
Distributed Algorithms

in Synchronous Broadcasting Networks

CUCS-180-8S

Zvi GaIil, Gad N. Landau, & Nordechai !-1. Yung

Zvi GaliP

Department or Computer Science, Tel-Aviv University, Tel-Aviv, 69978

and Department or Computer Science, Columbia University, New York, NY 10027

Gad M. Landau

Departfrn!nt or Computer Science, Tel-Aviv University, Tel-Aviv, 69978

Mordechai M. Yung2

Department or Computer Science, Columbia University, New York, NY 10027

lSupport~d in pl.r\ by NSF rrl.nh MCS-830313g I.nd DCR-8511713

2Support~d io pm by NSF rrl.O\ MCS-830313g I.od 1.0 IBM r~llowsbip

1

Abstract

In this paper we consider a synchronous broadcasting network, a. distributed computation model which

represents communication networks that are used extensively in practice. We consider a basic problem of

information sharing: the computation of the multiple identification function. That is, given a. network of p

processors, each of which contains an n-bit string of information, how can every processor compute

efficiently the subset of processors which have the same information as itself'! The problem was suggested

by Yao as a generalization of the two-processor case studied in his classic paper on distributed computing

118\.

The naive way to solve this problem takes O(np) communication time, where a time unit is the time to

transfer one bit. We present an algorithm which takes advantage of properties of strings and is O(n log2p

+ p) time. A simulation of sorting networks by the distributed model yields an O(n log p + p)

(impractical) algorithm. By applying Yao's proba.bilistic implementation of the two-processor case to both

algorithms we get probabilistic versions (with small error) where n is replaced by log n in the complexity

expressions. We also present lower bounds for the problem: an O(n) bound and an O(p) bound are shown.

2

1. Introduction

The synchronous broadcasting distributed computation model presented here represents existing

communication systems (for example, multiple-frequency-hopping radio networks or point-to-multipoint

networks). Works in theoretical computing have considered either routing network models 11011611141 or

single channel broadcasting networks where either transmission order is prearranged 151. or a resource

sharing (Ethernet-like) mechanism is used 1711171. A recent work Igi considers the multi-channel case when

the network has few channels, but the order of transmission and channel allocation is prearranged as well.

Previous work unjustiriably neglected the network model, derined as follows: The processors in the

network are {P l' ,P p}' the network is fully connected and the communication is via the links. The

operation mode is synchronous and the communication operations are tran8mi88ion, in which the

processor broadcasts its message, and reception, in which the processor chooses a processor to listen to

and gets one bit during a single unit of time. This choice is made dynamically. This work is the first one

known to the authors which considers this model in a theoretical context. Section 2 describes the model in

detail.

One of the central class of problems in a distributed environment is information recognition and

identification in a global context 131. In such an environment each processor has its own local information,

and the basic problem is how to let the processors recognize, share and process information which

originally belongs to other processors. We find interesting versions of the problem in practice: in

distributed sensor networks (abbreviated DSN) 11g1 and in distributed operating systems 11611121. This

problem is also modeled in different theoretical contexts 111131118111111611141.

To demonstrate problem solving capabilities of the synchronous broadcasting network, we investigate

the following problem: Given a network of p processors, each with an n-bit string, each processor wants

to know_t1!e subset (cla"8) of processors which have the same information as itself. This problem appears

in various situations. For example, the string ca.n be information observed in a DSN where the system

tries to compare signals received by different remote sensors and decide their credibility.

The problem is a generalization of the identification function computation: Two processors, one with a

string x and the other with a string y, wish to compute the function f(x,y)= CX,Y.

3

(ox,y=1 iff x=y, and 0 otherwise.) Yao 1181 defined the function, proved a lower bound on the

communication complexity of this problem, and showed that at least n bits have to be transmitted when

we allow deterministic two-way communication. He also gave a probabilistic protocol (with small error) in

which only O(log n) bits are exchanged. Finally, he suggested a generalization to three processors in a very

special case where two of them send information to the third one, and posed an open question: what is the

complexity ot the problem where more than two processors are involved! Here we examine this question in

the model presented above.

