
Development Tools For Communication Protocols

Nihal Nounou and Yechiam Yemini
Computer Science Department

Columbia University
~ew York, New York 10027

February 1985

ABSTRACT

The past decade has witnessed a surge in research efforts aimed at developing tools to aid

the designer of communication protocols. ~1ost of these efforts have been directed towards

designing individual tools. Recently, however, there has been a growing interest in building

development environments that support an integrated set of such tools. This paper priSents.

a 5urvey of commonly used protocol development tools. Two categories of protocol

development tools are examined: construction tools to successively refine communication

protocols from specifications to working systems and validation tools to a.ssess whether the

refinements meet functiona.l a.nd performance protocol objectives. Construction tools

surveyed include tools for specification, synthesis. and implementation. Validation tools

surveyed include tools for formal verific3.tion, performance analysis 3.nd testing. A simple

.;end-and-w3.it protocol is used as an example throughout the paper.

Table of Contents

Introduction
2 Specification Tools

2.1 Requirements of Specification Tools for Protocols
2.2 Survey of Specification Tools

2.2.1 Finite State ~1achines
2.2.2 State Machine t-.1odels
2.2.3 Formal Grammars and Sequence Expressions
2.2.4 Petri Net-Based Models
2.2.5 Algebraic Specifications
2.2.5 Temporal Logic Specification
2.2.7 Procedural Languages

2.3 A Taxonomy for Specification Tools
3 Protocol Synthesis Tools
-4 Implementation Tools
5 Verification Tools

5.1 Sta.te Exp loration
5.2 Assertion Proof

5 Performance Ana.lysis Tools
5.1 Specification and Verification of Protocol Timing Requirements
5.2 Evaluation of Performance Measures

5.Z.1 Analytic Tools
5.2.2 Simula.tion

7 Testing Tools
7.1 Logical Architectures for Testing
7.2 Test Sequences Selection

8 Conclusions

1
3
4
5
5 -j
8

10
12
13
15
15
18
19
21
22
24
24
25
28
27
29
30
31
31
33

Figure 1:
Figure 2:
Figure 3:

Figure 4:
Figure 5:

Figure 6:

Figure 7:
Figure 8:

Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:

II

List or Figures

Illustration of protocol layen
A local view of a protocol layer
A protocol specification (or the send-and-wait protocol uSing FS~fs (:J.)
Sender (b) Receiver (c) ~fedium
A service specifica.tion for the send-and-wait protocol using FS~fs
A partial state machine specification of the sender process o(a
modified send-and-wait protocol with binary sequence numbers
A formal grammar specification (or the sender process of the send­
and-wait protocol
A send-and-wait protocol specification using petri nets
A state-based temporal logic specification for the sender process of the
send-and-wait protocol
An i(lustration of the proposed taxonomy of specification tools

A reachability graph for the send-and-wait protocol
A modified rea.chability .graph for the send-and-wait protocol
Transfer time vs. arrival rate of the send-and-wait protocol
Logical architecture for testing
Physical architecture including the portable unit

6

6
8

9

11
14

17
23
28
29
32
32

1 Introduction

In a computer network, distributed processe~ can comm~nicat.e and share information
through message-exchange. Such communication involves a rather complex set of problems
since the distributed processes are allowed to concurrently access shared resources and to
proceed asynchronously. ~1oreoyer, they may be executed by heterogeneous processors, and
their communication channels are often unreliable -- they might lose, duplicate, reorder,
and/or corr11pt messages. Communication protocols are thus required to regulate the
communication between distributed processes in a computer network. They constitute a set
of rules and 3. set of message formats. The reader is referred to [Tane 81] for a tutorial on
protocols.

The Internationa.l Standards Organiza.tion (ISO) ha.s proposed a reference model of protocol
a.rchitecture for Open Systems Interconnection (OSI) (described in !Z:mm 801). The model
has seven hierarchical layers illustrated in Fig. 1; protocols at layers 1 through 4 are
referred to a.s lou·-let·d protocols and those at layer~ 5 through i a.s high-/evd protocols.
The purpose of t'a.ch protocol layer is to provide senJices to the layers above while
concealing the details of the layers below. A description of these services including the
service interaction primitives, their possible orders and their possible panmeter vailles, is
referred to a.s the layer's service 8pecification. A protocol designer is also concerned with
the internal structure and operation of the layer's black box which is illustrated in Fig. 2.

protocol la.yers virtua.l .ediua

/
.~PPLIC.~ TIO~ -, I- -

PiESDT.~ nON 6 I- -

SESSIO~ 5

TH.~SPOiT 4 - -
~ET'Oil 3 I- - - - - - - - - -

D.H.~ L 1.>;(2 I- - - - - - - - - -

PHYSICAL 1

\
phys1cal .ed1ua

Figure 1: Illustration of protocol layers

In this figure ea.ch protocol process (also referred to in the litera.ture a.s component, module,
entity, and party) resides typically at a different site and communicates with other par (i.e.,
neighboring) processes according to the protocol rules. These rules describe how the
processes respond to commands from tbe upper layer, messages from other peer processes
(through the lower layer), a!ld internally initiated actions (e.g., time-outs); they are referred

~+1 LHEi

"I LAYEi

"1-1 L.HER

2

~ lJSER CORRESPONDE~T ~ CSER

PROCESS
<OOST .Id

Figure 2:

N SERVICE (PROVIDED)

LAYEi ~

PROTOCOL

~-l SERVICE (USED)

MEDILli

PROCESS
(OOST B)

A local view of a protocol layer

to as the protocol spaification. Finally, the protocol specification refined into actual code
deSCribing a.spects of IOternal behayior related to inter-process communication and deta.iled
external beha lor of each protocol process is referred to a.s protocol imp/t!mt!ntation.

This slJccessive refine:nent of protocols indicates 3. pha.sed approach to their development. In
such a framework of pha.sed devdopment (for detads see in par~icular [Baeh 76, Leho
80. Oste 80]) there are three main pha.ses: "t:rt·ict: 3tatt!mt:nt. protocol dt:3Ign. and
Impl(mt:nt!ltion. Dt:t,t!lopmt!nt tool" are requIred ~o support the eyolution of protocols (rom
speclfic:J.tions into working systems. This survey covers two kinds of protocol development
tools: constructIon tool" (or developing and refining protocol specifications and t'a/idatlon
tool" to assess how a specification meets its fu::ctional (e.g .. de:l.dlock freedom) and
performance (e.g .. m~imizing throughput) destgn objectives. Although development tools for
ge::.eral software systerru have been studied extensively (see for inst:u!ce [Lond 80. Ridd
80. W3.SS 81], the!r applica.tion to protocols is Jot straightforward. Protocols involve processes
that are distributed. concurrent. asynchronous, communicating through unreliable
transmiSSion mediums. and whose behavior is often time-dependent. The5e features af(ec~
protocol development tools In various ways. First. the communIcation na.ture of protocols
becomes the prime concern underlying the tools. The basiC objective of protocol validation
tools, for example. is to assure robustness and efficiency of the commun:c~tion between the
protocol processes. Second. timing requirements as well a.s functiona.l requireme::lts of protocol
behaVior should be conSidered in the v::.rious tools. This integr~tion provides a more
realistic and r~latively simpler descripr.ion of protocol behavior than when only functional
requirements are considered. Third. tools used (or genera.l softwa.re systems might h~ve
varied importance (or protocols. One example of a tool that is rarely used for general
software. but that is becoming highly desirable for protocols is certification of independently
developed protocol implementations to en5ure that they comply with a. standard. and thus
will be able to internetwork:.

3

Recently there has been a growing interest in building protocol development environments
tha.t integrate the various development tools required throughout the entire protocol
development. An ideal protocol development environments should encompass a comprehensive
set of tools and a methodology for their use. Therefore, a prime objective of this survey is
to exa.mine the complete set of commonly used protocol development tools. Other surveys
concerned with only subsets of the tools examined in this paper can be found in [Boch
8030, Dant SO, Hail 81, Suns 81, Diaz 82, Schw 82, Suns 83].

The paper is orga.nized as fellows: in sections 2 through 4 we survey the con"truction tool3
including specifica.tion, synthesis, and implementation. respectively. Sections 5 through i are
surveys of validation tool" including forma.l verification, performance analysis, and testing
respectively. Finally, in section 8 we present some conclusions and remarks on possible
directions for future research.

2 Specification Tools

Specification tools are construction tools required to describe a protocol at each of its three
development phases as a service specification. protocol specification, and protocol.
implementation. High-level languages are used (or describing implementation specifications.
These will not be discussed here; throughout the rest of the paper we limit our discussion to
specification tools required for the service statement a.nd protocol design phases.

Experience has shown that protocols specified informally are error-prone even when
augmented with some graphical illustrations. For example, 21 errors have been found ['Nest
78301 in the informal specification of the X.21 protocol [X.21 181 (a protocol at layer 2 in
Fig. 1); they are generally due to the ambiguity and incompleteness of the informal
specifications. F ermal specifications. on the other hand, are concise, clear, complete,
unambiguous, and often used as the basis for other protocol development tools. Protocol
development tools are indeed highly dependent on the specification tool used. For example,
a difrerent Verification tool might be r~quired if the specification tool used in the protocol
environment is changed.

Throughout this section and subsequent sections, a simple send-and-wait protocol will be
used as an example. The basic function of the protocol is to provide robust message
tra.nsfer between a source process C and a. destination process D over an unreliable
transmission medium. There a.re three distributed processes involved in the protocol: a
~ender 5. a receiver R. and a transmission medium ~L The operation of the protocol is as
follows. If the sender is idle and receives a new message m from a. source C, it sends it to
the receiver through the medium 'Rhich either delivers or loses it. The sender waits for an
acknowledgment a to a.rrive, upon which it aga.in wa.its for a new message from the source.
A new message a.rriving at the sender that is busy waiting (or the acknowledgment of the
previous message. is buffered. To recover from cases of message a.nd acknowledgment loss.
if the sender does not receive an acknowledgment after a time-out period T, it retra.nsmits
the same message and then waits again for either an acknowledgment or a time-out. The
receiver process waits for the new messa.ge m to arrive (rom the medium. after which it
delivers it to a destination D and then sends an a.cknowledgment a to the sender through
the medium. For the sake of simplicity, it is assumed that the medium does not lose
acknowledgments. and that the time-out pHiod is ideally set such that the probability that a
time-out occurs only after a messa.ge is lost is ~al to 1. If the sender and receiver
processes are at one protocol layer N. then the source and destination processes would be at

4

~he next higher layer ~ + 1 represen tin!; the user of the serllces of the layer ~, and the
medium process represents the next lower layer ~-l.

It shou.J be noted that this is not the most efficient data. transfer Fotocol. For example.
in order to make full use of the medium's bandwidth, a more sophisticated protocol would
send several messages successivdy instead of one at a time. In this case it is necessary to
:l.Ssign sequence Lumbers to messages in order to differentiate between them.

In the following sec~ion, requirO!ments of specification tools f·~r protocols are outlined. the
various specification tools are surveyed III section 2.2, and a. taxonomy of the these tools is
proposed in section 2.3.

2.1 Requirements or Specincation Tools ror Protocols

The key requirements of a !'ipec!fication tool to adequ3.tely express protocols include the
following.

1. Supporting abstract descriptions such that implementation-dependent pa.rts can be
left unspeciried.

2. Supporting modeling of concurrency.

3. Supportin~ modeling of nondeterminism. which is a behavior exhibited typically by
protocols I e g .. the sender is waiting for ~ither the arrival of an acknowledgment
or time-out in the send-and-wait protocol example}.

4. Supporting the description of the two c3tegories of functions involved in protocols:
control functIon., involving connection initialization and inter-process
synchronization. and data tran.,fer function!! involving processing of messages texts
and related issues such as message sequence numbering.

S. Supporting modular descriptions to facilitate readability and ease of use of
s pecirications.

Since specIfication tools often are the basi!! of other development tool!!, they must also
Include the rollowlDg reatures to facilitate their applic:l.tion:

1. Executabliity of the specifica.tion to facilitate its direct simuhtion. and the
automation of the implementa.tion process .

.) Providing constructs for expressing functional properties of protocols. thus
f:lcilit:ltlOg their automated formal verific:ltion.

3. Supporting the! speCification of I.he timing requirements of protocols. ~Illce the
beha ... ior of protocol is often time-dependent, their correct functioning might
depend on certain timing requirements. For example, the specific3.tion of the value
of the time-out period in a protocol with such 3. feature greatly affects its
function. If tbe tbe time-Olll period is too short, th.:: network would be flooded
wltb duplicate mess~es and tbe protocol would enter an infinite cycle of time­
outs.

4. Providing constructs for expressing performance properties of protocols (including
properties of transmission mediums slJch as bit error probability and desired
performance such as bounds on throughput and delay measures), thus facilitating
au tomated performance analysis.

5. Supporting tbe clear defirtition of the interla.ce~ between the protocol layer
concerned aDd the layers above and below to allow for separate testing of the
implementation of each protocol layer.

5

The extent to which a spe~lIIcation tool exhibits the first set of requirements is examined :n
section 2.2. In section 2.3 'lie examine the extent with which the va.rious classes of
specification tools based on the proposed ta.xonor:lY in that section support the second set of
requirements.

2.2 Surveyor Specification Tools

2.2.1 Finite State Machines

A finite state machine (FS\f) consists of the following components: 1) finite set of st::.tes. 2)
finite set of iliput commands. 3) transition functions (command X state-state), and 4) an
initial state. A FSM is a natural choice for describing protocol t:-rocesses whose behavior
consist primarily of simple processing in response to commands to or from peer processes in
tbe :ame layer. and/or the upper and lower protocol layers. A FSM responds to an
comma.nd according to the input and its curre:lt state represel!ting the history of past
commands. FSM's were used in early work on specification of protocols [Bart 69. Suns 751.

Consider using FS\.fs to describe a protocol specification. Each loc3.1 process involved in the
protocol C3.n then be modeled as 3. FS\.L The behavior resulting from the concurrent
execution of these local processes can be obtained by considering all possible interlea.ving of
the executions of these processes. It is in effect a global description of the operation of the
protocol layer. To describe the mode of communication between the distributed processes.
three approaches are possible. The simplest assumes that the distributed processes
communicate synchronously through re~de::t·ou" interaction.! (also referred to as direct
coupling by Bachmann IBach 781). That is, the process issuing a send event should wait for
the destination process to issue a corresponding receive event (and vice versa) at which time
a rendezvous is said to occur and me~age exchange takes place. Since messages are not
buffered in this approach, no modeling of channels between the processes is required. This
approach is too restrictive for protocols In which the communicating processes operate
a.synchronously, or for protocols in which the behavior of the transmission channel is integral
to its operation. In the se~ond approach. channels are modeled implicitly by specifying
".heir characteri:tics such as queueing policy (e.g., FIFO) and bound on the number of
messages allowed in transit at anyone time. Protocols with a number of messages in
transit can thus be modeled using this approach. The FSM's specifications in this approach
are referred to 3.S communicating finite "tate machine., [\Vest 78a. Goud 84301. In the
tnird approach, channel3 behavior are specified expI:citly as FSM's in which case only
channels with a low bound on the number of messages can be feasible assumed. Even then
theIr FS\1 specifications are considerably more complex than in the second approach.

