
Generation of
Distributed Programming Environments

Gail E. Kaiser
Simon M. Kaplan·
Josephine Micallef

October 1986

Abstract

CVCS-225-86

.. -

This technical report consists of three related papers in the area of distributed programming en
vironments. Incremental Attribute Evaluation in Distributed Language-Based Environments
presents algorithms that extend existing technology for the generation of single-user language
based editors from attribute grammars to the cases of multiple-user concurrent and distributed
environments. Multi-User Distributed Language-Based Environment, an extended abstract,
provides additional information on how to apply the algorithms. Reliability in Distributed Pro
gramming Environments presents additional algorithms that extend our results to unreliable net
works.

Pan of this research was conducted while Dr. Kaiser was a Visiting Computer Scientist at the
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh. PA. "Dr. Kaplan is sup
ported in part by a grant from the AT&T Corporation. Dr. Kaplan's address is Department of
Computer Science, University of Illinois. 1304 West Springfield Avenue. Urbana. IL 61801.

Incremental Attribute Evaluation in
Distributed Language-Based Environments t

Simon ~L Kaplan

t.: niversity of Illinois

Department of Computer Science

Urbana, IL 61801

Gail E. Kaiser

Columbia University

Department of Computer Science

New York, NY 10027

Summary

We present a model of distributed program editing and algorithms for the

incremental checking of static semantic properties of modules that are at once

semantically interdependent and physically distributed across a number of

workstations connected by a high speed network. This makes possible the syn

thesis of modern program development hardware - workstations on high

speed networks - and modern program development software - incremental,

language-based program development systems - that until now have suffered

from the problem of not being able to support incremental checking across dis

tributed modules.

Introduction

This paper deals with the problem of performing incremental semantic l analysis

across a program that is split into I modules that are distributed across a network of m

machines, with '1 modules dormant (not being edited or inaccessible due to network or

machine failure) and the other 1-'1 being concurrently edited.

:\. ~tate-of-the-art program development environment provides a programming

team with a number of workstations connected by a high speed network. Each module in

the system under development i!! typically the respon!!ibility of a programmer, and is

resident on that programmer's workstation. The program under development is therefore

distributed across the network.

Slate-or-the art software ror program development support !!hould also be provided.

Such software will Incr~me'1ta/ly enforce a module'!! syntax and indicate any semantic

errors as the program is constructed (Reps 841. Syntax checking is an inherently local
.....
J Appem in AC~f Symposium on Principles 01 Distributed Computing. Calgary. Alberta. Canada. August, 1986.

pp.121-130.
I 10 t!ll' paper, by ",emaotlc," e meaD ,tatlc ,emaotlCS.

- 2 -

process, but semantic checking may require information imported from another module

[Kaiser 83]. If the semantic information in that module alters, all users of the module

should have the change propagated to them 50 that their programs can be checked to see

if they are still semantically consistent.

Currently no program development environments provide support for incrementally

checking semantics across multiple distributed modules: they support only single monol

ithic programs (i.e. the entire program must be physically on the user's machine and not

split into physically separate modules). There are several systems (most notably Cedar

[Lampson 83]) that support the distributed program development effort of multiple pro

grammers: however, these systems perform semantic checking at p!'eviously agreed check

points. This for-m of checking is not incremental.

Algorithms for incremental evaluation of semantic information are traditionally

sequential iu nature [Reps 82a, Johnson 851. Having multiple programmers concurrentiy

modify modules (and as a result propagate semantic information between the modules)

requires ,an inherently concurrent view of semantic change propagation. Vi e postulated

that if we could derive a concurrent semantic evaluation algorithm for the single edit

case, this would extend naturally to the multiple edit case and then to the distributed

multiple edit case.

We begin by listing the original contributions of this paper. The next section briefly

overViews attribute grammers, building language-based editors from grammars and

sequential attribute updating strategies. Then we introduce and analyze our concurrent

updating strategy for the case of a single edit. This is followed by a description and

analysis of the multiple edit case, which in .turn is followed by the distributed. multiple

edit case. We relate this paper to other work in the field and end with some conclusions.

Original Contributions

• \Ve introduce for the first time a model of incremental attribute evaluation amongst

program modules distributed across multiple machines on a network.

• \Ve provide algorithms for the concurrent incremental evaluation of attributes in a

programming environment. We begin with a concurrent algorithm for incremental

evaluation in a single user, single edit environment. We then expand this to handle

multiple asynchronous edits, and then extend further to handle multiple asynchro

nous edits on modules that are distributed.

Overview of Attribute Grammars and Incremental Semantic"'Checking

An attribute grammar [Knuth 68] is a. context-free grammar that is enhanced to be

capable of expressing context-sensitive information by associating with every symbol in

the context-free grammar a set of attributes, and associating with every prcduction in the

grammar a set of attribute equations that describe the relationships among the attributes.

[Waite 84] and [Reps 82b] overview attribute grammars and their relation to construction

-3-

of compilers and program development systems, respectively.

The context-free grammar can be used to parse a context-free sentence of the

language specified by the grammar into tree form, where each node in the tree

corresponds to an instantiation of a production of the grammar. Once this has been

done, the attributes associated with each production can be added to the tree. Attribute

flows will form a directed graph on the tree. A standard restriction employed by all incre

mental checking editors (and most compilers based on attribute grammars) is to consider

only noncircular attribute grammars, i.e. those whose attribute flows form a directed acy

clic graph (DAG) on the tree.

An attribute grammar specification can be used to generate a language-based editor

that incrementally checks the consistency of a program. Edits in such a system are

defined in terms of subtree replacement on the tree representation of a program. After

each such replacement, the syntactic and semantic consistency of the program is reesta

blished.

After a single subtree replacement, the tree is syntactically consistent and all incon

sistent attributes are located at the replaced node of the tree. A graph D of the dependen

cies (including transitive dependencies) amongst the attributes at that node, its parent,

siblings and children is constructed from templates obtained by analyzing the grammar at

the time that the editor waS generated. 2 This graph has attributes at the yertices and

dependencies shown by the edges. Because transitive dependencies are included, this

graph can extend arbitrarily far on the tree. Any vertex in this graph with in-degree 0 is

said to be independent because it cannot depend on any other inconsistent attribute.

Because the attribute flows form a DAG, at least one such vertex must always exist.

An independent vertex is chosen and the associated attribute 0: reeyaluated. If the

value of the attribute has altered, D is examined to see if there are any attributes f3 depen

dent on 0: not already in D. If so, f) is expanded to include all dependencies between each

/3 and any attributes already in f), again including any transitive dependencies. The attri

bute 0: is removed from D, along with its associated edges, and the process is repeated

until D is empty.

This algorithm is due to Reps [Reps 82a] and is asymptotically optimal in time; its

time complexity is OCAffected1)' where Affected is the set of attributes that change. The

implied topological sort on D results in an attribute being reevaluated only when the

reevaluation is guaranteed to yield its final value (because an attribute is only reevaluated

after it becomes independent).

2 In [Reps 82aj this ~aph is called the model.

-4-

Introducing Parallelism

We begin by proposing an algorithm that performs as many attribute evaluations in

parallel as possible, by choosing the complete set of independent vertices at any time and

evaluating all of them. This is a. simple modification to the sequencial optimal algorithm

described above. Its major purpose is a paradigm shijt, by introducing parallelism, we

provide the ability to handle the interesting cases: multiple asynchronous subtree replace

ments (with their reevaluations) and distributed evaluations. The algorithm is:

~.

-5-

startup(T, x)
let
T = fully attributed tree
,I(= node in tree with inconsistent attributes
S = set of attribute instances
fJ = attribute instance

in
setup(T; .1(, S)
V /3 in S do propagate(/3) od
terminate

propagate(fJ)
let

/3 = attribute instance
S = set of attributes

in
evaluate /3
if /3 changed then expand(/3) fi
remove(/3, S)
V /3 in S do propagate(fJ) od
terminate

Setup, remove and expand are all calls on an abstract data type 0, which maintains

the attribute dependency graph (which may in practice be divided into a number of dis

joint graphs).

Setup(T, R, S) takes as arguments a tree Tand a particular subtree .1(of T, which has

inconsistent attributes at its root, constructs the dependency graph 0 and returns in S the

attributes that are ready for evaluation because they are independent (they have in

degree 0 on the dependency graph).

Expand(fJ} takes as argument an attribute and expands the graph as described in the

previous section.

Remove(f3, S) takes as argument an attribute name and removes it and its associated

edges from the graph. It returns in S a list of attributes ready for evaluation.

These three operations must also maintain synchronized atomic access to the depen

dency graph, as well as a list of what attributes on the graph with in-degree 0 have been

passed to a calling process as being ready for evaluation (to prevent an attribute being

passed for evaluation more than once).

The Startup process calls setup to create the initial graph, and then propagates a pro

cess for each element in the list returned by setup.

