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In this paper, we introduce the information based complexity approach to 
optimal algorithms as a paradigm for solving image understanding problems, 

and obtain the optimal error algorithm for recovering the "2 1/ 2-D Sketch" 

(i.e. a dense depth map) from a sparse depth map. First, we give a in­
terpolation algorithm that is provably optimal for surface reconstructlOn; fur­
thermore the algorithm runs in linear time. Secondly, we show that adap­
tive information (i.e. the intelligent and selective determinatlOn of where to 
sample next, based on the values of previous samples) can not improve the 
accuracy of reconstruction. Third, we discuss properties of an implementatlOn 
of the algorithm which make it very amenable to parallel processmg, and 
which allow for point-wise determina.tion of surface depth without the neces­
sity for global surface reconstruction. We conclude with some remarks on 
a serial implementation. 
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1. Introduction 
The calculation cf a full depth map of a scene from information preseilt in 
an Image IS a central problem in image understJ.nding. In general, what IS 
desired In the full depth map is some "best" surface (the (].1/'2-D Sketch) 
that fits the sparse and errorful depth data derived from shading, 
binocularity, motion, texture, and other "shape-from-x" surface cues Math-
ematically, this can be cast as an interpolation/approximation problem subject 
to some error criterion. For the sake of simplicity we shall assume 
throughout this paper that we require the 21/ 2-D Sketch to interpolate the 
given depth data, although they the can be applied to surface approximation 
as well. Much work has already been done on recoverIng the 21/ 2-D 
sketch, but generally in a heuristic and non-optimal fashion [Grimson 
81, Ikeuchi 81, Terzopoulos 841 This paper investigates the general 
problem from a different and relatively new but powerful yiewpoint \Ve 
attempt to answer the following questIOns, which address the questIOns of 
accuracy, reliability, and efficiency: 

1. \Vhat algorithms are provably optimal with respect to the as­
curacy of the constructed full depth map? 

2. \Vhat properties does the optimal algorithm have? Do the 
properties lead to feasible, stable, and even parallelizable computa­
tIOn? 

\Ve address the first question III Section 2, and show that spline algorithms 
are optimal With respect to the worst case error criterion. In SectIOn 3, 
we fIrst show that adaptlve information, which IS seemmgly much more 
powerful than nonadaptive information (and certainly more computationally 
complex), surprisingly does not improve accuracy performance. Thus o'ne 
only has to seek for optimal information among the classes of nonadaptIve 
information In Section 4, we construct the spline algOrIthm. . Spline al­
gonthms are linear in their data, and hence favorable for paral!el computa­
tions. \Ve show in Section 5 that under certain conditions they are also 
well- be ha ved. 

A note to the reader: In brief, our intention is to show how the problem 
of transiting from a sparse depth map to a full one can be cast in the 
framework of the theory of computatIOnal compleXity and optimal algc·rithms. 
Once the problem is posed In the context and termmology of that held, 
the solution is a straightforward special case of several existing theorems. 
However, since the methods and terms of that subject are probably foreign 
to most VIsion researchers, we also take care in what follows to explicate, 
step-for-step, the reasomng behind the procedures, expb.lDing the more 
abstract constructs In terms of the actual Vision problem at hand. In 
what follows we adapt the General Theory of Optimal Algorithms [Traub 
801 to the problem of depth computations, retaining much of the ~peclahzed 
notatIOn but with running glosses. In part, our intentIOn is to alert the 
viSion community to the relevance of the research in this ar~aJ In the form 



of the powerful and sometimes surpnsmg results it offers 
standing. Additionally, we hope to exploit the theory 
papers for other vision probl~ms, such as optimal surface 
monocular intensity array (optimal shape from shading). 

2. What is the Optimal Algorithm! 

to image under­
further in later 
recovery from a 

The analysls proceeds in several steps. To begin, the problem must be 
restated as a problem of: classes of functions (here, of surfaces in three­
dimensions), available information, and classes of algorithms. To find the 
optimal error approximation to the 21/..,-D sketch the following aspects must 

be quantified; we discuss each in turn: 

1. The space of surfaces in which t.he reconstructed 21/ '!,-D sketch 

must lie. 

<) The information available and the dependencies by which it lS ob­
talned. 

3. The class of allowable algorithms. 

4. The measure of error and the mealllng of "optimal" algorithm. 

5. The specification of splines and spline algorithms. 

6. The optimality of spline algorithms. 

2.1. Choosing the Space or Surraces and Their Norms 
From the purely mathematical point of view of Information Based Com­
plexity It is sufficient for the space of solutions, referred to as F I' to have 
the properties of a semi-Hilbert space. HO\\:ever, for the problem of 
reconstructing the 21/ 2-D sketch we may want F 1 to have some more 
restrictive properties lmportant to some model of the psychologically plausible 
surfaces. A number of possible spaces exist but for the sake of concreteness 
and familiarity, we shall let F l' our real-world surfaces, be the set of all 

real-valued functions f defined on R2, such that f and its first and second 
order partial derivatives all belong to L2(R~) (this IS the same class con­
sidered in [Terzopoulos 84]). That is, the class of real-world surfaces IS 

smooth at least up to local curvature: their curvatures are square-integrable. 

