
CUCS-174-85

A SIMPLE PREPROCESSING SCHEME TO EXTRACT

AND BALANCE IMPLICIT PARALLELISM IN THE

CONCURRENT MATCH OF PRODUCTION RULES.

Salvatore J. Stolfo, Daniel M. Miranker

& Russell C. Mills

A SImple PreprocessIng Scheme to Extract and Balance
Impllclt Parallelism In the Concurrent Match or ProductIon Rules 1

Salva.tore J. Stolro
Daniel M. :\Ofirankp.r

and
Russell C. :\fills

Columbia University
New York, N.Y. 10027

April 16, 1985

Abstract

CUCS-174-85

In this brier paper we report a. simple scheme to extract implicit parallelism in the low-level match phase
of the para.lle1 execution of production system programs. The essence of the approach is to replicate rules
while introducing new constraints within each copy to restrict each individual rule to match a potentially
smaller set of data elements. Speed up is achieved by matching each copy of a rule in parallel. Variations
of this approach may be applicable to logic-based programming systems, such as PROLOG, executed in a
parallel environment. Indeed, sequential implementations of OPS-style production systems based on the
Rete match algorithm may enjoy performance advantages as well. This scheme may be implemented by a
simple preprocessing stage which requires no modification to the underlying match algorithms.

1 Introduction

We ha.ve previously reported a number of parallel algorithms to accelerate the execution of

characteristically difrerent Production Sy~tem (PS) programs [Stolro 19841. The simplest, called the Full
Di"tribution Algorithm, is based on allocating each rule, as well as the Working Memory (WM) elements

relevant to its left-hand side, to a single processing element (PE) or a large-scale, tine-grain multiprocessor,

such as the DADO machine. In essence, the original PS is converted into a large number of "one-rule"

PS's each processed concurrently.

For some PS programs, however, the potential speed-up or the match phase for the Full Distribution

Algorithm is not nearly as great as might. be expected. In programs such as RI, where rew rules may

potentially match newly asserted WM elements on each cycle, few PE's may perform userul work, while in

programs such as ACE that work with large databases. local requirements ror W:\Of elements may exceed

the capacity of some PE's. In other cases, certain anomalous rules may require more processing on

average than other rules, thus producing "hot spots" of sequential execution in a distributed environment.

In this brief paper, we report a simple scheme to extract implicit parallelism in the low-level match

phase of an individual rule which has the potential to improve greatly the perrormance of a number of

dirrerent parallel PS algorithms while m.itigating the problem of PE memory overnow and reducing the

efrects of "hot-spot" rules. The essence o(the approach is to replicate anomalous rules and to introduce

constraints within the copies which restrict them to match smaller. disjoint portions of the set o(

potentially relevant WM elements. This scheme is particularly advantageous for the Full Distribution

Algorithm since it is the simplest o(the entire set of reported algorithms and requires the least inter-PE
communication. Before describing the load bala.ncing scheme, we detail the operation of a production

IThis research has been supported by the Defense Advanced Research Projects Agency through
contract N00039-84-C-0165. as well a.s grants from Intel, Digital E~uipment, Hewlett-Packard. Valid Logic
Systems. AT&T Bell Laboratories and IBM Corporations and the i'jew York Sta.te Science and Technology
Foundation. We gratefully acknowledge their support.

1

system program. We also describe the DADO machine and two parallel algorithms for production system

execution.

~ Production Systems

In gener:ll. a Production SY3tem [Newell 19i3. Davis and King 19iil is defined by a set of rules. or
production3. which form the Production Memory(PM), together with a database of assertions. called the
Working Memory(WM). Each production consists of a conjunction of pattern eiement3. called the left
hand "ide (LHS) of the rule. along with a set of actions called the right-hand "ide (RHS). The RHS
specifies information that is to be added to (asserted) or removed from WM when the LHS successfully

matches against the contents of WM. An example production, borrowed from the blocks world. is
illustrated in figure 1 in the syntax style of OPS5 [Forgy 19811.

FIgure 1: An Example Production.

(p clear-block
(Goal -name Clear-tap-of Block -status ON)
(Physical-object - name <x> "type Block)
(On-top-of "bottom-object <x> - top-object <y »
(Physical-object "name <y> "type Block) ->

(delete 3)
(a.ssert (On-tap-of "bottom-object Table

"top-object <y >))) .

