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Abstract 

The development of very powerful intelligent information systems will require the use of 
many Artificial Intelligence techniques including some derived by studying human 
understanding methods. RESEARCHER is a prototype intelligent information system 
that reads. remembers, generalizes from and answers questions about complex technical 
texts, patent abstracts in particular. In this paper. we disaJss three areas of current 
research involving RESEARCHER - the generalization of hierarchically structured 
representations; the use of long-term memory in text processing. specifically in resolving 
ambiguity; and the tailoring of answers to questions to the level of expertise of different 
users. All of these areas are crucial for truly powerful information systems. We outline our 
methods and give examples ot RESEARCHER processing various examples. 

1 Introduction 

Traditional work in information retrieval (such as that described in [Heaps 78: Satton and McGiII83D 

has concentrated on ways of storing and retrieving texts based on their lexical contents with little regard 

to meaning. While this has led to quite powerful and useful systems, we can hope to do still better by 

applying techniques of ArtifICial Intelligence to information retrieval. Specifically, we will describe in this 

paper how we are using research in the areas of natural language proceSSing and learning to help 

understand how to develop powerful, intelligent information systems. General discussion of the 

application of ArtificlaJlntelligence-tc information retrieval can be found in [Schank et al. 80; Dejong 83: 

Lebowitz 83a]. 

'This research was support.ed in paIt by the Defense Advanced Research Projects Agency under contract NOOO~165. 
Many people have contributed ID RESEARCHER. In particular. the WQfi( on generalizing hierarc:tlies has largely been condJcted by 
Kenneth Wasserman and the work on question answering by Cecile Paris in conjunction with Kathleen McKeown. C<lmments on an 
earlier <bit of this pap« by J. A. CampbeH and Roy Davies were most useful. 
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In [Lebowitz 83a; Lebowitz 83bJ, we described the early stages of development of RESEARCHER, 

a prototype intelligent Information system. RESEARCHER is intended to accept information in natural 

language form, in particular, patent abstracts such as EX1 . 

EX1 • P131; U. S. patent #4400150; Forestlane Co. Ltd. 

A magnetic readlwrfte head carriage assembly for a floppy disk drive is disclosed for use with 
double sided floppy disks which permhs the head tracking force to be easily and accurately 
adjusted. The head carriage assembly comprises a coil spring. having a central coil portion and 
first and second ends. which is mounted in a pashian between the base and the head support 
arm 01 the carriage assembly whh the first end coupled to the base and the second end coupled 
to the support arm. An adjusting screw is mounted on the base adjacent to the first end of the 
coil spring for adjusting the pashian of this end, thereby adjusting the biasing force applied by 
the spring to the support arm. 

RESEARCHER: 

• understands the text (extracts the meaning). 

• adds the acquired Information to a Iong.term memory, leamlno through generalization as it 
does so. 

• answers questions about the Information In its memory. 

Descriptions of complex physJcaJ objects such as those in patent abstracts leads to special 

problems in the development of intelligent information systems. In this paper. we will present an overview 

of three areas that we are studying using RESEARCHER that are important in the development of 

Intelligent information systems: 

.leamJng by generalizing hierarchical descriptions - learning is ifT'4:)Ortant if we wish our 
systems to be able to retum more Infonnatlon than we give them, by comparing the different 
texts read: physical obfeds can be best represented hierarchically • 

• using a Iong-tenn memory buill up through generalization to assist In text interpretation -
lntelDgeft Im)nnadon retrievaJ requires robust understanding. and this can only be done with 
extensive appGcatlon of know1edge, inckJdlng that which the system acquires. 

• tailoring the system" answer'S for different users - a truly Intelligent system whh a large 
memory can be most effective by giving answers that are crafted for each individual user. 

We begin by describing the problems of generalizing hierarchically structured objects, as the 

creation of a long-term memory is necessary for our text understanding methods. 

--
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2 Generalizing Hierarchical Descriptions 

Intelligent information systems should be able to return to a user more information than that 

contained in any single text. They should be able to leam from the texts by noticing similarities (among 

other learning methods). The patent abstracts that we have been looking at describe the physical 

structure of complex objects. Since such objects are naturally represented as hierarchies of parts, our 

leaming research has addressed the generalization of hierarchically structured descriptions. To see the 

input to the generalization process, consider EX2, the first part of a typical patent abstract. 

EX2 • P37; U. S. patent #4190870; Avina Raymond, Merrell Patrick 

A disk drive assembly includes a baseplate housing joined with front and rear covers to enclose 
a spindle that supports ball bearings and a hub for rotating a stack of magnetic disks ... 

Our representation of patent abstracts such as this one includes three classes of information: 

• a parts hierarchy, that indicates the components of each part. 

• interpart relations, capturing physical and functional relations between various components . 

• properties of the objects. 

The level of detail needed for each of these classes of information certainly depends on the task at 

hand. For our purposes, we have concentrated on the parts hierarchy and physical relations (which are 

repre,sented using a primitive-based canonical scheme [Wasserman and Lebowitz 83]). We are currently 

working on classification schemes for functional relations and object properties (such as size and 

composition), which are crucial in understanding many device descriptions. Figure 1 shows the 

representation of EX2 created by RESEARCHER. 

We can see in FlQUre 1 all three of the types of infonnation used in representing physical description 

patents. The backbone of the representation Is a parts hierarchy. (The numbers in the hierarchy refer to 

the objects listed on the right.) F"lQure 1 shows an assembly (part 1) composed of a number of parts, 

including a disc drive, an enclosure, and so forth. One of the components is another assembly (the 

"stack', which is composed of a number of discs. There is also a "loose part", the baseplate, not 



,axe lap~.eatat1oa: 
1-------------2 
1---------JJl-3 
1-----------8-5 
I----------D-' 

-----------C-11---------cc-7 

4 

l • ONJQfOWH-USEMBLYI ('USZHIU.T') 
2 • DISC-OlUVEl 
3 • DCLOSOJUI' 
5 • )IlJ)CBJD\/>l ~Iotf/n.on,u.u COVD' 
, • Ollrn-SHU'" 

1-----------&-. 
1----------&-'1------------10 

7 • 1IUHaD/>1 BU.L-UUDlQ' 
•• 1I1lB' 
9 • tnIJOfOn-UsmcBLn ('UAa') 

10 • Jn7)I8D/>l DKV-f'Da/)QQlK'Uc DUC, 

----------------------A-4 4. aASZPLA%&' 

A l1at of ralat1oaa: 

[az:Ll/AJ 
[aJW.2/BJ 
[USl.3/CJ 
[UZIA/DJ 
[UZI.!/B] 

(BlSDLA%&') 
(DC,OSOJUI' ) 
(DIlrn-SRUU) 
(IlUVK-Sun.) 
(HtlB" 

Relat1oa: Objec:t:: 

(ataCfOWIf-POU-UL) £HlDO (DCLOSOJUI') 
(R-coJrDt:nD-fO) £MIDC5 (COVDI) 
{R-SCUOOllDKl)-Bt} 4HIDCl ('USDlBLT') 
{p-SOnOUS} UCDC7 (BU.L-BUllDfQ,) 
(It-RO'fUU) UCD(J ('snat', 

Figure 1: A typical RESEARCHER representation 

included in the main assembly. The items in FIgUre 1 with I's indicate concepts (e.g., disc-drive#, the 

concept of a disc drive) as opposed to words (the phrase, "disk drive". 

Figure 1 also includeS several relations between objects. These are shown by letters in the parts 

hierarchy and erumerated below the hierarchy. For example, the "S" with the enclosure (part 3, from the 

word "housing" In 8(2) and the covers (part 5) lnd1cates that they are connected ("joinedj to each other. 