In particular, this class rules out any surfaces that are merely piece-wise 
continuous or differentiable. These two latter exceptions, unfortunately, rule 
out true occlusions (where depth is discontinuous) and true corners (where 
the derivative is). Thus, the world to be seen appears as if it were 
shrink-wrapped: corners are rounded and discontinuities papered over. In­
asmuch as the surfaces of objects tend to be locally smooth, however, these 



appear to be reasonable assumptions, and F 1 as it stands is suffiCIently nch 
for purposes of the general theory. Note that the theory permits other 
possible classes, some of which do allow the surfaces to have discontinuities, 
as long as they are on sets of zero measure [Duchon 761. 

\Ve attempt to "see" a subimage of these real-world surfaces In F 1 They 
are supported in a fimte region D of the xy plane; visually speaking, it IS 
the xy plane that forms the background, and D that forms a finite su b­
image. For Simplicity we assume that D is a closed compact simply con­
nected reglOn. Then the class of surfaces F 2 that we want to recover IS 
the restnction of the surfaces in F 1 to D: 

(1) 

2.2. Quantirying the Idea or Inrormation 
To recover the surface (a member of F2), we start with samples of depth 
data (in region D) , these samples we would normally call informatian. 
~lore precisely, information is defined in the general theory as a function 
of the following form. 

That is, each type of information function is a mapping from the class of 
gIven surfaces to k-vectors of image pnmltive values. Each f (each real­
world surface) in F 1 is a member of the domain of N; N(f) is the vector 
of samples In terms of the vision problems, a given N(f) tells in what 
way a smooth surface, f, has been captured into a k-vector of extracted 
image pnmltlves. (Thus, the theory uses "Information" to make more preCIse 
the concept of "intrinsic image"; information can be velocities, surface orien­
tations, bnghtness, etc.) 

An important class of Information IS what IS called linear information. 
Here the word "linear" refers only to certain properties of the information 
gathenng process, and not to the underlYing class of surfaces. The theories 
of InformatlOn based compleXity are most powerful when dealIng with linear 
mformabon The notation employed therein is: 

(2) 

where each Lj is a linear functional (that includes information like depth 
values, derivatives of the surface, integrals of the surface, gradients, etc. 
but not things like shading, most texture, etc .. ) For the case of depth 
values, which we have for the current problem, we Simply have 

(3) 

One can easily check that each Lk) IS a linear functlOnal on F l' For 



ease of analysis, we require that k > 3, and further, that the k depth 
values not be coplanar. This rules out the trivial case, l.e. when the in­
terpolating surface is a plane. 

Here' N(f) IS implicitly restricted to be a COllectIon of samples taken "in 
parallel" from f at points that can be predetermined independently. That 
IS, the I-th component of N(f) depends only on f, rather than on some 
dynamIcally changing sampling method based on the previous (i-I) components 
of N(f). In short, this information is nonadaptive. It is in contrast to 
the information used in many optimum-seeking algorithms (such as root­
finding), which selectively sample promising areas increasingly more densely, 
based on their nearness to an optimum. 

Superficially, an implicit restriction of N(f) to nonadaptivity seems to be a 
restriction to a less powerful set of information-gathering strategies. It will 
turn out, however, that it has absolutely no effect. Even if we extend 
the definition of information to allow the use of any adaptive sampling of 
linear functionals, no matter how intelligent, the intrinsic error is np less 
than that obtained by using appropriate nonadaptive information. (\Ve will 
addrlO'ss this issue In Section 3.) Thus, what is important in terms of the 
general theory is simply that the information be linear, such as depth 
values of surfaces are. Note that information like that of depth values 
or local gradient information is linear even when the underlying sur face 
IS t'ery compiex; the linearity restriction applies only to the information 
function and not to the sur face function itself. 

2.3. Defining the Class or Algorithms 
Knowing the information N(f), which is a k-vector of information samples 
(here, a vector of depth values), we now choose an algorithm I/J to recover 
f in F ~ (here, that part of the real-world surface we attempt to "see"). 
The algorithm ~ IS defined In a very general way as a member of a 
class, ~, of mappings: 

(4) 

Thus, in the general theory an algorithm maps information (of a function f 
from F 1) into a solution function' (in F :?). Note that In this general 

definitIon, F 1 and F 2 are usually different classes. For example, in classical 

quadrature algorithms for numerical integration, FIls the class of functions 
to be integrated, N(f) are sample function values, ~ is the quadrature for­
mula, and F2 IS simply RI, the set of reals. For the problem of 

reconstructing the 21/ 2-D sketch, Flare real-world surfaces and F 2 are 
their restrictions to D. 



