elements of the groUlul set E, find an optimum subset of E such that an element is 

in the subset if and only if its paired edge is in the subset. Optimum means either a largest s)1bset 

(the carciinality parity problem) or a Illaximum weighted subset (the weighted parity problem). Doth 

can be solved in polynomial time for a large class of matroids known as linear {or matric} matroids 
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[Lo,SG,t)(illV,Sj. Th{!~-Ill():it. t·Jlkh·ul. klloWIl algorithlll ror Lhe cardill;diLy parity prolJl<·1U on gelleral 

lillt';U' mal.widl! mnll in O{um3 ) t.iul<'. wilel'!! Tn = I fiJI alii! t& is til(' :;i~t~ or L1w Opt.illllllll :mhtld. 

Matroid parity is n gMH'ralizat.ion uf t WI) wl'll· know Il prnbl('lI1s: :.;raph IIlah'hill;'; alld lIlat roit 1 

ill t.('rll<'ct jnn. 

For auy graph G = (V. E), tll<'re is a lilH'ar matroid M = (E, 1), callt·1! t.h" r.oyrlll,hir. 7fllltroid, 

ill which til(' j.,'Y'OIIllU sd ill t.he (·dge s!'t. of tlw ~raph awl C ~ E is all illlh·pell<il'llt. :wt if awl ollly 

if G - C ill t:OlllJ('ctt.u. Mmcillllllrl iwi<·p!'llllt·lIt. St·ts ill cographic lUat.wids arc lJIinimllm cot.reCi! of 

the corr<!:ipou<Uug graph. For auy perfle·t·t mat.t·hillg of the ruges of tIl!! graph, we have au il1:;tallcC 

of the matroid parity prohlC'JIl 011 eograpllic matroids, whkh we call thc r.otree parity Ilmblem. The 

cardinality parity problems for both graphk (spanniug tr('e) awl cographic mat.roiu:; are ea:;ier 

than general linear matroid p~ty, ant! ('(\11 be Holve(l ill O(nm 2 ) time [La7G,SGj. Stallman and 

Gl\bow conjecture that this time bound can be rco\lcet~ to O( mn log n). 

H each edge of a graph G were atljaccllt to exactly Olle othcr cogc, then we could (lircctly apply 

an algorithm for cotree parity to graph G. However, adjacency i:l not all unambiguous pairing rule 

for most graphs. Therefore, in this section, we shall transform G iuto an auxiliary graph G' with 

unambiguous pairs. The auxiliary graph G' i:l a subdivision of the graph G itself. Precisely, each 

edge of G is subdivided into as many edgeH as itH number of cdgt. ..... ncighbors in G. Figure 4.1 

illustrates such a subdivision. 

f fd fe 

Figure 4.1. A graph G and a corresponding auxiliary graph G' . 

.As illustrated in Figure 4.1, we label each edge of the subdivided graph G' by a label of the 

form xy, where x is the name of the edge in G of which it is a segment and where y is the name of 

some distinct neighbor of edge x in the original graph G. The choice of which segment of G is to 

be labeled xy, for any particular adjacent edge y, is completely arbitrary, provided there is exactly 
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one :W:';IIll'lIt of x labdl-'lI'X11. 

WI' lloW cou:-lillcr l'llge xy t.o hI' pain,d wit.h l'dgl~ !IX. Sinel' IlIi:-. tllai.chilll; i!i 1I11:L1l1bi!-;1I0IlS, we 

nUl apply a cotr('(! parit.y algoritlJlIl til CO' awl COIl:;t.rllct. ill polyltolliial I.illle a Illillillllllll (,lItre(! 

(;' with a \llaximuJII nlllllhC'r of prun'd edge!!. 

Ld T' bl' the' ('tl~I~-C:Olllplc~lIl('IIt. of the ('()t.r<'(~ (;' ill till! allxiliary ~raph (;', Silln~ 1" i:i a 

:ipi\tUlill~ tn'c for t.ltC' allxiliary ~ral'h (;', it C'OII taills l'itlll'r all I II<' :i(';!;IIf('lIt~ Of' all bllt. OIIC' of the 

8<!b"lIWllt:i of ev('ry I'dgl' of the original graph C. We now a.~:iclI"iate wit.1I :ipallllill~ tree 1" iJl graph 

G/ a !!ubgraph T ill G, ;wcorcliIlg t,o I he rule that, an l'(\ge x of G apl'c'ar:i in T if and ollly if ('vcry 

segment, of x in G/ OCCllr:i in T'. It i:i a C'Oll:i('ql\l'lIre of the I'ollstrlldioll of G/, 1" anel T that T is 

a span1liug tree for G: T is acyclic alld Cou1l<'ct.ed bl'eall~e T' is acyclic. and COIIIWctcd. 