If the goal is to clear the top of a block,
and there is a block (x)
covered by something (y)
which is also a block,

then
remove the fact that y is on x from WM
and assert that y is on top of the table.

In operation. the production system repeatedly executes the following cycle of operations:

1. Alatch: For each rule. determine whether the LHS matches the current environment of WM.
All matching instances of the rules are collected in the conflict Jet of rule".

~. Select: Choose exactly one of the matching rules according to some predefined criterion.

3. Act: Add to or delete from WM all assertions specified in the RHS of the selected rule or
perform some operation.

During the selection phase of production system execution. a. typical interpreter provides conflict
re30iution 3trategie3 based on the recency of matched data in W~. as well as syntactic discrimination.

Rules matching data elements tha.t were more recently inserted in WM are preferred. with ties decided in
favor of rules that are more specific (i.e., have more constants) than others.

In its current form, Ri. an expert system for Vax. computer configuration, contains approximately ~500
rules operating on a WM containing several hundred data items, describing a partially configured VAX ..
Running on a DEC V:\. .. '< 11/i80 computer and implemented in OPS5, a highly efficient production system
Ia.nguage. Ri ~xecutes from ~ to 500 production system cycles per minute with an average performance of

10 cycles per second. Configuring an entire VA ... '< system requires a considerable amount of computing
time on a moderately large and expensive computer. The performance of such systems will quickly
worsen as experts are designed with not only one to two thousand rules, but perhaps with ten" of
thousand" of rules. Indeed, several such large-scale systems are currently under development at various
research centers. Statistics are difficult to calculate in the absence of specific empirical data, but it is

conceivable that such large systems may require an unacceptable amount of computing time for a medium

size ~nventional computer to execute a single cycle of production system execution! Thus, we consider
the design and implementation of a specialized production 8y"tem machine to warrant serious attention

by parallel architects and VLSI design en.

3 DADO

Simply stated, the goal of the DADO machine project is the design and implementation of a co"t
effective high performance rule proceuor, based on large-scale parallel processing, capable or rapidly
executing a production system cycle for very large rule bases. The essence of our approach is to execute a

very large number of pattern matching operations on concurrent hardware, thus substantially .accelerating

the match phase. Our goals also include increased perrormance via mUltiple rule application executed in
parallel. which will not be discussed in the present paper.

DADO [Stolfo and Miranker 19841 is a. fine-~rain. parallel machin'e ~here processing a.nd memory are
exte·nsively intermingled. A rull-scale version of the machine would comprise a large set of processing

elements (PE's) (on the order of thousands), each containing its own processor, a small amount (16K
bytes, in the current prototype design) or local random access memory, and a specialized I/O switch. The
PE's are interconnected to form a complete binary tree.

Within the DADO machine, each PE is capable of executing in either of two modes under the control of

run-time software. In the first, which we will call" SI."-1D mode (for single instruction stream, multiple

data stream), the PE executes instructions broadcast by some ancestor PE within the tree. In the second.
which will be referred to as ,'r{nJD mode (ror multiple instruction stream, multiple data stream), each PE

executes instructions stored in its own local RAM, independentlY of the other PE's. A single conventional
coprocessor, adjacent to the root of the DADO tree, controls the operation of the entire ensemble of PE's.

When a DADO PE enten MlMD mode, its logica.l state is changed in such a way as to effectively

"disconnect" it and its descendants (rom all higher-level PE's in the tree. In particular, a PE in MIMD
mode does not receive any instructions that. might be placed on the tree-structured communication bu! by

one of its ancestors. Such a PE may, however, broadcast instructions to be executed by its own

descendants, providing all of these descendants have themselves been switched to SI~ID mode. The

DADO machine can thus be configured in such a way that an arbitrary internal node in the tree acts as
the root of a tree-structured SIMD device in which all PE's execute a single instruction (on different data)
at a given point in time. This nexible a.rchitectural design supports multiple-SIJyfD execution (MSTh-ID).
Thus, the machine may be logically divided into distinct partitions, each executing a distinct task, and is
the primary source o(DADO's speed in executing a large number of primitive pattern matching operations
concurrently.