Finally, the representation of EX2 Includes several object descriptions augmented with properties. 

These are Indlcated In FIgUre 1 in the object descrq,tions. For example, object 10, the dIscs, has been 

modified by making its device-type property "magnetic". The object representations of the covers, ball 

bearings and disc also indude indications that there Is more than one of each. 

The representalJon In FlQUra, t Is at. a level of understanding that many Artificial Intelligence text 

processing systems might achieve it appned to this domain. However, full understanding requires that we 

integrate this representation with existing knowledge In memory. In particular, RESEARCHER has as 

one of its goals the incremental generalization of descriptions such as that In Flgure 1 by finding similar 

examples In memory, COf11)aring the new example with them, and abstractJng out any similarities. Since 
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there has been considerable work done on generalizing objects described with property values and to 

some extent relations ( [Winston 72: Michalski 80; Lebowitz 83c], among others), we have concentrated 

on the problems of generalizing hierarchically structured objects. 

Generalizing hierarchical representations presents a number of difficult problems. Typical are the 

problem of deciding how the components in the objects being compared correspond; dealing with differing 

levels of description of objects; and structuring memory so that maximal inheritance of the sort used in 

semantic networks and frame systems (see [Sarr et al. 82]), which implies minimum space utilization, can 

be achieved automatically. In this paper, we will give examples of how the generalization process works. 

and refer the reader to [Wasserman 84; Wasserman 85] for more details. 

We can break generalization into two parts: 1) since RESEARCHER is not explicitly being taught 

concepts, when a new example is presented it rrust decide what other objects to compare it to, and 2) the 

process of coniparing object descriptions. which Includes the abstraction of similarities. 

We will look at the comparison process first. as it is involved in the search process. Figure 2 shows 

two simplified disc drive patents.2 The physical relations and properties involved are not displayed, 

though they are handled in the generalization process. 

As human understanders. we can easily see that patents EX3 and EX4 describe similar objects. 

particularly after looking at the hierarchical representations. However, to begin to generalize the 

similarities. RESEARCHER must decide how the parts of the representations correspond -. for example. 

that part 2. the enclosure in EX3, corresponds to part 11. the similar assembly in EX4, and not to parts 

12, 13 or 14. Here this is relatively easy, as the assemblies are identical, but we rrust be able to identify 

less than perfect matches. RESEARCHER does this with a numerical scoring algorithm, similar to the 

one in [Winston 80] and related to [Evans 68]. 

2S1mplifled versions are used as the complex nature of r9a1 abstracts obscures the generalization procesa as well as to avoid text 
proces.sing problems. 
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Patant: KX3 

(~ DISC D~ COMPlUSDlQ AX ZNCLOS~ S~OOND:mQ 'fBll DISC OJUVB *COHKI.* 
SAD) DISC D~ DrCI.Ot)U ~ Sl'INHINQ ASSDmLY A DISC AND A UAOWlUn BEAD 
*COHIQ.* SAID Sl'DIlfDIC ASSZHBLY IlICLODU A SI1INDLB COIlWCno ':0 A K:l':OR 
*CONQ* SAID IDfCLOSll'JUI COHPJUSIlIQ A cova ON ':OP OJ' A SOPI10R'1' HIDGU) 

'1'axt ~reeectatioQ: 

I 1-------------. 
1-------------21-------------9 
I 
I 

-------------11 1-------------, 

Patant: 04 

1-------------31-------------7 
I 
1-------------4 
1-------------5 

1 • DISC-DlUVZ' 
2 • DCLOS~' 
3 • DKV-'1'n'./RCnUIOW 

tnlD01I1f-USDCIlL'lt ('USDCIlLY') 
4 • DISC. 
S • DKV-'1'll'./UAI)/lDUD HUD' 
, • DRIVK-SHAr'l" 
, • MO'fOJl' 

•• COVD' 
9 • ONltNOWH-'1'BDIQ, ('H!DGD') 

(A DISC DlUVZ c:ota1lUSIlfO All DCLOSt1ltK SUUOOlmDlQ '1'D DISC DlUVW *COHKI.* 
SAD) DISC OJUVK DJCLODU ~ SPIlfJrDfC USlDGlLY A IQGIm'UC USZMBI.Y AKt) A 
Jt&&Il1aUD BUJ) *CONG* SAID SPDnlDfQ USDCIlLY IlICl.Ot)U A SPIJI'DLa COlfDC'%KZ) 
'fO A )C)'fOa -ccIK\.* SAID )GQIZ'fIC USDCBLY COtG'lUSDlC A DISC *CONG* SAID 
DC:I.OSTDS COICPJlISIlfO A COVD OW '1'OP or ~ Stll'P0R2 MDCBD) 

1--····· 
I 
1 

------------101 
(-_ .... _--. 
I 

1--------1. ----UI- ----1. 
I 

1------------1.5 
121---- 11 

1------------131------------17 
1------------14 

10 • DISC-Darli' 
U.~' 
12 • DKV-nn/aO'fUIOW 

OIiJOlOft-USDCllL'lt (' UIlDGUoT' ) 
13 • DKV-'1'll'KtM:AaXanc 

OIiJQiOiitf-UDMIlLT' ('UIZIGLT', 
14 • OKV-'1'll'K/UAD11IIUD BUJ), 

1.5 . Darn-SHAn' 

11·~' 17 • DUC. 
11 • COVD, 
11 • olDOiOa-ftDIO, ('NDCBD') 

FIgure 2: Two simple device representations 

FJgure 3 shows the output of the generalization process for these objects. taken from [Wasserman 

85]. It Is assumed that EX3 Is already In memory and EX4 Is being compared to it. We can see how 

RESEARCHER f1nIt makes correspondences of the sort mentioned above. One problem arises in dealing 

with the d1scs (parts .. and 17). The disc In EX3 Is described as part of the disc drive. while in EX4 the 

disc is part of a magnetic assembly which is part of the disc drive. To make the representations match. 

RESEARCHER must Insert a "null" part, which mayor may not actually exist in any given object. This Is 

legitimate as we can assume that the descriptions are incomplete or use different levels of aggregation. 

The null part appears in the generalization of EX3 and EX4as part 24. shown at the bottom of FIQtH9 3. 
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The two input representations are stored as variants of the generalized object, recording only how they 

differ from it (basically, in this case, how the null object is resolved: in real examples there would usually 

be more differences). 

(G1DI 'lMEMlO) 
Katch~ lMEMlO aqainat 1MBHl •••. 170 
Beat _tch 18: 
(170 «lMEMl • 'MEMlO) 

( ('MEM!5 'MEMl4) ) 
«NULL' • 'MEMl3) «'HEM4 'MEMl7») 
«lMEMJ • lHEMl2) «'MEM7 lMEMl6» «U'fEM6 'MBHlS») 
«,MBM2 • 'MEMl.1) «'MEM9 'MZMl9» «lMEM8 'MZMl8»») 

Incorporatinq into q-tne •.. 
New qaneralization created: 'HXH22 
with varianta: (lMEMlO 'MKMl) 

1------------23 
1------------241------------25 
1 
1 1------------27 

------------221------------261------------28 
1 
1------------291------------30 

1------------31 

22 • DISC-DlUVZ' 
23 • ElUD' 
24 • NULL' 
25 • DISC' 
26 • tnmfOWlf-USltMBLT' 
27 • K)'lOP.t 
28 • DRIVK-SBAr7' 
29 - DCLOSUlUU 
30 - ONXHOWlf-TBINQ, 
31 - COVER' 

Figure 3: Generalizing the representations in Figure 2 

Even with just two hierarchical deSCriptions to compare, the matching process involves a number of 

problems in determining how the components of the hierarchies correspond. Typical of such problems is 

the need to insert levels in a hierarchy to obtain a good match, as described above. (While the insertion of 

a null level by itself decreases the goodness of a match, it will often greatly increase the value of lower 

level matches.) The problem is that there are an exponentially large number of places where null levels 

can be inserted, each requiring a complex, recursive match to test. We have used RESEARCHER to 

experiment with a variety of different algorithms for deciding where null levels should be inserted for 

optimal matChing, concentrating on ones that only try the most obvious places near the top of the 

hierarchy. 