Following the latter approach. specifications of the three communic3.ting processes In the
send-and-wait protocol are shown in Fig. 3. In this figure. stateg are represented by circ!e~.
tranSItions by directed arcs, the initia.l state is the state labeled 1. and input comm3.nds a.re
either event..s with an overbar denoting send events or event..s witb an underbar denoting
receive events. Events' subscripts are used such that for event e .. the flow of da.ta is from
process i to process j. Non-deterministic behavior at a stat~: for example the choice
between receiving a time-out or an acknowledgment at state 3 of the ~ender, is modeled by
mUltiple output arcs from that state. A service specification for the same protocol is shown
in Fig. 4 in which the service primitive events GET and DELIVER between the protocol
system and its users (source and destination processes) and their order, are described.

(c)

Figure 3:

Figure .. :

4f.s

DROP m

A protocol specification {or the send-and-wait protocol uSing FS~1'5
(a) Se!lder (b) Receiver (c) \fedium

GET DELI\'ER

A service specificatioll (or the send-and-wait protocol uSing FS~fs

[0 specifying this simple protocol, a.nd control bnctions of more complex real-life protocols,
e.g., the X .. 21 interface [\Vest iSb!. FS\i specifications have proven adequate. They are
51mple, easy to understa.nd a.nd analyze. They fail, howeyer, to deSCribe data. transfer
func~ions tha.t include decision (e.g., priority of messa.ges) or timing considerations (e.g.,
specification of a. time-out period). This is beca.use no mech3.nis~ a.re provided for
expressing such fea.tures. ~toreover, in order to specify messages with sequence numbers
using this approach, a state is required for each possible va.lue of a pending message and/or
sequence number. This leads to an explosion in the number of states; a phenomena known

7

as the state t:xplo.!ion problem. Extensions of the model, as described 10 the foilowing
section. alleviate most of these limitations.

2.2.2 State Machine Models

Sta.te machines are FS\-fs augmented with variables and high-level language statements.
These ~tatements are associated with transitions and can refer to the variables and input
commands. They are either predicates representing conditions for the transition to occur, or
actions to be performed upon its occurrence. The state of the machine is represented either
bv the values of all the variables. or by one of the variables. Consider, for example,
e~tendiJ:g the send-and-wait protocol with a binary sequence number mechanism for messages
so that the receiver can distinguish between messages and their duplicates. A partial sta.te
machine specifica:ion (whose constructs are a.da.pted from [Bach 8330]) or the sender process
of this extended protocol. is given in Fig. 5. In this specificar.ion a variable representing the
curreot message sequence ~umber should be defined at the sender and the receiver. The
transitio:l out of a sender's state in which it is waiting for an a.cknowledgment could have a
predica.te stating that it should be not corrupted and it.s sequence number is the one
expected; and an action that increments the sequence number of the next message to send.

Bachmann and Gesci [Bach 77301 first used this specification model to specify a simple data
transfer protocol and later to specify the HDLC [Bach 77bl and X.25 [Bach 791 prototols.
Various other specificaf,ion systems based on this model hve been also developed. They
differ essentially in the way they structure the protocol system into subprocesses which a.re
then specified as state machines.

:\ state machine model proposed by the ISO TC97 /SC16/WG 1 subgroup B on formal
description techniques (FDT) [Iso 8330, Bach 841 employs Pascal-like constructs in extending
FS~1's. Channels are specified separately from the protocol processes using abstract data
types [Gutt 781. Certain queuing mechanisms can be modeled and time delays before
transitIons can be specified.

A Sp~cific3.tion and Description Language (SDL) [Rock 811 which is primarily represented
graphl<:ally h3.S been proposed by another standard body, the International Consulta.tive
Committee for Telephones and Telegraphs (CCITT). Specifications of cha.nnels and timing
are not supported. Dickson [Dick 80301. [Dick 80bl has used SDL to specify the packet level
of the x.~s interhce [X.25 801.

Examples of other works based on the sta.te m3.chine model for specJication were reported
by Schwabe [Schw 81301. Divito [Divi 821 a.nd Shankar and La.m [Shan 841. These efforts are
distinguished in the following. Schwabe differentiates between the specification of the
topology describing the connectivity of the processes from the specification of the protocol
processes. This fea.ture could be especially desirable in the specification of high level
protocols. Divito uses buffer histories to record process intera.ctions. This facilitates the
specification of certa.in desirable protocol properties such 3.S the number of messages sent is
the 5ame as those received where3.S other properties involving order of messages in the
histories, for exa.mple, a.re not as na.tura.lly expressed. Shanka.r :lod Lam allow time
variables to be included and time operations to age them. This facilitates the specifica.tion of
certain protocol rea.l-time requirements such as an upper bound on the time a. message can
cccupy a tra.nsmission channel; a. requirement tha.t is needed for the correct functioning of
many ne:work layer protocols (those at layer 3 in NS- 1).

8

aodule Sender

var
state (statel. state2. state3);

(e saae states labels as in Fig. 3(30) e)

corrupted : boolean;

next-aessage-to-send : integer;

ack-received : integer;

(. transitions are' described 1n the general tor.
ot a predicate given by: ~ <input co .. and>
provided <boolean expression> 1££! <current state>.
tollowed by an action given by: ~ <next state>
begin <state.ent> end; .)

wben 2ECEIV[-."
provided {not(corrupted)

froa state3
begin

and ack-recelved = next-aessage-to-send}

next-aessage-to-send .- (next-aessage-to-send + 1) .od 2;
end;

to statel

end .ooule Sender

Figure 5: A partial state machine ~pecification of the
sender process of a modified send-and-wait protocol with binary

sequence numbers

Combining the two formalism.:! of FS~rg and high-level languages provides 3. rich
speCification tool in which one can express the syntax and the semantics of protocols. On
the other hand, such a combination is informa.l a.nd there is no rule of how much of each to
use.

2.2.3 Formal Grammars and Sequence Expressions

A {ormal gra.mrr:af is defined by a set oC terminal symbols, a set of nonttrminal symbols,
a start symbol and a set oC production ru/ts. The nonterminal symbols are defined
recursively in terms of each other and terr:::inal ~ymbols using the production rules. The

9

start symbol belongs to the set of nonterminal symbols and denotes the la.ngua.ge genera.ted
by the grammar. In a formal grammar specification of a protocol. nonterminal symbols
denote states, terminal symbols denote transitions and operations (e.g .. nondeterministic
composition), the start symbol denotes protocol behaviors generated by the grammar. and
production rules define how the various protocol behaviors are generated. A formal
grammar specification of the sender process of the send-and-wait protocol is given in Fig. B.
It is a direct translation o(its FSM in Fig. 3{ a) with terminal symbols (represented by
upper-case letters) denoting input commands and non-terminal symbols (represented by lower­
case letters) denoting states.

G = {V.T.S.P>.

where the set at nonter.inal sy.bols V = {statel,sta.te2.state3}.
the set at termina.l sr-bols T = {GET-M.SEND-M.i.iECEIVE-A}.
the st.art sy.bol S is statel. and
the set at production rules P is given by

statel .. = GET-M state2

state2 .. = SEND-M state3

state3 .. = T state2
! iECEIVE-A statel

.. ," denotes nondeterministic composition.

Figure 6: A formal gramma.r specification for the sender process of the
send-and-wait protocol

Since regular grammars and FSM's are equivalent. they share the same limitations. The
s~ate explosion problem is manifested here as an explosion in the number of prodw:tion
rules. To overcome this problem. Harangozo [Hara 77] used a regular grammar in which
indices are added to terminals and nonterminals to allow the representation of sequence
numbers. A formal grammar specification of HDLC can be found in [Hara iiI. Teng and
Liu [Teng 78] used a context-free grammar, which provides more expressive power thaD
regu tar grammars. They also uses a shu{fle operation to integrate grammars defining
processes in the same protocol layer by computing all possible interleavings of their behavior.
a.nd a substitution operation to integrate grammars defining different protocol layers by
substitutIng terminal symbols in the gramma.r of the high-level protocol by nonterminal
symbols in the grammar of the low-level protocol to (arm a new integrated grammar.

These two approaches to formal grammar specification for protocols do not support the
5pecification of any predicates or a.ctions associated with protocol behavior. This limitation
IS o·.-ercome by Anderson and Landweber [Ande 841 by Ilsing context-free attribute
grammars, which are formal gramma.rs in which terminal and nonterminal symbols have
attributes associated with them. The terminal symbol SEND-M in the send-and-wait
protocol can have the attribute addre"" associated with it to determine the address of the
a.ddressee. The semantic~ of protocol operation can then be specified in terms of attribute
a.ssignment statements associMed with production rules.

In contra.st to formal languages. sequence expressions define directly the valid sequences
resulting from protocol execution and not how they a.re generated. A protocol behavior is

10

described in one expression where no nonterminal ~ymbols are used. The sender process or
the send-and-wait protocol can be specified as a sequence expression gi':en by

SE:"IDER = {GET-M - SEND-M - {T - SEi'D-M}· - RECEIVE-A}

where operations < ••• , , ., -" , and \I + I) denote the Kleene star, sequen tial composition, and
nondeterministic choice operations, respectiveiy.

Sequence expres~icns have been used by Bocbmann (or serrice speciric:l.tion [80ch 80b]. Other
examples include work done by Schindler, et 301. [Schi SO, Schi 81] to speclry the X.2S layer
3 protocol.

2.2.4 Petri Net-Based Models

.-\ Petri :'-let (P~) (see [Pete ;;] (or a comprehensive surrey) graph contains two kines o(
nodes: pla("~ and tran3ition3. Directed arcs connect place~ and tran~itions. Arcs :rom
places to transitions are called input arcs. and arcs (rom transitions to places are called
output arcs. The execution of the net. is cont.rolled by the position and movement of tok~n3
which reside in the places. The distribution of tokens in the net at any certain time,
known as a mark:ng, specifies the state of the net at that time. A P~ specification includes
a. P:--; gr3.ph and an initial m3.rking. A transition in the graph is ~n'lbld if there are token!!
reSiding in all the lOput places (i.e., p13.ces connected with the transition through input arcs).
It C3.n fire any time after it is en3.bled. upon which tokens are removed from input places
and deposited into output places of the transition. PN's are in many ways simila.r ~o
FS~f'5. with places in a P:'-l corresponding to sta.tes or inputs in a. FS~f and transitions in a.
PN corresponding to transitions in a FS\1, However unlike FSM's, p~'s C3.n directly model
Interactions between the concurrent processe~ by merging output arcs from one process to an
input arc of another process. Also the concurrent. exec 1ltion of the distributed processes is
n:lt 1lr3.lly captured by the presence of more than one token in the net -- a. token for e3.ch
dlstnbuted process.

In 3. protocol modeled as a. petri net, the presence of a. token in a. place typic3.lIy represents
tbt the protocol IS waiting {or a certain condition to be satisfied. and the firing of a.
tr:lnsltion represents the occurrence of an event enabled by the condition. Examples of
using p~'s to model protocols can be found in [Post 76, A~em 78. Dant SO]. A P~
~peclf:c3.t:cn of the send-and-wait protocol is given in Fig. ;. Pbces are represented as
circles. tr3.nsltlocS as ban and tokens a..s filled circles. It should be noted that this p~
opecifica~lon follows the assumption that time-out is ide3.lIy set such th:lt a time-out cccurs
only after a loss of a message or an acknowledgment and the 3.'ssumptioo that
ack:lOwledgments are not lost.

Similar to FSM's, P~'s cannot adequately model complex data transier of protocol without
suffering from explosion of the net size, or timing considerations such 3.S time-out. Two
m3.jor extensions to p~'s that. add to their power in modeling protocols lead to hybrid PS'3
and timd P.V'3. The price for these extensions is more complex v3.lid3.tion.

Hy brid Petri Nets

Hybrid petri n('ts are extended PN's in which tokens can bye identities and transitior!s c:l.n
have predicates and actions associated to them. Adding predic:l.tes to p!'J's produces
predicate/tran3,·tion nets formaiized by Genrich a.nd La.utenbach [Genr 79], where tracsitions

SE~DEi

(iE.. ... Oy)

Figure 7:

11

se'w-I,(

OROP-'"

REC[I\'[-

REC[IV[-I,(

DELIVER-I,(

S[~D-A

REC[IYER
(RE.. ... OY>

A send-and-wait protocol specification uSing petri nets

fire only after they are enabled and their ~sociated predicate (i.e., some condition in ter!Il5
of tokens values) is true. Berthelot a.nd Terrat [Bert 821 used predicate/transition nets to
model the EC\1A (European Computer \1anufacturer Association) [Ecma 80] transport
protocol.

Adding actions to predicate/transition nets produces predicate/action nets. Actions are
associated with transitions ~uch that when a transition fires, the action is executed and new
tokens are put in the output places. For example, data transfer protocols can be modeled
3.S predinte/action nets such tha.t the receiving of a message m with certain parameters IS

described in a predicate. and the sending of m is described in the action [Diaz 82].

Keller's model for parallel programs [Kell 781 and numerical PN (NPN) [Symo 801 belong to
this C3.tegory. Keller divides systems into a. control part and a data part. with places
representing control states and transitions representing the changes between states.
Vari3.tions of this model were used in modeling protocols [Boch i7a, Azem 78, Baue 821.
l'iP~'s introduced by Symons are similar to Keller's model with the variation of allowing
tokens to have any identity not just integer values, and a.s~ociating read and write memory
with the net. Billington used NPN to model 3. Transport service [Bill 82].

Timed Petri Nets

A Timed PN is a PN extended to support some descritltion of time. Timed PN's that have
been used ror protocols include time p,v's (TPN's) introduced by \ferlin [Mer! 76] and
stochastic PN's (SPN's) introduced by \1olloy [Moll 8lj. In a TPN a. pair of deterministic
time values (t . ,t) is added to each transition of a. PN. The pair defines the interval of

m\" maz
time in which tOe transition must fire after it is enabled. This extension allows the modeling
of time-out actions of protocols by specifying the t . of the retransmission transition to be
equal to the time-out value. Danthine [Dant 80] u~~d a combination of TPN's and Nutt's
evaluation nets [Nutt i2] (a kind of abbreviated PN) to model the Transport protocol of the
Cyciade network.

SP:"i's are P:"i's extended by assigning to each transition a random variable representing the

12

firing dela.y of that tr3.I!Sltlcn. Sta.te change~ occur in the SP~ model with !:ome prcbability
rather than arbitrarily as :n a P:"-J. Distributions of the transition delays are restricted La

exponential in the continuous case, or geometric in the discrete case. This is because a
markov model is extracted from the p~ gra.ph describing the global protocol behavior; in a
markov model all transitions should be either exponentially or geometrically distributed.
The !"a.ndom representation of time involved in protocol eYents is used in SP~'s La allow for
qU3ntitative performance analysis.

