
THE NEED FOR TEXT GENERATION 

Kathleen R. McKeown 

CUCS-173-85 



The need for text generation 

by KATHLEEN R. McKEOWN 
Columbia University 
New York, New York 

ABSTRACT 

For a variety of systems, such as expert systems, database systems, and problem
solving systems, text generation is one way for the system to communicate effec
tively with its users. This is particularly true when the system is likely to be used by 
a wide range of users with varying levels of expertise and background. In this paper 
I will show why explanation is a crucial feature of expert systems. how text gener
ation can be used within database systems to familiarize users with the database, 
and where text generation can aid communication with problem-solving systems. 
Given that text generation is more than just a frill for such systems, a second focus 
of the paper will be on the kinds of problems that any designer of a text generation 
system must address. Some of the problems include being able to decide what to 
say, how to organize that information, and how to express it in natural language. 

87 



INTRODUcnON 

As computer systems become more sophisticated, they must 
be able to communicate their results successfully to their users 
if they are to be effective. For a variety of systems, the use of 
natural language text is becoming increasingly popular for 
such communication. This is particularly true when the system 
is likely to be used by a wide range of users with varying levels 
of expertise and background. Many potential users of com
plex computer systems are naive and infrequent users: They 
not only are unfamiliar with the computer and the formal 
languages available to interact with it, but their planned use of 
the system is infrequent enough that it does not warrant the 
time needed to learn a formal language. For such users, the 
ability to communicate with systems in everyday language 
promises to open the door to a world of information and tools 
they were previously unable to use. For expert users, on the 
other hand, text generation can provide a summary of com
plex system behavior that can allow them to detect errors 
before delving into system details. . 

In this paper I will show the role text generation plays in 
three types of systems: expert systems, database systems. and 
problem-solving systems. These systems all have a wide vari
ety of users and have become complex enough that text gener
ation is appropriate for the interface if ease of use is an issue. 
Given that text generation is necessary for such systems, the 
paper will also focus on the problems involved in communi
cating through natural language. A sketch of the kinds of 
solutions that have been successfully used is included, but this 
overview primarily serves as motivation for the text gener
ation problem and an introduction to the solutions and issues 
considered by the other participants in this session. 

EXPERT SYSTEMS 

Communication with the user in expert systems has been 
needed primarily to explain the reasoning used by the system 
in producing its advice. Textual explanation has proved crucial 
to the success of expert systems for several reasons. 

First, expert system users are often not computer scientists 
and would be unable to follow a formal representation of the 
system's reasoning. For example, users of medical expert sys
tems are doctors and medical students. Natural language is'a 
mode of communication familiar to users such as these who 
may not want to take the time to learn other modes. 

Users, though not experts in the programming methodol
ogy of expert systems, are often experts in the domain of the 
system. Again. doctors fit this characterization. Their purpose 
in using the system is often for consultation: to gain advice on 
a case or to confirm their own diagnosis. To evaluate the 

The Need for Text Generation 89 

advice provided and to determine whether to accept it, such 
users need to be able to understand both how and why the 
system came up with its advice. 

Builders and maintainers of expert systems are now point
ing out the value of textual explanation in identifying errors in 
the underlying inferencing process. Often a trace of the infer
ence process itself can be so lengthy (for example. in ACE. 1 

a single recommendation may invoke up to 15000 individual 
production rules) that errors are difficult to detect. Kukich2 
cites this benefit when an explanation facility was first added 
to the XSEL system. 3 The underlying inferencing system had 
been constructed incrementally by a number of different re
searchers who often did not understand the conventions used 
previously. Her explanation facility immediately pointed out 
even such simple discrepancies as errors due to roundoff, 
which had gone undetected. 