Each propagate process reevaluates its argument attribute. If this has changed, it

expands the graph to include any new implied dependencies as discussed above. The argu

ment vertex is then removed from the graph along with its edges. A list of attributes

ready for reevaluation is ret urned to the process, which then in turn spawns evaluation

processes for each elemen t in the list before terminating.

-6-

By the nature of f), once an attribute is independent it can be evaluated entirely

separately from any others. This im plies that remove can return the fullest possible list of

attributes waiting for reevaluation regardless of how they came to be included in D. so

that the maximum possible parallelism may be attained. Because the attribute flow::

form a DAG, we also do not have to worry about deadlock problem".

Analysis of the grammar when compiling it for use in an editor allows the precon

struction of templates for the dependency graphs. These can be instantiated in constant

time when performing evaluations [Reps 82b]. Further, attribute reevaluations take con

stant time, so the only variable is the number of propagations needed to complete all

attribute reevaluations.

If we conceive of the attribute propagation processes forming a tree P, with the

startup process forming the root, and each propagation forming the root of all the

processes it propagates, and if h(P) i; the height of this process tree, then the time com

plexity is O(h(P)). The maximum parallelism obtained is the max-cut of P. In the worst

case, with no parallelism (propagate runs as a procedure of startu.p). the tree (which now

records calls to propagate) has height equal to the number of propagations, so the time

complexity is related to the number of propagations. The number of propagations is the

same size as the set Affected used by Reps. so in the sequential case we have the classic

result for sequential incremental evaluation. In practice we are unlikely to achieve the

maximum potential parallelism because of a shortage of processors; this point is discussed

in the "Pragmatics" section below.

Handling Multiple ,A.,ynchronous Subtree ReplacementJ

We have shown thus far that introducing paralleli.::m scheduled by a topological .::o~t

on the attribute dependency graph can improve the running time of an incremental attri

bute evaluation algorithm. We look now at the case where multiple asynchronous subtree

replacements are performed. This sets us up to consider the case of multiple asynchro

nous replacements across multiple distributed modules in the following section.

This section introduces a major result of this paper: given the parallel change propa

gation algorithm introduced above, we can support multiple asynchronous updates on the

tree and still end up with an efficient algorithm.

\\'e modify setup to be atomic and to merge the graph it creates with any other

graph in O. This merging operation is a union operation, so identical edges and yertices

in the two graphs become one in the resultant graph. \Vhen a subtree replacement is per

formed, attribute evaluation proceeds as follows:

• Execute the startup process. This will add to whatever is already in 0, the graph of

the initial dependencies amongst the attributes of the changed subtree.

• Continue exactly as before. From this point it makes no difference if the new

dependency graph for the newly changed subtree overlaps with others or not;

remOt'e and expand will return the correct results regardless.

-7-

This is a significant result. We can now build environments for multiple users and

know that attribute evaluations will succeed. Further, we can look at the truly interest

ing case, namely distributed editors that propagate semantic modification to one another.

The time complexity in the multiple subtree replacement case is slightly more com

plex than before. The dependency graphs grow on the fly, so when looking at an attribute

with in-degree 0 in the dependency graph, we can be sure that it is truly independent of

any evaluations propagated from the subtree replacement that ultimately was the cause

of its evaluation. However, a graph from one replacement may grow to cover a part of

the graph from another replacement that has already been evaluated, thus repeating the

work of that evaluation. We need to show that there is an upper bound on this growth of

attribute reevaluations.

Theorem. Given a tree on which k subtrees are replaced asynchronously, in the worst

case any attribute is evaluated at most k times.

Proof. Suppose that each replacement is made immediately after the previous

replacement's evaluations quiesce. This is the same as k separate replacements. \Ve

have seen that each replacement evaluates an attribute at most once; this implies

that in the worst case an attribute is evaluated k times. Now suppose that the

replacements overlap in time with evaluations. The potential exists for an attribute

to be independent in J) (and thus ready for evaluation), but that it will be

reevaluated later by some other subtree replacement making J) grow to include it

again. In this case the propagations will chase each other. They will either catch up,

thus merging the graphs and reducing the number of replacements, or they will not.

All k subtree replacements can exhibit this chasing behavior, so in the worst case

each attribute will be reevaluated k times. 0

In the single replacement case, a tree P of process propagations is formed; in the

multiple replacement case, a graph 9 with k starting points is formed. Note that remove

returns all possible attributes that can be evaluated, regardless of where on the graph

they appear, so there is no relation between the various paths through 9 and the replace

ment graph J). Nonetheless, the time complexity of the multiple replacement case is

O(h(g)).

In general we would expect some expands on J) will overlay parts of the dependency

graph that are already there, thus reducing the number of evaluations required.

This model of users making arbitrary changes to the tree at any time in general

poses some serious problems from the viewpoint of editing on the tree; a programmer

wants to be sure that the part of the tree she is editing is not suddenly changed by some

other user. We have found a solution to this problem, called firewalls which we discuss in

the next section.

---~-------------------

-8-

Maintaining attribute~ consistently acro~~ a distributed tree

We turn now to the problem of supporting semantic analysis for programming in the

many. Whereas programming in the small refers to the problem of developing the con

tents of one module, and programming in the large reters to the problems associated with

the combination of many modules to form large systems, programming in the many refers

to the problem of coordinating the activities of many programmers as they attempt to

create large software systems. In this paper we deal specifically with the problems associ

ated with maintaining consistent semantic information between a number of modules dis

tributed across a network. However, the algorithms developed are equally suitable to a

time-shared mninframe environment.

\Ve envis;,';e a model of program development where several programmers each use

a workstation to develop a module. with the workstations connected by a high speed net

work. Each programmer runs a copy of a programming environment such as Gandalf

!Notkin 85], POE [Fischer 84], the Program Synthesizer [Teitelbaum 81], or SAGA

[Kirslis 84]. To the programmer, the module she is currently editing is the local module.

All other modules are remote modules, regardless of their physical location (some remote

modules may in fact by resident on the local workstation but not being edited). All

modules are internally represented by the programming environment as attributed trees.

When complete the trees may be combined (across machines) to form large programs.

Some examples of this situation are:

• Each programmer develops one or more modules, and all the modules are combined

together to form a large program.

• One programmer owns the declarations for a procedure, the body of which is edited

by another programmer on a remote machine.

Although a program can be broken into modules and split across a distributed sys

tem, there must still exist definitions in the context-free grammar that describe how the

modules connect syntactically, and provide a channel for attribute flow. Every editor has

a copy of the attribute grammar describing the language and its semantics. which it can

use to determine when attribute flow crosses to a remote machine, and what the attribute

dependencies there are. (Because of the precompilation of the attribute grammar. deter

mining this information requires minimal overhead).

When a programmer replaces a local subtree, attribute reevaluation begins as usual.

At each point that {) is expanded a check is performed to see if the cxpan:;ioll would cause

a flow of attribute propagation onto a remote machine, or bet:ulUc dependent on an attri

bute from a remote module. For the former case, we build I) as normal, and then cut the

graph so as to separate all remote attributes for a given remote module from the rest of

I). We now insert a special vertex, called remote, into I) so that all attributes flowing over

the cut out of the local module now flow via remote. We handle attribute values flowing

into the local module by making them immediately independent and giving them the pre

vious values they had when propagating into the local module (how this is actually done

-9-

is described below). We then alter f) so that anything flowing out of remote is discarded,

all attributes flowing into the local module are independent, and continue evaluation as

normal3.

'When the special vertex remote is independent, a packet of information is built con

taining local attribute information, which is then propagated to the remote machine. We

assume that propagate is modified to handle this. \Ve further assume the existence of sup

port layers of software that handle the message passing across the network and recovery

from errors.

On the remote machine a semantic update will be triggered as if there had been a

subtree replacement at the point where the syntactic link between the local and remote

modules reaches the remote module. The dependency graph [) for that remote module is

now built in dual to the approach used for the local module. Attributes flowing into the

(new) local module are treated as independent, and attributes that flow out are assigned a

remote as described above.

This means that the subtree replacement model extends easily to handle remote

attribute propagation. However, there are some problems with this. A module on a

remote machine may be dormant (the module is not being edited, or it is inaccessible due

to network or machine failure), or the user could be performing an editing operation that

temporarily makes the tree unsuitable for receiving attribute information.

We therefore propose the introduction into our model of a general concept called a

firewall. A firewall acts as a barrier behind which a module can shelter if it is not ready

to accept semantic change propagations from other modules, a circumstance that may

arise either because a local user is actually changing the module, or because the module is

dormant. The former case arises relatively infrequently in relation to the total amount of

time that a module is not dormant. Much of a programmer's time is spent browsing the

code and deciding what changes to make. It is only while the actual subtree replacement

is taking place that the firewall need be in place.

When an attribute propagation reaches a firewall that is in place, it queues until the

firewall goes down, at which point the change is propagated to the module as if a subtree

replacement had taken place at the firewall. If a module is dormant a propagation will

queue until a programmer begins an editing session, at which time the propagation will

enter the module.

There are a number of implications of this strategy. Suppose a change propagates

to a remote module which, in response, will propagate back Borne semantic information.