2.2.5 Algebraic Specifications

Algebraic specification derives its name from its relationship to universal a.lgebra [Grat 58].
An algebra consists of 3. nonempty set of Obj~ct3 and a set of op~ration3. Each opera.tion
takes 3 finite number of objects and produ.:es an object. The meaning of operat:ons is
defined in terms of EquatIonal-aXIom". The interpretation of objec1.s and operations when
specifying protocols depends on the specific algebr~ic approach used. We examine next two
ex~mples of algebra.ic systems used for specification of protocols.

In the calculus of communica.ting systems (CCS) introduced by \filner [Miln 801. objects a.re
protocoi beha.yior expressions generated from a set of send and receive events exchanged
between the corr.municating processes. Operations include "." denoting sequential
compOSition, "+" denoting nondeterministic composition. "/" denoting concurrent
composition. and "~IL" (a. nullary opera.tion) denoting dea.dlock. The concurrent compOSItion
oi interactlOg proce5ses produces a new composite process whose beh::.yior includes rendezyous
interactions for corresponding send and receIve events and shuffling of all other events
gener3.ted by the in teractir.g processes.

A CCS specification of the sender process of the ~end-and-wait protocol is ginn next. Let­
denote a. rendezvous event produced from a previous concurrent composition of the sende;o
with 3. timer process (for time-out). Also, let m represent a send port for messages and ~
represent 3. re::ei ... e port for acknowledgments on the channel between Sand .\f. In
addition. let d represent a recei ... e port lor meSS3.ge incoming from the source. The sender
specification 5 is de~cribed recursively as follows.

C3.pabilities for tralue pa.ssing :lnd high-level l3.ngu3.ge statements 'lre also pro ... ided. To
c·vercome the imposed synchronous mode of inter-process communica.tion in CCS, one has to
expliCItly model transmiSSion mediums between a.ny two Fccesses ccmmunic3.ting
async hronously.

~hny concepts from CCS are employed in the specification la.ngu3.ge proposed by t!le [SO
TC97 jSC16jWG 1 subgroup C [[50 83b, Brin 8,t]. Holzmann [Holz 82] 3150 introduced 3.

CCS-variant algebraic model with a. division operation used to represent send events and
message bufiel'3 used to allow for asyncbronous inter-process communication. Another CCS­
variant model introduced ty ~ounou [Noun 841 associates probability and time attributes
w!tb protocol behavior expressions to allow for the specification of protocol timing behayiors
as well as theIr functional beha ... iors. This allows protocol timillg requirements to be
specified a.s will be described in section 8.1.

[n the AFFIR~i system [\'iuss 80, Suns 8~al, the objects of the algebraic model are ab"tract
data type" [Gutt 78]. The system ca.n be used to specify protocols modeled conceptua.lly 3.S

state tr::.nsition machines 3.5 follows: each protocol model is defined a.s an abstr3.ct ma.chine

13

data type, with its variables as o!dt:Ctor" of the type, and its state transItIon as con"tructor"
of the type. A set of axioms defines the effects of each transition on the variables. Abstract
data types can also be used in specifying protocol message formats. Desired properties of
the protocol are expressed as theorems that refer to the elements of the given specifications.
An advantage of this system is its use of abstract data types which provide only abstract
description of the systems under consideration. Experience with modeling several protocols
in AFFIR~1 [Suns 82b] h~ shown the following system limitations: no support for true
modeling of concurrency; difficulty in dealing with exception handling, separate specification
of local protocol processes, and specification of protocols with more than two processes.

One advantage of algebraic specifications is their rigorous formal base from algebra.
Elements of other development tools in a protocol environment can be viewed as a.n algebra
that is homomorphic to the specification algebra [Yemi 82]. One basic limitation of algebraic
specifications is the difficulty in dealing with exception handling (for more information on
this see [Berg 82]).

2.2.6 Temporal Logic Specification

Temporal logic [Pnue i7] is an extension of predicate calculus to support the specifica.tion of
temporal properties of systems (i.e., properties that change during the system execution).
Invariant properties that must hold throughout the execution could be stated using predicate
calculus. Within the temporal logic framework, the meaning of a. computation is considered
to be either the sequence of states (state-based approach) or the sequence of events (event­
based approach) resulting from the system's execution. The two basic temporal operations
in temporal logic besides predicate calculus operations are henc~forth "0" and ~ventually
"0". Let P be any predicate, then oP is true at time i (representing the i-th instance of
the execution sequence) if and only if P is true at all times j , where J~i, and op is true
at time i if and only if P is true at ~ome time j, where J~i. A specification in tempora.l
logic consists of a set of axioms that assert properties which must be true of all sequences
resulting from a system's execution [Lamp 80, ~iann 81].

Temporal logic specifications can be classified into state-based and event-based approaches
a.ccording to the underlying model of the execution of the protocol. Three different
approaches to the state-b3.5ed temporal logic method have been pursued by Lamport [Lamp
83], Schwartz and ~1elliar-Smith [Schw 8lb], and Hailpern and Owicki [Hail 80]. The three
approaches differ essentially in how close they are to the state ma.chine model with the first
being the closest followed by tbe second and then the third.

Schwartz and ~1elliar-Smith use a model in which state variables are introduced in the
specifica.tion only when it is more convenient to express temporal properties in terms of
finite history of the past ra.ther than using temporal formulas. The variables used are
assumed to be bounded. A specification of the Sender process of the send-and-wait protocol
in this approach is given in Fig. 8 (adapted from [Schw 82]).

Besides the temporal operations eventually and henceforth, the following constructs have also
been used in the specification: Until and Latchea-Until·Atter. P Until Q is interpreted
as P must remain true until Q becomes true if ever, and P Latchea-Until·Atter Q is
interpreted as P when becoming true, remains true until after Q becomes true if ever. Also
the predicates at, in, and after, have been used to reason about the currently active
control point of each process. The interpretation of~t. S, in S, or after S is true if control
is at the beginning, within, or at the end of the execution of statement S respectively. The

14

,H. SO=p laplies (So=q=p Latches-Until-After after iECEIYE-,~ a.nd
S =q=p Late hes- Until-After S.=q) o I

A2. 00 (Si=So=P) i.plies
(O-~mptll(lDQ) i.plies 0 (So=P and at SE~D-")}

.~3. So=P and 0 So=q=p i.plies O(So=q=p and at SE~D-W)Until(Si='FP}

H. 0 at S[~D-'" Until 0 empty(InQ)

\\'bere sand s. are two variables of the underlying state tra.nsltlon model used to
record £be last message value transmitted by the Sender, and the last
acknowledgment value received from the medium, re!5pectively. InQ is a sequence
'l3.riable representing the queue of message ready at the source. Labels ror events
are the same as those used in Fig. 3(3).

Figure 8: A state-based temporal logic specification
for the sender process or the send-and-wait protocol

axioms in Fig. 8 have the following interpretations. Axiom .\1 states that 3 message value
rem3IDS in S until both its successful acknowledgment has been received and a new message

o .
has been fetched from the source. Axiom A2 states that whenever the sender gets a. message
from the source while it is not busy, it eventually sends that message. Axiom :\3 states that
whe!lever a. new messa.ge is pla.ced in So' it is infinitely often transmitted until its successful
acknowledgment is received. Axiom A4 ensures that message transmission continues until all
messages avaibble in InQ are serviced.

The :lbove described approach to temporal logic specifications does not consider the complete
.:et of a system's ~tate space; some of the states are excluded if tempor:ll axioms can be
used to reason about them. This sometimes leads to complex speciiications requiring several
additional CClnst,ucts (such as Until and Latches-Until-Arter) and thus rendering
specifications complex and difficult to understand. In subsequent work [Schw 831 another
approach has been followed in which the protocol required properties are stated on \'nterIJO/3

of the protocol's execution sequences. It is c1a!:ned that this allows higher level temporal
logic speCifications.

L:J.mport conSiders the complete set of system's :J..lables. and all state tranSitions are
specliied in te:-TnS of the changes they are allowed to affect the variables. This is done by
uSlOg an "allowed changes" construct io addition to the other ba.sic temporal operations.
Although specifications based on this approach are easier to transform into imp Ie men tations.
they are lenghtier than those based on the former approach. Hailpern and Owicki use
'lobounded history variables. without employing any states, to record the sequences of
:neS.5ages that are inputs or outputs of tle systems. Protocol properties such as numbe!' of
messages sent equals n~mber of message~ received could be stated quite naturally with this
approach. but it would be difficult to state properties that depend on the ordering of 3
sequence in a history. ~ioreover. the introduced history variables are ac~ually "auxiliary"
yariables; that IS. they are not. variables that are required to describe the protocol
implementation aDd thus can not be used to reason about its correctness.

The state-ba.sed temporal logic approach has been used to specify and verify a
multidestination protocol [Sabn 8~aL and in !Kuro 821 both history variables and internal

15

states were used in specifying and verifying the three way h:l.ndshake connection protocol.
Shankar and Lam [Sha.n 841 use a variant of the eventually operator in stating temporal
properties of a. bounded length of the global state sequence resulting from a. systems'
execution.

In the event-based approach, protocol desira.ble properties are specified using temporal
assertions tha.t define constraints on the possible sequeilces of intera.ction e'lents. ~o
variables are cor.sidered in this a.pproach. Establishing context, meaning a record of the
history of previous e..-ents, in event-based specifications is much more difficult th3.n in st3.te­
cased specifications, where states naturally provide the required context. This leads to
specifica.tions that are somewhat. complicated and lengthy. Yogt [Vogt 82] uses a history
variable to represent the sequence of past events a.nd thus establish the required context. In
another event-based approach, Wolper [Wolp 82] introduced extended propositional temporal
logic. in which temporal logic is extended with opera.tors corresponding to properties
definabie by a right linea.r grammar. This a.llows the specification of SOl!le properties -'that
otherv.·ise could not be expres5ed in temporal logic such as stating a proposition that is to
hold in every other state in a sequence.

2.2.7 Procedural Languages

In a procedural language, the unit of specification is a. procedure containing type declarations
and statements describing detailed computational steps of the system under consideration.
Much of the eariy work done on protocol or service specifications used this method.
Exa.mples of such \vorks ca.n be found in [Sten 76, Haje 78, Krog 78].

The Gypsy programming language [Good 78. Good 82], is a procedural language that
includes most of the basic facilities of a. Concurrent PASCAL. and has the unique feature of
supporting the specification of protocols at any of the three design phases using the saCle
language. Descriptions of service or protocol specifications make use of buffer hi3torie3 to
record all send and receive operations executed on a. system's buffer. One limitation of
~pecifications employing buffer histories, is the diific11lty in modeling unreliable
communication mediums [Divi 821 since processes communicate through message buffers that
do oot model loss or corruption of messages. Another limitation is the difficulty of stating
properties on a history if the properties depend on the ordering of messages in the buffer.

While procedural languages are a natural choice for coding implementation specifications,
there has been much controversy regarding their use for specification in early design phases.
The shortcoming of using procedural langua.ges for specification lies in their detailed
deSCriptions of a systems' operation. This makes it rather difficult to specify the abstract
requirements of protocols without getting into the details. There is also a biasing effect to
implement the protocol in the sa.me language used for specification. The other side of the
controversy, though. could argue that such languages. with their rich expressive power.
support the specification of both control and d3.ta transfer functions of protocols.

2.3 A Taxonomy (or Specincation Tools

As a summary of this section, we propose a taxonomy of specificn.tion tools that will be
helpful in judging the extent by which :l. specification tool meets the second set of
requirements given in section 2.1. The first three a.re requirements of specification tools to be
executable. to support the specification of desired properties of protocols, a.nd to support the
specification of performance parameters of protocol behavior. The fourth requirement of

16

providing clear descriptions of interfaces between protocol layers can be met by a service
specification that describes both the service used and the service provided by the protocol
layer conc~rned.

We classify speCIfication tools along two axIS. Based tin the fir~t classification, they are
either statl'-basd or f:t'ent-lJased. The underlying model of a protocol in sta.te-based tools is
concerned with the states through which the protocol psses during its operation and with
the events that C3use changes in its state. States can be either explicitly represented or
described by n.riables. On the other haud, the underlying model in event-based tools is only
concerned with the events generated by a protccol without a.ny mention of its state. -They
inciude sequence expressions and event-based temporal logic specificatiolls whereas the
remaining specification tools -:overed 10 this section belong to the st3te-based class. Since
sta.te-ba.sed specifications describe the actions and responses of protocol operation, they can
be directly executable. Event-based tools can at best be fi:-st transformed into an executable
form (as will be' explained in section 4). However, they !:eem to be more abstract tb an state­
based tools since they are not concerned with the internal state of the protocol model.

Alternatively, specification tools cali be classified into behavioral and assertional tools.
Spec:fic3tions belonging to the former cla.s.5 de:::cribe the {low of execution of protocols and
how it proceeds after e3ch event. They constitute a description of the cause and effect of
all modeled protocol events. A.ssertional specification toois, on the other hand, state the
requlremeots of protocol behavior in terrru of desired properties of its possible execution
sequence~. As will become clear in the following sections, the more a specification tool is
behaYloral the more it is executable, and the more a specification tool is assertion31 the
better support It provides (or formal verification.

~fost specification tools actually exhibi~ features belonging to both the behavioral and
assertioc31 classes. Also, each of these classes constit;lte a. spectrum of specification tools.
The extent to which a specification tool is behavioral depends on how much support it
provides for the specific3tion of protocol semantics besides its syntax. The extent to which a.
specification tool is a.ssertlonal depends on how much support it provides for the statement
of fuoc~ional properties including liveness a.nd safe~y. and timing properties. Furthermore,
::peclfication tooLs belonging to a.ny of these cb.sses can be either state-based or event-based.
Th e r~ rore, we illust rate in Fig. 9 the re lative positions of the v:mous specification tools
co ered in this section.

3 Protocol Synthesis Too18

The job of composing a specification for 3.D entire protocol system is quite complex.
Furthermore, given such a protocol, the problem of formally verifying that it is free from
certaIn design erro~ has shown to be genera.lly undecidable (see [Bran 83]). Towards
slmplirYlIlg the complexity of specifying entire protocol systt'ms, some research has been
directed towards synthesizing complete speclfic3.tions of protocols, which are specifications
that include all the communicating processes itlvclved. from incomplete ones. In some of
these efforts the produced specifications a.re 3.lso gua:anteed to be free from certain design
errors and thus avoid the possibly 1.lOdecidable formal verification problem. The "'arious
synthesis approaches vary primarily in the kinds of design erro;'S considered, the ma..ximum
number of communicating processes in a protocol that are supported. and the features of the
transmission channel that are assumed. However, they all take advantage of the duality
ioherer:t in the interactions among protocol processes where a, message sent by one process
should be received at a.nother communicating proce~.