Since the examples given RESEARCHER are not expressly designed for learning specific concepts 

(as they would be for a system being taught concepts, e.g., Winston's arch program [Winston 72D, the 

program must decide which examples to compare for the purpose of generalization. This is done using a 
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generallzation-based memory of the sort in [Lebowitz 83c; Lebowitz 83d]. A hierarchy of conceptS that 

organizes specific examples is created In memory. A possible memory Is shown In Figure 4, where there 

are two concepts subordinate to disc-drive#, floppy and hard disc drives. The former has two further 

sutxoncepts. Each concept organizes a group of instances. Note that: 1) using the techniques outlines 

in this section, the generalization hierarchy is automatically created by RESEARCHER, not provided to 

the system in advance (at least this will be the case in a fully developed system: see [Lebowitz 83d: 

Lebowitz 84; Wasserman 85) for progess tCHIate); 2) each node in FIgUre 4 represents a complete 

hierarchical description of the kind we have been looking for (in eHed, RESEARCHER's memory is a 

hierarchy of hierarchies); and 3) information in the generalization notes can be inherited by lower level 

generalizations and examples, so that information need not be stored repetitively. 

d1ac-dr1~' ---------------------------------> pataDt A 
I 
> floppr-41aa-dr1~' ----------------------> patecta •• C 
I I 
I > a1Dqle-a1doecl-floppr-cliac-dr1_. --> patecta •• r 
I I. 
I > doable-ddecl-floppr-cliaa-dr1_. --> pataDta Q. II. I 
I 
> ~-41ac-dr1_' -----------------------> pataDta J. X 

Flgure 4: A typical generallzatlon-based memory 

In usIng its generalization-based memory, RESEARCHER takes each new example and searches 

down the tree for the exafll)le or generalized concept most similar to it. This process involves matching 

generalized concepts with the new example in much the same way as EX3 and EX4 were matched 

above. RESEARCHER begins by matching the new exafll)le with each of the children of the 

generalization tree's root. It then selects the best match and looks at that node's children. As long as 

one of the children proQJces a better match than the parent node, RESEARCHER continues down the 

tree. EventuaJJy, It either reaches a leaf (an instance already In memory) or a maximally good 

generalization (I.e., all of the subordinate nodes contain factors that decrease the quality of the match). 

RESEARCHER's search algorithm does not guarantee finding the best match, since it Is possible 

that only an inferior match at an interior node would lead to the optimal match. However, this Is viewed as 
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an acceptable compromise in limiting search. An alternative would be to set a threshold match value and 

search down all branches of the tree that match above this threshold. Again, though, we might still miss 

the best match. Only experimentation will tell whether one algorithm or the other improves chances of 

finding a gOod (if not always best) match. 

Sacrificing a guarantee of finding the maximally similar example (in return for computational 

feasibility) matches the observation that human memory gains robustness by initial heuristic classification 

of information. (E.g., if we first classify a person we meet as an Artificial Intelligence researcher, we may 

miss similarities he or she has with our favorite politician.) 

Eventually, after a series of matches, RESEARCHER selects the node in memory which it believes 

the new example best matches, either a previous example or an existing generalization. It then "factors 

out" similarities between these representations, and, if need be, creates a new generalization node. In 

any case, the new example is stored by recording how it differS from a generalization in memory. This is 

an optimally space-efficient method of storage, which also captures Significant generalizations about the 

objects in the domain. 

The current implementation of RESEARCHER's generalization scheme works quite well on modest

sized examples. In addition to disc drive patents, a modified version of the program (CORPORATE

RESEARCHER [Wasserman 85]) has been tested on hierarchical descriptions of corporate organizations. 

In the future, we plan to address some of the combinatoric problems that arise for large examples, 

consider whether our approach of abstracting out all possible similarities is too extreme (in particular, 

determining exactly what the generalized concepts signify) and applying confidence evaluation methods 

of the sort described In [Lebowitz 82] to refine initial generalizations. 
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3 Text Processing Using Memory 

Since intelligent information systems such as RESEARCHER have available many examples in 

memory, it seems natura! to make use of this information for text processing (beyond identifying lexical 

items [Harris 78)). If we wish to have intelligent systems with large amounts of information it is vital that 

text processing be robust. Patent abstracts, like the rest of natural language, are quite ambiguous (which 

was somewhat surprising to those of us a bit naive about patents, who expected perfect clarity). We can 

use the system's automatically updated memory to help resolve many ambiguities. 

We feel that the best way to use detailed memory information during text understanding in the 

context of current systems Is to identify specifIC tasks where a piece of information from memory will be 

useful. More genera! methods, such as using memory to determine the interesting aspects of a text to 

focus processing [Schank 79; Lebowitz 81], we leave for the future. We have identified a set of 

"questions" that arise during text processing that can most easily be answered (and often can only be 

answere;d) by accessing long-term memory. 

It is important to keep in mind that we are proposing using memory for understanding, as opposed 

to genera! semantic information about words or concepts (as many other Artificial Intelligence systems 

have done). While genera! information Is crucial for our conceptually-based understanding methods, in 

order to resolve many ambiguities, it will be necessary to look at very detailed information in memory - in 

our case, how the objects described In patent abstracts are construded and how their pieces relate to 

each other. One way of looking for at this distinction Is that RESEARCHER ends up using similar 

information to other Alttf1cia.llntelDgence but rruch less of It has to be hand-coded initially. 

EX5 illustrates two Idnds of arrblguities that arise In patent abstracts. 

EXS - A disc head supporting a spindle made of magnetic material. 

The first ambiguity in EX5 Involves "disc head". Although not syntadlcally ambiguous, an 

understanding system such as RESEARCHER must determine the conceptual relationship between the 
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nouns. The phrase "made of magnetic material" is ambiguous in that we do not know whether it attaches 

to the head or the spindle. Both of these ambiguities can only be resolved by looking at memory. In fact, 

it would be easy to construct scenarios where different states of memory would cause this example to be 

understood differently (e.g., whether we knew about magnetic heads or magnetic spindles). 

RESEARCHER makes use of relatively simple, but heavily memory-based, techniques for handling 

ambiguities of the sort in EXS. Its conceptual analysis type text processing algorithm (described in 

[Lebowitz 83b: Lebowitz 84]), involves identifying object descriptions (usually noun groups) and 

connecting them with various relational words (usual prepositions - patent abstracts are quite short of 

verbs) which indicate the various physical, functional and assembly I component relations mentioned in 

Section 2. Within this processing algorithm, we have identified places where ambiguity can be identified 

and memory queried for resolution. In particular, memory is asked which of several possible physical 

constructions is more likely or what relation is likely to occur between two objects. ,Ouestions in both 

classes are anS'Nered by looking for examples of the possible configurations that already exist In memory. 