A small (15 processor) prototype or the machine, constructed at Columbia University (rom components
suppiied by Intel Corporation, has been oper3.tional since April 1983. Based on our experiences with

3

constructing this small prototype, we have embarked on the task or implementing a larger DA1)02
prototype comprising 1023 commercially available processors: w·hich should be completed in the summer

of 1985. (A 15 node single-board version or DAD02 is presently operationaL) We believe that this larger

experimental device will provide us with the vehicle for evaluating the perrormance. as well as the
hardware design. of a full-scale version of DADO impl~mented entirely with custom VLSI circuits.

Tne DADO I/O switch, which is implemented in semi-custom gate array technology and incorporated

within the 1023 processing element ve~ion of the machine, has been designed to Support rapid global
communication. In addition, a specialized combinational circuit incorporated within the I/O switch will
allow (or the very rapid selection of a single distinguished PE (rom a set of candidate PE's in the tree, a
process we call maz-re30lving. Currently, the 15 PE version or DADO perrorms these operations in
firmware embodied in its orr-the-sheIr components .

.. Parallel Ex~ut)on or Production Systems

On first glance it appea~ that each phase of the production system cycle is suitable (or direct execution
on parallel hardware, with the greatest opportunity for a speed-up in the match phase. This requires a
partitioning of PM and WM among the available processors: some subset of processors would store and

process the LHS o(rules, while another possibly intersecting subset of processors would store and process

WM elements. Thus, we envisage a set of processors concurrently executing pattern matching tests (or a
n 11mber of rules assigned to them. Similarly, once a connict set of rules is rormed, high-speed selection

can be implemented in parallel as a logarithmic time algebraic operation. Finally, the RHS of a rule can

be processed by a parallel update o(WM. We summarize this approach by the abstract algorithm

illustrated in figure 2.'

Ftgure %: Abstract Production System Algorithm.

L Assign some subset of rules to a set of (distinct) processors.

2. Assign some subset o(WM elements to a set of processors (possibly distinct (rom those in step
1).

3. Repeat until no rule is active:

a. Broadcast an instruction to all processors storing rules to begin the match phase,
resulting in the formation of a local connict set o(matching instances.

b. Considering each ma.:cimally rated instance within each processor, compute the
maximally rated rule within the entire system. Report its instantiated RHS.

c. Broadcast the changes to WM reported in step 3.b to all processors, which update their
local WM accordingly. end ~epeat;

This ve~y simple view of the parallel implementation of the production system cycle (orms the basis o(
our parallel algorithms previously reported and currently being implemented. For pedagogical reasons we

outline two o(these algorithms to illustrate the nexibility o(the DADO design and to explicate our load
balancing scheme.

-1

.... 1 Algorithm 1: Full Distribution ot PM

In this case, a very small number of distinct production rules ·are distributed to each of the DADO PE's,
as w~lI as all mf elements relevant t() the rules in question, i.e., only those data elements which match

some pattern in the LHS of the rules. Algorithm 1 alternates the entire DADO tree between .\lI~ID and
SI~fD modes of 0peTation. The match phase is implemented as an MI~fD process, whereas selection and

act execute as SI~fD operations.

In simplest terms. ~ach PE executes the match phase for its own small production system. One such

production system is allowed to "fire" a rule, however, which is communicated to all other PE·s. The
algorithm is illustrated in figure 3.

Ftgure 3: Full Distribution of Production ~emory.

1. Initialize: Distribute a simple rule matcher to each PE. Distribute a few distinct rules to each
PE. Set CHANGES to initial WM elements.

2. Repeat the following:

3. Act: For each WM-change in CHANGES do:

a. Broadcast WM-change (add or delete a. specific WM element) to all PE's.

b. Broadcast a command to match loc:.lly. lEach PE operates independently in MI~
mode and modifies its local WM. If this is a deletion, it checks its loca. connict set and
removes rule instances as appropriate. If this is an addition, it matches its set of rules
and modifies its local connict set ~ccordinglYI.

c. end do;

4. Find local maxima: Broadcast an instruction to each PE to rate its local matching instances
according to some prederi ned criteria (connict resol ution strategy).

5. Select: Using the high-speed max-RESOLVE circuit of DAD02, identify a single rule for
execution from among all PE's with active rules.

