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Abstract

The development of very powerful intelligent information systems will require the use of
many Arificial Intelligence techniques including some derived by studying human
understanding methods. RESEARCHER is a prototype intelligent information system
that reads, remembers, generalizes from and answers questions about complex technical
texts, patent abstracts in particular. In this paper, we discuss three areas of current
research involving RESEARCHER -- the generalization of hierarchically structured
representations; the use of long-term memory in text processing, specifically in resolving
ambiguity; and the tailoring of answers to questions to the level of expertise of different
users. All of these areas are crucial for truly powerful information systems. We outline our
methods and give examples of RESEARCHER processing various examples.

1 Introduction

Traditional work in information retrieval (such as that described in [Heaps 78; Salton and McGil! 83))
has concentrated on ways of storing and retrieving texts based on their lexical contents with little regard
to meaning. While this has led to quite powerful and useful systems, we can hope to do still better by
applying techniques of Artificial intelligence to information retrieval. Specifically, we will describe in this
paper how we are using research in the areas of natural language processing and leaming to help
understand how to develop powerful, intelligent information systems. General discussion of the
application of Artificial intelligence-te infermation retrieval can be found in [Schank et al. 80; DeJong 83;

Lebowitz 83a).

'This research was supported in part by the Defense Advanced Research Projects Agency under contract N0OO039-84-C-0165.
Many people have contributed to RESEARCHER. In particular, the work on generalizing hierarchies has largely been conducted by
Kenneth Wasserman and the work on question answering by Cecile Paris in conjunction with Kathieen McKeown, Comments on an
earlier draft of this paper by J. A. Campbeli and Roy Davies were most useful.



in {Lebowitz 83a; Lebowitz 83b), we described the early stages of development of RESEARCHER,
a prototype intelligent information system. RESEARCHER is intended to accept information in natural

language form, in particqlar. patent abstracts such as EX1 .

EX1 - P137; U. S. patent #4400750; Forestlana Co. Lid.

A magnetic read/write head carriage assembly for a floppy disk drive is disclosed for use with
double sided floppy disks which permits the head tracking force to be easily and accurately
adjusted. The head carriage assembly comprises a coil spring, having a central coil portion and
first and second ends, which is mounted in a position between the base and the head support
am of the carriage assembly with the first end coupled to the base and the second end coupled
to the support armn. An adjusting screw is mounted on the base adjacent to the first end of the
coil spring for adjusting the position of this end, thereby adjusting the biasing force applied by
the spring to the support arm.

RESEARCHER:

o understands the text (extracts the meaning).

¢ adds the'acquired information to a long-term memory, leaming through generalization as it
does 30. .

¢ answers questions about the information in its memory.

Descriptions of complex physical objects such as those in patent abstracts leads to special
problems in the development of intelligent information systems. In this paper, we will present an overview

of three areas that we are studying using RESEARCHER that are important in the development of

intelligent information systems:

¢ leaming by generalizing hierarchical descriptions — leaming is important if we wish our
systems to be able to retum mors information than we give them, by comparing the different
texts read; physical objects can be best represented hierarchically.

e using a long-term memory built up through generalization to assist in text interpretation —
intelligent information retrieval requires robust understanding, and this can only be done with
axiensive appiication of knowledge, including that which the system acquires.

« tailoring the system's answers for different users - a truly intelligent system with a large
memary can be most effective by giving answers that are crafted for each individual user.

We begin by describing the problems of generalizing hierarchically structured objects, as the

creation of a long-term memory is necessary for our text understanding methods.



2 Generalizing Hierarchical Descriptions

Intelligent information systems should be able to return to a user more information than that
contained in any single text. They should be able to /eam from the texts by noticing similarities (among
other leaming methods}. The patent abstracts that we have been locking at describe the physical
structure of complex objects. Since such objects are naturally represented as hierarchies of parts, our
leaming research has addressed the generalization of hierarchically structured descriptions. To see the

input to the generalization process, consider EX2, the first part of a typical patent abstract.

EX2 - P37; U. S. patent #4190870; Avina Raymond, Merrell Patrick

A disk drive assembly includes a baseplate housing joined with front and rear covers to enclose
a spindle that supports ball bearings and a hub for rotating a stack of magnetic disks ...

Our representation of patent abstracts such as this one inciudes three classes of information:

e a parts hierarchy, that indicates the components of each part.
e interpart relations, capturing physical and functional relations between various components.
e properties of the objects.

The level of detail needed for each of these classes of information certainly depends on the task at
hand. For our purposes, we have concentrated on the parts higrarchy and physical relations (which are
represented using a primitive-based canonical scheme [Wasserman and Lebowitz 83]). We are currently
working on classification schemes for functional relations and object properties (such as size and
composition), which are crucial in understanding many device descriptions. Figure 1 shows the

representation of EX2 created by RESEARCHER.

We can see in Figure 1 all three of the types of information used in representing physical description
patents. The backbone of the representation is a parts hierarchy, (The numbers in the hierarchy refer to
the objects listed on the right.) Figure 1 shows an assembly (part 1) composed of a number of parts,
including a dis¢c drive, an enclosure, and so forth. One of the components is another assembly (the

“stack”) which is composed of a number of discs. There is also a “loose part”, the baseplate, not
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Taxt Rapressentation:

[ T J 1 = OUNKNOWN-ASSEMBLY# (‘ASSEMRLY’)
|emmmm————— AR-3 2 = DISC-DRIVES
| em=ecce-—--p-5% 3 = ENCLOSURE#
(BRI TS D-6 § = NUMBER/>1 LOCATIOM/YROW?, RRAR COVERS
-C-1| -==-CD-7 ¢ = DRIVE-SHAYFT#
| ~~eeecac-a-R-8 7 = NUMRRR/>1 BALL-ERARINGS
| R-9} 10 8 = HUBS
9 = UHKNOWN-ASSEMBLY# (‘STACK’)
10 = NUMBXR/>1 DEV-TYPX/MAGNETIC DISCH

A-4 4 = BASEPLATES

A list of relations:

Subject: Relation: Cbject:
[&REL1/A] &MEN4 (BASERLATES) {NXNOWN-PORP-RRL)} cMEMI (ENCLOSURES)
[6REL2/B] &MRMQD (RENCLOSURR#S) {R~CONMECTED~T0)} EMEXS (COVERHE)
[ERXL3/C] &MEME (DRIVE-SHAFT#) (R-SORROUNDRD-BY)} &MDXQ (‘ASSEMBLY’)
[&REL4/D] &MEME (DRIVE-3HAF?TH) (P-SUPPCRTS) &MENT (BALL~-BRARING#)
[GRELS/R] &MEMS (HUB#) {P-ROTATES ) SMEM9 ('STACK')

Figure 1: A typical RESEARCHER representation
included in the main assembly. The items in Figura 1 with #s indicate concepts (e.q., disc-drive#, the

concept of a disc drive) as opposed to words (the phrase, “disk drive™).

