Development Tools For Communication Protocols

Nihal Nounou and Yechiam Yemini
Computer Science Department
Columbia University
New York, New York 10027

February 1985
CulS- 16038

ABSTRACT

The past decade has witnessed a surge in research efforts aimed at developing tools to aid
the designer of communication protocols. Most of these efforts have been directed towards
designing individual tools. Recently, however, there has been a growing interest in building
development environments that support an integrated set of such tools. This paper presents.
a :urvey of commonly used protocol development tools. Two categories of protocol
development tools are examined: construction tools to successively refline communication
protocols from specifications to working systems and validation tools to assess whether the
refinements meet functional and performance protocol objectives. Construction tools
surveved include tools for specification, synthesis, and implementation. Validation tools
surveyed include tools for formal verification, performance analysis and testing. A simple
send-and-wait protocol is used as an example throughout the paper.

Table of Contents

1 Introduction
2 Specification Tocls
2.1 Requirements of Specification Tools for Protocols
2.2 Survey of Specification Tools
2.1 Finite State Machines
State Machine Models
Formal Grammars and Sequence Expressions
Petri Net-Based Models
Algebraic Specifications
Temporal Logic Specification
Procedural Languages
2.3 A Taxonomy for Specification Tools
3 Protocol Synthesis Tools
4 Implementation Tools
5 Verification Tools
5.1 State Exploration
5.2 Assertica Proof
8 Performance Analysis Tools
6.1 Specification and Verification of Protocol Timing Requirements
6.2 Evaluation of Performance Measures
6.2.1 Analytic Tools
6.2.2 Simulation
Testing Tools
7.1 Logical Architectures for Testing
7.2 Test Sequences Selection
8 Conclusions

-

Dt ot
oo LWt

9 69 O 9 D D Y

3 to €O
~l;ow

e QO »—

-1 b

Figure
Figure
Figure

Figure
Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

[0 -
ee as ue

8

g9

10:
11:
12;
13:
14;

List of Figures

lllustration of protocol layers

A local view of a protocol layer

A protocol specification for the send-and-wait protocol using FSM's (1)
Sender (b) Receiver (¢) Medium

A service specification for the send-and-wait protocol using FSM's

A partial state machine specification of the sender process of a
modified send-and-wait protocol with binary sequence numbers

A formal grammar specification for the sender process of the send-
and-wait protocol

A send-and-wait protocol specification using petri nets

A state-based temporal logic specification for the sender process of the
send-and-wait protocol

An illustration of the proposed taxonomy of specification tools

A reachability graph for the send-and-wait protocol

A modified reachabiiity graph for the send-and-wait protocol
Transfer time vs. arrival rate of the send-and-wait protocol

Logical architecture for testing

Physical architecture including the portable unit

1 Introduction

In a computer network, distributed processes can communicate and share information
through message-exchange. Such communication involves a rather complex set of problems
since the distributed processes are allowed to concurrently access shared resources and to
proceed asynchronously. Moreover, they may be executed by heterogeneous processors, and
their communication channels are often unpreliable -- they might lose, duplicate, reorder,
and/or corrupt messages. Communication protocols are thus required to regulate the
communication between distributed processes in a computer network. They constitute a set
of rules and a set of message formats. The reader is referred to {Tane 81} for a tutorial on
protocols.

The International Standards Organization (ISO) has proposed a reference model of protocol
architecture for Open Systems laterconnection (OSI) (described in [Zimm 80]). The model
has seven hierarchical layers illustrated in Fig. 1; protocols at layers 1 through 4 are
referred to as lou-level protoccls and those at layers 5 through 7 as high-level protocols.
The purpose of each protocol layer is to provide services to the layers above while
concealing the details of the layers below. A description of these services including the
service interaction primitives, their possible orders and their possible parameter values, is
referred to as the layer's service specification. A protocol designer is also concerned with
the internal structure and operation of the layer’s black box which is illustrated in Fig. 2.

protocol layers virtual medium

APPLICATION 7 e = = = - e e - - -
PRESENTATION 8 e = = - - e -~ = =
SESSION 3 e = = - = - . - - -
TRANSPORT 4 e = = - = .- = = =
NETVYORK 3 e - - - - - - - - -
DATA LINK 2 e - - - e e e - - -
PHYSICAL 1

physical medium

Figure 1: [llustration of protocol layers

In this figure each protocol process (also referred to in the literature as component, module,
eatity, and party) resides typically at a different site and communicates with other peer (i.e.,
neighboring) processes according to the protocol rules. These rules describe how the
processes respond to commands from the upper layer, messages from other peer processes
(through the lower layer), and internally initiated actions (e.g., time-outs); they are referred

—

o

N+1 LAYER

N USER CORRESPONDENT N USER

- D e D D D D . T -] ———t . - - - - -

N SERVICE (PROYIDED)

N LAYER
PROCESS LAYER N PROCESS
(BOST &) | ===c=cmommeemmaees (HOST B)
PROTOCOL
N-1 SERVICE (USED)
N-1 LAYER

MEDIUM

Figure 2: A local view of 3 protocol layer

to as the protocol specsification. Finally, the protocol specification refined into actual code
describing aspects of internal behavior related to inter-process communication and detailed
external behavior of each protocol process is referred to as protocol implementation.

This successive refinement of protocols indicates a phased approach to their development. In
such 3 framework of phased development (for details see in particular [Boeh 78, Lehm
80, Oste 80]) there are three main phases: service statement, protocol design. and
implementation. Development tcols are required to support the evolution of protocols frem
specifications into working systems. This survey covers two kinds of protocol development
tools: construction tools for developing and refining protocol specifications and validation
tools to assess how a specification meets its f[uzctional (e.g.. deadlock freedom) and
performance (e.g.. maximizing throughput) design objectives. Although development tools for
geaeral software systems have been studied exteasively (see for instance [Lond 80, Ridd
80. Wass 81], thewr application to protocols is a0t straightforward. Protocols involve processes
that are distributed, concurrent, asyonchronous, communicating through unreliable
transmission mediums, and whose behavior is often time-dependent. These features affec:
protocol development tools 10 various ways. First, the communicatica nature of protocols
becomnes the prime concern underlying the tools. The basic objective of protocol validation
tools, for example, is to assure robustness and efficiency of the communication between the
protocol processes. Second, timing requirements as well as functional requiremeats of protocol
behavior should be considered in the verious tools. This integration provides a more
realistic and relatively simpler description of protocol behavior than when only functional
requirements are considered. Third. tools used for general software systems might have
varied importance for protocols. One example of a tool that is rarely used for general
software, but that is becoming highly desirable for protocols is certification of independently
develcped protocol implementations to ensure that they comply with a standard, and thus
will be able to internetwork.

Recently there has been a growing interest in building protocol development environments
that integrate the various development tools required throughout the entire protocol
development. An ideal protocol development environments should encompass a comprehensive
set of tools and a methodology for their use. Therefore, a prime objective of this survey is
to examine the complete set of commonly used protocol development tools. Other surveys
concerned with only subsets of the tools examined in this paper can be found in [Boch
80a. Dant 80, Hail 81, Suns 81, Diaz 82, Schw 82, Suns 83].

The paper is organized as fcllows: in sections 2 through 4 we survey the construction tools
including specification, synthesis, and implementation, respectively. Sections 5 through 7 are
surveys of validation tools including formal verification, performance analysis, and testing
respectively. Finally, in section 8 we present some conclusions and remarks on possible

directions for future research.

2 Specification Tools

Specification tools are construction tools required to describe a protocol at each of its three
development phases as a service specification, protocol specification, and protocol -
implementation. High-level languages are used for describing implementation specifications.
These will not be discussed here; throughout the rest of the paper we limit our discussion to
specification tools required for the service statement and protocol design phases.

Experience has shown that protocols specified informally are error-prone even when
augmented with some graphical illustrations. For example, 21 errors have been found [West
78a] in the informal specification of the X.21 protocol [X.21 78] (a protocol at layer 2 in
Fig. 1); they are generally due to the ambiguity and incompleteness of the informal
specifications. Formal specifications, on the other hand, are concise, clear, complete,
unambiguous, and often used as the basis for other protocol development tools. Protocol
development tools are indeed highly dependent on the specification tool used. For example,
a differeat verification tool might be required if the specification tool used in the protocol
environment is changed.

Throughout this section and subsequent sections, a simple send-and-wait protocol will be
used as an example. The basic function of the protocol is to provide robust message
transfer between a source process C and a destination process D over an unreliable
transmission medium. There are three distributed processes involved in the protocol: a
sender S. a receiver R, and 3 traosmission medium M. The operation of the protocol is as
follows. If the sender 1s idle and receives a new message m from a source C, it sends it to
the receiver through the medium which either delivers or loses it. The sender waits for an
acknowledgment a to arrive, upon which it again waits for a new message from the source.
A new message arriving at the sender that is busy waiting for the acknowledgment of the
previous message, is buffered. To recover from cases of message and ackpowledgment loss,
if the sender does not receive an acknowledgment after a time-out period T, it retransmits
the same message and then waits again for either an acknowledgment or a time-out. The
receiver process waits for the new message m to arrive from the medium, after which it
delivers it to 3 destination D and then sends an acknowledgment a to the sender through
the medium. For the sake of simplicity, it is assumed that the medium does not lose
acknowledgments, and that the time-out period is ideally set such that the probability that a
time-out occurs only after a message is lost is equal to 1. If the sender and receiver
processes are at one protocol layer N, then the source and destination processes would be at

the next higher layer N+l representing the user of the services of the layer N, and the
medium process represents the next lower layer N-1.

It shou.a be noted that this is not the most efficient data transfer protocol. For example,
in order to make full use of the medium's bandwidth, a more sophisticated protocol would
send several messages successiveiy instead of one at a time. [n this case it is necessary to
assign sequence rumbers to messages in order to differentiate beiween them.

o the following section, requirements of specification tools for protoccls are outlined. the
various specification tools are surveyed in section 2.2, and a taxonomy of the these tools is
proposed in section 2.3.

2.1 Requirements of Specification Tools for Protocols

The key requirements of a spec‘flcatlon tool to adequately express protocols include the
following.

1. Supporting abstract descriptions such that implementation-dependent parts can be
left unspecified. _

2. Supporting modeling of concurrency.

3. Supporting modeling of nondeterminism, which is a behavior exhibited typically by
protocols (e g., the sender is waiting for either the arrival of an acknowledgment
or time-out in the send-and-wait protocol example).

4. Supporting the description of the two categories of functions involved in protocols:
control functions involving connection imitialization and inter-process
synchronization, and data transfer functions involving processing of messages texts
and related issues such as message sequence numbering.

5. Supporting modular descriptions to facilitate readability and ease of use of
specifications.

Since specification tools often are the basis of other development tools, they must also
include the following features to facilitate their application:

1. Executability of the specification to facilitate its direct simulation, and the
automation of the implementation process.

2. Providing constructs for expressing functional properties of protocols, thus
facilitating their automated formal verification.

3. Supporting the specification of the uming requirements of protocols. Since the
behavior of protocol is often time-dependent, their correst functioning might
depend on certain timing requirements. For example, the specification of the value
of the time-out period in a protocol with such a feature greatly affects its
function. [f the the time-out period is toc short, th: network would be flooded
with duplicate messages and the protocol would enter an infinite cycle of time-
outs,

4. Providing constructs for expressing performance properties of protccols gincluding
properties of transmission mediums such as bit error probability and desired
performance such as bounds on throughput and delay measures), thus facilitating
automated performance analysis.

5. Supporting the clear definition of the interfaces between the protocol layer
concerned and the lavers above and below to allow for separate testing of the
implementation of each protocol laye:r.

w

The extent to which a specification tool exhibits the first set of requirements is examined in
section 2.2. In section 2.3 we examine the extent with which the various classes of
specification tools based on the proposed taxonorny in that section support the second set of
requirements.

2.2 Survey of Specification Tools

2.2.1 Finite State Machines

A finite state machine (FSM) consists of the {ollowing compeonents: 1) finite set of states, 2)
finite set of imput commands, 3) transition functions (commandxstate—state), and 4) an
initial state. A FSM is a npatural choice for describing protocol processes whose behavior
coasist primarily of simple processing in response to commands to or from peer processes in
the same layer, and/or the upper and lower protocol layers. A FSM responds to an
command according to the input and its curreat state representing the history of past
commands. FSM's were used in early work on specification of protocois [Bart 89, Suns 73]

Consider using FSM's to describe a protocol specification. Each local process involved in the
protocol can then be modeled as a FSM. The behavior resulting from the concurrent
execution of these local processes can be obtained by considering all possible interleaving of
the executions of these processes. It is in effect a global description of the operation of the
protocol layer. To describe the mode of communication between the distributed processes,
three approaches are possible. The simplest assumes that the distributed processes
communicate synchropously through readezvous interactions (also referred to as direct
coupling by Bochmann [Boch 78]). That is, the process issuing a send event should wait for
the destination process to issue a corresponding receive event (and vice versa) at which time
a rendezvous is said to occur and message exchange takes place. Since messages are not
buffered in this approach, no modeling of channels between the processes is required. This
approach s too restrictive for protocols 1n which the communicating processes operate
asvachrooously, or for protocols in which the behavior of the transmission channel is integral
to its operation. In the second approach, channels are modeled implicitly by specifying
-heir characteristics such as queueing policy (e.g., FIFO) and bound on the oumber of
messages allowed in transit at any one time. Protocols with a number of messages in
transit can thus be modeled using this approach. The FSM's specifications in this approach
are referred to as communicating finste state machines [West 783, Goud 84al. In the
toird approach, channels behavior are specified explicitly as FSM’s in which case only
channels with a low bound on the number of messages can be feasible assumed. Even then
their FSM specifications are considerably more compiex than in the second approach.

