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Abstract 

In this paper we consider a synchronous broadcasting network, a. distributed computation model which 

represents communication networks that are used extensively in practice. We consider a basic problem of 

information sharing: the computation of the multiple identification function. That is, given a. network of p 

processors, each of which contains an n-bit string of information, how can every processor compute 

efficiently the subset of processors which have the same information as itself'! The problem was suggested 

by Yao as a generalization of the two-processor case studied in his classic paper on distributed computing 

118\. 

The naive way to solve this problem takes O(np) communication time, where a time unit is the time to 

transfer one bit. We present an algorithm which takes advantage of properties of strings and is O(n log2p 

+ p) time. A simulation of sorting networks by the distributed model yields an O(n log p + p) 

(impractical) algorithm. By applying Yao's proba.bilistic implementation of the two-processor case to both 

algorithms we get probabilistic versions (with small error) where n is replaced by log n in the complexity 

expressions. We also present lower bounds for the problem: an O(n) bound and an O(p) bound are shown. 
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1. Introduction 

The synchronous broadcasting distributed computation model presented here represents existing 

communication systems (for example, multiple-frequency-hopping radio networks or point-to-multipoint 

networks). Works in theoretical computing have considered either routing network models 11011611141 or 

single channel broadcasting networks where either transmission order is prearranged 151. or a resource 

sharing (Ethernet-like) mechanism is used 1711171. A recent work Igi considers the multi-channel case when 

the network has few channels, but the order of transmission and channel allocation is prearranged as well. 

Previous work unjustiriably neglected the network model, derined as follows: The processors in the 

network are {P l' ....... ,P p}' the network is fully connected and the communication is via the links. The 

operation mode is synchronous and the communication operations are tran8mi88ion, in which the 

processor broadcasts its message, and reception, in which the processor chooses a processor to listen to 

and gets one bit during a single unit of time. This choice is made dynamically. This work is the first one 

known to the authors which considers this model in a theoretical context. Section 2 describes the model in 

detail. 

One of the central class of problems in a distributed environment is information recognition and 

identification in a global context 131. In such an environment each processor has its own local information, 

and the basic problem is how to let the processors recognize, share and process information which 

originally belongs to other processors. We find interesting versions of the problem in practice: in 

distributed sensor networks (abbreviated DSN) 11g1 and in distributed operating systems 11611121. This 

problem is also modeled in different theoretical contexts 111131118111111611141. 

To demonstrate problem solving capabilities of the synchronous broadcasting network, we investigate 

the following problem: Given a network of p processors, each with an n-bit string, each processor wants 

to know_t1!e subset (cla"8) of processors which have the same information as itself. This problem appears 

in various situations. For example, the string ca.n be information observed in a DSN where the system 

tries to compare signals received by different remote sensors and decide their credibility. 

The problem is a generalization of the identification function computation: Two processors, one with a 

string x and the other with a string y, wish to compute the function f(x,y)= CX,Y. 
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(ox,y=1 iff x=y, and 0 otherwise.) Yao 1181 defined the function, proved a lower bound on the 

communication complexity of this problem, and showed that at least n bits have to be transmitted when 

we allow deterministic two-way communication. He also gave a probabilistic protocol (with small error) in 

which only O(log n) bits are exchanged. Finally, he suggested a generalization to three processors in a very 

special case where two of them send information to the third one, and posed an open question: what is the 

complexity ot the problem where more than two processors are involved! Here we examine this question in 

the model presented above. 

The immediate solution to the network of p processors gives an n(p-l) time algorithm. We design an O(n 

log2p + p) time distributed algorithm. We use string properties, propose 3. structured organization of the 

communication, and design an algorithm which uses only communication operations and comparisons of 

bits. A second algorithm is given where the distributed system simulates a sorting network. In this 

algorithm the processors use arithmetic operations. Using the reduction to sorting and incorporating 

recent results [21[131. we are able to design an O(n log p + p) time algorithm (with a very large constant 

multiplying the n log p term). Both algorithms can be transformed into probabilistic ones if a small error 

can be tolerated. In the probabilistic versions the n term becomes log n in both complexity expressions. 

