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present the problem that each algorithm is attempting to solve. then briefly introduce both methods. 
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internal representation of the surface in both algorithms. 
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§1 Introduction. 

It has been shown that when presented with sparse depth data (say from random dot 
stereograms) the human visual system infers a smooth surface passing through these data points. 

The problem of computer visual surface interpolation is to take a sparse set of depth values and 

calculate the surface passing through these points that seems to model the surface that humans infer 

from those same data points. Grimson (1981) presented a computational model of this process in 
the human visual system, and suggested an algorithm that may be used to recover the perceived 
surface from the depth data. 

Although it may be fruitful from a psychological point of view, to develop algorithms that may 

be biologically realizable, this restriction may increase the computational cost of the algorithms. 
Therefore we compare, without regard to biological feasibility, two methods for the solution of this 
visual surface interpolation problem with the intent to determine which is a more efficient algorithm 
for use in computer vision. 

The fIrst of these methods is that presented in Grimson (1981). Grimson's approach was to 
represent the surface by a grid of depth values, and to use nonlinear programing techniques and 
directly minimize the "quadratic variation" or bending energy of the surface. Because the problem 

was to interpolate the given data, Grimson employed a constrained optimization algorithm called 

the gradient projection algorithm. Because of this we shall refer to Grimson's approach as the 
gradient projection based algorithm. 

The second method we shall examine is the method of reproducing kernels. This method uses 

the reproducing kernels of Hilbert or semi-Hilbert spaces to calculate splines of minimal norm. 

The use of surfaces of minimal norm as the visual surface interpolating the depth data is done in 
spirit of the minimization approach used in Grimson (1981). The use of reproducing kernels to 

recover splines of minimal norm is not a new idea. It has been studied by Duchon (1976a, 

1976b), Meinguet (1979a, 1979b) and more recently by Franke (1982, 1983), Franke and Nielson 

(1980) (all but Meinguet called them thin plate splines). However, the method has not previously 
been given serious consideration for visual surface interpolation - probably because it seems 

unlikely that the human visual system uses such an approach. 

In section 2 we derive an precise formulation of the visual surface interpolation problem. 

Section 3 presents details of both of the above algorithms. In section 4 we present and compare 

algorithmic properties (time. space and parallel time complexity. optimality and accuracy of the 
solution) of both methods. Section 5 is a discussion of the representational advantages of splines 
in functional form over simply having a grid of depth values. In section 6 we discuss the 

extensibility of both methods to other spaces of functions, and other norms. Section 7 presents 
our conclusions. 



§2 The Problem. 

A naIve formulation of the visual surface interpolation problem might be : 
to find "the best approximation" to a surface using only the knowledge of a number 
of given points thereon, where we require the surface to be interpolatory, i.e. to 

pass through all the given data. 
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A major difficulty with this formulation is that it is not well posed, inasmuch as the information 
does not uniquely determine a solution. In fact, given any set (of zero measure) of points on a 
surface there are infinitely many surfaces interpolating those points. To alleviate this problem, we 
must somehow restrict the class of allowed surfaces and/or give some method of ranking the 

"plausibility" of a surface. 

One of the classical ways of insuring that a problem has a unique solution (applied to visual 
surface interpolation in GriInson (1981) and Kender, Lee, and Boult (1985)) is to use a functional 
on the surface as a measure of the "unreasonableness" of the surface, and to restrict the allowed 
class of surfaces to make it a Hilbert or semi-Hilbert space and make the functional a norm or 
semi-norm on this space. This formulation insures that there exists a unique solution to the 

problem of finding a surface from the allowed class which minimizes the functional (and hence is 
the most reasonable). Throughout this paper we shall assume that this type of formulation is 
appropriate for the problem of visual surface interpolation. We shall not investigate which classes 
of surfaces are most appropriate, nor which functionals may be good measures of the 
unreasonableness of a surface. Readers in this aspect of the problem may consult Boult (1986). 

