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ABSTRACT 

The past decade has witnessed a surge in research efforts aimed at developing tools to aid 

the designer of communication protocols. ~1ost of these efforts have been directed towards 

designing individual tools. Recently, however, there has been a growing interest in building 

development environments that support an integrated set of such tools. This paper priSents. 

a 5urvey of commonly used protocol development tools. Two categories of protocol 

development tools are examined: construction tools to successively refine communication 

protocols from specifications to working systems and validation tools to a.ssess whether the 

refinements meet functiona.l a.nd performance protocol objectives. Construction tools 

surveyed include tools for specification, synthesis. and implementation. Validation tools 

surveyed include tools for formal verific3.tion, performance analysis 3.nd testing. A simple 

.;end-and-w3.it protocol is used as an example throughout the paper. 
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1 Introduction 

In a computer network, distributed processe~ can comm~nicat.e and share information 
through message-exchange. Such communication involves a rather complex set of problems 
since the distributed processes are allowed to concurrently access shared resources and to 
proceed asynchronously. ~1oreoyer, they may be executed by heterogeneous processors, and 
their communication channels are often unreliable -- they might lose, duplicate, reorder, 
and/or corr11pt messages. Communication protocols are thus required to regulate the 
communication between distributed processes in a computer network. They constitute a set 
of rules and 3. set of message formats. The reader is referred to [Tane 81] for a tutorial on 
protocols. 

The Internationa.l Standards Organiza.tion (ISO) ha.s proposed a reference model of protocol 
a.rchitecture for Open Systems Interconnection (OSI) (described in !Z:mm 801). The model 
has seven hierarchical layers illustrated in Fig. 1; protocols at layers 1 through 4 are 
referred to a.s lou·-let·d protocols and those at layer~ 5 through i a.s high-/evd protocols. 
The purpose of t'a.ch protocol layer is to provide senJices to the layers above while 
concealing the details of the layers below. A description of these services including the 
service interaction primitives, their possible orders and their possible panmeter vailles, is 
referred to a.s the layer's service 8pecification. A protocol designer is also concerned with 
the internal structure and operation of the layer's black box which is illustrated in Fig. 2. 
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Figure 1: Illustration of protocol layers 

In this figure ea.ch protocol process (also referred to in the litera.ture a.s component, module, 
entity, and party) resides typically at a different site and communicates with other par (i.e., 
neighboring) processes according to the protocol rules. These rules describe how the 
processes respond to commands from tbe upper layer, messages from other peer processes 
(through the lower layer), a!ld internally initiated actions (e.g., time-outs); they are referred 
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A local view of a protocol layer 

to as the protocol spaification. Finally, the protocol specification refined into actual code 
deSCribing a.spects of IOternal behayior related to inter-process communication and deta.iled 
external beha .... lor of each protocol process is referred to a.s protocol imp/t!mt!ntation. 

This slJccessive refine:nent of protocols indicates 3. pha.sed approach to their development. In 
such a framework of pha.sed devdopment (for detads see in par~icular [Baeh 76, Leho 
80. Oste 80]) there are three main pha.ses: "t:rt·ict: 3tatt!mt:nt. protocol dt:3Ign. and 
Impl(mt:nt!ltion. Dt:t,t!lopmt!nt tool" are requIred ~o support the eyolution of protocols (rom 
speclfic:J.tions into working systems. This survey covers two kinds of protocol development 
tools: constructIon tool" (or developing and refining protocol specifications and t'a/idatlon 
tool" to assess how a specification meets its fu::ctional (e.g .. de:l.dlock freedom) and 
performance (e.g .. m~imizing throughput) destgn objectives. Although development tools for 
ge::.eral software systerru have been studied extensively (see for inst:u!ce [Lond 80. Ridd 
80. W3.SS 81], the!r applica.tion to protocols is Jot straightforward. Protocols involve processes 
that are distributed. concurrent. asynchronous, communicating through unreliable 
transmiSSion mediums. and whose behavior is often time-dependent. The5e features af(ec~ 
protocol development tools In various ways. First. the communIcation na.ture of protocols 
becomes the prime concern underlying the tools. The basiC objective of protocol validation 
tools, for example. is to assure robustness and efficiency of the commun:c~tion between the 
protocol processes. Second. timing requirements as well a.s functiona.l requireme::lts of protocol 
behaVior should be conSidered in the v::.rious tools. This integr~tion provides a more 
realistic and r~latively simpler descripr.ion of protocol behavior than when only functional 
requirements are considered. Third. tools used (or genera.l softwa.re systems might h~ve 
varied importance (or protocols. One example of a tool that is rarely used for general 
software. but that is becoming highly desirable for protocols is certification of independently 
developed protocol implementations to en5ure that they comply with a. standard. and thus 
will be able to internetwork:. 
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Recently there has been a growing interest in building protocol development environments 
tha.t integrate the various development tools required throughout the entire protocol 
development. An ideal protocol development environments should encompass a comprehensive 
set of tools and a methodology for their use. Therefore, a prime objective of this survey is 
to exa.mine the complete set of commonly used protocol development tools. Other surveys 
concerned with only subsets of the tools examined in this paper can be found in [Boch 
8030, Dant SO, Hail 81, Suns 81, Diaz 82, Schw 82, Suns 83]. 

The paper is orga.nized as fellows: in sections 2 through 4 we survey the con"truction tool3 
including specifica.tion, synthesis, and implementation. respectively. Sections 5 through i are 
surveys of validation tool" including forma.l verification, performance analysis, and testing 
respectively. Finally, in section 8 we present some conclusions and remarks on possible 
directions for future research. 

2 Specification Tools 

Specification tools are construction tools required to describe a protocol at each of its three 
development phases as a service specification. protocol specification, and protocol. 
implementation. High-level languages are used (or describing implementation specifications. 
These will not be discussed here; throughout the rest of the paper we limit our discussion to 
specification tools required for the service statement a.nd protocol design phases. 

Experience has shown that protocols specified informally are error-prone even when 
augmented with some graphical illustrations. For example, 21 errors have been found ['Nest 
78301 in the informal specification of the X.21 protocol [X.21 181 (a protocol at layer 2 in 
Fig. 1); they are generally due to the ambiguity and incompleteness of the informal 
specifications. F ermal specifications. on the other hand, are concise, clear, complete, 
unambiguous, and often used as the basis for other protocol development tools. Protocol 
development tools are indeed highly dependent on the specification tool used. For example, 
a difrerent Verification tool might be r~quired if the specification tool used in the protocol 
environment is changed. 

Throughout this section and subsequent sections, a simple send-and-wait protocol will be 
used as an example. The basic function of the protocol is to provide robust message 
tra.nsfer between a source process C and a. destination process D over an unreliable 
transmission medium. There a.re three distributed processes involved in the protocol: a 
~ender 5. a receiver R. and a transmission medium ~L The operation of the protocol is as 
follows. If the sender is idle and receives a new message m from a. source C, it sends it to 
the receiver through the medium 'Rhich either delivers or loses it. The sender waits for an 
acknowledgment a to a.rrive, upon which it aga.in wa.its for a new message from the source. 
A new message a.rriving at the sender that is busy waiting (or the acknowledgment of the 
previous message. is buffered. To recover from cases of message a.nd acknowledgment loss. 
if the sender does not receive an acknowledgment after a time-out period T, it retra.nsmits 
the same message and then waits again for either an acknowledgment or a time-out. The 
receiver process waits for the new messa.ge m to arrive (rom the medium. after which it 
delivers it to a destination D and then sends an a.cknowledgment a to the sender through 
the medium. For the sake of simplicity, it is assumed that the medium does not lose 
acknowledgments. and that the time-out pHiod is ideally set such that the probability that a 
time-out occurs only after a messa.ge is lost is ~al to 1. If the sender and receiver 
processes are at one protocol layer N. then the source and destination processes would be at 
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~he next higher layer ~ + 1 represen tin!; the user of the serllces of the layer ~, and the 
medium process represents the next lower layer ~-l. 

It shou.J be noted that this is not the most efficient data. transfer Fotocol. For example. 
in order to make full use of the medium's bandwidth, a more sophisticated protocol would 
send several messages successivdy instead of one at a time. In this case it is necessary to 
:l.Ssign sequence Lumbers to messages in order to differentiate between them. 

In the following sec~ion, requirO!ments of specification tools f·~r protocols are outlined. the 
various specification tools are surveyed III section 2.2, and a. taxonomy of the these tools is 
proposed in section 2.3. 

2.1 Requirements or Specincation Tools ror Protocols 

The key requirements of a !'ipec!fication tool to adequ3.tely express protocols include the 
following. 

1. Supporting abstract descriptions such that implementation-dependent pa.rts can be 
left unspeciried. 

2. Supporting modeling of concurrency. 

3. Supportin~ modeling of nondeterminism. which is a behavior exhibited typically by 
protocols I e g .. the sender is waiting for ~ither the arrival of an acknowledgment 
or time-out in the send-and-wait protocol example}. 

4. Supporting the description of the two c3tegories of functions involved in protocols: 
control functIon., involving connection initialization and inter-process 
synchronization. and data tran.,fer function!! involving processing of messages texts 
and related issues such as message sequence numbering. 

S. Supporting modular descriptions to facilitate readability and ease of use of 
s pecirications. 

Since specIfication tools often are the basi!! of other development tool!!, they must also 
Include the rollowlDg reatures to facilitate their applic:l.tion: 

1. Executabliity of the specifica.tion to facilitate its direct simuhtion. and the 
automation of the implementa.tion process . 

. ) Providing constructs for expressing functional properties of protocols. thus 
f:lcilit:ltlOg their automated formal verific:ltion. 

3. Supporting the! speCification of I.he timing requirements of protocols. ~Illce the 
beha ... ior of protocol is often time-dependent, their correct functioning might 
depend on certain timing requirements. For example, the specific3.tion of the value 
of the time-out period in a protocol with such 3. feature greatly affects its 
function. If tbe tbe time-Olll period is too short, th.:: network would be flooded 
wltb duplicate mess~es and tbe protocol would enter an infinite cycle of time­
outs. 

4. Providing constructs for expressing performance properties of protocols (including 
properties of transmission mediums slJch as bit error probability and desired 
performance such as bounds on throughput and delay measures), thus facilitating 
au tomated performance analysis. 

5. Supporting tbe clear defirtition of the interla.ce~ between the protocol layer 
concerned aDd the layers above and below to allow for separate testing of the 
implementation of each protocol layer. 
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The extent to which a spe~lIIcation tool exhibits the first set of requirements is examined :n 
section 2.2. In section 2.3 'lie examine the extent with which the va.rious classes of 
specification tools based on the proposed ta.xonor:lY in that section support the second set of 
requirements. 

2.2 Surveyor Specification Tools 

2.2.1 Finite State Machines 

A finite state machine (FS\f) consists of the following components: 1) finite set of st::.tes. 2) 
finite set of iliput commands. 3) transition functions (command X state-state), and 4) an 
initial state. A FSM is a natural choice for describing protocol t:-rocesses whose behavior 
consist primarily of simple processing in response to commands to or from peer processes in 
tbe :ame layer. and/or the upper and lower protocol layers. A FSM responds to an 
comma.nd according to the input and its curre:lt state represel!ting the history of past 
commands. FSM's were used in early work on specification of protocols [Bart 69. Suns 751. 