:"Ie"'" ::lUC;'

asser'':.lonal

how muc;,
asser':lonal

Figure 9:

17

s:.a:.e-::ased
:~mpora:" :'~gi::

j..

scat.e

:;rocec"-"ra:'
:'anguages

mach:.:-:es X
x

how ~uch =ehav~cural

(a) State-based specifica.tion tools

e·Jer.:-::ased
t.em~cral. 1_.- ... ,-

--",: ... -
x

......... :::enav~o'..lral

(b) Event-based specification tools

A.n illustration of the proposed taxonomy or specirication
tools

Zafiropulo. et al. [Zafi 801 :::we proposed an interactive and incremental synthesis technique.
in which the protocol local processes are modeled as communicating FSM's with error-free
FIFO channels. In each increment of interaction between the protocol designer and the
synthesis program, the designer provides a. sending interaction or one of the communicating
processes. The program uses the already synthesized. partially constructed FSM's and a set
or rules to rind the state a.t which the receiving p-t:Qcess can accept the sent interaction. It
then prompts the designer for the state which the receiving process would enter upon

18

receiving the found reception. The synthesis algorithm uses a. set of three production rules
that find the receive interaction!! in such a. manner 3.:l to prevent the d~signer from creating
unspuified reception" and noneucutabl! interactions. An unspecified reception indicates
that a message reception that can ta-ke place i~ missiilg in the specificatioil. A nonexecutable
intera-ction i~ a reception or a. transmissio:l interaction ~hat i!! included in the specification
but that cannot be exercised under normal operating conditions. The designer :s also
notified of the presence of "tate deadlo!:k., and .,tate ambiguities. A sta.te deadlock occun
when each and every process h3.S no possible transition out of its current state. :\ state
ambiguity occurs when one process C3.n c'Jexist in a certain state with more than one state
in any other process provided that all channels are empty.

The synthesis algorithm accepts information (rom the designer a.nd uses it in incrementally
building trees tha.t trace all possible executions o(each process' FS~i. The algorithm-ts in
control of the incremental construction 1')£ the protocol. It must decide at which point to
stop the growth of the execution trees; that is, when continuation cannot reveal a.ny new
information about the prolocol. If a.ll channel capacities are (inite, or if there are only two
processes with not more than one unbounded channel, then the termination of the a.lgorithm
is guaranteed [Br3.n 801. Otherwise the trees can grow Indefinitely and heuristics must be
used to deCide when to terminate their growth. For example, if channels were unbounded
and there W3.S 3. transmiSSion loop in one of the FSM's, then the execution tree
corre!:ponding to this FS~1 can grow indefinitely. The complexity o(the termination
problem is the major limitation of this approach. The initial work done on the synthesis
3.lgorithm ha.s been limited t<l only two communicating processes. In 3.n attempt to
generalize the algorithm for more than two processes [Bran 801. it wa.s found th:l.t a different
set of rules (stili three rules) sho11ld be used. However, a proof of the production rules
being necessary 3.nd sufficient only exists (or the ca.se of two processes.

Gouda a.nd Yu [Goud 84301 propo~ed a.nother synthesis methodology that accepts the complete
speclfic3.tion of one process and produces a mirror-like specification of its communicating
process. Simll3.r to the work of Zatiropulo. et 3.1. specifications are given as communic3.ting
FS\l's. and the synthesized specifications 3.re guaranteed to be free from the same design
errors. It 3.lso computes the smallest bound on the number of messages in transit in the
cbanne!s at 3.ny one time. The synthesis methodology consists of two algorithrru. The first
algorithm takes a.s input one process specification PI and produces two processes ql a.nd q".
Q I IS computed from P I by adding some receiving transitions to it. Q" is then computed
such that the communication between Q

I
and q~ is deadlock-r:ee, bounded. with no

'jtlspeclfied receptions. co nonexecutable receptions. and no state ambiguities. The (irst step
of this algOrithm constructs a process Q" whose behavior mirrors that of input processes
specification P. That IS, they have the same states and transitions with the conversion of
each sending (receiving) transition in PI to a receiving (sending) tra.nsition in q~ with the
same label. A loss of synchronization leading to deadlock, though, might happen if some of
the ':ta.tes in P J have outgoing transitiocs which 301'4 both sending 3.ad receiving since both
P I and qz mIght traverse sending tr2.ositlons. To resolve this synchronization problem,
correction transition~ are added to P to produce Q. and also included in Q". This
restricts the communication pattern ot the synthesized specification to a pattern of the
communicating processes proceeding until a loss of synchronization is detected upon hich
they backup by following their correcting transitions.

The second algorithm takes, a.s an input, Q
I

and Q" and computes the smallest size for each
of the two channels between Q

1
and Q". The communica.tion channels a.re a.ssumed to be

error-free 3.nd FIFO, a.nd the number or processes supported by the a.lgorithms is limited to

19

two. An advantage of this synthesis approach is that each of the two algorithrns takes a
deterministic :.ime of O(st). where s is the size of the state space and t is the number of
transitions in the input process specification.

Bochmann and ~1erlin [Boch 83bl describe a. synthesis approach that in contrast to the two
described above, does not produce error-free specifications. It has. though, the unique
feature of employing the service specifica.tion of the protocol in the synthesis procedure.
Both the duality principle of communication between processes and the fact thaL the
combined communication of a protocol layer proceS3 should provide its service are used in
the synthesis procedure. The synthesis algorithm t~kes as input the service specification as
well as the specifications of the protocol layer (n-1) communicating processes and determines
the specifica.tion of the remaining process (provided one is possible). The process
specifications a.re given as sequence expressions and inter-process communication is modeled
by di~ect coupling.

A formula is used in generating the specification of the remaining process. The specifica.tion
produced is maximal in the sense that it includes the largest number of execution sequences
possible. and thus corresponds to the most genera.l process (including possibly redundant
transitions). Also, it might reach deadlock when interacting with the other processes. The
approach does riot guarantee that all execution sequences specified for the system will be
produced by the interaction of the n subprocesses. If this is the case, then there exists no
process that together with the given (n-l) proceS3 can provide the required system service.
The communication channel is modeled as process in the layer, and the approach could
support any number of interacting processes.

This synthesis approach can be applied to the send-and-wait protocol as follows. Given the
specifications of the Service to be provided, the ~edium, and the Sender of the protocol, the
approach can produce the specification of the receiver process.

4 Implementation Tools

An implementation tool is a construction tool (a compiler in effect) that transforms a
prutocol specification into code. \Vbile low-level protocols in the ISO hierarchy are often
implemented in firmware, high-level protocols a.re implemented in software. For an example
of the former. the rea.der is referred to [Goud 761. In this section we will limit our
discussion to softwa.re implementations of prutocols.

Clearly, one would like protocol implementation tools to be automated in order to minimize
both the effort involved and the probability of errors. This depends not only on the protocol
specification tool used but also on the progra.mming language used for implementation. and
on the complexity of the protocol. Subsequently, we first examine the extent to which the
various specification tools facilitate the automation of the implementation process and the
general a.pproaches employed. We then examine some impll!mentation choices encountered
when transb.ting protocols given in any specification tool.

In our proposed taxonomy in section 2.3, we classified specification tools into behavioral and
assertional tools along one axis and into state-based and event-based tools along another.
Behavioral specifications. such as state machines and petri net-based tools. lend themselves
more easily to direct translations into implementation than assertional specifications, such as
temporal logic. This is because the former describe how the execution of a protocol
proceeds, while the latter are concerned with requirements of protocol operation and not

20

with how the requirements are achieved. Furthermore, event-based specification are more
difiicult to translate into implementat:ons tb.n state-based specification because they are
concerned with the outcomes of the protocol operation a.nd not with how the outcomes are
produced. [n summary, sta.te-ba.sed, behavioral spec:fications are the r:1ost suitable for direct
translations into implementaticns.

Let us :lext discuss seme works on implementing protocols specified In the various
speciricMion tools. Proced unl specifications are clearly t he easiest to be transformed in to
code because they are the richest in terms of expressing both the syntax and de~ailed
sema.ntics of protocol operation. The resulting implementation would proba.bly be in the same
langua.ge used for specification, with the 3.ddition of implementation specifics such as buffer
management functions.

The typical approach for implementing a FS?-.1 specification, as described in [Bach 821. is to
tra.nslate it to a. looping program. with ea.ch cycle of the loop executing a tranSition. The
loop would consist of a set of conditional statements with each testing for one kind of input
interaction. Note that this construct is basically Dijkastra's guarded command [Dijk 751.
For each of these cases another set of conditicnal statement3 would test the major stat~ of
the module and ccmpute the next state accordingly. Sta.te machine specifications and hybrid
petri net specific3.tions. which combine state tra.nsition specifications with high-level language
statements. can be translated into code by simply transforming the state transition part3 a:3

described ::'Jove and using the high-level ~tatements as they are or with minor variations in
the Implementation. Bachmann, et a.t. [Bach 791 transformed m3.nu:1l1y a. state machine
specification of the X.25 prolocol into an implementation in a Concurrent Pascal. Blumer
:.nd Tenney [Blum 821 in translating a state machine specification of the ~ational Bure3.u of
Standards' (:"iBS) tr::msport protocol into C implementations, were a.ble to produce 40% of
the Implementation a.utomatically.

Sequence expressions. which belong to the event-based specification class, can not directly be
direc~!y tl"anshted Into implementa.tion. but need to be first transfQr:ned into a behavioral
specification. Tl:.is is Similar to the derivation of a FSM that would generate a given
reg·.!i:J.r expression. In implementing sequence eXFessions. which han mIlch in common with
regular expressIOns. Schindler. et al. [Schi 8lJ uses-3. two pass compiler to derive a Flow
Control Graph (FCG) from the speci:ication and then checks wtether this g!'3.ph is
equi..-J.leot to ::ome extended finite state machine (EFS~1). [f so, a. PASCAL implementation
of this EFSM is generated in the second pass.

Ye!owitz, et 301. [Yelo 821 describe 3.0 experiment of manu3.lly implementing AFFIR~1
algebraic specifications with its underlying abstract data types a.nd state machine models in
the :'da progra.mming language. Abstract d:l.t:l types, state variables, and events in A.FFIR~1
are m:.pped into types, objects. and tasks in Ada. respectively. In order to describe
conC'Jrrency or the ir:1plementation of loc3.1 proce~ses, a. feature not suP?orted by :\FFlR~f. a.
opeclal synchronization task: that does not correspoC!.d to a.ny AFFIR~1 event is added to the
Ada Implementation. Any task corresponding to an AFFIR~f event has to get permission
before proceeding with its a.ctions, and upon completion thereof, notifies the synchronization
task. Then. the synchronization task can be used to implement any desired imitation of. or
even true, concurrency.

Finally, there are issues underlying an), implementation taol, which preclude completely
automated implementations. Human intervention in protocol implementations is required (or
two purpo~es. First. to add the implementation dependent parts. :!.nd message coding.

21

Second. the implementor often h~ to make certain choices based on the specific protocol
being implemented. For example, whether to implement the protocol modules as part of the
operating system or as cooperating user processes, and how will the different modules
interact: using shared memory, or using some kind of interrupt mechanism, are two possible
choices.

5 Verification Tools

Protocol verification consists of logical proofs of the correctne"" of each of the specifications
of the protocol, and the mapping between the service and the protocol specifications and
between the protocol and implementation specifications. Proof of correctness of a
specification constitutes proving the validity of certain desirable properties that would assure
its correct operation under all conditions. Proof of mapping constitutes proving that a
specification of a protocol refined at a certain development phase correctly implem~nts the
specification input to that phase. Proof of mapping between the service statement phase
and the protocol design phase is referred to as design verification, and between the design
phase and implementation pha.se is referred to as implementation verification [Boch 80301.

To prove that a specification is correct, one h~ to prove tha.t it satisfies protocol safety
and livene"" properties [Lamp 771. Sa.fety properties state the design objectives that a
specification must meet if the protocol ever achieves its goals. Liveness properties state that
the specification is guaranteed to eventually achieve these goals. For example, a.n informal
description of a safety property S and a liveness property L for the send-and-wait protocol
specification could be

S the order ot aessages received is the saae as the order
ot the aessages sent.

L having received a new aessage, then retransaission
aust continue until an acknowledgaent is received
at the sender.

Safety and live ness properties such as those listed above are highly dependent on the
protocol under consideration. However, there are some general properties that are common to
a.ny protocol such as include freedom from unspecified receptions, nonexecutable interactions,
a.nd state deadlocks (as defined in section 3). Other ge~eral properties include progress and
absence of medium over flow. Progress means absence of cyclic behavior (also called temp~
blocking) where the protocol enters an infinite cycle accomplishing no useful work. Absence
of medium overflow means that the number of messages in transit in the medium is always
less than a specified upper bound.

The approach used in proving a mapping between a specification output from a protocol
development phase and the specification input to the phase, depends on the specification tool
used. Consider the design verification problem. If behavioral specifications are used to
describe the protocol service, proof of mapping would be equivalent to proving that the
components of the service specification are correctly implemented by those of the protocol
5pecification. On the other hand, if assertional specifications are used. then the service
specification constitutes safety and liveness assertions of protocol specification; and design
verification coincides with proving the correctness of protocol specification. That is. since
proving the correctness of protocol specification in this case constitutes proving that the

protocol specific:ltion meets its service :lSsertions. it proves at the same time that the
protocol specification i!! a correct implementation of the service !5pe::iiication.

Since protacol implerr.enta.tions are specified using high-level laugu3.ges. they can be Yeriried
;131ng traditional program verification tools. We will limit our discussioo throughout the rest
of this section t<> surveying tools for the verification of service and protocol specifications.
and the problem of design verification.

5.1 State Exploration

State explora~ion examines all possible behaviors of :l prot<>col. It is used in verifying
specifications belonging to the state- ba.sed and bebvioral class of Fig 9(a). State exploration
of the concurrent behavior o(the processes local to a protocol lapr produces a reachabilit'J
graph. [n this graph. each node represents the combined states of all the local processes.
and e:lch arc represents a loc:ll tr:lnsition. Starting trom the initial state of t~e graph.
interactions of the processe!5 are examined by exploring all possible ways in which the initial
states and all subsequent states can be reached. Each node the protocol can reach is
checked for deadlock and unspecified receptions. The whole grapb can be then checked {or
general desir3.ble properties of the protocol such a.s progress. absence of temp<;blocking and
medium overflow ISuns 75. West 7830]. [n the ca.se of petri nets specifications. each sta.te in
the reacha.bility graph corresponds t<> a marking o{ the net IAyac 81. Diaz 82. Jurg 841.