Figure 5 lists the various questions that RESEARCHER can currently ask its memory for purposes 

of disambiguation. They primarily involve prepositional phrase attachment and noun groups with multiple 

nouns.3 Our analyses of these ambiguities shares much with the linguistic work of [Levi 78] and the 

application of this work to Artificial Intelligence in [Finin 82]. However, our method of resolving 'the 

ambiguities - the use of a dynamic, long-term memory - is rather different. By looking for specific 

examples in memory (or information generalized from specific examples) we allow RESEARCHER to 

always use the best Information currently available. While examples do not always provide resolution of 

ambiguities as clearly as pre-defir!e<j semantic properties, they have the clear advantage of minimizing 

the need for ad hoc, hand-coded information. 

IT'he word types usad In Figure 5 are functional, rather than syntactic. However, object woroa are usually nouns and relation 
worda and part 1ndc:alDrs are usually prepositions, aJth~h not always in either casa. 



Form: object-word1 object-word2 
Example: An actuator housing ._ 

12 

Question: What's the relation between object-word1 (actuator) and 
object-word2 (housing)? 

Form: modifier object-word1 object-word2 
Example: A metal drive cover ." 
Question: Ooes the modifier (metal) better apply to object·word1 (drive) 
or object-word2 (cover)? 

Form: object-word1 object-word2 object-word3 
ExaITl'le: A dlsc-drive transducer wire ._ 
Qu8Stion:" object-word1 (dlsc-drive) "related to" (as a part, assembly 
or In relation) object-word2 (transducer) or object-word3 (wire)? 

Form: object·word1 relatlon-word1 object-word2 relatlon-word2 
object-word3 
ExaITl'le: A transducer on top of a disc supported by a spindle ._ 
Qu8Stion: Ooes relation-word2 (supported by) connect object·word3 
(spindle) with object·word1 (transducer) or object-word2 (disc)? 

Form: object·word1 part.lndlcator1 obJect·word2 part.lndlcator2 
object·word3 
Example: A disc drive Including a disc comprising a metal plate (and) ._ 
Question:" obJect·word3 (metal plate) a part of object·word1 
(disc drive) or object·word2 (disc)? 

Form:obJect-word1 relation-word obJ8ct,word2 part-of-lndk:ator 
obJect-worc13 (Th .... are sev.raI related conflgurationL) 
ExatTfJle: A disc on a spindle for a disc driv. _ 
Question: Ia obJect·word1 (disc) or obJ8Ct·word2 (spindle) a part 
of object-worc13 (disc drive)? (Olrectry a part, as both are parts 
Indirectly.) 

Figure 5: RESEARCHER cflSambiguation questions 

The search for possible examples that answer a given question Is a relatively simple one. Recall 

that RESEARCHER's memory (F"tgUre 4) Is baslcaJIy a hi6rarchy of object desaiptions. In addition to the 

hierarchy for the maJn concept under consideration (e.g •• disc drives). there are subsidiary hierarchies for 

other objects.. such as IP'ndles and discs. RESEARCHER uses these hierarchies to look for possible 

assembly/coFJ1)One'" constructions and physlcaJ relations. h begins Its search with general objed 

descriptions and searches through more spedflc desaiptlons until a relevant example is found. If several 

possible constructions (or relations) are found, the one associated with the most general description is 

used, as that represents RESEARCHER's broadest information. RESEARCHER's memory search 

disambiguation process is described in more detail in [Lebowitz 84]. 



13 

Our disambiguation methodology bears resemblance to that of [Small 80; Birnbaum and Selfridge 

81: Hirst 83], except, crucially, it relies on information from a detailed, dynamic memory for executing 

disambiguation. Our algorithm does have the side-effect of making understanding subjective (in the 

sense of [Abelson 73; Carbonell 81]), since new examples' will be interpreted to correspond to old ones, 

but we view this as inevitable if we wish to achieve robust understanding. 

To illustrate RESEARCHER's memory-based disambiguation, we will first consider how the simple 

noun phrase. "a motor spindle", is processed. Figure 6 shows how RESEARCHER processes this phrase 

with no relevant information in memory.4 The program queries memory (indicated by">>>" for a plausible 

relation between a motor and a drive shaft (spindle). Since none is found. it assumes that there is an 

unknown functional (purpose) relation between the objects. which is its default for concrete objects. 

Runninq ~ at 3:19:26 PM 

(1 M:)'fOR SP DlDLZ) 

1 : !f." iIl.tan-=- word -- akip 
~OJ\ : .... tt. "ithin Nl': aaWl and akip 
SPIHDLZ : )II' word -- _tt. DJUW-SBArl' 

Ill." DJUVS-SBArl' inatUloe (~) 
»> Lookinq tor relation between MOTOR' and ,KKMO (DRIVK-SHAFT') 
li." I«)TOR' in.tUlce ('KZHl) 
A.aauminq 'MEHl (M:nOJ\.) Ulei 'HKMO (DRIVE-SHUtt) &r. functionally relat.d 
Zatalll1ahinq t7NJIJlOW-PORP-QL; SOBJS~: 4MIDQ. (I«)TOJ\'); 

0B.nC'!': 4MKMO (DJUW-SUn.) [~1] 

'!'ext Repr.aentatioo: 

----------------------1-0 o. DRIVE-SHU'!" 

----------------------1-1 1. MO'l'Oa' 

Jt.elat1oa: ObjeGt: 

{tnmlOWM-PORP-IW.. UIIMO (DJUW-SDn') 

Figure 6: 'A motor spindle' with memory empty 

Now we assume that before processing "a motor spindle", RESEARCHER had had in memory EX6, 

41n F'1QU/"8 6 and other examples of RESEARCHER output, the term "memetta" refers to an object concept In memory - Aterally a 
smal piece of memory. An MP, Of Memory Poitlt8r, is a word that points to an object in memory. Nonnally MPs ant conc:ret8 nouns. 
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shown in Figure 7 along with its representation. EX6 simply consists of a drive with two parts, a motor on 

top of a drive shaft. 

!azt Repre.ancac1oo: 

I---------------A-l o. DRIVE' 
-----------------OI---------------A-2 1. MO~R' 2 . DRIVE-SKlrt' 

Jtalac1oa: 

FIgure 7: Setting up memory 

Wrth EX6 in memory, RESEARCHER process the same noun phrase, "a motor spindle" as shown 

in Figure 8. We can see that when it queries memory to try and find known relations between motorS and 

drive shafts, it finds the one from EX6 and assumes it to hold here, as well. Thus, an "on top of" relation 

is added to the representation, showing the genuinely dynamic nature of RESEARCHER's text 

processing. 

Ttm!njD9 JllauC"lml ac 3:11:11 tx 

(A MInOR DDlDLZ) 

A : .. " 1.&uta.ooe woJ:d -- .JU.p 
~ : *-ct. within lIP; .... aDd aJUp 
D:cmLZ : MP woJ:d -- _tt. DllIVZ-SDn' 

Jr •• DllIVZ-S~' tn.u.o_ (UGDO) 
»> Look1D9 for relaUoa lIet_ MnOa' aDd lMDO fDJl:v.-.~.) 
Jr •• HO'fOJl' tn.tAAOe (UIDC4) 
l.t&bl1ah1.D9 Jl-oJl-fClt-<:ll'; ~: umc4 ()InOJl'): <m.1ZC'!: UGDO (DJU:'q-S~') (UZLZ] 

-----------------.. , ,. DIUVS-san, 

------------------.. 4 4. NO'.rCJl' 

Jlel&t1oa: Object:: 

(4QL2/S1 UGDC4 (~U) (Jl-oJr-~~) UGDO (DIUW-SB.U'f') 

Figure 8: 'Spindle motor' with EX6 in memory 
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As a further illustration of RESEARCHER's use 01 memory in text processing, we will show how it 

processes part of a real patent abstract, EX7. 