Consider using FS\.fs to describe a protocol specification. Each loc3.1 process involved in the 
protocol C3.n then be modeled as 3. FS\.L The behavior resulting from the concurrent 
execution of these local processes can be obtained by considering all possible interlea.ving of 
the executions of these processes. It is in effect a global description of the operation of the 
protocol layer. To describe the mode of communication between the distributed processes. 
three approaches are possible. The simplest assumes that the distributed processes 
communicate synchronously through re~de::t·ou" interaction.! (also referred to as direct 
coupling by Bachmann IBach 781). That is, the process issuing a send event should wait for 
the destination process to issue a corresponding receive event (and vice versa) at which time 
a rendezvous is said to occur and me~age exchange takes place. Since messages are not 
buffered in this approach, no modeling of channels between the processes is required. This 
approach is too restrictive for protocols In which the communicating processes operate 
a.synchronously, or for protocols in which the behavior of the transmission channel is integral 
to its operation. In the se~ond approach. channels are modeled implicitly by specifying 
".heir characteri:tics such as queueing policy (e.g., FIFO) and bound on the number of 
messages allowed in transit at anyone time. Protocols with a number of messages in 
transit can thus be modeled using this approach. The FSM's specifications in this approach 
are referred to 3.S communicating finite "tate machine., [\Vest 78a. Goud 84301. In the 
tnird approach, channel3 behavior are specified expI:citly as FSM's in which case only 
channels with a low bound on the number of messages can be feasible assumed. Even then 
theIr FS\1 specifications are considerably more complex than in the second approach. 

Following the latter approach. specifications of the three communic3.ting processes In the 
send-and-wait protocol are shown in Fig. 3. In this figure. stateg are represented by circ!e~. 
tranSItions by directed arcs, the initia.l state is the state labeled 1. and input comm3.nds a.re 
either event..s with an overbar denoting send events or event..s witb an underbar denoting 
receive events. Events' subscripts are used such that for event e .. the flow of da.ta is from 
process i to process j. Non-deterministic behavior at a stat~: for example the choice 
between receiving a time-out or an acknowledgment at state 3 of the ~ender, is modeled by 
mUltiple output arcs from that state. A service specification for the same protocol is shown 
in Fig. 4 in which the service primitive events GET and DELIVER between the protocol 
system and its users (source and destination processes) and their order, are described. 
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[0 specifying this simple protocol, a.nd control bnctions of more complex real-life protocols, 
e.g., the X .. 21 interface [\Vest iSb!. FS\i specifications have proven adequate. They are 
51mple, easy to understa.nd a.nd analyze. They fail, howeyer, to deSCribe data. transfer 
func~ions tha.t include decision (e.g., priority of messa.ges) or timing considerations (e.g., 
specification of a. time-out period). This is beca.use no mech3.nis~ a.re provided for 
expressing such fea.tures. ~toreover, in order to specify messages with sequence numbers 
using this approach, a state is required for each possible va.lue of a pending message and/or 
sequence number. This leads to an explosion in the number of states; a phenomena known 
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as the state t:xplo.!ion problem. Extensions of the model, as described 10 the foilowing 
section. alleviate most of these limitations. 

2.2.2 State Machine Models 

Sta.te machines are FS\-fs augmented with variables and high-level language statements. 
These ~tatements are associated with transitions and can refer to the variables and input 
commands. They are either predicates representing conditions for the transition to occur, or 
actions to be performed upon its occurrence. The state of the machine is represented either 
bv the values of all the variables. or by one of the variables. Consider, for example, 
e~tendiJ:g the send-and-wait protocol with a binary sequence number mechanism for messages 
so that the receiver can distinguish between messages and their duplicates. A partial sta.te 
machine specifica:ion (whose constructs are a.da.pted from [Bach 8330]) or the sender process 
of this extended protocol. is given in Fig. 5. In this specificar.ion a variable representing the 
curreot message sequence ~umber should be defined at the sender and the receiver. The 
transitio:l out of a sender's state in which it is waiting for an a.cknowledgment could have a 
predica.te stating that it should be not corrupted and it.s sequence number is the one 
expected; and an action that increments the sequence number of the next message to send. 

Bachmann and Gesci [Bach 77301 first used this specification model to specify a simple data 
transfer protocol and later to specify the HDLC [Bach 77bl and X.25 [Bach 791 prototols. 
Various other specificaf,ion systems based on this model hve been also developed. They 
differ essentially in the way they structure the protocol system into subprocesses which a.re 
then specified as state machines. 

:\ state machine model proposed by the ISO TC97 /SC16/WG 1 subgroup B on formal 
description techniques (FDT) [Iso 8330, Bach 841 employs Pascal-like constructs in extending 
FS~1's. Channels are specified separately from the protocol processes using abstract data 
types [Gutt 781. Certain queuing mechanisms can be modeled and time delays before 
transitIons can be specified. 

A Sp~cific3.tion and Description Language (SDL) [Rock 811 which is primarily represented 
graphl<:ally h3.S been proposed by another standard body, the International Consulta.tive 
Committee for Telephones and Telegraphs (CCITT). Specifications of cha.nnels and timing 
are not supported. Dickson [Dick 80301. [Dick 80bl has used SDL to specify the packet level 
of the x.~s interhce [X.25 801. 

Examples of other works based on the sta.te m3.chine model for specJication were reported 
by Schwabe [Schw 81301. Divito [Divi 821 a.nd Shankar and La.m [Shan 841. These efforts are 
distinguished in the following. Schwabe differentiates between the specification of the 
topology describing the connectivity of the processes from the specification of the protocol 
processes. This fea.ture could be especially desirable in the specification of high level 
protocols. Divito uses buffer histories to record process intera.ctions. This facilitates the 
specification of certa.in desirable protocol properties such 3.S the number of messages sent is 
the 5ame as those received where3.S other properties involving order of messages in the 
histories, for exa.mple, a.re not as na.tura.lly expressed. Shanka.r :lod Lam allow time 
variables to be included and time operations to age them. This facilitates the specifica.tion of 
certain protocol rea.l-time requirements such as an upper bound on the time a. message can 
cccupy a tra.nsmission channel; a. requirement tha.t is needed for the correct functioning of 
many ne:work layer protocols (those at layer 3 in NS- 1). 
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aodule Sender 

var 
state (statel. state2. state3); 

(e saae states labels as in Fig. 3(30) e) 

corrupted : boolean; 

next-aessage-to-send : integer; 

ack-received : integer; 

(. transitions are' described 1n the general tor. 
ot a predicate given by: ~ <input co .. and> 
provided <boolean expression> 1££! <current state>. 
tollowed by an action given by: ~ <next state> 
begin <state.ent> end; .) 

wben 2ECEIV[-." 
provided {not(corrupted) 

froa state3 
begin 

and ack-recelved = next-aessage-to-send} 

next-aessage-to-send .- (next-aessage-to-send + 1) .od 2; 
end; 

to statel 

end .ooule Sender 

Figure 5: A partial state machine ~pecification of the 
sender process of a modified send-and-wait protocol with binary 

sequence numbers 

Combining the two formalism.:! of FS~rg and high-level languages provides 3. rich 
speCification tool in which one can express the syntax and the semantics of protocols. On 
the other hand, such a combination is informa.l a.nd there is no rule of how much of each to 
use. 

2.2.3 Formal Grammars and Sequence Expressions 

A {ormal gra.mrr:af is defined by a set oC terminal symbols, a set of nonttrminal symbols, 
a start symbol and a set oC production ru/ts. The nonterminal symbols are defined 
recursively in terms of each other and terr:::inal ~ymbols using the production rules. The 
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start symbol belongs to the set of nonterminal symbols and denotes the la.ngua.ge genera.ted 
by the grammar. In a formal grammar specification of a protocol. nonterminal symbols 
denote states, terminal symbols denote transitions and operations (e.g .. nondeterministic 
composition), the start symbol denotes protocol behaviors generated by the grammar. and 
production rules define how the various protocol behaviors are generated. A formal 
grammar specification of the sender process of the send-and-wait protocol is given in Fig. B. 
It is a direct translation o( its FSM in Fig. 3{ a) with terminal symbols (represented by 
upper-case letters) denoting input commands and non-terminal symbols (represented by lower­
case letters) denoting states. 

G = {V.T.S.P>. 

where the set at nonter.inal sy.bols V = {statel,sta.te2.state3}. 
the set at termina.l sr-bols T = {GET-M.SEND-M.i.iECEIVE-A}. 
the st.art sy.bol S is statel. and 
the set at production rules P is given by 

statel .. = GET-M state2 

state2 .. = SEND-M state3 

state3 .. = T state2 
! iECEIVE-A statel 

.. ," denotes nondeterministic composition. 

Figure 6: A formal gramma.r specification for the sender process of the 
send-and-wait protocol 

Since regular grammars and FSM's are equivalent. they share the same limitations. The 
s~ate explosion problem is manifested here as an explosion in the number of prodw:tion 
rules. To overcome this problem. Harangozo [Hara 77] used a regular grammar in which 
indices are added to terminals and nonterminals to allow the representation of sequence 
numbers. A formal grammar specification of HDLC can be found in [Hara iiI. Teng and 
Liu [Teng 78] used a context-free grammar, which provides more expressive power thaD 
regu tar grammars. They also uses a shu{fle operation to integrate grammars defining 
processes in the same protocol layer by computing all possible interleavings of their behavior. 
a.nd a substitution operation to integrate grammars defining different protocol layers by 
substitutIng terminal symbols in the gramma.r of the high-level protocol by nonterminal 
symbols in the grammar of the low-level protocol to (arm a new integrated grammar. 

These two approaches to formal grammar specification for protocols do not support the 
5pecification of any predicates or a.ctions associated with protocol behavior. This limitation 
IS o·.-ercome by Anderson and Landweber [Ande 841 by Ilsing context-free attribute 
grammars, which are formal gramma.rs in which terminal and nonterminal symbols have 
attributes associated with them. The terminal symbol SEND-M in the send-and-wait 
protocol can have the attribute addre"" associated with it to determine the address of the 
a.ddressee. The semantic~ of protocol operation can then be specified in terms of attribute 
a.ssignment statements associMed with production rules. 

In contra.st to formal languages. sequence expressions define directly the valid sequences 
resulting from protocol execution and not how they a.re generated. A protocol behavior is 
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described in one expression where no nonterminal ~ymbols are used. The sender process or 
the send-and-wait protocol can be specified as a sequence expression gi':en by 

SE:"IDER = {GET-M - SEND-M - {T - SEi'D-M}· - RECEIVE-A} 

where operations < ••• , , ., -" , and \I + I) denote the Kleene star, sequen tial composition, and 
nondeterministic choice operations, respectiveiy. 

Sequence expres~icns have been used by Bocbmann (or serrice speciric:l.tion [80ch 80b]. Other 
examples include work done by Schindler, et 301. [Schi SO, Schi 81] to speclry the X.2S layer 
3 protocol. 