In what follows we choose to define "best approximation" in terms of minimal error. We 
assume that error can be measured by a nonn with respect to the given class of functions. The 
norm might be the sup norm (i.e. the maximal difference between the actual surface and the 
approximation), or the L2 norm (integral of the square of the difference at each point). The error 
may be measured in either a relative (e.g. error of 5%) or an absolute sense (e.g. the surfaces never 

differ by more than .1 mrn) depending on the goals of the user. Finally there error may be 
measured in the worst case, or on the average (with respect to some measure). 

Combining these assumptions a precise formulation of the problem of visual surface 
interpolation from sparse depth data becomes: 



Let F 1, the space of allowed surfaces, be a Hilbert or semi -Hilbert space. Let F:2 

be the elements ofFl restricted to a fmite domain D (since we are only interested in 

recovering a finite portion of a possibly infinite surface). Let B(f): F 1""'" 9\, be a 

functional measuring the "unreasonableness" of a surface (i.e. the more reasonable 

a surface f, the smaller S(f), where 8 is a norm on F 1 (a semi-norm if F 1 is 

semi-Hilbert). Let N(f) == {zl, ... ,zk} == { f(xl,y}), ... , f(xk,Yk) } be the allowed 
information (i.e. the allowed input to solve the problem is k depth values.) Then 

the visual surface interpolation problem is to fmd (using only N(f) f* E F I, such 

that B( f* ) = min 8( g ) . 

g E Fl 
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Kender, Lee and Boult (1985) show (as a special case of work on information based 

complexity see Traub and Woz'niakowski (1980), or Traub, Wasilkowski and Woz'niakowski 
(1983» that given the above formulation the swface minimizing the functional S(f) will also be the 
minimal error surface with respect to the class Fl for almost any error norm. 

One functional to measure unreasonableness that is used by both Grimson (1981) (who called 
it quadratic variation) and Kender, Lee and Boult (1985) is given by: 

f 2 2 2 1 
I II (if] (2 J (if I I B(f) == I ax2 + 2· a::y + dy 2) I 
l 9\2 J 

We note that this is just one particular choice for the functional and that this functional is the 

norm or semi-norm for a number of different classes, see Boult (1985a). It is known that different 

functionals (and the associated classes for which they are norms) give rise to different interpolation 

problems, and hence to different interpolating surfaces. The reader interested in other norms and 

their associated classes should consult Grimson (1981), Boult (1985a) or Boult (1986). 

§ 2.1 Allowed Information. 
We now consider the allowed form of the information N(f) == {zl,"" zk} == {f(xl,n) ..... 

f(xk,Yk)}. Each piece of information consists of 2 components, a function value and the location 

of that evaluation. Throughout this paper we shall assume we are given the value (height above or 

depth below a reference plane) of the surface at known points in x-y space. Note that this pre· 

cludes the use of surface gradients. normals, curvature, etc .. This pure depth data might be the 
result of a stereo based process, a rangefinder or be synthetically generated. We consider two 

separate ways of determining the other component, the locations for the information. The first 
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method is to obtain the information from triangulation between matched points in the zero 
crossings of the Laplacian of the Gaussian of a stereo pair of intensity images (here after yr2G zero 

crossing information). This type of information was proposed by Marr and Poggio (1979) as that 
available in the human visual system, and was used by Grimson in the development of his compu­
tational study of surface interpolation in the human visual system. Another method of choosing the 
location of the information is to use some fixed and regular pattern, e.g. a regular square grid of r 
points per side. each point separated by a distance h, (thus the number of depth samples is k = r2). 
This regular grid information would be very difficult, if not totally impossible. to obtain in a 
passive stereo system but is easily obtained from active ranging systems. The major difference 
then between the two types of infonnation is the location of the information samples; which may 
be effected by the availability of an active ranging system (an option not open to the human visual 

system). 