Figure 1 also includes several relations between objects. Thesa are shown by letters in the parts
hierarchy and emumerated below the hierarchy. For axample, the “B™ with the enclosure (part 3, from the

word “housing’ in EX2) and the covers (part 5) indicates that they are connected (“joined™ to each other.

Finally, the representation of EX2 includes several _objec( descriptions augmented with properties.
These are indicated in Figure 1 In the object descriptions. For example, object 10, the discs, has been
modified by making its device-type property “magnetic”. The object representations of the covers, ball
bearings and dis¢ also include indications that there i8 more than one of each.

The representation in Figure.1 Is at a level of understanding that many Artificial Intelligence text
processing systems might achieve i applied to this domain. Howaver, full understanding requires that we
integrate this representation with existing knowledge in memory. In particular, RESEARCHER has as
one of its goals the incremental generalization of descriptions such as that in Figure 1 by finding similar

examples in memory, comparing the new example with them, and abstracting out any similarities. Since



there has been considerable work done on generalizing objects described with property values and to
some extent relations ( [Winston 72; Michalski 80; Lebowitz 83c], among others), we have concentrated

on the problems of generalizing hierarchically structured objects.

Generalizing hierarchical representations presents a number of difficult problems. Typical are the
problem of deciding how the components in the objects being compared comrespond; dealing with differing
levels of description of objects; and structuring memory so that maximal inheritance of the sornt used in
semantic networks and frame systems (see [Barr et al. 82]), which implies minimum space utilization, can
be achieved automatically. In this paper, we will give examples of how the generalization process works,

and refer the reader to [Wasserman 84; Wasserman 85] for more details.

We can break generalization into two parts: 1) since RESEARCHER is not explicitly being taught
concepts, when a new example is presented it must decide what other objects to compare it to, and 2) the

process of comparing object descriptions, which includes the abstraction of similarities.

Wae will look at the comparison process first, as it is involved in the search process. Figure 2 shows
two simplified disc drive patents.?2 The physical relations and properties involved are not displayed,

though they are handled in the generalization process.

As human understanders. we can easily see that patents EX3 and EX4 describe similar objects,
particularly after looking at the hierarchical representations. However, to begin to generalize the
similarities, RESEARCHER must decide how the pans of the representations correspond -- for example,
that part 2, the enclosure in EX3, corresponds to part 11, the similar assembly in EX4, and not to parts
12, 13 or 14. Here this is relatively easy, as the assemblies are identical, but we must be able to identify
less than perfect matches. RESEARCHER does this with a numerical scoring algorithm, similar to the

one in [Winston 80] and related to [Evans 68].

2Slmg:rliﬂed versions are usad as the complex nature of real abstracts cbscures the generalization process as well as to avoid text
processing problems.
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Patent: EX3

(A DISC DRIVE COMPRISING AN ENCLOSURR SURROUNDING THR DISC DRIVE "COMMA*
SATD DISC DRIVE INCLUDES A SPINNING ASSEMBLY A DISC AND A RRADWRITE HEAD
*COMMA* SAXD SPINWING ASSEMBLY DNCLUDES A SPINDLE CONNECTED 70 A MOTOR
*COMMA* SAID RNCLOSURE COMPRISING A COVER ON T0? OF A SUPPORT MEMBER)

Text Rapresentation:

I = DISC-DRIVES

| ENCIOSURK #

I DEV-TYPE/ROTATION

i DIMOWN-ASSEMRLY} (‘ASSDMBLY')
|

|

|

[]
U
N
1
]
]
)
L
N
[ ]

------------- 1 | +eeee—caeeeee§ 4 = DISCH
-3 7 5 = DEV-TYPE/RRAD/WRITE ERAD#
6 = DRIVE-SHAFT#
|eemmnecccan -4 7 = MOTOR#
| vemmencecccan= § = COVER#
9 = UNKNOWN-THING# ('MEMBRR’)

Patent: KX4

(A DISC DRIVE COMPRISING AN ENCLOSURR SURROUNDING THE DISC DRIVE *COMMA*

SAID DISC DRIVE INCLUDES A SPINNING ASSEMELY A MAGNRTIC ASSERMELY AND A

READMRITE HEAD *COMMA®* SAID SPINNING ASSEMALY INCLUDES A SPINDLE CONNECTRD

TO A MOTCR *COMMAT* 2AID MAQUXTIC ASSKMBLY COMPRISING A DISC *COMMA® SAID .
KNCIOSURE COMPRISING A COVER ON TQCP OF A SUPPORYT MEMEBRR)

Taxt Representatiocn:

|-=mm======--18 10 = DISC-DRIVES
11| 19 11 = ENCLOSURRS

I 12 » DEV-TYPE/ROTATION
UMKNOWN-ASSEMBLY# ('ASSRMALY’)

|
|
i
|
------------ 101 [oeeommame-c18 13
|
|
|
i

= DEV-TYPR/MANRTIC
121 16 THEKNOWH-ASSDXALYS (ASSEMALY’)
14 = DEV-TYPE/READ/WRITE HRAD#
13] 17 13 = DRIVE-SHANFTS
cmmceeceee-=14 16 = MOTCRS
17 = DIsCH
18 = COVER$

19 = OXNOWN-THINGS (‘MEMRER’)
Figure 2: Two simple device representations

Figure 3 shows the output of the generalization process for these objects, taken from [Wassemman
85). It is assumed that EX3 is already in memory and EXA. is being compared to t. We can see how
RESEARCHER first makes correspondences of the sort mentioned above. One problem arises in dealing
with the discs (parts 4 and 17). The disc in EX3 is described as part of the disc drive, while in EX4 the
disc Is part of a magnetic assembly which is part of the disc drive. To make the representations match,
RESEARCHER must insert a “null” part, which may or may not actually exist in any given object. This Is
legitimate as we can assume that the descriptions are incomplete or use ditferent levels of aggregation.

The null part appears in the generalization of EX3 and EX4as part 24, shown at the bottom of Figure 3.




The two input representations are stored as variants of the generalized object, recording only how they
differ from it (basically, in this case, how the null object is resolved; in real examples there would usually

be more differences).