EX7 • PS8; United States Palent #4287445 (abstract) 

An erec:tromagn~tic Ii~ear actua!o~ for positioning a transducer over locations on a rolating 
magnet~ r~rdlng dISk co~pnsrng an actuator housing used as a stationary base for 
sup~rtlng vanous ~arts; a coli and cart assembly including a cart, having a rectangular cross 
sectIOn and tubular In construction, adapted at one end to support the transducer .. , 

A~hough it may not be immediately obvious, the beginning of EX7 is extremely ambiguous. (It may 

not be obvious because people ars so good at resolving ambiguity.) The internal structures of the various 

noun phrases and the determination 01 what ,is a part at what could a/l be resolved in several ways. 

WithOu t any Information jn memory, RESEARCHER would have la rely on general heuristics which might 

or might nat wane:, but would certainly be quite ad hoc. Instead, we will provide RESEARCHER with a few 

(admittedly somewhat artificiaO examples that it can use. Specifically, we will give ~ the following 

descriptions: 

A disc drive comprised 01 an actuator thai has a housing; an assembly with a coil. 

A cylindrical cart with one modified end and a rectangular cross section. 

Having given RESEARCHER examples of support mechanisms and double sided floppy disc drives, 

we let it read EX6. The first part 01 processing is shown in Figure 9. 

A number of aspects of RESEARCHER's text processing are shown in Figure 9. We will focus on 

its use of memory. Each memory access is again indicated by"»>". The beginning of the processing of 

Psa is relatively simple. As we can see in Figure 9 how RESEARCHER processes the first noun group 

with a "skip and save" strategy [Lebowitz 83e]. The words "electromagnetic" and "linear" are saved until 

the head noun, "actuator" Is reached. It then worKs back through the noun group, applying the modif iers 

to the actuator. Next to be established are a purposive relation. P·GUIDES. taken from the word 

"posi1ioning" (after "for", which in this case Indicates that a purpose word is to follow) and a physical 
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P!tnn'NJ lUtSP"C'P"P at :ZI-,J'tll.· • .s 19:37:.51 
Pat_C: .,. 

lUI ~l'IC l.tHZD. l.C'tUUOR rCR 'OSI'UOII'INC A. TR.ANSDIJc:u. OVD. 
LOI!&j'IOlfS 0" .l ~DIQ KalOQ'1'IC gCOIUlOfG D1S1I: C:OHPlUSDlG .llf ~UO~ 
HOOSllIO anD U A. stUIOKDT BUS J'OR Str;oPOR1ING vu..xoos 'J.P.U -SEMI' .L COIL 
AlfD c.u.1' ASSD&Ll' IlIct.tmDfO A c.u.'t -C01OG.' UVDlQ ... UC'l'ANGtJLlll dtOSS 
SSC1'Io. All]) ~ III COIfS'fl\tJC1'IOW *COMKI.' lDJ.1''nD U ONll ImI ~ St1?POll1' 

'!D 'ttJJl1tI0ClJl ·S'fOJ·) 

U : ••• iA.t~ _rei -- ,kip 
~1'IC : "-t.ea -.utla.c'; .... aDd. .kip 
t.nrUa : "....t.t. • .odJ.fiAoC'; .... aDd. aJU.,. 
~uoa : HP .,.,rei -- _t.t. ~J.' 

••• ~. in't. __ (lMDII) 
~t1ll9 lMDII (JoCt'OUOlt') .. tell hat.ur.: COD'Icouu.%I0 •• t.1lfZD. 
~t1Dq umaI (lC1'QUOJl') .. 1tll f .. tun: ml/'tJlU'cSl • ~'rIC 

P<D. ~0lU) : ~ .. 1Dd.ioat.oJ: -- .Up 
JO'UIOlIDlQ : Pu.qo .. _cd -- ..... aDd. u.ip 
.l : w •• lIuot. ___ rd. .... alt1p 
D!.U"DI1CZIl : IG _rd. - - _tt. DAJl'SDtICD' 

••• n&Jf'Doal\' 1D.t.~ (UCDeJ) 
.,t.abll.b..16q P-GCJZDU Hlatloa; ~: ucaa (~IUJ: 

oa.JIC: : ~ (nu'SDoa:Jtf) {uaLl] 
ova. : blat.loa _rei -- .I,,, aDd. IRJ.p 
~IOW' : ,. _ri -- _t.t.. LOCI.%IOJI' 
... U:CUIOW' 1a.t. __ (lMEXlO) 

>>> bf1n1.DoJ ll-.uoft ~ t~ 4MDd (!Qlfooa:at) 6HDlI (~') 
•• tabll~ a-.uovs nlt.Uoa; ~: UIDd (D.U'SD1l'I3a'1; 

1tmJKC'l': UlDC.O (l.OC:UtOWfJ (UZL2) 
01' (on) : 'azt: .t 1Dd.ioat.or 
.l.II~ &MDCl.O (L0a2IOIf') OJ:' umu (!!WISDC~'l OJ:' 4MDia (~'l 

h put ot ~ tollowUoq 
A. .... 1Iutuw:. _rei. - UJp 
)O'fUDIQ rurpo .. _rei. .. ltbJJ:I D; ...... aDd .kip 
1GQm1IC: ..... tt. -.u.thJ:'; ..... &Ad u..1p 
QCOJU)DIG turpo •• _rei. W1thJ.D D; ...... ~ ,Up 
DID: Nt _rei. -- _tt. DISC' 

••• DUC' ia,tu.o. (UCDCll.l 
bt&blhtlu.q ,-~ ~1.t:10a.; 0lI.1aC1': lHIXl.l. (DUC'l [UZLl] 
~t~ UIZIC11 (DUC') 1f'1ttl t •• ta.no: !"Da/?!JJtPOQ • NaQm'l'YC 
a,t&bll&h1Dq ,-It01'UJ,.I ~1.a.t10a.: 0lI.1aC1' : ~1 (DUC'l [u.aL.l 
»> .. l..:rtu.q ~ toJ:' UIaX1l. (Duel) ~o. ~ UCDClO (t.OCU'YOX') 

UCDCt (ftU"Doaal) .... (ICTOUCat) 
&.~ UCDQ.O (l.oOCI3YOIIII 1& p&rt ot lNDtt.1 (DUC') 

Figure 9: RESEARCHER "",,,easing the fir>! pa" of P58 

relation, R·ABOVE from the word "over", In establlshlng the R·ABOVE relation. RESEARCHER rrust 

decide whether the "t:ransdJcer" or the "actuator" Is over Ihe "locations". Thera being no relevant 

Informallon In memory, and lhe objects being similar from the point of view of the system's heuris1Ics, the 

most recent Is picked, 

RESEARCHER's processing gets more interesting when the noun group " a rotating magnetic 

recording dIsk" Is reached. The processing begins similarly to that for the first noun group, saving the 

modifIers and Ihen applyIng Ihem to disc#, But here RESEARCHER must decide whether the ''part of" 
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word, "on", indicates that "locations" or the "actuator" is part of the disk. (If the second reading is not 

obvious, imagine the word "and" before "on". This reading is syntactically possible, with or without the 

word "and" being present.) 