To the programmer this may appear as two entirely separate operations. The local

3 Note that we are guaranteed to get all remote dependencies in place the first time the graph ex
pands to imply remote relations, as the remote link is, from the viewpoint of the attribute gram
mar, just another link in the syntax tree. So expanding the graph to describe remote relations is
just like expanding it to accommodate another node in the tree; the first attribute to get there
triggers a complete expansion of f).

-10-

attribute evaluations will cause a message to be sent to the remote module causing

further propagation there. This may be indefinitely delayed because of a firewall being in

place or because of a failure of the network 4. The remote evaluations are not included in

:. so the internal attribute evaluation will run to quiescence in the normal way. When

the remote propagation eventually starts, it will propagate back some semantic informa

tion that will be evaluated as if it were a new subtree replacement on the local module at

the firewall.

Another important role of the firewall is to act as a place where previous values of

remote attributes can be stored. Suppose an attribute depends on another attribute from

a remote module. 'We do not want; to have to go across to the remote machine to get the

attribute value, which may in general not be possible because of remote firewalls being in

place or network failure, both of which could cause undue increases in response time.

Instead, we store on the firewall the value of every attribute that passes througn it.

When an attribute depends on a remote attribute, we need look no further than the

firewall to discover its most recent value (which has to be correct as the most recent value

will always by definition be propagated to the local module). Conversely, when a remote

propagation triggers a local evaluation by passing a package of attribute information, the

information on the firewall is updated.

Another advantage of a firewall is that it can be used to place a border on areas that

a programmer may edit. A programmer may be allowed to cross a firewall while brows

ing through code. but might not be allowed to edit anywhere except behind her own

firewall(s). This simple strategy guarantees that two programmers cannot simultaneously

change the same part of a module, a stancard feature of multiple user programming

environments [Notkin 85, Leblang 851.

This model of distributed incremental attribute evaluation is chosen to strike a bal

ance between the need for the programmer always to have absolutely correct attribute

information, and the physical constraints Oil response time and dangers of ending up

waiting for a network that is broken to yield a response. We adopted two complementary

strategies to alleviate these problems. When a remote attribute needs to be reevaluated

because of a local attribute change, the relevant information is packaged and transmitted

to the remote site, which models the changed attributes as if they came from a subtree

replacement. 'When a local attribute depends on a remote attribute, the most recent

value (stored on the firewall) is just taken on the grounds that if a more recent value was

available it would have been prop'l.gated to the local modllie. Note that more recent

values may exist but be inaccessible due to network failure; we assume that in this case

the network will eventually recover itself and perform the propagations.

This means that once an attribute propagation crosses over into a remote module,

from the viewpoint of the local module, th.at attribute has quiesced. If the remote module

~ We assume a. sui table recovery mechanism for such network fa.il ures.

-11-

generates a propagation back into the local module, then that is considered a separate

subtree replacement. Thus the complexity analysis for the multiple replacement case

applies here also, from the viewpoint of one module. (We do not believe that considering

the propagations across the entire network is meaningful or interesting; but the order

across the entire network is as if all the affected modules were considered to be connected

into one large tree).

A final issue worth a brief mention is that queueing information on a firewall also

allows a way of handling multiple propagations of the same attribute from a remote

module whilst the firewall is in place. The most recent propagation can be used, and the

others discarded, thus reducing the potential problem of repeating the same work k times

for ~ propagations of the same attribute.

Pragmatics

Even with the processing power of a high speed workstation, if too many attributes

become independent concurrently, the number of propagate processes will swamp the

processor(s) and remove any advantages accruing from the parallelism. Simple

modifications to the algorithm can limit the effect of this problem. For example, we can

put an upper bound on the number of propagates that can run concurrently. The opera

tions on f) can be modified to restrict the list of attributes ready for reevaluation returned

in S so that swamping of the processor(s) cannot occur.

\Ve would at least need two processes for each editor incarnation (on a workstation

we would usually only have one editor running, but there is no reason why these algo

rithms could not be used on a time-sharing mainframe on which there are as many editor

incarnations as there are users); the first would be the conventional editor process. The

second would manage the firewall, merge any attribute propagations that arrive at the

firewall into f) as described above and handle transmission of packets of attribute values

to remote editors.

The model of a module being dormant until awakened by a programmer may in

practice be unrealistic. Consider, for example, the situation where module lvf propagates

an attribute to module N, and the effect of that propagation in turn has an impact on

some other modules in the system (possibly including M). If N is dormant for a

significant period of time, many of the advantages of this editing model will be lost as

other programmers will have to wait until N's programmer reactivates an editor for N
and causes the effect of the changes from M to propagate through the system. Therefore,

associated with each module there should be a watchdog which can invoke an editor for a

module if it has been dormant with queued attribute propagations at its firewall for more

than a given period. The editor invocation can then handle attribute propagations, log

any errors for future use by a .programmer and transmit any resultant remote propaga

tions to other modules before returning to the dormant state.

- 12 -

We have said very little about the network that would be used to support the

remote propagations; this network should contain an attribute propagation layer that

interfaces the network to the editors and handles packing and unpacking of remote attri

bute propagations and the firewalls. The second editing process of the two described :n

the first part of this section would then be subsumed into this network layer.

Related Work

There is some previous research that relates in various ways to this project, which

we discuss below. However, we can find no reference in the literature to any previous

attempts to solve the problem of incremental attribute updating across a distributed pro

gram representation.

An obvious way to introduce parallelism into attribute evaluation is to treat attri

bute dependency graphs as petri nets and perform the obvious concurrent evaluation.

Under circumstances where the attributes can be evaluated non-incrementally, this stra

tegy works well and has been the basis for some non-incremental approaches to attribute

evaluation [Fang 72, Kennedy 76]. In the incremental case, with graphs constructed on

the fiy, and with an attribute's propagation terminating if its value does not alter, there

is no way that a vertex of the net can wait fer all its inputs to yield a value before firing,

as some might never do so. Some might also never be included in the dependency graph

at all, as they are not affected in any way by a particular change in the tree. If we allow

the vertices of the net to wait for all inputs they might well wait forever; and if we allow

a vertex to fire each time it receives an input, in the worst case we get exponential explo

sion of processes. Such approaches are therefore unsuitable for the distributed, incremen

tal situation.

To prevent a similar exponential explosion in a sequential incremental evaluation

algorithm for single replacements in a single environment editing monolithic programs,

Reps proposed a topological sort on the dependency graph to delay evaluation of attri

butes until that evaluation is guaranteed to yield the final result of the evaluation [Reps

8?a]. Our use of the topological sort is adopted from this work. In IReps 86]' the single

;-"bLree replacement is replaced by multiple simultaneous replacements. This is done to

mudel more powerful editing operations than single subtree replacements, such as pro

gram transformations. The algorithm obtained is unsuitable for asynchronous replace

ment, and is not extensible to distributed replacement. This result is subsumed into our

asynchronous replacement result. It should be stressed that these, and all other incre

mental evaluation algorithms that we know of are sequential and restricted to single user

systems.

An incremental evaluation strategy based on attribute propagation by message pass

ing is proposed in [Demers 85]. The purpose of this work is to analyze more complex

forms of static information concerning a program, such as dataflow information. This

scheme does not support parallelism, multiple subtree replacements or' distributed module

- 13 -

editing.

A distributed word processing system based on Argus [Liskov 851 has been con

structed to test problems in multiple paper authorship [Grief 86]. No semantic checking

between distributed documents is performed.

Several incremental program development environments have been constructed

[Teitelbaum 81, Feiler 81, Fischer 84, Garlan 84, Kirslis 841, but none of these support

distributed program development. A number of distributed program development

environments have been constructed [Donahue 85, Lampson 83, Swinehart 85, Leblang

85], but none of these support incremental semantic checking.

Discussion

We have introduced an algorithm for concurrent incremental attribute eyaluation in

program development environments. \Ve have shown that this algorithm extends, natur

ally, first to supporting multiple asynchronous modifications to a program, and then to

supporting incremental semantic checking across a set of program modules that are dis

tributed on a network.

These are important results, because they pave the way for integration of modern

programming hardware (workstations and high speed networks) with modern program

deyelopment software (program development environments that guide and incrementally

check the programmer).

We have not restricted ourselves to any particular editing system, but given general

algorithms that we believe may be introduced into any existing language-based environ

ment in order to extend it to the multi-user and distributed cases.

Further, the algorithms are host environment independent. By this we mean that

they will function equally well on workstations used by a single programmer or main

frames time-shared between many programmers. The more processors a particular

machine has, the more the parallelism in our algorithm will be capable of being exploited.

Many more evaluation processes (propagates) than processors can be generated, but there

exists a practical upper bound on any system where the overloading of the processors

outweighs the advantages of the parallelism in the algorithm. In such restrictive situa

tions, the algorithms are amenable to tuning to limit parallelism to prevent processor

oyerloading.

Reference!!