(GEN ' eMEM10)
Matehing EMEMIO against sMEM1 .... 170
Best match is:

(170 ((cMEML . &MEM10)
((SMEMS . GMEM14))
((NULL# . &MEM13) ((&MEM4 . GMEM1T)))
((6MEM3 . GMEM12) ((&MEM7 . GMEML6)) ((&MEMS . SMEM1S5)))

((eMBEM2 . &MEM1l) ((&MEM9 . GMEM19)) ((sMEMS8 . &MEM18)))))
Incorporating into g-tree .
New generalization created: &MEM22
with variants: (EMEMIC &MEM1)

AERRRARRRRRAE AR L RN NN

jommmmm—————— 23 22 = DISC-DRIVE#
|memeemm————— 24| -mmmmmmmemae 25 23 = ERAD#
[ 24 = NULL$
| e 27 25 = pIsce .
------------ 22| -me=mmwmc—en2f| =m-=mm=-====28 26 = UNKNOWN-ASSEMBLY#
] 27 = MOTOR#
|rmm—m——————a 29[ mmmmmmmmmaan 30 28 = DRIVE-SHAFT#
[~emam—mene—— 31 29 = ENCLOSURES
30 = UNKNOWN-TEINGS
31 = COVER#

Figure 3: Generalizing the representations in Figure 2

Even with just two hierarchical descriptions to compare, the matching process involves a number of
problems in determining how the components of the hierarchies correspond. Typical of such problems is
the need to insert levels in a hierarchy to obtain a good match, as described above. (While the insertion of
a rull level by tself decreases the goodness of a métch, it will often greatly iﬁcrease the value of lower
level matches.) The problem is that there are an exponentially large number of places where null levels
can be inserted, each requiring a complex, recursive match to test. Wa have used RESEARCHER to
experiment with a variety of different algorithms for deciding where null levels should be inserted for
optimal matching, concentrating on ones that only try the most obvious places near the top of the

hierarchy.

Since the examples given RESEARCHER are not exprassly designed for leaming specific concepts
(as they would be for a system being taught concepts, e.g., Winston's arch program [Winston 72]), the

program must decide which examples to compars for the purpose of generalization. This is done using a



generalization-based memory of the sort in [Lebowitz 83¢; Lebowitz 83d]. A hierarchy of concepts that
organizes specific examples is created in memory. A possible memory is shown in Figure 4, where there
are two concepts subordinate to disc-drive#, floppy and hard disc drives. The former has two further
sub-concepts. Each concept organizes a group of instances. Note that: 1) using the techniques outlines
in this section, the generalization hierarchy is automatically created by RESEARCHER, not provided to
the system in advance (at least this will be the case in a fully developed system; see [Lebowitz 83d;
Lebowitz 84; Wasserman 85] for progess to-date); 2) each node in Figure 4 represents a complete
hierarchical description of the kind we have been looking for (in effect, RESEARCHER'S memory is a
hierarchy of hierarchies); and 3) information in the generalization notes can be inherited by lower level!

generalizations and examples, so that information need not be stored repetitively.

disc~-drived > patant A
i floppy-disa-drivesd > patents B, C
I l single-sided-floppy~disc-drivef =~---> patents R, P
l double-sided-floppy-disc-drive} -=-—> patents G, U, I

|
|
|
1
> hard-disa-drived > patents J, X

Figure 4: A typical generalization-based memory

In using its generalization-based memory, RESEARCHER takes each new example and searches
down the tree for the example or generalized concept most similar to 1. This process involves matching
generalized concepts with the new example in much the same way as EX3 and EX4 were matched
above. RESEARCHER begins by matching the new example with each of the children of the
genaralization tree’s roct. It then selects the best match and looks at that node’s children. As long as
one of the children produces a better match than the parent node, RESEARCHER continues down the
tree. Eventually, it either reaches a leat (an instance already in memory) or a maximally good

generalization (i.e., all of the subordinate nodes contain factors that decrease the quality of the match).

RESEARCHER's search algorithm does not guarantee finding the best match, since it is possible

that only an inferior match at an imterior node would lead to the optimal match. However, this is viewed as




an acceptabie compromise in limiting search. An alternative would be to set a threshold match value and
search down all branches of the tree that match above this threshold. Again, though, we might still miss
the best match. Only experimentation will tell whether one algorithm or the other improves chances of

finding a good (if not always best) match.

Sacrificing a guarantee of finding the maximaily similar example (in return for computational
feasibility) matches the observation that human memory gains robustness by initial heuristic classification
of information. (E.g., if we first classify a person we meet as an Artificial Intelligence researcher, we may

miss similarities he or she has with our favorite politician.)

Eventually, after a series of matches, RESEARCHER selects the node in memory which it believes
the new example best matches, either a previous example or an existing generalization. it then ‘fattors
out” similarities between these representations, and, if need be, creates a new generalization node. In
any case, the new example is stored by recording how it differs from a generalization in memory. This is
an optimally space-efficient method of storage, which also captures significant generalizations about the

objects in the domain.

The current implementation of RESEARCHER's generalization scheme works quite well on modest-
sized examples. In addition to disc drive patents, a modified version of th.e program (CORPORATE-
RESEARCHER [Wasserman 85]) has been tested on hisrarchical descriptions of corporate organizations.
in the future, we plan to address some of the combinatoric problems that arise for large examples,
consider whether our approach of abstracting out all possible similarities is 100 extrems (in particular,
determining exactly what the generalized concepts signify) and applying confidence evaluation methods

of the sort described In [Lebowitz 82] to refine initial generalizations.
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3 Text Processing Using Memory

Since intelligent information systems such as RESEARCHER have available many examples in
memory, it seems natural to make use of this information for text procassing (beyond identifying lexical
tems [Harris 78]). If we wish to have intelligent systems with large amounts of information it is vital that
text processing be robust. Patent abstracts, like the rest of natural language, are quite arr&guous (which
was somewhat surprising to those of us a bit naive about patents, who expected pertect clarity). We can

use the system’s automaticaily updated memory to help resolve many ambiguities.

We feel that the best way to use detailed memory information during text understanding in the
context of current systems is to identify specific tasks where a piece of information from memory will be
useful. More general methods, such as using memory to determine the interesting aspects of a text to
focus processing [Schank 79; Lebowitz 81], we leave for the future. We have identified a set of
“questions” that arise during text procassing that can most easily be answered (and often can only be

answered) by accessing long-term memory.

it is important to keep in mind that we are proposing using memory for understanding, as opposed
to general semantic information about words or concepts (as many other Arificial Intelligence systems
have done). While general information is crucial for our conceptually-based understanding methods, in
order to resolve many ambiguities, it will be necessary to look at very detailed information in memory - in
our case, how the objects described in patent abstracts are constructed and how their pieces relate to
each other. One way of looking for at this distinction is that RESEARCHER ends up using similar

inflormation to other Artificial Intelligance but much less of it has to be hand-coded initially.
EXS illustrates two kinds of ambiguities that arise in patent abstracts.
EXS5 - A disc head supporting a spindle made of magnetic material.

The first ambiguity in EX5 Involves “disc head”. Although not syntactically ambiguous, an

understanding system such as RESEARCHER must determine the conceptual relationship between the
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nouns. The phrase “made of magnetic material” is ambiguous in that we do not know whether it attaches
to the head or the spindle. Both of these ambiguities can only be resolved by looking at memory. In fact,
it would be-easy to construct scenarios where different states of memory would cause this example to be

understood differently (e.g., whether we knew about magnetic heads or magnetic spindles).