Foilowing the latter approach, specifications of the three communicating processes in the
send-and-wait protocol are shown in Fig. 3. In this figure, states are represented by circles,
transitions by directed arcs, the initial state is the state labeled 1, and input commands are
either events with an overbar denoting send events or events with an underbar denoting
receive events. [Events' subscripts are used such that for event e, . the flow of data is from
process 1 to process j. Non-deterministic behavior at a state, for example the choice
between receiving a time-out or an acknowledgment at state 3 of the sender, is modeled by
multiple output ares from that state. A service specification for the same protocol is shown
in Fig. 4 in which the service primitive events GET and DELIVER between the protocol
system and its users (source and destination processes) and their order, are described.

151

{3)

‘I):l
P

ms.M

DROP m

Figure 3: A protocol specification for the send-and-wait protocol using FSM's
(a) Seader (b) Receiver (¢) Medium

GET DELIVER

Figure 4: A service specification for the send-and-wait protocol using FSM's

In specifying this simple protocol, and control functions of more complex real-life protocols,
e.g., the X.21 interface [West 78b], FSM specifications have proven adequate. They are
simple, easy to understand and analyze. They fail, however, to describe data transfer
functions that include decision (e.g., pricrity of messages) or timing considerations (e.g.,
specification of a time-out period). This is because no mechanisms are provided for
expressing such features. Moreover, in order to specily messages with sequence numbers
using this approach, a state is required for each possible value of a pending message and/or
sequence number. This leads to an explesion in the number of states; a pheczomena known

as the state erplosion problem. Extensions of the model, as described in the foilowing
section, alleviate most of these limitations.

2.2.2 State Machine Models

State machines are FSM's augmented with variables and high-level language statements.
These statements are associated with transitions and can refer to the variables and input
commaads. They are either predicates representing conditions for the tramsition to occur, or
actions to be performed upon its occurrence. The state of the machine is represented either
by the values of all the variables, or by one of the variables. Consider, for example,
extendirg the send-and-wait protocol with a binary sequence number mechanism for messages
so that the receiver can disticguish between messages and their duplicates. A partial state
machine specification (whose constructs are adapted from [Boch 83a]) of the sender process
of this extended protocol, is given in Fig. 5. In this specification a variable representing the
current message sequence cumber should be defined at the sender and the receiver. The
transition out of a sender's state in which it is waiting for an acknowledgment could have a
predicate stating that it should be not corrupted and its sequence number is the one
expected; and an action that increments the sequence number of the next message to send.

Bochmann and Gesci [Boch 77a) first used this specification model to specify a simple data
transfer protocol and later to specify the HDLC [Boch 77b] and X.25 [Boch 79] protorols.
Various other specification systems based on this model have been also developed. They
differ essentially in the way they structure the protocol system into subprocesses which are
then specified as state machines.

A state machine model proposed by the ISO TC97/SC18/WGI1 subgroup B on formal
description techniques (FDT) (Iso 83a, Boch 84 employs Pascal-like constructs in extending
FSM’s. Channels are specified separately from the protocol processes using abstract data
types [Gutt 78]. Certain queuing mechanisms can be modeled and time delays before
transitions can be specified.

A Specification and Description Language (SDL) [Rock 81] which is primarily represented
graphically has been proposed by another standard body, the International Consultative
Committee for Telephones and Telegraphs (CCITT). Specifications of channels and timing
are not supported. Dickson [Dick 80a], [Dick 80b] has used SDL to specify the packet level
of the X.25 interface [X.25 80|

Examples of other works based on the state machine model for specification were reported
by Schwabe [Schw 81a], Divito [Divi 82] and Shankar and Lam [Shan 84]. These efforts are
distinguished 1n the following. Schwabe differentiates between the specification of the
topology deseribing the connectivity of the processes from the specification of the protocol
processes. This feature could be especially desirable in the specification of high level
protocols. Divito uses buffer histories to record process interactioas. This facilitates the
specification of certain desirable protocol properties such as the number of messages sent is
the same as those received whereas other properties involving order of messages in the
histories, for example, are not as naturally expressed. Shankar acd Lam allow time
variables to be included and time operations to age them. This {acilitates the specification of
certain protocol real-time requirements such as an upper bound on the time a message can
cccupy a transmission channel; a requirement that is needed for the correct functioning of
many neiwork layer protocols (those at layer 3 in Fig. 1).

module Sender

var
state @ (statel, state2, stated);
(* same states labels as in Fig. 3(a) =)

corrupted : boolean;
next-message-to-send : integer;

ack-received : 1integer;

trans (= transitions are described in the general form
of a predicate given by: when <input command>
provided <boolean expression> from <current state>,
followed by an action given by: Lo <next state>
begin <statement> end: =)

when RECEIVE-A
provided {not(corrupted)
and ack-received = next-message-to-send}

from stated

begin

next-message-to-send := (next-message-to-send + 1) mod 2;

end;

to statel -

end module Sender

Figure 5: A partial state machine specification of the
sender process of a modified send-and-wait protocol with binary
sequence aumbers

Combining the two formalisms of FSM's and high-leve]l languages provides a rich
specification tool in which one can express the svatax aand the semantics of protocols. On
the other hand, such a combination is informal and there is no rule of how much of each to
use.

2.2.3 Formal Grammars and Sequence Expressions

A formal grammar is defined by a set of terminal symbols, a set of nonterminal symbols,
a start symbol and a set of production rules. The noaterminal symbols are defined
recursively in terms of each other and terminal symbols using the production rules. The

start symbol belongs to the set of nonterminal symbols and denotes the language generated
by the grammar. In a formal grammar specification of a protocol, nonterminal symbols
denote states, terminal symbols denote transitions and operations (e.g., nondeterministic
composition), the start symbol denotes protocol behaviors generated by the grammar, and
production rules define how the various protocol behaviors are generated. A formal
grammar specification of the sender process of the send-and-wait protocol is given in Fig. 8.
It is a direct translation of its FSM in Fig. 3(a) with terminal symbols (represented by
upper-case letters) denoting input commaads and non-terminal symbols (represented by lower-
case letters) denoting states.

= {V.T.§5.P},

where the set of nonterminal symbols V = {statel,state2,state3d},
the set of terminal symbols T = {GET-M,SEND-M,i.RECEIVE-A},

the start symbol S is statel, and

the set of production rules P is given by

statel = GET-M state2
state2 ::= SEND-M stateld
state3 = T state2

! RECEIVE-A statel

" denotes nondeterministic composition.

Figure 8: A formal grammar specification for the sender process of the
send-and-wait protocol

Since regular grammars and FSM’'s are equivalent, they share the same limitations. The
state explosion problem is manifested here as an explosion in the number of production
rules. To overcome this problem, Harangozo [Hara 77] used a regular grammar in which
indices are added to terminals and nonterminals to allow the representation of sequence
numbers. A formal grammar specification of HDLC can be found in [Hara 77]. Teng and
Liu [Teog 78] used a context-free grammar, which provides more expressive power than
regular grammars. They also uses a shuffle operation to integrate grammars defining
processes in the same protocol la.yer by computing all possible interleavings of their behavior,
and a substitution operation to integrate grammars defining different protocol layers by
substituting terminal symbols in the grammar of the high-level protocol by nonterminal
symbols in the grammar of the low-level protocol to form a new integrated grammar.

These two approaches to formal grammar specification for protocols do not support the
specification of any predicates or actions associated with protocol behavior. This limitation
is overcome by Anderson and Landweber [Ande 84] by using context-free attribute
grammars, which are formal grammars in which terminal and nontermiral symbols have
attributes associated with them. The terminal symbol SEND-M in the send-and-wait
protocol can have the attribute address associated with it to determine the address of the
addressee. The semantics of protocol operation can then be specified in terms of attribute
assignment statements associated with production rules.

In contrast to formal languages, sequence expressions define directly the valid sequences
resulting from protocol execution and not how they are generated. A protocol behavior is

10

described in one expression where no nonterminal symbols are used. The sender process of
the send-and-wait protocol can be specified as 3 sequence expression given by

SENDER = {GET-M — SEND-M — {T — SEND-M}' — RECEIVE-A}

where operations "', *—="", and ‘“+" denote the Kleene star, sequential composition, aad

nondeterministic choice operations, respectiveiy.

Sequence expressicas have been used by Bochmann for service specification {Boch 80b]. Other
examples include work done by Schindler, et al. {Schi 80, Schi 81] to specify the X.25 layer
3 protocol.)

2.2.4 Petri Net-Based Models

A Petri Net (PN) (see [Pete 77] for a comprehensive survey) graph contains two kiands of
nodes: placss and transstions. Directed arcs coonect places and transitions. Ares ‘rom
places to transitions are cailed input arcs, and ares from transitions to places are called
output arcs. The execution of the net is controlled by the position and movement of tokens
which reside in the places. The distribution of tokens in the nmet at any certain time,
known as a mark:ng, specifies the state of the met at that time. A PN specification includes
a PN graph and an imitial marking. A transition in the graph is enabled if there are tokens
residing in all the input places (i.e., places connected with the transition through input arcs).
[t can fire any time after it 1s enabled. upon which tokens are removed from input places
and deposited into output places of the tramsition. PN's are in many ways similar to
FSM's, with places in a PN corresponding to states or inputs in a FSM and transitions in a
PN corresponding to transitions in a FSM. However unlike FSM's, PN's can directly model
interactions between the concurrent processes by merging output arcs from cne process to an
input arc of another process. Also the concurrent execution of the distributed processés is
naturally captured by the presence of mere than one token in the net -- a token for each
distributed process.

[n 3 protocol modeled as a petri cet, the presence of a token in a place typically represeats
that the protocol i1s waiting for a certain condition to be satisfied. and the firing of a
trapsition represeats the occurrence of an event enabled by the conadition. Examples of
using PN's to model protocols can be found in [Post 78, Azem 78 Dant 80. A PN
specificaticr of the send-and-wait protocol is given 1n Fig. 7. Places are represented as
circles. trapsitions as bars and tokens as filled circles. [t should be noted that this PN
specification follows the assumption that time-out is ideally set such that a time-out cccurs
only after a loss of a message or an acknowledgment and the assumption that
acknowledgments are not lost.

Similar to FSM’s, PN's cannot adequately model complex data tracsfer of protocol without
suffering from expiosion of the net size, or timing considerations such as time-out. Two
major extepsions to PN’s that add to their power in modeling protocols lead to Aybrid PN's
and timed PN's. The price for these extensions is more complex validatioa.

Hybrid Petri Nets

Hybrid petri nets are extended PN’'s in which tokens can have identities and transitions ¢an
have predicates and actions associated to them. Adding predicates to PN's produces
predicate /transition aets formalized by Genrich and Lautenbach [Genr 79|, where tracsitions

11

SEND-M RECEIVE-M

GET-M
TIME-OUT DROP-M
DELIVER-M {:)
RECEIVER]

(READY)
—O-

SENDER RECEIVE-A SEND=A
(READY)

Figure 7: A send-and-wait protocol specification using petri nets

fire ocly after they are enabled and their associated predicate (i.e., some condition in terms
of tokens values) is true. Berthelot and Terrat [Bert 82| used predicate/transition nets to
model the ECMA (European Computer Manufacturer Association) {Ecma 80] transport
protocol.

Adding actions to predicate/transition nets produces pred:cate/action nets. Actions are
associated with transitions such that when a transition fires, the action is executed and new
tokens are put in the output places. For example, data transfer protocols can be modeled
as predicate/action nets such that the receiving of a message m with certain parameters is
described in a predicate, and the sending of m is described in the action [Diaz 82].

Keller’'s model for parallel programs [Kell 78] and oumerical PN (NPN) [Symo 80] belong to
this category. Keller divides systems into a control part and a data part, with places
representing control states and transitions representing the changes between states.
Variations of this model were used in modeling protocols {Boch 773, Azem 78, Baue 82].
NPN's introduced by Symons are similar to Keller's model with the variation of allowing
tokens to have any identity not just integer values, and associating read and write memory
with the net. Billington used NPN to model 2 Transport service [Bill 82].

Timed Petri Nets

A Timed PN is a PN extended to support some description of time. Timed PN’s that have
been used for protocols include time PN's (TPN's) introduced by Merlin [Merl 76] and
stochastic PN's (SPN's) introduced by Molloy [Moll 81]. In a TPN a pair of deterministic
time values (¢t_. .t) is added to each trapsition of a PN. The pair defines the interval of
time in which the transition must fire after it is enabled. This extension allows the modeling
of time-out actions of protocols by specifying the t . of the retransmission transition to be
equal to the time-out value. Danthine [Dant 80| used a combination of TPN’'s and Nutt's
evaluation nets [Nutt 72] (a kind of abbreviated PN) to model the Transport protocol of the
Cyclade network.

