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Abstract We find lower and upper bounds on the complexity comp(deg), of computing
the topological degree of n functions defined on the n-dimensional unit cube C™, f : C™ —
R™ n > 2, which satisfy a Lipschitz condition with constant K and whose infinity norm
at each point on the boundary of C" is at least d, d > 0, and such that g’% > 1.

A lower bound, compy,,, =~ 2n(£§)"" (¢ + n) is obtained for comp(deg), assuming that
each function evaluation costs ¢ and elementary arithmetic operations and comparisons
cost unity.

We prove that the topological degree can be computed using A = ([% +1]+1)" -
(L& + 1] - 1)" function evaluations. It can be done by an algorithm p* due to Kearfott,
with cost comp(p*) = n(c + %(n —1)!). Thus for small n, say n < 5, and small ﬁ-, say
K <9, the degree can be computed in time at most 10%(c +300). For large n and/or large

ﬁ the problem is intractable.



1. INTRODUCTION.

The problem of computing the topological degree of a function has been studied in many
recent papers, see Kearfott (1977,1979), Stenger (1975), and Stynes (1979a,1979b,1981).
From the topological degree one may ascertain whether there exists a zero of a function
inside a domain. Namely, Kronecker’s theorem, see Ortega and Rheinboldt (1970), states
that if the degree is not zero, then there exists at least one zero of a function inside the
domain. By computing a sequence of domains within nonzero degrees with decreasing
diameters one can obtain a region with arbitrarily small diameter which contains at least
one zero of the function, see Kearfott (1977,1979) and Stynes (1981). Algorithms proposed
in these papers were tested by their authors on relatively easy examples. They concluded
that the degree of an arbitrary continuous function could be computed. [t was observed,
however, see Kearfott (1977,1979) and Stynes (1981), that the algorithms may require an

unbounded number of function evaluations.

In this paper we restrict the class of functions, this enables us to compute the degree
for every element in the restricted class using an a priori bounded number of function
evaluations. We consider the class F' of Lipschitz functions with constant K, defined on
the unit cube C* C R™, f: C™ — R", such that ||f(z)||c 2> d > O, for every z € 8C",
the boundary of C", and & > 1. Note that if £ < 1 then the functions in F do not
have zeros and therefore the degree is zero for every f. The case 1 < %% < 4 is open.
The information on f, Ny (f), consists of m values of f on dC™ which may be computed
adaptively. This form of information is assumed since the topological degree is defined
by the values of f on JC™, see Ortega and Rheinboldt (1970). The topological degree is
computed by means of an algorithm © which is a mapping depending on the information,

@ : Nm(F) — I, where I denotes then set of all integers.

In this paper we solve the following problems:

(1.1) We exhibit information N, which uniquely determines the degree of f forevery f € F.
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This information consists of

a=(|%+1]+) - ([5+]-1)
function evaluations, see Sect. 3.
(1.2) We exhibit an algorithm ©* due to Kearfott (1979) which uses N, to compute the
degree, see Sect. 4.
(1.3) We find a lower bound m*, roughly equal 2n([£§])"“, on the number of function

evaluations necessary to find the degree of f for every f in F using arbitrary infor-
mation Np,, see Sect. 5.

We remark that information N, is parallel (nonadaptive), i.e., the evaluation points are
given a priori. Thus N, can be efficiently implemented on a parallel computer yielding an
almost optimal speed-up, see Traub and WozZniakowski (1984) for further discussion.

Assuming that each function evaluation costs ¢ and elementary operations cost unity,

(1.1) yields a lower bound comp),, on the complexity, comp(deg), of the problem
compjgy 2n( )" L(e + n)

If % is large and/or n is large then the lower bound is so huge that the problem is

intractable. For example take & = 10® and n = 10 then the compjow =~ 2 - 102%(c + 10).
The cost of algorithm ¢* is roughly A(c + ng-(n — 1)!). Thus for small n, say n < 5 and

small 5%, say ﬁ < 10, p* computes the degree in time at most roughly 103 - (¢ + 300).
We remark that in Boult and Sikorski (1985a) (see also Boult (1986)) we find the com-

plexity compy(deg) for the two dimensional case,

(1.4) comp,(deg) = 4 lKJ (c+a) -1

where a € [2,24].