6. Instantiate: Report the instantiated RHS actions. Set CHANGES to the reported ~
changes.

7. end Repeat;

4.2 Algorithm %: Original DADO Algorithm

The original DADO algorithm makes direct use of the machine's ability to execute in both MThID and
SL'vID modes of operation at the same point in time. The machine is logically divided into three
conceptually distinct components: a PAl-level, an upper tree and a number of W.\[-8ubtree" (see figure 4).
The P~-Ievel consists of MIMD-mode PE's executing the match phase at one appropriately chosen level of

the tree. A number of distinct rules are stored in each PM-level PE. The WM-subtrees rooted by the
PM-level PE's consist of a number of SIMD mode PE's collectively operating as a hardware content
addressable memory. ~f elements relevant to the rules stored at the P~f-leHI root PE are fully
distributed throughout the WM-subtree. The upper tree consists of SI!-tfD mode PE's lying above the

5

P~f-leHI, which implement synchronization lnd selection operations. Concurrency is a.chieved between
P~{-Ievel PE's as well as in a.ccessing PE's or the WM-subtrees. -The algorithm is illustrated in figure 5.

FIgure": Functiona.! Division of the DADO Tree.

I

?uccer Tr .. :
I synel"!~"'~.
~ Mleet 1 act

-~~ l...I'Itel:
~. ~eft'""'''. rIle." &r.<:.
1 ,nstlllt,.r.

-i

~ WM Suerr ... :
I ~t· ~cr.saacle

""-"Or ' ..

Origina.! DADO Algorithm.

1. Initialize: Distribute a match routine and a partitioned subset of rules to ea.ch PM-level PE.
Set CHANGES to the initial WM elenient..s.

2. Repea.t the following:

3. 'Act: For each WM-change in CHANGES do;

a. Broa.dc:s,.,t WM-change to the PM-level PE's and an instruction to match.

b. The match pha:se is initiated in each PM-level PE:

i. Each PM·level PE determines if WM-change is relevant to its loca.! set o(rules by
a partial match routine. It so, its WM'5ubtree is updated accordingly. [It this is a
deletion, an ~ociative probe i, performed on the element (rela.tional selection) and
any matching instances are deleted. It this is an addition, a free WM-subtree PE is
identified, and the element is added.)

ii. Each pattern element or the rules stored at a. PM-level PE is broadcast to the
\VM-subtree below (or matching. Any variable bindings that occur are reported
sequentially to the PM-level PE for matching of subsequent pattern elements
(relational equi-join).

6

iii. A local connict set of rules is formed a.nd stored along with a priority rating in a
distributed manner within the ~-subtree.

c. end do;

-t. Upon termination or the match operation. the PM-level PE's synchronize with the upper tree.

5 .. Select: The max-RESOLVE circuit. is used to identify the maximally rated connict set
instance.

5. Rl!port the instantiated RHS or the winning instance to the root or DADO.

1. Set CHA.'1GES to the reported action specifications.

8. end Repeat;

S· Copy and Constrain Rul~

Me~urement3 reported in lGupta and Forgy 19831 show that in a.n average OPS5 production system,
only about 32 rules are affected by changes to working memory during each production cycle.
Furthermore, even if all active rules are ~igned to different PE's, some PE's will take longer than others

to complete the match phase. Since the select phase of t.he Full Distribution Algorithm cannot begin until

all rules have finished matching, the to~al time spent in the match phase is the time taken by the slowest,' .

not the average. rule. Simulations on OPS5 programs [Gupta Ig841 indicate that because of the large
variation in processing time among the affected rules, the average speed-up obtainable in the match phase
rrom production-level parallelism is a ractor of about 6. The approach we present below has the potential

ror transcending these limitations and incre~ing parallel speed-up by augmenting the number of affected

rules and decre~ing the variance or their processing times.

The ~cheme i.s best introduced by means of a simple example. Consider the stylized rule

PI (C1 C2 .. · Cn -> AI'" Am),

where the Ci (i=I n) are condition elements. and the Ai are actions. If we interpret WM I (the set or
working memory elements relevant to PI's left-hand side) as a large relation. or set of tuples. then we

may view each condition element C i as a relational ulection. The set of instantiations (matches) of PI is
the equijoin of the relations Ri selected by the condition elements Ci subject to the restriction that

variables be consistently bound across all conditions. The local memory requirements and execution time
to match PI ue thus bounded by (and indeed may a.chieve) the size of the rull Cartesian product or the

individual relations R i .