The immediate solution to the network of p processors gives an n(p-l) time algorithm. We design an O(n

log2p + p) time distributed algorithm. We use string properties, propose 3. structured organization of the

communication, and design an algorithm which uses only communication operations and comparisons of

bits. A second algorithm is given where the distributed system simulates a sorting network. In this

algorithm the processors use arithmetic operations. Using the reduction to sorting and incorporating

recent results [21[131. we are able to design an O(n log p + p) time algorithm (with a very large constant

multiplying the n log p term). Both algorithms can be transformed into probabilistic ones if a small error

can be tolerated. In the probabilistic versions the n term becomes log n in both complexity expressions.

Sections 3 and 4 present the algorithms while section 5 describes the probabilistic implementations.

Lower bounds of a(n) and a(p) to the problem are given in section 6. Our algorithm allows the

processors to send messages which include information (i.e. addresses) about other processors. We show

that restricting messages to be functions only of the processor's input weakens the model, since any such

restricted algorithm requires a(np). We then suggest some open problems, the most challenging of which

is developing lower bound techniques ror broadcasting networks. The synchronous broadcasting model

seems to defy all known lower-bound techniques. These bounds are usually based on weaknesses of the

model in information transfer, while our model seems to have no such weaknesses.

4

2. The Synchronous Broadcasting Network Model

The processors in the model (P 1' •.••••• ,P p) are random access memory machines (RAM's) with local

memory: without loss or generality we can assume that p=21c• A processor is identified by its name (its

index) by all the processors. The network is rully connected, the communication is via the links, and there

is no central common memory.

The operation mode is synchronous: in each time unit each processor can perform either a local

computation or one or the rollowing communication operations:

1. tran~mj.Mion- the processor broadcasts (sends) its bit to all its outgoing links.

2. reception- the processor chooses a processor to listen to and gets one bit rrom it.

Two sub-models are possible, according to communication concurrency. A rull-duplex communication in

which concurrent transmission and reception are allowed and a hair-duplex communication in which each

processor can either transmit or receive in a given time unit. In the first sub-model there are no problems

or synchronization. In the second one, howeve:. we might need to synchronize operations; ir a processor

has to receive a bit or inrormation rrom another processor while the second one is not transmitting. but

receiving information itself instead, then the first processor will have to try again. It is apparent that (2

log p) time units of half-duplex communication are surrici'!nt to simulate one step or the rull-duplex

communication. At time unit 2i-l the processors whose numbers contain 0 in the i-th position broadcast

their bits, while in time unit 2i those with 1 in the i-th position broadcast.

In the rest of the section we show that the model is not sensitive to the inexistence or concurrency in the

communication operation. We present a simulation of the rull-duplex model by the hair-duplex one in

which each time unit or the rormer model is achieved in only six units or the latter one. We call this

simulation the Echo Algorithm. The idea is that the parity of the processor partitions the processor set in

a manageable way.

The Echo Algorithm:
Each processor Pi has a bit bi'

begin
1. odd processor

even processor 2i
: sends its bit.
: gets bZi-l from P Zi-l'

2. odd processor 2i-1 : gets bZi from P zi'

even processor : sends its bit.

5

{ at thi.! point, in each pair oJ proce.!.!or8 (PZi-l' P Zi)'

each member know.! both bZi-l and bZi }

3. odd processor 2i-1 : sends bZi-l'
even processor : if it needs bZi-1 it gets it from P Zi-l'

4. odd processor 2i-1 : sends bZi ' { PZi-1 "erve.! a.! echo Jor PZi }
even processor : if it needs bZi it gets it from P Zi-l'

5. odd processor : if it needs b2i-l it gets it from P Zi-l'

even processor 2i : sends b2i_1- {PZi ~erve.! a.! echo Jor PZi-l }

6. odd processor : if it needs b2i it gets it (rom P 2i'
even processor 2i : sends bzi.

end; { Echo-Algorithm}

The Echo algorithm is a universal compiler which takes care of the synchronization problem and

translates algorithms in the full-duplex sub-model into the half-duplex one_ This implies that one can

design algorithms for the half-duplex sub-model using the stronger full-duplex one.

3. The 1v1ultiple Identification Algorithm

First we describe some properties of binary strings used by the algorithm, then we describe the

algorithm and prove its properties.

3.1. Relations on Strings

Let L= {O,l} and X,J E ED. We denote the bits of the string x: x{l) x(n).

We use the (ollowing notation to describe properties of strings and their prertxes_

Dertnition 1: Vi, ° < ~ n, x Ei y ~ V j, 0< j ~ i, x(j)=y(j).

Notice that trivially V x.yE ED: x Eo y.

