
The Do-loop Considered Harmful
in Production System Programming

~1ichael van Biema
Daniel P. Miranker

and
Salvatore J. Stolfo

Cl:CS-228-86

In this paper we focus on some aspects of Expert System programming. In particular we consider

some of the language constructs which forri'l part of a new production system language known as Herbal

:.~ac we are developing at Columbia University. These language consmlCts greatly increase the

::x;;ressiveness of a typical produc:::on system language and can be efficiently exec~t.ed on a par::111el

:nachlne. We briefly describe the DADO machine under development at Columbia University and J basic

algorithm for production system execution for that machine. We conclude with a discussion of some

performance Statistics recently calculated from m _analysis of production systems simulations and

describe the expected effects of our added language constructs on these statistics.

Tnis research has been supported by the Defense Advanced Research Projects Agency through cont..'"::!·~
~00039-84-O165, as well as grants from Intel. Digital Equipment, Hewlett-Packard, Valid Logic Systems,
and IBM Corporations and the New York State Foundation for Advancd Technology. We gratefully
acknowledge their support.

1. Introduction

Due to the d..r:lmatic increase in computing power and the concomitant decrease in computing COSt

oc::urring over the last decade, many researchers are anempting to design computer systems to solve

complic:ued proble:ns or execute tasks which have in the past been performed by human expertS. Tne

focus of KlUlWledge Engineering is the coDStruction of such complex, knowledge-based expert computing

systems.

In general. knowledge-based expert systems are Artificial Intelligence (Al) problem-solving programs

designed to operate in narrow "real-world" domains. performing taSks with the same competence as a

skilled human expert. Elucidation of unknown chemical compounds [Buchanan and Feigenbaum 1978],

medical diagnosis [Davis 1976], mineral exploration [Duda et al. 1979] and telephone cable maintenance

[Stolfo and Vesonc!er 1982] are just a few example~.

The heart of these systems is a knowledge base, a large collection of facts, definitions. procedures and

heuristic "rules or thumb", acquired directly from a human expert. The knowledge engineer is an

imennediary between the expert and the system who extracts, formalizes, represents, and tests the

relevant knowledge 'Nithin a compucer program.

Just as robotics and CAD/C~\1 technologies offer the potential for higher productivity in the . 'blue

coilar" work force, it appears that .0\1 expert systems will offer the same productivity increase in the

"white-collar" work force. As a result, Knowledge Engineering has attracted considerable anention

from government and industry for research and development of this emerging technology. However, as

knowledge-based sy~tems continue to grow in size and scope, they 'NiH begin to push conventional

computing systems to their limits of operation. Even for experiment:J..i systems. lr.:my researchers

rermedly experie!lce frustration based on the leug'".h of time required for their operation. Much of the

research in .0\1 has focused on the problem of representing and organizing knowledge, but linle attention

has been paid to parallel machine architectures and laniUages supporting problem-solving programs.

In this paper we [lISt present a brief overview of the current state of expert system technology and then

outline the basic production system formalism. After this background material. we then present some the

limitations of current production system programming languages and suggest a set of additions thai:

greatly increase the expressiveness of current languages and which can efficiently be execured in a

parallel environment. We then describe some of the hardware and software work that is going on at

Columbia which we hope will supply empirical support for our claims. We conclude with a presentation

of performance sw.tistics recently calculated from simulations of production systems and describe the

expected effect of our language conSffilctS on these statistics.

2. Expert Systems

2.1. Current T~hnology
K:lOwledge-based expert systems have been construc:ed. typically. from two loosely coupled modules.

coUec:ively forming the problem-sol...,ing engine (see Figure 2-1). The knowledge base contains all of the

relevant domain-specific information permitting the program to behave as a specialized. intelligent

problem-solver. Expert systems cont:r:lSt greatly with the earlier general-purpose AI problem-solvers

which were typically implemented without a specific application in mind_ One of the key differences is

the large amounts of problem-specific knowledge encoded within present-day systems.