Suppose ror concreteness that C2 is a relational selection or a large number of physical objects.
represented by the OPS5-style pa.ttern:

(PHYSICAL-OBJECT "Name <x> 'Color <y> ·Shape <z».

a.nd tha.t the domain of the Color attribute of the relation WM I is {RED, GREEN}, that is. that physical

objects are either RED or GREEN. To speed up the match of rule P I' we split the set or working
memory element3 associated with PI and set two PE's to the concurrent tasks or matching constrained

versions or Pl' We thus construct two new condition elements:

C'" (PHYSICAL-OBJECT 'Name <x> ·Color RED ·Sha.pe <z»
C':"2 (PHYSICAL-OBJECT -Name <x> "Color GREEN ·Sha.pe <z»,

two new rules:

-I
P' I (C I C' ~ ... C n -- > A I ... Am)
P"l (C I C"~ ... Cn -> AI'" Am)'

and two new working memories:

w:-.r 1 = { win WM 1: Color(w) = RED if w is a. PHYSICAL-OBJECT}
WM" 1 = { w in WM(Color(w) == GREE:--l if w is a PHYSICAL-OBJECT},

and assign them to distinct PE's, PE'l and PE" l' P'1 and P" 1 may clea.rly be matched in parallel, and
the set of instantiations of PI is exactly the disjoint union of the instantiations of P' 1 and P" l'

In the best case, half the tuples selected by the original condition C2 of rule PI reside in each of PE'l

and PE" l' and the processing time required to match PI decreases by half, since the two new rules ca.n be
matched in parallel. Local processing requirements and storage of WM elements for each rule decrease
significantly ~ well. In the wOr.!t ca:!e, of course, all the tuples selected by C2 of rule PI reside in one of

the two PE's, PE'1 and PE" I' and partitioning buys nothing. If more PE's are available, the scheme can
be applied repeatedly, producing many copies of rules, each constrained to match a smaller range of
distinct W:-'f elements. Thus, with many PE's a.vailable. it should be possible to reduce the inter-PE

variation in processing times. balancing the execution load over the entire system and increasing overall

performance dramatically.

If a small finite domain of attribute values is not known a priori (as in the above example with RED and

GREEN objects). two variations on the technique are possible. The first is ha3h partitioning. Suppose

that in the above example. the domain of the Color field is not {RED, GREEN}. but is some (possibly
infinite) domain D. If there is an easily computable function

f: D -> {1, ...• k}.
we can split WM I into It partitions

WMI(j) == { w in WM I : r(Color(w)) == j if w is a PHYSICAL-OBJECT}.(j==I •.... k).

and assign each of the k partitions to a separate PE along with a suitably constrained version of the rule

Pl' In the best case. again, the processing time for the match phase of PI is divided by k. the number of
partitions. Thus. our scheme is similar in many respects to hash partitioning tuples in a single relational
query executed iteratively on relations exceeding the size of main memory. However, in our case hash

partitioning is applied in parallel to a large number of concurrent queries operating on a large number of
small relations.

The second variation of the basic technique applies when the domain is a totally ordered set: we can
simply split it into disjoint subranges. Continuing with the above example. suppose that working memory

elements have the form

(PHYSICAL-OBJECT "Name <x> "Renected-Wavelengtb <y> 'Shape <z»,

and that a set of values

v min==vO.vl.· ... vlt==v max
of Renected-Wavelengtb are given. We can again split working memory, tbis time into

WMI(j) == { win WM1:
~en~cted-Wavelengtb(w) >= Vj_.1 and Renected-Wavelengtb(w) < Vj
If w IS a PHYSICAL-OBJECT}. (J=1 k).

and assign each to a separate PE togetber with constrained versions of the original rule Pl' This disjoint
subranges scheme is a special case of hasb partitioning that bypasses the explicit computation of a hashing
function.