2.4. Defining Algorithm Error, and Optimal Error Algorithm 
In order to compare solutions and to measure the accuracy of t/>, F 2 can 

be equipped with a norm, 11'11 2, By applying this norm, II flD - ¢(N(f)) 
112 now quantifies the difference between flO, which is th8.t por~ion of the 
real-world surface to be recovered over D, and ¢>(N(f)), which is the surface 
we construct by first gathering the information. N and then applying the 
reconstructive algOrIthm ¢. 

There are many choices for 11·lb. For our problem of depth interpolation, 
we may use the L2-norm, defined as: 

Ilfll') = { r f2 dx dy }1/2 
~ 1D (5) 

Although thiS norm suffices, if we intend to simulate human jurlgment, we 
really would prefer a norm that is in some sense the most natural measure 
of algorithm error. To our knowledge there bas been no work done 10 

human psychology to indicate what is a truly "natural" scale of surface ac­
curacy. However we need not worry; surpriSIngly it will turn out that the 
determInation of the optimality of the algorithm is largely independent of 
the choice of a norm to measure error. 

\Ve are nearly ready to define the error of a given algorithm. Based on 
this definition, we Will seek an algorithm that reconstructs the surface with 
mlmm urn error. \Ve would like to define the error of a partIcular algo­
rithm in the worst case to be something like the following: 

where the supremum 
formation. That is, 
where 

e U'.j,¢,f) = sup 11/ ID - ¢(N(fJ) 112 
(6) 

is taken over all f In F 1 that satisfy the same in-
the supremum should be tahn over the set V(N,f), 

V(N,fJ = { / E Fd N(/) = N(fJ}· 
(7) 

This defimtion measures the distance between the actual computed solution, 
¢>(N(f)), and all functions f In F 1 that could possibly have been the source 

of the observed information. Since the f in V(N,f) are completely indistin­
guishable (we know nothing besides the information NUn, we cannot tell 
which of them could have been the original function. Thus, we take the 
suprem urn to handle the worst case. 

The problem with such a definition IS that the class of functions in F 1 is 

usually too large. Given N(f), there are infInitely many interpolating f In 
V(N,f). Unless the F 2-norm IS, In a· sense, very weak, the above 



supremum and hence the worst case error may be very large, even infinite. 
However, in terms of the physics of the image understanding problem, many 
of these surfaces would also be physically impossible as well: some would 
have to pass through the camera itself; others would be impossible to fabri­
cate under any known natural or artificial manufacturing process. 

\Vhat w~ usually prefer instead is a solution function that comes as close 
as pOSSible to "reasonable" members of V(N,f), rather than to all of th~m. 
IntuitIvely, a function may be considered "reasonable" if it satisfies some 
desirable side conditions. Mathematically, such a function is often charac­
terized by expressing the desired properties in terms of another norm (or 
semi-norm), and defining "reasonable" to mean that this side norm is within 
certain bounds. \Ve will denote the reasonableness norm by the F 4-norm, 
II.ll.t . Just as there are many choices for the F2-norm, the actual definition 
of the F 4-norm is determined by the problem. (It IS an interesting 
psychological problem to find the most appropriate "reasonableness norm" for 
recovering the 21/ 2-D sketch; to our knowledge this also remains an open 
problem [Boult 861.) 

One example of a desirable property for functions in V(N,f) is smoothness. 
One way this can be quantified is by applying to elements of F 1 the 
quadratic variation semi-norm. This semi-norm is defined to be: 

Given that second derivatives are closely related to surface curvature, this 
semi-norm has an appealing intuitive physical analogy: it measures the bend­

ideally thin and elastic plate which has been forced into 
The reader may note that this is the same semI-norm 
the work of [Grimson 81, Terzopoulos 84]. 

Illg energy III an 
the sh ape of f. 
which appears III 

We can use this semi-norm (or any other "reasonable" one) to better define 
algorithm error. There are many ways to do so; one way would be to 
define a new space of functions F 0 = {f E F 1 : IIfll4 < c} for some ar­
bitrary constant c. Then by restricting the interpolating surface to lie in 
the space F 0 we simply rule out any surface that is too "unreasonable". 
Now our definition of algorithmic error makes more sense 

e(NJ~,fJ = sup II/ID - ~(N(fJ)II2 
(9) 

where the supremum is taken over all [' E F 0 satisfying the information 

N (that is, f E V(N,f)n F 0). Importantly, one of the results of the 
general theory is that optimality is independent of the value of the con­
stant C, used in the definition of F o. [Traub 831 



Now we can define what an optimal algorithm IS in t.he worst case model 
The algonthm ¢. In <1>, the class of algorithms, is strongly optimal if and 
only iT for each f in F. 

e(N,¢· ,f) = mf e(N,¢,f) 
( 10) 

where the infimum is taken over all algOrIthms ¢ In <I> That is, an algo­
rIthm ¢. IS optimal if and only if the algorithm error from using if,. (for 
any f in F 1) IS no more than the algorithm error from using any other 

algonthm¢ E ~. 