[Demers 85] Demers, A., A. Rogers and F. K. Zadek, "Attribute Propagation by Message

Passing", Conference Record of the ACM SIGPLAN Symposium on Language Issues

in Software Development, SIGPLAN Notices, 20, 7 (July 1985).

[Donahue 85] Donahue, J., "Integration Mechanisms in Cedar", Conference Record of the

ACM SIGPLAN '85 Symposium on Language Issues in Programming Environ

ments", SIGPLAN Notices, 20, 7 (July 1985).

- 14 -

[Fang 72] Fang, I, "FOLDS: A Declarative Formal Language Definition System", Ph.D

Thesis, Stanford University (1972).

[Feiler 81) Feiler. P. H. and R. ~ledina-~lora. "An Incremental Programming Environ

ment". IEEE TransG.ctions on Softu:are Engineering, 5E-7. 5 (September 1981).

[Fischer 84] Fischer, C. ~., G. F. Johnson, J. ;\launey, A. Pal, D. L. Stock, "The POE

Language-Based Editor Project", Conference Record of the SIGSOFT /SIGPLAN

Software Engineering Symposium on Practical Software Development Environ

ments, SIGPLAN Notices 19, 5 (1lay 1984).

[Garlan 84) Garian. D. B. and P. L. Miller. "GNO~1E: An Introductory Programming

Environment Based on a Family of S~ructure Editors", Conference Record of the

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

Development Environments. SIGPLAj'l Notices, 19, 5 (~lay 1984).

[Grief 86] Grief, 1., R. Seliger and W. \Veihl, "Atomic Data Abstractions in a Distributed

Collaborative Editing Environment", Conference Record of the Thirteenth AC\l

Symposium on Principles of Programming Languages (January 1986).

[Johnson 851 Johnson, G. and Fischer, C. "A Meta-Language and System for Nonlocal

Incremental Attribute Evaluation in Language-Based Editors", Conference Record

of the Twelfth AC\l Symposium on Principles of Programming Languages, (January

1985).

[Kaiser 83] Kaiser, G. E. and A. 1\. Habermann, "An Environment for System Version

Control", Conference Record, Spring CompCon '83 (February 1983).

[Kennedy 76] Kennedy K. and S. K. Warren. "Automatic Generation of Efficient Evalua

tors for Attribute Grammars". Conference Record of the Third AC\l Symposium on

Principles of Programming Languages (January 1976).

[Kirslis 84] Kirslis, P. and R. Campbell, "The SAGA Project: A System for Software

Development", Conference Record of the AC:\l SIGPLAN/SIGSOFT Software

Engineering Symposium on Practical Software Development Environments", SIG

PLAN JVotices, 19,5 (May 1984).

[Knuth 68J Knuth, D., "Semantics of Context-Free Languages", l'vlathematical Systems

Theory, 2 (1968). Correction, ibid, 5, 1 (1971).

[Lampson 83 I Lampson, B. '-tV. and E. E. Schmidt, "Organizing Software in a Dist.ributed

Environment", Conference Record of the SIGPLAN '83 Symposium on Program

ming Language Issues in Software Systems, (June 1983).

[Leblang 85] Leblang, D. B. and G. D. McLean, "Configuration Management for Large

Scale Software Development Efforts", Conference Record of the GTW Workshop on

Software Engineering Environments for Programming in the Large (June 1985).

[Liskov 851 Liskov, B., "The Argus Language and System", Lecture Notes in Computer

Science 1 90, Springer-Verlag (1985).

- 15-

[Notkin 85] Notkin D., "The GANDALF Project", Journal of Systems and Software, 5, 2,

(May 1985).

[Reps 82a] Reps, T., "Optimal-Time Incremental Semantic Analysis for Syntax-Directed

Editors", Conference Record of the Ninth ACM Symposium on Principles of Pro

gramming Languages (January 1982).

[Reps 82bl Reps, T., "Generating Language-Based Environments", Ph.D Thesis, Cornell

University (1982). Also published by M.LT. Press, Cambridge (1984).

[Reps 84] Reps, T. and T. Teitelbaum, "The Synthesizer Generator", Conference Record

of the SIGSOFT jSIGPLAN Software Engineering Symposium on Practical Software

Development Environments, SIGPLAN Notices, 19, 5 (May 1984).

[Reps 86] Reps, T., C. i\!arceau and T. Teitelbaum, "Remote Attribute Updating for

Language-Based Editors", Conference Record of the Thirteenth AC:\1 Symposium

on Principles of Programming Languages (January 1986).

[Swinehart 85] Swinehart, D. C., P. T. Zellweger and R. B. Hagmann, "The Structure of

Cedar", Conference Record of the ACM SIGPLAN '85 Symposium on Language

Issues in Programming Environments, SIGPLAN Notices, 20, i (July 1985).

[Teitelbaum 811 Teitelbaum, T. and T. Reps, "The Cornell Program Synthesizer: A

Syntax-Directed Programming Environment", Communications of the ACAf. 24, 9

(September 1981).

[Waite 84] Waite, W. and G. Goos, "Compiler Construction", Springer-Verlag (1984).

Extended Abstract:
Multi-User Distributed Language-Based

Environments

Gail E. Kaiser
Columbia University

Simon]\1. Kapian
University of Illinois

Josephine ivIicallef
Columbia University

copyright © 1986:
Gail E. Kaiser, Simon M. Kaplan and Josephine iY1icallef

April 18, 1986

Abstract

We describe a system for programming in the many that adapts
language-based environments for programming in the small so as to
support the automatic checking of semantic interdependencies among
modules as they are developed in parallel on a collection of worksta
tions connected by a local area network. We believe that accurate and
productive programming in the large is made possible by supporting
cooperation among environments for programming in the small.

1 Introduction

The management of large software systems involves large teams of program
mers whose members must cooperate together in the development of a soft
ware system. In general each programmer is responsible for the development
of a piece of the system, usually a module. The module exports certain facil
ities to other modules, and in turn depends on facilities imported from other
modules. Invariably a communications problem arises when module interfaces
change or do not meet what programmers imagine to be their specifications.

1

One \\'ay around this problen is to use a message passing system among
the programmers. In this scenario, ',','hen a programmer changes a module in
terface, he sends a message (usually electronic mail) to all other programmers
that use the module to tell them of the change. However, in the real world the
list of progranuners that use the module is constantly changing, because of
changes the programmer is making to the module and concurrent changes by
other programmers to their modules. So he sends the message to the entire
team, just to be sure. The result is a deluge of mail. Some programmers will
spend vast portions of their time reading mail (and accomplish little work).
while others will ignore their mail and gets lots of work done. ~luch of this
work may need to be redone la;er because of outdated assumptions made
about other modules.

The rise in popularity of networks of distributed workstations aggravates
this problem as personnel become distributed along with the hardware.

The easiest way to solve a problem is to make it go away. If the pro
grammers all use state-of-the-art language-based program development sys
tems, then the problem of inter-pro~rammer communication about module
dependencies can be made to vanish by automating the process of identifying
semantic interdependencies among modules. Then, when a module changes
the set of facilities exported to the other modules in the system. the other
modules can be automatically notified of the changes.

In this paper, we describe a solution to this problem: a multi-user, dis
tributed language-based programming environmen.t. where the environment
is responsible for propagating changes. The environment p:-opagates eacn
change, in a timely manner, to the set of modules affected by the change.
regardless of their physical location. Whenever an imported module changes
in a way that affects an importing module, the programming environment
automatically updates its view of the software database to include the new
version and informs the programmer if any errors in his own module were
introduced by the change in the imported module. The programmer can go
about his business knowing that he will be informed of all changes that af
fect him. This information is provided in a manner that makes it easy for
him to make any corresponding changes required in his own module. The
programmer no longer has to spend hours sending and reading mail.

Our solution meets three important goals. Changes are propagated auto

matically. Changes are propagated in a timely manner. And each change is
propagated to exactly the modules affected by the change. We achieve these
goals by generating our programming environment from an attribute gram
mar [81. Attributes are attached to each module to describe the interface of
the module. Each interface has two parts: (1) the facilities exported by the

2

module and (2) the modules imported by the module and the facilities ac
tually required from these modules. In addition, we automatically maintain
a use list [15] for each exported facility that records which modules import
the facility. These attributes provide enough information to pinpoint the
modules that are affected by a particular change to an exported facility: if a
change doesn't involve an exported facility, then no inter-module propagation
is required and none takes place.

The advantage of using an attribute grammar to describe these inter
faces is that there are already incremental attribute evaluation algorithms
[16.4.1,5]. v"'hich support automatic propagation to exactly those attributes
that are actually affected by the particular change. The propagation occurs
immediately, as soon as the change occurs. We have extended these algo
rithms to a parallel implementation Ii] that makes it possible to perform
propagation in a distributed programming environment.

Section 2 discusses the contributions of our work and section 3 places it
in the context of related work. The remainder of the paper describes our
model of incremental semantic checking across distributed modules by means
of a running example. Section 4 discusses how language-based environments
work internally by means of a simple example. Section 5 expands traditional
single-user language-based environments to multi-user environments to allow
multiple asynchronous edits on a program and briefly discusses some synchro
nization and safety issues. Section 6 expands this further to allow automatic
attribute propagation (and semantic checking) across distributed machines.
We end with a brief discussion of our prototype implementation.