In Boult and Sikorski (1985a) we exhibit an algorithm with cost as (1.4) with a=24.
This algorithm (n = 2) as well as the n-dimensional algorithm * (for small n, n > 3)
exhibited here are implemented in Boult and Sikorski (1985b), see also Boult (1986).
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2. BaAsIc DEFINITIONS

Let C™ = [0, 1]" be the unit cube in R™, n > 2, I the set of all integers, ||-|| = || - oo
the infinity norm in R™ and @ = (0,...,0) € R". For a given positive d and K define

F={f:C"=R"[=(Ni,....Ja) IIf(z) = SY)Il < Kl|z -yl

2.1 .
21) ,Vz,y € C" and ||f(2)|| 2 d,Vz € AC™, and 521}

Our problem is to find the topological degree, deg(f,C™,8) of f relative to C™ at 6, see
Ortega and Rheinboldt (1970), for every f in F. To solve this problem we use information
Nm and an algorithm ¢ using N,,. These are defined as in Traub and Wozniakowski
(1980): Let f € F and

(2.2) N (f) = [f(z1),..., f(zm)]
where z, € C™ is given a priori, z; = Z;(f(z,),..., f(z;-1)) and Z; is a transformation
% RrU-1 o 0C™,y =2,...,m. If Z; are constant, i.e. all z; are given a priori, then the

information is called parallel (nonadaptive), otherwise it is called sequential (adaptive).
By minimal cardinality number my;, we mean the minimal m for which there exists

information N,, which uniquely determines the degree of any f in F, i.e.
Nem(f) = Nm(f') = deg(f',C™,6) = deg(f,C™,68),¥/,f' € F.

Knowing N,, we appraximate deg(f, C™,8) by an algorithm ¢, which is an arbitrary map-
ping
(2.3) @: Nu(F)—1I.

We exhibit an algorithm ¢* using information N, ( mentioned in the Introduction) which
was developed by Kearfott (1979) and is based on his parity theorem.
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3. INFORMATION N3}

In this section we prove that the computation of function values on a uniform grid with

diameter less than 2% uniquely determines the degree.
Namely let M = lﬁ + IJ and R = 1/M. Subdivide each (n — 1) face of C™ into M"—!
equal cubes of diameter R, by subdividing each edge into M equal intervals of length R.

In this way we obtain a subdivision of 3C™ into 2nM™~! cubes C; of diameter R:

2nM"-?

(3.1) acn= |J G
=1

Let X = {z),...,z4} be the set of all vertices of cubes C;. Obeerve that
A=M+1)"-(M-1)".
Then define the information operator
Ni=U(z1),.... f(za)], VfEF.
We show
LEMMA 3.1. The information N} uniquely determines the degree for every f in F, i.e.
NA(f) = Na(9) implies deg(f,C",6) = deg(9,C™,8), Vf g€ F.

i
PROOF: To prove Lemma 3.1 we use the Poincaré-Bohl Theorem, see Ortega and Rhein-
boldt (1970). Namely let A(¢,z) = tf(z) + (1 — t)g(z),Vt € [0,1] and Vz € 3C". To
conclude that deg(f,C™,8) = deg(g,C™,6),¥f,g € F such that N3(f) = Ni(g), it
is enough to show that the homotopy A(t, z) is non zero for every ¢ € [0,1] and every

z € 3C™. To show this take an arbitrary z € §C™. Then there exists an z; such that
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llzy — 2]l € R/2 < &. Since z, € 3C™ and f € F we get [|f(z,)|| = | fi(z,)| > d for some
i,1 < ¢ < n. Then we have |fi(z) = fi(z;)| < ||f(2) = f(z)ll £ K]|z — z,]| < d. This
implies that f;(z) # O and signf;(z) = signfi(z;). Since f(z;) = g(z;) and g € F, then
gi(2) # 0 and sign gi(z) = sign fi(z). Therefore for every ¢ € [0, 1] we have

At 21| 2 [tfi(2) + (1 = t)gi(2)]
= tfi(2)| + (1 = t)lgi(2)]

2 min(|fi(2)],1gi(2)]) > O

which completes our proof. [

4.ALGORITHM USING INFORMATION N}

We exhibit here an algorithm ¢°, due to Kearfott (1979), using the information N} to
compute the degree. The algorithm ¢* and information N} are implemented in a Fortran
subroutine in Boult and Sikorski (1985b), where a number of numerical tests are also
reported. Fortran Code can be found in the appendices of Boult(1986).