SPN’'s are PN’s extended by assigning to each transition a random variable representing the

firing delay of that tracsiticn. State changes occur in the SPN model with some prebability
rather than arbitrarily as in a PN. Distributions of the transition delays are restricted to
exponential in the continuous case, or geometric in the discrete case. This is because a
markov model is extracted from the PN graph describing the global protccol behavior; in a
markov model all transitions should be either exponentially or geometrically distributed.
The random represeatation of time involved in protocol eveats is used in SPN's to allow for
quantitative perforrnance analysis.

2.2.5 Algebraic Specifications

Algebraic specification derives its name from its relationship to universal algebra [Grat 68].
An algebra coosists of a3 nonempty set of objects and a set of operations. Each operation
takes a finite aumber of objects and produces aa object. The meaning of operations is
defined in terms of Equationai-arsoms. The interpretation of objects and operaticas when
specifying protocols depends on the specific aigebrzic approach used. We examine next two
xamples of algebraic sysiems used for specification of protocols.

Io the calculus of communicating systems (CCS) introduced by Milner [Mila 80], objects are
protocoi behavior expressions generated from a set of send and receive events exchanged
between the communicating processes. Operations include *“." denoting segqueatial
composition, '+ denoting nondeterministic composition, ‘| denoting concurrent
composition, and “NIL" (3 oullary operation) denoting deadlock. The concurreat ccmposition
of interacuing processes produces a new composite process whose behzvior includes rendezvous
interactions for corresponding send and receive events and shuffling of all other events

generated by the interacting processes.

A CCS specification of the sender process of the send-and-wait protocol is given next. Let -
denote a3 rendezvous event produced from a previous concurrent composition of the sender
with a timer process (for time-out). Also, let m represeat a send port for messages and T
represeat a receive port for acknowledgments on the channei between S and M. In
addition. let d represent 3 receive port for message incoming from the source. The sender
specification S is described recursively as follows.
S = d.m.Sl Sl = 7omcsl+ﬂas

Capabiiities for value passing and high-level language statements are also provided. To
cvercome the imposed synchronous mode of inter-process commuaication in CCS, one has to
explieitly model transmission mediums between any two processes communicating
asynchronously.

Many concepts from CCS are emploved in the specification language proposed by the [SO
TC97/SC18/WG1 subgroup C [lso 83b, Brin 84]. Holzmann [Holz 82] also introduced a
CCS-variant algebraic model with a division operation used to represent send events and
message buffers used to allow for asynchronous inter-process communication. Another CCS-
variant model introduced ty Nounou [Noun 84] associates probability and time attributes
with protocol behavior expressions to allow for the specification of protocol timing behaviors
as well as their functional behaviors. This allows protocol timing requirements to be
specified as will be described in section 8.1.

In the AFFIRM systern [Muss 80, Suns 82a), the objects of the algebraic model are abstract
dats types [Gutt 78]. The system can be used to specify protocols modeled conceptually as
state traasition machines as follows: eack protocol model is defined as an abstract machine

13

data type, with its variables as selectors of the type, and its state transition as constructors
of the type. A set of axioms defines the effects of each tranmsition on the variables. Abstract
data types can also be used in specifying protocol message formats. Desired properties of
the protocol are expressed as theorems that refer to the elements of the given specifications.
An advantage of this system is its use of abstract data types which provide only abstract
description of the systemns under consideration. Experience with modeling several protocols
in AFFIRM [Suns 82b] has shown the following system limitations: 1o support for true
modelicg of concurrency; difficulty in dealing with exception handling, separate specification
of local protocol processes, and specification of protocols with more than two processes.

One advantage of algebraic specifications is their rigorous formal base from algebra.
Elements of other development tools in a protocol environment can be viewed as an algebra
that is homomorphic to the specification algebra [Yemi 82]). One tasic limitation of algebraic
specifications is the difficulty in dealing with exception handling (for more information on
this see [Berg 82]).

2.2.8 Temporal Logic Specification

Temporal logic [Pnue 77] is an extension of predicate calculus to support the specification of
temporal properties of systems (i.e., properties that change during the system execution).
Invariant properties that must hold throughout the execution could be stated using predicate
calculus. Within the temporal logic framework, the meaning of a computation is considered
to be either the sequence of states (state-based approach) or the sequence of events (event-
based approach) resulting from the system’s execution. The two basic temporal operations
in temporal logic besides predicate calculus operations are henceforth “Q” and cventually
9", Let P be any predicate, then QP is true at time ¢ (representing the ¢-th instance of
the execution sequence) if and only if P is true at all times j; , where j>1, and OP is true
at time ¢ if and only if P is true at some time j, where y>s. A specification in temporal
logic consists of a set of axioms that assert properties which must be true of all sequences
resulting from a system's execution [Lamp 80, Mann 81].

Temporal logic specifications can be classified into state-based and event-based approaches
according to the underlying model of the execution of the protocol. Three different
approaches to the state-based temporal logic method have been pursued by Lamport [Lamp
83|, Schwartz and Melliar-Smith {Schw 81b], and Hailpern and Owicki [Hail 80]. The three
approaches differ essentially in how close they are to the state machine model with the first
being the closest followed by the second and then the third.

Schwartz and Melliar-Smith use a model in which state variables are introduced in the
specification only when it 1s more convenient to express temporal properties in terms of
finite history of the past rather than using temporal formulas. The variables used are
assumed to be bounded. A specification of the Sender process of the send-and-wait protocol
in this approach is given in Fig. 8 (adapted from [Schw 82)).

Besides the temporal operations eventually and henceforth, the following constructs have also
been used in the specification: Until and Latches-Until-After. P Until Q is interpreted
as P must remain true until @ becomes true if ever, and P Latches-Until-After Q is
interpreted as P when becoming true, remains true until after @ becomes true if ever. Also
the predicates at, in, and after, have been used to reason about the curreatly active
control point of each process. The interpretation of-at S, in S, or after S is true if control
is at the beginning, within, or at the end of the execution of statement S respectively. The

14

Al. S,=p implies (S =¢=p Latches-Until-After after RECEIVE-A and
s° S0P Latches-Until-After S"q)

A2. 09 (5=5_=p) implies
{0~ empzy(InQ) implies O (S »,=P and at SEND-MW)}

A3. So=p and ¢ S°=q=p implies O(So=q=p and at SEND-M)UntiI(Si=q=p)
A4. 9 at SEND-M Until O empty(InQ)

Where s and 5. are two variables of the underlying state transition mcdel used to
record ‘the last message value transmitted by the Sender, and the !last
acknowledgment value received from the medium, respectively. [nQ is a sequence
variable representing the queue of message ready at the source. Labels for events
are the same as those used in Fig. 3(a).

Figure 8 A state-based temForal logic specification
for the sender process of the send-and-wait protocol

axioms in Fig. 8 have the following interpretations. Axiom Al states that a message value

remains ie S uctil both its successful acknowledgment has been received and a new message

has been fetched from the source. Axiom A2 states that whenever the sender gets a message

from the source while it is not busy, it eventually seads that message. Axiom A3 states that .

whegever 3 new message is placed in S, it is infinitely often transmitted until its successful

acknowledgment is received. Axiom A4 ensures that message tragsmission coatinues uctil all
messages available in [nQ are serviced.

The above described approach to temporal logic specifications does not consider the complete
set of a system's state space; some of the states are excluded if temporal axioms can be
used to reason about them. This sometimes leads to complex specifications requiring several
additional coastructs (such as Until and Latches-Until-After) and thus rendering
specifications complex and difficult to understand. In subsequent work [Schw 83] another
approach has been followed in which the protocol required properties are stated on intervals
of the protocol’s execution sequences. It is claimed that this allows higher level temporal
logic specifications.

Lamport coasiders the complete set of system’s variables, and all state transitions are
specified in terms of the changes they are allowed to affect the variables. This is done by
using an ‘‘allowed changes” comstruct 1o addition to the other basic temporal operations.
Although specifications based on this approach are easier to transform into implementations,
they are lenghtier than those based on the former approach. Hailpern and Owicki use
unbounded history variables, without employing any states, to record the sequences of
messages that are inputs or outputs of tae systems. Protocol properties such as number of
messages seat equals number of messages received could be stated quite naturally with this
approach, but it would be difficult to state properties that depend on the ordering of a
sequence 1 a history. Moreover, the introduced history variables are aciually ‘“‘auxiliary”
variables; that s, they are not wvariables that are required to describe the protocol
implementation and thus can not be used to reason™3bout its correctness.

The state-based temporal logic approach has been wused to specify and verify a
multidestination protocol [Sabn 82a], and in [Kuro 82} both history variables and internal

15

states were used in specifying and verifying the three way handshake connection protocol.
Shankar and Lam {Shan 84] use a variant of the eventually operator in stating temporal
properties of a bounded length of the global state sequence resulting from a systems'
execution.

ln the event-based approach, protocol desirable properties are specified using temporal
assertions that define constraints on the possible sequeaces of interaction events. No
variables are cocsidered in this approach. Establishing context, mezaning a record of the
history of previous events, in event-based specifications is much more difficuit than in state-
based specifications, where states naturally provide the required context. This leads to
specifications that are somewhat complicated and lengthy. Vogt [Vogt 82| uses a histery
variable to represent the sequence of past events and thus establish the required context. In
another event-based approach, Wolper [Wolp 82] introduced extended propositional temporal
logic, in which temporal logic is extended with operators corresponding to propertxes
definabie by a right linear grammar. This allows the specification of some propertles ‘that
otherwise could not be expressed in temporal logic such as stating a proposition that is to
hold in every otker state in a sequence.

2.2.7 Procedural Languages

In a procedural language, the unit of specification is a3 procedure containing type declarations
and statements describing detailed computational steps of the system under coasideration.
Much of the eariy work done on protocol or service specifications used this method.
Examples of such works can be found in [Sten 78, Haje 78, Krog 78|.

The Gypsy programming l!anguage [Good 78, Good 82], is a procedural language that
includes most of the basic facilities of a Concurrent PASCAL, and has the unique feature of
supporting the specification of protocols at any of the three design phases using the same
language. Descriptions of service or protocol specifications make use of buffer histories to
record all send and receive operations executed on a system's buffer. One limitation of
specifications employing buffer histories, is the diffienity in modeling unreliable
communication mediums [Divi 82] since processes communicate through message buffers that
do oot model loss or corruption of messages. Another limitation is the dlffxculty of stating
properties on a history if the properties depend on the ordering of messages in the buffer.

While procedural languages are a natural chcice for coding implementation specifications,
there has been much controversy regarding their use for specification in early design phases.
The shortcoming of using procedural languages for specification lies in their detailed
descriptions of a systems’ operation. This makes it rather difficult to specify the abstract
requirements of protocols without getting into the details. There is also a biasing effect to
implement the protocol in the same languzge used for specification. The other side of the
controversy, though, could argue that such languages. with their rich expressive power,
support the specification of both control and data transfer functions of protocols.

2.3 A Taxonomy for Specification Tools

As 3 summary of this section, we propose a taxonomy of specification tools that will be
belpful iz judging the extent by which a specification tool meets the second set of
requirements given in section 2.1. The first three are requirements of specification tools to be
executable, to support the specification of desired properties of protocols, and to support the
specification of performance parameters of protocol behavior. The fourth requirement of

18

providing clear descriptions of interfaces between protocol layers can be met by a service
specification that describes both the service used and the service provided by thke protocol
layer concerned.

We classify specification tools along two axis. Based oa the first classification, they are
either state-based or event-based. The underlying model of a protocol in state-based tools is
concerned with the states through which the protocol passes during its operation and with
the events that cause changes in its state. States can be either explicitly represented or
described by variables. On the cther hand, the underlying model in event-based tools is only
concerned with the events generated by a protccol without any mention of its state. ~They
inciude sequence expressions and event-based temporal logic specifications whereas the
remaining specificaticn tools covered in this section belong to the state-based class. Since
state-based specifications describe the actions and respomses of protocol operation, they can
be directly executable. Event-based tools can ai best be first transformed into an executable
form (as will be explained in section 4). However, they seem to be more abstract than state-
based tools since they are not concerned with the internal state of the protocol model.

Alternatively, specification tools cad be classified into behgvioral and assertiona! tools.
Specifications belonging to the former class describe the flow of execution of protocols and
how it proceeds after each event. They constitute a description of the cause and effect of
all modeled protocol events. Assertional speciflication toois, on the other hand, state the
requiremeats of protocol behavior in terms of desired properties of its pessible execution
sequences. As will become clear in the following sections, the more a specification tool is
behavioral the more it is executable, and the more a specification tool is asserticnal the
better suppert it provides for formal verification.

Most specification tools actually exhibit features belonging to both the behavioral aad
assertiocal classes. Also, each of these classes constitute a spectrum of specification tools.
The extent to which a specification tool is behavioral depends on how much support it
provides for the specification of protocol semantics besides its syntax. The extent to which a
specification tool 1s assertional depends on how much support it provides for the statement
of functional properties including liveness and safety, and timing properties. Furthermore,
specificatien toois belonging to any of these classes can be either state-based or event-based.
Therefore, we illustrate in Fig. 9 the relative positions of the various specificaticn tools
covered in this section.