RESEARCHER makes use of relatively simple, but heavily memory-based, techniques for handling
ambiguities of the sort in EX5. its conceptual analysis type text processing algorithm (described in
[Lebowitz 83b; Lebowitz 84)), involves identifying object descriptions (usually noun groups) and

connecting them with various relational words (usual prepositions -- patent abstracts are quite short of

. verbs) which indicate the various physical, functional and assembly / component relations mentioned in

Section 2. Within this processing algorithm, we have identified places where ambiguity can be identified
and memory queried for resolution. In particular, memory is asked which of several possible physical
constructions is more likely or what relation is likely to occur between two objects. Questions in both

classes are answered by looking for examples of the possible configurations that already exist in memory.

Figure S lists the various questions that RESEARCHER can currently ask its memory for purposes
of disambiguation. They primarily involve prepositional phrase attachment and noun groups with multiple
nouns.® Qur analyses of these ambiguities shares much with the linguistic work of [Levi 78] and the
application of this work to Artificial Intelligence in [Finin 82]. However, our method of resalving the
ambiguities —~ the use of a dynamic, long-term memory ~ is rather different. By looking for specific
examples in memory (or information generalized from specific examples) we allow RESEARCHER to
always use the best information currently available. While examples do not always provide resolution of
ambiguities as clearly as pre-defired semantic properties, they have the clear advantage of minimizing

the need for ad hoc, hand-coded information.

*The word types usad in Figure 5 are functional, rather than syntactic. Howaever, object words are usually nouns and relation
words and part indicators are usually prepositions, although not always in either case.
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Form: object-word1 object-word2

Example: An actuator housing ...

Question: What Is the relation between object-word1 (actuator) and
object-word2 (housing)?

Form: modifier object-word1 object-word2

Exampls: A metal drive cover ...

Question: Does the modifier (metal) better apply to object-word1 (drive)
or object-word2 (cover)?

Form: object-word1 object-word2 object-word3

Exampla: A disc-drive transducsr wirs ...

Cuestion: is object-word1 (disc-drive) ‘‘related to’” (as a part, assembly
or In relation) object-word2 (transducaer) or object-word3 (wire)?

Form: object-word1 relation-word1 object-word2 relation-word2
object-word3

Example: A transducer on top of a disc supported by a spindle ...
Question: Does relation-word2 (supported by) connect object-word3
(spindle) with object-word1 (transducer) or object-word2 (disc)?

Form: object-wordt part-indicator! object-word2 part-indicator2
object-word3

Exampls: A disc drive Including a disc comprising a metal plate (and) ...
Quaestion: Is cbject-word3 (metal plate) a part of object-word1

(disc drive) or object-word2 (disc)?

Form: object-word1 relation-word object-word2 part-of-indicator
object-word3 (There are several related configurations.)
Example: A disc on a spindle for a disc drive ...

Question: Is object-word1 (disc) or object-word2 (spindle) a part
of object-word3 (disc drive)? (Directly a part, as both are parts
Indirectly.)

Figure 5: RESEARCHER disambiguation questions

The search for possible examples that answer a given question Is a relatively simple one. Recall

that RESEARCHER's memory (Figure 4) s basically a hiararchy of object descriptions. In addition to the

hierarchy for the main concept under consideration (e.g., disc drives), there are subsidiary hierarchies for

other objects, such as spindles and discs. RESEARCHER uses these hierarchies to look for possible

assembly/component constructions and physical relations. It begins its search with general object

descriptions and ssarches through more specific descriptions until a relevant exampla is found. If several

possible constructions (or relations) are found, the one associated with the most general description is

used, as that represents RESEARCHER's broadest information. RESEARCHER's memory search

disambiguation process is described in more detail in [Lebowitz 84].
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Qur disambiguation methodology bears resemblance to that of [Small 80; Birmbaum and Selfridge
81; Hirst 83], except, crucially, it relies on information from a detailed, dynamic memory for executing
disambiguation. Our algorithm does have the side-effect of making understanding subjective (in the
sense of [Abelson 73; C.arbonell 81)), since new examples will be interpreted to correspond to old ones,

but we view this as inevitable if we wish to achieve robust understandihg.

To illustrate RESEARCHER's memory-based disambiguation, we will first consider how the simple
noun phrase, “a motor spindle”, is processed. Figure 6 shows how RESEARCHER processes this phrase
with no relevant information in memory.# The program queries memory (indicated by “>>>" for a plausible
relation between a mator and a drive shaft (spindle). Since none is found, it assumes that there is an

unknown functional (purpose) relation between the objects, which is its default for concrete objects.

Running RESEARCHER at 3:19:26 PM

(A MOTOR SPINDLX)

Processing:

A : New instance word -- skip

MOTOR : Mamette within NP; save and skip
SPINDLR ! MP word -- mamette DRIVE-SHAFTS

Hew DRIVE-SHAFT# instance (&MEMO)
>>> Looking for relatiocn between MOTOR# and EMEMO (DRIVR-SHAFTH)
New MOTOR# instance (&MEML)
- Assuming &MEM1 (MOTOR#) and ¢MEMO (DRIVE-SHAFT#) are functionally related
Establishing UNKNOWN-PURP-RRL; SUBJRCT: ¢MEM1 (MOTCR#):;
QOBJRCT: &MEMO (DRIVE-SHAFPTH#) [&REL1}
Text Representatican:
---------------------- A-0 0 = DRIVE-SHArTS#

---------------------- A-1 1 = MOTORS

A list of relations:
Subject: Ralation: Cbiect:

(6REL1/A) &M (MOTORE) {UNKNOWN-PURP-REL} &MEMO (DRIVE-SHAYTH)
Figure 6: ‘A motor spindle’ with memory empty

Now we assume that before processing “a motor spindle”’, RESEARCHER had had in memory EX6,

“In Figurs 6 and other exampies of RESEARCHER output, the term “memaetis" refers to an object concapt in memory — literally a
small piece of memory. An MP, or Memory Pointer, is a word that points to an object in memory. Normally MPs are concrets nouns.
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shown in Figure 7 along with' its representation. EX6 simply consists of a drive with two parts, a motor on

top of a drive shaft.

EX6 - A drive with a motor on top of a drive shaft.