Importantly, optimality is largely independent of how error itself is defined. 
The theory holds not only for our case (absolute error), but it also holds 
for relative error, or any other definition of error monotonicaliy weighted by 
the "reasonableness" function, see [Traub 83] and below. This is good 
news from the stand point of psychology. Roughly it says that the op­
timal re:sults are the same no matter how error is defined or perceived. 

2.5. Spline Functions 
\Ve next define a particular interpolating function which is based on the 
reasonableness norm, 11'11 4, Although this function is derived from what ap­
pears to be only a problem-dependent side condition, it will be the pnmary 
function leading to the optimal solution of the interpolation problem. 

Recall that V(N,f) is the class of all functions in F 1 that share the same 

informatIOn with f under the information extraction function N. In purely 
visual terms, it is the set of all surfaces defined on the infinite bi!.ckground 
that coincide WIth the depth data. Let O'N(r) be that member of V(N,f) 
With minimum F 4-norm. That IS, 

(ll ) 

where the infimum IS taken over all f in V(N,f). We call O'N(f) the 
spline function interpolating the data N(f). For the example problem it is 
not hard to show that such a spline function exists and is unique. if there 
are at least four non-coplanar data pomts [Duchon 76]. (For more details 
on the general spline ~!gl)r~thm, see [Traub 83] page 71.) 

Thus, this unique spline function O'N(r) interpolates the information, and, be­
cause it minimizes the F 4-norm, of all such interpolants it is the most 
"reasonable". This need not imply that it is also the most "accurate"­
That is it need not necessarily minimize worst case error, since error IS 
measured by a different norm and 10 a possibly more restricted space. 
Thus it may be surprising that under very genera! conditions, O'N(r) directly 
provides the optimally accurate algorithm, as we show below 



2.6. Spline Algorithms and their Optimality 
Our last step is to define a class of algorithms based on the spline func­
tions; this class will contain the optimally interpolating. algorithm we Eeek. 

The algorithm ¢>s that takes information N(f), chooses the interpolating spline 
function a~(r)' and then restricts it to D, we call a spline algorithm. 
~'lore precisely, the spline algOrIthm is defined as: 

( 12) 

where aN(f) is the spline function. 
as semI-norm, the spline function 
defined. 

In our example with quadratic variation 

IS umque, so the spline algorithm is well 

The importance of ¢s is gIven by the following theorem. 

Theorem. 
That is, 

The spline algorithm IS strongly optimal (in the worst. case). 

(13) 

where the infimum IS taken over all ¢> in~. Further, the optimality of 
the spline algorithm IS independent of the choice of the error norm. 11'112: 

For the detailed proof of the theorem, see [Traub 80]' Theorem 5.1, page 
76. The proof is based on the following two observations. First, it can 
be shown that the definition of the algorithm error as defined in Equation 
(9) is equivalent to many including absolute, relative and other definitions. 
This allows one to define a class of "reasonable" functions directly, and to 
measure error merely on an absolute basIS, using the F 2-norm. alone (for 
more detail see [Traub 83]. Appendix E). 

Secondly, the spline function aN(f)ID can be shown to be the exact center 
of the set V4(N,f)ID, and thus it must minimize the worst case error, 
where 

(14) 

and the finite value c IS arbitrary. (The class V4(N,f) contains those 
"reasonable" functions satisfying the given information.) The centrality is 
proven by showing that every nD in V .. (N,f)ID can be expressed as the 
sum aN(f)/D + h, where the properties of h are sufficient to show that the 
difference aN(r)ID - h is also in V4(N,f)ID. Intuitively, the spline function 
is found to be a type of "mean" about which all other informatIOn -
satisfying surfaces are symmetrically placed; like other centers of symmetry, 
it mlllllnizes worst case error. 



Note that this spline ¢s IS the same spline which lS heuristically and 
approximately sought in [Crimson 81, Terzopoulos 81J The pnmary impor­
tance of the theorem is that It shows thIS spline to be optImal. But ad­
ditIOnally, given Its development in the g~neral theory, other known re5ult5 
can now be applied to it in a straightforward manner, with useful theoretic 
and practical effect as shown below 

3. Adaptive Information Does Not Help 
In Subsection 2.:2, we defined information as samples of depth data: 

(15) 

where Lj(f) = f(xj.Yj), and (Xj,Yj) E D. We call this nonadaptive information, 

since the i-th component of N(f), Lj(f), depends only on f. Adaptlve infor­

mation, on the other hand, attempts to exploit whatever was learned whIle 
obtaining the (i-I) components of N(f) More precisely, adaptive information 

where Zj 

N a(f) - - - [- - I - ... - '"l,···,"'k 

Zi-l)' i=2,,,., k. In the case of depth values, 

Zj = j{Xj,Yj) 