3 Protocol Synthesis Tools

The job of composing a specification for an entire protocol system s quite complex.
Furthermore, given such a protocol, the problem of formally verifying that it is free from
certain design errors has shown to be generally undecidable (see [Bran 83]). Towards
simphifying the complexity of specifying entire protocol systems, some research has been
directed towards synthesizing complete specifications of protocols, which are specifications
that include all the communicating processes icvclved, from incomplete ones. In some of
these efforts the produced specifications are zlso guaranteed to be free from certain desiga
errors and thus avoid the possibly undecidable formal verification problem. The various
synthesis approaches vary primarily in the kinds of design errors considered, the maximum
number of communicating processes in a protocol that are supported, and the features of the
transmission chanpel that are assumed. However, they all take advantage of the duality
inherect in the interactions among protocol processes where a message sent by one process
should be received at another communicating process.

Hew much
assertional
scarte-cased
tamporal -2Gic
X crecedural
languages
state machines X
X
TSM' =2
fevmal TanZuages PN's
% 7=
hWow much Tehavicural
(a) State-based specification tools
how much
asser=zional

F S

(b) Event-based specification toois

Figure 8: An illustration of the proposed taxonomy of specification
tools

Zafiropulo, et al. {Zafi 80] have proposed an interactive and incremental synthesis technique.
in which the protocol local processes are modeled as communicating FSM’'s with error-free
FIFO channels. In each increment of interaction between the protocol designer and the
synthesis program, the designer provides a sending interaction of one of the communicating
processes. The program uses the already synthesized partially constructed FSM’s and a set
of rules to find the state at which the receiving process can accept the sent interaction. It
then prompts the designer for the state which the receiving process would enter upon

18

receiving the found reception. The synthesis algorithm uses a set of three production rules
that find the receive interactions in such a3 manner as to prevent the dssigner from creating
unspecs fied receptions and nonerecutsble interactions. An unspecified reception indicates
that 3 message reception that can take place is missiag in the specificaticn. A nonexecutable
interaction is a reception or a transmission interaction that is included in the specificaticn
but that cannot be exercised under normal operating conditions. The designer is also
notified of the presence of state deadiocks and state ambigusties. A state deadlock occurs
when each and every process has no possible traositicn out of its current state. A state
ambiguity occurs when oae process cam coexist iD a certain state with more than one state
in any other process provided that all channels are empty.

The synthesis algorithm accepts information from the designer and uses it in incrementally
building trees that trace all possible executions of each process’ FSM. The algorithm—s in
control of the incremental construction of the protocol. [t must decide at which point to
stop the growth of the execution trees; that is, when continuation cannot reveal any new
information about the protocol. If all channel capacities are finite, or if there are only two
processes with not more than one unbounded chaonel, then the termination of the algorithm
is guaranteed [Bran 80). Otherwise the trees can grow indefinitely and heuristics must be
used to decide when to termipate their growth. For example, if channels were unbounded
and there was a transmission loop in one of the FSM's, then the execution ‘tree
corresponding to this FSM can grow indefinitely. The complexity of the termination
problem is the major limitation of this approach. The initial work done on the synthesis
algorithm has been limited to only two communicating processes. In an attempt to
generalize the algorithm for more than two processes [Bran 80], it was found that a different
set of rules (still three rules) should be used. However, a proof of the production rules
being necessary and sufficient only exists for the case of two processes.

Gouda and Yu [Goud 84a] proposed another synthesis methodology that accepts the ccmplete
specification of one process and produces a mirror-like specification of its communicating
process. Simular to the work of Zalfiropulo, et al. specifications are given as communicating
FSM's, and the synthesized specifications are guaranteed to be free from the same design
errors. It also computes the smallest bound on the number of messages in transit in the
channels at any one time. The synthesis methodology consists of two algorithms. The first
algorithm takes as input one process specification P, and produces two processes Q, and Q,.
Q, is computed from P, by adding some receiving tramsitions to it. Q, is then computed
such that the communication between Q, and Q, is deadlock-iree, “bounded. with no
unspecified receptions, co nonexecutable receptions, and no state ambiguities. The first step
of this algorithm coostructs a process Q, whose behavior mirrors that of input processes
specification P,. That is, they have the same states and transitions with the conversion of
each sending (receiving) transition in P, to a receiving (sending) tramsition in Q, with the
same label. A loss of synchronization leading to deadlock, though, might happea if some of
the states in PJ have outgoing tramsitions which ase both sending acd receiving since both
P, acd Q, might traverse sending trznsitions. To resolve this synchronization problem,
correction transitions are added to P, to produce Q,, and also included in Q,. This
restricts the communication pattera o} the symhesizeé specification to a pattern of the
commuanicating processes proceediag until a loss of synchronization is detected upon which
they backup by following their correcting traamsitions.

The second algorithm takes, as an input, Q, and Q, and computes the smallest size for each
of the two channels between Q and Q, The communication channels are assumed to be
error-free and FIFO, and the number of processes supported by the algorithms is limited to

19

two. An advantage of this synthesis approach is that each of the two algorithms takes a
deterministic time of O(st), where s is the size of the state space and ¢ is the number of
transitions in the input process specification.

Bochmann and Merlin [Boch 83b] describe a synthesis approach that in contrast to the two
described abcve, does not produce error-free specifications. [t has, though, the unique
feature of employing the service specification of the protocol in the synthesis procedure.
Both the duality principle of communication between processes and the fact that_ the
combined communication of a protocol layer process should provide its service are used in
the synthesis procedure. The synthesis algorithm takss as input the service specification as
well as the specifications of the protocol iayer (n-1) commuricating processes and determines
the specification of the remaining process (provided one is possible). The process
specifications are given as sequence expressions and inter-process communication i1s modeled
by direct coupling.

A formula is used iz generating the specification of the remaining process. The specification
produced is maximal in the sense that it includes the largest number of execution sequences
possible, and thus corresponds to the most general process (including possibly redundant
transitions). Also, it might reach deadlock when interacting with the other processes. The
approach does not guarantee that all execution sequences specified for the system will be
produced by the interaction of the n subprocesses. If this is the case, then there exists no
process that together with the given (n-1) process can provide the required system service.
The communication channel is modeled as process in the layer, and the approach could
support any number of interacting processes. '

This synthesis approach can be applied to the send-and-wait protocol as follows. Given the
specifications of the Service to be provided, the Medium, and the Sender of the protocol, the
approach can produce the specification of the receiver process.

4 Implementation Tools

An implementation tool is a construction tool (a compiler in effect) that transforms a
protocol specification into code. While low-level protocols in the ISO hierarchy are often
implemented in firmware, high-level protocols are implemented in software. For an example
of the former. the reader is referred to [Goud 76]. In this section we will limit our
discussion to software implementations of protocols.\

Clearly, one would like protocol implementation tools to be automated in order to minimize
both the effort involved and the probability of errors. This depends not only on the protocol
specification tool used but also on the programming language used for implementation. and
on the complexity of the protocol. Subsequently, we first examine the extent to which the
various specification tools facilitate the automation of the implementation process and the
general approaches employed. We then examine some implementation choices encountered
when translating protocols given in any specification tool.

in our proposed taxonomy in section 2.3, we classified specification tools into behavioral and
assertional tools along one axis and into state-based and event-based tools along another.
Behavioral specifications, such as state machines and petri net-based tools, lend themselves
more easily to direct translations into implementation than assertional specifications, such as
temporal logic. This is because the former describe how the execution of a protocol
proceeds, while the latter are concerned with requirements of protocol operation and not

20

with how the requirements are achieved. Furthermore, event-based specification are more
difficult to translate into implementations than state-based specification because they are
concerned with the outcomes of the protocol operation and not with how the cutcomes are
produced. [n summary, state-based, behavioral specifications are the most suitable for direct
translations into implementaticas.

Let us next discuss scme works on implementing protocols specified in the various
specification tools. Procedural specifications are clearly the easiest to be transformed into
code because they are the richest in terms of expressing both the syntax and detailed
semantics of protocol operation. The resulting implementation wculd probably be in the same
language used for specification, with the addition of implementation specifics such as buffer
management functions.

The typical approach for implementing a FSM cpecification, as described in {Boch 82}, is to
translate it to a looping program, with each cycle of the loop executing a traasition. The
loop would consist of 3 set of conditional statements with each testing for one kind of input
interaction. Note that this coomstruct is basically Dijkastra’s guarded command [Dijk 73]
For each of these cases another set of conditicnal statements would test the major state of
the module and ccmpute the pext state accordingly. State machine specifications and hybrid
petri et specifications, which combine state transition specifications with high-level language
statemnents, can be translated into code by simply transforming the state transition parts as
described zbove and using the high-level statements as they are or with minor variations in
the impiementation. Bochmann, et al. [Boch 79] traasformed manually a state machine
specification of the X.25 protocol into an implementation in a Concurrent Pascal. Blumer
and Tenney [Blum 82] in translaticg a state machine specification of the National Bureau of
Standards’ (NBS) transport protocol into C implementations, weres able o produce 40%% of
the implementation automatically.

Sequence expressions, which belong to the event-based specification class, can not directly be
directly translated into implementation, but nzed to be first transfcrmed into a tehavioral
specification. This is similar to the derivation of a FSM that would generate a given
regular expressicn. In implementing sequence expressions, which have much in common with
regular expressions, Schindler, et al. [Schi 81] uses™a two pass compiler to derive a Flow
Control Graph (FCG) from the specification anod then checks whether this graph is
equivalent to some extended finite state machine {EFSM). If so, a PASCAL implementaticn
of this EFSM is generated in the second pass.

Yelowitz, =t al [Yelo 82| describe an experimeat of manuzlly implemeating AFFIRM
algebraic specifications with its underlying abstract data types and state machiae models in
the Ada programming language. Abstract data types, state variables, and events in AFFIRM
are mapped into types, objects, and tasks in Ada, respectively. In order to describe
concurreacy of the implementation of local processes, a [eature act supported by AFFIRM, 3
special synchronization task that does not correspord to any AFFIRM event is added to the
Ada implementation. Any tasx correspoading to an AFFIRM eveat has to get permissicn
before proceeding with its actions, and upon completion thereof, notifies the synchronization
task. Then, the synchronization task can be used to implement any desired imitation of, or
even lrue, concurrency.

Finally, there are issues underlyig any implementation tool, which preclude completely
automated implementations. Human intervention in protocol implementations is required for
two purposes. First, to add the implementation dependent parts, and message coding.

Second, the implementor often has to make certain choices based on the specific protocol
being implemented. For example, whether to implement the protocol modules as part of the
operating system or as cooperating user prccesses, and how will the different modules
interact: using shared memory, or using some kind of interrupt mechanism, are two possible
choices.

5 Verification Tools

Prctocol verification consists of logical proofs of the correctness of each of the specifications
of the protocol, and the mappsng between the service and the protocol specifications and
between the protocol and implementation specifications. Proof of correctness of a
specification constitutes proving the validity of certain desirable properties that would assure
its correct operation under all conditions. Proof of mapping ccostitutes proving that a
specification of a protocol refined at a certain development phase correctly implements the
specification input to that phase. Proof of mapping between the service statement phase
and the protocol design phase is referred to as desstgn versfication, and between the design
phase and implementation phase is referred to as tmplementation verification [Boch 80a).

To prove that a specification is correct, one has to prove that it satisfies protocol safety
and liveness properties [Lamp 77). Safety properties state the design objectives that a
specification must meet if the protocol ever achieves its goals. Liveness properties state that
the specification is guaranteed to eventually achieve these goals. For example, an informal
description of a safety property S and a liveness property L for the send-and-wait protocol -
specification could be

S : the order of messages received 1s the same as the order
of the messages sent.

L : having received a new message., then retransamission
must continue until an acknowledgment is received
at the sender.

Safety and liveness properties such as those listed above are highly dependent on the
protocol under consideration. However, there are some general properties that are common to
any protocol such as include freedom from unspecified receptions, nonexecutable interactions,
and state deadlocks (as defined in section 3). Other general properties include progress and
absence of medium over flow. Progress means absence of cyclic behavior (also called tempo-
blocking) where the protocol enters an infinite cycle accomplishing no useful work. Absence
of medium overflow means that the number of messages in transit in the medium is always
less than a specified upper bound.

The approach used in proving a mapping between a specification output from a protocol
development phase and the specification input to the phase, depends on the specification tool
used. Consider the design verification problem. If behavioral specifications are used to
describe the protocol service, proof of mapping would be equivalent to proving that the
components of the service specification are correctly implemented by those of the protocol
specification. On the other hand, if assertional specifications are used, then the service
specification constitutes safety and liveness assertions of protocol specification; and design
verification coincides with proving the correctness of protocol specification. That is, sioce
proving the correctness of protocol specification in this case constitutes proving that the

protocol specification meets its service assertions, it proves at the same time that the
protocol specification is a correct implementation of the service specification.

Since protocol implementations are specified using high-level languages, they can be verified
asing traditional program verification tools. We will limit our discussion throughout the rest
of this section to surveying tools for the verification of service and protocol specifications,
and the problern of design verification.

5.1 State Exploration

State exploration examines all possible behaviors of a protocol. It is used in verifying
specifications belonging to the state-based and behavioral class of Fig 9(a). State exploration
of the copcurrent behavior of the processes local to a protocol layer produces a reachability
graph. In this graph, each node represents the combined states of all the local processes,
acd each arc represents a local transition. Starting {rom the initial state of the graph,
interactions of the processes are examin:d by exploring all possible ways in which the initial
states and all subsequent states can be reached. Each node the protocol can reach is
checked for deadlock and unspecified receptions. The whole grapb can be then checked for
general desirable properties of the protocol such as progress, absence of tempo-blocking and
medium overflow [Suns 75, West 78a]. In the case of petri nets specifications. each state in
the reachability graph corresponds to a marking of the net [Ayac 81, Diaz 82, Jurg 84].