Rule partitioning can be incorporated into both the Full Distribution Algorithm and the original DADO
algorithm without modifying either one's implementation. The copy and constrain idea would make more
PE's perform useful match computation in the full distribution case simply by copying rules. In the

8

original DADO algorithm, the scheme would copy rules to different P~-level PE's; in this case, the WM

subtrees would of course store disjoint subsets of the origInal subset of WM held in a single pre

partitioning W~-subtree.

o ImplementatIon Outline

The scheme outlined can be implemented by a simple preprocessor supplied with information on how to

partition the domains of working memory attributes. These pragmas, or hints. can take the form of

explicit values or ranges provided by the programmer (derived from knowledge of the problem or from

previous executions of the production system program). or can include hashing functions. The

preprocessor's role is simply to generate new productions incorporating the value. hashing function, or

subrange tests, one for each value. function value, or subrange supplied.

OPS-style productions are easily modified by adding partitioning information to literalize declarations.

The declarations for PHYSICAL-OBJECT in our first example (when a small finite domain of attribute

values is known) might be

(literalize PHYSICAL-OBJECT
Name
Color (symbol RED GREEN)
Shape)

To specify a hashing function defined on the Color field with range {l k}, we could write

(literalize PHYSICAL-OBJECT
Name
Color (hash hash-fundion-name k)
Shape)

Specifying k subranges of a totally ordered domain is just as easy:

(literalize PHYSICAL-OBJECT
Name

Renected- Wavelength (range vI'" vk_l)
Shape)

The preprocessor should split each rule containing non-constant tests on the partitioned fields into the

ap propriate set of more specialized rules.

This approach has the potential of greatly improving the performance of a variety of PS programs

including those with thousands of rules and hundreds of WM elements, as for example RI, and conversely

those with hundreds of rules and thousands of WM elements, as for example ACE. Other coarse-grained

approaches to the parallel execution of PS progra.ms may make efrective use of this scheme as well. The

Rete match algorithm, for example, would thus compile additional match nodes for the introduced

partitioning constraints which would efrectively reduce the size of the Beta memories of the original

condition element. The resultant sequential search of the Alpha and Beta memories to compute partial

match results would thus be quicker since fewer data elements would be compared with each other.

Indeed, logic-based programming systems may also make use of similar approaches to load balance
execution by introducing copied and constrained clauses. In a PROLOG environment. the idea may be
used as follows: II in a rule

30:- b,c.d

it is known via a pragma that goal b dominates the computation for satisfying goal a, then rewrite the

rule as two rules:

a:-b',c,d
a:-b",c,d

9

where b' and b" are copied versions of goal b with constraints on the lirst order terms to unify with a

smaller a.nd distinct set of terms that would ma.tch b. Since goals b' ar.d b" would be executed in parallel
in an OR-parallel environment, a speed up is achievable. One approach to liguring out the constraints ror
goals b' and b" is to execute the PROLOG program symbolically in oider to identify the range or unit

litera.ls that terminate the goal tree emanating from the posting of goal b. The range of first order literals

so identified may then be partitioned by suitably constraining the first order terms of literal b.

Aclrnowledgmrnt3

We gratefully acknowledge the editorial assistance of Pandora Setian who substantially improved the
final presentation of this paper.

References

[I] Davis, R. and J, King, "An Overview of Production Systems", Machine Intelligence, 8,
J. Wiley and Sons, New York, pp. 300-3~2, 19ii.

[2] Forgy, C. L., "OPS5 User's Manual", Technical Report CS-81-135, Department of Compute.
Science. Carnegie Mellon University, 1981.

[3] Forgy, C. L., "On the Eflicient Implementation of Production Systems", Technical Report,
Department of Computer Science, Carnegie Mellon University, Ph.D. Thesis. 1979.

[4] Gupta, A. and C. L. Forgy, "Measurements on Production Systems", Tech 'Report, eMU.
1983.

[5] Gupta, A, "Parallelism in Production System: The Sources and the Expected Speed-Up", Tech
Report. CMU, 1984.

151 Newell. A .• "Production Systems: Models of Control Structures", In W. Chase (editor), ViJUIlI
Information ProceJJing, Academic Press, 1973.

[il Stolfo. S. J.. "Five Parallel Algorithms for Production System Execution on the DADO
Machine", Proc. or the National Conference of Artificial Intelligence. 1984.

[81 Stolfo. S. J. and D. M. Miranker, "DADO: A Parallel Processor for Expert Systems", Proc.
International Conference on Parallel Processing. IEEE. 1984.