~fuch of the rese:ll'Ch in AI has concenrrated on effec:ive methods for representing and operationalizing

_ human experiential domain knowledge. The representations that have been proposed have taken a variety

of forms including purely declarative-based logical formalisms, . 'highly-stylized" rules or produc:ions.

ar:d structured generalizatioa hierarchies commonly referred co as semantic nets and frames. Many

bowledge bases have been impien:enred in rule form. to be detailed shortly.

Figure 2-1: Organization of a Problem-Solving Engine.

T:'1e inference engine is that component of the system which controls the deductive process: it

implements the most appropriate srrategy. or reasoning process for the problem at hand_

T:'1e earliest AI problem-solvers were implemenred with an irerative branching tec!1z.ique searching a

large combinatorial space of problem states. Heuristic krlowledge. applied within a sutic concrol

st.-..tcrure, was introduced to limit the search process while attempting LO guarantee tht:: successful

formation of solutions. In conrrast, current expert systems encode the control strategy and deposit it in

the bowledge base along with the resc of the domain-specific knowledge. Tnus, the problem-solving

SL.r.!~egy becomes domain-dependenr. and conrribures [0 th~ good performance exhibited by coday's

systems. However. a great deal of t.1Us kind of lc10wledge is necessary to achieve highly compe~em

f::e:-:or.:1ance.

Withi.

domain.

[Rychece

imDleme~.

. :rumber of existing expert system programs, the corpus of knowledge about the problem

.:led by a Production System program. As has been reported by several researchers

, production system repreSe:lt;Ition schemes appear well suired to the organization and

Jf kmwledge-based software. Rule-based syStems provide a convenient means for

r.o ex::iica.te their knowledge. and are easily implemented and readily modified and

e- . .;!S • :he ease with which rules can be acquired and explained that makes production

....

;eneral. a ·.o-oduction System [Newell 1973. Rychener 1976, McDermott and Forgy 1978J is defined

J set of rul~~ .~ ?rodJJ.ctions, which form the Production M"emory(pM), together with a database of

~sertions. called :.'1e Working Memory(VVM). Each production consists of a conjunction of pattern

elemenrs, called the left-hand side (LHS) of the rule, along with a set of actions called the right-hand side

(RHS). The RHS specifies information that is to be added to (asserted) or removed from WYf when the

LHS successfully matches ag:linst the contents of WYf.. An example production, borrowed from the

Jiocks world, is illustrated in figure 2-2. In this paper we have chosen to give our examples using OPS5

syntax [Forgy 81 J. For no other reason than that it is probably the most widely used.

Figure 2-2: An Example Production.

(p Blackhead
(Gaal"value C:ear·top-o(·810ck)
:Objec: ":d <X> ·'type Black)
(Oo-top-o{ "objec:l <y> "object2 <.~)
(Object "id <y> ·'type Block) ->

(re~ve 3)
(make On·tDp-<lf "objectl <y> "objecC2 Table)

If t.'":e goal il to clear t..'":e :op of a block.
wd there i!! a block (x)
covered by somet.'Ung (y)
whic!l is also a block,

then
re!l:OVe the txt that y is 00 x from WM
3Ild a.s.sd that Y i.s on top of the table.

In operation, the production system repeatedly executes the following cycle of operations:

1. March: For each rule, determine whether the LHS matches the currenr environment of WM.
All matching inst:lIl~s of the rules are collected in the conJlic: ser of rules.

2. Select: Choose exactly one of the matching rules according [0 some predefined crirerion.

3. Ac:: Add to or delete from ViM all assertions specified in the RHS of the selected rule or
perform some operation.

During the selection phase of production syste=t execution. a typical interpreter provides conJ1ic:

r;!':.:J!~r.on s:r~:egies based on che rece C'/ of matc~ed dat:l in w:,.f, as well JS sYntactic discrimination. , .

Rules matching data elementS that were more re:endy inser..ed in W7Yf are preferred. with ties decided in

favor of rules that are more specific (Le., have more constarus) than others.