( 16) 

(17) 

The structure of adaptive information is much richer than nonadaptive infor­
mation, and one might hope that by vlrtue of adaption some intelligence 
might determine the location for (Xj, Yi) on the basIS of th~ results of the 
(I-I) pnor samplings Nevertheless, theory shows that, against intuitIon, for 
the class of linear information adaptive information cannot aid surface inter­
polation. For detailed discussions and proof, see [Traub 83] pages 57-62. 
The formal proof is based on the concept of radius of information. Intui­
tlvely, the radius estimates the intrinsic error of the problem. For several 
classes of problems (including approximation), the radius cannot be reduced 
by adaptive strategles, heuristic or otherWise, III large part because there ex­
ist fixed but ulllversal strategies. ThiS 15 perhaps the strongest result of 
all: one cannot do better III collecting data than a Simple snapshot does. 
Not only can the data. be collected in parallel, it should. 

(In fairness to existing research, and in accordance with common sense, it 
should be pointed out that this result does not imply that heuristics ha.ve 
no place in image understanding. It does, however, help delineate those 
areas where heuristics are useful, and perhaps required. If these non-linear 
information sources (e.g. intensity arrays, most texture, "high-level" knowledge, 
etc.) are allowed, heuristics may very well come into play. Note also that 
the results given above apply strictly to the recovery of a Single "object": 



given a region of the image, what will 
surface. \Vithin that region, no heuristics 
mination of the proper boundaries 

be approximated is a single smooth 
are necessary. However, the deter­
of the region--aigorithmically or 

heuristlcally--remains an open problem.) 

At this point, we have shown that the spline algorithm is the optimal in­
terpolation algorIthm, and that nonadaptive information suffices. However, 
we have not attempted to optimize where to obtain the information itself. 
It is apparent that all sampling strategies are not equal. If we are free 
to select the location of information points, what points are optimal? 

Restating this problem, suppose we are allowed to choose a k-vector of in­
formation samples: N(f) - [f(x1'Yl). ... , f(xk,Yk)J. Suppose, too, that no 
matter what information we select, we always use the optimal spline algo­
nthm. Since the algorithm is tailored to the information, any error that 
would remain IS intrinsically irreducible. \Ve then can define optimal infor­
mation, denoted by N*, to be that information with the minimum intrinsic 
error. 

Although In general the determination of optimal information is difficult, 
some hmited results are known. In particular, it has been shown [Babenko 
79J that for recovering a full depth map (with somewhat different F 2 and 

F 4 norms than' those given here), the optimal choices for (XjSjJ can' be 
shown to lie on a regular grid. More precisely, let the subimage D be 
the open rectangle: (0, (n+l)h) x (0, (n+l)h). Then the following infor­
mation N* is optimal (up to a constant factor) for surface recovery: 

f(h,h), f(h,2h),. . 
f(2h,h), f(2h,2h), 

., 
f(nh,h), f(nh,2h), 

f(h,nh), 
f(2h,nh), 

, f(nh,nh)J 

(18) 

These are simply Interior mesh points. Notice that the optimality of this 
information (and, of course the resulting error of the optimal algorithm 
using this optimal information) depends also on the norm 11'lb in general, 
however, the intrinsic error is monotonically decreasing in h. For a full 
proof of the optImality of this particular N* mesh, and the exact specifica­
tion for F 2 and F 4' see [Babenko 79]. 

4. Implementation of the Optimal Algorithm 
In the previous sections we have shown the existence and uniqueness of the 
spline interpolating given depth data, and we have shown its optimality for 
surface recovery problems. In this section, we show how the spline func­
tions can be constructed with the side condition of minimizing quadratic 
VarIatIOn. Note that in what follows, we do not necessarily require optimal 
information; the depth samples can appear anywhere within the subimage D: 



in a mesh, aligned on contours (such as those derived from zero crossmgs), 
clustered, or even at random. 