RESEARCHER's first choice of how to resolve this ambiguity is with a memory check. It looks for 

cases in memory where either the concept location# or actuator# is part of disC#. Finding none, since we 

have only provided the system with a simple memory for this example, RESEARCHER resorts to its set of 

heuristics. The relevant rule states that "virtual" objects, such as locatio n# , which refer to implicit parts of 

objects, are more likely to be parts of solid objects (such as disk#) than are complex objects (such as 

actuator#).5 This sort of processing is related to the use of semantic properties of words for 

disambiguation, and is integrated nicely with memory search. However, we wish to avoid adding too . 
many ad hoc rules of this sort - the system currently has about six such rules which seem to cover most 

of the cases where memory is unavailable. 

More specific use of memory by RESEARCHER occurs in the processing of the next section of P58, 

shown in Figure 10. 

The first noun group processed in Figure 10, "an actuator housing", includes a noun-noun 

construction requiring memory acct:lss. RESEARCHER rrust determine the relationship between the two 

objects described, actuator# and enclosure# ("housing'). There are no syntactic clues or semantic clues 

as to the relation. So, RESEARCHER goes to memory, finds the assembly/part relation that exists in 

memory for other Instance of these concepts (from an example we gave it), and assumes that this relation 

holds for the new exafl1)le. Had there been a more complex construction, say noun-noun-noun, 

RESEARCHER would have used this same infonnation in memory to detennine which objects related to 

each other. 

SOtn.r IYCh virt\Jal objects are aide" lepl, etc. 
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COIGIJUSIHQ : ,art. ot 6HZM11 (DISC') or ~O (I.OCA%IOH') or 'MIDD ("m.USDOCIll') 
or 4NEKI (ACTa~') to follow 

D : ••• iAatanoe word -- .kip 
l.C'lt1~ : ~tt. with1D 0; ..... anei .kip 
ElOaSIlfQ : MIP word -- _tt. DCLOSlJRB:' 

••• DCLOSau. iAatanca (lMIDC.2) 
»> Look1nq for relation betwaan ACTOA%OR' anei ,M2Hl2 (ENCLOSURE') 
Aa~ 5MIXl.2 (DCLOSOJUE') 18 part of 5H!M8 (AC'rOA%ORt) 
»> S.l.atiDq a •• 1' for ~ (DCLOSOJUE') fr~ amccq 5M2Hll (DISC') 

5HlDQ.O (I.OCA%IOlf') 0CDd (D.UlSDaCZR') 'HKHa (AoC'rOA%ORf) 
~ (DCLOS0'R2') 18 al.raaciy Icnown to be a part ot 5MItMI (AC'rOA%OR') 

0$&1) AS : 'hra .. 
-> OSZD-U : 1'urpo .. word -- ..... &Dei alUp 
,. : ••• iAatanca word -- .kip 
S'tUIOXUY : ..... tt. -cit1.r; .... &Dei .kip 
BAD : MIP word -- _tta BAd • ... auz. in.tanca (5JCIMl.3) 
~tiDq UCDO.l (BJ.U') with t.ature: N3I:LIn • BOD 
Aa~ UCDO.l ~.) 18 part ot uaDa (~.) 
»> .. t~ '-JCU-U StJB.1ZC'% tzo. lHDQ.2 (DCLOSt1Q,) 'HKKI (l.C'lt1~') 
.at&!)l1.h1Dq J-~-U rel&tion; SlJL1ZC'!: UIDQ.2 (DCI.OS0'R2'); 
~: UCDO.l (DD') [USL.5] 

Faa (FOal) 1'urpo .. 1ncUcator -- alUp 
~~IJIG : 1'urpo.. word -- .... &Dei alUp 
~oa. : *-tt. -c.1ti.r: .... &Dei alUp 
,~. : Nt word -- _tt. ,~ • 

••• ,~. iAatanoe (6HZM1.) 
~tiDq UCIDCl.. (»~.) with f •• ture: JiOMB.D • SOMa 
Aaauainq UCIDCl.4 (»~.). 1. part ot UCDCI (~.) 
>>> "f1n!.oq a~-~ StJB.1ZC'% fro. lMIDQ.3 (BASZI) U4KH12 (DCLOSt1QI) 
anabla to aalaat .tJB.1ZC'% -- Wl1D9 8O.t recant 
•• t&!)l1ah.1n9 a~-~ rel&t1on: St11IJZa: QCIDC13 (BUZ I) : 

OSJKC'!: UCIDCl.4 (URTI) [un,] 
•• t&!)l1ah.1n9 ,-S",'OUS relation; Sl1BJKC'1': lMIDQ.3 (UD'); 0B.J'ZC1': ucaa.. (»~.) [UZI.7] 

*sma* Skip (SXI1') 

Flgure 10: RESEARCHER processing the second part of P58 

The same assembly/part relation In memory is used to resolve another textual ambiguity. 

RESEARCHER must determine whether the actuator or the disk "comprises" the "actuator housing". 

Again, the existing relation in memory resolves this ambiguity, and determines that the housing is part of 

the actuator. Since this relationship has already been established (while analyzing the noun group) 

processing simply moves on. 

The remainder of FIgUre 10 shows more examples of RESEARCHER Identifying object, relating 

them to each other and accessing memory to resolve ambiguity. FlQUre 11 shows further examples of all 

of these sorts of processing as RESEARCHER cof11)letes the first fragment of P58. 

One interesting aspect of the processing in Figure 11 is the handling of the phrase "coil and cart 

assembly". As for the earlier noun-noun constructions, RESEARCHER must determine the relations 
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A Ne. inatanee .ord -- .kip 
COIL Mamette .ithin NP; .ave and .kip 
AND (AND2) Skip (SKIP) 
CAR~ Mamett •• ithin NP; .ave and .kip 
ASSEMBLY M5' word -- memette CNKNOWN-ASSEMBLl" 

Ne. CNKNOWN-ASSEMBLY' inatanee ('MEMl5) 
»> LookinlJ for rel.tion bet_.n CARRl:AGX' and .MEMl5 (tJNlI:NOWN-ASSEMBLl" -- 'ASSEMBLY') 
Ne. CARRl:AGX' inat anee ( .M2MJ. 6) 
uauza1nq uatKl.6 (CARRl:AGXI) 1& part of .MEMl5 (UNlOIOWN-ASSEMBLl" -- 'ASSDlBLY') 
»> Lookinq for rel.tion bet_en COIL' and one of .HZMl6 (~') 

~5 (UNlOIOWll-ASSEMBLYI -- 'ASSDlBLY') 
New COIL' inatanee ('HZMl7) 
uaum1nq .MZKl7 (COIL') 1& part of ~5 (UNDOWlf-ASSEMBLYI -- 'ASSlDmLY') 
uauza1nq UIZKl.5 (UNlOIOWN-ASSEMBLYI -- 'ASSEMBLY') 1& part of umH8 (A.CTUUORl) 
INCLt1DING Parta of ~5 (UNlOIOWN-ASSlDeLl" -- 'ASSEMBLY') 

or UGtK8 (A.C%t1UOR') to follow 
A N •• inatanee word -- .kip 
CART M5' word -- memette CARlUAGK' 

Ref.r.:1C8 for ~,: .HZMl6 
»> Seleatinq aa.y for .MXH16 (CARlUAGK') fr~ amonq 

.MZKl5 (UNlOIOWN-ASSEMBLYI -- 'ASSEMBLY') nmM8 (A.C%t1UORl) 
.. I2X16 (CARRl:AGXI) 1& .lre.dy known to be • part 

of .MEKl5 (UNlOIOWN-ASSDlBLyt -- 'ASSEMBLY') 
*COMH1* Skip (SXZP) 

IlAVDlG Part. of UGDC.6 (CARRl:AGX') or UGDC.5 (CNKNOWR-ASSZMBLY' -- 'ASSlDeLY') 
or .HZKI (A.C%t1~R') to follow 

A ••• inatanC8 .ord -- .kip 
RECTANGULAR Mamette .od1fier; a.v. and akip 
CROSS SKeTIO. Pbr.ae 
-> CROSS-neTIO. : "' word -- -.-tte CROSS-nCTIOII' 

}f •• CROSS-nCTION' inatance (uaDQ.I) 

Au~tinq UIBKlI . (CROSS-SZCTIOII') .ith feature: Sap •• UeTUGULAR 
»> Sel.atinq .aay for .~I (CROSS-SECTION') froa amonq ~6 (~.) 