On conventional von ~euman machines the r.lles of a ~pica1 production system interpreter are often

compiled inr~ a data-i10w Detvlork through which ~f elements flow. State of the previously computed

partial matctes is normally maintained in this netvlor'A: in order to speed ti:e matching process of newly

::.;e~ed data. See [Forgy 19801 and [Forgy 1982] for details of his Rete match algorithm.

3. What is wrong with Do-Loops

As noted above the LHS of production system rules can be characterized as the conjunction of a series

of existentially quantified terms. Tnis causes certain difficulties when for example we wish to express

such well defined semantics as: For all objects of ~pe X do function Y. For example, suppose we were

writing a farming expert system and we wanted to rum all of our rotten melons iruo melon balls. Tne

standard OPS ~pe rule would look something like:

(p :n.1ke·me!on-balb

->

(carrent-uslc "taskoame melon-balli)
(prod:rc:: "~l'e :::e!on "used co .~t.l['.:.s :'CtI.en)

(modify 2 "type :neJon-lJail "-Jsed yes)
(modify I»

Here the last RHS action serves only to make the current task the most rece~tly added working memory

element (note no modification is made to the element, bur rather it is just reasser"..ed in order to be chosen

by the oext round of coorlict resolution). In other words we must fo~ the rule interpreter to iterate over

the set of roc:en melons. Another perhaps more common way co write this would be io terms of t.~e

following three rules:

(p make-uslc-melon-balls ;inilializariml.
(produce "type melon "used 00 ~t.ltu3 rotI.en)

->

(make Cllr.'e!:t-t.lSlc "tasbame :nc!on-balli»

(p make-melon-balls ;Body

->

(;>

(CUITellt-t.uk "!.:Uk!:ame melon-ball.!)
(produce "type melon "used no ~t3tu3 rouen)

(:nodify 2 "type :nelon-ball "'.ucd ye3»

finish-USk-a:.alce-=!on-balli ;T uminaJion
(cUITent-wlc "tJ..s.kname tne!on-ball3)
- (produce "type melon "used no "st.l~3 rotten)

->
(remove I»

These rules. of course, being the e:<pression of a standard do-loop statement. \\ll1at of course we really

wish to write is:

(I' :n.U e· melon· Oalls
(C:lJT'e:It-i3!k "taskname :neloo-balls)
FeR All (produce "type meion '''.Lsed :l0 "status rotte:l)

->

Here we have added universal quantification to our language. The second term no longer represents

the single instan~ of a working memory element satisfying the tenn, bur rather the universal set of all

working memory elements satisfying the terIn. Therefore our RHS modify action also refers to this

universal set rather than a single element of it.

L:!: us examine what we have gained here. We have ~rtainly made it easier to express what we really

wanted to do. We have also avoided having to update the conrlict set by modifying over and over the

working memory element that describes the task we currently wish to do (modify 1 in the first

production). On a sequential machine, however, we have a problem. Assuming that the productions have

been compiled inro a Rete·Match network we have no efficient way of implementing the semantics of this

rule. Which is in fact probably the reason this construct is missing from the OPS class of languages.

Now assume we have at our disposal some form of associative memory. It is clear that the semantics

presents no problem in this siwatioa. Furthermore. if our associative memory has some p~ssing power

attached to it we can execute this global change to working memory in one cycle time.