The reachability graph for the send-and-wait protocol is depicted in Fig. 10. A}l send
events in the graph are followed by the corresponding receive event indicates absence of -
nospecified recepiions, and all the transitions in the FSM specificaticn of the communicating
processes in Fig. 3 have corresponding links in the Teachability graph indicates absence from
nonexecutable interactions. Also, there is no tempo-blccking because the only cycle in the
graph which invelves time-out (other than the repetition of the entire protocol behavior)
performs useful work each time 3 message is lost. In addition, since all nodes in the
reachability graph have outgoing links, then there is no deadlock in the global behavior of
the protocol. To see how a deadlock behavior would be detected bw this approach. consider
removiag the time-out transition from the Seader process in Fig. 3. The system would then
deadlock at state 5 in Fig. 10 if the medium loses a message. Note that in producing the
graph of Fig. 10. we followed the idealistic assumption that time-cuts only occur after a
message loss. However, if one assumes that the time-out period caa hzve any time duration,
then one wou!ld get another reachability graph that differs frem that in Fig. 10 in that
there would be a time-out transition from each of states 4, and 7 through 12 back to state
2. There would be then a possibility of tempo-blocking due to arcy of these time-out loops.
This illustrates how the behavior of protocols can be time-dependent acd the importance of
integrating the verification of timing requiremesnts with functional verificaticn, as wiil be
discussed 1o more detail 1n section 8.

Using this verification tool, design verification consists of demonstrating how the protocol’s
reachability graph can be mapped to its service specification. Such a mapping for the send-
and-wait protocol is defined as follows: in Fig. 4 states 1 and 2 are implemented by states
1 and 8 in Fig. 10 respectively, and events GET acd DELIVER in Fig. 3 correspond to
Mo s 30d mgp o in Fig. 10 respectively.

The principal advantage of state exploration is that it ccuid be readily automated.
Automated state exploration tools have been used successfully in discovering errcrs in several
protocols; see for example [West 78¢c, Boch 79]. An automated and interactive verification

Figure 10: A reachability graph for the send-and-wait protocol

tool called OGIVE [Prad 79] has been used successfully in proving certain general properties
of petri nets [Jurg 84].

A principal limitation of the state exploration is the explosion in the number of states as
the the complexity of the protocol apalyzed increases. Note that the number of states in the
reachability graph is equal to the product of the number of states in the FSM specifications
of each of the communicating processes. In fact, Brand aod Zafiropulo proved that the
problem of verifying the general properties of communicating FSM's, is generally undecidable
[Bran 83] except for a restricted class of communicating FSM's [Bran 83, Goud 84b). The
state explosion problem can be partially overcome by verifying each protocol process
separately and then the protocol as a whole [Goud 84b], limiti..g the number of messages in
the medium [West 82, Noun 84|, assuming direct coupling between corresponding send and
receive transitious such that there concurrent composition involves just one rendezvous
interaction instead of two possibilities due to the shuffling of the two transitions, usicg some
equivalence relation to minimize the reachability graph {Rubi 82]. In addition, instead of
verifying the compiete global behavior of a protocol, considerable simplification could be
achieved by verifying projections of that behavior according to the various distinet functions
of the protocol (for example separate connection establishment from data transfer functions
of data link protocols) [Lam 82]. Symbolic ezecution in which states are grouped into
classes that are specified by assertions [Bran 78, Haje 78, Bran 82] is another approach to
alleviate the state exploration problem. Various reduction techniques have been also used in
verifying petri net specifications [Diaz 82].

Although state exploration is usually adequate in verifying general properties of protocols, it
can not be used for the verification of specific protocol safety and liveness properties such as
properties S and L given above for the send-and-wait protocol. These are addressed by the
verification tool discussed next.

5.2 Assertion Procf

Assertion proof follows the Floyd/Hoare [Floy 67, Hoar 69] technique for program
verification. Safety and liveness properties of a protocol can be expressed as assertionms,
which are attached to different control points of a specification. To verify an assertion
means to demonstrate that it will always be true whenever the control point it is attached
to is reached, regardless of the execution path taken to reach that pont,

When a protceol specification is decomposed into a number of local process specifications,
focal invariants are first verified for each process direstly {rom their specifications. Global
service invariants can be then verified using the already proven local assertions. [nvariants
of a specification are special assertions whick describe properties that are true at every
control point in tke specification. To prove assertions of a loczl process, the introduction of
auxiliary variables, which are variables not required 1n implementing the protocol, is often
required. For example, arrays of data sent and received are required in a data transfer
protocol employing sequence numbers, in order to make precise statements about the order
in which messages are sent and received [Sten 78|.

Assertion proof is related to the class of assertional specification tools described in the
taxonomy of section 2.3. In partienlar, it is used in verifying assertions associated with
specification using procedural languages {Krog 78, Sten 78|, state machines [Bech 77a], hybrid
petri nets [Diaz 82|, and temporal logic [Hail 80, Schw 82, Sabn 823, Schw 83]. In the case
of procedursal languages, inference rules (i.e. rules that define the effect of each statement
type on the assertions preceding it) for each type of statement are used in proving local
assertions. This 2lso applies to the high-level statements in a state machine specification. In-
the case of petri net-based modeis, net invariants deduced directly from the net structure,
are used in proving local assertions. Within the temporal logic framework, temporal axioms,
which constitute 3 temporal logic specification, are used in specifying and verifying safety
and liveness assertions. Temporal logic has the unique feature of supporting the specification
and verification of liveness properties.

Formulating a2ssertions and proving them require a great deal of wuser ingenuity. This
diffienlty could be partially alleviated by using some proof strategy such as induction on the
structure of specifications [Suns 81] and by automation as is provided by several verification
syvstems: examples of verification systems that have been applied to protocols are described
in [Good 82, Suns 82a, Divi 82]. It should be noted though that automating assertion proof
is considerably more complex than automating state exploration. For a detailed comparison
verification systems used for protocols, the reader is referred to [Suns 82b, Suns 83].

8 Performance Analysis Tools

Performance analysis of protocols includes specsfication and verification of timing
requirements, and evaluation of performance megsures. The behavior of protocols deperds
on timing requirements, and so these requirements saould be specified and verified in order
to ascertain correct behavior. The efficiency of protocol behavier is decided through the
evaluation of its key performance measures. The combination of these two performance
analysis problems is natural since both problems are -sncerned with the timizg behavior of
protocols. This allows the protocol designer to st - the effect of various performance
parameters on their timing behavior. We first ex... 1e some issues common to the two
performance analysis problems and then survey apprcz:aes to each of them.

25

In order to analyze protocol performance. it is necessary to establish performance models of
both the protoccl and the communication medium. operating environment, are required.
The latter is provided in the form of data specifying the medium’s characteristics. For
example, in the case of data link protocols (at layer 2 of Fig. 1). the following medium
characteristics should be specified: bandwidth, bit error probability, topology, medium
configuration (i.e., half or full duplex), and the maximum bound on the number of messages
in trzasit at any one time.

A performance model of a protocol could be either formulated directly based on its
operation, or extracted from a formal specification of the protocol. We will refer to the
former approach as direct and to the latter as specsfication-based. In both approaches, the
model should specify the global view of protocol operation. It should also inciude the
specifications of the following features. First, since a protocol behavior is often non-
deterministic, the probabilities of all possible protccol events at the various instants of its
behavior should be specified. Second, a representation of the times involved in each of the
events i1s also required. Typically, they are represented by their bounds or distributions.
Bounds on an event time specily the minimum and maximum time before its occurrence.
This time representation has -been used in [Merl 78, Sabn 82b, Krit 84, Shan 84)].
Distributions of event times provide more complete description of their random nature. This
time representation is often used especially in evaluating protocol performance measures; see
for example [Suns 75. Rudi 84, Noun 84]. Nounou and Yemini combine the specification of
eveat times and probability in a marked point process model of protocol performance [Noun
84]. Third, some statistics for messags lengths should be provided. These are typically
considered as constants or represented by their distributions.

8.1 Specification and Verification of Protocol Timing Requirements

Protocol timing requirements are predicates stating the correct timing relationships between
protccol events. Consider, for example, a retransmission on time-out protocol such as the
send-and-wait protocol. The correct functioning of the protocol depends, among other things,
on the requirement that time-out would occur after a message loss only with a very small
probability. Anpother example of a protocol timing requirement is to restrict the lifetime of
messages occupying the protocol system [Sloa 83]. A third example of a timing requirement
that underlies the behavior of many protocols is that if they do not achieve progress within
a specified amount of time, then they either reset or abort. Such a requirement is crucial to
prevent protocols from being stailed due to exceptional situations such as when one of the
protocol process has crashed, or when the traasmissicn iinks are heavily lcaded.

Consequently, it becomes apparent that the classical correctness paradigm of safety and
liveness is not enough. Verification of safety properties might be complicated by the
consideration of unrealistic protocol behaviors that do not satisfy the given protocol timing
requirements. Also, proving that the protocol's goals will be eventually achieved is not
enough if these goals are achieved after a very long time. In fact, a timing error was found
ic the alternating bit protocol [Bart 69|, which has been proven safe and live [Yemi 82]. It
was shown that the protocol would never achieve its eventual goal if the time-out rate is
oot properly set. Thus the ultimate geal of verification tools should be to unify verification
of prctocol timing requirements with the verification of their functiona! requirements.

Early work on the specification of timing requirements was done by Merlin [Merl 76| using
time PN's (see section 2.2.4). A bounds representation of time was used to describe
minimum and maximum firicg times for a time-out transition in the alternating bit protocol.

28

Similar time representation has been used by Sabunani [Sabn 82b] but for FSM specifications.
Note that in both of these cases, the state exploration of the concurrent behavior of the
local processes resulting in a description of the praotocol global Lehavior, should be modifizd.
Consider a state in the global state description where n possible transitions are possible. Let
i min and ¢, denote the migimum and maximum time for tramsition s, respectively. The
cor:espondmg transition in the global description has the bounds of (’&!m[t P (1

where Min is an n-ary operation to compute the minimum. A transition in one of Lhe”[' cal
processes with ¢t . greater than the upper bound on the corresponding traasition in the
global behavior, "would be then time-wise unrealizable. The limitation of these two efforts
stems from the state explosion problem associated with the specification tools used.

Nounou and Yemini use a time constraint relation ‘<€’ to define correct orderings of
protocol events involved in its glotal behavior. Consider the example of the send-and-wait
protocol without the assumption that time-out occuPfs only after message loss. Let the time-
out event be denoted by 7., message loss by 7., and the global behavior of the protocol by
G. The time constraint ld<G r states that whenever in G there is a choice between 7, and
;. then the probability of occurring is zero. This would ensure that there are no pre-
mature time-outs. (The rea.der is referred to [Noun 84| for the complete time constraint.) G
can be divided into a set of behaviors satisfying the given time constraint and another set
that does not. A behavior satisfies a time constraint whenever there is a choice between the
involved events, the event on the right hand side of the time constraint occurs. Let Gre

denote such a set of behaviors. The protocol’s timing requirement could be then given as

Probability(Go] > 1-¢

where ¢ is a small probability error. The timing requirement states that the subset of
protocol behaviors [Gi.], in which time-outs occur only after messages are lost, happens
with a very high probability. Using rules for evaluating bebavior probability, the probability
of G, can be evaluated as a function of the time-out rate. As a result, an upper bound of
the time-out rate for a given ¢ is computed. A distribution representation of In this
approach event times were represented by their probability distribution.

Shackar and Lam [Shan 84] assume 3 constant time represeatation and use time variables to
refer to the occurrence times of events. By including time variables iz the enabling condition
of an event ¢, ume coastraints of the form ‘event ¢ can only occur after a given time
tnterval”. Time constraints of the form “event e will occur within 3 certain elapsed time
interval™ are stated as safety properties and verified accordingly.

8.2 Evaluation of Performance Measures

Key protocol per’ormance measures include erecution time, delay, and throughput. The
execution time is the time required by the protocol to reach ome of its final states, starting
from the initial state. It would be a valuable performance measure for terminating protocols
such as a connection establishment protocol where it represents the time required for the
distributed processes involved in the protoccl to get connected. Throughput is the
transmission rate of useful data betweea processors, excluding any control information or
retransmission required by the protocol. It indicates how efficiently the transmission channel
is utilized. Delay is the time from starting a message transmission at the sender to the
time of successful message arrival at the receiver. [t is useful in indicating the degree of
service that the protocol provides.

(=
-3

Two tools are typically used in evaluating protocol performance measures: analytic tools,
and stmulation tools.

8.2.1 Analytic Tools

Various instances of resource zontention and the related queueing delays are often witnessed
in the operation of communication protocols. For example, in the send-and-wait protocol a
new message arriving at the sender has to be queued if the sender is busy waiting for the
successful acknowledgment of a previously sent message. . Therefore, queueing theory provides
a convenient mathematical framework for formulzting and solving protocol performance
models [Klet 75, Koba 78, Reis 82]. In such a queueing model, the server denotes the
protocoi system under consideration which i3 typically modeled as 2 stochastic process.