.. I2X15 (UNlOIOWlf-ASSZMBLYI -- 'ASSlDmLY') UI2M8 (A.C%t1~RlI 

u.um1nq .MEKlI (CROSS-nCTION') 1& part of ~6 (CARRUlat) 
AND (AND2) : Skip (SKIP) 
TUBULAR : Mamett. modifi.r; •• ve and akip 
IN CONSTRUCTION : Pbraae 
-> IN-CONSTRUCTION : Coll.atinq modifi.r. 

»> Lookinq for mamette modified by CON7I~ION/CYLINDRICAL from 
.MEKl8 (CROSS-SECTION') '~6 (~.) 
UlltXl5 (UNlOIOWN-ASSZMBLYI -- 'ASSEMBLY') U4BH8 (AC%t1~RI) 

AuqmentinlJ ~6 (CUllIAGZ') with feature: COlaI~ION • CYLINDRICAL 
*COMH1* Skip (SXZP) 

ADuno Purpoae word -- .ave and akip 
U Relation word -- aave and akip 
ONK ~tte .od1fier; •• v. and akip 
END Nt word -- _tte DD' 

.e. DD' inatanoe (ucaa.,) 
Au~t1nq UCKKl' (DDt) .ith feature: JroMBD. • 1 
uauainq UCKKl' (DD') i. part of .NKMl6 (~.) 
.atabl1atunq '-..xI17n. relation; StJDJZa: utZMl" (SXOt) (UZLI] 
.atabliatunq a-A2 relatioa; .~: ucaa.t (END') (UZL'] 

":0 SUPPOR~ Pbr ... 
-> SUPPORU Purpo .. word -- aave and &kip 
TID AIltecedent word -- akip 
'nUNSDt7CD Nt word -- -.-tte 'nUNSDUaR' 

Referanee for TRANSDUCER': .MKM9 
»> Refininq II-SUPPORU StJB.neT fro. .HIDQ" (KNOt) .MlDQ.6 (CUllIAGZt) 

U12Ml5 (UNlOIOWN-ASSItHBLl" -- 'ASSEMBLY') umH8 (A.C':r1JA":ORI) 
Unable to .eleat StJB.nC':r -- uainq meat recant 
•• tabli.hinq P-SUPPORTS relation; SOBJIeT: .MZKlt (END'); 

OBJKeT: .MZM9 (TRANSDUCER') ('REL10] 
*S~OP* Break word -- .kip 

Figure 11: RESEARCHER processing the third part of P58 

between the "assembly", the "coil" and the "cart". Naturally, RESEARCHER accesses memory in each 
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case. In one instance, for the "coil", it finds the example existing in memory. In the other case, relating 

"cart" and "assembly", RESEARCHER must rely on its heuristic that vague, complex objects, like 

"assemblies", usually contain more specific objects as parts. (Actually, to do this example perfectly, we 

would also have to apply similar techniques to determine the scope of "and" as a connective.) 

Figure 12 gives the representation that RESEARCHER has derived by using memory to help 

understand PS8. The key point is that a correct representation could not be found from syntactic or 

semantic rules alone. Some form of object memory is needed. While a larger memory would force us to 

consider more deeply problems of multiple relevant examples, we feel the approach is a sound one. 

!ezt ~r.a&Ct&t1oD: 

1----------13 
1 
1------UQ-14 
1-------N-15 
1 1----------1. 

---------A-J 1----------1'1----------17 1------KIJ-20 
1 1 
1 1----------1. 
1 
1 

-------------------AaJ-10 ,. ~.DOCEl. 

• - nunouoSJItnz~c 
COlQ'I~ION/I..IliUIl .aauuoR, 

12 • DCI.OSORS' 
13 • ICllIILITT/lIOQ u.a. 
U • JnDGIDI>l 'AR%' 
15 • OIUCliOWW-USDGLT' 
11 • COUI~IOJf/cn.DJ)Jl%c:u. CJJl!' 
17 • COIL' 
1. • SIlU_~ OlO •• -ucnON' 
1t • WtlMBD/1 DD' 

-------------cn-12I--------------a-11 10. WUMBIJV>l LOCA%IOK' 
11 • 'n:n/iOUOU/)QQIUIC DISC' 

A 11at of ~l&t1ona: 

SWlject: Jt.eatioa : Object: 

[UZLl/A] UGDCI (ACWUOIl') (I-GInI)U) UGDCJ ('%JUlIIDOCX1l') 
[5JW..2/K] UCEMlO (LOCUI01I') (a-DOW) UGDCJ (ftUlDOCD.') 
(UZI.3/C] ~-anu) QIa(1l (DISC') 
(UZL4/D] (.-lO'fUU) UCDQ.1. (DISC') 
[~,..] 6lCDC12 (Da.OIlJU') ('-JoC'fI-U) UCDCl.l (Un" 
[UZL'~] UCDCl.l (UD" (a~~) UCEMl4 (uan, 
[UZL7/Q] UCDCl.l (UD') (I-St7nous) UCEMl4 (uau, 
[5ULI/II] UCIXlJ (DD') (I-MODII'IU) 
[UZLt/I] UCEMlJ (DD') (a-&2) 
[UZLlO /.1] UCEMlt (DD') (. -Il7IPOUS ) UGDCJ (D.AJfIDOCX1l') 

Figure 12: The representation of EX7 

We have rruch left to do In our integration of text processing and memory. However. we feel our 

general approach is quite promising, as our work In building up memory has a positive synergistic eHed 

on text processing robustness. The identlflcatlon ot specific questions to ask memory seems to be much 
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more effective than looking for more general applications of memory to understanding or developing huge 

numbers of ad hoc disambiguation rules. 

4 User Expertise and Question-Answering 

Once a substantial knowledge base has been built up by RESEARCHER, it is important that it can 

be queried intelligently. In [Lebowitz 83b: Paris 84] we described an earty question answering module. 

Recently, our work has concentrated on how RESEARCHER might tailor its answers to the needs of 

individual users. There are many elements to such tailoring, the goal of the user, for example, but here 

we will concentrate on just one factor - the user's level of expertise. We have tried to determine the sorts 

of basic answering strategies that would be appropriate for expert and naive users of the system.6 

Eventually, we will also look at how expertise affects other levels of processing (such as lexical choic.e) as 

well as other factors that require the tailoring of answers. 

In order to get an Idea about the kinds of strategies that might be appropriate for various users, we 

have looked at texts that describe objects and that are aimed at readers with different levels of expertise 

- several adult and junior encyclopedias. As described more fully in [Paris 85], the strategies used in 

adult and junior encyclopedias are quite different - the adult encyclopedias, presumably aimed at relative 

experts, tend to describe the part structure of objects, while the junior encyclopedias describe the 

processes that take place in the device. EX8 and EX9 show this distinction for descriptions of 

telephones. 