6

Definition 2: V i, 1 ~ ~ n, x F j y ~ (x Ei-l y) and (-, (x ~ y)). (Notice that x FO+1 y means

x=y).

Ej simply means that the prefix of length i is equal, while F j means that the prefix of length i-I is equal

and the i-th bit is different, the notation is introduced to simplify the following discussion.

Two simple facts about binary strings are used by the algorithm:

Fact 1: Ej is an equivalence relation and Ej+ l is a subset of ~ .

Fact 2: V i, 1 <

3.2. The Information Structures in the Processor

In each processor P y we have the following data structures:

1. The input string which is the array l<y= x,,(l), ,l<y(n), where l<y(i)E {O,l}.

2. An address array Ry= Ry(1) Ry(n) to store processor addresses. Ry(i)E {O,l}lo(p. The

algorithm will satisfy the property that if Ry(i)=w then l<y F j =<W.

3. An output array Ny= Ny (1) Ny(p). Nv(i)E {O,l}, Ny(i) corresponds to processor number i.
The array is the result of the computation. It will be shown that at termination Ny (u)=l iff

l<y=xu'

3.3. Organization of Communication

Our algorithm is divided into steps. There are k=log p steps, in each one of them we partition the p=2k

processors into clusters. A cluster is a group of r consecutive processors P j+ l , P j+2, ... P j+ r• In a step

processors communicate only with proce!:sors in their cluster.

Definition 3: a 2m-cluster: In step m the clusters have size 2m and are called 2m-clusters. They are

defined in the obvious way. For ° ~ m ~ k there are 2k-m 2m-clusters. The j-th 2m-cluster is

Obviously, each processor is a zl-cluster, and there is one p-cluster which contains all the processors.

Clusters can be represented by a clu~ter tree. A 2m-cluster is the father of the two 2m-I-clusters contained

in it.

7

In step m let S be a cluster. Its left and right sons which are now sub-clusters are denoted by SI and Sr'

During the step there is a cluster conrerence: Each processor P y in the cluster is aware of its cluster
,

number, its own number within the cluster and its sub-cluster. The goal or the conrerence is to let PES y

collect the information about strings or processors in S. If P yE SI then it knows the inrormation about

strings in this sub-cluster rrom previous steps and it has to get inrormation rrom Sr' We will describe the

inrormation provided by the algorithm and will prove its surriciency. The arrays Ry and Ny represent the

information known to P y about its cluster. We will show that at the end of step m if P y and P ware in

the same cluster then Ny(w)=1 iff Xy==<W.

3.4. The Algorithm

The algorithm has log p steps. Before the algorithm starts, each processor P y assigns the following

values: For all j, Ry(j):=oJ where oJ denotes the null processor, and Ny(v):=l while for all j: j ~ v.

We describe the algorithm ror a general processor P y in cluster S=(SI U Sr) where (without lost of

generality) P y E SI' In each step the processor chooses a processor belonging to the other sub-cluster (Sr

in our case) from which it gets the inrormation about this sub-cluster. We call this processor the partner

of P y' denoted by P w' During the step the processor may change its partners. Sometimes during the step

the processor stops working for the rest of the step. Each processor P y has a local Boolean variable

named Worky which is true at a beginning of a step and stays true as long as the processor is working in

the step.

ALGORITH~1 Ii

Each step m (m=l, .. ,log p) has three parts:

Part 1. initialization:

P y chooses a partner P w (without loss or generality w is 2m-l+v) and Worky:=true.

Part 2. scanning:

During the step. P y scans the string Xy from lett to right in n time units. Let P w be its partner in time

unit i. An invariant property or partners' strings is Xy(l), ... ,Xy(i-l)=x,...(l), ,x,...(i-l) i.e. XyEi-lx,...· P y

8

receives "w(i) and ~(i)=u from its partner P w' If u oF ~ then since (~(i)=u) =t (~Fi xu), P y

concludes that Xu (1) •.... ,~(i-l)="w(l),• "w(i-l) i.e. xuEi-1Xy· It Xy(i) f= "w(i) then YiXy and since

Rw(i)=u it knows (by ract 2) that xu(1), ... ,xu(i)=Xy(l), ... ,Xy(i) i.e. "uEiXy. Therefore P y sets Ry(i):=w and

in the next time unit. u becomes the partner or v (w:=u). By changing partners P y can always scan the

next bit in ~he string during the next time unit. If, on the other hand, Xy(i)= "w(i), P y does not change

partner and copies Rw(i)=u to Ry(i). (This copying is actually needed only ir Ry(i)=4». It there is a.

mismatch (i.e. Xy(i)f="w(i)) and u=4> then P y can stop working in the current step since there are no

members or its class in the other sub-cluster (Worky:=ralse). The rollowing procedure describes the

processor's task in this part.