The reachability graph (or the send-and-wait prot<>col is depicted in Fig. 10. All !!end
events in the graph are followed by the corresponding receive event indicates absence of
unspecified recep:'lons. and all the transitions in the FSM specification of the communicating
processes in Fig. 3 have corresponding l:nks in the 1'"eSorhability g.raph indicates absence {rom
nonexecut3.ble interactions. Als<>. there is no temp<;blccking because the only cycle in the
graph whlch involves time-out (other than the repetition of the entire prot<>col behavior)
performs useful work e:lch time a message is lost. In addition. since all nodes in the
re3.ch3.bility graph have outgoing links. then there is no deadlock in the global beh3.vior o(
the protocol. To see how a deadlock behavior would be detected by this approach, consider
remoVIng the time-out tr3.nsltion from the Sender process in Fig. 3. The system would then
deadlock at state ,) in Fig. 10 if the medium loses a message. :\ote that in produci:lg the
gnph of Fig. 10. we followed the idealistic 3.Ssumption that time-cuts only occur after a
message loss. However. if one a.ssumes that the time-out period can baYe any tiLle duration.
theo one would get another reacha.bility grapb tb3.t differs from tbat in Fig. 10 in that
tbere would be a time-out transition (rom each of states 4. and i through 12 back to state
2. There would be then 3. possibility of temp<;blocking due t<> any of these time-out loops.
This illustrates how the behavior of protocols C3.0 be time-dependent and the importance of
integrating the verification o(timing requireme::.ts with functional .. :erificaticn. a.s wiil be
dlscussed in more deta.il in section B.

L'sing this verification tool. design verification consists of demonstr3.ting how the protocol's
reachability graph C3.n be mapped t<> its service specification. Such 3. mapping for the send­
and-walt protocol is defined a.s follows: in Fig. 4 states 1 and 2 are implercented by st3.tes
1 and 8 i~ Fig. 10 respectIvely. and event!! GET and DELIVER in Fig. 3 correspond to
!!!c.s and mR.D in Fig. 10 respectively.

The principal advantage of st3.te explor3.tion
Automated st3.te exploration tools haye been used
protocols; see for example rWest 78c. Boch 79J.

lS that it couid be readily automated.
successfully in discovering errors in sever3.1
An automated and interactive verifica.tion

23

!!!c.s

Drop m

Figure 10: A reachability graph for the send-and-wait protocol

tool C3.lIed OGIVE [Prad i9] has been used successfully in proving certain general properties
of petri nets [Jurg 84].

A principal limitation of the state exploration is the explosion in the number of sta.tes as
the the complexity of the protocol analyzed increases. 1'ote that the number of states in the
reachability gn.ph is equal to the product of the olNl'lber of states in the FSM specifications
of each oC the communicating processes. In fact, Brand and ZaCiropulo proved that the
problem of verifying the general properties of communicating FS~f5, is generally undecidable
[Bran 83] except Cor a restricted class of communicating FS~rs [Bran 83, Goud 84bJ. The

state explosion problem can be partially overcome by verifying each protocol process
separately and then the protocol as a whole [Goud 84b]. limiti .. g the number of messages in
the medium f'West 82, ~oun 84]. assuming direct coupling between corresponding send and
receive transitions such that there concurrent composition involves just one rendezvous
interaction instead oC two possibilities due to the shuffling of the two transitions. using some
equivalence relation to minimize the reachability graph [Rubi 82]. In addition. instead of
verifying th~ comp,ete global behavior of 3. protocol. considerable simplification could be
achieved by verifying projections of that behavior according to the various distinct functions
of the protocol (for example separate connection establishment Crom data transfer functions
oC data link protocols) [Lam 821. Symbolic execution in which states are grouped into
classes that are specified by assertions [Bran 78. Haje i8. Bran 82] is another approa.ch to
alleviate the state exploration problem. Various reduction techniques have been also used in
verifying petri net specifications [Diaz 82].

Although state exploration is usually adequate in verifying general properties of protocols. it
can not be used for the verifica.tion of specific protocol sa.fety and liveness properties such as
properti~s Sand L given above for the send-and-wait protocol. These are addressed by the
verification tool discussed next.

5.2 Assertion Proof
A.ss~rtion proof follows the Floyd/Hoare [Flay 67, Hoar 691 technique (or program
verification. Safety and liveness properties of a protocol can be expressed as assertions.
which are attacbed to different control points of a specification. To verify an assertion
means to demonstrate that it will ~Iways be true whenever the control point it is ~tta.ched
to is reached, regardless of the execution path taken to rear.h that point.

\\oen a. protocol specification is decomposed into a number of local pre.cess specifications,
local invariants are first verified for each process dire.:tly from their specifications. Global
servIce invariants can be then verified using the already proven local assertions. Invariants
of a specification are special assertions which describe properties that are true at ever!
control point in the specification. To prove ~sertions of a loc::..l process. the introduction of
auxiliary v~!'iables. whic'h are variables not required 10 implementing the protocol, is often
required. For example. arrays of data. sent and rece:ved are required in a data transfer
protocol employing sequence numbers. in order to make precise statements about the order
in which messages are sent and received [Sten ;61.

Assertion proof is related to the class of assertional specification tools described in the
taxonomy of section 2.3. [0 partic1llar, it is used in verifying assertions associated with
:pecificatlon using procedural languages [Krog 78. Sten 76j. state machines [Bech i7aJ, hybrid
petri nets [Diaz 821. and temporal logic [Hail 80, Schw 82, Sabn 82a. Schw 831. [n the case
of procedural lang'lages, inference rule~ (i.e. rules that define the effect of each statement
type on the assertions preceding i~) for each type of statement are used in proving local
assertions. This ~Iso applies to the high-level statements in a state machine speciiication. In
the case of petri net-based models, net invariants deduced dire,=tly from the net structure,
are used in proving local assertions. Witbin the tenlporal logic framework. temporal axioms,
which constitute a tempora.l logic specification. 3re used in specifying and verifying safety
lnd liveaess a.::sertio·Qs. Temporal logic b3.3 the unique feature of supporting the specific3tion
lnd verific3.tion of live ness properties.

Formul3.tiag a.::sertions and proving them requIre a great deal of user ingenuity. This
difficulty could be partially alleviated by using some proof strategy such as induction on the
~tr'lcture of speCifications [Suns 811 and by 3utomatlon as is provided by several verification
systems: eX3.mples of verification systems that bave been applied to protocols are described
in !Good 82, Suns 8230. Divi 821. [t should be noted though tha.t automating assertion proof
is C'onslder3b!y more complex than autom3.ting state exploration. For a detailed comparIson
verlfic3.tion systems used for protocols, tbe re3.der is referred to [Suns 8~b, Suns 831.

6 Performance Analysis Tools

Perform3.nce an3.lysis of protocols includes specification. and t'erification of timing
reqUIrements, and et'aluation of per formancl! mea"ures. The beha.vior of protocols depends
on tIming requirements, and so these requirements should be ~pecified and verified in order
to ~certain correct behavior. The e((jciency of protocol behavicr is decided through the
evaluation of its key performance mea..sures. The combination of these two performance
an3.lysis problems is natural sInce both problems ar~ -'Jncerned with the timing behavior of
p:otocols. This allows the protocol designer to st· the e((ect of various perform3.nce
parameters ou their timing beha· .. ior. \Ve first ex le some issues common to the two
performa.nce ana.lysis problems and then survey apprc::.~aes to ea.ch of them.

25

In order to analyze protocol performance. it is necessary to establish pedormance models 01
both the protocol and the communication medium. operating environment, are required.
The latter i~ provided in the form of data specifying the medium's characteristics. For
example. in the case of data link protocol!! (at layer 2 of Fig. 1). the following medium
characteristics should be specified: bandwidth, bit error probability, topology. medium
configur3tion (i.e .. haIr or full duplex), and the ma.ximum bound on the number of messages
10 transit at anyone time.

:\ performance model 01 a protocol could be either formulated directly based on its
operation. or extracted from a formal specilication of the protocol. VIle will refer to the
former approach as direct and to the latter as specifir.ation-bas~d. In both approaches, the
model should specify the global view of protocol operation. It should also include the
spec ifications of the following features. First, since a. prot.ocol behavior is often non­
deterministic. the probabilities of all possible protocol events at the various instants of its
behavior should be specified. Second. a representation of the times iuvolved in each of the
events is also required. Typically, they are represented by their bounds or distributions.
Bounds on an event time specify the minimum and maximum time before its occurrence.
This time representation has' been used in [Mer! 76, Sabn 82b, Krit 84, Shan 841.
Distributions of event times provide more complete description of their random nature. This
time representation is often used especially in evaluating protocol performance measures; see
for example [Suns i5. Rudi 84, Noun 84]. Nounou and Yemini combine the specification of
eve~lt times and probability in a marked point process model of protocol performance [Noun
841. Third. some statistics for message lengths should be provided. These- are typically
con::idered as constants or represented by their distributions.

6.1 Specification and Verification or Protocol Timing Requirements

Protocol timing requirements are predicates stating the correct timing relationships between
protc('ol events. Consider. for eXJ.mple, a retransmission on timt:-out protocol such as the
send· aDd-wait protocol. The correct funct.ioning of the protocol depends, among other things,
on the requirement that time-out would occur after a message loss only with a yery small
probability. Another example of a. protocol timing requirement is to restrict the lifetime of
messages occupying the protocol system [Sloa 83]. A third example of a timing requirement
that underlies the behavior of many protocols is that if they do not achieve progress within
a specified amount of time, then they either reset or abort. Such 3. requirement is crucial to
prevent protocols from being stJ.lled due to exceptional situations 5uch as when one of the
;>rotocol process has crashed. or when the tr3.nsmission iinks are hea\'ily leaded.

Consequently, it becomes apparent that the classical correctness paradigm of safety and
liveness is not enough. Verification of safety properties might be complicated by the
wnsideration of unrealistic protocol behaviors that do not satisfy the given protocol timing
requirements. Also. proving that the protocol's goals will be eventually achieved is not
enough if these goals are achieved after a. ery long time. In fact, 3. timing error was found
in the alternating bit protocol [Bart 69]' which has been proven safe and live [Yemi 82]. It
was shown that the protocol would never achieve its eventual goal if the time-out rate is
not properly set. Thus the ultimate goal of verific3.tlon tools should be to unify verification
of protocol timing requirements with the verification of their functional requirements.

Early work on the specifica.tion of timing ;-equirements was done by Merlin [Merl 761 using
time P:\T's (see section 2.2.4). A bounds representation of time was used to describe
minimum and maximum firing times for a time-out transition in the alternating bit protocol.

28

Similar time representation ha.s been used by Saboani [Sabn 82bl but for FS\i specifica.tion!!.
~ote that in both of these ca.ses, the state exploration of the concurrent behavior of the
loca.l processes resulting in a. description oi the protocol global oeh3.vior, should be modi!i'!d.
Consider a. state in the globa.l sta.te description where n possible transitions are possible. Let
t. ' and t. denote the minimum and maximum time for transition i, respectively. The
c~';~~spondi~g~~ansition in the global description ha.s the bounds of (Min[t. . J,_\fir.[t. . D,

•. mln "1'" where Min is an n-ary operation to compute the minimum. A transition in one of the ocal
processes with t . greater than the upper bOllnd on the corresponding tra.nsition in the
global behavior, m~~uld be then time-wise unrealiz.able. The limitation of these two efrorts
sterru from the sta.te explosion problem associated with the !:pecification tools used.

~ounou and Y ~mini use a. time cOllstra.int relation "<" to define correct orderings of
protocol events involved in it~ global behavior. Consider the example of the send-and-wait
protocol without the a.ssumption that time-out occurs- only after message loss. Let the time­
oui event be denoted by 'T' message 1053 by 7jd' and the global behavior of the protocol by
G. The time constraint 'ld<a'T states tha.t whenever in G there is a choice between "'ld and
'T' then the probability of 'T occurring is zero. This would ensure that there are no pre­
mature time-outs. (The reader is referred to [Noun 841 for the complete time constraint.) G
can be di',ided into a set of behaviors satisfying the given time constraint and another set
that doe!! not. :\ behavior satisfies a time constraint whenever there is a choice between the
involved events. the event on the right hand side of the time constraint occur.!. Let G

TC
denote such a set of behao-iors. The protocol's timing requirement could be then given as

Probability[GTcI ~ 1-£

where £ is a ~mall proba.bility error. The tlmmg requirement sta.tes that the subset of
protocol beha.viors [GTe!, in which time-outs occur only a.fter messages are lost, happens
with a very high probability. Using rules for evaluating behavior proba.bility, the probability
of G TC can be eva.luated as a (unction of the time-out rate. :\05 a result, an upper bound of
the time-out rate for a given £ is computed. A distribution representation of In this
approa.ch event times were represented by their probability distribution.

Shankar and Lam [Shan 841 a.ssume a. constant time representation and Ilse time variables to
refer to the occurrence times of events. By including time variables i:l the enabling condition
of an event ~. time constralOts of the form "event e can only occur after a. given time
Interval", Time constraints of the form "event e will occur within a certain elapsed time
interval" are st3.ted as safety properties and veriiied accordingly.

6.2 Evaluation or Perrormance Measures

Key protocol performance measures include ~ucution time, delay, and throughput. The
execlltion time i!! the time reqUired by the protocol to re3.ch one of its final states. starting
from the initial state. It would be a valuable performance mea.sure for terminating protocols
such a.s a connection establishment protocol where it represents the time required for the
distributed processes involved in the protocol to get connected. Throughput is the
tran5mission rate of useful data between processors, excluding any control information or
retransmission required by the protocol. It indicates how efficiently the transmission channel
is utilized. Delay is the time from starting a message transmission at the sender to the
time oi successful message arrival at the receiver. It is useful in indicating the degree of
service tha.t the protocol provides.

Two tools are typically used III evaluating protocol performance measures: analytic tool,'j,
and ,'jimulation tool".

6.2.1 Analytic Tools

Va.rious instances of resource ,=ontention and the related queueing delays are often witnessed
in the operation of communication protocols. For example, in the send-and-wait protocol a
new message arriving at the sender has to be queued if the sender is busy waiting for the
successful acknowledgment of a previouslY5e!l.t message .. Therefore, queueing theory provides
a convenient mathematical framework for formu!c.ting and solving protocol performance
models [Klei 7.5. Koba 78, Reis 82]. In such a queueing model, the server denotes the
protocoi system under consideration which i:3 typically modeled as ~ stochastic process.

Let us demonstrate how the delay of the send-and-wait protocol caD be computed using
basic probability laws and the protocol's FS~{ spec.iijcation. Assume that the time involved
in each transition of the reachability graph in Fig. 10 is aD exponentially distributed random
v3.riable. Also, assume that a negligible delay is involved at both the sender and receiver
ends of the medium. Based on these assumptions and considering a single cycle operation of
the protocol. a modified reachability graph is shown in Fig. 11. The problem can be stated
as follows: given a medium bandwidth of 9BOQ bits/sec (for terrestrial links), mean message
and acknowledgment lengths I of 1024 bits (therefore the mean transmission time t, is
O.017sec/message). bit error probability Pb of 10.5 , mea.n propagation delay td of 0.013
sec/message, and mean time-out tT of 1 sec/message, evaluate the mean value of delay d
between state 2 to 8 in Fig. 11.