2.2.4 Petri Net-Based Models 

.-\ Petri :'-let (P~) (see [Pete ;;] (or a comprehensive surrey) graph contains two kines o( 
nodes: pla("~ and tran3ition3. Directed arcs connect place~ and tran~itions. Arcs :rom 
places to transitions are called input arcs. and arcs (rom transitions to places are called 
output arcs. The execution of the net. is cont.rolled by the position and movement of tok~n3 
which reside in the places. The distribution of tokens in the net at any certain time, 
known as a mark:ng, specifies the state of the net at that time. A P~ specification includes 
a. P:--; gr3.ph and an initial m3.rking. A transition in the graph is ~n'lbld if there are token!! 
reSiding in all the lOput places (i.e., p13.ces connected with the transition through input arcs). 
It C3.n fire any time after it is en3.bled. upon which tokens are removed from input places 
and deposited into output places of the transition. PN's are in many ways simila.r ~o 
FS~f'5. with places in a P:'-l corresponding to sta.tes or inputs in a. FS~f and transitions in a. 
PN corresponding to transitions in a FS\1, However unlike FSM's, p~'s C3.n directly model 
Interactions between the concurrent processe~ by merging output arcs from one process to an 
input arc of another process. Also the concurrent. exec 1ltion of the distributed processes is 
n:lt 1lr3.lly captured by the presence of more than one token in the net -- a. token for e3.ch 
dlstnbuted process. 

In 3. protocol modeled as a. petri net, the presence of a. token in a. place typic3.lIy represents 
tbt the protocol IS waiting {or a certain condition to be satisfied. and the firing of a. 
tr:lnsltion represents the occurrence of an event enabled by the condition. Examples of 
using p~'s to model protocols can be found in [Post 76, A~em 78. Dant SO]. A P~ 
~peclf:c3.t:cn of the send-and-wait protocol is given in Fig. ;. Pbces are represented as 
circles. tr3.nsltlocS as ban and tokens a..s filled circles. It should be noted that this p~ 
opecifica~lon follows the assumption that time-out is ide3.lIy set such th:lt a time-out cccurs 
only after a loss of a message or an acknowledgment and the 3.'ssumptioo that 
ack:lOwledgments are not lost. 

Similar to FSM's, P~'s cannot adequately model complex data transier of protocol without 
suffering from explosion of the net size, or timing considerations such 3.S time-out. Two 
m3.jor extensions to p~'s that. add to their power in modeling protocols lead to hybrid PS'3 
and timd P.V'3. The price for these extensions is more complex v3.lid3.tion. 

Hy brid Petri Nets 

Hybrid petri n('ts are extended PN's in which tokens can bye identities and transitior!s c:l.n 
have predicates and actions associated to them. Adding predic:l.tes to p!'J's produces 
predicate/tran3,·tion nets formaiized by Genrich a.nd La.utenbach [Genr 79], where tracsitions 
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fire only after they are enabled and their ~sociated predicate (i.e., some condition in ter!Il5 
of tokens values) is true. Berthelot a.nd Terrat [Bert 821 used predicate/transition nets to 
model the EC\1A (European Computer \1anufacturer Association) [Ecma 80] transport 
protocol. 

Adding actions to predicate/transition nets produces predicate/action nets. Actions are 
associated with transitions ~uch that when a transition fires, the action is executed and new 
tokens are put in the output places. For example, data transfer protocols can be modeled 
3.S predinte/action nets such tha.t the receiving of a message m with certain parameters IS 

described in a predicate. and the sending of m is described in the action [Diaz 82]. 

Keller's model for parallel programs [Kell 781 and numerical PN (NPN) [Symo 801 belong to 
this C3.tegory. Keller divides systems into a. control part and a data part. with places 
representing control states and transitions representing the changes between states. 
Vari3.tions of this model were used in modeling protocols [Boch i7a, Azem 78, Baue 821. 
l'iP~'s introduced by Symons are similar to Keller's model with the variation of allowing 
tokens to have any identity not just integer values, and a.s~ociating read and write memory 
with the net. Billington used NPN to model 3. Transport service [Bill 82]. 

Timed Petri Nets 

A Timed PN is a PN extended to support some descritltion of time. Timed PN's that have 
been used ror protocols include time p,v's (TPN's) introduced by \ferlin [Mer! 76] and 
stochastic PN's (SPN's) introduced by \1olloy [Moll 8lj. In a TPN a. pair of deterministic 
time values (t . ,t ) is added to each transition of a. PN. The pair defines the interval of 

m\" maz 
time in which tOe transition must fire after it is enabled. This extension allows the modeling 
of time-out actions of protocols by specifying the t . of the retransmission transition to be 
equal to the time-out value. Danthine [Dant 80] u~~d a combination of TPN's and Nutt's 
evaluation nets [Nutt i2] (a kind of abbreviated PN) to model the Transport protocol of the 
Cyciade network. 

SP:"i's are P:"i's extended by assigning to each transition a random variable representing the 
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firing dela.y of that tr3.I!Sltlcn. Sta.te change~ occur in the SP~ model with !:ome prcbability 
rather than arbitrarily as :n a P:"-J. Distributions of the transition delays are restricted La 

exponential in the continuous case, or geometric in the discrete case. This is because a 
markov model is extracted from the p~ gra.ph describing the global protocol behavior; in a 
markov model all transitions should be either exponentially or geometrically distributed. 
The !"a.ndom representation of time involved in protocol eYents is used in SP~'s La allow for 
qU3ntitative performance analysis. 

2.2.5 Algebraic Specifications 

Algebraic specification derives its name from its relationship to universal a.lgebra [Grat 58]. 
An algebra consists of 3. nonempty set of Obj~ct3 and a set of op~ration3. Each opera.tion 
takes 3 finite number of objects and produ.:es an object. The meaning of operat:ons is 
defined in terms of EquatIonal-aXIom". The interpretation of objec1.s and operations when 
specifying protocols depends on the specific algebr~ic approach used. We examine next two 
ex~mples of algebra.ic systems used for specification of protocols. 

In the calculus of communica.ting systems (CCS) introduced by \filner [Miln 801. objects a.re 
protocoi beha.yior expressions generated from a set of send and receive events exchanged 
between the corr.municating processes. Operations include "." denoting sequential 
compOSition, "+" denoting nondeterministic composition. "/" denoting concurrent 
composition. and "~IL" (a. nullary opera.tion) denoting dea.dlock. The concurrent compOSItion 
oi interactlOg proce5ses produces a new composite process whose beh::.yior includes rendezyous 
interactions for corresponding send and receIve events and shuffling of all other events 
gener3.ted by the in teractir.g processes. 

A CCS specification of the sender process of the ~end-and-wait protocol is ginn next. Let­
denote a. rendezvous event produced from a previous concurrent composition of the sende;o 
with 3. timer process (for time-out). Also, let m represent a send port for messages and ~ 
represent 3. re::ei ... e port for acknowledgments on the channel between Sand .\f. In 
addition. let d represent a recei ... e port lor meSS3.ge incoming from the source. The sender 
specification 5 is de~cribed recursively as follows. 

C3.pabilities for tralue pa.ssing :lnd high-level l3.ngu3.ge statements 'lre also pro ... ided. To 
c·vercome the imposed synchronous mode of inter-process communica.tion in CCS, one has to 
expliCItly model transmiSSion mediums between a.ny two Fccesses ccmmunic3.ting 
async hronously. 

~hny concepts from CCS are employed in the specification la.ngu3.ge proposed by t!le [SO 
TC97 jSC16jWG 1 subgroup C [[50 83b, Brin 8,t]. Holzmann [Holz 82] 3150 introduced 3. 

CCS-variant algebraic model with a. division operation used to represent send events and 
message bufiel'3 used to allow for asyncbronous inter-process communication. Another CCS­
variant model introduced ty ~ounou [Noun 841 associates probability and time attributes 
w!tb protocol behavior expressions to allow for the specification of protocol timing behayiors 
as well as theIr functional beha ... iors. This allows protocol timillg requirements to be 
specified a.s will be described in section 8.1. 

[n the AFFIR~i system [\'iuss 80, Suns 8~al, the objects of the algebraic model are ab"tract 
data type" [Gutt 78]. The system ca.n be used to specify protocols modeled conceptua.lly 3.S 

state tr::.nsition machines 3.5 follows: each protocol model is defined a.s an abstr3.ct ma.chine 
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data type, with its variables as o!dt:Ctor" of the type, and its state transItIon as con"tructor" 
of the type. A set of axioms defines the effects of each transition on the variables. Abstract 
data types can also be used in specifying protocol message formats. Desired properties of 
the protocol are expressed as theorems that refer to the elements of the given specifications. 
An advantage of this system is its use of abstract data types which provide only abstract 
description of the systems under consideration. Experience with modeling several protocols 
in AFFIR~1 [Suns 82b] h~ shown the following system limitations: no support for true 
modeling of concurrency; difficulty in dealing with exception handling, separate specification 
of local protocol processes, and specification of protocols with more than two processes. 

One advantage of algebraic specifications is their rigorous formal base from algebra. 
Elements of other development tools in a protocol environment can be viewed as a.n algebra 
that is homomorphic to the specification algebra [Yemi 82]. One basic limitation of algebraic 
specifications is the difficulty in dealing with exception handling (for more information on 
this see [Berg 82]). 

2.2.6 Temporal Logic Specification 

Temporal logic [Pnue i7] is an extension of predicate calculus to support the specifica.tion of 
temporal properties of systems (i.e., properties that change during the system execution). 
Invariant properties that must hold throughout the execution could be stated using predicate 
calculus. Within the temporal logic framework, the meaning of a. computation is considered 
to be either the sequence of states (state-based approach) or the sequence of events (event­
based approach) resulting from the system's execution. The two basic temporal operations 
in temporal logic besides predicate calculus operations are henc~forth "0" and ~ventually 
"0". Let P be any predicate, then oP is true at time i (representing the i-th instance of 
the execution sequence) if and only if P is true at all times j , where J~i, and op is true 
at time i if and only if P is true at ~ome time j, where J~i. A specification in tempora.l 
logic consists of a set of axioms that assert properties which must be true of all sequences 
resulting from a system's execution [Lamp 80, ~iann 81]. 

Temporal logic specifications can be classified into state-based and event-based approaches 
a.ccording to the underlying model of the execution of the protocol. Three different 
approaches to the state-b3.5ed temporal logic method have been pursued by Lamport [Lamp 
83], Schwartz and ~1elliar-Smith [Schw 8lb], and Hailpern and Owicki [Hail 80]. The three 
approaches differ essentially in how close they are to the state ma.chine model with the first 
being the closest followed by tbe second and then the third. 

Schwartz and ~1elliar-Smith use a model in which state variables are introduced in the 
specifica.tion only when it is more convenient to express temporal properties in terms of 
finite history of the past ra.ther than using temporal formulas. The variables used are 
assumed to be bounded. A specification of the Sender process of the send-and-wait protocol 
in this approach is given in Fig. 8 (adapted from [Schw 82]). 