The Procedure 'Scan':

1. for j:= 1 to n do
begin { time unit j }

2. If Worky then
begin

2.a Send (Xy(j) , R,.(j)) ;
2.b Get rrom P w (~(j), Rw(j)) ;
3. Call 'Check'; {whether there is a match; see below}

end
4. else {Worky=ralse} wait a time unit;

end; { time unit j }

The procedure 'Check' summarizes the local operations in a time unit:

The procedure 'Check':
begin { time unit j (P y got "w(j) and Rw(j)) }

1. If Xy(j) = "w(j) { match}

2. then If (Rw(j) f= 1/» then Rv(j):= Rw(j)
else

{ mismatch "v f= "w}
3. If ~ f= I/>
4. then { change partner. update partner index}

begin Ry(j) := w; w:= Rw(j); end
5. else Worky := false;
end

Part 3. union class:

Arter scanning the string. the processor has to identiry processors in the other sub-cluster which belong to

its class: A processor which is still working knows that its current partner belongs to its class. It gets a

sequence or zeros and ones rrom its partner. The i-th element of this sequence indicates whether the i-th

element or the partner's sub-cluster belongs to the class or not. Here is the procedure which describes the

9

operation in short:

The procedure 'Union-class':
{Let LA be the smallest address in the processor's cluster

Let RA be the smallest address in the partner's cluster }

begin {step m }
1. for i:= 1 to 2m-I do

If Work y then
begin

2.30 Send (N y (LA-l + i))

2.b Receive from partner (Ny (RA-l + i))

end
end

3.5. Correctness and Complexity of the Algorithm

Consider the beginning of time unit j of step m and any P y E SI whose partner is P W' The claims below

are proved by induction on time (i.e .• on the step number and within a step on the unit of time). For

convenience we denote by Rm the array R at the end of step m.

Proof:

By induction on time, (1) holds since partner changes ma.intain it; (2) then is true since R is updated by

informa.tion from partners and by changes of pa.rtners. QED

Lemma. 1: (1) "w Ej:'l~'

Proof:

By induction on time. All decisions in a time unit related to the choice of the next partner, as well as the

update of R maintain (1) and (2). For example, assume by induction that at the beginning of time unit j

X"£j_l "w, and consider the case of a misma.tch (~(j) t= "w(j)). R~ (j) is set to w, and indeed ~ Fj

"w, so (2) holds. In the case that R~l(j)=u, P u becomes the new partner in time unit j+ 1. By fact 2 and

the induction ~ Ej xu' so (1) is maintained. QED

Lemma 2: If for P y' E SI U Sr ~ Fj ~, then R~(j) t=~; if in a.ddition P y' E Sr then P v is

still working at time unit j.

10

Proof:

Again by induction on time. If P y' E Sl' the lemma follows from the induction assumption, so we assume

Py ' E Sr'

We first show that P v is still working at time unit j. Let i< j be the time unit when P y stopped

working, and P w' be the last partner of P y' By lemma 1, a.nd by the algorithm

~.(i) ~ ~(i). Hence "w. F j ~ and by induction R:,-l(i) :# ~ and P v will get a new partner -­

contradiction. So P v is still working at step j.

Now recall that P w is the partner of P y at time unit j. In case of a match, we have by lemma 1 "w E j ~

and (by fact 2) "w F j ~" By induction R~-l(j) :# ~ and as a result R~(j) :# ~. In case of a mismatch

Ry(j) is set to w. So in both cases R~(j) :/=~. QED

From lemma 2 if for any P v E Sl there is P v,E Sr with ~ = ~" then P v is still working at the end of

time unit n. i.e., it still has a partner P wand by lemma 1 "w = ~. Hence, an induction on the number of

step shows the correctness of Union-Class, P v will get from P VI the processors from his class which are in

Sr and at the end of the step will know its cla.ss in his cluster.

Theorem 1: The algorithm is correct and its complexity is O(n log2p + p).