There are many ways to implement the optimal 3.lgorithm; 
two methods based on the reproducmg kernels of the 

brevity we shall discuss the details of only one The 
may consult [Boult 851 for a discussion of both 

we are purSUing 
space F I. for 
interested reader 

As is common in work with splines, a key step to their construction IS 

the determination of the proper reproducing kernel; it differs with each dif­
ferent class Fl. It can be shown [Meinguet 83] that for our F 1 the ap-

propnate reproducing kernel here is 

K(x,Y;u,V) = (1/1611') X {(x-u)2 + (y-v)2} X log {(x-u)2 + (y_v)Z}l/Z 

Given the kernel, the spline (ie. the reconstruction of the 21/ 2-D 
sketch) which interpolates depth data, Z = [=l,·,zk] = [J'(x1'Yl), ... ,flxk,Yk)] can 
be developed as: 

where 

k 

q; = L aiK(x,y,xi,Yi) 
i=1 

{ai} and {Pi} can 

k 

(19 ) 

be determined from the linear .system of equations: 
(20) 

L (Xi K(Xj,YPXi,Yi) + p1xJ+PZYJ+P3 = zj> 

i=l 

k 

"'" a· x· = 0 L.... I I ' 

i=l 

k 

~a.y.=O L.... I I ' 

i=l 

k 

"'" a· = 0 L.... I . 

i=1 

From equations (21) and (22), it should be apparent that the sphnes are 
linear m the data. That is, if ql interpolates information z(I), and q2 in-

terpolates information z(2), then c1ql+cZqZ interpolates information c1z(I)+czz(2). 

In terms of image understanding, this means that if two surfaces are super­
imposed so that their depths samples accumulate, than the super-position of 
the two full depth maps derived independently create a valid full depth 



map for the ensemble. 

Since the spline algorithm IS linear in depth data, it can be easily rewnt­
ten as the weighted sum of basis splines, as follows. Suppose that the In-

formation IS merely i-th unit vector for R k, tha.t IS, N(f) ej 
[0, ... ,0,1,0, .. ,0]' where the unit is in the i-th coordinate position. ThiS 
simpler information constraint is satisfied by a unique basis spline function 
O'j, with the property that O'j(ej) = 8ij (the Kronecker delta). In terms of 
the depth interpolation problem, O'j generates a surface that has a value of 
1 at sample point (Xj'yj), is identically zero at all other sample points, and 
is smoothly rippled in all the space between, In order to minImize its 
bending energy. The spline interpolating any given depth data z =[zl""zkl 
then can be represented by the weighted sum of these individual b~15 
splines, with z-values as the weights: 

k 

0'; = L ZjO'j_ 
i=1 

(21 ) 

Therefore the problem of computing O'z may be decomposed into that of 
solVing the k independent subproblems of computing each O'j. Conceptually 
this' is done by simply inverting the matrix given by (20); the elements of 
t.he ith column of this inverse are the coefficients of O'j. Depending on the 
physical imaging situation, this decomposition into basis splines can introduce 
powerful time savings But in any case, the fact that the solution IS a 
spline has several important consequences for implementation. \Ve detail 
these below, together with those additional consequences that can result from 
exploiting the decomposition into basis splines. 

1. Since the heart of the method is the solution of a system of 
Itnear equations, the depth interpolation problem reduces to a 
problem in numerical linear algebra, about which much is known. 
In general, running time on a serial machine will be ~ 1/3 1...3. 

2 Given the coefficients {aJ for the interpolating spline O'z (whether 
obta.ined directly, or from precomputed basis splines), the desired 
interpolation points can be computed In parallel with a simple 
O(k) SIMD algorithm. Essentially, each SIMD processor can 
evaluate Equation (19) to recover the surface values for each 
desired interpolation point. (Of course, a serial implementation 
would take 0 (nXk) where n is the number of reconstruction 
points. ) 

3. Given the coefficients {aj} for the interpolating spline O'z' any In­

dividual value of the solution surface can be recovered locally, 
Without the need for global recovery of the full surface. ii just 



one is needed, just one is computed. Likewise, if the system is 
asked to "focus" its attention on a particular area, the spline can 
be evaluated only at these extra points, without the need for in­
creased accuracy (and solution) everywhere. 

4 Suppose the location of the Information can be fixed beforehand, 
as It could be with a laser range-finder or other direct depth­
measuring devices. Then the coefficients of the basis spline func­
tions O"j can be precomputed and stored, since they depend only 
on the location of the information and not on the depth values 
themselves. The precomputation on a serial machine takes O(k3); 
this, however, is a one-time, off-line cost. 

5. Given fixed locations and precomputed basis splines, the coefficients 
of any particular interpolating spline o"z can be calculated usmg 

Equation (21), in O(k!.!) on a serial machine, or O(k) on a k­
processor SIlvID machme. 

6 Using basiS splines (whether they are precomputed are not), the 
surface can be incrementally updated. Any sample value. that 
changes over time has only a linear effect on existing interpolated 
data. This incremental update property is useful in some in­
stances of motion understanding especially those involving articulated 
objects. The updated value· at each point can be computed· in 
parallel in constant time with a straightforward SI1ID algorithm. 

7 The 21/ !.!-D sketch computed by this algorithm is invariant under 

translatIOn, rotatIOn and scaling (independently in each direction). 