Sections 3 and 4 present the algorithms while section 5 describes the probabilistic implementations. 

Lower bounds of a(n) and a(p) to the problem are given in section 6. Our algorithm allows the 

processors to send messages which include information (i.e. addresses) about other processors. We show 

that restricting messages to be functions only of the processor's input weakens the model, since any such 

restricted algorithm requires a(np). We then suggest some open problems, the most challenging of which 

is developing lower bound techniques ror broadcasting networks. The synchronous broadcasting model 

seems to defy all known lower-bound techniques. These bounds are usually based on weaknesses of the 

model in information transfer, while our model seems to have no such weaknesses. 
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2. The Synchronous Broadcasting Network Model 

The processors in the model (P 1' •.••••• ,P p) are random access memory machines (RAM's) with local 

memory: without loss or generality we can assume that p=21c• A processor is identified by its name (its 

index) by all the processors. The network is rully connected, the communication is via the links, and there 

is no central common memory. 

The operation mode is synchronous: in each time unit each processor can perform either a local 

computation or one or the rollowing communication operations: 

1. tran~mj.Mion- the processor broadcasts (sends) its bit to all its outgoing links. 

2. reception- the processor chooses a processor to listen to and gets one bit rrom it. 

Two sub-models are possible, according to communication concurrency. A rull-duplex communication in 

which concurrent transmission and reception are allowed and a hair-duplex communication in which each 

processor can either transmit or receive in a given time unit. In the first sub-model there are no problems 

or synchronization. In the second one, howeve:. we might need to synchronize operations; ir a processor 

has to receive a bit or inrormation rrom another processor while the second one is not transmitting. but 

receiving information itself instead, then the first processor will have to try again. It is apparent that (2 

log p) time units of half-duplex communication are surrici'!nt to simulate one step or the rull-duplex 

communication. At time unit 2i-l the processors whose numbers contain 0 in the i-th position broadcast 

their bits, while in time unit 2i those with 1 in the i-th position broadcast. 

In the rest of the section we show that the model is not sensitive to the inexistence or concurrency in the 

communication operation. We present a simulation of the rull-duplex model by the hair-duplex one in 

which each time unit or the rormer model is achieved in only six units or the latter one. We call this 

simulation the Echo Algorithm. The idea is that the parity of the processor partitions the processor set in 

a manageable way. 



The Echo Algorithm: 
Each processor Pi has a bit bi' 

begin 
1. odd processor 

even processor 2i 
: sends its bit. 
: gets bZi-l from P Zi-l' 

2. odd processor 2i-1 : gets bZi from P zi' 

even processor : sends its bit. 
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{ at thi.! point, in each pair oJ proce.!.!or8 (PZi-l' P Zi )' 

each member know.! both bZi-l and bZi } 

3. odd processor 2i-1 : sends bZi-l' 
even processor : if it needs bZi-1 it gets it from P Zi-l' 

4. odd processor 2i-1 : sends bZi ' { PZi-1 "erve.! a.! echo Jor PZi } 
even processor : if it needs bZi it gets it from P Zi-l' 

5. odd processor : if it needs b2i-l it gets it from P Zi-l' 

even processor 2i : sends b2i_1- {PZi ~erve.! a.! echo Jor PZi-l } 

6. odd processor : if it needs b2i it gets it (rom P 2i' 
even processor 2i : sends bzi. 

end; { Echo-Algorithm} 

The Echo algorithm is a universal compiler which takes care of the synchronization problem and 

translates algorithms in the full-duplex sub-model into the half-duplex one_ This implies that one can 

design algorithms for the half-duplex sub-model using the stronger full-duplex one. 

3. The 1v1ultiple Identification Algorithm 

First we describe some properties of binary strings used by the algorithm, then we describe the 

algorithm and prove its properties. 