First we show that the evaluation points z;,¢ = 1,..., A, yield an impartial refinement
of 8C relative to the sign of f, for every f in F.

Impartial refinement, see Stynes (1979a), is defined as follows:

Definition 4.1: If n =1 then 3[0,1] = {0} U {1} is impartially refined relative to sign of
[ iff f(0)- f(1) <O.

[f n > 1 then dC™ is impartially refined relative to the sign of f if dC™ may be written

as a union of a finite number of of (n — 1) regions §, ..., A, (by an (n — 1) region we mean

a union of a finite number of (n — 1) simplices) in such a way that:

(4.1) the (n — 1) — interiors of 5, — s are pairwise disjoint;
(4.2) Vie(l,...,q,3ri €[1,...,n]: [, is of constant sign on f;;
(4.3) if Binf; #0for i # j then r; # ry,
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if S; is an (n — 1) simplex in §; such thatS; has an (n — 2) — face in 93,

(4.4)
then this face is also an (n — 2) face of some (n — 1) simplex S, in 3,,1 # ;.

Now consider the subdivision (3.1) of 3C" into 2nM™~!(n — 1)-cubes, and subdivide
each of the cubes C; into (n —1)! (n — 1) simplices as described in Jeppson (1972). This
forms a simplicial subdivision of 3C", see Allgower et. al. (1971) and Jeppson (1972), into

2nM"=t(n - 1)! (n — 1)-simplices:

L
(4.5) dC™ =) t;S;, ty==%1, L=2nM™,

PET

where S; are oriented, see Kearfott (1979), and Stynes (1979a,1979b,1981). From, (n —1)-
simplices. Note that the vertices of S, are uniquely determined by this subdivision and the
evaluation points z;. The explicit formulas for the vertices of S;’s are given by Allgower
et. al. (1971) Jeppson (1972) and fortran code generating them can be found in Boult and
Sikorski (1985) and Boult (1986).

We are now ready to prove:

LEMMA 4.1. The subdivision (4.5) yields an impartial refinement of 3C™ relative to the

sign of f, for every f in F. ]

PROOF: We construct the regions f; from Def. 4.1. For an arbitrary f in F and for each
cube C; in the subdivision (3.1) choose a component f;, of f which is of constant sign
on C,. Such a component exists since for some j;, |f;;(2:)] = d where z; is the center
of C;. Thus f;, is of constant sign on C; since the radius of C; is less than -,d(- and f
is in F, ie. |f,,(2) = f5,(2)] S |If(2) = fl2)ll € Kllz -z <dfor|lz -zl < £,
which yields sgn(f;,(2)) = sgn(f;,(z;)). Then group the cubes C, to form connected
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regions f;,1,...,05k; such that f; is of constant sign on each ,i,! = 1,...,k,, and

Bi1, NBji, =8, I # 3. In this way we obtain a decomposition of C™

n kj

(4.6) ac™ = J U B

Jy=1l=1

which satisfies (4.1)-(4.3) of Def. 4.4. Since each cube in every fJ,; is subdivided into
(n = 1) simplices forming a simplicial subdivision of 3C then (4.4) of defintion (4.1) is also

met. This completes the proof. )

Remark 4.1: Since the impartial refinement of dC™ is also a sufficient refinement (see
Kearfott (1979) and Stynes (1979a, 1979b, 1981) for the definition of sufficient refinement,
and Stynes (1979a, Th. 3.3) for the above result) then we can use Kearfott’s Parity
theorem, see Kearfott (1979), to compute the degree. ]

Let S = [S;,...,Sa] be an (n — 1) simplex in R™ with vertices S;,i = 1,....n. The
range matrix R(S, f) associated with S and f € F is an n x n matrix:
R(S,f) = ["Lj]?.,:n ri; = sgn(f,(S)),

where
_J1 if 220
sgn(”)“{o if 2<0

The range matrix R(S, f) is feasible if

riy=1 ¥i2>2jy and
(4.7)
rii+1 =0, t=1,...,n-1.