5. Experimentation 
These results suggest that it would not be hard to construct a speclal­
purpose machine for surface interpolation that would be very quick and ac­
curate USing active Imaging, it could obtain depth samples on a square 
gnd of k total points, by rangmg or by triangulation. The position of 
these sample points would remain fixed, so all coefficients could be precom­
puted Run-time computation would entail only the distnbution of input 
data and the calculation and collectIOn of output data, using weIghted sums 
of precomputed coeffiCients. Thus, the mterpolated values at any pomt 
(x,y) are given by: 

k 

O"z(x,y) = L zi O",{x,y), (22) 

i=1 
where Z =[zl, ... ,zkJ =[f(x!'YI), .. ·,f(xk,yk)J and each O"j has been previously 
precomputed. A SIlvID algorithm evaluating Equation (22) would reqUire 
about k multiplications, plus k units of local storage per process. If spe­
cial purpose hardware were available, the data could be circulated m a 



type of 
cycles. 
as well. 

torOidal systolic array. All output would be complete In roughly k 
II necessary, precomputat lon could be achieYed in k parallei streams 

\Ve have simulated much of thiS bebavlOr · on 
briefly .Jist some of our experimental results 
further algonthmlc or computational effiCienCies 

.. 

a standard uniprocessor. \Ve 
They suggest there may be 

to be explOIted . 

1 If one uses a regular grid for the location of inform ~t ion, then 
the Gram matrix used to solve for the spline coefficients is highly 
regular. It IS block Toeplitz, With each block itself being 
Toephtz; thus , It contains only approximately kj2 distinct entnes 

(rathe r than kZ) Further, an efficient solution IS pOSSible in only 
O(k2.5) time, see [Rissanen 73[ . 

2. U one uses a regular gnd, the Gram matrix inverse (that IS , the 
matnx of coefficients for the basiS splines) IS also highly regular. 
The basiS splines reqUire alJproxlm ately k2/16 umts of storag~J 
rather than k:! 

3. Exp8nmentally, the Gram matnx denved from a regui:lr grid of 
Information locations appears to be rather well-conditioned with 
respect to computlOg ItS Inverse, thus fairly large systems (e .g. a 
100xlOO matnx,· corresponding to a gnd of 10xi0 depth data ) 
will show only little loss of precision. An initial estimation of 
the condi tIOn number , for appropnately scaled gnd-type data, IS 
:=::::::: 19k!! 

4. The stabi li ty of the surface solution appears to be critically cil::!­
pendent on the location of the information. In general, it ap­
pears that more closely spaced depth samples Yield a le~ stable 
system , since small local depth changes then have greater effect 
on local smoothness 

5. Al though the basis splines do not have compact support, their 
values appear to fall off rather rapidly The speed of their 
asymptotic decay is roughly Inversely proportlon:"l\ to the density of 
the in formation locatIOns That IS, dense InformatIOn means slower 
fall-ofr. 

Some of these results are demonstrated In F igures 1 through 4. 

Figure 1 shows one of the basiS splines for thp. 10x10 regular gnd. T he 
calculation of the optimal basiS splines is lOde pendent of the anticipated in­
formation values themselves; the splines are precomputable solely from their 
locations The figure shows the basis spline which has been precomputed 
for one of the most central points, at (x ,y)= (5 ,5). ThiS spline can also 
be VIewed as the optimal solutIon for that surface whose informltion ~. alues 



polating the 16 data POInts 
o 
o 
o 
o 

given by: 
4 
4 
4 
4 

4 
4 
4 
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o 
o 
o 
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This IS an extended parabolic surface. 
IS, even with such sparse depth data. 
50x50 quadnlateral patches. 

Note how smooth the interpolatioa 
The reconstruction IS done with 

Figure 4 

6. Related Problems in Computer Vision 
The theoretic results reported above-the optim3.lity and linearity of splIne 
algorithms, the sufficiency of nonadaptive information, and others-apply to 
other VISion problems that can be cast In the same framework The 
theory requires that F 1 be an arbitrary lInear space, and that the infor-

mation be a vector of hnear functionals on Fl' In terms of vision, the 
lineanty of F 1 is rarely a problem, since object sllrfaces supenmpose well, 
however, only some classes of image features can be considered to be lInear 
information. The trouble is that linear information must also superimpose: 
the features derived from ·sum· of two surfaces must be the sum of tl::e 
features independently derived. This IS often contrary to the laws of 
geometry, physics, and optiCS; for example, shading clearly does not sum 
well. Nevertheless, there are several important types of linear vIsion infor­
mation, among which are: 

1. The depth values 

f(xjsJ This IS 

themselves, at any 

the problem Just 
place in 

analyzed 
the Image: Lif = 

Note that there 



are zero at every grid point except at (5,5), where it has a value of l. 
Note that it rapidly and smoothly falls off away from its peak, interpolat­
ing the zero data around it. Because of symmetries, the basis splines for 
(.1,6), (6,.5), and (6,6) are rotations of it; other basis splines look similar. 