Besides the temporal operations eventually and henceforth, the following constructs have also 
been used in the specification: Until and Latchea-Until·Atter. P Until Q is interpreted 
as P must remain true until Q becomes true if ever, and P Latchea-Until·Atter Q is 
interpreted as P when becoming true, remains true until after Q becomes true if ever. Also 
the predicates at, in, and after, have been used to reason about the currently active 
control point of each process. The interpretation of~t. S, in S, or after S is true if control 
is at the beginning, within, or at the end of the execution of statement S respectively. The 
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,H. SO=p laplies (So=q=p Latches-Until-After after iECEIYE-,~ a.nd 
S =q=p Late hes- Until-After S.=q) o I 

A2. 00 (Si=So=P) i.plies 
(O-~mptll(lDQ) i.plies 0 (So=P and at SE~D-")} 

.~3. So=P and 0 So=q=p i.plies O(So=q=p and at SE~D-W)Until(Si='FP} 

H. 0 at S[~D-'" Until 0 empty(InQ) 

\\'bere sand s. are two variables of the underlying state tra.nsltlon model used to 
record £be last message value transmitted by the Sender, and the last 
acknowledgment value received from the medium, re!5pectively. InQ is a sequence 
'l3.riable representing the queue of message ready at the source. Labels ror events 
are the same as those used in Fig. 3( 3). 

Figure 8: A state-based temporal logic specification 
for the sender process or the send-and-wait protocol 

axioms in Fig. 8 have the following interpretations. Axiom .\1 states that 3 message value 
rem3IDS in S until both its successful acknowledgment has been received and a new message 

o . 
has been fetched from the source. Axiom A2 states that whenever the sender gets a. message 
from the source while it is not busy, it eventually sends that message. Axiom :\3 states that 
whe!lever a. new messa.ge is pla.ced in So' it is infinitely often transmitted until its successful 
acknowledgment is received. Axiom A4 ensures that message transmission continues until all 
messages avaibble in InQ are serviced. 

The :lbove described approach to temporal logic specifications does not consider the complete 
.:et of a system's ~tate space; some of the states are excluded if tempor:ll axioms can be 
used to reason about them. This sometimes leads to complex speciiications requiring several 
additional CClnst,ucts (such as Until and Latches-Until-Arter) and thus rendering 
specifications complex and difficult to understand. In subsequent work [Schw 831 another 
approach has been followed in which the protocol required properties are stated on \'nterIJO/3 

of the protocol's execution sequences. It is c1a!:ned that this allows higher level temporal 
logic speCifications. 

L:J.mport conSiders the complete set of system's .... :J..lables. and all state tranSitions are 
specliied in te:-TnS of the changes they are allowed to affect the variables. This is done by 
uSlOg an "allowed changes" construct io addition to the other ba.sic temporal operations. 
Although specifications based on this approach are easier to transform into imp Ie men tations. 
they are lenghtier than those based on the former approach. Hailpern and Owicki use 
'lobounded history variables. without employing any states, to record the sequences of 
:neS.5ages that are inputs or outputs of tle systems. Protocol properties such as numbe!' of 
messages sent equals n~mber of message~ received could be stated quite naturally with this 
approach. but it would be difficult to state properties that depend on the ordering of 3 
sequence in a history. ~ioreover. the introduced history variables are ac~ually "auxiliary" 
yariables; that IS. they are not. variables that are required to describe the protocol 
implementation aDd thus can not be used to reason about its correctness. 

The state-ba.sed temporal logic approach has been used to specify and verify a 
multidestination protocol [Sabn 8~aL and in !Kuro 821 both history variables and internal 
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states were used in specifying and verifying the three way h:l.ndshake connection protocol. 
Shankar and Lam [Sha.n 841 use a variant of the eventually operator in stating temporal 
properties of a. bounded length of the global state sequence resulting from a. systems' 
execution. 

In the event-based approach, protocol desira.ble properties are specified using temporal 
assertions tha.t define constraints on the possible sequeilces of intera.ction e'lents. ~o 
variables are cor.sidered in this a.pproach. Establishing context, meaning a record of the 
history of previous e..-ents, in event-based specifications is much more difficult th3.n in st3.te­
cased specifications, where states naturally provide the required context. This leads to 
specifica.tions that are somewhat. complicated and lengthy. Yogt [Vogt 82] uses a history 
variable to represent the sequence of past events a.nd thus establish the required context. In 
another event-based approach, Wolper [Wolp 82] introduced extended propositional temporal 
logic. in which temporal logic is extended with opera.tors corresponding to properties 
definabie by a right linea.r grammar. This a.llows the specification of SOl!le properties -'that 
otherv.·ise could not be expres5ed in temporal logic such as stating a proposition that is to 
hold in every other state in a sequence. 

2.2.7 Procedural Languages 

In a procedural language, the unit of specification is a. procedure containing type declarations 
and statements describing detailed computational steps of the system under consideration. 
Much of the eariy work done on protocol or service specifications used this method. 
Exa.mples of such \vorks ca.n be found in [Sten 76, Haje 78, Krog 78]. 

The Gypsy programming language [Good 78. Good 82], is a procedural language that 
includes most of the basic facilities of a. Concurrent PASCAL. and has the unique feature of 
supporting the specification of protocols at any of the three design phases using the saCle 
language. Descriptions of service or protocol specifications make use of buffer hi3torie3 to 
record all send and receive operations executed on a. system's buffer. One limitation of 
~pecifications employing buffer histories, is the diific11lty in modeling unreliable 
communication mediums [Divi 821 since processes communicate through message buffers that 
do oot model loss or corruption of messages. Another limitation is the difficulty of stating 
properties on a history if the properties depend on the ordering of messages in the buffer. 

While procedural languages are a natural choice for coding implementation specifications, 
there has been much controversy regarding their use for specification in early design phases. 
The shortcoming of using procedural langua.ges for specification lies in their detailed 
deSCriptions of a systems' operation. This makes it rather difficult to specify the abstract 
requirements of protocols without getting into the details. There is also a biasing effect to 
implement the protocol in the sa.me language used for specification. The other side of the 
controversy, though. could argue that such languages. with their rich expressive power. 
support the specification of both control and d3.ta transfer functions of protocols. 

2.3 A Taxonomy (or Specincation Tools 

As a summary of this section, we propose a taxonomy of specificn.tion tools that will be 
helpful in judging the extent by which :l. specification tool meets the second set of 
requirements given in section 2.1. The first three a.re requirements of specification tools to be 
executable. to support the specification of desired properties of protocols, a.nd to support the 
specification of performance parameters of protocol behavior. The fourth requirement of 
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providing clear descriptions of interfaces between protocol layers can be met by a service 
specification that describes both the service used and the service provided by the protocol 
layer conc~rned. 

We classify speCIfication tools along two axIS. Based tin the fir~t classification, they are 
either statl'-basd or f:t'ent-lJased. The underlying model of a protocol in sta.te-based tools is 
concerned with the states through which the protocol psses during its operation and with 
the events that C3use changes in its state. States can be either explicitly represented or 
described by n.riables. On the other haud, the underlying model in event-based tools is only 
concerned with the events generated by a protccol without a.ny mention of its state. -They 
inciude sequence expressions and event-based temporal logic specificatiolls whereas the 
remaining specification tools -:overed 10 this section belong to the st3te-based class. Since 
sta.te-ba.sed specifications describe the actions and responses of protocol operation, they can 
be directly executable. Event-based tools can at best be fi:-st transformed into an executable 
form (as will be' explained in section 4). However, they !:eem to be more abstract tb an state­
based tools since they are not concerned with the internal state of the protocol model. 

Alternatively, specification tools cali be classified into behavioral and assertional tools. 
Spec:fic3tions belonging to the former cla.s.5 de:::cribe the {low of execution of protocols and 
how it proceeds after e3ch event. They constitute a description of the cause and effect of 
all modeled protocol events. A.ssertional specification toois, on the other hand, state the 
requlremeots of protocol behavior in terrru of desired properties of its possible execution 
sequence~. As will become clear in the following sections, the more a specification tool is 
behaYloral the more it is executable, and the more a specification tool is assertion31 the 
better support It provides (or formal verification. 

~fost specification tools actually exhibi~ features belonging to both the behavioral and 
assertioc31 classes. Also, each of these classes constit;lte a. spectrum of specification tools. 
The extent to which a specification tool is behavioral depends on how much support it 
provides for the specific3tion of protocol semantics besides its syntax. The extent to which a. 
specification tool is a.ssertlonal depends on how much support it provides for the statement 
of fuoc~ional properties including liveness a.nd safe~y. and timing properties. Furthermore, 
::peclfication tooLs belonging to a.ny of these cb.sses can be either state-based or event-based. 
Th e r~ rore, we illust rate in Fig. 9 the re lative positions of the v:mous specification tools 
co .... ered in this section. 

3 Protocol Synthesis Too18 

The job of composing a specification for 3.D entire protocol system is quite complex. 
Furthermore, given such a protocol, the problem of formally verifying that it is free from 
certaIn design erro~ has shown to be genera.lly undecidable (see [Bran 83]). Towards 
slmplirYlIlg the complexity of specifying entire protocol systt'ms, some research has been 
directed towards synthesizing complete speclfic3.tions of protocols, which are specifications 
that include all the communicating processes itlvclved. from incomplete ones. In some of 
these efforts the produced specifications a.re 3.lso gua:anteed to be free from certain design 
errors and thus avoid the possibly 1.lOdecidable formal verification problem. The "'arious 
synthesis approaches vary primarily in the kinds of design erro;'S considered, the ma..ximum 
number of communicating processes in a protocol that are supported. and the features of the 
transmission channel that are assumed. However, they all take advantage of the duality 
ioherer:t in the interactions among protocol processes where a, message sent by one process 
should be received at a.nother communicating proce~. 
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Zafiropulo. et al. [Zafi 801 :::we proposed an interactive and incremental synthesis technique. 
in which the protocol local processes are modeled as communicating FSM's with error-free 
FIFO channels. In each increment of interaction between the protocol designer and the 
synthesis program, the designer provides a. sending interaction or one of the communicating 
processes. The program uses the already synthesized. partially constructed FSM's and a set 
or rules to rind the state a.t which the receiving p-t:Qcess can accept the sent interaction. It 
then prompts the designer for the state which the receiving process would enter upon 
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receiving the found reception. The synthesis algorithm uses a. set of three production rules 
that find the receive interaction!! in such a. manner 3.:l to prevent the d~signer from creating 
unspuified reception" and noneucutabl! interactions. An unspecified reception indicates 
that a message reception that can ta-ke place i~ missiilg in the specificatioil. A nonexecutable 
intera-ction i~ a reception or a. transmissio:l interaction ~hat i!! included in the specification 
but that cannot be exercised under normal operating conditions. The designer :s also 
notified of the presence of "tate deadlo!:k., and .,tate ambiguities. A sta.te deadlock occun 
when each and every process h3.S no possible transition out of its current state. :\ state 
ambiguity occurs when one process C3.n c'Jexist in a certain state with more than one state 
in any other process provided that all channels are empty. 

The synthesis algorithm accepts information (rom the designer a.nd uses it in incrementally 
building trees tha.t trace all possible executions o( each process' FS~i. The algorithm-ts in 
control of the incremental construction 1')£ the protocol. It must decide at which point to 
stop the growth of the execution trees; that is, when continuation cannot reveal a.ny new 
information about the prolocol. If a.ll channel capacities are (inite, or if there are only two 
processes with not more than one unbounded channel, then the termination of the a.lgorithm 
is guaranteed [Br3.n 801. Otherwise the trees can grow Indefinitely and heuristics must be 
used to deCide when to terminate their growth. For example, if channels were unbounded 
and there W3.S 3. transmiSSion loop in one of the FSM's, then the execution tree 
corre!:ponding to this FS~1 can grow indefinitely. The complexity o( the termination 
problem is the major limitation of this approach. The initial work done on the synthesis 
3.lgorithm ha.s been limited t<l only two communicating processes. In 3.n attempt to 
generalize the algorithm for more than two processes [Bran 801. it wa.s found th:l.t a different 
set of rules (stili three rules) sho11ld be used. However, a proof of the production rules 
being necessary 3.nd sufficient only exists (or the ca.se of two processes. 