3.1. Relations on Strings 

Let L= {O,l} and X,J E ED. We denote the bits of the string x: x{l) .... x(n). 

We use the (ollowing notation to describe properties of strings and their prertxes_ 

Dertnition 1: Vi, ° < ~ n, x Ei y ~ V j, 0< j ~ i, x(j)=y(j). 

Notice that trivially V x.yE ED: x Eo y. 
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Definition 2: V i, 1 ~ ~ n, x F j y ~ (x Ei-l y) and (-, (x ~ y)). (Notice that x FO+1 y means 

x=y). 

Ej simply means that the prefix of length i is equal, while F j means that the prefix of length i-I is equal 

and the i-th bit is different, the notation is introduced to simplify the following discussion. 

Two simple facts about binary strings are used by the algorithm: 

Fact 1: Ej is an equivalence relation and Ej+ l is a subset of ~ . 

Fact 2: V i, 1 < 

3.2. The Information Structures in the Processor 

In each processor P y we have the following data structures: 

1. The input string which is the array l<y= x,,(l), ..... ,l<y(n), where l<y(i)E {O,l}. 

2. An address array Ry= Ry(1) ......... Ry(n) to store processor addresses. Ry(i)E {O,l}lo( p. The 

algorithm will satisfy the property that if Ry(i)=w then l<y F j =<W. 

3. An output array Ny= Ny (1) ....... Ny(p). Nv(i)E {O,l}, Ny(i) corresponds to processor number i. 
The array is the result of the computation. It will be shown that at termination Ny (u)=l iff 

l<y=xu' 

3.3. Organization of Communication 

Our algorithm is divided into steps. There are k=log p steps, in each one of them we partition the p=2k 

processors into clusters. A cluster is a group of r consecutive processors P j+ l , P j+2, ... P j+ r• In a step 

processors communicate only with proce!:sors in their cluster. 

Definition 3: a 2m-cluster: In step m the clusters have size 2m and are called 2m-clusters. They are 

defined in the obvious way. For ° ~ m ~ k there are 2k-m 2m-clusters. The j-th 2m-cluster is 

Obviously, each processor is a zl-cluster, and there is one p-cluster which contains all the processors. 

Clusters can be represented by a clu~ter tree. A 2m-cluster is the father of the two 2m-I-clusters contained 

in it. 
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In step m let S be a cluster. Its left and right sons which are now sub-clusters are denoted by SI and Sr' 

During the step there is a cluster conrerence: Each processor P y in the cluster is aware of its cluster 
, 

number, its own number within the cluster and its sub-cluster. The goal or the conrerence is to let PES y 

collect the information about strings or processors in S. If P yE SI then it knows the inrormation about 

strings in this sub-cluster rrom previous steps and it has to get inrormation rrom Sr' We will describe the 

inrormation provided by the algorithm and will prove its surriciency. The arrays Ry and Ny represent the 

information known to P y about its cluster. We will show that at the end of step m if P y and P ware in 

the same cluster then Ny(w)=1 iff Xy==<W. 

3.4. The Algorithm 

The algorithm has log p steps. Before the algorithm starts, each processor P y assigns the following 

values: For all j, Ry(j):=oJ where oJ denotes the null processor, and Ny(v):=l while for all j: j ~ v. 

We describe the algorithm ror a general processor P y in cluster S=(SI U Sr) where (without lost of 

generality) P y E SI' In each step the processor chooses a processor belonging to the other sub-cluster (Sr 

in our case) from which it gets the inrormation about this sub-cluster. We call this processor the partner 

of P y' denoted by P w' During the step the processor may change its partners. Sometimes during the step 

the processor stops working for the rest of the step. Each processor P y has a local Boolean variable 

named Worky which is true at a beginning of a step and stays true as long as the processor is working in 

the step. 