Text Representatica:

|===========-=c=A-1 0 = DRIVE#
ol A-2 1 = MOTORS
2 = DRIVE-SHAFT#

A list of relations:
Subjeat: Relation: Ghiect:
[&REL1/A] &MEML (MOTCRS) {R=-CU-TCP~-OP)} &MEM2 (DRIVE-SEAFTH)
Figure 7: Setting up memory

With EX6 in memory, RESEARCHER process the same noun phrase, ““a motor spindle” as shown
in Figure 8. We can see that when it queries memory to try and find known relations between motors and
drive shafts, it finds the one from EX6 and assumas it to hold hera, as well. Thus, an “on top of” relation
is added to the representation, showing the genuinely dynamic nature of RESEARCHER's text
processing. . : '

Running RESEARCHER at 3:18:11 PM

(A MOTOR SPINDLX)

Processing:

A : New instance word -- skip

MOTCR : Meamatts within XP; save and skip
S? INDLR : MP word -- msamatts DRIVE-SHAF?TS

New DRIVE-SHAPTS instance (&MDO)

>>> Looking for relatiocn between MOTOR{ and LMEMS (DRIVE-SHAFTH)

Yew MOTICRS instance (EMEM4)

Establishing R-ON-T0P-CF; SUBJECY: SMEM4 (MOTORI); OBJECY: &MXM3 (DRIVE-SEAFTH) (GREL2]

Text Represantatioa:

-—-- 3-3 3 = DRIVE-SEAFTS

B-4 & = NOTORD

A list of relatiocas:
Subject: Ralatica: Odject:
[SREL2/B] SHEM4 (MOTOR$) (R=-ON-10P~CF ) SHEM3 (DRIVE-SEAPTH)
Figure 8: 'Spindla motor’ with EX6 in memory
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As a further illustration of RESEARCHER's use of memory in text processing, we will show how it

processes part of a real patent abstract, EX7.

EX7 - P58; United States Patent #4287445 (abstract)

An electromagnetic linear actuator for positionin i i

> _ _ tor g a transducer over locations on a rotati
magnetic recording disk comprising an actuator housing used as a stationary base mn?
Supporting various parts; a coil and cart assembly including a car, having a rectangular cross
section and tubular in construction, adapted at one end to support the transducer ...

Although it may not be immediately obvious, the beginning of EX7 is extremely ambiguous. (It may
not be obvious because people are so good at resolving ambiguity.) The internal structures of the various
noun phrases and the determination of what is a part of what could all be resolved in several ways.
Without any information in memory, RESEARCHER would have to rely on general heuristics which might
or might not work, but would certainly be quite ad hoc. Instead, we will provide RESEARCHER with ; few
(admittedly somewhat artificial) examples that it can use. Specifically, we will give it the following
descriptions:

A disc drive comprised of an actuator that has a housing; an assembly with a coil.

A cylindrical cart with one modified end and a rectangular cross section.

Having given RESEARCHER examples of support mechanisms and double sided floppy disc drives,

we let it read EX6. The first pant of processing is shown in Figure 9.

A number of aspects of RESEARCHER's text processing are shown in Figure 3. We will focus on
its use of memory. Each memory access is again indicated by “>>>". The beginning of the processing of
P58 is relatively simple. As we can see in Figure 9 how RESEARCHER processes the first noun group
with a “skip and save" strategy [Lebowitz 83e]. The words “electromagnetic” and “linear” are saved until
the head noun, “actuator” is reached. It then works back through the noun group, applying the modifiers
to the actuator. Next to be established are a purposive relation, P-GUIDES, taken from the word

“positioning” (after “for”, which in this case indicates that a purpose word is to follow) and a physical
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Running RESEARCHER at 28-Jul-85 19:37:57
Patent: P38

POSITIONING A TRANSDUCER OVER
(AN ELECTROMAGHETIC LINEAR ACTUATOR FOR
AN ACTUATOR
oM A ROTATING MAGNETIC RECORDING DISK COMPRISING
!ag::gc“’um AS A STATIONARY BASE FOR SUPRPCRTING VARIOUS PARTS *SEMI* A COIL
AND CART ASSEMBLY THCLUDING A CART *COMMA® HAVING A RECTANGULAR CROSS
SECTICH AND TUBULAR IN COMSTRUCTIION *COMMA® ADAPTED AT ONE END 70 SUPPORT

THE TRANSDUCER *STOR¥)

Procassiag:

AN : ¥ew instancs word -- skip
ELEZCTROMAGMETIC : Mematte modifier; save and skip
LINEAR : Mematte modifier; save and skip
ACTUATOR : MP word -- memette ACTUAZOR#®

New ACTUATOR# instance (&MEMS)
Augmenting EMEME (ACTUATOR#) with feature: CONFIGURATION = LINEAR
Augmenting GMEMS (ACTUATCR#) with feature: TYPE/PURPOSE = ELECTROMAGNETIC

FOR (FOR1) : Purpose indicator -~ skip
POSITIONING : Purpose word =-=- save and skip
A : Haw instance word == skip
TRANSDUCER ! MP word -- memetta TRANSDUCER#

Haw TRANSDUCERS instanca (ZMEMS)
Establishing P-GUIDES relation; SUBJECT: GMEME (ACTUATORS):
CBJECT: &MEM9 (TRANSDUCER#) [&REL1)
OVER : Relation word -- save and skip
LOCATIONS : NP word -- mamatte LOCATIONE
¥eaw LOCATIONE instance (&MEM10)
>>> Rafining R-ABOVE CRJECT from SMEMY (TRAMSDUCERS) SHEME (ACTUATORS)
Eastablisghing R-ABOVE relation; OBJECT: sHEMY (TRAMSDUCERME)
SUBJECT: GMEM1O0 (LOCATIONS) [&REL2)
oN (OoM2) : Part of indicator )
Assuming EMEMLO0 (LOCATIONE) or cMEMY (TRANSDUCER#) or sSMEME (ACTUATORE)
is part of tha following .

A : New instance word -- skip

ROTATING ! Purpose word within WP; save and akip
HAGNETIC : Mematte modifier; save and askip
RECORDING : Purpose word within NP save and skip
DISK : WP word ~-- memette DISCH

Hew DISCH instance (&MEMLL)

Establishing P-WRITES relation; OBJECT: gMEMI1l (DISCH) [&REL3]

Augmenting &MEM11l (DISCH#) with feature: TYPE/PURPOSE = MAGNETIC

Establishing P-ROTATES relation; OBJECT: GMEMIL (DISCH#) (&REL4]

>>> Salecting comp for LMEM11 (DISCH) from ameng SMIMIO (LOCATIONE)
EMEMS (TRANSDUCERE) &MEMS (ACTUATORS)

Assuming GMEM1O0 (LOCATIONE) is part of aWMEM1l (DISCH)

Figure 9: RESEARCHER processing tha first part of PS8
relation, R-ABQVE from the word “over”. In establishing the R-ABOVE relation, RESEARCHER must
decide whether the “transducer” or the “actuator” is over the “locations”. There being no relevant
information in memory, and the objects being similar from the point of view of the system’s heuristics, the

most recent is picked.

RESEARCHER's processing gets more interssting when the noun group “a rotating magnetic
recording disk” Is reached. The processing begins similarty to that for the first noun group, saving the

modiflers and then applying them to disc#. But here RESEARCHER must decide whether the “part of”
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word, “on”, indicates that “locations” or the “actuator” is part of the disk. (If the second reading is not
obvious, imagine the word “and” before “on”. This reading is syntactically possible, with or without the

word “and” being present.)