We note that infonnation derived from the zero crossings of V2G, yields locations (both the 

number of and position of) that depend in a very nonlinear way on the surface viewed. This extra 
information, (i.e. the knowledge that information is evaluated at the location of the zero crossings 
of the intensity image) is not used by any algorithm known to this author. After a casual reading. 
it might seem that Grimson's algorithm should take advantage of this extra information, inasmuch 
as the surface consistency constraint Grimson (1981, p130), shows a relationship between the 
location of the zero crossings and the variation of a surface. However, Grimson's algorithm is 
based on the choice a functional (quadratic variation) that does not truly embody the surface con -
sistency constraint, because it minimizes the total variation of the surface and not the variation 
between zero crossings. Note that it is not necessarily true that the interpolating surface with 
minimal total variation also has minimal variation between each set of zero crossings. To see this 
consider a interpolating surface that has almost zero variation between all but one pair of zero 
crossings (and hence generally satisfies the surface consistency constraint), but whose variation 
between that pair is arbitrary large (maybe the surface is not even continuous at one of the zero 
crossings). Such a surface may have arbitrarily large total surface variation but may have minimal 
variation between zero crossings (except the one pair). 

Since neither the reproducing kernel algorithm nor the gradient projection based algorithm 
make special use of v2G type infonnation. we shall freely compare them with respect to both V2G 

zero crossings and regular grid information. Here after, we shall let the number of information 
points (regardless of its origin) be denoted by k, and the set of information by N(t) == {z 1, ... zk} == 

{f(;q .Yl} .... , f(xk.Yk)}· 

§ 2.2 The Desired Output. 

The final component in the formalization of the problem is to specify what it means to find an 
approximation. i.e. we must consider the representation of the desired solution. Though there are 
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many representations we might chose, we shall examine only those two used by the methods under 
consideration. 

The first and simplest representation of the surface is as function values at some predefined 
points (e.g. on a 2-d mesh). This is the representation used by the gradient projection based 
algorithm. In this algorithm, the grid is a unifonn 2d mesh, large enough to include all 
infonnation points. We shall let the total number of points in this grid be n. 

The other representation of the solution surface we shall consider is as a function of x and y, 
which can be evaluated at any point Obviously given this representation the first representation 
can be recovered but not visa versa. 

Note that the user may be interested in recovering the interpolated surface at fewer than the n 
points used in the first representation. Hereafter let p be the number points at which the 
interpolatory surface is to recovered. We need not require that the p solution points contain or be 
contained in the k infonnation points. 

Finally we note that it would be improper to compare two different methods if they were 
calculating the surface in different representations. Therefore, throughout sections 3-6 we shall 
assume the reproducing kernel method is used first to calculate its spline representation then the 
spline is evaluated at the p points the solution is desired at, which is a subset of the n points used in 
the gradient projection based algorithm. 

§3 Description of the Two Methods of Solution. 

In this section we briefly describe the two methods of solution to the surface interpolation 
problem, which we shall be comparing in this paper. We shall refer to the two methods as the 
gradient projection based algorithm and reproducing kernel algorithm. We start by discussing the 
theoretical basis that they have in common. 

Neither method actually requires that em be quadratic variation as in (2.1). only that it be a 
nonn or semi-nonn on the space Fl' Both methods rely on the theorem from functional analysis 
that states if 9(f) is a nonn over the F 1 and F 1 is a Hilbert space then there exists a unique 

function from F 1 minimizing 8(f). (If 8(f) is a semi-nonn and F I is only a semi-Hilbert space 

then the solution exist and is unique up to a member of the null space of 8m.) 

The two methods differ in how they minimize the functional 8(f) (with respect to the class of 
functions F 1) and in their representation of the solution. 



6 

§3.1 The Gradient Projection Based Algorithm. 
We now examine the gradient projection based algorithm as discussed in Grimson (1981). 

Inherent in the development of this algorithm is the representation as "explicit depth values at all 
locations within a Cartesian grid of uniform spacing" Grimson (1981, pI80). It is also assumed 
that the information is given at points within this grid, and for simplicity that the the grid is square 
with size m x m (where m = ..In). In the following discussion each grid point is represented by its 
coordinate location (i,j), 1 S; i,j S; m, and the solution surface is represented as its value at each 
grid point, i.e. Si,j' Grimson begins by deriving a discrete analogue of the functional 8(f), and 

then solves the discrete minimization problem given by: 

m-2 m-l 
mlnimize L L ( si-l ,j - 2Si,j + s· 1') 2 1+ ,J 

i=1 j=O 

m-l m-2 
+ L L ( Si,j -1 - 2Si,j + Si,j+l ) 2 (3.1) 

i=O j=1 

m-2 m-2 
+ L L (si,j - si+Lj - Si,j+l + Si+l.j+l) 2 

i=O j=O 

subject to Sij = f(ij) 'V f(ij) E N(f). 