Proor: Since at the end of the algorithm all the processors are in the same cluster we conclude:

The algorithm consists of k=log p steps. In each 'Scan' sub-step, there are n time units: each costs (log

p + 1) communication bits. Therefore the total time spent scanning is O(n log2p). The length of 'Union­

Class' in a step is the length of the sub-cluster, hence the total time of the unions is L~:'~ 2j = O(p).

QED

11

4. An Algorithm Using Reduction to Sorting Networks

4.1. Simulation of Sorting Network

Constructing sorting networks is one of the most widely studied problems in parallel computation. For a

long time the best network to sort N numbers was Batcher's 0(log2N)-level construction 141. A recent

breakthrough by Ajtai, Komlos and Szemeredi 121 achieved an O(log N)-depth parallel network that sorts

N numbers. Their work also provided an O(N)-node, O(log N)-degree network which sorts N inputs in

O(log N) time (which is the depth of the network). Leighton 1131 further reduced the degree of such a

network to a constant. (These new networks are not practical since either the depth or the number of

processors has a huge constant factor.) A sorting network is composed of comparison boxes, each with

two inputs and two outputs. In our model a box can be simulated by four processors, two of which

contain the input strings of the box; the other two processor receive these strings (as output of the

comparison). The broadcasting network can simulate a sorting network and sort p k-bit words in O(k log

p) time. Each processor can quickly compute the addresses of the other processors involved in each

comparison, due to the recursive structure of the sorting network.

4.2. The Algorithm Using Sorting Network Simulation

ALGORITHM 2:

The algorithm has the following 4 parts:

Part 1. sorting:

Each processor concatenates its address v to its input:<y. The processors sort the strings <:<y,v>,

v=l, .. p (notice that v is less significant in the concatenated string). After the sorting, processor P v

receives the string <x'v'>. Call all processors which receive the sa.me x' a group. As a result of the

sorting, the group is a set of consecutive processors, the first group of processors, starting with PI'

contains the addresses (v'-s) of the first class (the one with the smallest x) in increa.sing order, and 80 on.

The idea is that now the group can compute the result of the computation by communicating only with a.

local consecutive block of processors.

Part 2. group boundaries:

12

Each processor performs a search to rind the boundaries of its group, that is, the smallest and largest

processors which got the same string x'. This can be done using one of the following methods:

• 1. The doubling technique: Each processor P v broadcasts its string (4 log p) times.

Simultaneously, P v compares its string to the one of the processor P v+l' P v+2' P v+4'" and so
on until its x' is dirrerent from the string x' of P v+2i, and then by binary sea.rch it rinds the
largest processor with the same string. The smallest processor is found symmetrically .

• 2. The method of searching for boundary indicators: The processor P v has two Boolean
variables called Lert and Right. Each processor compares its string x' with those of its
immediate left and right neighbors (P v-I and P V+I) and updates Len and Right according to

the result of the comparison. Then the processor broadcasts its variables <Lert, Right> p
times and simultaneously listens to its neighbors which are in its group rirst to its left neighbor
P v-I' then to P v-2' ...• until it gets an indication that some P v-j is not in the group; then it does

the same with its right neighbors.

Part 3. output calculation:

The goal of this part is to enable each processor P v to calculate the output N' of processor P v' whose

input string and address (x'v') were received by P v in part 1. Therefore, P y needs to know the addresses

received by all processors in its group. First, Pv (except if it is the smallest in its group) gets from P v- l

the address (v-1)' received by it in part 1. Then P v computes the dirrerence of the addresses v '-(v-l)'.

Now the i-th processor in the group knows the difference between the addresses of the i-th and the (i-l}-th

processors of the class which forms the group. Then one by one and in order the members of the group

(except the smallest one) broadcast the differences (using a special symbol to denote end-of-message).

Each processor, knowing all the differences, can calculate the addresses of the processors in the class. P v

computes a vector N' by assigning 1 to indices corresponding to addresses of members of the class. (N' is

the output v,ector of processor number v').

Part 4. output distribution:

The goal of this part is for P v' to receive its output from P v (which calculated N'). Processor P v

concatenates v' and its own address v. The system sorts <v',v> (v is less significant). As a. result,

processor P v' gets <v',v>, where v is the name of the processor that computed its output. Next P y'

receives the output N' from P v and the algorithm ends.

The algorithm correctness is directly implied by the sorting processes of the network and the searching

processes within the groups. The time analysis of the algorithm is as follows: Part 1 takes O((n+log p)Iog

13

p) sorting time and part 2 takes O(n log p) using the first method or O(n+p) using the second one. Part 4

takes O(p) time for broadcasting of N', dominating the sorting of the addresses, which takes only

0(log2p). The address difference transmissions in part 3 cost O(p), which dominates the time of this part.