RESEARCHER's first choice of how 1o resoive this ambiguity is with a memory check. It looks for
cases in memory where either the concept location# or actuator# is part of disc#. Finding none, since we
have only provided the system with a simple memory for this example, RESEARCHER resorts to its set of
heuristics. The relevant rule states that *virtual” objects, such as location#, which refer to implicit parts of
objects, are more likely to be parts of solid objects (such as disk#) than are complex objects (such as
actuator#).5 This sort of processing is related to the use of semantic properties of words for
disambiguation, and is integrated nicely with memory search. However, we wish to avoid adding too
many ad hoc rules of this sort - the system currently has about six such rules which seem to cover most

of the cases where memory is unavailable.

Mors specific use of memory by RESEARCHER occurs in the processing of the next section of P58,

shown in Figure 10.

The first noun group processed in Figure 10, “an actuator housing”, includes a noun-noun
construction requiring memory access. RESEARCHER must determine the relationship between the two
objects described, actuator# and enclosure# (“housing™). There are no syntactic clues or semantic ¢lues
as to the relation. So, RESEARCHER goes to memory, finds the assembly/part relation that exists in
memory for other instance of these concepts (from an example we gave it), and assumas that this relation
holds for the new example. Had thers been a more complex construction, say noun-noun-noun,
RESEARCHER would have used this same information in memory to determine which objects related to

each other.

%Other such virtual objects are side#, top#, etc.
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COMPRISING : Parts of aMEM1l (DISCH) or &aMEM1O (LOCATION#) or &MEM9 (TRANSDUCERS)
or AMEMS (ACTUATCRS) to follow

AM : New instance word -- skip
ACTUATOR : Mamatte within NP; save and skip
BODSING : MP word -- mamette RNCIOSURE$

¥ew ENCLOSURR) instanca (&MEM12)

>>> Looking for relation between ACTUATOR# and &MEM12 (ENCLOSURE#)

Assuming SMEM12 (ENCLOSURE#) is part of &MEMS (ACTUATORE)

>>> Salecting assy for &MEM12 (ENCLOSURE#) from among &MEM11 (DISCH)
SHMEM1IO0 (LOCATICN#) &MEM9 (TRANSDUCKR#) &MEMB (ACTUATORS)

SMEM12 (ENCLOSURE#) is alrsady known to ba a part of GMEMS (ACTUATORS)

USKED AS : Phrase

-> USKD-AS : Purpose word -- save and skip
A : New i{instancs word -- skip
STAZIONARY : Memattes modifier; save and askip
BASE : MP word -- mesmtte BASE#

New BASE# instance (aMRM13)
Augmenting LHMEA3 (BASE#) with feature: MOBILITY = NONE
Assuming SMEXQ3 (BASE#) is part of LMEMS (ACTUATICRS)
>>> Rafining P-AC?S-AS SUBJECT from SMEM12 (RENCLOSURR#) SMEMS (ACTUATORS)
Establishing P-ACTS-AS relation; SUBJECT: aMEDM12 (ENCLOSURRY) ;
OBJECT: M3 (BASES) [&RELS)

FCGR (FOR1) : Purpose indicator -- akip
SURPPORTIING ¢ Purpose word ~-- zave and skip
VARIOUS :{ Mamatte modifiaer; save and skip
PARZS : MP word -~ memstte PARYT#
New PART# instance (EMEXQE) .

Augmanting (MEM14 (PART#) with feature: NUMBER = SCMR

Assuming (MEM14 (PART#) is part of SMEMS (ACTUATORY)

>>> Refining R-CONNECTID-TO SUBJEC? from &MKM13 (BASE#) &MEMLI2 (ENCLOSURE#S)

Unable to salect SUBJECY -~ using most recent

Establishing R~CONMNERCTED-T0 relation; SUBJRC?: SMENLS (BASE#):

CBJRCT: sHMEX14 (PARTH#) (LRRLE)

Establishing P-SUPPORZTS relation; SUBJECT: LMEM13 (BASE#); OBJECT: CMEMLI4 (PARTH) (SRELT]

*SEMT* : Sxip (SKIP)

Figure 10: RESEARCHER processing the second part of P58
The same assembly/part relation in memory i8 used to resolve another textual ambiguity.
RESEARCHER must determine whether the actuator or the disk “comprises™ the “actuator housing”.
Again, the existing relation in memory resolves this ambiguity, and determines that the housing is part of
the actuator. Since this relationship has already been established (while analyzing the noun group)

procassing simply moves on.

The remainder of Figure 10 shows more exampies of RESEARCHER Iidentifying object, relating
them to each other and accessing memory to resolve ambiguity. Figure 11 shows further examples of all

of these sorts of processing as RESEARCHER completes the first fragment of P58.

One interesting aspect of the processing in Figure 11 is the handling of the phrase “coil and cart

assembly”. As for the eariler noun-noun constructions, RESEARCHER must determine the relations
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A : New inatance word -- skip

COIL : Mamette within NP; save and skip
AND (AND2) : Skip (SKI®)

CART : Memette within NP; save and skip
ASSEMBLY : MP word -- mamatte UNKNOWN-ASSEMBLY#

New UNKNOWN-ASSEMBLY# instance (GMEM1S)
>>> Looking for relation between CARRIAGE# and GMEMIS (UNKNOWN-ASSEMBLY# -- ‘ASSEMBLY’)
New CARRIAGES instance (SsMEM1E)
Assuming SMEM16 (CARRIAGE#) 1s part of ¢MEM1S (UNKNOWN-ASSEMBLY# -- ‘ASSEMBLY')
>>> Looking for relation between COIL# and one of &MEM16 (CARRIAGR#)
&MEM1S (UNKNOWN-ASSEMBLY# -- ‘ASSEMBLY’)
New COIL# instance (&MEM17)

Assuming iMEM17 (COIL#) is part of SMEM1S (UNKNOWN-ASSEMBLY$# -- ‘ASSEMBLY')
Assuming SMEM15 (UNKNOWN-ASSEMBLY# -- ‘ASSEMBLY’) is part of &MEMS (ACTUATOR#)
INCLUDINRG : Parts of &MEM1S (UNKNOWN-ASSEMBLY# -- ‘ASSEMBLY’)

or &MEMS (ACTUATOR#) to follow
A : New instance word -- skip
CART : MP word -- mamette CARRIAGE#

Reference for CARRIAGES#: &MEM1S
>>> Selecting assy for &MEM16 (CARRIAGE#) from among
SMEM1S (UNKNOWN-ASSEMBLY# -- ‘ASSEMBLY’') &MEMS8 (ACTUATORE) .
&MEMLE (CARRIAGE#) is already known to be a part
of GMEM1S (UNKNOWN-ASSEMBLY# -~ ‘ASSEMBLY’)

*COMMA* : Skip (SKIP)

HAVING : Parts of SMEM16 (CARRIAGE#S) or sMEM1S (UNKNOWN-ASSEMBLY# -- ‘ASSEMBLY') ‘
or &MEMS (ACTUATOR#) to follow