DATABASE SYSTEMS 

Natural-language interfaces to database systems allow a user 
to retrieve information from the database by asking questions 
and receiving answers in English. For many questions. the 
response can be generated by simply formatting the results of 
a database search in a list or as part of a sentence. It has been 
shown,' however, that many users of database systems, partic
ularly naive and infrequent users, need to ask questions to 
familiarize themselves with the database before asking spe
cific questions about its contents. Such users need to know 
what information is available in the database (e.g., "What 
kind of data do you have?"), what specific terms mean in the 
context of the database (e.g., "What is production cost?"). or 
what the differences are between different terms (e.g., 
"What's the difference between manufacturing and produc
tion cost?"). Questions like these typically cannot be an
swered by doing a search of the underlying database, and this 
is one place where text generation has played an important 
role. Natural language is particularly appropriate for answer
ing such questions, since they require definitions, descrip
tions, and longer textual sequences. To generate these kinds 
of responses, a formulation of strategies that can be used to 
organize and determine content of the response is required. 3 

Research in response generation has also addressed the 
problem of producing responses that cooperatively address 
the questioner'S intentions. Frequently, users reveal in their 
questions a presumption about the database that turns out to 
be incorrect. The encoding of presumptions in utterances is a 
formal feature of natural language that can be exploited to 
detect and correct a user's misconceptions. 6. 7.8 If such pre
sumptions are not corrected. the user may be left with false 



90 National Computer Conference, 1985 

beliefs about the database even if all hislher questions have 
been answered correctly. 

PROBLE~f-SOLVING SYSTEMS 

By problem-solving systems, I mean systems that are capable 
of working together with another agent (whether a human, 
another computer, or a robot) to solve a task. Since the two 
agents must work together cooperatively to solve the prob
lem, communication between them is crucial. In this type of 
system it is often not necessary to generate lengthy text, but 
the utterances that are generated must be easily understood 
by the other participant. For example, in instructing the other 
participant which tool to use next in a task, the system must 
use a description that will allow the participant to pick out the 
correct tool. 

Interactive problem-solving systems are often set up so that 
the system is the expert and the user is an apprentice. 9.10 The 
user is not knowledgeable about how to perform the task (or 
solve the problem), and hislher purpose in using the system is 
to learn how to do so. Some of the tasks that have been 
considered include construction of a particular piece of equip
ment (such as the assembly of a water pump) that involves 
being able to communicate about objects and tools in the 
physical world. Others have been tasks that could be solved 
purely verbally, such as in GUS, II a system that acts as an 
airline reservati.on agent and helps the user select appropriate 
flights for a trip. Communication in natural language is appro
priate for these types of systems, since the user is a novice and 
thus is unlikely to be familiar with a formal language devel
oped for the domain. Furthermore, language has a long tradi
tion of use as an interactive tool for communication. It is well . 
suited to a situation in which participants must interact heavily 
to reach a solution. 

PROBLEMS IN TEXT GENERATION 

The previous sections have demonstrated that there is a need 
for communication on the part of the system in natural lan
guage in a variety of system types. The character of the gener
ated text may differ; but natural language is an appropriate 
medium, in large part because of the people who will be using 
such systems. Given that there is a need for text generation in 
these different types of systems, what types of issues must a 
designer of a text generation system consider? How do these 
issues manifest themselves in the different types of systems? 
How close is text generation research to having practical and 
implemented solutions to these issues? 

In the following sections, a simple but well-tried engineer
ing approach to text generation that is currently used in many 
systems is first presented. Problems with this approach and 
issues that must be further considered in order to develop a 
robust and effective text generation system are then explored. 

Canned Text 

The simplest method for producing computer-generated 
text is the use of canned text and templates. This approach is 

probably' the most commonly used method in systems requir
ing production of a limited amount of text. Most practical 
expert systems today use templates to produce explanations. 
and help systems are one of many examples of the use of 
canned text. The use of canned text requires that the· system 
designer anticipate all questions that might be asked by the 
user, create the answers by hand. and store these answers as 
strings. which are retrieved by the system when required. 

Templates are slightly more general than canned text. since 
they provide "text frames" that can be used to answer more 
than one question of the same type. Templates are English 
phrases with slots that can be filled in by different words for 
different occasions. An entire text can be produced by string
ing together individual templates that each describe a step in 
the process. (For example. a single template is associated with 
each rule in an expert system. and an explanation is produced 
by stringing together the templates associated with the rules 
that fired. Slots in the templates are filled by English trans
lations of instantiated variables in the rules.) As with canned 
text. templates must be produced by the designer by hand 
when the system is first built. and care must be taken that 
reasonable texts will be produced when several templates are 
strung together. 