Let thc! cdg<. ... complcIIlcnt of spalluiug trt~e T iu the original graph G be I'alled C. Th<'ll C is 

a minimum cotrce, Two edge!:! of Care matclwd if and only if they have matched :iegmeuts in the 

cotrcc C/ of the auxiliary graph G'. 

This adjacency matching of the rogl'lI of cotree C in G is a maximum matching among all 

possible minimum cotr('Cs of G, because there is a bijection from minimum cotrces of G to minimum 

cotrccs of G' such that. the size of the maximuIIl <lcljacency matching in the cotree of G equalt! the 

size of the maximum labeled-edge pairing in G'. 

Thus, we have constructed a Xnong cotrce for G and a maximum adjacency pairing of its 

edges in polynomial time. 

5. The Algorithm 

\Ve now summarize and analyze the algorithm for ,obtaining a maximum-genus imbedding. 

Suppose graph G has v vertices, e edges, and maximum degree d. The following steps are u::ied. 

1. Create auxiliary graph G' by subdividing edge3 in G. The new graph ha.'i e' = O(e(l) edges 

and v/ = O(ed) vertices. This step runs in time O(ed). 

2. Run the cotree parity algorithm on graph G/. Producing a maximum set of paired cotree 

edges requires at most O(e' (v/)2) = O(e3d3) time by the Stallman-Gabow alg~rithID [SGj. 

The edge set can be extended to a full minimum cotree by greedily adding unpaired edges. 

This requires O((e')2) = O(e2 d2) time. 

3. For each cotree edge in G', label the corresponding edge in G as a cotree edge. Pair the edges 

in G which correspond to paired edges in G'. This requires O(e') = O(ed) time. 

4. Find a one-face imbedding of the spanning tree edges of G. This requires O(e) time. 

5, Add the paired cotree edges to the imbedding. The first edgc of each pair' can be added in 
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r.ou~taut. LiIllP, hll5 0(1:) t illll' i~ n'l\lIir('d t.O lilld t.lu! t.wo rc~uJtill~ fi\c(!~ alii I ddt'rII1irW the 

pln(·C'JlU'nt. of t.he t!('WII<l l!<ige rl'lal·ivl! 1.0 I.hc lir:~t. Tlli~ Sl.l·" rc·cplin's a total of O{c'l) time. 

G. Alld IIllpairC'ci r.otrC't~ ('tlgPlI to t.ltl· illlhl·ddillg. This tak(':-! O{v) tiu\l', :-;illce there b at 1I10ilt OlW 

llupairclI C'dgc p<'f v(!rtcx. 

Tlw (!Iltirl! aigorit.lull takc~ O( t::l d3 ) t illlC'. WI! II~C' t.ll!' cot.rpC! parity al~oritlllJ1 Oil a spl'('ial da."II! 

of graphll ('ontailling Ill/lily vl'rtkl's of llt'~r('(' two, hell4't! t.hc il(·tllal t.illw ("(Hupl<'xity of I.his algorit1uu 

lllay he lower. Fllrthermore', St.alllllan allll (;ahuw [SG] eoujecture that t.he actual t.ime l:ulIlplcxity 

of their algoritluu for g('lu'ral cut.rce parity ili O{evlogv), which wOllld illlply a O(e2 tJ2 Iogcd) time 

bouud ou 0I1I' maximum-geUllli algorithm. 

6. Open Problema 

1. The fact t.hat maximum genus is reducihle to linear matroid parity, which is a gencrnlization 

of maximum matching, suggests that the correspoudiug counting problem may be provably 

difficult. 11 it possible that countiug the number of ways a graph may be imbedded in a surface 

of maximum genus is #P-complete? 

2. Our algorit.hm for computing a maximum genus imbedding runs in time polynomial in the size 

of the graph. This is the only algorithm we know of for constructing any kind of imbedding 

that runs in time independent of the genus. Is it possible to extend the algorithm to return 

imbeddings in which the genus is a fixed constant less than the maximum? 

3. Reif [R70] showed that determining whether a partial imbedding of a graph can be extended 

to a full imbedding in the same surface is NP-complete. Is the same true for determining 

whether a partial imbedding can be extended to a one-face imbedding? 

4. Suppose graphs G and H are non-isomorphic. Otle might ask how the non-isomorphism 

shows up in the way the graphs may be imbedded in different surfaces. Knowing all the 

"counting information" about how a graph imbeds in all surfaces is not a complete invariant for 

isomorphism. It clearly isn't a complete invariant for trees, which only have planar imbeddings, 

. and we have examples of non-isomorphic, highly connected, graphs such that counting the 

number of imbeddings in all surfaces docs not distinguish them. However, randomly sampling 

imbeddings and making estimates of the number of ways different graphs imbed in different 

surfaces may prove to be an interesting new isomorphism heuristic. 
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