To solve this problem he uses a nonlinear programing algorithm called the gradient projection 
algorithm (actually he seems to use a modified version of this algorithm usually known as 

Goldfarb's algorithm see A vriel (1976). To implement this algorithm he develops stencils (see 
Grimson (1981, P 183-184» to allow the calculation of the gradient of the objective function. To 
determine the amount to move in this direction, one must calculate the minimum of the objective 
function in that direction. To do this Grimson calculates the value a that minimized the expression: 

m-2 m-l 

L L (Si-l,j - 2Si,j + si+l,j + adi-lj - 2adi,j + adi+l,j)2 
i=l j=O 

m-l 
+ L 

i=O 

m-2 

L (Si,j-l -2sj,j + Si,j+l+ adij-l - 2adi,j + adi,j+l)2 
j= 1 

(3.2) 
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m-2 m-2 

+ L L (Si,j - si+l,j - Si,j+l + si+l.j+l 

i=O j=O 
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where diJ is the negative of the value obtained from the convolution of the appropriate stencil (see 
Grimson (1981, P 183-184)) with Si,j (i.e. the negative gradient direction or direction of steepest 
decent of minimizing the surface variation). He the concludes that a = all a2 where 

and 

m-2 m-l 
a 1 = 2: 2: (si-l J -2si,j + si+ l,j)2 (di-l,j -2di,j + di+ l,j )2 

i= 1 j=O 

m-l m-2 

+ 2: 2: (Sij-1- 2Si,j+Si,j+1)2 (di,j-1- 2dij+di,j+l)2 
i=O j=l 

m-2 m-2 

(3.3) 

+ 2: 2: «Si,j - si+l,j - Si,j+l + Si+l,j+l)2 (diJ - di+l,j - di,j+l + di+l,j+l) 2) 
i=O j=O 

m-2 m-l 

a2 = L 2: ( di- Lj - 'J·d' . + d' 1 . )2 - 1.J 1+.j 
i= 1 j=O 

m-l m-2 

+ 2: 2: (d' . 1 - 2·d· . + d" 1)2 l.j- l.j l.j+ 
(3.4) 

i=O j= 1 

m-2 m-2 

L 2: (di.j - di+l,j - di,j+l 
., 

+ + di+l.j+l) -
i=O j=O 

Thus the complete gradient projection based algorithm employed by Grimson consists of the 

following 5 steps: 

Step 1: Determine a feasible initial surface (any surface interpolating the information will do). 
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Step 2: Compute the negative of the gradient direction (the di,j above) by taking the the 

convolution of the current approximation (the Si,j 's) with the stencils (sening the d i.j = 0 

if i,j is an infonnation point). 

Step 3: Compute CII and CII (from fonnulas (3.3) and (3.4) above) and then set CI = al / a2· 

Step 4: Refine surface approximation (i.e. for each ij set Sij:= Sij + CI·di,j)· 

Step 5: If di,j ~ E \;;f i,j ~ m then approximation is complete 

Else goto Step 2: 

§3.2 The Method of Reproducing Kernels. 
The method of reproducing kernels calculates a spline function that exactly solves the 

continuous problem of rmding the function from Fl minimizing 9(f). There are at least two differ-

ent algorithms based on the use of reproducing kernels, we shall present only one. The interested 

reader may consult Boult (1985b) or Boult (1986) for a more detailed discussion of both 

algorithms based on reproducing kernels. The following discussion of reproducing kernels for 

interpolation is based on the theoretical work of Meinguet (1979a, 1979b). 