ALGORITH~1 Ii 

Each step m (m=l, .. ,log p) has three parts: 

Part 1. initialization: 

P y chooses a partner P w (without loss or generality w is 2m-l+v) and Worky:=true. 

Part 2. scanning: 

During the step. P y scans the string Xy from lett to right in n time units. Let P w be its partner in time 

unit i. An invariant property or partners' strings is Xy(l), ... ,Xy(i-l)=x,...(l), .... ,x,...(i-l) i.e. XyEi-lx,...· P y 
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receives "w(i) and ~(i)=u from its partner P w' If u oF ~ then since (~(i)=u) =t (~Fi xu), P y 

concludes that Xu (1 ) •.... ,~(i-l )="w(l ), ....• "w(i-l) i.e. xuEi-1Xy· It Xy(i) f= "w(i) then YiXy and since 

Rw(i)=u it knows (by ract 2) that xu(1), ... ,xu(i)=Xy(l), ... ,Xy(i) i.e. "uEiXy. Therefore P y sets Ry(i):=w and 

in the next time unit. u becomes the partner or v (w:=u). By changing partners P y can always scan the 

next bit in ~he string during the next time unit. If, on the other hand, Xy(i)= "w(i), P y does not change 

partner and copies Rw(i)=u to Ry(i). (This copying is actually needed only ir Ry(i)=4». It there is a. 

mismatch (i.e. Xy(i)f="w(i)) and u=4> then P y can stop working in the current step since there are no 

members or its class in the other sub-cluster (Worky:=ralse). The rollowing procedure describes the 

processor's task in this part. 

The Procedure 'Scan': 

1. for j:= 1 to n do 
begin { time unit j } 

2. If Worky then 
begin 

2.a Send ( Xy(j) , R,.(j) ) ; 
2.b Get rrom P w ( ~(j), Rw(j) ) ; 
3. Call 'Check'; {whether there is a match; see below} 

end 
4. else {Worky=ralse} wait a time unit; 

end; { time unit j } 

The procedure 'Check' summarizes the local operations in a time unit: 

The procedure 'Check': 
begin { time unit j (P y got "w(j) and Rw(j) ) } 

1. If Xy(j) = "w(j) { match} 

2. then If (Rw(j) f= 1/» then Rv(j):= Rw(j) 
else 

{ mismatch "v f= "w} 
3. If ~ f= I/> 
4. then { change partner. update partner index} 

begin Ry(j) := w; w:= Rw(j); end 
5. else Worky := false; 
end 

Part 3. union class: 

Arter scanning the string. the processor has to identiry processors in the other sub-cluster which belong to 

its class: A processor which is still working knows that its current partner belongs to its class. It gets a 

sequence or zeros and ones rrom its partner. The i-th element of this sequence indicates whether the i-th 

element or the partner's sub-cluster belongs to the class or not. Here is the procedure which describes the 
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operation in short: 

The procedure 'Union-class': 
{Let LA be the smallest address in the processor's cluster 

Let RA be the smallest address in the partner's cluster } 

begin {step m } 
1. for i:= 1 to 2m-I do 

If Work y then 
begin 

2.30 Send ( N y (LA-l + i) ) 

2.b Receive from partner ( Ny (RA-l + i) ) 

end 
end 

3.5. Correctness and Complexity of the Algorithm 

Consider the beginning of time unit j of step m and any P y E SI whose partner is P W' The claims below 

are proved by induction on time (i.e .• on the step number and within a step on the unit of time). For 

convenience we denote by Rm the array R at the end of step m. 