Recall from section 1 our assumption that time-out only occurs after the mediuI:l has lost a
message, this indicates that the probability of time-out is the same as the probability of a
lost message. Therefore, the probability of the time-out loop denoted by p is given by

p = 1 • (1 - PbY

which is approximately
-/p

1 - e b if [Pb < < 1

The mean delay is given by

E[d] p/(I·p) (tT + t,) + 3tt +2td

- 0.357 sec/message

a.nd the ~econd moment of d is

E[cr.] = p/(l-p) (2tT
2 + 2t/)

+ ?p2/0_p)2 (tT + t,)2 + et
l
:! +-tt/

= 0.09

(8.1)

(6.2)

8.3

Deri\'ations of equations 6.2 and 8.3 are given in appendix 1. .~sume that messa;es arrive at
state '2 in Fig. 11 with rate >., then the protocol's mt:an tron.'J/er timt: T which is the sum
of delay and a. waiting time is given by the Pollaczek-Khinchine formula [Klei 75J:

T = E[d] + (A E[d2])/(?'[I-A E[d]]) (8.4)

[n Fig. 12. we plot T versus A for various message lengths. As expected, T increases as A
increases 3.nd the system becomes sa.turated when A approaches I/E[dJ. Also, as I increases T
increases due to the increases in transmission times and p.

28

::!.c.:;: t I

Figure 11: A modified reachability graph for the send-and-wait protocol

Enmples of 5pecific~tion-ba.sed performance evalu~tion tools include works by ~iolloy [~foll
81] and ~ounou and Yemini [Noun 84]. Molloy introduced stochastic petri nets (SP~) which
are petri nets extended by assigning a random (iring delay to each transition in the net.
The reacbability set of the net is first generated and analyzed for logical correctness. then a
~1arkov proce5S. tbat is isomorphic to the set. is generated. The ste~dy-state probabilities of
the ~f:ukov process can be calculated and used in modeling a.nd c::Jmputing throughput and
delay. This approach IS limited only to exponentially (in the case of continuous
repre5ent3.tion of transition firing times) or geometrically (in tbe discrete case) distributed
firl::lg dela.ys. :-';ounou and Yemini associate probability and time a.ttributes witb protocol
beh3.vlors which are specified algebraically. L'sing rl1les for evaluating the attributes from the
distributions of loter-event times. behavior 3.ttrlbutes can be determined. These a.ttributes
C3.n be used 10 defining and computing such measures as throughput and delay. l'niike the
previous appro3.ch. there is no inherent restriction on tbe distnbutioo of event times. Other
:pecifica.t:on-based approa.ches to protocol performance evaluation C3.0 be found in [Bolo
84. Krit 8-1. Razo 8-1. Rudi 84].

The specification-based approa.ch has the a.dvanta.ge of allowing performa.nce evaluatioo tools
to be automated. This would also facilitate its IOtegr3.tion with other developrr.ent tools in
a protocol development eovironment. However. the approach largely depends on devising a
mapping between protocol specifica.tion a.nd the performance model. This mapping might be
in some cases too restrictive as is the ca.se. for example. with the markovian property oC the
resulting performance model of SPN's.

Examples or works based on the direct 3.pproach can be found in [Gei~ 78. Tows 79. Yu
79, Bux 80]. In this approach. all possible behaviors of the protocol under study has to be
directly determined (rom a human understandiog of its opera.tion.

29

5ec.

1.3

1= 1 K 3it

I ,

1= O.S K
I

3il

!)

J J.5 1 1.5 ., 2.5 J

:":'essaqe rate

::-.essage/sec.

Figure 12: Transfer time vs. arrival rate of the send-and-wait protocol

6.2.2 Simulation

Ana.lytic performance models of real-life protocols are usually intractable. In this ca.se.
Simulation IS used in evaluating protocol performance. Even when an approximate model of
the ~ystem is ~ought. simulation could be a valuable tool in validating the modeling
approx:mations a.od a.ssumptions.

In the ca.se of specification-ba.sed simulations. the protocol specification used should be
executable. Referring to our taxonomy of Fig. 9, a method that is ea.sily executed is one
that could also be ea.sily transformed into an implementation. Therefore, the same discussion
in ~ection 4 on the ea.se of implementing a protocol specification also applies here. An
exa.mple on specification-ba.sed simulation of protocol can be four.d in [Regh 821. Direct
protocol simul3tions. on the other hand, are ba.sed on a. protocol implementation. A direct
simulation of the HOLe procedures wa.s carried out by Bux, et 301. [Bux 82].

The shortcomings of simulation are clearly its high cost in terms of time and effort. and the
little understanding of the system gained. The second problem could be alleviated through a
large number of simulation runs.

30

7 Testing Tools

TestlOg is a validation tool thaI, can be u~ed t.:l examine whether a protocol implea:entation
satIsfies the functional requirements set by its :::tJ.odard. me3.Sure it::: per~orma.nce aed 3.SSeS3
its robustness in reco .. 'ering from ~xcept:onal conditions. Exhaustive testi~g b3..'5ically aims at
~xe~c;smg ail possible beta,vIors of tbe protocol 'lOder consideration. This. howey'!:. is not
realistic for rr:ost re3.l·life protocols which typic3.lly exlibit a large set of possible behaviors.
Therefore. part of the protocol testing problem is to find a way of identifying the most
probable pro~ocol behaviors and tbus produce testing results which a.re within 3. certain
r3.nge of ac.:ur3.cy. Conseq,:ently, testing 3.S a valida.tion tool i3 weaker tbn formal
verIfication bec3.use it does not guarantee correctness and is less rig~rous than a.nalytic
methOdS of performance an:?lysis bec3.t:se :t can only provide rr:e3.Surements fer specific
performance par3.meters. :\evertheless. testing :s ~ valuable ~'alidatiQn tool required to
confirm tbat the Implementation under t~st (leT) satisfies the standard implementation of
the protocol and thus ensure that difierent implementations of the protocol will be able to
in te roetwork.

In the context of the ISO hierarchically layered architecture. a. pre:oc~l module at ~ayer :\
h3..'5 two - interfaces: the ~ interface tbrough which service requests to layer ~ are provided.
and the :'-<-1 interface through which ia.yer :'oJ requests service~ from layer N·l. In order to
test an implementation of sucb a pror,ocol. one must test its response to erroneous 3..'5 well as
correct requests across each .Jf these two interfaces. A.o incorrect request at the N interface
IDdica:es an iocor:-ect ~en'ice request. but an lOcorrect response at the ~-1 ~teriace could
result f:-Or:l e:ther an incorrect response from the remote peer module or an error in the
aaDsm:SSlon of a correct response through the communication medium. All these
pOSSIbilItieS must be covered in testing an IrT.

Testing of protocols can be either dir~ct or r~mot~_ In direct testiog tbe Il'T is tes:ed in a
sImulated en',lronment wbere correct and (3.ulty re~ponses from the lower protocol layer are
~ImlJ!a:ed. a.nd the results compared With those of a standard reference implel!!entatton. In
re~ote teSting, 1n IL'T is :ested In ItS normal Oper:ltlOg environmen~, · ... 'bere it is at one end
of tbe network and some reference Implementation of the protocol is at the other end. The
refe~ence ImplementatIon IS driven by the protocol tester and the opention of the
Imple!:1t'ot3.tloo under test is observed remotely_ Note that testing in the 5econd approach is
prob3.bly ~ore complete and more deta.iled than the first appro3.ch. This is at t::e cost of
Incre:l.5ed compleXIty how eyer.

Several groups around the world are currently Invol~'ed 10 proposals :or testing centers th3.t
would be responSIble for carrying out t!le remote tests and accordin~ly provide certi{icat~s
descilblog the performance of a client's (an irr.plementor of a. pretocol implementation) IL'T
on them. The groups include the :\aticnal Physics L~ooratorf l~PL) group In Ecgland

[Bart 80, Rayn 821. tbe Agency' de I'Inf'JrmatIq'le (AD!) In Fra.::lce [A:lS3 81. An!:3 82]' the
Gesellschaft fuer ~fa.thematlk und DatenverarbeltuDg (GMD) in Ger;r.any [F3.lt 83], and the
~ational Bureau of Standards l:'-<BS) in the LISA [:\figh 8~1. Other specialized protocol
testing architectures for certain network architectures ha.ve been proposed. For example. tc.~
X:!5 testing (acdltie5 for the Datapac network [\Veir 78]. an a.rchlte:~~lre (or testi~g IB\1's
systems network archItecture (5:'\.-\) protocols [Cork 831. and a. BX.~J (an X.::!S cO!:1patible
protocol de ... ~loped at Bell Labs) certIfic3.tion r3.ciLty [\teli 82], We wi:i restrict our discussion
to general ~estlng architectures,

\\'e examine next the two m:'ln Issues pertinent to testing: login! arcbitectures (C;j testing
:lnd technIques (or selecting test 5equecces.

31

7.1 Logical Architectures ror Testing

~rithin the fram~work ~f the ISO model. a common logical testing architecture is given In

Fig. 13. In this architecture the peer protocol implementation (PPI) of the Il:T is a
combination of a reference implementation and a protocol-data.-units generator (see Fig. 13).
The PPl at layer N together with reference implementations for layers 4.5 : q are located
at the test center. while the IUT is 3.t the implementor's site. Both ends are connected to
an X.25 network which provides the first three network layers l The protocol-data-units
generator is responsible for generating correct N level service requests. requests for the
generation of N-th level protocol errors, indications of undetected :'-i-th level protocol errors,
and acts as an encoder and decoder of both valid and invalid (N-l) service. The PPI and
the protocol-data- units generator are driven by a. test driver (TD) a.t the testing cen tel'.
The test responder (TR) is the software module which acts as the user of the N sen-ice, and
whose operation is totally predictable so that the results of the tests depend only on the
behavior of the IUT. The TD and TR c~mmunicate through a non-standard protocol.

Based on this architecture. the various groups mentioned above differ in the following
respects. At GMD. the TR function is performed manually thus making testing inexpensive
for the implementor but slow and error-prone. At 1'BS. the TR is the same as the TO
except that all send (re'ceive) requests a.re changed to receive (send) requests. In this case
no special TD-TR protocol is required. At both ADI and NPL. the full architecture is
supported with the difference that the TR at ADI-...can handle multiple connections through
the leT which is necessary in testing protocols with multiplexing functions. whereas at NPL
the TR handles only one connection at a time which has the advanta.ge of a simpler TR.
Multiple connections at NPL are handled by parallel instantia.tions of the same TR design.

In order to assess the IUT, it is necessarJ to test its response to erroneous and correct
requests 3.cross both the Nand N-l interfaces. However. if the N-l service of the protocol
being tested is not end-ta-end (as in the case of the packet-level of the X.25). then it is not
possible to control it remotely. Therefore. a portable box is introduced between the
communication medium and the implementor's system (see Fig. 14) in the testing
architectures established at ~PL and ADI. It is used to detect any errors introduced by the
sub-network and introduce error5 in it upon request from the testing center.

Clearly. m3.king testing independent of the protocol being tested a.s much as possible is
highly desirable so that only minimum variation5 need to be ma.de when a protocol at
another network layer is tested. This can be 3.chieved by minimizing the protocol dependent
parts of the architecture. and automating the process of test sequences selection. The only
part of the testing 3.rchitecture tha.t needs be protocol dependent is the protocol-data-units
genera.tor. especially the part for testing normal and faulty N service. This dependency
could be minimized by automa.ting that part of the gen~r3.tor such that it is derived from
some specification of the protocol.

7.2 Test Sequences Selection

A test sequence is an input request to the (liT generated by the TD or TR. Since the
source of the rUT is typically not provided by the implementor. the selection of test
sequences at the testing center ca.n only be derived from the service and protocol

10nly end-ta-end protocols above X.25 are tested III such a.rchitectures

32

~T THE rESTI~G CL~TEI AT THE IWPLEWE~TOi'S SITE

TO-Ti PiOTOCOL

.J I TO 1------------------------1 Ii

I
N SEiVICE

~ PROTOCOL
PPI ------------------------- lUT

SLIGHny [~B.\.'KED N SEiVICE
N-l saVleE

N-l PiOTOCOl·
~-l PROTOCOL ------------------------- N-l PROTOCOL

nIPlE.\4DH nON nIPLDfE~H nON

N-2 SEiVIeE

! LAYEi '1-2 COIll\l\:~IC\ TION CH.\.';~EL

Figure 13: Logica.l :uchitecture (or testing

H THE TESTr.'IG

CDTEi

TESn~G

CCiTEi

Figure H:

COM.l,(l'N I CAT I 01'15

WEOIL1f

\T THE
IMPlDlENTOi'S

SITE

PORTABLE
BOX

IMPLDIE~T02 . 5

SYSTD'

Physical architecture iac\udiag the portable !Jait

spe-.:lfication of the protocol under consideration. Test sequences could be specified simply loS

seque:lces of commands, as state tables descrIbing the various states o(testing a!ld the
eveOlS and 3.Ssociated actions (or e3.ch st3.te, or using a test specification language that might
be then translated into sta.te table3 [Rayn 82\.

Testing is said to be complete if all the possible requests that could be applied to the Il'T
are covered by the test sequences. L"n(ortunate!y, theoretical results [Piat 801 show tha.t
without knowledge of the protocol internal state the size (mea.sured 3.S the number of
distinct sequentIa.l inputs applied to the It.:T) of a complete test sequence h3.S an upper
bOllnd of O(n") where n is the size of the state set of the protocol reference model.
OtherWIse, with an a.ccess to the protocol internal state this figure comes down to O(n1}.

33

These bounds could be very large for complex protocols such as those involving sequence
numbers.

However. there are other methods for near complete tests sequence s~lection [Sari 82, Cral
83). As an example, we will use the transition tours method described by Sarikaya and
Bochmann [Sari 82] to calculate a test sequence for the send-and· wait protocol. This
method is used to derive test sequences from a. protocol specified formally as a state
machine but using only its FSM part. A transition tcur sequence is an input sequence
starting at the initial state and covering all the transitions at least once. The length of the
sequence for our protocol example (see Fig. 11) is 8 and the sequence is given by

In general. the upper bound on the sequence length is q + (q-lXn-l). where q is the number
of possible transitions. This is the worst case where a traversal of all (n-l) states is
required to include each transition in the test sequence. Thi~ method detects all operation
errors (errors in the output function of the state machine). but it does not detect all
transfer errors (errors of the next state function).

8 Conclusions

In surveying the various protocol development t~ their dependency on the specification
tool used has been demonstrated. Based on our taxonomy of specification tools described in
section 2.3, we can conclude that behavioral specifications are better suited for synthesis.
implementation. performance analysis and testing tools. Assertional specifications. on the
other hand. offer better support for verification tools. Belonging to the latter class are
temporal logic specifications which can adequately describe both static and temporal
requirements of protocol behavior. We expect future proposals of specifications tools to
combine the temporal logic framework with other specification models. In addition. since
specification-based performance analysis tools are starting to attract much interest.
specification tools should offer better support for the specification of protocol timing
requirements and performance measures.