Define the parity of the range matrix R(S, f) by

1 if R(S, f) is feasible after an even permutation of rows
Par(R(S, f)) = § —=1  if R(S, ) is feasible after an odd permutation of rows;
0 otherwise.




We remark that the parity can be computed by roughly n?/2 comparisons.
Define the algorithm ¢° using N3 by

L

(4.8) ©*(N2(N) =D_ Par(R(t; - S;, /),

y=1

where L and ¢,S; are as in (4.5). Then Remark 4.1 and Parity Theorem, see Kearfott
(1979), imply that
deg(f,C™,8) = p"(NA([)), Vf€F.

Observe that implementation of ¢* requires computing the parities of L =

2nM"~1(n — 1)! simplices. Thus the complexity of ¢* is at most
n3 n3
comp(p*) € Ac+ 2nM™"!. -E-(n -1)<A (c + ?(n - 1)!)

where ¢ is the cost of one function evaluation and arithmetic operations and comparisons

cost unity.
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5. A LOWER BOUND

In this section we find a lower bound on the number of function evaluations needed to

compute the topological degree of functions from the class F.

THEOREM 5.1. For any information Nm, with m < 2n | &|"™" ~ 1, there exists two
functions f*, f** in F such that Nm(f**) = Na(f") and |deg(/*,C™ 8)| = 1 aad
deg(f**,C",6) = 0. I

Note that Theorem $.1 implies (1.3), i.e. to compute the degree for any f € F using
arbitrary information N,, we must use at least m = 2n([ &))" function evaluations.
This lower bound is exponential in the dimension n, thus for large n and/or large 5- the
problem is intractable.

In order to prove Theorem 5.1 we need the following lemma.

LEMMA 5.1. Let H™ be an n-cube in C™ with diameter 8% < 1 such that:

B® = H"NAC™ is an b(n - 1) face of H", and corresponding
(5.1)
(n —1) faces of H™ and C™ are parallel

Then there exist a function " € F, f* = (ST, ), such that:

there exists exactly one zero a™ of f*, |la” - b"|| = %,
(5.2)
where b" is the center of B", and dist(a™, B") = %
(5.3) [f(z)=dforzeC* - H", V,
(5.4) [1/™(2)l| = d for z € 8C™,

a 4 . .
(5.5) a—g = +Kb;; where 6} = {‘l’ £

' =3,
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which implies that a is a simple zero,

(5.6) ~d< fP(z)<d, VzeC™, Vi

(5.7) VzeCm: ||z -7 222 35 : Pz) = d.

PROOF: The proof is by induction on n. Let n = 2 and let A2 be a square satisfying 5(.1).
Without loss of generality assume that B? C [0,1], B? = [by, b;], s0 * = (b, + b2)/2,0).
Letey = 6% + (%, ﬂ-) and ¢; = b3 - (-,4(-, -,4(-). Define the function f2 : C? — R? by:

7*(2) = (£}(2), f3(2)
ﬁ(z) = min(d1 max(—d, —'2d + K”Z - Cl”))o

f3{(2) = min(d, max(~d, -2d + K||z - e2][)),

see Fig. 5.1.

Observe that f2 satisfies Lipschitz condition with constant K and that a? = 4% +
(-4, £) is the unique zero of f2. Thus dist(a?, B?) = £ and ||a® - #?|| = £, which
implies (5.2). The definition of f2 directly yields (5.3), (5.4), (5.6), and (5.7). For (5.5)
observe that

Ot ks, amd 28| ks, iz
5e |, = Kbuad H = Kbiai=12

Thus the lemma holds for n = 2.

INDUCTION STEP.