Gouda a.nd Yu [Goud 84301 propo~ed a.nother synthesis methodology that accepts the complete 
speclfic3.tion of one process and produces a mirror-like specification of its communicating 
process. Simll3.r to the work of Zatiropulo. et 3.1. specifications are given as communic3.ting 
FS\l's. and the synthesized specifications 3.re guaranteed to be free from the same design 
errors. It 3.lso computes the smallest bound on the number of messages in transit in the 
cbanne!s at 3.ny one time. The synthesis methodology consists of two algorithrru. The first 
algorithm takes a.s input one process specification PI and produces two processes ql a.nd q". 
Q I IS computed from P I by adding some receiving transitions to it. Q" is then computed 
such that the communication between Q

I 
and q~ is deadlock-r:ee, bounded. with no 

'jtlspeclfied receptions. co nonexecutable receptions. and no state ambiguities. The (irst step 
of this algOrithm constructs a process Q" whose behavior mirrors that of input processes 
specification P. That IS, they have the same states and transitions with the conversion of 
each sending (receiving) transition in PI to a receiving (sending) tra.nsition in q~ with the 
same label. A loss of synchronization leading to deadlock, though, might happen if some of 
the ':ta.tes in P J have outgoing transitiocs which 301'4 both sending 3.ad receiving since both 
P I and qz mIght traverse sending tr2.ositlons. To resolve this synchronization problem, 
correction transition~ are added to P to produce Q. and also included in Q". This 
restricts the communication pattern ot the synthesized specification to a pattern of the 
communicating processes proceeding until a loss of synchronization is detected upon ..... hich 
they backup by following their correcting transitions. 

The second algorithm takes, a.s an input, Q
I 

and Q" and computes the smallest size for each 
of the two channels between Q

1 
and Q". The communica.tion channels a.re a.ssumed to be 

error-free 3.nd FIFO, a.nd the number or processes supported by the a.lgorithms is limited to 
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two. An advantage of this synthesis approach is that each of the two algorithrns takes a 
deterministic :.ime of O( st). where s is the size of the state space and t is the number of 
transitions in the input process specification. 

Bochmann and ~1erlin [Boch 83bl describe a. synthesis approach that in contrast to the two 
described above, does not produce error-free specifications. It has. though, the unique 
feature of employing the service specifica.tion of the protocol in the synthesis procedure. 
Both the duality principle of communication between processes and the fact thaL the 
combined communication of a protocol layer proceS3 should provide its service are used in 
the synthesis procedure. The synthesis algorithm t~kes as input the service specification as 
well as the specifications of the protocol layer (n-1) communicating processes and determines 
the specifica.tion of the remaining process (provided one is possible). The process 
specifications a.re given as sequence expressions and inter-process communication is modeled 
by di~ect coupling. 

A formula is used in generating the specification of the remaining process. The specifica.tion 
produced is maximal in the sense that it includes the largest number of execution sequences 
possible. and thus corresponds to the most genera.l process (including possibly redundant 
transitions). Also, it might reach deadlock when interacting with the other processes. The 
approach does riot guarantee that all execution sequences specified for the system will be 
produced by the interaction of the n subprocesses. If this is the case, then there exists no 
process that together with the given (n-l) proceS3 can provide the required system service. 
The communication channel is modeled as process in the layer, and the approach could 
support any number of interacting processes. 

This synthesis approach can be applied to the send-and-wait protocol as follows. Given the 
specifications of the Service to be provided, the ~edium, and the Sender of the protocol, the 
approach can produce the specification of the receiver process. 

4 Implementation Tools 

An implementation tool is a construction tool (a compiler in effect) that transforms a 
prutocol specification into code. \Vbile low-level protocols in the ISO hierarchy are often 
implemented in firmware, high-level protocols a.re implemented in software. For an example 
of the former. the rea.der is referred to [Goud 761. In this section we will limit our 
discussion to softwa.re implementations of prutocols. 

Clearly, one would like protocol implementation tools to be automated in order to minimize 
both the effort involved and the probability of errors. This depends not only on the protocol 
specification tool used but also on the progra.mming language used for implementation. and 
on the complexity of the protocol. Subsequently, we first examine the extent to which the 
various specification tools facilitate the automation of the implementation process and the 
general a.pproaches employed. We then examine some impll!mentation choices encountered 
when transb.ting protocols given in any specification tool. 

In our proposed taxonomy in section 2.3, we classified specification tools into behavioral and 
assertional tools along one axis and into state-based and event-based tools along another. 
Behavioral specifications. such as state machines and petri net-based tools. lend themselves 
more easily to direct translations into implementation than assertional specifications, such as 
temporal logic. This is because the former describe how the execution of a protocol 
proceeds, while the latter are concerned with requirements of protocol operation and not 
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with how the requirements are achieved. Furthermore, event-based specification are more 
difiicult to translate into implementat:ons tb.n state-based specification because they are 
concerned with the outcomes of the protocol operation a.nd not with how the outcomes are 
produced. [n summary, sta.te-ba.sed, behavioral spec:fications are the r:1ost suitable for direct 
translations into implementaticns. 

Let us :lext discuss seme works on implementing protocols specified In the various 
speciricMion tools. Proced unl specifications are clearly t he easiest to be transformed in to 
code because they are the richest in terms of expressing both the syntax and de~ailed 
sema.ntics of protocol operation. The resulting implementation would proba.bly be in the same 
langua.ge used for specification, with the 3.ddition of implementation specifics such as buffer 
management functions. 

The typical approach for implementing a FS?-.1 specification, as described in [Bach 821. is to 
tra.nslate it to a. looping program. with ea.ch cycle of the loop executing a tranSition. The 
loop would consist of a set of conditional statements with each testing for one kind of input 
interaction. Note that this construct is basically Dijkastra's guarded command [Dijk 751. 
For each of these cases another set of conditicnal statement3 would test the major stat~ of 
the module and ccmpute the next state accordingly. Sta.te machine specifications and hybrid 
petri net specific3.tions. which combine state tra.nsition specifications with high-level language 
statements. can be translated into code by simply transforming the state transition part3 a:3 

described ::'Jove and using the high-level ~tatements as they are or with minor variations in 
the Implementation. Bachmann, et a.t. [Bach 791 transformed m3.nu:1l1y a. state machine 
specification of the X.25 prolocol into an implementation in a Concurrent Pascal. Blumer 
:.nd Tenney [Blum 821 in translating a state machine specification of the ~ational Bure3.u of 
Standards' (:"iBS) tr::msport protocol into C implementations, were a.ble to produce 40% of 
the Implementation a.utomatically. 

Sequence expressions. which belong to the event-based specification class, can not directly be 
direc~!y tl"anshted Into implementa.tion. but need to be first transfQr:ned into a behavioral 
specification. Tl:.is is Similar to the derivation of a FSM that would generate a given 
reg·.!i:J.r expression. In implementing sequence eXFessions. which han mIlch in common with 
regular expressIOns. Schindler. et al. [Schi 8lJ uses-3. two pass compiler to derive a Flow 
Control Graph (FCG) from the speci:ication and then checks wtether this g!'3.ph is 
equi..-J.leot to ::ome extended finite state machine (EFS~1). [f so, a. PASCAL implementation 
of this EFSM is generated in the second pass. 

Ye!owitz, et 301. [Yelo 821 describe 3.0 experiment of manu3.lly implementing AFFIR~1 
algebraic specifications with its underlying abstract data types a.nd state machine models in 
the :'da progra.mming language. Abstract d:l.t:l types, state variables, and events in A.FFIR~1 
are m:.pped into types, objects. and tasks in Ada. respectively. In order to describe 
conC'Jrrency or the ir:1plementation of loc3.1 proce~ses, a. feature not suP?orted by :\FFlR~f. a. 
opeclal synchronization task: that does not correspoC!.d to a.ny AFFIR~1 event is added to the 
Ada Implementation. Any task corresponding to an AFFIR~f event has to get permission 
before proceeding with its a.ctions, and upon completion thereof, notifies the synchronization 
task. Then. the synchronization task can be used to implement any desired imitation of. or 
even true, concurrency. 

Finally, there are issues underlying an), implementation taol, which preclude completely 
automated implementations. Human intervention in protocol implementations is required (or 
two purpo~es. First. to add the implementation dependent parts. :!.nd message coding. 
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Second. the implementor often h~ to make certain choices based on the specific protocol 
being implemented. For example, whether to implement the protocol modules as part of the 
operating system or as cooperating user processes, and how will the different modules 
interact: using shared memory, or using some kind of interrupt mechanism, are two possible 
choices. 

5 Verification Tools 

Protocol verification consists of logical proofs of the correctne"" of each of the specifications 
of the protocol, and the mapping between the service and the protocol specifications and 
between the protocol and implementation specifications. Proof of correctness of a 
specification constitutes proving the validity of certain desirable properties that would assure 
its correct operation under all conditions. Proof of mapping constitutes proving that a 
specification of a protocol refined at a certain development phase correctly implem~nts the 
specification input to that phase. Proof of mapping between the service statement phase 
and the protocol design phase is referred to as design verification, and between the design 
phase and implementation pha.se is referred to as implementation verification [Boch 80301. 

To prove that a specification is correct, one h~ to prove tha.t it satisfies protocol safety 
and livene"" properties [Lamp 771. Sa.fety properties state the design objectives that a 
specification must meet if the protocol ever achieves its goals. Liveness properties state that 
the specification is guaranteed to eventually achieve these goals. For example, a.n informal 
description of a safety property S and a liveness property L for the send-and-wait protocol 
specification could be 

S the order ot aessages received is the saae as the order 
ot the aessages sent. 

L having received a new aessage, then retransaission 
aust continue until an acknowledgaent is received 
at the sender. 

Safety and live ness properties such as those listed above are highly dependent on the 
protocol under consideration. However, there are some general properties that are common to 
a.ny protocol such as include freedom from unspecified receptions, nonexecutable interactions, 
a.nd state deadlocks (as defined in section 3). Other ge~eral properties include progress and 
absence of medium over flow. Progress means absence of cyclic behavior (also called temp~ 
blocking) where the protocol enters an infinite cycle accomplishing no useful work. Absence 
of medium overflow means that the number of messages in transit in the medium is always 
less than a specified upper bound. 

The approach used in proving a mapping between a specification output from a protocol 
development phase and the specification input to the phase, depends on the specification tool 
used. Consider the design verification problem. If behavioral specifications are used to 
describe the protocol service, proof of mapping would be equivalent to proving that the 
components of the service specification are correctly implemented by those of the protocol 
5pecification. On the other hand, if assertional specifications are used. then the service 
specification constitutes safety and liveness assertions of protocol specification; and design 
verification coincides with proving the correctness of protocol specification. That is. since 
proving the correctness of protocol specification in this case constitutes proving that the 



protocol specific:ltion meets its service :lSsertions. it proves at the same time that the 
protocol specification i!! a correct implementation of the service !5pe::iiication. 