Now that we have universal quantification in our language another additional construct that follows

:1 a rurally is to allow predicates on the sets formed by our universal quantifier. For example, reruming to

our farm, suppose we know that if we have more than 10 pregnant cows we had better put the bull out to

pas ru re. A set of OPS type rules for this would look something like:

(p couoc-cows

->

(curn:!lt·task "naIl:e COWlC~wS)
(coucter "value <n»
("animal cow "counted no)

(modify 2 "value (Plus 1 <n>))
(modify 3 "eounted 1(3)
(modify 1»

(p bull~uc.It>-pa3~

->

(cou::te:' "value> 10)
("animal bull "location barn)

(modify 2 "!oca.tion pasture»

What we really wantl'!d to write was the following:

(P bull-J)UHO-pa3~

->

(cardioality (FOR ALL ("animal cow "cOUIlted co» > 10)
("JItimal bull "~ocmon bam)

(modify 2 "!ocmoc pasture»

Here we have once 19ain incre:lsed the ease of expression in our language. In addition. this increased

e."tpressiveness has allowed us to reduce the number of rules as well as the number of rule firings. What

is needed in order to achieve this? We allow user written predicates to operate over setS. Once again

there is no simple way to implement this on a sequential machine using the Rete-Match type of algorithm.

On l parallel macbine capable of mimicking an associative memory with some local processing power it

is quite easy to visualize how these predicates might be implemented. Later we will describe how they

can be implemented '.vith perfonnance O(!og n) where n is the size of the set. The issue of side effectS of

these predicates is an important one, but not within the scope of this paper. Note also that we use the term

predicate here in a weak sefl.se in that other than boolean values may be rerurned. To see why we want

this, consider the production:

(p apple-sauce
(more-than-ten (FOR ALL (fruit "type apple»)

->
(remove 1)
(make (confinement "type appJe.13UCe "amount (cardinaJity-of 1»»

This production says that if we have more than ten apples we want to ma.~e applesauce and tl-..e final

amount of apple sauce made is the cardinality of the set of apples.

We note that it is now very easy to express semantics corresponding co both set union and sec

intersection in our language and that this was not in general possible before our additions.

By the addition of universal quantification to our production system language we have shown thac we

can greatly increase the expressibility of our language and we claim that we also increase the efficiency of

language on a para11ei Irulchine. We will have more to say on the issue of efficiency later, but first we

describe the actual machine on which we plan to implement the language.

4. The DADO i\lachine

DADO is a medium-grain. parallel machine where processing and memory are extensively

intermingled. A full-scale production version of the DADO machine would comprise a very large set of

processing elementS (PEs) (on the order of thousands), each containing its own processor, a small amount

(16K bytes, in rhe-al.rrenuiesign of the prototype version) of local random a~ess memory (RA.!V1), and a

specialized 110 switch. The PEs are interconnected to form a comp/ere binary free (see figure 4-1).

Within the DADO machine, each PE is c3pable of executing in either of rwo modes under the control

of run-time software. In the first. which we will call SllvID mode (for Single Instruction Scream, ~[ultiple

Data scream [flynn 1972]), the PE executes insauctions broadcast by some ancestor PE within the cree.

In the second, which will be referred to as MUdD mode (for :-Vlultiple Instruction Stream, Multiple Data

stream), each PE executes instructions stored in itS own local RAM. independently of the other PEs. A

single conventional co-processor, adjacent to the root of the DADO cree, controls the operation of the

entire ensemble of PEs.

Figure ~1: Functio:1al Division of the DADO T:ee.

- P'-4 L.r.1t:
IT"~. ~~m"lIM r.t anc:.
1 instamlare

',..,.,.". 5..:otn.l:
~t-~~I.

1'T'Iemc:t1.-

When a DADO PE: enters ~1Th-ID mode, irs logical state is changed in such a way as to effectively

"disconnect" it and its descendants from all higher-level PEs in the tree. In particular, a PE in ~fTh.fD
mode does noc receive any instructions that might be placed on the rree-struc:ured communication bus by

one of irs ancestors. Such a PE may, however, broadcast instructions to be executed by irs own

descendanrs, providini all of these descendanrs have themselves been switched to SIMD mode. Tne

DADO machine QIl thus be configured in such a way that an arbitr:lI'j' internal node in the tree acts as the

roOt of a tree-struc:urect SIMD device in which all PEs execute a single instruction (on different data) at a

given point in time. This flexible a.rchitecrural design supporrs muinple-SU .. fD execution (~fS1\fD) as for

example [Siegel et a1. 1981] but on a much larger scale. Thus, the machine mly be logically divided into

distinct partitions, each eXec'Jting a distinct task. 'This is the primary source of DADO's speed in

executing a large numb~r of primitive pattern matching opentions concurrently.