~10st of the past research on protocol validation tools has ignored the specification and
verification of such protocol timing requiremects. \Ve believe that such requirements are
essential for the correct functioning of most protocols. Int.egrating the analysis of timing
requirements in functional validation tools. i.e., verification a.nd testing tools. would exclude
unrealistic protocol behavior and thus simplify their functional validation.

In addition to the surveyed works on individual protocol development tools, there has been
recently a growing interest in integrating them into development environments. An ideal
development environment should provide a consistent user interface to the various tools
supported. Also, recognizing the visual attraction, clarity and wide acceptance of graphical
descriptions of protocols, we expect the user interf3.ces to employ state-of-the-art technology
in supporting such descriptions. Technological advances of graphical display devices with
colors, multiple window displays. high resolution. and numerous pointing aids (e.g.. tablet,
mouse and light pen) can be used to aid the protocol developer in constructing and
validating complex real-life protocols. The integration of specifica.tion-based development
tools in environments would facilita.te both the fUIlctional and performance validation of

34

protocols stJ.rting from ea.rly development pha.ses. Thus the costs incurred in iterations
through the development phases after post-implementation detection of errors. would be
reduced. Furthermore. as more protocol standards are developed. more experience will be
required in the a.pplication of current ald future tools a.nd environments to these sta.ndards.

[Ande 84]

[Ansa 81]

[Ansa 82]

[Ayac 811

[.\zem 78]

[Bart 691

[Bart 80]

[Baue 82]

[Berg 82]

[Bert 82]

35

D.Anderson and L.Landweber.
Protoc:)1 Specification By Real-Time Attribute Gramm:l.rs.
In Procadings of the Fourth IFIP International Worbhop on Protocol

Spf!Cification, Testing and Verification. :'-lorth-Holland, June, 198·I.

J.Ansart.
Test and Certific3.tion of Standardised Protocols.
[n Proceedings of the First International [N~VG /NPL Worbhop Protocol

Testing - Towards Proof?, pages 119-125. 1981.

J.Ansart.
GE:"EPljA -A Protocol Independent System (or Testing Protocol

Implementation.
In Procadings of the Stcond IFIP International Worbhop on Protocol

Spf!Cification, Testing and lerification. 1982.

J.Ayache, P.Azema. J.Co'lrtiat, ~LDiaz and G.Juanole.
On the Applicability of Petri Net-Based ~1odels in Protocol Design and

Verification.
In Procet!dings of the FiTst International LVlYG/l"rpL Workshop: Protocol

Testing. Towards Proo!?, pages 349-370. 1981.

P .Azema, J .Ayache. and B.Berthomieu.
Design and Verification of Communication Procedures: A Bottom-l:p

Approach.
In Procadings of the Third International ConfeTenCt! o~ Software

Engineerin,]. pages 158-174. 19i8.

K.Bartlett, R.Scantlebury, and P.Wilkinson.
A Note on Reliable Full-Duplex Transmission over Half-Duplex Lines.
CA.C.\[12(5):260-251. ~by, 1969.

K.Ba.rtlett and D.Rayner.
The Certification of Data Communication Protocols.
In XBS Trends and .4pp/ications Conference. pages 12-17. ~hy 29, 1980.

W.Bauerfeld.
A Hybrid ~10del for Protocols and Services: Verification and Simulation by a

~10dified Depth-First Search Algorithm.
[n Proceedings of the Second IFIP Intt!mational Worbhcp on Protocol

Spf!Ci/ication, Testin] and r..-eTljication, pages 4.)1·464. ~tay, 1982.

H.Berg, W.Boebert, \V.Fr3.nta. and T.~loher.
Formal Methods of Progra.m "-eri/ication and Spt!ciJication.
Prentice-Hall, 1982. -

G.Berthelot and R.Terrat.
Petri ~ets Theory for the Correctness of Protocols.
IEEE Transaction on Communications CO~I-12:2.t76-2505. Decmber, 1982.

[Bill 821

[Blum 821

[Boch 7730]

[Bach 77bJ

[Bach 78]

[Bach 79]

[Bach BOa;

[Bach 80b]

[Bach 82]

[Boch 83301

[Bach 83b]

[Bach 841

38

J Billington.
Specification of the Transport Service Using ~umer:cal Petri :'Iiets.
(n Proceeding~ of tht SaOTld IFfP International H/ork~hop on Protocol

Spaification, T~3ting and Verification, pages 77-100. ~1ay, 1982.

T.Blumer and R.Tenney.
:\ Forma.l Specific3.tioIl Technique and Implementation method for Protocols.
Computer Nttworb 6:201·217, 1982.

G.Bochmann and J.Gecsei.
:\ L~nified ~fethod for the Specification and Verifica!ion of Protocols.
In Proce~ding~ of IFfP Congr~~3, pages 229-234. August ~12, 1977.

G.Bochm3.nn and R.Chung.
A Formalized Specifica.tion of HDLC Classes of Procedures.
In Procuding3 of th~ IVTC, pages 03A:2_1-03A:2_11. December, 1977.

G.Boc~mann.
Finite State Description of Communication Protocols.
Computer Settvorb 2:381-372, October, 1975.

G.Bochmann and T.Joachim.
Development and Structure of an X.25 Implementation.
IEEE Tran3action3 on Software Enginuring SE-5(5):42~439, September,

1979.

G.Bochmann and C.Sunshine.
Formal ~iethods in Communication Protocol Design.
IEEE'Tran3actions on Communication., CO~i-28(4}:624-831. April. 1980.

G.Bochmann.
:\ Gener3.1 Tr3.nsition \1odel for Protocols and Communic:l.tion Sen·ices.
IEEE Tran3action~ on Communication3 COM-28(4):64~850, April. 19S0.

G.Bochmann et 301.
Some Experience with the l"se of Formal Specific3.tioos.
IEEE Tran~action on Communication., CO~1-12:2478-250.s. Decmber, 1982.

G.Bochman.
Di~trlbuted Sy3tem~ De3ign.
Springer- Verlag, 1983.

G.Bachmann and P.\1erlin.
On the Construction of Communication Protocols.
A.C.\f TraMfJction3 on Programming Language3 and SY3tem., 5-1:1-25,

January, 1983.

G.BachmaDn.
Formal Description Techniques for 051: An Example.
In Proceeding~ of INFOCO.\f. IEEE, 19S4.

[Boeh 76]

[Bolo 84]

[Bran 78]

[Bran 80]

[Bran 82]

[Bran 83]

[Brin 84]

[Bux 801

[Bux 82]

[Cork 83]

[Dant 801

37

B.Boehm.
Software Engineering.
IEEE Transaction on Computer C-25(1Z):12Z6:1Z41, 1976.

T.Bolognesi and H.Rudin.
On the Analysis of Time-Dependent Protocls by ~etwork Flow Algorithms.
In Procledings of the Fourth IFI? International Workshop on Protocol

Sptcification. Te.3ting and \·erification. ~orth-Holland, 1984.

D.Brand and \V.Joyner.Jr.
Verification of Protocols Using Symbolic Execution.
Computer Setworb 2:351-360, October, 1978.

D.Brand and P.Zafiropulo.
Synthesis of Protocols for an lTnlimited ~umber of Processes.
In NBS Trends and Applications Symposium, pages 29-40. May, 1980.

D.Brand and W.Joyner.
Verification of HDLC.
IEEE Transactions on Communic:Jtions COM-30(5):1135-1142. ~fay. 1982.

D.Brand and P.Zafiropulo.
On Communicating Finite-State ~hchines.
Journal of the ACM 30:433-445. April. 1983.

E.Brlnksma and G.Karjoth.
A Specification of the OSl Transport Service in LOTOS.
In Proceedings of the Fourth IFI? International Workshop on Protoco+-

Sptcification, Testing and 'Verification. ~orth-Holland, 1984.

W.Bux.K.Kummerle, and H.Truong.
Balanced HDLC Procedures: A Performance Analy~is.
IEEE Transactions on Communicltions COM-28(.11}: 1889-1898, ~ovember.

1980.

W.Bux and K.Kummerle.
Data Link-Control Performance: Results Comparing HDLC Operational

~1odes.
Computer ,Vetworb 6:37-51, 1982.

R.Cork.
The Testing of Protocols in S~A Products - an Overview.
In Proceedings of the Third IFI? International ~"rorbhop on Protocol

Specification. Testing and \"erification. North-Holland. 1983.

A.Danthine.
P,otocol Representation with Finite State Models.
IEEE Transactions on Communications COM-28(4):532-643, April. 1980.

[Diaz 821

[Dick 80a]

[Dick 80b]

[Dijk 751

[Divi 821

[Ecma 801

[Fait 831

[Floy 571

[Gele 781

[Genr 791

IGood 781

!Good 821

38

\LDiaz.
Modeling and Analysis of Communication and Coopeartion Protocols L"sing

Petri Net Based Model!5.
In F+oaeding3 of the Saond IFIP International Worbhop on Protocol

Specification. Te.3ting and verification, pages 485·,510. \fay, 1982.

G.Dickson.
State Transition Diagram! ror One Logical Channel of X.2S.
In Switching -lnd Signalling Branch Paper 28,A.u.3tra/ian

Telecommunication" Commi.3.3ion. July, 1980.

G,Dickson.
Formal Specifica.tion Technique for Data Communication Protocol X.2S t'5In~

Processing State Transition Diagrams.
A.u.3tra/ian Telecommunication Re.3earch 14(2), 1980.

E.Dijkstra.
Guarded Commands, Nondeterminacy and Formal Derivation of Prog:a.m~
Communication3 of the A.C.\[:453-457, August, 1975.

8.Divito.
\"erification of Communication.3 Protoco/.3 and A.b.3tract Proce.3.3 .Ho del.! ,
PhD thesis. L'niv, of Texas at Austin. August. 1982.

EC\iA/TC23/8O/18.
8rd. Draft of Tran.3port protocol.
Technical Report. European Computer Manufacturer Association. 1980.

l' Faltin et al.
TESD[\fanual: Testing and Diagnosis Aid for Higher Level Protocols.
[n IFV·IK·RZ, G MD. Darm.3tadt, Germany. 1983.

R.Floyd.
Assig!llng \ieanings to Prograrr..s .
. \fathematical A..3pect.3 of Computer Seiena 19: 19·32, 1957.

E.Gelenbe.
Performance Evaluation of the HDLC Protocol.
Computer Networb 2:409-41,). 1978.

H.Genrich and K.Lautenbach.
Semantic.3 of Concurrent Computation. Et·ian, G. Kahn (ed), Lu~ure

Note.3 in Computer Seiena.3.: The .4..naIY.3i.3 of Di"tributed S'j~ter'l.3
by .\fean3 of Predicate/Tr'ln.3ition .\'et.3.

Springer. Verlag, 1979, pages 123-148.

DGood and R.Cohen.
Verifiable Communications Processing In Gypsy.
In Compcon. pages 2~35. 1978.

D.Good.
The Proof of a Di.3tributed SY.3tem in Gyp.3Y.
Technical Report 30, The L"niv. of Texas at Austin, September, 1982.

,to

[Gaud 75]

[Goud 8430]

[Goud 84b]

[Grat 58]

[Gutt 78]

[Hail 80]

[Hail 81]

[Haje 78]

[Ha;-a 77]

[Ho~r 69]

[Holz 8~]

[Iso 833]

39

\f.Gouda and E.Manning.
Protocol Machine: A Concise Formal Model and its Automatic

Implementation.
In Proceeding~ of the Third IGGG, pages 345-350. 1975.

\1.Gouda and Y. Yu.
Synthesis oi Communicating Finite-State Machines with guaranteed Progress.
iEEE Tran.3actions on Gomunication.3 COM-32(i):7i9-788, July, 1984.

\f.Gouda and Y. Yu.
Protocol Validation by ~ia.ximal State Exploration.
IEEE Transactions on Gomunications COM-32:94-9i, January, 1984.

G.Gratzer.
l.:nil'er.3al A.lgebra.
5pringer- Verlag, 1958.

J.Guttag, E.Horowitz, and D.\1usser.
Abstract Data Types and Software Validation.
C.4.GJf 21(12):1048-1064, December, 1978.

B.Hailpern and S.Owicki.
Verifying :--':etwork Pro~ocols L'sing Temporal Logic.
[n NBS Trmd., and Application" Sympo.3ium, pages 18-28. \1a.y, 1980.

B.Hailpern.
Specifying and Verifying Protocols Represented as Abstract Programs.
lB.\-! Journal of Re.3earch and Dt!velopment RC 8874 (37908), February,

1981.

J.Hajek.
Automatically Verified Data. Tran!:fer Protocol.
[n Proceeding~ of the Fourth International Computer Communication"

Conference, pages 749.756. September, 19i8.

J.Harangozo.
An Approach to Describing a Link Level Protocol with 3. Formal Language.
[n Proceeding.3 of the Fifth Dat~ CommUnicatson.3 Symposium, pages

4.37-4.49. September, 1977.

C.Hoare.
An Axiomatic Basis for Computer Programming.
Communication" of the _4.C.\/ 12(10):575-583, October, 1959.

G.Holzmann.
A Theory For Protocol Validation.
IEEE Tranaction3 on Computers , August, 1982.

[SO TC97 jSC15 !'I1347 .
A FDT ba.3t!d on an extended state tran.3ition model.
Technical Report, ISO, July, 1983.

[Iso 8Jbj

fJurg 841

[Kell 761

[Klel 75j

[Koba 781

[Krit 841

[Krog 781

[L.lm 8~1

rL --I l .l;T.p "

[Lamp 801

40

ISO TC9i/SCI6 N1347 .
Draft Tutori!ll Document on Temporal Ordering Spt!cification lAnl)'J.agt!.
Technical Report, ISO. August, 1983.

W,Ju'gensen and S. Vuor::g.
Formal Specification and Validation of ISO Transport Protocol Compcne:lts,

Csing Petri Nets.
In Proceding~ of SIGCOAfJ[Symp03ium. AC~f, 1984.

R.Keller.
Formal Verification of Parallel Progr3.m5.
CommunicatioM of the .-tCJf 19(i), July, 19i6.

L.Kleinrock.
Qtuut!I'ng S13tem~.
\Viley Interscience, 197~.

H.Kobaya.shi.
Jfodding and analy"i,,: An Introduction to S'l,jtem Pt!r fromar.ce

Etla/uation .\fethodology.
Addison-Wesley Pub. Co, 19i8.

P Kritzinger.
Analyzing the Time Erriciency of a Communicatio:l Protocol.
In Proct!djng3 of the Fourth !FIP Intt!rnational Workshop on Protocol

Spaificatior., Tt!"ting and \ ertJica.tion. ~orth·Holland, 1984.

S Krogdahl.
\' erific3.tion of 3. CI3.SS of Link-LevI!! ProlDcols.
BIT 18:43&-448, 19i8.

lKurose.
The Specification and Verification of a Connection Est.lblishr:1e::t Protocol

L'sing Temporal Logic.
In Procadlrtg" of the S(COrt1 IF!P !ntt!rnatl'onal Wor.i:ghop Ort A-Qtocoi

Sp~cifica:;on, Tt!3tinq and \-l!rljica:lOrt, pages 43-6~. \13.:;. 1982.