Since protacol implerr.enta.tions are specified using high-level laugu3.ges. they can be Yeriried 
;131ng traditional program verification tools. We will limit our discussioo throughout the rest 
of this section t<> surveying tools for the verification of service and protocol specifications. 
and the problem of design verification. 

5.1 State Exploration 

State explora~ion examines all possible behaviors of :l prot<>col. It is used in verifying 
specifications belonging to the state- ba.sed and bebvioral class of Fig 9( a). State exploration 
of the concurrent behavior o( the processes local to a protocol lapr produces a reachabilit'J 
graph. [n this graph. each node represents the combined states of all the local processes. 
and e:lch arc represents a loc:ll tr:lnsition. Starting trom the initial state of t~e graph. 
interactions of the processe!5 are examined by exploring all possible ways in which the initial 
states and all subsequent states can be reached. Each node the protocol can reach is 
checked for deadlock and unspecified receptions. The whole grapb can be then checked {or 
general desir3.ble properties of the protocol such a.s progress. absence of temp<;blocking and 
medium overflow ISuns 75. West 7830]. [n the ca.se of petri nets specifications. each sta.te in 
the reacha.bility graph corresponds t<> a marking o{ the net IAyac 81. Diaz 82. Jurg 841. 

The reachability graph (or the send-and-wait prot<>col is depicted in Fig. 10. All !!end 
events in the graph are followed by the corresponding receive event indicates absence of 
unspecified recep:'lons. and all the transitions in the FSM specification of the communicating 
processes in Fig. 3 have corresponding l:nks in the 1'"eSorhability g.raph indicates absence {rom 
nonexecut3.ble interactions. Als<>. there is no temp<;blccking because the only cycle in the 
graph whlch involves time-out (other than the repetition of the entire prot<>col behavior) 
performs useful work e:lch time a message is lost. In addition. since all nodes in the 
re3.ch3.bility graph have outgoing links. then there is no deadlock in the global beh3.vior o( 
the protocol. To see how a deadlock behavior would be detected by this approach, consider 
remoVIng the time-out tr3.nsltion from the Sender process in Fig. 3. The system would then 
deadlock at state ,) in Fig. 10 if the medium loses a message. :\ote that in produci:lg the 
gnph of Fig. 10. we followed the idealistic 3.Ssumption that time-cuts only occur after a 
message loss. However. if one a.ssumes that the time-out period can baYe any tiLle duration. 
theo one would get another reacha.bility grapb tb3.t differs from tbat in Fig. 10 in that 
tbere would be a time-out transition (rom each of states 4. and i through 12 back to state 
2. There would be then 3. possibility of temp<;blocking due t<> any of these time-out loops. 
This illustrates how the behavior of protocols C3.0 be time-dependent and the importance of 
integrating the verification o( timing requireme::.ts with functional .. :erificaticn. a.s wiil be 
dlscussed in more deta.il in section B. 

L'sing this verification tool. design verification consists of demonstr3.ting how the protocol's 
reachability graph C3.n be mapped t<> its service specification. Such 3. mapping for the send­
and-walt protocol is defined a.s follows: in Fig. 4 states 1 and 2 are implercented by st3.tes 
1 and 8 i~ Fig. 10 respectIvely. and event!! GET and DELIVER in Fig. 3 correspond to 
!!!c.s and mR.D in Fig. 10 respectively. 

The principal advantage of st3.te explor3.tion 
Automated st3.te exploration tools haye been used 
protocols; see for example rWest 78c. Boch 79J. 

lS that it couid be readily automated. 
successfully in discovering errors in sever3.1 
An automated and interactive verifica.tion 
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Figure 10: A reachability graph for the send-and-wait protocol 

tool C3.lIed OGIVE [Prad i9] has been used successfully in proving certain general properties 
of petri nets [Jurg 84]. 

A principal limitation of the state exploration is the explosion in the number of sta.tes as 
the the complexity of the protocol analyzed increases. 1'ote that the number of states in the 
reachability gn.ph is equal to the product of the olNl'lber of states in the FSM specifications 
of each oC the communicating processes. In fact, Brand and ZaCiropulo proved that the 
problem of verifying the general properties of communicating FS~f5, is generally undecidable 
[Bran 83] except Cor a restricted class of communicating FS~rs [Bran 83, Goud 84bJ. The 

state explosion problem can be partially overcome by verifying each protocol process 
separately and then the protocol as a whole [Goud 84b]. limiti .. g the number of messages in 
the medium f'West 82, ~oun 84]. assuming direct coupling between corresponding send and 
receive transitions such that there concurrent composition involves just one rendezvous 
interaction instead oC two possibilities due to the shuffling of the two transitions. using some 
equivalence relation to minimize the reachability graph [Rubi 82]. In addition. instead of 
verifying th~ comp,ete global behavior of 3. protocol. considerable simplification could be 
achieved by verifying projections of that behavior according to the various distinct functions 
of the protocol (for example separate connection establishment Crom data transfer functions 
oC data link protocols) [Lam 821. Symbolic execution in which states are grouped into 
classes that are specified by assertions [Bran 78. Haje i8. Bran 82] is another approa.ch to 
alleviate the state exploration problem. Various reduction techniques have been also used in 
verifying petri net specifications [Diaz 82]. 

Although state exploration is usually adequate in verifying general properties of protocols. it 
can not be used for the verifica.tion of specific protocol sa.fety and liveness properties such as 
properti~s Sand L given above for the send-and-wait protocol. These are addressed by the 
verification tool discussed next. 



5.2 Assertion Proof 
A.ss~rtion proof follows the Floyd/Hoare [Flay 67, Hoar 691 technique (or program 
verification. Safety and liveness properties of a protocol can be expressed as assertions. 
which are attacbed to different control points of a specification. To verify an assertion 
means to demonstrate that it will ~Iways be true whenever the control point it is ~tta.ched 
to is reached, regardless of the execution path taken to rear.h that point. 

\\oen a. protocol specification is decomposed into a number of local pre.cess specifications, 
local invariants are first verified for each process dire.:tly from their specifications. Global 
servIce invariants can be then verified using the already proven local assertions. Invariants 
of a specification are special assertions which describe properties that are true at ever! 
control point in the specification. To prove ~sertions of a loc::..l process. the introduction of 
auxiliary v~!'iables. whic'h are variables not required 10 implementing the protocol, is often 
required. For example. arrays of data. sent and rece:ved are required in a data transfer 
protocol employing sequence numbers. in order to make precise statements about the order 
in which messages are sent and received [Sten ;61. 

Assertion proof is related to the class of assertional specification tools described in the 
taxonomy of section 2.3. [0 partic1llar, it is used in verifying assertions associated with 
:pecificatlon using procedural languages [Krog 78. Sten 76j. state machines [Bech i7aJ, hybrid 
petri nets [Diaz 821. and temporal logic [Hail 80, Schw 82, Sabn 82a. Schw 831. [n the case 
of procedural lang'lages, inference rule~ (i.e. rules that define the effect of each statement 
type on the assertions preceding i~) for each type of statement are used in proving local 
assertions. This ~Iso applies to the high-level statements in a state machine speciiication. In 
the case of petri net-based models, net invariants deduced dire,=tly from the net structure, 
are used in proving local assertions. Witbin the tenlporal logic framework. temporal axioms, 
which constitute a tempora.l logic specification. 3re used in specifying and verifying safety 
lnd liveaess a.::sertio·Qs. Temporal logic b3.3 the unique feature of supporting the specific3tion 
lnd verific3.tion of live ness properties. 

Formul3.tiag a.::sertions and proving them requIre a great deal of user ingenuity. This 
difficulty could be partially alleviated by using some proof strategy such as induction on the 
~tr'lcture of speCifications [Suns 811 and by 3utomatlon as is provided by several verification 
systems: eX3.mples of verification systems that bave been applied to protocols are described 
in !Good 82, Suns 8230. Divi 821. [t should be noted though tha.t automating assertion proof 
is C'onslder3b!y more complex than autom3.ting state exploration. For a detailed comparIson 
verlfic3.tion systems used for protocols, tbe re3.der is referred to [Suns 8~b, Suns 831. 

6 Performance Analysis Tools 

Perform3.nce an3.lysis of protocols includes specification. and t'erification of timing 
reqUIrements, and et'aluation of per formancl! mea"ures. The beha.vior of protocols depends 
on tIming requirements, and so these requirements should be ~pecified and verified in order 
to ~certain correct behavior. The e((jciency of protocol behavicr is decided through the 
evaluation of its key performance mea..sures. The combination of these two performance 
an3.lysis problems is natural sInce both problems ar~ -'Jncerned with the timing behavior of 
p:otocols. This allows the protocol designer to st· the e((ect of various perform3.nce 
parameters ou their timing beha· .. ior. \Ve first ex .... le some issues common to the two 
performa.nce ana.lysis problems and then survey apprc::.~aes to ea.ch of them. 
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In order to analyze protocol performance. it is necessary to establish pedormance models 01 
both the protocol and the communication medium. operating environment, are required. 
The latter i~ provided in the form of data specifying the medium's characteristics. For 
example. in the case of data link protocol!! (at layer 2 of Fig. 1). the following medium 
characteristics should be specified: bandwidth, bit error probability, topology. medium 
configur3tion (i.e .. haIr or full duplex), and the ma.ximum bound on the number of messages 
10 transit at anyone time. 

:\ performance model 01 a protocol could be either formulated directly based on its 
operation. or extracted from a formal specilication of the protocol. VIle will refer to the 
former approach as direct and to the latter as specifir.ation-bas~d. In both approaches, the 
model should specify the global view of protocol operation. It should also include the 
spec ifications of the following features. First, since a. prot.ocol behavior is often non­
deterministic. the probabilities of all possible protocol events at the various instants of its 
behavior should be specified. Second. a representation of the times iuvolved in each of the 
events is also required. Typically, they are represented by their bounds or distributions. 
Bounds on an event time specify the minimum and maximum time before its occurrence. 
This time representation has' been used in [Mer! 76, Sabn 82b, Krit 84, Shan 841. 
Distributions of event times provide more complete description of their random nature. This 
time representation is often used especially in evaluating protocol performance measures; see 
for example [Suns i5. Rudi 84, Noun 84]. Nounou and Yemini combine the specification of 
eve~lt times and probability in a marked point process model of protocol performance [Noun 
841. Third. some statistics for message lengths should be provided. These- are typically 
con::idered as constants or represented by their distributions. 

6.1 Specification and Verification or Protocol Timing Requirements 

Protocol timing requirements are predicates stating the correct timing relationships between 
protc('ol events. Consider. for eXJ.mple, a retransmission on timt:-out protocol such as the 
send· aDd-wait protocol. The correct funct.ioning of the protocol depends, among other things, 
on the requirement that time-out would occur after a message loss only with a yery small 
probability. Another example of a. protocol timing requirement is to restrict the lifetime of 
messages occupying the protocol system [Sloa 83]. A third example of a timing requirement 
that underlies the behavior of many protocols is that if they do not achieve progress within 
a specified amount of time, then they either reset or abort. Such 3. requirement is crucial to 
prevent protocols from being stJ.lled due to exceptional situations 5uch as when one of the 
;>rotocol process has crashed. or when the tr3.nsmission iinks are hea\'ily leaded. 