Toe DADO VO switch, has been implemented in se::ni-custom gate array teChnology and incorporated

within the 1023 precesSing element version of the cachine, has been desigr.ed to support npid global

COCIlm1lI'JC3.tion. In addition, a specialized combinational circuit incorporated within the VO switch

allows very rapid selection of a single distinguished PE from a set of c:mdidate PEs in the tree, a Frocess

called resoLving.

The ::oany advantages of the binary tree architec:ures such as scalabJiry have been pointed out

~lsewhere(Stolfo, 1983J and we will not reiterate them here. What is important from the language point

of vie'){ is iliat ':e :ree architecture allows the implementation of O(log n) tree associative operations.

~.1. Production System execution on DADO

In this section we outline an absrract algorithm for production system execution on DADO. Although

we have ac:ually developed 6 different algorithms which cater to different classes of production systems

we present only the simplest one here as it is sufficient for a discussion of rile language issues in which

we are interested. As one might well imagine the distribution of productions and working memory to the

- tree has very important effects on performance [Isfiida 1984J. A detailed treatment of these algorithms

has appeared elsewhere (Stolfo 1984J [Miranker 1984bJ.

-t2. Original DADO Algorithm
Tne original DAOO algorithm detailed in [Stolfo 1983] makes direct use of rile ::oacrune's ability to

:!xecate in both \lflMD and SIMD modes of operation at the same point in dr=e. The machine is logically

divided into three conceptually distinct components: a PM-level, an upper rree and a number of

WM-s!.i.hrrees (see figure 4-1). The P~-[evel consists of YfTh-ID-mode PEs executing the ::oatch phase at

one appropriately chosen level of the tree. A number of distinct rules are stored in each P~f-level PE.

The VIM-subtrees rooted by the PM-level PEs consist of a number of SI~ID mode PEs collectively

operating as a content-addressable memory. WM elements relevant to the rules stored at the P~f-Ievel

root PE are fully distributed throughout the ~f-subtree. Tne upp!r tree consists of SL'vID mode PEs

lying above the P~f-Ievel, which implement synchronization and selection operations.

It is probably beSt to view \lIM as a distributed relation. Each WM-subtree PE thus stores relational

ru pIes. The P~-leveI PEs match the LHS' s of rules in a manner similar to processing relational queries.

In ter:ns of the Rete match. intracondirion tests of pattern elements in the LHS of a rule are executed as
relational selection, while imercondition tests correspond to equi-join operations. Each P~f-level PE thus

stores a set of relational tests compiled from the LHS of a rule set assigned to it. Concurrency is achieved

between PM-level PEs as well as in accessing PEs or the ~-subtrees. The algorithm is illusrrated in

figure 4-l.

It is quite easy to S¢e how to map the language constructs we described in Section 2 on tOP of this

algorithm. The FOR ALL constructs merely enables all PEs with WM elements satisfying the term the

FOR ALL modifies and disables any PEs not containing such elements. Tnis is basically just using the

tree as an associative memory. The set predicates can be mapped into tree associative O~r:ltions on the

enabled set of PEs. As we have already stated these operations can be performed in O(1og n) time,

assuming that \lIM is fully distributed and that the size of the set is large.

Figure 4-2: Original DADO Algorithm.

1. Initialize: Distribute a match routine and a partitioned subset of rules to each PM-level PE.
Set CHAN'GES to me initial WM elements.