Proof: 

By induction on time, (1) holds since partner changes ma.intain it; (2) then is true since R is updated by 

informa.tion from partners and by changes of pa.rtners. QED 

Lemma. 1: (1) "w Ej:'l~' 

Proof: 

By induction on time. All decisions in a time unit related to the choice of the next partner, as well as the 

update of R maintain (1) and (2). For example, assume by induction that at the beginning of time unit j 

X"£j_l "w, and consider the case of a misma.tch (~(j) t= "w(j)). R~ (j) is set to w, and indeed ~ Fj 

"w, so (2) holds. In the case that R~l(j)=u, P u becomes the new partner in time unit j+ 1. By fact 2 and 

the induction ~ Ej xu' so (1) is maintained. QED 

Lemma 2: If for P y' E SI U Sr ~ Fj ~, then R~(j) t=~; if in a.ddition P y' E Sr then P v is 

still working at time unit j. 
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Proof: 

Again by induction on time. If P y' E Sl' the lemma follows from the induction assumption, so we assume 

Py ' E Sr' 

We first show that P v is still working at time unit j. Let i< j be the time unit when P y stopped 

working, and P w' be the last partner of P y' By lemma 1, a.nd by the algorithm 

~.(i) ~ ~(i). Hence "w. F j ~ and by induction R:,-l(i) :# ~ and P v will get a new partner -­

contradiction. So P v is still working at step j. 

Now recall that P w is the partner of P y at time unit j. In case of a match, we have by lemma 1 "w E j ~ 

and (by fact 2) "w F j ~" By induction R~-l(j) :# ~ and as a result R~(j) :# ~. In case of a mismatch 

Ry(j) is set to w. So in both cases R~(j) :/=~. QED 

From lemma 2 if for any P v E Sl there is P v,E Sr with ~ = ~" then P v is still working at the end of 

time unit n. i.e., it still has a partner P wand by lemma 1 "w = ~. Hence, an induction on the number of 

step shows the correctness of Union-Class, P v will get from P VI the processors from his class which are in 

Sr and at the end of the step will know its cla.ss in his cluster. 

Theorem 1: The algorithm is correct and its complexity is O( n log2p + p ). 

Proor: Since at the end of the algorithm all the processors are in the same cluster we conclude: 

The algorithm consists of k=log p steps. In each 'Scan' sub-step, there are n time units: each costs (log 

p + 1) communication bits. Therefore the total time spent scanning is O(n log2p). The length of 'Union­

Class' in a step is the length of the sub-cluster, hence the total time of the unions is L~:'~ 2j = O(p). 

QED 
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4. An Algorithm Using Reduction to Sorting Networks 

4.1. Simulation of Sorting Network 

Constructing sorting networks is one of the most widely studied problems in parallel computation. For a 

long time the best network to sort N numbers was Batcher's 0(log2N)-level construction 141. A recent 

breakthrough by Ajtai, Komlos and Szemeredi 121 achieved an O(log N)-depth parallel network that sorts 

N numbers. Their work also provided an O(N)-node, O(log N)-degree network which sorts N inputs in 

O(log N) time (which is the depth of the network). Leighton 1131 further reduced the degree of such a 

network to a constant. (These new networks are not practical since either the depth or the number of 

processors has a huge constant factor.) A sorting network is composed of comparison boxes, each with 

two inputs and two outputs. In our model a box can be simulated by four processors, two of which 

contain the input strings of the box; the other two processor receive these strings (as output of the 

comparison). The broadcasting network can simulate a sorting network and sort p k-bit words in O(k log 

p) time. Each processor can quickly compute the addresses of the other processors involved in each 

comparison, due to the recursive structure of the sorting network. 

4.2. The Algorithm Using Sorting Network Simulation 

ALGORITHM 2: 

The algorithm has the following 4 parts: 

Part 1. sorting: 

Each processor concatenates its address v to its input:<y. The processors sort the strings <:<y,v>, 

v=l, .. p (notice that v is less significant in the concatenated string). After the sorting, processor P v 

receives the string <x'v'>. Call all processors which receive the sa.me x' a group. As a result of the 

sorting, the group is a set of consecutive processors, the first group of processors, starting with PI' 

contains the addresses (v'-s) of the first class (the one with the smallest x) in increa.sing order, and 80 on. 

The idea is that now the group can compute the result of the computation by communicating only with a. 

local consecutive block of processors. 