A : Kew instance word -- gkip

RECTANGULAR : Mamatte modifier; save and skip

CROSS SECTION Phrase
~> CROSS-9RCTION : MP word -- meamatte CROSS-SRCTION#
Naw CROSS-SECTION# instance (&MEMI1S)
Augmenting SMEM18 (CROSS-SECTION§) with feature: SHAPE = RECTANGULAR
>>> Selecting assy for SMEM1S (CROSS-SECTION#) from among EMEM16 (CARRIAGR#H)

SMEM1S (UNKNOWM-ASSEMBLY# -- ‘ASSEMBLY') &MREMB (ACTUATOR#)
Assuning (MEM18 (CROS3-SRCTION#) is part of &MEM1E (CARRIAGEYD)
AND (AND2) : Skip (SKIPR)
TUBULAR : Mamatte modifier; save and skip

IN CONSTRUCTION : Phrase
-> IN-CONSTRUCTION : Collecting modifiers
>>> Looking for mamatte modified by CONPIGURATION/CYLINDRICAL froam
SMEM18 (CROSS-SRCTION#) SMEMLS (CARRIAGRE)
tMEMLS (ONKNOWN-ASSEMBLY# -~ ‘ASSEMBLY’') GMEMB (ACTUATORHE)
Augmenting GHEM16 (CARRIAGE#) with feasature: CONFIGURATION = CYLINDRICAL

*COMMA* : Skip (SKIP)

ADAPTED : Purpose word -- save and akip
AT : Ralation word -- save and skip
ONE : Mamatte modifier; save and skip
END : M? word -- memstte ENDJ

Nev END§ instance (sMDM19)

Augmanting MDA S (END§) with feature: NUMEXR = ]

Assuming GMEM19 (XND#) is part of LiMEM16 (CARRIAGES)
Establishing P-MODIFIRS relation; SUBJERC?: &MEM1Y (RND#) ([LRELS])
Establishing R-AT relatiocn; SUBJECT?: SMEM19 (END4) (&RRL9)

TO SUPPOR?T : Phrase

-> SUPPOR?TS : Purpose word -- save and skip
THE : Antecedant word -- skip
TRANSDOCER : M word -- meamette TRANSDUCERS

Reference for TRANSDUCER#: &MEM9
>>> Refining P-SUPPOR?S SUBJERCT from &MEM19 (END#) CMEM16 (CARRIACERH)
CMEM1S (UNKNOWN-ASSEMBLY# -- ‘ASSEMBLY’) &MEMB (ACTUATORH)
Unable to selact SUBJRC? -- using most recent
Kstablishing P-SUPPOR?S relation; SUBJEC?T: GMEM1S (END#);
OBJRCY: &MEM9 (TRANSDUCRR#) [&REL10)
*3TOP* : Break word -- skip

Figure 11: RESEARCHER processing the third part of PS8

between the “assembly”, the “coil” and the “cant”. Naturally, RESEARCHER accesses memory in each
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case. In one instance, for the “coil", it finds the example existing in memory. In the other case, relating
“cart” and “assembly”, RESEARCHER must rely on its heuristic that vague, complex objects, like
“assemblies”, usually contain more specific objects as parts. (Actually, to do this example perfectly, we

would also have to apply similar techniques o determine the scope of “and" as a connective.)

Figure 12 gives the representation that RESEARCHER has derived by using memory to help
understand P58. The key point is that a comrect representation could not be found from syntactic or
semantic rules alone. Some form of object memory is needed. While a larger memory would force us to

consider more deeply problems of multiple relevant examples, we feel the approach is a sound one.

Text Representation:

PP 2-13 8 = TYPR/PURPOSR/ELECTROMAGNRTIC
| CONFIGURAZION/LINRAR ACTUATCR# .
ey rG-14 12 = ENCLOSURK#
[— Y™ 13 = MOBILITY/NONE BASES
| |emeevecveeld 14 = NUMBER/>1 PART#
-9 -16] 17 RIJ-20 1% = DWXNOWN-ASSTMELYS
I ! 16 = CONFIGURATION/CYLINDRICAL CARTS
| [ommmmnaaa-18 17 = corwé
i 18 = SHAPE/RECTANGULAR CROSS-SECTIONS
I 19 = ¥OXEER/1 END#
-ARJ-~10 9 = TRANSDUCKR)
............ “~CD-12|-+e==s=e——====R-11 10 = NUMBER/>1 LOCATION#

11 = TYPX/PURPOSK/MAGNETIC DISCH

A list of relations:

Subiject: Ralation: Cbjeat:
{GREL1/A] SMENS (ACTUATORS) {P~-GUIDES) CHEM® (TRANSDUCXRS)
[&REL2/B] &MEM10 (LOCATIONS) {R-ABOVE} AHEN9 (TRAMSDUCERYE)
[&REL3/C] {P-MRITES) a1l (DISCH)
[&REL4/D]) {P-ROTATRS) sl (DISCH)
[ERELS/R] &EM12 (ENCLOSURES) {(P-ACTS-AS8) AEXQ3 (BASES)
(CRELE/¥) &MEM1Y (BASES) {R=-CONNRCTED-T0} SMEXM14 (PARTH)
[6RXL7/G) sXEM1Y (BASES) {P-STRPPCORTS)} SMEMQ 4 (PARTH)
[RXLS/H] &MXIMQS (ENDS) {(F-MODIFIRS)
[ERELI/I] &MEKMQS (EWD4H) {R-AT}
[&REL10/J] MEM1S (END$) {?-STPPORTS) SMEM9 (TRANSDUCERE)

Figure 12: The representation of EX7

We have much left to do in our integration of text processing and memory. However, we feel our
general approach is quite promising, as our work in building up memory has a positive synergistic effect

on text processing robustness. The identification of specific questions to ask memory seems to be much
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more effective than looking for more general applications of memory to understanding or developing huge

numbers of ad hoc disambiguation rules.

4 User Expertise and Question-Answering

Once a substantial knowledge base has been built up by RESEARCHER, it is important that it can
be queried intelligently. In [Lebowitz 83b; Paris 84] we described an early question answering module.
Recently, our work has concentrated on how RESEARCHER might tailor its answers to the needs of
individual users. There are many elements to such tailoring, the goal of the user, for example, but here
wae will concentrate on just one factor -- the user's leve! of expertise. We have tried to determine the sorts
of basic answering strategies that would be appropriate for expert and naive users of the system.®
Eventually, we will also look at how expertise affects other levels of processing (such as lexical choice) as

well as other factors that require the tailoring of answers.

In order to get an idea about the kinds of strategies that might be appropriate for various users, we
have looked at texts that describe objects and that are aimed at readers with different levels of expertise
— several adult and junior encyclopedias. As described more fully in [Paris 85], the strategies used in
adult and junior encyclopedias are quite different - the adult encyclopedias, presumably aimed at relative
experts, tend to describe the part structure of objects, while the junior encyclopedias describe the
processes that take place in the device. EX8 and EX8 show this distinction for descriptions of
telephones.