Now assume that Lemma 5.1 holds for n — 1. Let H® C C", diam(H,) = 8%, be an
n-cube such that (5.1) holds. Without loss of generality assume that all points in B™ have
the 5-th (5 # n) component equal to 1. (f y = n then the same construction follows with

the n-th dimension replaced by the 1-st dimension).
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Figure 5.1
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Let H"=! be the orthogonal projection of H™ onto the C™~!. From the induction

assumption there exists f®~! for H"~! such that (5.1)-(5.6) hold. Define. (see Fiz. 5.2),

(5.8) a” = {(af,...,a}),
wherea? =a?",j= l,...,n -1, agzbg-—% and 4" = (b7,...,b7) is the center of
B".
Let
(5.9)
. . . d ) d X d d
y(l],...,t"_g)= (b?+t|"I?,...,b?_l‘f'lj_l'E,l,b;-‘+l+|]'+1'E,...,bg+‘E)

where i; € {+1,-1},5=1,...,n — 2, i.e. these are 2"~2 points in B".
Define the function g”,¢" : C* — R, by

(.10) g"(z) = min(d, §1(2), ..., §n-2(2)),

where y,(2) = max(—d, —2d,+K||z - y||), and y;,6 = 1,...,2"~2, are all of the points
y(fy,...,4n-2). Observe that g" satisfies Lipschitz condition with constant K as minima
and maxima of such functions. Also note that the zerosetof g*, 2y = {z € C" : ¢"(z) = 0},

(see Figure 5.2 for the case with n = 3) is given by

A . ne
Zo={zeCm i 2g =llz -yl Sl - ylly=1,...,277%).

Finally for z€ C™, 2 = (24,...,2n), let 2=(24,...,2n—1) be the orthogonal projection of
z onto C™~ 1,

Define
[(2) = (7(2),..., [2(2)),

where
_ [z, VzeHn
f',“(z)—{d, VzeC™ - H,
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Projection of
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and

( min(d, max(/’n—l(é), _d+ Klzn - (b: - 2}%))) for 2 e H™ :
e bp -4 <z <bn-24,
(S17(3), forze H™ :
fiz) = h—24 <z, <7
min(d, max(f*~!(2), —d + K|z, — 7)), forze H™ :
by <zn SR+ 44
\d forzeC™ - H",

fori=12,...,n—-1.

Now we show that f™ is in F and satisfies (5.2)-(5.7).

First we check that f™ is continuous. Since for every z € C™ — Int(H"), ||z b"|| > 4,
then g;(2) 2 -2d + K||z — ys|| 2 -2d + K-3-,4( = dVy = 1,...,2"2 and therefore
9"(z) = d. This and continuity of g” implies that f7 is continuous. Thus we must only
check the continuity of f;‘, y=1...,n-1 atall 2 € C*" - H" and z € H" such
that zo = b7 or z, = b7 — 2&. Firstlet z€ C™ - H™. If 2, = b’ - 44 then f(2) =
min(d, max(f*~'(Z),d)) = d. i z, = $3+4 & then f7*(z) = min(d, max(f]*~'(),3d)) = d.

If b7 - 4% <z, < B0 +4% then z € (C"=! — H"-!) and from the induction assumption
f?~Y(3) = d which implies fP(z) = d. For z € H™ such that z, = b? we have f(z) =
min(d, max(f*~!(2), =d)) = f*~'(Z), i.e. f* is continuous. For z € H" such that z, =
br — 2% we have f7(z) = min(d, max(f?~'(Z), —d)) = f*~'(3), i.e. f} is continuous.
Thus all of f* are continuous which implies continuity of f™. The function f™ satisfies
a Lipschitz condition with constant K since it is defined by taking minima and maxima
of Lipschitz functions with constant K. Now we show that a” is the only zero of f™.

Obviously f™ can have zeros only inside H™. Let z € A" be such that:

2d

(5.11) F Sb:—T('.

Then |z, — (b7 + -}‘{-)l > 3-,% so ||z — yl| 2 3-;‘{- Yy, ¢ = 1,...,2"" 2. This yields that
9"(2) = min(d,d,...,d) = d, thus f™ has no zeros in this domain.
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Take

n d
(5.12) Zn 2 bn + 2-1?.

Then |z, — 67| + 2% which combined with the induction assumption SPY(2) < d yields

f™(2) = min(d, max(f?*~"(Z),d)) =d. Thus f, has no zeros in this domain.