2 Contributions of this Paper

The primary contribution of this paper is the development of a system for
programming in the many that supports incremental checking of semantic
interdependencies among modules distributed across multiple machines on
a network. Each module is being edited using a programming environment
that is language-based and normally suited to programming in the small. By
having many environments for programming in the small cooperate together
in the manner described in this paper, we achieve a synthesis of programming
in the small called programming in the many. This approach represents a
way to achieve programming in the large.

3

3 Related 'Nor!-<

Cedar [14] is a distributed programming environment for the),tfesa program
ming language. The Cedar. System :\lodeller [9j makes it easy for a program
mer to recompile his module(s) in the context of particular versions of other
modules in the software system. If any errors are detected, the programmer
can either modify his own copies of the modules that caused the problem or
send mail to other programmers asking them to make appropriate changes
in their modules. Cedar does not support incremental consistency checking
and does not perform automatic change propagation.

The Apollo Domain Software Engineering Environment (DSEE) [10] is
a language-independent distributed programming environment. Like Cedar,
DSEE makes it easy for a programmer to recompile his module(s) in the con
text of selected versions of the other modules in the system. If any errors are
detected, the programmer can either modify his own copies or the conflicting
modules or submit a task requesting other programmers to make appropriate
changes to their modules. DSEE provides support for monitoring the other
modules and informing the original programmer when the other program
mers have all checked off the activities listed in the task [lli. DSEE does
not actually check whether or not all errors have been removed. It does not
perform incremental consistency checking.

The Gandalf System Version Control Environment (SVC~) [6J supports
incremental consistency checking across module interfaces. Any errors in
troduced by a change in an imported module are .. utomatically reported to
the programmer. SVCE is not a distributed environment. but a multi-user
em'ironment for a mainframe. However. the problems of multi-user synchro
nization with respect to the software database (an attributed syntax tree)
had not been solved at the time of the SVCE implementation [21, so SVCE
is effectively a one-user-at-a-time environment. (The synchronization prob
lem for attributed syntax trees has now been solved by our introduction of
firewalls. discussed in this paper.)

The Unix l Source Code Control System (SCCS) [131 and the Revision
Control System (ReS) [171 support synchronization among multiple program
mers using file locking mechanisl1l3. These mainframe systems use variants of
the Make tool [31 to automate the recompilation and relinking of a program
using the latest versions of modules after changes have occured. They do not
automate change propagation or perform incremental consistency checking.

I Unix is a trademarK of AT&T Bell Laboratories.

4

~.lODULE ~I ;
EXPORT :<

FROM II IMPORT Y

EIID'M :

MODULE N
EXPORT Y
FROM M IMPORT :<

EIID N :

Figure 1: Skeleton of Program with Two Modules

4 Incremental Semantic Checking

This section looks at how incremental semantic checking among modules is
achieved in traditional single-user language-based programming environments
(exemplified by the Cornell Synthesizer Generator [12]) by considering an edit
on the program in figure 1. A logical representation of the tree structure of the
program is given in figure 2. In this diagram the arrows represent attribute
flow, not syntactic relationships.

The full paper will discuss a simple edit (removing x from the export list
of .\[) and its effect, for the classical single-user case [16J.

5 Multi-User Semantic Checking

We expand the traditional "programming in the small" language-based edi
tor paradigm - a single user editing monolithic programs - to the situation
where many programmers can edit the same program asynchronously. We
assume that programmers will not be able to edit the same part of the tree,
ie that there will exist some division of the program among programmers.
The obvious place to make this division is at the module level. We therefore
propose a model of editing where many programmers have access to a com
mon program tree, but are each given an area on the tree that only they can
modify.

Consider the case where programmers Dick and Jane are editing our
simple program. Dick can edit module A! only and Jane can edit module

5

Figure 2: Logic2.l Representation of program

N only. Suppose that Dick deletes x from the export list of .\I. \Vhile the
attributes affected by the change are being propogated, Jane deletes y from
the export list of .V. A new set of attribute propogations for this change
is started. \Ve now have a situation where the tree representation of the
program in figure 2 is being asynchronously modified by two processes.

In [71, we presented an algorithm that performs attribute reevaluation
in the face of multiple asynchronous edits on a program. In this algorithm.
the attribute propagations from the various replacements synchronize with
one another to perform an optimal reevaluation of attributes. This is done
by sharing the dependency graph structure (which is used by the algorithm
to record dependencies among attributes and to select which attributes are
Independent, i.e., ready for (re)evaluation) among the attribute reevaluation
processes. One of the novel features of this algorithm is that the number
of attribute evaluation processes running at any time is dependent not on
the original number of edit sites on the tree but on the number of attributes
that are independent. This allows us to achieve the maximum degree of
parallelism.

But what happens if module Ai is modified and the change is propagated
to module N at just that moment when N is itself being edited (at the exact
moment of subtree replacement). We do not want an attribute propogation
to arrive in N when the tree representation of the module is in an inconsis
tent statez• To resolve this problem we introduce the concept of a firewall.
A firewall can be up, in which case any attribute propagation attempting to
cross the firewall is delayed, or down, in which case it is entirely invisible.
The firewall provides a barrier behind which a program segment can shelter
while it is being modified. It is generally a good idea to have the firewall
at the same level as the split of programs among programmers, in this case

"2 ~ote tha.t this is different to the attnbutt3 being in a.n inconsistent state.

6

at the module level. In figure 2 the boxes around the modules represent the
firewalls. Firewalls need only be up when a tree is actually being changed;
this is a minimal amount of time in relation to the time spent by the environ
ment performing attribute evaluations and the time the programmers spend
browsing the tree.

6 Distributed Seniantic Checking

In section 5 we expanded the traditional single-user model of language-based
editing to a multi-user model. This section further expands the model to
distributed, multi-user language-based editing.

Having allowed multiple edits on a program, with firewall protection, the
next step is to split programs across multiple machines. We believe that
the advent of the inexpensive workstation is rapidly making distributed pro
gram development with cooperation among the programmers the preferred
mode of software development. We split a program in such a way that a
firewall-protected section (in most cases a module) is assigned to a worksta
tion. (Naturally one workstation may be the home of many modules). In
terms of figure 2 this means that modules M and N are each assigned to a
workstation. The part of the figure representing the root of the tree becomes
subsumed into the network. (For fault tolerance reasons the root information
is duplicated on each workstation).

On each machine. attribute propogation proceeds as if it were the only
machine in the network as long as the attribute propagations remain within
the bounds of the firewall. Once the firewall is accessed by an attribute
propagation that will propagate outside the firewall, it becomes necessary
to deal with remote machines. It is a feature of the attribute propagation
algorithm that once an attribute propagation reaches the firewall, all other
attributes that will cross the firewall in company with this attribute become
known immediately3. We can therefore wait until all the attributes that
will cross the firewall together are ready for propagation (more formally,
when they are all independent of any other attribute values), then build a
packet containing their values and propagage that packet across the network
to the set of modules that depend on the changed module (this information is
determinable from the use lists mentioned in the introduction). We assume
that the network has an attribute propagation layer that can perform the
packing, unpacking and dissemination of attribute packets to the actual target

3 In fact, this is a feature of Rep's original algorithm and all optimal incremental algorithms
that we know of; it i.s thLs very fact that makes the optimality of the algorithms possible.

7

modules.
Conversely. when we need an attribute that originates in another module

(such as the type of an imported variable) we do not want to have to go across
the network to get this information (in the case of a network failure it may
not be available). We therefore u~e the firewall as a cache. All attributes that
pass through it are cached on the firewall and can be obtained from it when
needed without any need to access the network. (An underlying assumption
here is that the cache will be up to date on the grounds that if more recent
information were available it would already have arrived).

We also have to deal with the situation that arises when a new attribute
value propagates through a firewall and reaches another module. The at
tribute propagation layer unpacks this information and compares it to the
most recent value for the attribute on the firewall. If these are different, then
the new value is propagated into the module. This is achieved by simulating
an edit on the module at the firewall. It does not matter what is happening
to the the module internally as th module is ready to recieve new att:-ibute
values (because the firewall is down). We use the attribute propagation algo
rithm described in section 5 and [71. which supports multiple asynchronous
edits and associated attribute propagations.

Finally, the firewall acts as a protection in the event that the module
is dormant (not being edited). Attribute propagations are stored on the
firewall until an editing session for that module is resumed. This strategy
also allows a simple optimization: when a module reawakens, only the most
recent changed attribute values are passed to it.

Thus, in our example, if the same editing sequence is follo\'·led as for the
edits in section 5, the export list attribute from Jf will be bundled and
passed across the network to N. If the firewall is up this will wait until the
firewall comes down, at which point the attribute bundle will be unpacked
and inspected. The attributes that differ in value from their values as cached
on the firewall will have their cache values updated and then be propagated
into N.