EX8 - The hand-sets Introduced In 1947 consist of a receiver and a transmitter in a single 
housing available in black or colored plastic. The transmitter diaphragm is clamped rigidly at its 
edges to Improve the high frequency response. The diaphragm is coupled to a doubly resonant 
system - a cavity and ai1' a:r chamber - which broadens the response ... (Collier's 
Encyclopedia. 1962) 

As we can see, EX8, taken from an adult encyclopedia, describes a telephone by presenting its 

tActually. user expertise faJlalnlD two areas - familiarity with the syslBm and familiarity with the domain. We are conc:emed h9f'9 
with the Ia tier. 
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parts. The description continues in this vein. It is using a construction qu~e similar to the constituency 

schema that McKeown used in her question answering work [McKeown 82J, providing an almost tree-like 

description of the parts of the objed. This is in contrast w~h a description aimed at younger readers, EX9. 

EX9 - When one speaks into the transm~er of a modem telephone, these sound waves stnKe 
against an aluminum disk or diaphragm and cause it to vibrate back and forth in just the same 
way the molecules of air are vibrating ••• (Britannica Junior, 1963) 

Here the description is process-oriented. It traces the process of transm~lng sound, introducing 

part descriptions only when necessary. This is clearly a different presentation strategy, and our study of 

texts indicates that it is much more widely used in texts aimed at less experienced readers. We feel that 

a process-oriented answer would be appropriate for RESEARCHER to use when dealing with a novice 

user not likely to know what various parts are used tor. 

We are currently implementing these two different 5tta1egies for describing the same object. Figure 

13 shows how RESEARCHER generates an explanation of a telephone from ahand-coded knowledge 

base making use of McKeown's constituency schema. This Is presumably the kind of explanation we 

would have RESEARCHER generate for an expert user. In FIgure 13 we can see the various steps of the 

explanation that RESEARCHER produces, annotated by hand on the right. We are currently Interfacing 

RESEARCHER with a surface g~nerator that uses a functional grammar [Kay 79J to aU10matically 

produce English output. 

Figure 14 shows the first part of another description of a telephone generated by RESEARCHER 

from the same knowledge base, this time In a process-based manner appropriate for a novice. Instead of 

just giving the parts of the telephone, it now describes the operation of the device, primarily by presenting 

a series of causal links. Our surface generator under development will also produce English text tor this 

example. 

The manner In which RESEARCHER generates the descriptions in FIgUre 13 and Figure 14 is 
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Oeacription of the TBLXPHONB baaed on the Conatitueney achema. 

~ are the unique identifiera tor the object tramea. 
The Conatituenc:y Schema waa filled by atepping through an ATN. 

'HIOCl. (TlUJa'HOD) The telephone ia 
(*rDEN'l'IJ'ICA.%ION* (~-oJ': OBVIClU» 
(*CONS'l'ITtlENCY*' (U!EM2 ('l'RANSMITTU» 

(,HIOCl.6 (HOOSING» 
('HIOCl.5 (LINK» 
('MEHl. 7 (RECEIVER») 

a device. It conai.t. 
ot a tranamitter, 
a houainq, a line and 
a receiv.r. 

,HEM2 ('1'RANSKI'l'nR) The tran.mitter ia 
(*rDEN'1'IP'ICA.%ION* (VARIAN'l'-<lI': 'l'RANSKI'1'TU'» 
(*CONS'1'ITtlENCY* ('MEM6' (DOOBLY-RESONAWl-SYS'l'EM)); 

('MEM3 (DIAPHRAGM-'1')» 

a kind of tranamitter. 
It haa a doul)ly 
reaonant ay.tem and 
a ciiaphraqm; 

'HIOCl.6 (HOOSING) the houainq ia 
(*rDEN'l'IJ'ICA.%ION* (VARIAN'1'-OI': COVER'» 
(*CONS'1'I'1'UXNCY*) 

a type of cov.r; 

,MEMS (LINE) the line i. a wir.; 
(*rDEN'l'IJ'ICA'fION* (V1RIA.N'1'-<lI': WIRE'» 
(*CONS'1'I'fUINCY*) 

'HZMl. 7 (RBCZIVlDl) The receiver ia a 
(*IDEN'1'IJ'ICA.%ION* (VlUUAN'l'-<lJ': RECEIVER'» kind of receiv.r. 
(*CONS'1'ITtlENCY* (GHEM22 (DIAPHRAGM-f» It conaiat. of a 

('MIU421 (AIR-GAP» ciiaphraqm, an air qap 
(UIIDCl8 (ZLZCno~'l'lll and an eleatrOlll&qnet. 

FIgure 13: A constituency explanation of 'telephone' 

described in more detail in [Paris 85]. In addition to looking at the different generation strategies, we are 

also studying ways to determine the expertise of a user, since simply asking is not always the appropriate 

approach, particularly as a user's expertise may vary over different topics of discussion. We are also 

conSidering mixed strategies that make use of elements of each of the generation techniques illustrated 

here. 

5 Conclusion 

We have described here three areas of investigation in the study of intelligent infonnation systems, 

involving the prototype system RESEARCHER. Our work involves the basic idea of understanding the 

text to be stored In the system's memory. Remarkably little work in Artificial Intelligence has taken this 

approach. The system CyFr [Schank et al. 80], which combined FRUMP [DeJong 791 and CYRUS 

[Kolodner 84], worked from a similar perspective as did our eariler work with IPP [Lebowitz 83c]. a 

system that read news stories about terrorism. Other work applying Artificial Intelligence to Information 

Retrieval, such as [Tau et al. 82; Tong, et al. 83], has either applied heuristic approaches to the search of 
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~ p~_aa iDfocaat10a geta p1cked up &ad p~1nted out for a na1_ ua.~. 
4HRX are tbe aniqua 14aat1f1e~a to the f~amea co~~e~oad1nq to the 
.. ta-ralatioa. the proq%&a 1. t~aaiDq. 

6UI.l (JI' -SRD1tI-nr:o) : 

.abject : (umc:z7) [ONS] 
ol:)ject : (umc:z) ['%lWfSXIHU) 

UZIA (»-anS): 
.abject (umc:zl) [SOmmnVU] 
objec:e (~) [DIUIDWOM-~] 

utZI,4 (JI'-Hn'S): 
81UIjec:e : (,HDQI) [SOmmnVZS) 
ol:)j.c:e : (uaDQ) [DIUBJW:H-~] 

-> uau. (~SZS) 

UZI.5 (»-VDUnS): 
.abject 
ol:)ject : (~) [DIUBJUI:M-~] 

UZI.5 (»-VID ITSS) : 
.abject : 
ol:)ject : (ucaa) [l)IUBJUI:M-~] 

When on. apeak. iDto the 
tr&nam1tt.~ of a telephoae. 

the aoUD4 wa_. hit 
the d1aphraqa of the traaaa1tter. 

'fbi. CAua •• 

c.RKLI (»-VIDI'PU) elM _leaal •• of aJz 
.abject , are 'I1l:u:aUD9. 
ol:)ject : (umc:zC, (Alll-HOUCULUJ 

Flgure 14: Process-oreiented descrfptlon of 'telephone' 

raw text or involved search through carefully prepared knowledge bases. Understanding the text greatly 

widens the possibilities. In our own research, the generalization of hierarchical representations allows the 

system to learn about a wide range of complex objeds and build up a rich memory. This memory is used 

extensively in text processing, primarily tor disambiguatIon, to achieve robust performance. Finally, 

awareness of the expertise level of a user will allow RESEARCHER to tailor it answers to each user. The 

sum of these three related areas of Investigation should lead towards the development of powerful 

intelligent information systems that can make better use ot huge amounts of varying sorts of InformatIon 

than can purely text-based systems. 
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