The total time of the algorithm is therefore O(n log p +p).

The time analysis of part 3 is based on the observation that the sum of the differences transmitted by a

group in this part is bounded by p, which is implied by the following simple claim:

Lemma 3: If al'~'" .,alc

Ie

are non-negative integers that satisfy ~Ie (a) < p then
Li-I i '

Li=l ([~~ ail+ 1) = O(p).

We remark that a practical implementation of the algorithm, which uses Batcher's network, takes O(n

log2 p +p) time. This is the same complexity as our first algorithm. Notice that the algorithm using

simulation of sorting networks requires that processors perform additions and subtractions, while the first

algorithm does not.

5. The Probabilistic Algorithms

Karp and Rabin [81 introduced the idea of fingerprint function, which is to choose a random hash

function if> such that ¢>(x)< < x, and for every collection of strings of a given size there is only a small

probability that x t= y when ¢>(x) = ¢>(y). Given our set of strings (regarded as a set of binary numbers)

we can choose the family of functions to be { x mod q : q prime }, namely, the fingerprints are the

residues. The analysis given in [81 shows that the probability of an error is very small even for small q, q

~ 5 (log n + log pl. Yao used this idea to design a probabilistic two-processor algorithm: the same can

be done in the multi-processor case. Notice that we require the processors to perform modular arithmetic

operations when they compute the fingerprint.

The Proba.bilistic scheme is as follows:

• 1. PI chooses (probabilistically) a random prime q [81. q of length 20 + log(5(log n + log p))
bits, and broadcasts it.

• 2. Each Pi computes ¢>(xi)=xi mod q.

• 3. The processors execute the algorithm (a.ny of the algorithm presented) using ¢>(xi) as the

information string instead of the original input.

14

The complexity or the probabilistic version or ~lgorithm 1 is O((log n log2p)+ p) while the complexity of

the probabilistic algorithm which is based on algorithm 2 is O((log n logp)+ p).

5. Lower Bounds

We introduce here two lower bounds. The two cases are extreme cases where either the number of

processors or the length of the strings is constant.

Lemma 4: The multiple identification problem is O(n).

This is proven ror the case p=2. The proor is Yao's theorem in [181 since, when p=2. our model is not

stronger than the model in [181.

Lemma ,): The mUltiple identification problem is O(p).

Proor:

Consider the case where n=l: that is, one bit Xi is stored in each processor Pj. Let x be x1"2 ... "p. The

address information or a bit is actually its location in x. For a processor Pj' ir xj=1 then the output

Nj=x. Otherwise Nj is the complement string or x. In any algorithm the processor receives a certain

number of bits and computes N j • The transmissions must define the initially unknown part of x, that is a.

string of length p-l. Call the length of the transmissions LT, and call the Kolomogorov Complexity of x

(or its complement string, since they are the same) KC. We cla.im that LT~KC, since otherwise LT is a

shorter description or the string. Most or the s~rings or lengt h p-I have KC= O(p) so LT= O(p). The

length of the transmissions received by the processor is O(p) and in each time unit the processor gets one

bit; therefore the time of the algorithm is O(p). QED

\Ve comment that known techniques used for proving lower bounds, namely information transfer,

crossing sequences. fooling sets and arguments involving a network's diameter or a. transmission's history

(see for example: [IS\, [181, [111. [141. [10\, [9\, [5!) do not help us in the broadcasting model. This is

because after n units of time the input strings of all the processors can be transmitted while each

processor can get only part of this information.

Difrerent models restrict the message space differently. In our a.lgorithms processors send data

15

inrormation and address inrormation. We trade address transmissions ror the necessity or exchanging

inrormation with all the processors. This address-data transmission trade-orf is the idea that makes this

protocol superior to any protocol which allows only transmission of input data. Using [181 it is easy to

show that any such restricted protocol rorces the processor to get information about each input string in

the system directly from the processor holding that string. Thus about p2 problems are solved, and about

n p2 bits are exchanged in total. In each time unit only p bits can be received by all processors, and

therefore the algorithm must take n(np) time. This demonstrates the differences between the two­

processor case, which is the case considered by communication complexity which tries to capture

information transfer of input on a VLSI chip, and multi-processor models of communication networks,

where more information about the computation environment is known.