Take now
e ] d n
(5.13) B - 24 < 2 S B
In this domain, by the induction assumption the only zeros of f7,; = 1,...,n — 1 are
(a?=1,... ,anTl ... aRZ],2z4). But g" is zero only for one of these points, namely with

zn = by — #. To see this recall that la?~! - 7] < £, 7=1...,n-1landal =07 - &,
thus by the definition (5.9) |ja" = y|| = 2-}- fori=1,...,2"% 80 g"(a") = 0. For every
z € H" such that o} — ﬁ < zn < b} there exists a y; with i; = 1 for a3~ > b7 and
iq = —1 for a?~! < b7" such that ||y; — || < 2%, thus g"(z) < 0. For every z € H" such
that o] — 23‘% <zp <O} - -,4‘- and for every y; we have ||y; — z|| > 27‘{-, thus gn(z) > 0.
Therefore a” is the only zero of f in this domain.

For

d
(5.14) by < zn <O + 2?

We shall take any z such that g"(z) = 0 and show that 35 € {1,...,n—1} such that [7*(z) #
0. Observe first that if |zj — 57| > 24 forsome y = 1,...,n—1, then ||z—6"""|| > 2& and
from the induction assumption (5.7) there exists an ¢ such that f7~'(Z) = d, which implies
JMz) = dsince |z, — 57| < 2£. Thus assume that |z; RS 24,Vj=1,...,n—-1, and
take z such that ¢"(z) = 0. This means that

0 Vi, 1$i$2 -yl 225,
and

. : d

(i) Iz -yl = 2
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Suppose that y,» = y(i1,...,%n—;) where

d
U=t rca.

ZQ_b:+"q‘

and

d
< 2?’ for g € Q.,

zq—b4n+i0'_

K

1

where Q) #0and Q;UQ; ={1,...,5—-1,5+1,...,n—=1}. Thus for every ¢ € Q;, we have
|2g =631 =38 or |z, - 7| = £. If 39 € Q, such that |24 — 63| = 34 then ||z - b"|| 2 34
and (5.7) implies that f*(z) = d for some i. Otherwise, (i.e. if |z, - b7| = ;% for all
q € Q1), 2z = b7 = . Then take y(iy,..., in—3) such that iy are as above for ¢ € Q,, and
for ¢ € Q take ig = +1 if zg = b7 + fandig=-1ifz, = b3 - £. This implies that
Ny(f, ..., tha2) = 2|]| < 2% which contradicts (i) and completes the proof of the existence
and uniqueness of the zero of f™.

Obviously ||a™ - b"|| = % sincea” = b} — F and [a} - b} |< S fori=1,...,n— 1.
Also note dist(a”, B") = dist(a"~!, B"~!) = £, thus (5.2) holds.

Equations (5.3) and (5.7) follow immediately from the definition of f™ and the continuity.

Now we show that (5.4) holds. Obviously (5.3) implies (5.4) for z € 3C™ — B™. Therefore
let z € B™ and subdivide B™ into 5 regions, B?,1,...,5 (see Figure 5.2 for the case n=3),

where

S
B, = UB:‘
1=1
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n d
B{‘:{zeB":zn?.bn‘*'ZE '

d d

B} = zeB":b{,‘Sz,.<b',:+2E and ||z—b"||22E},
niod n d

By = ZEB":b:ﬁZ,,(b,,'i'zE and ||z—b||<2E ,

B::{ZEB":b:—%SZ,‘(b:},

d
zeB":z,.<b',:—2E}.

Then recall that (5.6) holds and

(a) Vz € BT, by an argument similar to (5.12) we have MN(z) =d, s =1,...,n -
1, thus ||f"(z)|| = d.

(b) ¥z € B} the same argument as (5.14) yields f*(z) = d for some i € {,...,n =1}

(c) Vz € BY we have |z, — (b7 + -,%)I < ﬂ-, |z; = 07| < 2-,‘}- and obviously z; = 67 = 1. Let
Qi ={i:2 267} and Q3 = {i: 2; < b7}. Then for i € Q, we have |z — (b7 +4) <
,—f,—, and for 1 € @, we have |z; — (b7 - %)l < %. Thus for y(1,...,¢n-2) such that
fg=1for g € Q1 and iy = —1 for ¢ € Q3 we get ||y(f1,...,in"3) - 2| £ % which
yields yi(z) = —d for some 1 € {1,...,2"=3}, i.e. g"(z) = —d.