Canned text and templates have the advantage that their 
generated text can be as sophisticated as the system designer's 
own prose. Furthermore. it is an engineering technique that is 
easy to implement. There are numerous problems with this 
approaCh. however. Since the system code can be changed . 
independently of the associated text. there is no guarantee 
that the generated text accurately reflects what the system 
actually does. An intensive personnel effort is required at the 
beginning of system development to hand-encode answers. 
and this effort must be duplicated every time a new system is 
developed. Finally, in large systems it may be difficult to 
anticipate all situations in which text will be required in ad
vance. 

Deciding What to Say 

If text is not prestored ahead of time for the system to 
retrieve when needed. the text generation module must be 
able to determine what information to convey, given a request 
for communication. For certain questions. such as requests for 
definitions in the database domain, there may be a potentially 
large amount of information that could be used to answer the 
question. The system must be able to filter out information in 
its knowledge base that can be ignored and pinpoint informa
tion that should be included. 

A number of factors can influence these decisions. The 
purpose for which information is required can indicate what 
type of information will be useful. For example, for a request 
for a definition, information about an object's class member
ship, its distinguishing attributes, examples, or analogies are 
appropriate. For a request about the differences between two 
objects, shared attributes, different class membership, and 
distinguishing attributes are appropriate. One technique, 
then, for determining what to say is to use different discoUl;se 
strategies such as these for different purposes. (For more 
information, see McKeown.') 



A text generation system cannot say more than it knows, as 
represented in its knowledge base. In order to generate partic
ular types of text, it may be necessary to specify the type of 
information needed in the knowledge base. Swartout l2 shows 
what information must be added to an expert system knowl
edge to produce acceptable justifications of the system's ad
vice. Finally, depending on who the system is talking to when 
a questions is asked. different information will be relevant. 
Appelt 'O has shown how information about the current user's 
beliefs should influence what the system says in order to make 
communication successful. Similarly, Paris l3 identifies how 
information about the user type (for example, whether naive 
or expert) can influence how much detail to include in a text. 

Deciding When to Say What 

Having determined what information is relevant, a text gen
eration system must be able to order that information to pro
duce the text. Order of a text can be crucial to a reader's 
understanding of it. Order alone can be used to convey tem
poral sequence, causality. or exemplification. Many early sys
tems simply traced the underlying knowledge base to deter
mine order, doing simple transformations on the underlying 
data structures. This method requires that the knowledge base 
be appropriately structured for text generation in addition to 
meeting all the other demands placed on it. Furthermore. 
while one knowledge base structure may facilitate inferencing. 
it may not be appropriate as a blueprint for text production. 

Knowledge about discourse structure encgded as strategies 
can be used for determining order as well as content. Again, 
for situations where definitions are required, the strategy 
might not only dictate that class membership information and 
examples should be used. but also that examples should be 
included only after class membership has been provided. Dis
course structure is currently used to help determine order of 
presentation in several text generation systems.5•

IJ
•

I
• 

Deciding How to Say It 

The text generation system must also be able to determine 
what the surface text should look like. This involves making 
decisions about what vocabulary to use (and in particular, how 
to choose between synonyms), when to use a pronoun and 
when to use a full noun phrase to refer to an object or concept, 
whether to use a sequence of simple sentences or to combine 
several simple sentences into a single complex sentence, and 
how to arrange the words in each sentence. Almost all these 
decisions are influenced by syntactic constraints on language; 
thus, one component of a language generation system is a 
grammar. McDonald 15 describes the kinds of constraints that 
must be included in a grammar and how it can be used to 
produce fluent text. One benefit of the use of a grammar over 
templates is that the system can decide how to combine 
phrases to produce acceptable text, whereas with templates 
this work must be done by the system designer manually 
checking that templates will not produce unacceptable text 
when strung together. 

Other influences on surface level decisions include informa-

The Need for Text Generation 91 

tion about the 'person the text is intended for and information 
about the discourse structure of the text. Information about 
user type can be used to select appropriate vocabulary (the 
naive user will no~ understand the expert's terminology). Sim
ilarly, information about the user's knowledge can be used to 
generate noun phrase descriptions so that the user can suc
cessfully identify what is referred to by the description. '6 Fi
nally. knowledge about how a given sentence fits in with the 
rest of the text can be used to choose the best word order for 
a sentence and to decide whether to use pronouns. 