7. Conclusions

In this paper we have introduced the synchronous bro'l.dcasting model. A problem of information

sharing, the multiple identification problem was posed and solved using the model.

We demonstrated the power of broadcasting in distributed models. The cluster tree and simulating

sorting networks used in the solutions are efficient schemes for communication organization. Developing

methods of communication organization for different communica.tion schemes and network topologies is a

crucial steT> in distributed-algorithm design.

The main open problem related to this work is developing techniques for proving lower bounds for multi­

processor problems when we allow broadcasting and transmission of information which is not restricted

only to the input strings. This interesting topic requires further extension of the approach used here and

those of the field of communication complexity. Developing efficient algorithms which use broadcasting

effectively is a challenge as well.

8. Acknowledgement

We thank Manrred Warmuth ror helpful discussions and Bruce Abramson, Stuart Haber, Othar Hansson

and Andrew Mayer for their comments on earlier versions of the paper.

16

References

1. Abelson, H. Lower Bounds on Information Transfer in Distributed Computation. Symposium on
Foundation of Computer Science, IEEE, October, 1978, pp. 151-158.

%. Ajtai M., J. Komlos and E. Szemeredi. An O(n logn) Sorting Network. Symposium on Theory of
Computing, ACM, April, 1983, pp. 1-9.

3. Angluin D. Local and Global Properties in Network of Processors. Symposium on Theory of
Computing, ACM, May, 1980, pp. 82-93.

4. Batcher K. Sorting Networks and their Applications. AFIPS Spring Joint Computer Conference, 32,
1968, pp. 307-314.

5. Chandra A. K., M. L. Furst and R. J. Lipton. Multi-Party Protocols. Symposium on Theory of
Computing, ACM, April, 1983, pp. 94-99.

O. Gafni E., M.C. Loui, P. Tiwari, D.B. West and S. Zaks. Lower Bounds on Common Knowledge in
Distributed Algorithms, with Applications. University of Illinois at Urbana-Champaign, March, 1984.

7. Greenberg A.G. On the Time Complexity of Broadcast Communication Schemes. Symposium on
Theory of Computing, ACM, May, 1982, pp. 354-364.

B. Karp R.M. and M.O. Rabin. Efficient Randomized Pattern-Matching Algorithms. Harvard
University, Center for Research in Computing Technology, 1981.

g. Marberg J.M. and E. Gafni. Sorting and Selection in Multi-Channel Broadcast Networks. Computer
Science Department, Univ. of California, Los Angeles, 1985.

10. Pachl J., E. Korach, and D. Rotem. A Technique for Proving Lower Bounds for Distributed
Maximum-Finding Algorithms. Symposium on Theory of Computing, ACM, May, 1982, pp. 378-382.

ll. Papadimitriou C. H., and M. Sipser. Communication Complexity. Symposium on Theory of
Computing, ACM, May, 1982, pp. 195-200.

U. Saltzer, J.H. Naming and Binding of Objects. In Operating Systems.' an advanced course, Bayer, R.,
R. M. Graham. and G. Seegmuller, Ed., Springer-Verlag, 1978, pp. 99-208.

13. T. Leighton. Tight Bounds on the Complexity of Parallel Sorting. Symposium on Theory of
Computing, ACM, May, 1984, pp. 71-80.

14. Tiwari P. Lower Bounds on Communication Complexity in Distributed Computer Networks.
Symposium on Foundation or Computer Science, IEEE, October, 1984, pp. 109-117.

15. Ullman J. D.. Computational A.!pects of v1.SI. Computr Science Press, Rockville, Maryland, 1984.

10. Watson, R.W. Identifiers (Naming) in Distributed Systems. In Distributed System.!- Architecture
and Implementation: an advanced couru, Lampson B.W., M. Paul, and H.J. Siegert, Ed., Springer-Verlag,
1983, pp. 191-210.

17. Willard D. Log-logarithmic Protocol ror Resolving Ethernet and Semaphore Conflicts. Symposium
on Theory of Computing, ACM, May, 1984, pp. 512-521.

lB. Yao A.C. Some Complexity Questions Related to Distributive Computing. Symposium on Theory of
Computing, ACM, May, 1979, pp. 209-213.

10. Yemini Y. and A. Lazar. Towards Distributed Sensor Networks. Conference on Information Science
and Systems, Princton University, March, 1982.