7 Implementation

We have implemented a prototype of the distributed language-based environ
ment for a local network of two VAX ll/i50's running UNIX 4.2 BSD. A 10
Mb Ethernet is used for communication between the machines. Attributes
flow between local and remote machines by means of the interprocess com
munication (IPC) mechanism provided by Unix using the Il'."TERNET TCP

8

protocol. The user interface consists of a rudimentary language-based struc
ture editor, which allows each user to create and modify sections of a program
by a sequence of subtree replacements of the program's abstract syntax tree.
The system can correctly handle asynchronous subtree replacements result
ing from either a local editing operation or a remote attribute propagation.
We are in the process of adding firewalls and plan to complete a larger-scale
implementation on a heterogenous network consisting of a number of lJnix
workstations. In this version. the distributed incremental semantic analy
sis algorithm will be integrated with an improved user interface supporting
multiple windows and mice pointing devices.

References

[11 Anne Rogers Alan Demers and Frank Kenneth Zadeck.
Attribute propagation by message passing.
In Proceedings of the SIGPLAN '85 Symposium on Language Issues In

Programming Environments, pages 48-59, Seattle, WA, June 1985.

[21 Robert J. Ellison and Barbara J. Staudt.
The evolution of the gandalf system.
The Journal of Systems and Software, 5(2):107-119, :\-fay 1985.

[31 S.L Feldman.
~lake - a program for maintaining computer programs.
Software - Practice and Experience, 9:255-265, April 1979.

[41 Gregory F. Johnson and C.;f. Fischer.
A meta-language and system for nonlocal incremental attribute evalua
tion in language-based editors.
In Con.ference Record of the Twelfth AnnuaL ACllt! Symposium on Princi
pLes of Programming Language3 (POPL), pages 141-151, January 1985.

[5] Gail E. Kaiser.
Semantics of Structure Editing Environments.

PhD thesis, Carnegie-Mellon University, May 1985.
Technical Report CMU-CS-85-131.

[6] Gail E. Kaiser and A. Nico Habermann.
An environment for system version control.
In Digest Of Papers of the Twenty-Sixth IEEE Computer Society Inter

national Conference (Spring CompCon '89). pages 415-420, February
1983.

9

f7) Simon .\1. Kaplan and Gail E. Kaiser.
IncreI:lental attribute evaluation in distributed language- based environ
ments.
In 5th A C.\.£ SIGA.CT-SIGOPS Symposium on Principll!s of Distributl!d
Computing (PODC), Calgary, Alberta, Canada, August 1986.
To appear.

[8] Donald E. Knuth.
Semantics of context-free languages.
J[athematical Sljstems Theorlj, 2(2):12;-145, June 1968.

~9! Bulter W. Lampson and Eric E. Schmidt.
Organizing software in a distributed environment.
In Proceedings of the SIGPLAN '89 Symposium on Programmin.g Lan
guage Issues in Sojtware Systems, pa::ses 1-13. San Francisco, CA. June
1983.

[10/ David B. Leblang and Gordon D . .\fcLean Jr.
Configuration management for large-scale software development ef:'orts.
In GTE Workshop on Software Engineering Environments for Program
ming in the Large, pages 122-127, June 1985.

[11] David B. Leblang and Roben P. Chase Jr.
Computer-aided software engineering in a distributed workstation envi

ronment.
In Proceedings of the SIGSOFT/SIGPLAN Softwcr~ Engineering Sympo

sium on Practical Software Det'elopment Enuironment.s. pages 1O-i-1l2.
Pittsburgh, PA, April 1984.

[121 Thomas Reps and Tim Teitelbaum.
The synthesizer generator.

In Proceedings 0/ the SIGSOFT /SIGPLAN Softwo're Engineering Sym

posium on Practical Software Development Environments, Pittsburgh,

PA, April 1984.

[131 ~L J. Rochkind.
The source code control system.
IEEE Tran.saction.s on Software Engineering, SE-1:364-3iO, 1975.

[14] Warren Teitelman.
:\ tour through cedar.
IEEE Software, 1(2):44-73, April 1984.

10

Also appears in Proceedings of the Seventh International Conference on
Software Engineering, 1984.

[15J Carla Marceau Thomas Reps and Tim Teitelbaum.
Remote attribute updating for language-based editors.
In Conference Record 0/ the Thirteenth Annual ACAl Symposium on
Principles 0/ Programming Languages.

(16] Tim Teitelbaum Thomas Reps and Alan Demers.
Incremental context-dependent analysis for language-based editors.
A CAl Transactions on Programming Languages and Systems (TOPLAS).
5(3):449-477. July 1983.

[Ii] Walter F. Tichy.
Rcs - a system for version contro!'
Software - Practice and Experience, 15(7):637-654, July 1985.

11

Reliability in Distributed Progranl111ing
Environnlents

Gail E. Kaiser'
Col umbia en i \'ersity

Department of Computer Science

\'ew York. \,Y 10027

Simon \L Kaplan"

Cniversity of Illinois

Depart ment of Computer Science

Crbana. IL 6L801
© 1986 Cail E. Kaiser and Simon \L Kaplan.

September :2. L 986

Keywords: attribute grammar. change propagation • .consistency. dis
tributed system. language-based editor. programming environment, reliabil
ity. replicated data.

Abstract

\Ve describe a system for progrflmmlng In the mllny that adapts
language-based editors for individual programmers to support the au
tomatic checking of semantic interdependencies among modules as they
are developed in parallel by multiple programmers on a collection of
workstations distributed acr055 a local area. network. We fOCllS on the
reliability of these distributed programming environments as some mod
ules become inaccessible and later return to availability. Our primary
contributions are the decentralized control of the programming environ
ment. firewalls, a mechanism that encapsulates individual modules to
protect them from external failures. and a special network layer that
enables the system to be highly a\'ailable and reliable in the face of an

'This paper was written while Dr. Kaiser was a Visiting Computer Scientist at the
Software Engineering !n3titute. Carnegie-\!el!on !."niver::ity, Pittsburgh, PA.

tSupported in part by a grant from th.e .\Tl:T Corporation

unreliable network. The firew:dls and :lec·.vork lay~r co~echer ::;11PpO,~ re
e5~3.bli~hme~t of con5i3ter.cy)r!~(jng :·l;:iy iepLca~ed data, In :~e context

of distnbuted programming environmeoc3,

1 Introduction

The development and maintenance of large 50ftware systems invoh-es teams

of cooperating programmers. In general each programmer is responsible for

the development of a piece of the syster:1 - a module. I Each module exports

certain facilities to other modules. and in turn de?ends on facilities impor:ed

from other modules_ [nvariably communication problems arise as program

mers change the interfaces of their modules. ~o they no longe~ meet the 5?~ci

ncatlons expected by other programmers. \\'e have sol\-ed tbs problem using

a disln'buted. language-based. prOl]ramm!l1'1 ~nl.·rronment ll, C-si:'.g thi::: 5yS

:em. programmers can de\'elop modules in iiolation and tree system ta~es

care of communicating changes amon~ the relevant set: or" their colleagues.

regardless of their physical location.

This paper focuses on reliability issue:; associated with the U:5e of these en

vironments_ Specifically. we are ir.teresteG i:l building a sys[em t~at is both

reliable and highly cecrlable l". Each module is changed using ::tn edItor

that operates entirely on a single machine. where the distributed collection

of editors makes up the em·lronment. In this context. reliability requires

that e\-ery editor should always have correct information. This information

should also be as up to date as possible_ By highly al,-ailable we mean that

an editor should be affected as little as pO:5sible by the failure of the network

or of other machines. We have developed a sptem \'ihere control is fully

decentralized: each editor operates independently of t,he others. and propa

,gates information to other editors whenever the interface information of its

module is altered. The most recent possible information from other modules

is always available for use. regardless of the state of the network or the state

l By module we meJ.n the unit J.5=i~n~d to .In individuJ.l progrJ.mmer for ~ourcc code

chJ.nge~_

of the machines on which the other modules are located. We use a provably

correct algorithm for the re-establishment of information consistency when

recovering from net\vork or machine failures.

We begin by listing, in section 2, the contributions of this paper. We then

overview briefly in section 3 our distributed language-based programming

environment. Section 3.1 discusses how the system has fully decentralized

control. Section -l: describes our special network layer. and section 3.2 our

jireu'ail system for encapsulating modules. Section.') considers the case that

the network and machines are completely reliable. This somewhat unrealis

tic scenario leads into a discussion of the case where the network and/or ma

chines are unreliable (section 6). We present the algorithm for re-establishing

consistency, prove it is correct and address its complexity. We then look at

some cases where we can do better than is implied by the worst-case of the

algorithm. Finally. we compare our research with related work. specifically

that in the field of distributed databases. in section -;, briefly describe the

implementation in section 8 and conclude by summarizing our results.

2 Contributions

This paper makes several contributions tn the area of reliable. distributed,

program development systems:

• [t describes a system for communicating change information about

modules among the programmers developing a software system in which

control of the distribution of the information. and the effects of the dis

tribution, are completely decentralized .