Consequently, it becomes apparent that the classical correctness paradigm of safety and 
liveness is not enough. Verification of safety properties might be complicated by the 
wnsideration of unrealistic protocol behaviors that do not satisfy the given protocol timing 
requirements. Also. proving that the protocol's goals will be eventually achieved is not 
enough if these goals are achieved after a. .... ery long time. In fact, 3. timing error was found 
in the alternating bit protocol [Bart 69]' which has been proven safe and live [Yemi 82]. It 
was shown that the protocol would never achieve its eventual goal if the time-out rate is 
not properly set. Thus the ultimate goal of verific3.tlon tools should be to unify verification 
of protocol timing requirements with the verification of their functional requirements. 

Early work on the specifica.tion of timing ;-equirements was done by Merlin [Merl 761 using 
time P:\T's (see section 2.2.4). A bounds representation of time was used to describe 
minimum and maximum firing times for a time-out transition in the alternating bit protocol. 
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Similar time representation ha.s been used by Saboani [Sabn 82bl but for FS\i specifica.tion!!. 
~ote that in both of these ca.ses, the state exploration of the concurrent behavior of the 
loca.l processes resulting in a. description oi the protocol global oeh3.vior, should be modi!i'!d. 
Consider a. state in the globa.l sta.te description where n possible transitions are possible. Let 
t. ' and t. denote the minimum and maximum time for transition i, respectively. The 
c~';~~spondi~g~~ansition in the global description ha.s the bounds of (Min[t. . J,_\fir.[t. . D, 

•. mln "1'" where Min is an n-ary operation to compute the minimum. A transition in one of the ocal 
processes with t . greater than the upper bOllnd on the corresponding tra.nsition in the 
global behavior, m~~uld be then time-wise unrealiz.able. The limitation of these two efrorts 
sterru from the sta.te explosion problem associated with the !:pecification tools used. 

~ounou and Y ~mini use a. time cOllstra.int relation "<" to define correct orderings of 
protocol events involved in it~ global behavior. Consider the example of the send-and-wait 
protocol without the a.ssumption that time-out occurs- only after message loss. Let the time­
oui event be denoted by 'T' message 1053 by 7jd' and the global behavior of the protocol by 
G. The time constraint 'ld<a'T states tha.t whenever in G there is a choice between "'ld and 
'T' then the probability of 'T occurring is zero. This would ensure that there are no pre­
mature time-outs. (The reader is referred to [Noun 841 for the complete time constraint.) G 
can be di',ided into a set of behaviors satisfying the given time constraint and another set 
that doe!! not. :\ behavior satisfies a time constraint whenever there is a choice between the 
involved events. the event on the right hand side of the time constraint occur.!. Let G

TC 
denote such a set of behao-iors. The protocol's timing requirement could be then given as 

Probability[GTcI ~ 1-£ 

where £ is a ~mall proba.bility error. The tlmmg requirement sta.tes that the subset of 
protocol beha.viors [GTe!, in which time-outs occur only a.fter messages are lost, happens 
with a very high probability. Using rules for evaluating behavior proba.bility, the probability 
of G TC can be eva.luated as a (unction of the time-out rate. :\05 a result, an upper bound of 
the time-out rate for a given £ is computed. A distribution representation of In this 
approa.ch event times were represented by their probability distribution. 

Shankar and Lam [Shan 841 a.ssume a. constant time representation and Ilse time variables to 
refer to the occurrence times of events. By including time variables i:l the enabling condition 
of an event ~. time constralOts of the form "event e can only occur after a. given time 
Interval", Time constraints of the form "event e will occur within a certain elapsed time 
interval" are st3.ted as safety properties and veriiied accordingly. 

6.2 Evaluation or Perrormance Measures 

Key protocol performance measures include ~ucution time, delay, and throughput. The 
execlltion time i!! the time reqUired by the protocol to re3.ch one of its final states. starting 
from the initial state. It would be a valuable performance mea.sure for terminating protocols 
such a.s a connection establishment protocol where it represents the time required for the 
distributed processes involved in the protocol to get connected. Throughput is the 
tran5mission rate of useful data between processors, excluding any control information or 
retransmission required by the protocol. It indicates how efficiently the transmission channel 
is utilized. Delay is the time from starting a message transmission at the sender to the 
time oi successful message arrival at the receiver. It is useful in indicating the degree of 
service tha.t the protocol provides. 



Two tools are typically used III evaluating protocol performance measures: analytic tool,'j, 
and ,'jimulation tool". 

6.2.1 Analytic Tools 

Va.rious instances of resource ,=ontention and the related queueing delays are often witnessed 
in the operation of communication protocols. For example, in the send-and-wait protocol a 
new message arriving at the sender has to be queued if the sender is busy waiting for the 
successful acknowledgment of a previouslY5e!l.t message .. Therefore, queueing theory provides 
a convenient mathematical framework for formu!c.ting and solving protocol performance 
models [Klei 7.5. Koba 78, Reis 82]. In such a queueing model, the server denotes the 
protocoi system under consideration which i:3 typically modeled as ~ stochastic process. 

Let us demonstrate how the delay of the send-and-wait protocol caD be computed using 
basic probability laws and the protocol's FS~{ spec.iijcation. Assume that the time involved 
in each transition of the reachability graph in Fig. 10 is aD exponentially distributed random 
v3.riable. Also, assume that a negligible delay is involved at both the sender and receiver 
ends of the medium. Based on these assumptions and considering a single cycle operation of 
the protocol. a modified reachability graph is shown in Fig. 11. The problem can be stated 
as follows: given a medium bandwidth of 9BOQ bits/sec (for terrestrial links), mean message 
and acknowledgment lengths I of 1024 bits (therefore the mean transmission time t, is 
O.017sec/message). bit error probability Pb of 10.5 , mea.n propagation delay td of 0.013 
sec/message, and mean time-out tT of 1 sec/message, evaluate the mean value of delay d 
between state 2 to 8 in Fig. 11. 

Recall from section 1 our assumption that time-out only occurs after the mediuI:l has lost a 
message, this indicates that the probability of time-out is the same as the probability of a 
lost message. Therefore, the probability of the time-out loop denoted by p is given by 

p = 1 • (1 - PbY 

which is approximately 
-/p 

1 - e b if [Pb < < 1 

The mean delay is given by 

E[d] p/(I·p) (tT + t,) + 3tt +2td 

- 0.357 sec/message 

a.nd the ~econd moment of d is 

E[cr.] = p/(l-p) (2tT
2 + 2t/) 

+ ?p2/0_p)2 (tT + t,)2 + et
l
:! +-tt/ 

= 0.09 

(8.1 ) 

(6.2) 

8.3 

Deri\'ations of equations 6.2 and 8.3 are given in appendix 1. .~sume that messa;es arrive at 
state '2 in Fig. 11 with rate >., then the protocol's mt:an tron.'J/er timt: T which is the sum 
of delay and a. waiting time is given by the Pollaczek-Khinchine formula [Klei 75J: 

T = E[d] + (A E[d2])/(?'[I-A E[d]]) (8.4) 

[n Fig. 12. we plot T versus A for various message lengths. As expected, T increases as A 
increases 3.nd the system becomes sa.turated when A approaches I/E[dJ. Also, as I increases T 
increases due to the increases in transmission times and p. 
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Figure 11: A modified reachability graph for the send-and-wait protocol 

Enmples of 5pecific~tion-ba.sed performance evalu~tion tools include works by ~iolloy [~foll 
81] and ~ounou and Yemini [Noun 84]. Molloy introduced stochastic petri nets (SP~) which 
are petri nets extended by assigning a random (iring delay to each transition in the net. 
The reacbability set of the net is first generated and analyzed for logical correctness. then a 
~1arkov proce5S. tbat is isomorphic to the set. is generated. The ste~dy-state probabilities of 
the ~f:ukov process can be calculated and used in modeling a.nd c::Jmputing throughput and 
delay. This approach IS limited only to exponentially (in the case of continuous 
repre5ent3.tion of transition firing times) or geometrically (in tbe discrete case) distributed 
firl::lg dela.ys. :-';ounou and Yemini associate probability and time a.ttributes witb protocol 
beh3.vlors which are specified algebraically. L'sing rl1les for evaluating the attributes from the 
distributions of loter-event times. behavior 3.ttrlbutes can be determined. These a.ttributes 
C3.n be used 10 defining and computing such measures as throughput and delay. l'niike the 
previous appro3.ch. there is no inherent restriction on tbe distnbutioo of event times. Other 
:pecifica.t:on-based approa.ches to protocol performance evaluation C3.0 be found in [Bolo 
84. Krit 8-1. Razo 8-1. Rudi 84]. 

The specification-based approa.ch has the a.dvanta.ge of allowing performa.nce evaluatioo tools 
to be automated. This would also facilitate its IOtegr3.tion with other developrr.ent tools in 
a protocol development eovironment. However. the approach largely depends on devising a 
mapping between protocol specifica.tion a.nd the performance model. This mapping might be 
in some cases too restrictive as is the ca.se. for example. with the markovian property oC the 
resulting performance model of SPN's. 

Examples or works based on the direct 3.pproach can be found in [Gei~ 78. Tows 79. Yu 
79, Bux 80]. In this approach. all possible behaviors of the protocol under study has to be 
directly determined (rom a human understandiog of its opera.tion. 
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Figure 12: Transfer time vs. arrival rate of the send-and-wait protocol 

6.2.2 Simulation 

Ana.lytic performance models of real-life protocols are usually intractable. In this ca.se. 
Simulation IS used in evaluating protocol performance. Even when an approximate model of 
the ~ystem is ~ought. simulation could be a valuable tool in validating the modeling 
approx:mations a.od a.ssumptions. 

In the ca.se of specification-ba.sed simulations. the protocol specification used should be 
executable. Referring to our taxonomy of Fig. 9, a method that is ea.sily executed is one 
that could also be ea.sily transformed into an implementation. Therefore, the same discussion 
in ~ection 4 on the ea.se of implementing a protocol specification also applies here. An 
exa.mple on specification-ba.sed simulation of protocol can be four.d in [Regh 821. Direct 
protocol simul3tions. on the other hand, are ba.sed on a. protocol implementation. A direct 
simulation of the HOLe procedures wa.s carried out by Bux, et 301. [Bux 82]. 

The shortcomings of simulation are clearly its high cost in terms of time and effort. and the 
little understanding of the system gained. The second problem could be alleviated through a 
large number of simulation runs. 
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7 Testing Tools 

TestlOg is a validation tool thaI, can be u~ed t.:l examine whether a protocol implea:entation 
satIsfies the functional requirements set by its :::tJ.odard. me3.Sure it::: per~orma.nce aed 3.SSeS3 
its robustness in reco .. 'ering from ~xcept:onal conditions. Exhaustive testi~g b3..'5ically aims at 
~xe~c;smg ail possible beta,vIors of tbe protocol 'lOder consideration. This. howey'!:. is not 
realistic for rr:ost re3.l·life protocols which typic3.lly exlibit a large set of possible behaviors. 
Therefore. part of the protocol testing problem is to find a way of identifying the most 
probable pro~ocol behaviors and tbus produce testing results which a.re within 3. certain 
r3.nge of ac.:ur3.cy. Conseq,:ently, testing 3.S a valida.tion tool i3 weaker tbn formal 
verIfication bec3.use it does not guarantee correctness and is less rig~rous than a.nalytic 
methOdS of performance an:?lysis bec3.t:se :t can only provide rr:e3.Surements fer specific 
performance par3.meters. :\evertheless. testing :s ~ valuable ~'alidatiQn tool required to 
confirm tbat the Implementation under t~st (leT) satisfies the standard implementation of 
the protocol and thus ensure that difierent implementations of the protocol will be able to 
in te roetwork. 