Let us demonstrate how the delay of the send-and-wait protocol cap be computed using
basic prcbability laws and the protocol's FEM specification. Assume that the time involved
in each transition of the reachability graph in Fig. 10 is an exponentially distributed random
variable. Also, assume that a negligible delay is involved at both the sender and receiver
ends of the medium. Based on these assumptions and considering a single cycle operation of
the protocol. a modified reachability graph is shown in Fig. 11. The problem can be stated
as follows: given a medium bandwidth of 9800 bits/sec (for terrestrial links), mean message
and acknowledgment lengths [of 1024 bits (therefore the mean transmission time t is
0.017sec/message). bit error probability p, of 10%, mean propagation delay ty of 0.013
sec/message, and mean time-out t; of 1 sec/message, evaluate the mean value of delay d
between state 2 to 8 in Fig. 11.

Recall from section 1 our assumption that time-out only occurs after the medium has lost a
message, this indicates that the probability of time-out is the same as the probability of a
lost message. Therefore, the probability of the time-out loop denoted by p is given by

p=1-(1-p) (8.1)
4
which Is approximately 1 - e I ip, << 1

The mean delay is given by
E[d] = p/(1-p) (t; +) + 3t, +2, (6.2)

= 0.357 sec/message

and the second moment of d is
E[d?] = p/(1-p) (2t;2 + 2¢%)
+ 20%/(1-p)? (tp +) + 67 +4tF7 6.3
= 0.09
Derivations of equations 8.2 and 8.3 are given in appendix l. Assume that messages arrive at

state 2 in Fig. 11 with rate X, then the protocol's mean transfer time T which is the sum
of delay and a waiting time is given by the Pollaczek-Khinchine formula [Klei 73]

T = E[d] + (x E[d®])/(2[1-x E[d]]) (8.4)
[n Fig. 12, we plot T versus)\ for various message lengths. As expected, T increases as X

increases aad the system becomes saturated when X\ approaches 1/E[d]. Also, as [increases T
increases due to the increases in transmission times and p.

Figure 11: A modified reachability graph for the send-and-wait protocol

Examples of specification-based performance evaluation tools include works by Molloy [Moll
81] and Nounou and Yemini [Noun 84]. Molloy introduced stochastic petri nets (SPN) which
are petri nets extended by assigning a random firing delay to each trapsition in the zet.
The reachability set of the net is first generated and analyzed for logical correctness, then a
Markov process, that is isomorphic to the set, is generated. The steady-state probabilities of
the Markov process can be calculated znd used in modeling and computing throughput and
delay. This approach s limited only to exponeatially (in the case of continuous
representation of tranpsiticn firing times) or geometrically (ip the discrete case) distributed
firlng delays. Nounou and Yemini associate probability and time attributes with protocol
behaviors which are specified algebraically. Using rules for evaluating the attributes from the
distributions of inter-event times, behavior attributes can be determined. These attributes
can be used io defining and computing such measures as throughput and delay. Uaiike the
previous approach, there is no inherent restriction on the distribution of event times. Other
specification-based approaches to protocol performance evaluation can be found in [Bolo
84, Krit 84, Razo 84, Rudi 84|

The specification-based approach has the advantage of allowing performance evaluation tools
to be automated. This would also facilitate its tntegration with other development tools in
a protocol development environmeat. However, the approach largely depends on devising a
mapping between protccol specification and the performance model. This mapping might be
in some cases Loo restrictive as is the case, for example, with the markovian property of the
resulting performance model of SPN’s.

Examples of works based on the direct approach can be found in [Geiz 78, Tows 79, Yu
79, Bux 80}. In this approach, all possible behaviors of the protocol under study has to be
directly determined from a human understanding of its operation.

29

T

Transier ‘Frme

Hean

J J.3 1 1.3 2 2.5 3
ressage rate A

message/sec.
Figure 12: Transfer time vs. arrival rate of the send-and-wait protocol

~—

6.2.2 Simulation

Analyvtic performance models of real-life protocols are usually intractable. In this case,
simulation 1s used in evaluating protocol performance. Even when an approximate model of
the system is sought, simulation could be a valuablie tool in validating the modeling

approximations aand assumptions.

In the case of specification-based simulations, the protocol specification used should be
executable. Referring to our taxonomy of Fig. 9. a method that is easily executed is one
that could also be easily transformed into ap implementation. Therefore, the same discussion
in section 4 on the ease of implementing a protocol specification also applies here. An
example on specification-based simulation of protocol can be fourd in [Regh 82]. Direct
protocol simulations, on the other hand, are based on a protocol implementation. A direct
simulation of the HDLC procedures was carried out by Bux, et al. [Bux 82].

The shortcomings of simulation are clearly its high cost in terms of time and effort, and the
little understanding of the system gained. The second problem could be alleviated through a

large oumber of simulation runs.

30

7 Testing Tools

Testing is a validation tool that can be used to examine whether a protocol implementation
satisfies the functional requirements set by its standard, measure its performance and assess
its robustness in recovering from exceptional coaditions. Exhaustive testizg basically aims at
exercising 3ll possible bekaviors of the protocal under consideration. This, bowever, is not
reahistic for most real-life protocols which typically extibit a large set of possible behaviors.
Therefore, part of the protocol testing problem is to find a way of identifying the most
probable protocol behaviors and thus produce testing results which are within a certzain
range of accuracy. Consequently, testing as a validation tool is weaker than formal
verification because it does not guarantes correctness acd is less rigorous than analytic
methods of performance anzlysis because it can only provide measurements for specific
performance parameters. Nevertheless, testing s a valuable validation tool required to
confirm that the implementation under test ([UT) satisfies the standard implementation of
the protocol and thus ensure that different implementations of the protocol will be able to
internetwork.

{n the context of the [SO hierarchically layered architecture, a prciocol module at 'ayer N
has two.interfaces: the N interface through which service requests to layer N are provided,
and the N-1 interface through which iayer N requests services from layer N-1. In order to
test an implementation of such a protocol, one must test its response to erroneous as well as
correct requests across each of these two interfaces. An incorrect request at the N interface
indicates 20 ipcorrect service request, but an incorrect response at the N-1 interface could
resuit {rom either an incorrect response from the remote peer module or an error in the
rransmussica of a correct response through the communication medium. All these
possibilities must be covered in testing an IUT. -
Testing of protocols can be either direct or remote. ln direct testing the IUT is tested in a
simulated eaviroomeat where correct and faulty respoases from the lower protocol layer are
simulated, 20d the results compared with those of a standard refersace implementation. Ian
remote testing, 1n [UT is tested 1o its normal operating environmen:. where it is 3t one end
of the oetwork and some reference implementation of the protocol is at the other end. The
reference implementation s driven by the protocol tester and the operation of the
implemeatation under test is observed remotely. Note that testing in the second appreach is
probably more compliete and more detailed than the first approach. This is at tie cost cof
increased complexity however.

Several groups around the world are currently iavoived in proposals for testing cesters that
would te responsible for carrying out the remote tests and accordingly provide certificatzs
describing the performance of a client's (an implementor of a prctocol implementaticn) IUT
on them. The groups include the Naticaal Physies Laboratory (NPL} group i Ecgiand
[Bart 80. Rayn 82|, the Ageacy de I'laformatique (ADI) 1o France [Aasa 81, Ansa 82], the
Gesellschaft fuer Mathematik und Datenverarbeiturg (GMD) o Germazy [Falt 83). and the
National Bureau of Standards (NBS) in the USA [Nigh 82]. Other specialized protocol
testing architectures for certain network architectures have been proposed. For example, the
X 25 testing facilities for the Datapac network [Weir 78], an architezture for testing IBM's
systems cetwork architecture {SNA) protocols {Cork 83], and a BX.25 (an X.25 compatible
protocol developed at Bell Labs) certification facility {Meli 82]. We wili restrict our discussion
tc general testing architectures.

We examine next the two main issues pertinent to testing: logical architectures feor testing
and techmiques for selecting test sequecrces.

31

7.1 Logical Architectures for Testing

Within the framework of the ISO model, a common logical testing architecture is given in
Fig. 13. In this architecture the peer protocol implementation (PPI) of the IUT is a
combination of a reference implementation and a protocol-data-units generator (see Fig. 13).
The PPI at layer N together with reference implementations for layers 4,5,....N-1 are located
at the test center, while the IUT is at the implementor's site. Both ends are connmected to
an X.25 network which provides the first three network layers! . The protocol-data-units
generator is responsible for genmerating correct N level service requests, requests for the
generation of N-th level protocol errors, indications of undetected N-th level protocol errors,
acd acts as an encoder and decoder of both valid and invalid (N-1) service. The PPI and
the protocol-data-units generator are driven by a test driver (TD) at the testing center.
The test respender (TR) is the software module which acts as the user of the N service, and
whose operation is totally predictable so that the results of the tests depend only on the
behavior of the IUT. The TD and TR communicate through a non-standard protocol.

Based on this architecture, the various groups mentioned above differ in the following
respects. At GMD, the TR function is performed manually thus making testing inexpensive
for the implementor but slow and error-prone. At NBS, the TR is the same as the TD
except that all send (receive) requests are changed to receive (send) requests. In this case
no special TD-TR protocol is required. At both ADI and NPL, the full architecture is
supported with the difference that the TR at ADI~an handle multiple connections through
the IUT which is necessary in testing protocols with multiplexing functions, whereas at NPL
the TR handles only one connection at a time which has the advantage of a simpler TR.
Multiple connections at NPL are handled by parallel instantiations of the same TR design.

In order to assess the IUT, it is necessary to test its response to erromeous and correct
requests across both the N and N-1 interfaces. However, if the N-1 service of the protocol
being tested is not end-to-end (as in the case of the packet-level of the X.25), then it is not
possible to control it remotely. Therefore, a portable box is introduced between the
communication medium and the implementor’s system (see Fig. 14) in the testing
architectures established at NPL and ADL It is used to detect any errors introduced by the
sub-network and introduce errors in it upon request from the testing center.

Clearly. making testing independent of the protocol being tested as much as possible is
highly desirable so that only minimum variations need to be made when a protocol at
another network layer is tested. This can be achieved by minimizing the protocol dependent
parts of the architecture, and automating the process of test sequences selection. The only
part of the testing architecture that needs be protocol dependent is the protocol-data-units
generator, especially the part for testing normal and faulty N service. This dependency
could be minimized by automating that part of the generator such that it is derived from
some specificaticn of the protocol.

7.2 Test Sequences Selection

A test sequence is an input request to the [UT generated by the TD or TR.. Since the
source of the [UT is typically not provided by the implementor, the .selecnon of test
sequences at the testing center can only be derived from the service and protocol

1Only end-to-end protocols above X.25 are tested in such architectures

AT TBE TESTING CENTER AT THE IMPLEMENTOR'S SITE
TD-TR PROTOCOL
1 T ittt - ®
N SERYICE
N PROTOCOL
PPI |mmmmme—m—csmsemm—e—eoooo- LT
SLIGETLY ENBANCED N SERVICE
N-1 SERVICE
N-1 PROTOCOL :
N-1 PROTOCOL |-==-=-=-===c-=o===memoa- N-1 PROTOCOL
IMPLEMENTATION IMPLEMENTATION
N-2 SERVICE

LAYER N-2 COMMUNICATION CHANNEL

]

Figure 13: Logical architecture for testing

AT THE TESTING AT THE
CENTER [MPLEMENTOR 'S
SITE
TESTING COMMUNICATIONS PORTABLE IMPLEMENTORT;W
CENTER j----- MEDILM T BOX ===t SYSTEM

Figure 14: Physical architecture including the portable unit

specification of the protocol under consideration. Test sequences cculd be specified simply as
sequences of commands, as state tables describing the various states of testing and tke
events and associated actions for each state, or using a test specification language that might
be then translated into state tables [Rayn 82|

Testing 15 said to be complete if all the possible requests that could be applied to the IUT
are covered by the test sequences. Unfortunately, theoretical results [Piat 80] show that
without knowledge of the protocol internal state the size (measured as the zumber of
distinct sequential inputs applied to the IUT) of a complete test sequence has an upper
bound of O(n?%) where n is the size of the state set of the protocol reference model.
Otherwise, with an access to the protocol internal state this figure comes down to O(n¥%).

33

These bounds could be very large for complex protocols such as those involving sequence
numbers.

However, there are other methods for near complete tests sequence s:lection [Sari 82, Ural
83). As an example, we will use the tranassition tours method described by Sarikaya and
Bochmann (Sari 82] to calculate a test sequence for the send-and-wait protocol. This
method is used to derive test sequences from a protocol specified formally as a state
machine but using only its FSM part. A transition tcur sequence is an input sequence
starting at the initial state and covering all the transitions at least once. The length of the
sequence for our protocol example (see Fig. 11) is 8 and the sequence is given by

Mes My T Mgy Tyr Mrp S Ss

In general, the upper bound on the sequence length is q + (q-1Xn-1), where q is the number
of possible transitions. This is the worst case where a traversal of all (n-1) states is
required to include each transition in the test sequence. This method detects all operation
errors (errors in the output function of the state machine), but it does not detect all
transfer errors (errors of the next state function).