Part 2. group boundaries: 
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Each processor performs a search to rind the boundaries of its group, that is, the smallest and largest 

processors which got the same string x'. This can be done using one of the following methods: 

• 1. The doubling technique: Each processor P v broadcasts its string (4 log p) times. 

Simultaneously, P v compares its string to the one of the processor P v+l' P v+2' P v+4'" and so 
on until its x' is dirrerent from the string x' of P v+2i, and then by binary sea.rch it rinds the 
largest processor with the same string. The smallest processor is found symmetrically . 

• 2. The method of searching for boundary indicators: The processor P v has two Boolean 
variables called Lert and Right. Each processor compares its string x' with those of its 
immediate left and right neighbors (P v-I and P V+I) and updates Len and Right according to 

the result of the comparison. Then the processor broadcasts its variables <Lert, Right> p 
times and simultaneously listens to its neighbors which are in its group rirst to its left neighbor 
P v-I' then to P v-2' ...• until it gets an indication that some P v-j is not in the group; then it does 

the same with its right neighbors. 

Part 3. output calculation: 

The goal of this part is to enable each processor P v to calculate the output N' of processor P v' whose 

input string and address (x'v') were received by P v in part 1. Therefore, P y needs to know the addresses 

received by all processors in its group. First, Pv (except if it is the smallest in its group) gets from P v- l 

the address (v-1)' received by it in part 1. Then P v computes the dirrerence of the addresses v '-(v-l )'. 

Now the i-th processor in the group knows the difference between the addresses of the i-th and the (i-l}-th 

processors of the class which forms the group. Then one by one and in order the members of the group 

(except the smallest one) broadcast the differences (using a special symbol to denote end-of-message). 

Each processor, knowing all the differences, can calculate the addresses of the processors in the class. P v 

computes a vector N' by assigning 1 to indices corresponding to addresses of members of the class. (N' is 

the output v,ector of processor number v'). 

Part 4. output distribution: 

The goal of this part is for P v' to receive its output from P v (which calculated N'). Processor P v 

concatenates v' and its own address v. The system sorts <v',v> (v is less significant). As a. result, 

processor P v' gets <v',v>, where v is the name of the processor that computed its output. Next P y' 

receives the output N' from P v and the algorithm ends. 

The algorithm correctness is directly implied by the sorting processes of the network and the searching 

processes within the groups. The time analysis of the algorithm is as follows: Part 1 takes O((n+log p )Iog 
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p) sorting time and part 2 takes O(n log p) using the first method or O(n+p) using the second one. Part 4 

takes O(p) time for broadcasting of N', dominating the sorting of the addresses, which takes only 

0(log2p). The address difference transmissions in part 3 cost O(p), which dominates the time of this part. 

The total time of the algorithm is therefore O(n log p +p). 

The time analysis of part 3 is based on the observation that the sum of the differences transmitted by a 

group in this part is bounded by p, which is implied by the following simple claim: 

Lemma 3: If al'~'" .,alc 

Ie 

are non-negative integers that satisfy ~Ie (a) < p then 
Li-I i ' 

Li=l ([~~ ail+ 1) = O(p). 

We remark that a practical implementation of the algorithm, which uses Batcher's network, takes O(n 

log2 p +p) time. This is the same complexity as our first algorithm. Notice that the algorithm using 

simulation of sorting networks requires that processors perform additions and subtractions, while the first 

algorithm does not. 

5. The Probabilistic Algorithms 

Karp and Rabin [81 introduced the idea of fingerprint function, which is to choose a random hash 

function if> such that ¢>(x)< < x, and for every collection of strings of a given size there is only a small 

probability that x t= y when ¢>(x) = ¢>(y). Given our set of strings (regarded as a set of binary numbers) 

we can choose the family of functions to be { x mod q : q prime }, namely, the fingerprints are the 

residues. The analysis given in [81 shows that the probability of an error is very small even for small q, q 

~ 5 (log n + log pl. Yao used this idea to design a probabilistic two-processor algorithm: the same can 

be done in the multi-processor case. Notice that we require the processors to perform modular arithmetic 

operations when they compute the fingerprint. 