EX8 - The hand-sets introduced in 1947 consist of a receiver and a transmitter in a single

housing available in black or colored plastic. The transmitter diaphragm is clamped rigidly at its

edges to improve the high frequency response. The diaphragm is coupled to a doubly resonant
system - a cavity and an air chamber -~ which broadens the response... (Collier's

Encyclopedia, 1962)

As we can see, EX8, taken from an adult encyclopedia, describes a telephone by presenting its

SActually, user expertise falls into two areas — familiarity with the system and familiarity with the domain. We are concerned here
with the latter.
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pants. The description continues in this vein. [t is using a construction quite similar to the constituency

schema that McKeown used in her question answering work [McKeown 82], providing an aimost tree-like

description of the parts of the object. This is in contrast with a description aimed at younger readers, EX9.
EX9 - When one speaks into the transmitter of a modern telephone, these sound waves strike

against an aluminum disk or diaphragm and cause it to vibrate back and forth in just the same
way the molecules of air are vibrating... (Britannica Junior, 1963)

Here the description is process-oriented. it traces the process of transmittlng sound, introducing
pant descriptions only when necessary. This is clearly a different prasentation strategy, and our study of
texts indicates that it is much more widely used in texts aimed at less exparienced readers. Wa feel that
a process-oriented answer would be appropriate ior RESEARCHER to use when dealing with a novice

user not likely to know what various parts are used for.

Wae are currently implementing these two different strategies for describing thg same object. Figure
13 shows how RESEARCHER generates an explanation of a telephone fmm a hand-coded knowledge
base making use of McKeown's constituency schema. This is presumably the kind of explanation we
would have RESEARCHER generate for an expert user. In Figure 13 we can see the various steps of the
explanation that RESEARCHER produces, annotated by hand on the right. We are currently interfacing
RESEARCHER with a surface generator that uses a functional grammar [Kay 79] to automatically

produce English output.

Figure 14 shows the first part of another description of a telephone generated by RESEARCHER
from the same knowledge basa, this time In a process-based manner appropriate for a novice. Instead of
Just giving the parts of the telephone, it now describes the operation of the device, primarily by presenting
a series of causal links. Qur surface generator under development will also produce English text for this

example.

The manner In which RESEARCHER generates the descriptions in Figure 13 and Figure 14 is
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; Description of the TELEPHONE based on the Constituency schema.

; SMEMX are the unique identifiezs for the object frames.
; The Constituency Schema was filled by stepping through an ATN.

&MEM1 (TRLEPHONE) ; The telephcone is
(*IDENTIFICATION® (VARIANT-OF: DRVICE#)) ; a device. It consists
(*CONSTITURNCY* (gMEM2 (TRANSMITTER)) ; of a transmitter,

(eMEM16 (HOUSING)) ; a housing, a line and
(eMEM15 (LINR)) ; & receiver.
(&éMEM17 (RECEIVER)))

The transmitter is

a kind of transmitter.
It has a doubly
resonant system and

a diaphragm;

the bousing is

a type of cover;

SMEM2 (TRANSMITTER)
(*IDENTIFICATION® (VARIANT-OF: TRANSMITTERH))
(*CONSTITUENCY* (&MEM6 (DOUBLY-RESONANT-SYSTEM))
(eéMEM3 (DIAPHRAGM-T)))

&EMEM16 (HOUSING)
(*IDENTIFICATION*® (VARIANT-OF: COVERH#))
(*CONSTITUENCY™)

Se ve Se ve Ve ve N

GMEMS (LINE) ; the line is a wire;
(*IDENTIFICATION* (VARIANT-OF: WIREH))
(*CONSTITUENCY®)

eMEML7T (RECEIVER) ; The receiver is a
{*IDENTIPICATION® (VARIANT-OF: RECRIVER#)) ; kind of receiver. .
(*CONSTITURNCY* (&MEM22 (DIAPHRAGM-T)) ; It consiats of a
(MEM21 (AIR-GAP)) ; diaphragm, an air gap
(eMEM18 (RLECTROMAGNRT))) ; and an electromagnet.
Figure 13: A constituency explanation of telephone’
described in more detail in [Paris 85). In addition to looking at the different generation strategies, we are
also studying ways to determine the expaertise of a user, since simply asking is not always the appropriate
approach, particularly as a user's expertise may vary over different topics of discussion. We are also
considering mixed strategies that make use of elements of each of the generation techniques illustrated

here.

5 Conclusion

We have described here three areas of investigation in the study of intelligent information systems,
involving the prototype system RESEARCHER. Our work involves the basic idea of understanding the
text to be stored in the system's memory. Remarkably little work in Artificial Intelligence has taken this
approach. The system CyFr[Schank et al. 80], which combined FRUMP [Dedong 79] and CYRUS
[Kolodner 84], worked from a similar perspective as did our eariler work with IPP [Lebowitz 83¢c], a
system that read news stories about terrorism. Other work applying Artificial Intelligence to Information

Retrieval, such as [Tou et al. 82; Tong, et al. 83], has either applied heuristic approaches to the search of
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; Tha process information gets picked up and printed out for a naive usaer.
;! &MRX are tha unique identifiers to the frames corresponding to the

; mata-relations the program is tracing.

4REL3 (P-SPRAKS-INTO):
subject : (CMEM27) ([ONR]
abject : (&MEM2) [TRANSMITTER]
-— LMRO (M-CAUSES)
&RXL4 (P-HIZS):
subject : (&HMEM28) ([SOUNDWAVES]
object : (&MEMS) [DIAPHRAGM-Z]

ceanoaen

SREL4 (P-HITS):
subject : (cMEM28) [SOUNDWAVES]
ebject : (CMEM3) [DIAPERAGK-T)

> &MR1 (M-CADSES)

SRELS (P-VIBRATES):
subject :
cbject : (aMDD) [DIAPHRAGH-T)

&RELS (P-VIBRATXS):
subject :
object : (AMEXO) [DIAPHRAGH-T]
 mmm>  (MR2 (M-EQUIVALENT-TO}
SRELS (P-m)
subject :
object

~

.
’

.
’

: (eaM2€) [AIR-MOLRCULRS)

When one speaks into the
transmitter of a telephone,

the sound waves hit

the diaphragm of the transmitter.

This causes

the diaphragm to vibrate

in the same manner as

; the molecules of air

are vibrating.

Figure 14: Process-oreiented description of ‘telephane’

raw text or involved search through carefully preparad knowledge bases. Understanding the text greatly
widens the possibilities. In our own research, the generalization of hierarchical representations allows the
system to learn about a wide range of complex objects and build up a rich memory. This memory is used
extensively in text processing, primarily for disambiguation, to achieve robust performance. Finally,
awareness of the expertise level of a user will allow RESEARCHER to tailor it answers to each user. The
sum of these three related areas of investigation should lead towards the development of powerful

intelligent information systems that éan make better use of huge amounts of varying sorts of information

than can purely text-based systems.
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