8 Conclusions

In surveying the various protocol development toals, their dependency on the specification
tool used has been demonstrated. Based on cur taxonomy of specification tools described in
section 2.3, we can conclude that behavioral specifications are better suited for synthesis,
implementation, performance analysis and testing tools. Assertional specifications, on the
other hand, offer better support for verification tools. Belonging to the latter class are
temporal logie specifications which can adequately deseribe both static and temporal
requirements of protocol behavior. We expect future proposais of specifications tools to
combine the temporal logic framework with other specification models. [n addition, since
specification-based performance analysis tools are starting to attract much interest,
specification tools should offer better support for the specification of protocol timing
requirements and performance measures.

Most of the past research on protocol validation tools has ignored the specification and
verification of such protocol timing requiremerts. Ve believe that such requirements are
essential for the correct functioning of most protocols. Integrating the analysis of timing
requirements in functional validation tools, i.e., verification 2nd testing tools, would exclude
unrealistic protocol behavior and thus simplify their functional validation.

In addition to the surveyed works on individual protocol development tools, there has been
recently a growing interest in integrating them into development environments. An ideal
development environment should provide a consistent user interface to the various tools
supported. Also, recognizing the visual attraction, clarity and wide acceptance of graphical
descriptions of protocols, we expect the user interfaces to employ state-of-the-art technology
in supporting such descriptions. Technological advances of graphical display devices with
colors, multiple window displays, high resolution, and numerous pointing aids (e.g., tablet,
mouse and light pen) can be used to aid the protocol developer in constructing and
validating complex real-life protocols. The integration of specification-based development
tools in environments would facilitate both the functional and performance validation of

34

protocols starting from early development phases. Thus the costs incurred in iterations
through the development phases after post-implementation detection of errors, would be
reduced. Furthermore, as more protocol standards are developed, more experience will be
required in the application of curreant and future tools and environments to these standards.

[Ande 84

[Ansa 81]

[Ansa 82]

[Ayac 81]

[Azem 78]

[Bart 69)

[Bart 80|

{Baue 82|

[Berg 82]

(Bert 82

33

D.Anderson and L.Landweber.

Protocol Specification By Real-Time Attribute Grammars.

In Proceedings of the Fourth IFIP International Workshop on Protocol
Specs fieation, Testing and Veri fication. North-Holland, June, 1984.

J.Ansart.

Test and Certification of Standardised Protocols.

In Procesdings of the First International INWG/NPL Workshop : Protocol
Testing - Towards Proof?, pages 119-126. 1981.

J.Ansart.

GENEPI/A -A Protocol Independent System for Testing Protocol
Implementation.

In Proceedings of the Second IFIP International Workshop on Protocol
Speci fication, Testing and Verification. 1982, -

J.Ayache, P.Azema, J.Courtiat, M.Diaz and G.Juanole.

On the Applicability of Petri Net-Based Models in Protocol Design aznd
Verification. A

In Proceedings of the First International INWG/NPL Workshop : Protocol
Testing - Towards Proof? pages 349-370. 1981.

P.Azema, J.Ayache, and B.Berthomieu.

Design and Verification of Communication Procedures: A Bottom-Up
Approach.

In Proceedings of the Third International Conference on Software
Engineering, pages 188-174. 1978,

K.Bartlett, R.Scantlebury, and P.Wilkinson.
A Note on Reliable Full-Duplex Transmission over Half-Duplex Lines.
CACM 12(5):260-261. May, 1969.

K.Bartlett and D.Rayner.
The Certification of Data Communication Protocols.
In NBS Trends and Applications Con ference, pages 12-17. May 29, 1980.

\WW.Bauerfeld.

A Hybrid Model for Protocols and Services: Verification and Simulation by a
Modified Depth-First Search Algorithm.

In Proceedings of the Second IFIP [nternational Workshep on Prctocol
Speci fication, Testiny and Verification, pages 431-464. May, 1982.

H.Berg., W.Boebert, W.Franta, and T.Moher.
Formal Methods of Program Verification and Spect fication.
Prentice-Hall, 1982,

G.Berthelot and R.Terrat.
Petri Nets Theory for the Correctness of Pratocols.
IEEE Transaction on Communications COM-12:2476-2505, Decmber, 1982,

(Bill 82]

(Blum

[Boch

(Boch

(Boch

(Boch

(Boch

[Boch

(Boch

[Boch

[Boch

[Boch

82|
T7a]
77b]

78]

79]

80z,

80b)]

83a)

83b)]

84]

38

J Billington.

Specification of the Transport Service Using Numerical Petri Nets.

In Proceedings of the Second [FIP International Workshop on Protocol
Speci fication, Testing and Verification, pages 77-100. May, 1982.

T.Blumer and R.Tenney. .
A Formal Specification Technique and Implementation method for Protecols.

Computer Networks 6:201-217, 1982.

G.Bochmann and J.Gecsel.
A Unified Method for the Specification and Verification of Protocols.
In Proceedings of IFIP Congress, pages 229-234. August 812, 1977,

G.Bochmann and R.Chung.
A Formalized Specification of HDLC Classes of Procedures.
In Proceedings of the NTC, pages 03A:2 _1-03A:2 _11. December, 1977.

G.Bochmann.
Finite State Description of Communication Protocols.
Computer Networks 2:381-372, October, 1978. -

G.Bochmann and T.Joachim.

Development and Structure of an X.25 Implementation.

IEEE Transactions on Software Engineering SE-3(5):423-439, September,
1879.

G.Bochmann and C.Sunshine.
Formal Methods in Communication Protocol Design.
[EEE Transactions on Communications COM-28(4):624-831, April, 1980.

G .Bochmann.
A General Transition Model for Protocols and Commuszication Services.
IEEE Transactions on Communications COM-28(4):643-850, April, 1980.

G.Bochmann et al,
Some Experience with the Use of Formal Specifications.
[EEFE Transaction on Communications COM-12:2476-2505, Decmber, 1982,

G.Bochman.
Distributed Systems Design.
Springer-Verlag, 1983.

G.Bochmann and P Merlin.

On the Construction of Communication Protocols.

ACM Transactions on Programming Languages and Systems 3-1:1-25,
January, 1983.

G.Bochmann.
Formal Description Techniques for OSI: An Example.
In Procesdings of INFOCOM. IEEBE, 1984,

{Boeh 76]

[Bolo 84

(Bran 78]

{Bran 80]

(Bran 82|

[Bran 83

[Brin 84|

[Bux 80]

(Bux 82]

[Cork 83]

[Dant 80)

37

B.Boehm.
Software Engineering.
IEEE Transaction on Computer C-25(12):1228:1241, 1978.

T.Bolognesi and H.Rudin.

On the Analysis of Time-Dependent Protocls by Network Flow Algorithms.

In Proceedings of the Fourth IFIP International Workshop on Protocol
Spect fication, Testing and Versfication. North-Holland, 1984.

D.Brand and W.Joyner Jr.
Verification of Protocols Using Symbolic Execution.
Computer Networks 2:351-360, October, 1978.

D.Brand and P.Zafliropulo.
Synthesis of Protocols for an Unlimited Number of Processes.
In NBS Trends and Applications Symposium, pages 29-40. May, 1980.

D.Brand and W.Joyner.
Verification of HDLC.
IEEE Transactions on Communications COM-30(5):1136-1142, May, 1982,

D.Brand and P.Zafiropulo.
On Communicating Finite-State Machines.
Journal of the ACM 30:433-445, April, 1983.

E.Brinksma and G.Karjoth.

A Specification of the OSI Traasport Service in LOTOS.

In Proceedings of the Fourth IFIP International Workshop on Protocot
Speci fication, Testing and Versification. North-Holland, 1984.

W.Bux,K.Kummerle, and H.Truong.

Bzalanced HDLC Procedures: A Performance Analysis.

IEEE Transactions on Communications COM-28(11):1889-1898, November,
1980.

\W . Bux and K.Kummerle.

Data Link-Control Performance: Results Comparing HDLC Operational
Modes.

Computer Networks 8:37-31, 1982.

R.Cork.

The Testing of Protocols in SNA Products - an Overview.

In Proceedings of the Third [FIP International Workshop on Protocol
Specification, Testing and Versfication. North-Holland, 1983.

A.Danthine.
Protocol Representation with Finite State Models.
IEEE Transactions on Communications COM-28(4):632-843, April, 1980.

[Diaz 82]

[Dick 80a]

(Dick 80b)

[Dijk 75

_[Divi 82]

{[Ecma 80]

[Falt 83

[Floy 57]

[Gele 78]

[Genr 79]

{Good 78|

[Good 82]

38

M.Diaz.

Modeling and Analysis of Communication and Coopeartion Protocols Using
Petri Net Based Models.

In Proceedings of the Second IFIP International Workshop on Protocol
Specs fication, Testing and Verification, pages 483-310. May, 1682

G.Dickson.

State Transition Diagrame for One Logical Channel of X.25.

In Switching and Signalling Branch Paper 29 Australian
Telecommunications Commissien. July, 1980.

G.Dickson.

Formal Specification Technique for Data Commuanication Protocol X.23 Using
Processing State Transition Diagrams.

Australian Telecommunication Research 14(2), 1980.

E.Dijkstra.
Guarded Commands, Nondeterminacy and Formal Derivation of Programs
Communications of the ACM 453457, August, 1973.

B.Divito.
Vert fication of Communications Protocols and Abstract Process Models.
PhD thesis, Univ. of Texas at Austin, August, 1982.

ECMA/TC23/80/18.
9rd. Draft of Transport protocol.
Technical Report, European Computer Manufacturer Association, 1980.

U Faltin et al.
TESDI Maaoual: Testing and Diagnosis Aid for Higher Level Protocols.
In IFV-IK-RZ, GMD, Darmastadt, Germany. 1983,

R.Floyd.
Assigning Meanings to Programs.
Mathematical Aapects of Computer Science 19:19-32, 1987.

E.Gelenbe.
Performance Evaluation of the HDLC Protocol.
Computer Networks 2:409-415. 1978.

H.Gearich and K.Lautenbach.

Semantics of Concurrent Computation, Evian, G. Kahn (ed) Lecture
Notes in Computer Sciences. : The Analysis of Distributed Systems
by Means of Predicate /Transition Nets.

Springer-Verlag, 1979, pages 123-148.

D Good and R.Cohen.
Verifiable Communications Processing in Gypsy.
In Compeon, pages 28335. 1978,

D.Good.
The Proof of a Distributed System in Gypay.
Technical Report 30, The Univ. of Texas at Austin, September, 1982,

[Goud 78]

[Goud 84a]

[Goud 84b]

(Grat 68|

[Gutt 78]

[Hail 80]

[Hail 81]

[Haje 78]

[Hara 77]

[Hoar 69)

[Holz 82]

(Iso 83a]

M.Gouda and E.Manrniag.
Protocol Machine: A Concise Formal Model and its Automatic

Implementation.
In Proceedings of the Third ICCC, pages 346-350. 1976.

M.Gouda and Y. Yu.
Synthesis of Communicating Finite-State Machines with guaranteed Progress.
IEEE Transactions on Comunications COM-32(7):779-788, July, 1984.

M.Gouda and Y. Yu.
Protocol Validation by Maximal State Exploration.
[EEE Transactions on Comunications COM-32:94-97, January, 1984.

G.Gratzer.
U'niversal Algebra.

Springer-Verlag, 1968.

J.Guttag, E.Horowitz, and D.Musser.
Abstract Data Types and Software Validation.
CACM 21(12):1048-10684, December, 1978.

B.Hailpera and S.Owicki.
Verifying Network Protocols Using Temporal Logic.
In NBS Trends and Applications Symposium, pages 18-28. May, 1980.

B.Hailpern.

Specifying and Verifying Protocols Represented as Abstract Programs.

IBM Journal of Research and Development RC 8674 (37908), February,
1981.

J.Hajek.

Automatically Verified Data Transfer Protocol.

In Proceedings of the Fourth International Computer Communications
Con ference, pages 749-738. September, 1978,

J.Harangozo.

An Approach to Describing a Link Level Protocol with 3 Formal Language.

In Proceedings of the Fifth Data Communications Symposium, pages
4.37-4.49. September, 1977.

C.Hoare. —
An Axiomatic Basis for Computer Programming.
Communications of the ACM 12(10):576-583, Octeber, 1969.

G.Holzmann.
A Theory For Protocol Validation.
[EEE Tranactions on Computers , August, 1982,

ISO TC97/SC18 N1347 .

A FDT based on an ezxtended state transstion model.

Technical Report, 1SO, July, 1983.

(Iso 83b]

[Jurg 84)

(Kell 76]

(Kl 73]

(Koba 78]

[Krit 84]

[Krog 78]

(Kuro 82]

[Lam &2]

fLamp 77

{Lamp 80]

10

ISO TC97/SC18 NI34T .
Dra ft Tutorial Document on Temporal Ordering Spec: fication Language.
Technical Report, ISO. August, 1983.

W.Jurgensen and S. Yuorg.

Formal Specification and Validation of ISO Transport Protocol Compenents,
Using Petri Nets.

In Proceedings of SIGCOMM Symposium. ACM, 1684,

R.Keller.
Formal Verification of Parallel Programs.
Communications of the ACM 19(7). July, 1978.

L.Kleinrock.
Queueing Systems.
Wiley Interscience, 1975,

H.Kobayashi.

Modeling and analysis: An Introduction to System Perfromarce
Evalugtion Methodology.