Figure 1 

The following table gives the information samples used to generate figures l) 

and 3 
9 9 9 6 6 6 3 3 3 0 
9 9 9 6 6 6 3 3 3 0 
9 9 9 6 6 6 3 3 3 0 
6 6 6 6 6 6 3 3 3 0 
6 6 6 6 6 6 3 3 3 0 
6 6 6 6 6 6 3 3 3 0 
3 3 3 3 3 3 3 3 3 0 
3 3 3 3 3 3 3 3 3 0 
3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 0 0 

The data IS located on the same 10xlO regular grid used In Figure 1. 
The data IS meant to form one-quarter of a four-layer wedding cake, with 
equal spacing between layers. (Thus the bottom layer IS a one sample 
wide nng of zeros, the second IS a three sample wide nng of threes, etc .. 
This IS similar to objects interpolated In [Crimson 8lJ.) 

Figure 2 shows the interpolated surface for the quarter wedding cake. The 
Cram matrix is derived for the location information and is inverted, giVIng 
the coefficients of the 100 basis splines. The product of this inverse with 
the information values gives the 100 coefficients ior the interpolating spline. 
In each dimens!on, the interpolation is four ti~es as dense as the given in-



formation, thus the surface shown is derived from the dense grid of 41x41 

pomts 

Figure 2 

Figure 3 shows the same surface from a different perspective, highlighting 
the behavior near the edges of the regIOn. 

Figure 9 

Figure 4 shows the surface generated when this method 1S applied to mter-



need not be any restriction on the location of (Xj'yj); they can 

even be chosen randomly. 

2. The depth values. derivable from a contour: 
is a particular curve. This is the usual 
based on the first stage of edge detection 
contours, etc.), or work on silhouettes. 

Ljf = Cj, where C j 

result of triangulation 
methods (zero-crossing 

3. A given directional derivative: Lif = the directional derivative of 

f(xj,Yj) with respect to Ii, where Ij is a direction vector in R2. 
This would be a one-dimensional variant of the shape-from-shading 
problem, where the available information samples are the uniquely 
determined surface slopes in a particular direction. 

4. The integral ( generally line integrals) of density functions: 

j (Xi2,Yd 
LJ 

(xil'Yil) 

p(x,y). 

This is the type of information obtained by the processes of com­
puter Axial tomography (CAT scans). Here the problem is not 
to recover just a surface in three space,' but rather to recover 
the density distribution. 

The linearity of information 1S important: it appears to be a key deter­
minate of many of the existing results of the general theory. Inasmuch as 
many image observables are non-linear functionals of the surface, these im­
portant cases of non-linear problems remain to be thoroughly treated, al­
though there are hopeful signs. Recently, it has been proved that non­
linear continuous information is not more powerful than linear continuous in­
formation [Kacewicz 841. Additionally, although most results deal with worst 
case models, the average and asymptotic cases are also under investigatIOn: 
see [Traub 84, Wasilkowski A 84, Wasilkowski B 841. 

7. Future Work 
\Ve see several areas of great interest. We plan to investigate the effects 
of missmg or errorful information. The general theory is being pursued 
along those lines as well, so some . results may be straightforward corollaries. 

More practically, our interest is in finding a more efficient algorithm for 
evaluating the basis spline coefficients. Since an exact solution may be dif­
ficult, we are also exploring various approximate techniques, particularly with 
regard.to replacing the basis splines with ones that are finitely supported, 
or with ones that are only asymptotically correctly shaped for their position. 
One approach centers on finding a single basis spline function which can 
accurately approximate all the others. Such a spline would have the com-



putational advantage that only one set of coefficients need be stored, S10ce 
all the other basis splines would be simple translations of it. 

A second overriding concern is the thorough investigation of the numerical 
properties of both the exact and approximate algorithms. In particular, we 
are interested in the exploration of the numerical stability of these al­
gorithms when they are applied to depth information along' contours: that is, 
the usual passive stereo based on a primal sketch. 'rVe wish to obtain 
bounds on the absolute error of these algorithms, and find t.he optimal in­
formation for our particular case. 

Thirdly, we plan to implement the algorithm for a variety of different 
classes of F I' and to investigate the psychological plausibility of these 
choices for F l' We hope to find solid psychological grounds for a particular 
choice of that class. 

8. Summary 
We believe that the information-centered approach to algorithms can be ap­
plied to many vision problems with powerful results. In this paper, we 10-
troduced the method and have shown how results pertinent to depth map 
interpolation are corollaries of the general theory. The major results are 
that spline interpolations are provably optimal in the worst case; that the 
resultant linear algorithms are exceedingly simple and parallelizable given 
some precomputation; and that adaption does not help. Our hope is that 
the applicatIOn of this approach to other vision problems will provide similar 
insight and computational power, and will similarly help ground other exist­
ing heuristic methods in provably optimal algorithms. 
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