For this method to be appropriate it is sufficient to have F 1 be a semi-Hilbert space and S(f) 

the associated semi-nonn with null space n 1. (Throughout this paper n 1 is the space spanned by 

{l,x,y}). To insure uniqueness of the solution we must assume that the infonnation Nk(f) 

contains a n I unisolvent subset, i.e. there exists a set J of indices (a subset of the index set I = 

1 ... k) and associated information points Xj,yj with information values Zj such that for each element 

of J (there are 3 in the present case) there exists a unique Pj(x,y) E nl such that for all j, j' from J, 
pjCXj,Yj) = I and Pj(xj',yj') = 0 if j;t:j'. Note that if Nk contains evaluations 3 or more non­

colinear points, then Nk(f) will contain ani unisolvent subset. (This restriction on the information 

having at least 3 non-colinear points also applies to the gradient projection based algorithm.) 

In the development of this method we use that fact that we can separate the space F 1 into Xo EB 

n I. Xo = {g E Fl: g(Xj,Yj) = 0, \;;f j E J} where EB is a (topological) direct sum. With this 

decomposition Xo is a Hilbert space with 9(') as a nonn (not a semi-nonn). Given the repro -

ducing kernel KO«s,t);(x.y» of Xo (which can be expressed in tenns of the reproducing kernel of 

F I and the functions Pj(x,y), see Boult (1985b» the spline surface, of minimal S(t) nonn, which 

interpolates the information N(t) is given by : 

OM(X,y) = L Yi' KO«xi, Yi); (x, y» + L Zj' Pj(;l(j>Yj) (3.5) 
i E I-J j E J 

• 
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where the coefficients Yi can be calculated from the (k-3) by (k-3) dense linear system: 

L Ko(xk,Yk; xi,Yi) . Yi :: 
ieA-J 

Zi - L Zj' Pj(Xj,yj) 
je J 

rtke 1. (3.6) 

The reproducing kernel method then consists of the three following steps: 

Step 1: Calculate the matrix of coefficients for the left hand side of equation (3.6). 

Step 2: Compute Yi, i =1..k-3, the solution to equation (3.6). 

Step 3: Compute the value of interpolating surface at all solution points using equation (3.5). 

Note that Step 1 and 2 are necessary parts of the algorithm, whereas step 3 is simply to allow 
comparison of this method with the gradient projection based algorithm. Also note that for flxed 
regular data it is possible to precompute the Cholesky decomposition of the coefficient matrix 
(which is determined entirely by the location of the infonnation), and then step 2 is simply the 
calculation of the Yi's using back substitution. 

A proof that the above spline is of minimal nonn can be found in Meinguet (1979a, 1979b). 

§4 Comparison of Computational Issues of The Two Methods. 

In this section we provide an analysis and comparison the two visual surface interpolation 
methods on a number of computational issues. These issues and the subsection in which they are 

trea ted are: 
§4.1 Time complexity, 
§4.2 Space complexity, 
§4.3 Inherent Parallelism and Parallel Time Complexity, 
§4.4 Optimality and Accuracy of Solution. 

For all of the comparisons we shall assume that k, p, n are defined as in sections 2 and 3 . 

When we refer to the steps of the gradient projection based algorithm and the reproducing kernel 
method, we are referring to the steps as defmed in sections 3.1 and 3.2 respectively. A synopsis 

of the results can be found in Table 4.1. 

§4.1 Time Complexity. 
First lets us estimate an upper bound on the worst case running time (assuming each arithmetic 

operation costs unity) of the reproducing kernel method when the infonnation is from V'2G zero 
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crossings. Obviously step 1 costs 0(k2), and step 3 cos~s O(kp). For step 2, using Cholesky 
decomposition (the matrix is positive definite), the cost wIll be 1/6 k3. Therefore the worst case 
cost is 1/6 k3 + 0(k2 + kp). (A careful analysis of the current implementation results in a cost of == 
1/6 kJ + 70kp + O(kl), but this depends on the choice of the space Fl, norm S(f) and the 

associated reproducing kernel.) 

Now we note that if the information is gathered on a regular grid, then we can do the Cholesky 

decomposition once (a precomputation), and store the results. Given this decomposition we can 
reduce the cost of step 2 to 0(k2), and the overall cost to 0(k2 + kp). (In fact, given the 

decomposition for a grid of size r x r we also have the decomposition for all smaller grids.) 