Addison-Wesley Pub. Co, 1978.

P Kritzinger.

Analyzing the Time Efficiency of 3 Communication Protocol.

In Proceedings of the Fourth [FIP International Workshop on Protccol
Speci fication, Testing end Verification. North-Holland, 1684,

S Krogdahl.
Verification of a Class ¢f Link-Level Protocols.
BIT 18:438-448, 1978.

J Kurose.

The Specification and Verification of a Connection Establishmezt Preotacol
Using Termnporal Logic.

In Proceedings of the Second [FIP [nternational Workshop on Protocol
Specification, Testing and Verijicaiion, pages 43-52. May, 1982

S Lam and A.Shankar.

An Illustration of Protocol Projections.

ln Proceedings of the Seccond [FIP [nternational Wourkshop on Protocel
Specti fication, Testing and Versfication 1982

L.Lamport.
Proving The Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering SE-3:125-143, 1677,

L.Lamport.
‘Sometime’ is Sometimes 'Not Never'.
ln Proceedings of the ACM POPL Conference, pages 174185 1680. —

4l

(Lamp 83) L.Lamport.
Specifying Concurrent Program Modules.
ACM Transactions on Programming Languages and Systems 5(2):190-222,
April, 1983.

[Lehm 80] M.Lehman.
Programs, Life Cycles, and Laws of Software Evolution.
In Proceedings of the IEEE, pages 1060-1075. September, 1980.

[Lond 80] R.London and L.Robinson.
So ftware Development Tools, W.Riddle and R.Fairley ed. : The Role of
Vert fication Tools and Techniques.
Springer-Verlag, 1980. pages 206-212.

(Mann 81] Z.Manna and A.Poeul.
. Verification of Concurrent Programs: The Temporal Framework.
Technical Report STAN-CS-81-8368, Stanford Unversity. June, 1981.

[Meli 82 J Melici.
The BX.25 Certification Facility.
Computer Networks 8:319-329, 1982,

[Merl 76] P.Merlin and D.Farber. 7
Recoverability of Communication Protocols - Implications of a Theoretical
Study.
IEEE Transactions on Communications COM-24:1036-1043, September,
1978.

[Mila 80] R. Milner.
A Caleulus of Communicating Systemas.
Springer Verlag, 1980.

[Moll 81] M.Molloy.
On the Integration of Delay and Throughput Measures in Distributed
Processing Models.
PhD thesis, Univ. of California Los Angeles, 1981.

[Muss 80| D.Musser.
Abstaret data Type Specifications in the AFFIRM System.
IEEE Transactions on Software Engineering SE-8(1), January, 1980.

[Nigh 82 J.Nightingale.
Protocol Testing Using A Reference Implementation.
In Proceedings of the Second [FIP International Workshop on Protocol
Specs fication, Testing and Verification. 1982,

[Noun 84] N.Nounou and Y.Yemini.
Algebraic Specification-Based Performance Analysis of Commuaication
Protocols.
In Proceedings of the Fourth IFIP International Workshop on Protocol
Specs fication, Testing and Verification. North-Holland, June, 1984.

[Nutt 72]

[Oste 80]

[Pete 77]

[Piat 80]

[Poue 77]

[Post 78]

(Prad 79|

[Rayn 82)

[Razo 84]

{R=gh 82

[Reis 82)

G.Nutt. ‘
Evaluation Nets for Compuetr System Perfromance analysis.
AFIPS Conference Proceedings 41,Part 1:279-286, 1972.

L.Osterweil. .
So ftware Development Toois, W.Riddle and R.Fairley ed. : A Software

Li fecyele Methodology and Tool Support.
Springer-Verlag, 1980, pages 82-118.

J.Peterson.
Petri Nets.
ACM Computing Surveys 9(3):224-252, September, 1977.

T.Piatkowski.
Remarks on ADCCP Validation and Testing Techniques.
NBS Trends and Applicetions Sympossum | May 29, 19380.

A.Pnueli.

The Temporal Logic of Programs.

In The Eighteen Annual Symposium on Foundations of Computer Science.
pages 46-37. October, 1977.

J.Postel and D.Farber.

Graphic Modeling of Computer Commuazications Protocols.

In Proceedings of the Fifth Tezcs Conjference on Computing Systemas,
pages 66-67. 1978.

B.Chezaviel-Pradin.

{'n Qutsl Grphiquw Interactif pour la Validation des Systermes s Evolution
Parallele Decrsts par Reseauz de Petrs.

PhD thesis, Universite Paul Sabatier, December, 1979.

D Rayvner ed.
A System for Testing Protocol Implementations.
Technical Report 9/82, NPL, August. 1982.

R.Razouk. »

The Derivation of Perfromance Expressions for Commuaication Protocols
from Timed Petri Net Models.

In Proceedings of the SIGCOMM Symposium, pazes 210-217. ACM, Juae,
1984.

H.Reghbati.

Performance Analysis of Message-Based Systems.

In Proceedings of the Second IFIP I[nternational Workshop on Protocol
Speci fication, Testing and Verification, pages 321-324. May, 1982,

M Reiser.
Perfromance Evaluation of Data Communication Systems.
ln Proceedings of the [EEE, pages 171-198. February, 1982

[Ridd 80]

[Rock 81]

[Rubi 82]

[Rudi 84]

[Sabn 82a]

[Sabn 82b]

[Sari 82

(Schi 80)

[Schi 81]

[Schw 81a]

[Schw 81b]

43 —

W.Riddle and R.Fairley.
So ftware Development Tools, W.Riddle and R.Fairley ed. : Introduction.
Springer-Verlag, 1980, pages 1-8.

A.Rockstrom and R.Sarraco.
SDL CCITT Specification and Description Language.
In Proceedings of the NTC, pages GB.3.1-GB.3.5. 1981.

J.Rubin and C.West.
An Improved Protocol Validation Technique.
Computer Networks 6:85-73, 1982,

H.Rudin.

An Improved Algorithm for Estimating Protocol Performance.

In Proceedings of the Fourth IFIP International Workshop on Protocol
Specs fication, Testing and Verification. North-Holland, 1984.

K.Sabnani and M.Schwartz.

Verification of a Multidestination Protocol Using Temporal Logic.

In Proceedings of the Second IFIP International Workshop on Protocol
Speci fication, Testing and Veri fication, pages 21-42. may, 1982.

K.Sabnani.
Multidestination Protocols for Satellite Broadcast Channels.
PhD thesis, Columbia University, 1982.

B.Sarikaya and G.Bochmann.

Some Experience with Test Sequence Generation for Protocols.

In Proceedings of the Second I[FIP International Workshop on Protocol
Specs fication, Testing and Vers fication. 1982,

S.Schindler.

Algebraic and Model Specification Techniques.

In Proceedsngs of the Hawaii International Conference on Syatem
Sctences. 1980.

S.Schindler.

The OSA Project: Basic Concepts of Formal Specification Techniques 2nd
of RSPL.

In Proceedings of the First International INWG/NPL Workshop : Protocol
Testing - Towards Proof?, pages 143-176. 1981.

D.Schwabe.
Fromal Techniques for the Specification and Versification of Protocols.
PhD thesis, Univ. of California Los Angeles, April, 1981.

R.Schwartz and P.Melliar-Smith.

Temporal Logic Specification of Distributed Systems.

In Proceedsings of the IEEE Distributed Computer Systems Con ference,
pages 446-454. 1981.

[Schw 82]

[Schw 83]

[Shan 84|

[Sloa 83]

[Sten

[Suns

[Suas

[Suns

78]

81]

82a]

s 82b)

s 83

[Symo 80]

44

R.Schwartz and P.Melliar-Smith. ‘
From State Machines to Temporal Logic: Specification Methods for Protocol

Standards.
IEEE Transaction on Communicaticns COM 12:2476-2505. Decmber, 1982.

R.Schwartz, P.Melliar-Smith and F.Vogt.

Interval Logic: A Higher-Level Teporal Logic for Protocol Specification.

In Proceedings of the Third IFIP International Workshop on Protocol
Speci fication, Testing and Verification. North-Holland, 1983.

A.Shankar and S.Lam.

Specification and Verification of Time-Dependent Commucication Protocols.

[n Proceedings of the Fourth [FIP International Workshop on Protocol
Speci fication, Testing and Verification. North-Holland, 1684.

L.Sloan.
Meachanisms That Enforce Bounds on Packet Lifetimes.
ACM Transactions on Computer Systems 1(4):311-330, November, 1983.

N.Stenning.
A Data Transfer Protocol.
Computer Networks (1):93-110, 1978.

C Sunshine.

Interprocess Communication Protocols for Computer Networks.

PhD thesis, Stanford University, Digital Sytems Laboratory TR 105,
December, 1973.

C Sunshine.

Formal Modeling of Communication Protocols.

In Proceedings of the First International INWG/NPL Workshop - Protocol
Testing - Towards Proof?, pages 29-38. 1981.

C.Sunshine, D.Thompson, R.Erickson, S.Gerhart, and D.Shwabe.

Specification and Verification of Communication Protocols in AFFIRM Using
State Transition Models.

[EEE Transactions on Software Engineering SE-83):460-489, September,
1982.

C.Sunshine.

Experience with Automated Verification Systems.

In Proceedings of the Second IFIP International VWorkshop on Protocol
Speci fication, Testing and Verification. 1982.

C.Sunshine.

Experience with Automated Verification Systems.

In Proczedings of the Third [FIP International Workshop on Protocol
Speci fication, Testing and Verification. 1983.

F.Symons.
Representation, Analysts & Verification of Communication Prctocols.
Technical Report 7380, Australian Telecommunicaticn Research, 1680.

[Tane 81]

[Teng 78]

[Tows 79]

[Ural 83]

[Vogt 82]

[Wass 81|

[Weir 78|

[West 783

[West 78b]
[West 78]
[West 82]

A.Tanenbaum.
Network Protocols.
Computing Surveys 13(4):453-489, December, 1981.

A.Teng and M.Liu.

A Formal Model for Automatic Implementation and Logical Validation of
Network Communication Protocol.

In NBS Computer Networking Symposium, pagss 114-123. 1978.

D.Towsley and J.Woll.

On the Statistical Analysis of Queue Lengths and Waiting Times for
Statistical Multiplexers with ARQ Retransmission Schemes.

IEEE Transactions on Communications COM-27(4):693-702, April, 1579.

H.Ural and R.Probert.

User-Guided Test Sequence Generation.

In Proceedings of the Third IFIP International Werkshop on Protocol
Specs fication, Testing and Verification. North-Holland, 1983.

F.Vogt.

Event-Based Temporal Logic Specifications of Services acd Protocols.

In Proceedings of the Second IFIP International Workshop on Protocol
Speci fication, Testing and Verification, pages 63-74. May, 1982,

A.Wasserman.
Tutorial: Sojftware Development Environments.
I[EEE Computer Society, 1981, pages 1-2.

F.Weir, W.Prater, and X.Dam.
X.25 Test Facilities on Datapac.
[n Proceedings of the Fourth ICCC, pages 273-279. September, 1678.

C West.

An Automated Technique of Communicaticas Protocol Validaticn.

[EEFE Transactions on Communications COM-26(8):1271- 1275, August,
1978.

C.West,
General Technique for Commnunications Protocel Validation.
IBM Journal of Research and Development 22(1):393-404, July, 1978.

C.West and P Zafiropluo.
Automated Validation of a Cemmunications Protocol: the CCITT X.21

Recommendation.
IBMJRD 22(1)60-71, January, 1978.

C.West,

Applications and Limitaions of Automated Protocol Validation.

In Proceedings of the Second IFIP International Workshop on Protocol
Specification, Testing and Ver:fication. 1982.

48

[Wolp 82] P.Wolper. ‘ o ‘
Specification and Synthesis of Communicating Processes usicg an Extended

Temporal Logic. o .
In Proceedings of the Ninth Symposium on Principles of Programming
Languages. Japnuary, 1982

[X.21 78] CCITT. .
Recommendation X.21 (Revised).
Technical Report, Geneva, Switzerland, March, 1978.

[X.25 80 CCITT. :
Recomendation X.25 Packet Switch Data Transmission Servicea.
Technical Report, Geneve, Switzerland, 1980.

[Yelo 82] L.Yellowitz, S.Gerhart and G.Hilborn.
Modeling 3 Netwprk Protocol in AFFIRM and Ada.
In Proceedings of the Second IFIP International Workshop on Protocol
Specs fication, Testing and Verification, pages 433-450. May, 1982.

[Yemi 82} Y.Yemini and J.Kurose.
Towards the Unification of the Functional and Performance Analysis of
Protocols, or is the Alternating-Bit Protocol Really Correct?
In Proceedings of the Second [FIP International Workshop on Protocol
Speci fication, Testing and Vert fication. 1982

[Yu 79] L.Yu and J.Majthia.
An Analysis of One Direction of Window Mechanism.
[EEE Transactions on Communications COM-27(5):778-788, May, 1979.

[Zafi 80] P Zafiropulo, C.West, H.Rudin, D.Cowan, and D.Brand.
Towards Analyzing and Syathesizing Protocols.
IEEE Transactions on Communications COM- 28(4):651-881, April, 1980.

[Zimm 0] H Zimmermann.
The ISO Model of Architecture for Open System Igterconnection.
[EEE Transactions on Communications COM-28(4), April. 1980.