• The· system described is highly a\'ailable in that any machine can op

erate regardless of the state of the network or the state of any other

machine. [nformation from other machines is always guaranteed to be

correct, although it may be old: 1-1:,

3

• The system operates reliably in tha.t it will restore infor:nation cor!.s!s-

tenc)" af:er a network or ma.chine failure.

3 Run-Time Support for Distributed Change

Propagation

Rather than building a particular distributed programming environment. we

ha\'e de\-eloped a system for generating the de::ired en\'ironments from ;"or

mal descriptions. The formal description :s gi\'en as an attnbu.te '.lrammtlr

: 12 : 13:. which describes the context-free and conrext-3ensitive properties of

the prog:-amming langu.age. OUf generator (~an5~ates the de5crii=ltion for a

particular programming la.ng'la~e into a:l i:He~na.l ,ep:-e:;er:tation 'j:1de~s(Qod

by a lang'.lage-independent kernel. whic~ pro\-ides the COf:1r7COn rll:l-time 51.1p

port for these environments. This paradigm was originally de\-.,loped by

Reps :6:, and has since been applied by many researchers to the generation

of single-user. single-machine programming en~-ironmenr5 ·ll) lO ;. These

environments support syntax-directed eciicir.g. type checking. code generat~on

and other programming tools _

_ \11 of these environments process the pro~ram incrementally. after each

subtree replacement command to the syntax-directed editor. For exa:nple.

any static semantic errors are immediately flagged as soon as the programr.1er

enters the erroneous part of the program and the object code is always kept

up to date_ Auxiliary data structLres. called attnbutes. represent the symbol

table, the object code. etc. and are modified as the program changes. For

efficiency, only the attributes actually affected by the subtree replacement are

recalculated. Reps de\'eloped an optimal algorithm for updating this internal

information "17'.

fn :11:. \\'e present an extensiol1 to Reps' algorithm that permits optimal

updating when the programming environment is implemented on a multiple

processor machine and/or distributed across a network. For the first time.

a programmer working on a workstation could immediately be informed of

errors in his module caused by changes to other modules being modified

simultaneously by other programmers on other workstations. The details of

the internal workings of the algorithm are not relevant to this paper, and so

are omitted; interested readers are referred to) 1.'

The main idea is as follows. Within any particular editor, attributes are

re-evaluated as necessary in response to changes in the source code of the

module. When an attribute changes in value. all attributes that depend

on the first attribute must also be re-evaluated. and 50 on. This is called

attribute propagation. .-\S long as attribute propagation remains within a

single module. the modules are effectively independent and distribution is of

no concern.

However, certain attributes attached to each module depend on attributes

in other modules. For example, the symbol table of a module depends on the

symbol definitions imported from other modules. When any such attribute

changes in value. it must be propagated across the net to all the external

attributes that depend on it. When attribute propagation passes from one

module to another, a new process is forked within the receiving editor. This

process simulates a subtree replacement at the boundary of the second mod

ule. causing a chain of local attribute re-evaluations. This propagation may

proceed concurrently with an attribute propagation initiated locally and with

other propagations initiated externally.

Sometimes the same attribute is affected by multiple propagations with

respect to the same module. Rather than repeat attribute evaluation for each

process, we effectively combine the separate threads of control by synchroniz

ing on a data structure called the dependency graph. The dependency graph

is used by our algorithm. and by Reps', to order the evaluation of attributes

so that inputs of attribute equations are ah ... ays evaluated and set to their

final values before outputs are calculated. and no attribute is evaluated more

often than nec~ssary. The details are rather messy, so we refer the interested

reader to our previous paper :lli.

3.1 Decentralized Control

[n Reps' attribute e\'aluation algorithm. there is only one process and one

thread of control. .-\ single dependency graph is used to order the caiculation

of attribute values. The obvious distributed extension to Reps' algorithm

would have been to simply distribute the program tree across the network.

where certain links between nodes in the tree were implemented by inter

machine references rather than pointers. This would require a centralized

dependency graph to order the e';aluation of a~tributes throughout the dis

tributed tree.

However. a centralized data structure would make our distribuLed pro

gramming en\'ironrr,ent inherently ur.re!iab!e. The data .Hr:"CtUre \\·ould ~e-

5ide on some particular ::lachine. acting ;],5 a .;er·;e: for ~he client processe5

on the other machines. If the .oer..-er went down. attribute propagation 'sould

be impossible. even within the bo~r'(!J.rie5 or' a single mac::ine. Program

editing could continue. howe\·er. withOllt local error checking. When the

central dependency graph '.va5 restored. [hen an orr-line attribute e\-aluation

procedure would be applied to restore consistency dCrO::i5 the distributed p,o-

gramming environment. :3im:larl:;. J the ne:·.\·ork Wcl5 bro~:e:: 50 that'oT.e

machines could not access the central dependency graph. then attribute up

dating could not continue on these machines. Program modification could

continue as before: the locally stored attributes could not be updated until

the network was restored.

To solve these problems. we have decentrali::ed the run-time control for

our attribute evaluation algorithm. We maintain a separate. local dependency

graph for every editor. which describes the dependencies among only the lo

cally maintained attributes. Any dependencies that cross module boundaries

are represented by special pseudo-t'at:ces in the dependency graph. These

pseudo-vertices represent both the points '.vhere attribute propagation passes

into the local module and the poi:1ts where propagation leal;es the module.

The only incoming and outgoing edges of each graph are with respect to other

6

local vertices.

This representation allows attribute evaluation to proceed independently

within each local editor, regardless of the state of the network. When a

local edit causes local attributes to change in value, updating of dependent

local attributes is carried out as described in the previous section. The only

difficulty arises when a propagation reaches a pseudo-vertex.

Since a pseudo-vertex does not have any outgoing edges to the dependent

attributes in other modules, it is impossible to determine locally exactly

where to propagate the changed attribute. [nstead. the changed attribute,

including its identification and value. is broadcast across the net. When

the attribute arrives at each destination. its identifier is compared to the

attributes expected by the local p:5eudo-vertices. [f there IS a match. local

attribute propagation continues from this point: if there IS no match. the

attribute is ignored.

3.2 Firewalls

This works fine as long as the network itself is reliable, 50 that every attribute

sent is eventually recei,'ed at all the other machines. Serializability cannot be

guaranteed, but this is not a concern - attribute updating does not depend in

any way on the order in which subtree replacements are made. After all the

changes are made and attribute propagation is run to quiescence. the result

is always the same.

Our previous paper assumed that the network was reliable: the purpose

of this paper is to extend our pre\'iOU5 work to the unreliable case. When

the network is not reliable. additional support is needed. We need a way to

guarantee that each change.to an attribute on the external boundary of a

module will eventually be received by all the other modules. On the flip side,

we need a way to get the value of an external attribute on the boundary of

another module that is an input to the calculation of a local attribute, in

spite of the fact that the remote module may not be accessible.

-I

We solve these two problems with /ir,!1.!.'all.5. :\ flrewall is concepwally a

ba~rier that encapsulaLes a modele. Firewalls can be up. in wnich case any

remote attribute propagation that reaches a module with a firewall in the up

position is queued until the firewall changes state. or down. in which state

all attribute propagations can flow through it .. \ firewall is only up if the

module is physically being modified (which takes very little time relative to

the total time spent in an editod or if the module is dormant - not loaded

into an editor .

. \ second role of the firewall is as a cl1cne . . \11 anribute5 that pa.ss th~ollgh

the firewall are (logically) cached on the fi:-ewall. Thus. all external attributes

are replicated at e\'ery machine .. \ny reference (0 it non local attribute ca:l

be satisfied simply by going to the firewall. on [he grou:1ds rhat if more

recent information were a':ailable it would ha\'e arri\-ed. [n this way '.':e make

our prog:amming en\·ironrr.ent highly a·;ailable. because !ocal editors can

continue to operate e\'en in the case ot total di:iconnection from the net·.vork.

The information thus obtained from the firewall is always correct. that is.

:self-consistent. but may not be up-to-date. because of ne:work or machine

tailures.

Firewalls are actually a hlgher-Ie':el abstraction: we disc:.1sS their i:npie

mentation as a layer of the networking software in the following 5ection.

4 Attribute Propagation Layer

This 5ection introduces a special network layer - the attrzbute propagatIOn

layer (.~PL), which interfaces the distributed prog!"amming environment to

the network. Editors communicate entirely with thi~ layer. and the facilities

to support firewalls and recovery from failure are built into it. This section

discusses the .\PL and our assumptions about networks and machines.

\Ve make no assumptions about the size. topology or reliability of the

network. or the order in which it delivers messages, othe;. than that the net

supports broadcast. We do not assume that the messages arrive at a node

In any particular order. but do assume that they are never corrupted. \\'e

allow the network to have internal nodes whose role is to pass along ;>ackets

of information (for example, gateways between ethernet rings).