Now let us estimate an upper bound on the worst case running time of the gradient projection 

based algorithm. Step 1 of that algorithm obviously cost O(n). Examination of the stencils given 
in Grimson (1981, p183) yields a cost per iteration for step 2 of approximately 26n. For step 3, 
equations (3.3) and (3.4) yield a per iteration cost of approximately 24n. Finally for step 4 costs 
2n per iteration. Thus the total per iteration cost of the algorithm is == 5On. We take the number of 

iterations to be n, which is the upper bound on the number iteration of the Goldfarb's algorithm 
(the nonlinear programing algorithm on which the method is based) for problems of this type (see 
A vriel (1976, p436». (Note that this is far better than the 0(n2) iterations which Terzopoulos 
(1984, p103) suggests the gradient projection based algorithm takes.) Combining the above we 
arrive at a total estimated cost for the gradient projection based algorithm of approximately 50n 2. 
(We note that the number of iterations will actual depend on the number of, value of, and location 
of the infonnation. Thus one may be able to get a better estimate for fIxed regular data. However 
one can easily show that no placement of data can result in less than "'(nIk) iterations and worst 
case placement of fIxed data can easily be shown to result in at least 2"'n iterations. Both of these 
bounds are trivial, and the actual lower bound is probably O(n).) 

Thus for v2a zero crossing information the reproducing kernel method is faster whenever 1/6 

k3 + 70kp < 5On2. And for grid data, the reproducing method is faster when O(k2) + 70kp < 
50n2. 

§~.2 Space Complexity. 
The space required for the reproducing kernel method is .5k2 + O(k) for steps 1 and 2 

(independent of the type of information), and k+p + 0(1) for step 3. (This assumes that the user 

needs all p values at the same time. If the user can use the points sequentially, then the space for 
step 3 is simply k + 0(1 ).) 

The space complexity of the gradient projection based algorithm can be calculated by examining 
equation (3.2). Although algorithms trying to obtain minimal time complexity may use more 

• 
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space. each iteration of the algorithm can be programed using only 2n + O(-../n) space. Note that no 

savings in space is obtained if the user only requires the solution points one at a time. 

Therefore the reproducing kernel method will use less space whenever min(k2,k+p) < 2n, (i.e. 
whenever k < -../(2n) because p ~ n). 

§4.3 Inherent Parallelism and Parallel Time Complexity. 
In this subsection we examine the sources of parallelism in both of the methods, and estimate 

their parallel time complexity. True values may vary depending on the instruction set of the parallel 
machine being used, its topology, its memory limitations, number of processors and its mode of 
operation (SIMD or MllvID). 

There are four different sources of parallelism in the reproducing kernel method. The fIrst is 
the evaluation of the spline function at one point, which involves the evaluation and summation a 

weighted kernel function at each of the k information points. This can be parallelized in a straight 

forward SIMD fashion to run in time O(log k). 

The second source of parallelism in the reproducing kernel method is the evaluation of the p 

surface solution points. These points can easily be evaluated simultaneously, again in a SIMD 
fashion, resulting in a factor of p speedup. Combining the fIrst two parallelizations we could 

speed up the surface reconstruction (given the coefficients of the spline) from 70kp to O(log k). 

The third form of parallelism come from the calculation of the coeffIcients of the spline. Given 

the decomposition of the coefficient matrix, we can compute the coefficients in parallel in time k.. 

The fInal type of parallelism is that inherent in the solution of a kxk linear system. This has 

been studied elsewhere and in general one can gain a speed up factor of k. 

Thus our estimate of the parallel running time for the reproducing kernel algorithm is O(k2) if 
we must decompose the matrix coeffIcients (as we must for v2a information), and O(k) if the 

decomposition is precomputed (as it is may be for regular gird data). 