2. Repeat me following:

3. Act: For each WM-cl1ange in CHAl"fGES do;

a. Broadcast mf-change to me PM-level PEs and an instruction to match.

b. The match phase is initiated in each P~-level PE:
i. Each PM-level PE determines if mf-change is relevant to its local set of

rules by a partial match routine. If so, its WM-subcree is updated
accordingly. [If this is a deletion. an associative probe is performed on the
element (relational selection) and any matching inst.11lc~s are deleted. If this
is an addition. a free %f-subtree PE is identified, and me element is added.}

ii. Each pattern element of me rules stored at a P\f-level PE is broadcast to the
WM-subtree below for matching. Any variable bindings that occur are
reported sequentially to the PM-level PE for matching of subsequent pattern
elements (relational equi-join),

iii. A local contlict set of rules is formed and stored along with a prioricy rating
in a disnibuted manner within the WM-subrree.

c. end do;

4. Upon termination of the match operation, the PM-level PEs synchronize with the upper cree.

5. Select: The ma.'t-RESOL VB circuit is used to identify the ma.:<imally rated cont1ict set
instaD~.

6. Report the instantiated RHS of the winning instan~ to the root of DADO.

7. Set CHAJ.'lGES to the reported action specifications.

8. end Repeat;

5. Parallelism in Production Systems

.-\ nice srudy of parallelism in OPS style production systems has recently been completed [GuPta

1984]. The somewhat surprising result of this srudy is that potential parallelism in OPS style produc:ion

systems is very low. Although surprising at first, on c!oser examL'lation this finding is not in fac: so

surprising. The OPS lang'..J.ages have been specifically designed La enable their efficient implementation

on sequential machines. Tnese languages therefore encounge users to serialize their alg~riduns. Tne

most blatant example of this is. in fact, the absence of universal quantification from OPS style languages.

The result of this is that the programmer is forced to write rules to explicitly iter.lte over setS of working

memory elementS.

There are three possible major sources of production system parallelism. They are not surprisingly:

production parallelism, action parallelism and conflict parallelism. Most current estimates place 80-90%

- of production system execution time in the match -phase. Hence a significant speedup must be obtained

by matching in parallel if the production system is to be efficiently executed. TI...e affea-sec. the number

of productions affec:ed by a single WM change. and therefore the number of productions for which

matching maybe done in parallel is therefore critical. Gupta has found the average size of ti:e affect-set to

be quite low (around 32). We, however, hypothesize that this may be in part due to ti:e sequential

~numeration of various ~ setS. Since the affect-set size for such an enumeration is 1 and these

enumerations may constitute a significant proportion of the rule firings this may well account for the

small average affect-set size. Unfortunately GuPta does not report the standard deviations of his averages

which would aid in the evaluation of the validity of this hypothesis.

We note that our consrructs increase not only the potenrialproduction parallelism. but also the action

par:ti1elism and conr1ict parallelism. These do account for a much smaller percentage of the C'jcle time

::md we therefore expect their overall effect to be less signific::mt. Finally the total number of production

cycles may be significantly reduced by the addition of these consrruc:s since we replace iteration over a

set at ~ elementS by a single parallel operation on the set. In the ACE system it is estimated that a

large percentage of its time is spent executing precisely such rules l . Our own srudies It Columbia on a

simple expert systec that does Waltz labeling has shown that we can reduce the sutic number of rules by

a factor of 4 and the number of execution cycles by a factor of 10. We are not claiming that such good

results may be obtained for all classes of expert systems, but that there does exist a large group of expert

syStems where such results may be easily obtained. Guu has also pointed out that for a version of XSEL

system [McDermott 1981] that directly lccesses an external database such behavior is observed as well as

a much larger average affeCt-set size.

:?:;Vlte ccOInunica::iCIl wit.'l Greg T. Ve:socde-: of AT&T BeU !..lb5.

6. Conclusions and the Future

We have de:!cribed the addition of several consnuc:s involving universal quantification to OPS style

l'roduction systems. Th~ construc:s have been shown to add significmcly co the expressiveness of the

language and. unlike most such constructs. have also been shown to increase the efficiency of execution

in 1 parallel :!:lvironment. What remains is CO provide the further empirical support for our conclusions by

analyzing existing production systems and possibly recoding them using these new constructS.