(d) Vz € B} the induction assumption (5.4) and the definition of " yield [|[/A1(2)|| = d,
therefore || f™(2)|| = d.

(e) Yz € BY(5.11) implies that g"(z) = d,therefore ||f"(z)|| = d.
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Thus Vz € 3C™ we have ||f*(2)|| = d, which completes the proof of (5.4).

For (5.5) note that for z close to a”by the induction assumption and definition of f"

we have %{':-(z) =0, Vi=1,...,n Thus we need to show only %’,% o= +K  bin,t =
l,...,n. Let y(sy,...,in—2) be such that for a > b2 we have i; = +1 and for ag < b3
we have {; = —1. Then |af — (87 + 1, - %)I < % since ||a”™ — b*|| < ,—d(-, and obviously

|a? - 87| < &. For z in a small neighborhood of a™ we have

)= 0

=1,.,2""

(<24 + K- Iz - wl)

min
=-2d+ K- , Mz =will

1=1,..., n-

=-2d+ K- ||z - y(i,...,1n=2)l|

Thus ¢"(z) = —2d + K - |24 — (b7 + $)|, and therefore

ag"| _ d n, d "
7 z‘,[K ( z"+(b"+K))]a— K - &n,

which shows (5.5).

Now we show (5.7). Observe that (5.3) implies (5.7) for z € C* — H". For z € H"
such that z, < b} — 2-,4(- or z, 2 b + 2-,4{- (5.7) follows directly from the proofs following
(5.11) and (5.12). For z € H™ such that b3 — %g- < z, < b7 and ||z - b"]| 2 2% we
have ||z = "~ > 2% and then by the induction assumption there exists y such that
f;'_'(i) =d, 8o f[*(z) = d. For z € Hp such that b} < z, < b} +2;4(- and ||z - b"|| 2 2-,{,-
as in (5.14) we have ||Z - b"~!|| > 2-}% and by the induction assumption there exists j
such that f,‘-‘"(i) = d which combined with the definition of f" yields f7'(z) = d, which
completes the proof of (5.7).

The function f™ is in F since it satisfies a Lipschitz condition with constant K and its

norm is exactly d on the boundary of C™ (see (5.4)).
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This finally completes the proof of Lemma 5.1. (We bet you thought it would never

end.) |

We are now ready to prove Theorem 5.1.

First let P = [5’%] and we show that for every f in F and every sequential (adaptive)
information N (f) = [f(z1),..., f(zm)], with m < 2nP™~! — 1, there exists a cube
H™ c C™ with diam(H") = 8;“- satisfying (5.1), and such that no point z; belongs to
B". Indeed, subdivide the boundary of C™ into 2nP™~!(n - 1) cubes of diameter 1/P
by subdividing uniformly each (n — 1) face of C™ into P*"~!(n — 1)-cubes. Then since
m < 2nP™-! — ] there must exist at least one (n — 1)-cube in this subdivision, say B",
which does not contain any of the z; points. Since diam B" = 1/P > 8%, take as B™ any
(n = 1) cube of diameter Sﬂ-, contained in B", with faces parallel to the corresponding
faces of B™.This B" is obviously an (n — 1) face of a cube H™ satisfying (5.1).

Let f**(z) = [d,...,d],Vz € C™, and let H" be constructed as above. Let f* = f™ from
Lemma 5.1 applied to this cube H". Observe that

(5.15) Nm(f") = Nm(["),

since for every z;, f**(z;) = f*(z,) = [d,...,d]. Moreover there exists a unique zero a” of
f*. Let D be an open neighborhood of a™ such that f* is continuously differentiable in
D. Then since a™ is a simple zero of f*, the degree deg(f*, D,6) = £1. Also since f* has
no zeroe in C™ — D then deg(f*,C™ — D,8) = 0. Thus by the additivity of degree we get

deg(/*,C™,0) = deg(f*, D, 6) +deg(f*,C" - D,0) = £1.

Obviously deg(f**,C™,8) = 0, which combined with (5.15) completes the proof.
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