The parallelisms inherent in the gradient projection based algorithm include the calculation of 

the gradient direction, local calculation of each of the terms needed for the calculation of the 
parameter Ct, and updating the surface. These will reduce the number of operations per iteration by 

an estimated amount of 26, 20, 2 respectively. Furthermore, given the local terms for the 
calculation of the parameter a, we can speed up that calculation by a factor of (log n ) I n by using 

log reduction for the summation. Note that the number of iterations cannot be reduced by parallel 

implementation. The total estimated time complexity of the paral1el gradient projection based is 

O(n'log n). 
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Based on these estimates, a parallel implementation of the reproducing kernel method would be 
faster than a parallel implementation of the gradient projection based algorithm when O(k2) < 

O(n'log n) and the location of the data is allowed to vary, or when the data is fIxed and O(k) < 

O(n'log n). 

§4.4 Optimality and Accuracy of Solution. 
Both methods under consideration started off with the idea of finding the surface of minimal 

norm (9(t) over Flo a Hilbert space (or semi-Hilbert space). This had the advantage of resulting 

in a unique specillcation of the surface to recover. As mentioned before it is known that such a 
surface is also a minimal error solution among all surfaces in the class F 1 that interpolate the data, 

and that this minimal error property holds for almost any reasonable defInition of error, see 
Kender, Lee, and Boult (1985). Thus theoretically both methods are attempting to fInd an optimal 
error interpolant from Fl' 

The reproducing kernel method theoretically does calculate this optimal error surface. The 

erro~ in the coefficients of the spline surface, introduced by the approximate solution of the linear 

system, however result in the algorithm reconstructing a different surface. The magnitude of the 
error in these coeffIcients depend on the condition number of the linear system, which in tum 

depends on the placement of the information points. Initial experiments suggest that for a regular 

grid of information the condition number is approximately 19.5 k2. Because Cholesky decompo -
sition and back substitution are numerically stable (given proper implementation), we know the 
resulting coefficients differ from the true spline coeffIcients by at most e' == c'· 2-t ·19.5 k2, 

where t is the number of bits in the mantissa of the floating point representation on the machine and 
c' is a fixed constant depending of the floating point implementation. Then the maximum error of 
any surface reconstruction (from the optimal surface, not from the surface generating the 
information) is < k·e' max(KO)' Note that this is totally independent of the number of 

reconstruction points, but depends on the distance of the reconstructed points from the information 
points. 

The gradient projection based algorithm however leaves its theory behind. The fIrst step in the 
method is the discretizaton of the functional to minimize. This discretizaton is well studied in 

mathematical physics, and the error introduced by it is O(h2) where h is the distance between grid 

points. The method then attempts to minimize this discrete functional without regard for the space 
F 1, thus its solution may not even be a "feasible solution". (Note that this is not as simple a 

problem to over come as it might seem because the discretized version of e(f) is no longer a norm 
or semi-norm on F 1 so there is not even an assurance of a surface minimizing the discretized 

ve~ion of a(t) existing, let alone being reachable by a sequence of surfaces from Fl.) Finally 

there is the error introduced by the gradient projection portion of the algorithm, and by terminating 
the algorithm before it has computed the exact solution (to the perturbed problem.) Currently we 
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do not have estimates on the error of the algorithm, but the work of Terzopoulos (1984) suggests 

that the error does goes to zero, albeit very slowly, as both the number of points and number of 
iterations grows. 

Time Complexity 

Space Complexity 
Parallel Time Complexity 

Reproducing(Fixed) 

O(k2 + kp) 

(.5k2+0(kp» 
O(k) 

Reproducing(Varying) 

(1/6 k3+O(k2+ kp) 

(.5k2+0(kp» 
0(k2) 

Gradient Projection 

50n2 

(2n+OC"n» 
O(n log n) 

Table 4.1: Comparison of essential properties of 2 algorithms. Here k is the number of 
information (depth) samples; p is the number of points in the desired solution; n is the number 
of points in the grid used by the gradient projection based algorithm. The fIxed and varying in 

the titles refer to situtations where the location of the data is fIxed and varying respectively. 
This affects the performance of the reproducing kernel algorithm. 

§5 Advantages of Spline Representation. 

In this section we discuss the advantages of the spline representations over the mesh / grid 
representation used by the gradient projection based algorithm . 