The Proba.bilistic scheme is as follows: 

• 1. PI chooses (probabilistically) a random prime q [81. q of length 20 + log(5(log n + log p)) 
bits, and broadcasts it. 

• 2. Each Pi computes ¢>(xi)=xi mod q. 

• 3. The processors execute the algorithm (a.ny of the algorithm presented) using ¢>(xi) as the 

information string instead of the original input. 
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The complexity or the probabilistic version or ~lgorithm 1 is O((log n log2p)+ p) while the complexity of 

the probabilistic algorithm which is based on algorithm 2 is O((log n logp)+ p). 

5. Lower Bounds 

We introduce here two lower bounds. The two cases are extreme cases where either the number of 

processors or the length of the strings is constant. 

Lemma 4: The multiple identification problem is O(n). 

This is proven ror the case p=2. The proor is Yao's theorem in [181 since, when p=2. our model is not 

stronger than the model in [181. 

Lemma ,): The mUltiple identification problem is O(p). 

Proor: 

Consider the case where n=l: that is, one bit Xi is stored in each processor Pj. Let x be x1"2 ... "p. The 

address information or a bit is actually its location in x. For a processor Pj' ir xj=1 then the output 

Nj=x. Otherwise Nj is the complement string or x. In any algorithm the processor receives a certain 

number of bits and computes N j • The transmissions must define the initially unknown part of x, that is a. 

string of length p-l. Call the length of the transmissions LT, and call the Kolomogorov Complexity of x 

(or its complement string, since they are the same) KC. We cla.im that LT~KC, since otherwise LT is a 

shorter description or the string. Most or the s~rings or lengt h p-I have KC= O(p) so LT= O(p). The 

length of the transmissions received by the processor is O(p) and in each time unit the processor gets one 

bit; therefore the time of the algorithm is O(p). QED 

\Ve comment that known techniques used for proving lower bounds, namely information transfer, 

crossing sequences. fooling sets and arguments involving a network's diameter or a. transmission's history 

(see for example: [IS\, [181, [111. [141. [10\, [9\, [5!) do not help us in the broadcasting model. This is 

because after n units of time the input strings of all the processors can be transmitted while each 

processor can get only part of this information. 

Difrerent models restrict the message space differently. In our a.lgorithms processors send data 
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inrormation and address inrormation. We trade address transmissions ror the necessity or exchanging 

inrormation with all the processors. This address-data transmission trade-orf is the idea that makes this 

protocol superior to any protocol which allows only transmission of input data. Using [181 it is easy to 

show that any such restricted protocol rorces the processor to get information about each input string in 

the system directly from the processor holding that string. Thus about p2 problems are solved, and about 

n p2 bits are exchanged in total. In each time unit only p bits can be received by all processors, and 

therefore the algorithm must take n(np) time. This demonstrates the differences between the two­

processor case, which is the case considered by communication complexity which tries to capture 

information transfer of input on a VLSI chip, and multi-processor models of communication networks, 

where more information about the computation environment is known. 

7. Conclusions 

In this paper we have introduced the synchronous bro'l.dcasting model. A problem of information 

sharing, the multiple identification problem was posed and solved using the model. 

We demonstrated the power of broadcasting in distributed models. The cluster tree and simulating 

sorting networks used in the solutions are efficient schemes for communication organization. Developing 

methods of communication organization for different communica.tion schemes and network topologies is a 

crucial steT> in distributed-algorithm design. 

The main open problem related to this work is developing techniques for proving lower bounds for multi­

processor problems when we allow broadcasting and transmission of information which is not restricted 

only to the input strings. This interesting topic requires further extension of the approach used here and 

those of the field of communication complexity. Developing efficient algorithms which use broadcasting 

effectively is a challenge as well. 
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