S L3.m and A.Shankar.
:\n Illustration of Protocol Proj~ctions.
10 A-ocading3 of the S~cortd IFIP Irttern1.tional Wurk.ohop on Protocel

Spt!cification, Te"tl'n9 and \ erlfic:Hion 1982.

L.Lamport.
Proving The Correctness of ~iultiproce5s Programs.
IEEE Tran3actior.3 on Softu:art: En11rtarlnJ SE-3:1~5-143. 1977.

L.Lamport.
'Sometime' is Sometimes '~ot :--:ever'.
In Proceding~ of the AG.\[POPL Con.ference, pages 174-185. 1980. _.

I,

[Lamp 83]

[Lehm 80]

[Lond 80]

[~1ann 81]

[Me!i 82]

[Mer! 76]

[\filn 80]

[Moll 81]

[~fuss 80]

[:'-iigh 82]

[:"loun 84]

41

L.Lamport.
Specifying Concurrent Program ~fodules.
A.CAf Tran3action3 on Programming Language3 and SY3tem3 5(2):190-222,

April, 1983.

~f.Lehman.

Programs, Life Cycles, and Laws of Software Evolution.
In Proceeding3 of the IEEE, pages lOW-lOiS. September, 1980.

R.London and L.Robinson.
Software Det:eiopment Tool3, WRiddle Gnd R.Fairley '!d.: The Role of

Verification Tool3 and Tuhnique3.
Springer-Verlag, 1980. pages 20~212.

2.Manna and A.Pneuli.
Verific~tion of Concurrent Program3: The Temporal Framework.
Technical Report STA:'--i-CS-81-836, Stanford Unversity. June, 1981.

J.~felici.

The BX.25 Certification Facility.
Computer .Vetworb 6:319-329, 1982.

P.\ierlin and D.Farber.
Recoverability of Communication Protocols - Implications of a Theoretical

Study.
IEEE TrantJaction3 on Communication3 CO~f-24:103~1043, September,

19i6.

R. \filner.
A Calculu3 of Communicating SY3tem3.
Springer Verlag, 1980.

\f.\folloy.
On the Integration of Dday and Throughput .\fea3ure3 In Di3tributed

Proce33ing .\lOdei3.
PhD thesis. Univ. of California Los Angeles. 1981.

D.\1usser.
Abstarct data Type Specifications in the AFFIR\1 System.
IEEE Tran3action3 on Softu:are EngineerIng SE-6{ 1), Janua.ry, 1980.

J. :"lightinga.le.
Protocol Testing lfsing A Refe~ence Implementation.
In Proceeding3 of the Second IFI? International Worbhop on Protocol

Specification, Te3ting and ~"r:rificatlon. 1982.

:"l.:"lounou and Y.Yemini.
Algebraic Specification-Ba.sed Performance Analysis of Communica.tion

Protocols.
In Proceeding3 of the Fourth IFI? International Worbhop on Protocol

Specification, Tt!3ting and ~"r:rification. North-Holbnd. June, 1984.

[~utt 7'2]

[Oste 80]

[Pete 77]

[Piat 801

[Pnue 77]

[Post 76]

[Prad 79]

[Rayn 8'2]

[R3.ZO 8~1

[Reis 82]

42

G.Nutt.
Evaluation ~ets for Compuetr System Perfromance analysis.
MIPS Conferena Procading3 41,Part 1:2i9-288, 1972.

L.Osterweii.
Software Developmmt Tool", WRiddle end R.Fair/e'1 ed.

Lifecycle Methodology t;lnd Tool Support.
Springer-Verlag, 1980, pages 82·118.

J.Peterson.
Petri Nets.
AC.\{ Computing SurveY3 9(3):224-252, September, 1977.

T.Pia.tkowski.
Rema.rks on ADCCP 'h.lidation and Testing Techniques .
• VBS Trend3 and ApplicatioM Symp03ium , Ma.y 29. 1980.

;\.Pnueli.
The Temporal Logic of Programs.

J1 Software

[n The Eighteen Annual Sympo.'!ium on Foundations of Computer SCience.
pages ~~')i. October, 1977.

J.Postel and D.Farber.
Gra.phic ~1odeling of Computer Communications Protocols.
[n Procuding.! of the Fifth TaCo3 Conjerena on Comp'Jting SY3t~m3,

pages 66-67. 1978.

B. Cheza vie 1- Pradin.
Cn Outli Grphiquw Interactif pour la 'Validation de3 SY8temeij a Et'olution

Par'll/ele Decr!t.3 par Re3(!(.wx de Petri.
PhD theSIS, L'olYerstte Paul Sabatier, December, 1979.

D Ra.yner ed.
A SY3tem for Te3ting Protocol Implementation3.
Technical Report 9/82, NPL, Augllst. 1982.

RRazouk.
The Derivation of Perfromallce Expres'::lolls for Comm'l::tinL!oo Protocols

from Timed Petri :"let ~fodels.
[n Proceeding.! of the SICCO.\[.\f Symp03ium, pa~es '21~'217 AC\1. June.

1984.

H.Reghbati.
Performance Analysis of \fess3.ge-Based Systems.
[n Proadlng3 of the Second IFIP InternatIonal Worbhop on Protocol

Specification, T(8ting and l,."erification, pages 3'~ 1-3·~4. \b.y, 198'2.

\f.Rei.::er.
Perfrom3.llce Evaluatioll of D:::..tJ. Communication SFteiTl5.
[n Procading3 of the IEEE, p:lges 1i1·195. Febru3.ry, 198'2.

[Ridd 80]

[Rock 81]

[Rubi 82]

[Rudi 84]

[Sabn 8230]

[Sabn 82b]

[Sa.ri 82]

[Schi 80]

[Schi 81]

[Schw 8130]

[Schw 81b]

43

W.Riddle and R.Fairley.
Software Development Tools, W.Riddle and R.Fairley ed.
Springer-Verlag, 1980, pages 1-8.

A.Rockstrom and R.Sarraco.
SDL CCITT Specification and Description Language.
In Proceedings of the NTC, page!! G8.3.1-G8.3.S. 198!.

J.Rubin and C.West.
An Improved Protocol Validation Technique.
Computer Networks 8:85-73, 1982.

H.Rudin.
An Improved Algorithm for Estimating Protocol Performance.

Introduction.

In Proceedings of the Fourth IF!P International Workshop on Protocol
Specification, Testing and Verification. North-Holland. 1984.

K.Sabna.ni a.nd M.Schwartz.
Verification of a Multidestination Protocol Using Temporal Logic.
In Proceedings of the Second IFIP International Workshop on Protocol

Spl!Cification. Testing and Verification, pa.ges 21-42. may, 1982.

K.Sabnani .
.\lultidestination Protocols for Satellite Broadcast Channels.
PhD thesis, Columbia. University, 1982.

B.Sarikaya and G.Bochma.nn.
Some Experience with Test Sequence Generation for Protocols.
In Proceedings of the Second IFfP International ~Vorkshop on Protocol

SpecificatIon, Testing and Verification. 1982.

SSchindler.
Algebraic and ~iodel Specifica.tion Techniques.
[n Proceedings of the Hawaii International Conference on System

Sciences. 1980.

S.Schindler.
The OSA Project: Basic Concepts of Formal Specification Techniques and

of RSPL.
In Proceedings of the First International 1.\1~·G/SPL Workshop: Protocol

Testing - Towards Proo/?, pages 143-176. 198!.

D.Schwabe.
Fromal Techniques for the Specification and ""erification of Protocols.
PhD thesis, Univ. of California. Los Ange!es. April. 1981.

R.Schwartz and P.~felliar-Smith.
Temporal Logic Specifica.tion oi Distributed Systems.
In Proceedings of the IEEE Distributed Computer Systems Conference,

pages 445-454. 198!.

[Schw 82]

[Schw 83]

[Shan 84]

[51030 831

[Sten .5]

[Suns 75]

[Suns 81]

[Sllns 8'2a]

[Suns 831

[Symo 80]

R.Schwaru and P.Melliar-Smith.
From State Machine!! to Temporal Logic: Specification ~iethods for Protocol

Standards.
IEEE Trart3action on Communicaticrt3 COM 1'2:2471>-2505. uecmber, 1982.

R.Schwartz. P.~ielliar-Smith and F.Vogt.
Interval Logic: A Higher-Level Teporai Logic for Protocol Specification.
In Procading3 of th~ Third IFfP International Worbhop on Protocol

Specification. T~3ting and Verification. North-Holland, 1983.

A.Shankar and S.Lam.
Specification and Verification of Time-Dependent COIT'J . .."nunication Protocols.
In Procading3 of the Fourth IFIP International Worbhop on Protocol

Specification. Te3ring and l'-erificction. :'Iiorth-Holland. 1984.

L.Sloan.
~ieacha.nisms That Enforce Bounds on Packet Lifetimes.
A.C.W Trart3actiort3 on Computer Sy"tem" 1(4):311-330, ~ovember. 1983.

:'Ii.Stenning.
A Data Transfer Protocol.
Computer Ndworb (1):99-110. 1975.

CSuDsbine.
Interproa"3 Communication Protocol3 for Computer .\'etworic3.
PbD tbesls, Stanford University. Digital Syterm Laboratory TR 105,

December. 19,5.

CSuDsbine.
Formal \iodeling of Communication Protocols.
In Proceeding3 of the Fir3t InternatIonal I.\lVG/SPL Worbhop : Protocol

Te"tlrtg - Toward" Proof? pages 29-58. 1981.

C.Sunshine, D.Tbompson. R.Erickson. S.Gerbart. a.nd D.Shwabe.
Specification a.nd Verifica.tion of Communica.tion Protocols in AFFIR~f L'sing

State Tra.nsit:on ~fodels.
IEEE Trart3actiort3 on Software Enginaring 5£-&.)):450-489, Septembe:-.

1982.

C.Sunsbine.
Experience witb Au toma.ted Verlfica.tion Systems.
In Proceeding3 of the Second IFI? InternatIonal Worbhop on Protocol

Specification, Te3tjng and ~(rificatlOn. 1982.

C.Sunsbine.
Experience with Automated Verification Systems.
In Proc'!eding3 of the Third IFIP International Worbhop on Protocol

SpeciJication. T,,,ting and ~"eriJicatjon. 1983.

F.Symons.
R!p""entation. Analys,'s fj l-"erification of Communlca.tion Prctocol3.
Technica.l Report 7380, Australian Telecommunicaticn Research. 1980.

[Tane 81]

[Teng 78]

[Tows i9]

[Ural 8J]

[Vogt 82]

[Wa.ss 81]

[\Veir 78]

[West 78a]

[\\'est 78b]

[\Vest 78c]

[\Vest 821

A.Tanenbaum.
Network Protocols.

45

Computing Surveys 13{ 4):453-489, December, 1981.

A.Teng and ~f.Liu.

A Formal ~fodel for Automatic Implementation and Logical Validation of
:'-ietwork CommunicatiDn Protocol.

In NBS Computer Nttu.}orking Symposium. pag~s 114-123. 1978.

D.Towsley and J.Wolf.
On the Sta.tistical Analysis of Queue Lengths a.nd \Vaiting Times for

Statistical ~fultiplexers with ARQ Retransmission Schemes.
IEEE Tran.saction" on Communication.!! CO~f-27(4):693-702. April. 1979.

H.rral and R.Probert.
User-Guided Test Sequence Generation.
In Proceeding" of the Third IFI? International Worbhop on Protocol

SpecificatIon. Testing and Verification. North-Holland. 1983.

F.Vogt.
Event-Based Temporal Logic Specifications of Services and Protocols.
In Proceedings of the Second IFI? International Worbhop on Protocol

Specification, Testing and ~·erification. pages 63-74. ~faYr 1982.

A. \Vasserman.
T'.Jtorial: Sojtware Development Environment".
IEEE Computer Society. 1981, pages 1-2.

F.Weir, W.Prater, and X.Dam.
X.25 Test Fa.cilities on Datapac.
[n Procading" of the Fourth Ieee. pages 273-279. September, 1978.

C.\Vest.
An Automated Technique of Communications Protocol Validation.
IEEE TraMactioM on CommunicatIons COM·26{8):1271- 1275. August.

19i8.

C.West.
Gener3.1 Technique for Comm1lllications Protocel Validation.
IB'\1 Journal of Research and Det·elopment 22(4):393-404. July. 1978.

C.\Vest and P.Zafiropluo.
Autoinated V3.lidation of 3. Cummunications Protocol: the CCITT X.21

Recommendation.
IB.\fJRD 2211}:60-71. Janulrj. 1978.

C.West.
Applications and Limitaions of Automated Protocol \·alic:l.tion.
In Procadings of the Second. IFI? International Horbhop on Protocol

Specifica.tlon, Testing and ~·erification. 1982.

[\Volp 82]

[X.21 78]

[X.25 801

[Yelo 821

[Yemi 821

[Yu 791

[Z~fi 801

[Zimm 801

48

P.Wolper.
Specification and Synthesis of Communicating Processes USIng an Extended

Temporal Logic.
In Proceeding" of the Ninth Symp03ium on Principle3 of Progr'J.mmin;

LAnguage". January, 1982.

CCITT.
Recommendation X.21 (Ret·i"d).
Technical Report, Geneva, Switzerland, ~hrch. 1976.

CCITT.
Ruomendation X.2S P'J.ckf!t Switch Data Tran"mi.,.,ion Servic!".
Technical Report, Geneve. Switzerland, 1980.

L.Yellowitz, S.Gerhart and G.Hilborn.
~1odeling a Netwprk Protocol in AFfIR~i and Ada.
[n Proceeding" of tne Second IFf? International Worbhop on Protocol

Specification, Tf!.,ting and 'Verification, pages 43.5-450. ~1ay, 1982.

Y.Yemini and J.Kurose.
Towards the t.:nIfication of the Functional and Performance Analysis of

Protocols. or is the Alternating-Bit Protocol Really Correct?
[n Proceeding" of the Second IFf? International Worbhop on Protocol

SpecificatIon, Tf!.,ting and '/erification. 1982.

L. Yu and J.~fa.jthi3..
An Analysis or One Direction of Window ~1ecbnism.
IEEE Tran"action3 on Communic'J.tion3 COM-27(5):778-788, ~1ay, 1979.

P Zafiropulo. C.\Vest, H.Rudin. D.Cowan. and D.Brand.
Towa.rds Analyzing a.nd Synthesizing Protocols.
IEEE Tran3Clc!ion" on Communlc:ltIOn3 CO~{- 28(4):551-881. April. 1980.

HZimmerm3.nn.
The [SO ~fodel of Architecture (or Open SYstem Interconnection.
IEEE Tran3action3 on Communlc'J.tIOn3 C'0~1-2Sfh April. 1980.