The ftrst advantage of the functional spline representation (as a weighted sum of kernel 

functions) is that we can easily compute a estimate of any functional on the "true surface" (e.g. an 

integral or a derivative of the surface that generated the information points) by applying said 

functional to the spline as a function. In fact, provided that the functional is linear and that the 
space F 1 is sufficiently smooth, the estimation so obtained is an optimal error estimate (see Traub 

and Woz'niakowski (1980». Using this fact, we can easily compute the orientation of the surface 

at any point, and even estimate the bending energy (however since this is not a linear functional. i 
it not necessarily an optimal estimate). These values might be used to segment the image. or locat 
surface discontinuties. 

A second advantage of the spline representation is that it can easily be used in a system that' 
a focus of attention. It can easily generate depth values at any points, and if the system dec 
(after looking at some initial depth values) that it would like to look at a portion of the surfa' 
more detail, there is no need to recalculate the spline, simply evaluate the spline function at thl 

desired points. Along these lines, the system can also update its idea of a surface, by adding 
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infonnation point, calculating the updated spline coefficients (this costs only k 2 ) and updating the 

surface points. 

A third advantage of this representation is that it is less orientation dependent than a grid of 

values. If the visual system were to rotate or translate (as long as it does not change the relative 
order and spacing of the infonnation points) then the coefficients of the spline are the same, and the 
spline is simply rotated or translated as well. This property does not hold for a grid of data. 

A final advantage is that this representation is generally more compact (in space terms) than the 
grid representation. The spline is defIned by 3k values, these are the k coefficients and the location 
of the k infonnation points. Given these values, one can reconstruct the spline or compare this 
spline with another spline. This could then be used as a means of saving the reconstructed surface. 
Also given advantage three above, the spline representation might be used in a surface recognition 

algorithm. 

§6 Extensibility of the Interpolation Methods. 

In Grimson (1981), Grimson argued, rather convincingly, that the correct "unreasonableness" 
functional was quadratic variation. He however considered only a particular fonn of functional, 
and there may be more appropriate functionals which are not of the fonn he considered. Also, the 
space in which we attempt to minimize the functional has some effect on the interpolating surface, 
and we should consider other possible spaces for reconstruction, even for the quadratic variation 
functional. 

Inasmuch as the reproducing kernel method fmds the surface of minimal nonn from a Hilbert 

space (or semi-nonn and semi-Hilbert), in theory it can be applied to any "unreasonableness" 
functional which is the nonn (semi-nonn) of such a space. However, to do this we must be able to 
construct the reproducing kernel of said space, and this can be technically very diffIcult. Thus we 
can easily apply it only in those situations when the reproducing kernel is already known. 
Fortunately there are a number of such spaces some of which may be appropriate for visual surface 
reconstruction, see Boult (1985a). In fact, a number of these kernels exist for higher dimensions 
allowing the algorithm to be extended into arbitrary dimensions. 

Given the different reproducing kernel, the only change to the algorithm is to replace all 
evaluations of the old kernels with the appropriate evaluations of the new kernel. If the null space 
of this new space is different from that of the space F 1, then we must also change the functions 

p(x,y) used by the algorithm. 
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To extend the gradient projection based algorithm to another functional, one would fIrst have to 

develop the new discretized version of the functional. Given this discretization, one would then 
derive how to compute the negative of the gradient function, and the parameter a. Note that if the 

functional is not quadratic, these last two modification may be very diffIcult. Modifying the 

algorithm to compute the minimization with respect to another class of functions is not even 

possible since it approximates the surface without regard to a space of functions. It would also be 

very diffIcult if not impossible to add this feature into the algorithm, since it would involve 

verifying that the surface produced by each iteration was a member of the given class of functions. 

§7 Conclusions. 

In this paper we have compared two different algorithms for visual surface interpolation. And 

with the possible exception of biological feasibility, we found that if the information was sparse, 

the reproducing kernel algorithm surpassed the gradient projection based algorithm in almost every 

important algorithmic aspect If, however, the number of infonnation points was comparable to 

the number of points at which we are to recover the interpolation surface, then the gradient 
projection based algorithm may be superior. 

Given that the problem of visual interpolation is generally posed as one with sparse 

information, we believe that the reproducing kernel method will be a superior algorithm for 
computer vision uses. 
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