In the context of the ISO hierarchically layered architecture. a. pre:oc~l module at ~ayer :\ 
h3..'5 two - interfaces: the ~ interface tbrough which service requests to layer ~ are provided. 
and the :'-<-1 interface through which ia.yer :'oJ requests service~ from layer N·l. In order to 
test an implementation of sucb a pror,ocol. one must test its response to erroneous 3..'5 well as 
correct requests across each .Jf these two interfaces. A.o incorrect request at the N interface 
IDdica:es an iocor:-ect ~en'ice request. but an lOcorrect response at the ~-1 ~teriace could 
result f:-Or:l e:ther an incorrect response from the remote peer module or an error in the 
aaDsm:SSlon of a correct response through the communication medium. All these 
pOSSIbilItieS must be covered in testing an IrT. 

Testing of protocols can be either dir~ct or r~mot~_ In direct testiog tbe Il'T is tes:ed in a 
sImulated en',lronment wbere correct and (3.ulty re~ponses from the lower protocol layer are 
~ImlJ!a:ed. a.nd the results compared With those of a standard reference implel!!entatton. In 
re~ote teSting, 1n IL'T is :ested In ItS normal Oper:ltlOg environmen~, · ... 'bere it is at one end 
of tbe network and some reference Implementation of the protocol is at the other end. The 
refe~ence ImplementatIon IS driven by the protocol tester and the opention of the 
Imple!:1t'ot3.tloo under test is observed remotely_ Note that testing in the 5econd approach is 
prob3.bly ~ore complete and more deta.iled than the first appro3.ch. This is at t::e cost of 
Incre:l.5ed compleXIty how eyer. 

Several groups around the world are currently Invol~'ed 10 proposals :or testing centers th3.t 
would be responSIble for carrying out t!le remote tests and accordin~ly provide certi{icat~s 
descilblog the performance of a client's (an irr.plementor of a. pretocol implementation) IL'T 
on them. The groups include the :\aticnal Physics L~ooratorf l~PL) group In Ecgland 

[Bart 80, Rayn 821. tbe Agency' de I'Inf'JrmatIq'le (AD!) In Fra.::lce [A:lS3 81. An!:3 82]' the 
Gesellschaft fuer ~fa.thematlk und DatenverarbeltuDg (GMD) in Ger;r.any [F3.lt 83], and the 
~ational Bureau of Standards l:'-<BS) in the LISA [:\figh 8~1. Other specialized protocol 
testing architectures for certain network architectures ha.ve been proposed. For example. tc.~ 
X:!5 testing (acdltie5 for the Datapac network [\Veir 78]. an a.rchlte:~~lre (or testi~g IB\1's 
systems network archItecture (5:'\.-\) protocols [Cork 831. and a. BX.~J (an X.::!S cO!:1patible 
protocol de ... ~loped at Bell Labs) certIfic3.tion r3.ciLty [\teli 82], We wi:i restrict our discussion 
to general ~estlng architectures, 

\\'e examine next the two m:'ln Issues pertinent to testing: login! arcbitectures (C;j testing 
:lnd technIques (or selecting test 5equecces. 
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7.1 Logical Architectures ror Testing 

~rithin the fram~work ~f the ISO model. a common logical testing architecture is given In 

Fig. 13. In this architecture the peer protocol implementation (PPI) of the Il:T is a 
combination of a reference implementation and a protocol-data.-units generator (see Fig. 13). 
The PPl at layer N together with reference implementations for layers 4.5 ..... : .... q are located 
at the test center. while the IUT is 3.t the implementor's site. Both ends are connected to 
an X.25 network which provides the first three network layers l The protocol-data-units 
generator is responsible for generating correct N level service requests. requests for the 
generation of N-th level protocol errors, indications of undetected :'-i-th level protocol errors, 
and acts as an encoder and decoder of both valid and invalid (N-l) service. The PPI and 
the protocol-data- units generator are driven by a. test driver (TD) a.t the testing cen tel'. 
The test responder (TR) is the software module which acts as the user of the N sen-ice, and 
whose operation is totally predictable so that the results of the tests depend only on the 
behavior of the IUT. The TD and TR c~mmunicate through a non-standard protocol. 

Based on this architecture. the various groups mentioned above differ in the following 
respects. At GMD. the TR function is performed manually thus making testing inexpensive 
for the implementor but slow and error-prone. At 1'BS. the TR is the same as the TO 
except that all send (re'ceive) requests a.re changed to receive (send) requests. In this case 
no special TD-TR protocol is required. At both ADI and NPL. the full architecture is 
supported with the difference that the TR at ADI-...can handle multiple connections through 
the leT which is necessary in testing protocols with multiplexing functions. whereas at NPL 
the TR handles only one connection at a time which has the advanta.ge of a simpler TR. 
Multiple connections at NPL are handled by parallel instantia.tions of the same TR design. 

In order to assess the IUT, it is necessarJ to test its response to erroneous and correct 
requests 3.cross both the Nand N-l interfaces. However. if the N-l service of the protocol 
being tested is not end-ta-end (as in the case of the packet-level of the X.25). then it is not 
possible to control it remotely. Therefore. a portable box is introduced between the 
communication medium and the implementor's system (see Fig. 14) in the testing 
architectures established at ~PL and ADI. It is used to detect any errors introduced by the 
sub-network and introduce error5 in it upon request from the testing center. 

Clearly. m3.king testing independent of the protocol being tested a.s much as possible is 
highly desirable so that only minimum variation5 need to be ma.de when a protocol at 
another network layer is tested. This can be 3.chieved by minimizing the protocol dependent 
parts of the architecture. and automating the process of test sequences selection. The only 
part of the testing 3.rchitecture tha.t needs be protocol dependent is the protocol-data-units 
genera.tor. especially the part for testing normal and faulty N service. This dependency 
could be minimized by automa.ting that part of the gen~r3.tor such that it is derived from 
some specification of the protocol. 

7.2 Test Sequences Selection 

A test sequence is an input request to the (liT generated by the TD or TR. Since the 
source of the rUT is typically not provided by the implementor. the selection of test 
sequences at the testing center ca.n only be derived from the service and protocol 

10nly end-ta-end protocols above X.25 are tested III such a.rchitectures 



32 

~T THE rESTI~G CL~TEI AT THE IWPLEWE~TOi'S SITE 

TO-Ti PiOTOCOL 

.J I TO 1------------------------1 Ii 

I 
N SEiVICE 

~ PROTOCOL 
PPI ------------------------- lUT 

SLIGHny [~B.\.'KED N SEiVICE 
N-l saVleE 

N-l PiOTOCOl· 
~-l PROTOCOL ------------------------- N-l PROTOCOL 

nIPlE.\4DH nON nIPLDfE~H nON 

N-2 SEiVIeE 

! LAYEi '1-2 COIll\l\:~IC\ TION CH.\.';~EL 

Figure 13: Logica.l :uchitecture (or testing 

H THE TESTr.'IG 

CDTEi 

TESn~G 

CCiTEi 

Figure H: 

COM.l,(l'N I CAT I 01'15 

WEOIL1f 

\T THE 
IMPlDlENTOi'S 

SITE 

PORTABLE 
BOX 

IMPLDIE~T02 . 5 

SYSTD' 

Physical architecture iac\udiag the portable !Jait 

spe-.:lfication of the protocol under consideration. Test sequences could be specified simply loS 

seque:lces of commands, as state tables descrIbing the various states o( testing a!ld the 
eveOlS and 3.Ssociated actions (or e3.ch st3.te, or using a test specification language that might 
be then translated into sta.te table3 [Rayn 82\. 

Testing is said to be complete if all the possible requests that could be applied to the Il'T 
are covered by the test sequences. L"n(ortunate!y, theoretical results [Piat 801 show tha.t 
without knowledge of the protocol internal state the size (mea.sured 3.S the number of 
distinct sequentIa.l inputs applied to the It.:T) of a complete test sequence h3.S an upper 
bOllnd of O(n") where n is the size of the state set of the protocol reference model. 
OtherWIse, with an a.ccess to the protocol internal state this figure comes down to O(n1}. 
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These bounds could be very large for complex protocols such as those involving sequence 
numbers. 

However. there are other methods for near complete tests sequence s~lection [Sari 82, Cral 
83). As an example, we will use the transition tours method described by Sarikaya and 
Bochmann [Sari 82] to calculate a test sequence for the send-and· wait protocol. This 
method is used to derive test sequences from a. protocol specified formally as a state 
machine but using only its FSM part. A transition tcur sequence is an input sequence 
starting at the initial state and covering all the transitions at least once. The length of the 
sequence for our protocol example (see Fig. 11) is 8 and the sequence is given by 

In general. the upper bound on the sequence length is q + (q-lXn-l). where q is the number 
of possible transitions. This is the worst case where a traversal of all (n-l) states is 
required to include each transition in the test sequence. Thi~ method detects all operation 
errors (errors in the output function of the state machine). but it does not detect all 
transfer errors (errors of the next state function). 

8 Conclusions 

In surveying the various protocol development t~ their dependency on the specification 
tool used has been demonstrated. Based on our taxonomy of specification tools described in 
section 2.3, we can conclude that behavioral specifications are better suited for synthesis. 
implementation. performance analysis and testing tools. Assertional specifications. on the 
other hand. offer better support for verification tools. Belonging to the latter class are 
temporal logic specifications which can adequately describe both static and temporal 
requirements of protocol behavior. We expect future proposals of specifications tools to 
combine the temporal logic framework with other specification models. In addition. since 
specification-based performance analysis tools are starting to attract much interest. 
specification tools should offer better support for the specification of protocol timing 
requirements and performance measures. 

~10st of the past research on protocol validation tools has ignored the specification and 
verification of such protocol timing requiremects. \Ve believe that such requirements are 
essential for the correct functioning of most protocols. Int.egrating the analysis of timing 
requirements in functional validation tools. i.e., verification a.nd testing tools. would exclude 
unrealistic protocol behavior and thus simplify their functional validation. 

In addition to the surveyed works on individual protocol development tools, there has been 
recently a growing interest in integrating them into development environments. An ideal 
development environment should provide a consistent user interface to the various tools 
supported. Also, recognizing the visual attraction, clarity and wide acceptance of graphical 
descriptions of protocols, we expect the user interf3.ces to employ state-of-the-art technology 
in supporting such descriptions. Technological advances of graphical display devices with 
colors, multiple window displays. high resolution. and numerous pointing aids (e.g.. tablet, 
mouse and light pen) can be used to aid the protocol developer in constructing and 
validating complex real-life protocols. The integration of specifica.tion-based development 
tools in environments would facilita.te both the fUIlctional and performance validation of 
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protocols stJ.rting from ea.rly development pha.ses. Thus the costs incurred in iterations 
through the development phases after post-implementation detection of errors. would be 
reduced. Furthermore. as more protocol standards are developed. more experience will be 
required in the a.pplication of current ald future tools a.nd environments to these sta.ndards. 
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