SUMMARY 

Decisions that must be made by a text generation system 
range over a variety of knowledge sources and are influenced 
by a variety of factors. Furthermore, while I have identified 
them as separate problems, these problems interact so that 
decisions often cannot be made independently.16 Systems cur
rently exist that have addressed each of the problems cited 
above. Few of these systems, however. handle more than 
several problems in a single implementation. The other pa
pers in this session focus on specific problems, illustrating 
more sophisticated text generation techniques that are cur
rently available beyond the limited canned text and template 
approach. 

ACKNOWLEDGMENTS 

Research in text generation at Columbia University is par
tially supported by ARPA grant NOOO39-84-C-0165 and by 
ONR grant NOOOl4-82-K-0256. 

REFERENCES 

1. Stolfo. S .. and G. Vesonder. .. ACE: An Expert Syslem Supporting Analy
sis and Management Decision ~1aJcing." Technical Report. Department of 
Computer Science. Columbia University. 1982. 

2. Kukich. K. "Knowledge. Based E'l:planation Generation." Paper presented 
at Second Annual Language Generation Workshop. July 8-10.1984. Stan
ford University. 

3. MeDermolt. J. "Building Expert Systems." In Proceedings of lir~ 1983 
NYU Symposium on Arrijicia/lmelligena Applicarions for Busin .. ss. ~ew 
York: ~ew York University. 1983. 

4. ~1alhotra. A. "Design Criteria for a Knowledge·Based English Language 
System for Managemenl: An Experimental Analysis." MAC TR·I46. Mas
sachusetts Institute of Technology. 1975. 

5. ~tcKeown. K. R. "Generating Natural Language Text in Response to 
Ouestions about Database Structure." Ph.D. dissertation. University of 
Pennsylvania. 1982. 

6. Kaplan. S. J. "Cooperative Responses from a Portable :-';atural Language 
Database Query System," Ph.D. dissertation. University of Pennsyh·ania. 
1979. 

7. ~tays. E. "Correcting ~lisconceptions About Data Base Siructure." In 
Proceedings 3rd Canadiall Sociery for lire Compllfllliorra/ SlUdi~s of /Ille/' 
lig~nce BienniIJ/ Meeting. Victoria. B.C .. 1980. 

8. ~1cCoy. K. "Correcting Misconceptions: What To SJ)' When the eser is 
~1istaken." In Procudings oj Compldu and Human /Illeracrion Conjer. 
.nee. 1983 Cambridge. Massachusetts. 19S3. 

9. Grosz. B. J. "The Representation ami L:sc of Focus in Dialogue L'nder
slandin!!." Technical note 151. Stanford Research Instllute. \Ienlo Park. 
Caliio';;ia. 1977. 



92 National Computer Conference, 1985 

10. Appelt. D. E. "Planning Natural Language Utterances to Satisfy Multiple 
Goals." Ph.D. dissertation. Stanford University. Stanford. California. 
1981. 

11. Bobrow. D. G .• R. M. Kaplan. M. Kay. D. A. Norman. H. Thompson. and 
T. Winograd. ·'GUS. A Frame-Driven Dialog System." Artificial Intel· 
ligence. 8 (1971). pp. 155-173. 

12. Swartout. W. "Knowledge Needed for Expert System Explanation." In 
AFIPS. Proceedings of th~ National Computtr Conference (Vo\. 54). 1985. 

13. Paris. C: "Description Strategies for Naive and Expert Users." Technical 
Report. Department of Computer Science. Columbia University. 1984. 

14. Mann. W. "Discourse. Structures for Text Generation." In Procudings of 
Conference on Computational LinguisliCJ. 1984. Stanford University. 1984. 

15. McDonald. D. D. "Surface Generation for a Variety of Applications." 
AFIPS. Proceedings of the National Computer Conference (Vo\. 54), 1985. 

16. Appelt, D. "Planning and Language Generation in Problem-Solving Sys
tems." In Proceedings of the National Computer Conference (Vol. 54), 
1985. 