The constructs we have suggested are in some sense the easy ones. They immediately came to mind in

the context of thinking about production systems and parallelism. What remains to be done is co search

for other, less obvious constructs that will increase either the expressiveness or the panllelism of

production system languages, or better yet which increase bach. Finally, a model should be developed so

that new constructs can be evaluated to the degree of parallelism they provide and how they interact. This

- searcll forms a major pan of the current researdi being conducted by the DADO parallel computer

;Jrojec~

REFERENCES

Bucharum, B. G. and Feigenbaum, E. A •
. , DE.NTIRAL and Mera-DENDRAL: Tneir applications dimension".
Arnncial Inteiligen~, 11:5-24, 1978.

Davis, R. "Appli~oD3 of meta-level knowledge to Lte
construction, mainrenan~ and use of large knowledge bases".
Computer Science Department. Stanford University,
Rep. No. Sf A,.'{-CS-76-552, 1976.

Duda. R., Gashnig, J. and Hart, P.E .
. '~odel design in the PROSPECfOR consultant system for mineral explor.ltion" ,
In D. Michie (Ed.), Expert systems in the micro-elec::ronic age,
Edinburgh University Press, 153-167, 1979.

McDermott, J. and C. Forgy, "Pattern-directed Inferen~ Systems"
Academic Press, 1978.

Forgy, C. L. .. , A Note on Production Systems and IUlAC IV",
Technical Report 130. Department of Computer Science,
CJrnegie-MeUon Gniversity, 1980.

Forgy, C. L., "OPS5 Users Manual", Technical Report,
Carnegie-Mellon t.:niversity, Order Number c~ru-CS-31-135. 1981.

forgy, C. L ... 'Rete: A Fast Algorithm far the Many Patternl Many Object
P:mem Match Problem", A..rtificial Intelligence 19, 1982.

Gupta, A .. "Parallelism in Production Systems:
The Sources and the Expected Speed-up". Technical Report.
Carnegie-Mellon University, Order Number c~ru-CS-84-169, 1984.

Ishida T .• and S. 1. Stolfo," Simultaneous Firing of Production Rules on
Tree-structured Machines" , Technical Report, Depamnent of Computer
Sc1en~, Columbia University, 1984.

McDermact, J., "Rl: The Formative Years", Al Magazine
2:21-29,1981.

Newell, A., "Production Systems: ~rodels of Conrrol Structures",
In W. Cnase (editor), Visual Information P~ssing,
Academic PreM, 1973.

Rychener, M, "Production Systems as a Programming Language for
Anlncial Intelli~~ Researc.h.·', Ph.D. thc:!sis. Depamneot of Computer
Sciena:, Carnegie-Mellon University, 1976.

Siegel. H. J .. L. J. Siegel. F. C. K~mmerer, P. T. Mueller, H. E.
Smalley and D. S. Smith, "PASM: A Parititionable STIvlDJ1vlIMD Syste:n for
Image Processing and Pat!e::l Recognition",
IEEE Tran. on Computers, 198 L

Stolfo, S. J., "T.1e DADO Parallel Computer", Technical RePO~4

Department of Computer Science, Columbia University, 1983.

Stolfo, S. J., and G. T. Vesonder, "ACE: A.n Expert System Supporting
Analysis and Yfanagemenr Decision Making",
Bell System Technical Journal, 1982.

1. Introduction
2. Expert Systems

2.1. Curnnt Technology
2.2. Production Systems

3. What is wrong with Do-Loops
~. The DADO Machine

Table of Contents

4.1. Production System e.""Cccution on DADO
4.1. Original DADO Algorithm

5. Parallelism in Production Systems
6. Conclusions and the Future

1
2
2
3
~

6
8
8

10
11

List of Figures
Figure 2-1: Organization of a Problem·Solving Engine.
Figure 2-2: An Enmple Production.
Figure ~-1: Functional Division of the DADO Tree.
Figure 4-2: Original DADO Algorithm.

2
3
1
9