We assume that machines are fails top, that is, they are either running

correctly or down. \Vhenever a machine is up. its A,PL is running, even if

the machine is disconnected from the network. The APL remains running

until the machine is shut down (or fails). APLs are assumed to be robust,

and communication between each editor and its local .-\PL is assumed to be

reliable. Further. we assume that the A,PL knmvs the status of its connection

with the network at all times. The .-\PL has the task of re-establishing

consistent attribute information after failures. [n other words . .-\PLs solve

the problem of consistency among replicated data in the context of distributed

attribute propagation.

Each .-\PL can interface several editors to the network: the number is not

fixed, but depends on the machine. For example. a workstation is likely to

have one editor, but a large mainframe could have several editors running

at any time. The editors on the local machine are called local editors; all

others are considered to be remote, and similarly we can ha\'e local and

remote modules. \lodules can be either actit'e (being edited) or dormant

(not loaded into an editor). [n either case. when an attribute from another

module that affects a particular module is broadcast. the module should

receive the attribute eventually, even if it is currently dormant.

To support this, the .-\P L maintains for each local module an attribute

cache and a boolean flag v"hich together implement a fire wall. The flag is set

whenever the firewall is in the up state. [f the flag is set and an attribute

propagation arrives for a module. :he cache for the module is updated, and

no further action is taken. \Vhen the firewall flag is reset. the new cache

value is propagated to the editor for the module. \Vhen a module is made

dormant, the .-\PL cache information is stored with the dormant module's

internal forms. When the module is made active again. the stored value of

the cache is compared to the current ,-\PL cache values, and any necessary

9

updates are propagated to the module.

For each rerr.ote :nodule the .-\.P L mair:tai~s a similar cac~e. but no nag.

The remote caches are needed so that when local attributes that depend on

the "alues of remote attributes need re-e\·aluation. there is no need to go '0

the remote site to get the information. In this way the two functions of the

firewall are implemented in the .-\.PL. .-\.150. this information will be needed

in the unreliable net·.mrk case di:cussed i~ sectton 6.

The .-\.PL performs the roltow:ng functions (c.isregarding for the momern

issues of unreliability):

• When it rece·lves a changed': attribute from a local editor. that attribute

is then passed to eve,y local module. and hrna,icast on t~e ::et.

• When it recel"'es an attriblHe brOac.G!.5t f:-om a remote .-\.P L. :;"e rele

vant cache is updated and that int'ormation is pa.:;sed to all local ~od

ules.

We assume that each .\PL and each module a.5soc:ated · ith an .\PL a;"!?

uniquely identifiable.

5 Reliable Attribute Propagation

If the network is completely reliable. there are only two situations in which

consistency among attributes must be established. namely: a new .-\.PL is

added to the net or an .-\. P L has been removed from the net in an orderly

fashion and is now being returned. In both cases. the .-\.PL broadcasts an

update packet on the network. Every other .\P L that receives the packet

returns its local cache information to the originator of the update. For the

former case, this gh'es the originating .\PL a set of caches to pass to local

= It is pOHlole th.lt .In .lccribuc<! can be prop.llp.ced from .In t!dicor J.nd hJ.ve e.uctly

the :l.lme valut! a.:! it hJ.d on the previoll' propJ.~J.tion; in thi~ ca~e the APL, followin;: (he

policy defint!d for our .lttribure evaluation .llgorithm, C.ln di~card the .lttribute. \Ve therefor~

.l~3Ume that unchanged .lttriblltes never pa53 throu~h .In .\PL.

10

modules. and in the latter the originating A,PL can now decide '.vhat infor

mation has changed and propagate this to local modules. We assume that :10

editors local to the new., restartec .\P L are active while this startup process

IS In progress.

6 Unreliable Attribute Propagation

In this section. we present an algorithm for maintaining consistent attribute

information in the face of an unreliable network. We extend the information

stored for each cache to include a timestamp, and then give an algorithm that

restores consistency of attribute information among .-\PLs after a network

failure. This is a pessimistic algorithm in that it makes as few assumptions

about good network behavior as ;)Qs5ible: we require only that the network

does not corrupt data. \Ve prm'e that the algorithm is correct and termi

nating. and discuss its complexity. We then show how we can do better by

making certain assumptions about network topology and reliability .

. -\s well as containing attribute information. each element of an .-\PL cache

is labeled by a timestamp and the identifications of the originating .-\PL and

the module within that .-\PL. Timestamps can simply be integers that are

incremented by the originating .-\PL each time an attribute is broadcast'S'.

The consistency re-establishment algorithm works as follows: When an

:\PL comes up, or when its broken connection to the network is restored. it

broadcasts an update request over the net. This will be received by all .-\P Ls

that are accessible from this .-\PL. On receipt of an update request. an .-\PL

broadcasts each attribute that it has cached, along with its timestamp and

originating label: from now on. we refer to all this information as a cache.

On receipt of a cache, the .\PL executes the algorithm given in figure l.

When an .-\PL receives a changed attribute from a local module. it broad

casts the corresponding cache. and then all the .-\PLs follow the same strategy

on receipt of the cache. :\ormal attribute propagation among .-\PLs is thus

subsumed into the consistency re-establishment algorithm. We assume that

II

receive(p) is
let

in

c = a local cache
r = a remo:e cache recei\'ed f:om the net.
time ~ the time it was sent.
info = the information.

if (there exists a local cache entry c corresponding to r)
then if (c.time ~ r.tzmel

fi

then if (r.info = c.info) then update local modules f1
else broadcast{c)

else create a cache for r

fi
end

Figure 1: Consistency Reestablisr.~,er.[Recei\'e Part

intermediate nodes in the network can also broadcast update requests if they

rejoin pieces of the network that have becor::.e separated. in on':er :0 make

the newly rejoined pieces consistent.

:';ote that a broadcast ' ill re~:h the .\ P l rt-"H bro;";.c:c2.sts it. :00. ~o :[

wIll also participate in the re5tabilization of the net. This is necessary because

it5 local modules may have been altered while the network was inacce5sible.

resulting in changes to propagate to the rest of the net ..

. -\lthough we have assumed that each time an .\PL comes up it broadca:Hs

and update request, and that therefore it is technically the only out-of-date

APL, the algorithm is fault-tolerant of this assumption and will deal with

the situation where all AP Ls ha\'e different information and think that they

are up-lo-date. [n this case the algorithm will reestablish most up-to-date

information at each ,-\PL by the time it terminates,

12

6.1 Correctness and Complexity

In this section. we argue for the correctness of the algorithm above. and

show that it is terminating. We then investigate the complexity of the al

gorithm. We make several assumptions in order to simplify the arguments:

these assumptions are not required in practice. so we end this section with

an argument of correctness and complexity ignoring these assumptions. The

assumptions are:

• Local modules do not emit any attribute changes while the restabiliza

tion is progressing.

• Only one .-\PL returns to the network at a time.

Lemma 1 The attnbute consistency;trategy is terminating.

Each time a cache and its timestamp is broadcast, the network is (\'irtually)

partitioned into these sets:

• .V - The set of .\P Ls whose cache holds more recent information than

the packet just broadcast.

• J - The set of .\PLs whose cache holds less recent information than

the packet just broadcast.

• S - The set of .\PLs whose cache information is the same as that of

the .\P L originating the broadcast.

• D - The set of .\PLs that are inaccessible and will therefore not receive

the broadcast.

Let T be the set of all .\ P Ls on the network, and let sidebars denote

the size of a set, as in I T .V 0 i ~ ; S ~ I D I. Xow, suppose

that some .\PL Q broadcasts an attribute cache. O! -"- I S AP Ls will

absorb the new broadcast and produce no new broadcasts as a result, • D I

.\PLs will simply fail to receive it. and .v I .\PLs will decide that they have

13

rr.ore recent information and rebroadcast ~heir packets. [n the worst ca.~e .

• 1. 7" - 1 (e';er:: other .\PL has more recent ir.formation t::an

Q); it can be much smaller. Each .-\PL that receives the broadcast will.in

turn divide the net into the .11, ~O, .5 and:; sets. Each element of a .' .. ~et

will rebroadcast, and each element of the 0 sets will absorb the information

(there has to be at least one such .-\PL - the originator of the first broadcasc).

So if N " is the size of the .v 5et of .-\PL 00. and 3 is SOf:'1e other .-\PL in

.\;:. •. 1../3 must be smaller than .v:. (in the worst case. J = {Q}). Each tir.:e a

broadcast is made. N must be smaller cha:1 pre';IOllS N sets in this · ay. tl.:1ci

50 the algorithm eventually terminates. =
Lemma 2 When the COf!31.stenC!] estabi:.;hmf.n: .zi..,ontnm termInate';. fj!lAPL.;

that particI'pated in the brOfldcastzruJ proa.;.; hl.!L'e the .;ame cache t·alll~.'.

Proof Outline: To prO\'e correctne5S. we show that if .v is empty. then .:

mU5t become empty also. Then = ~ .5. and all .-\P Ls have the

5ame information or are not accessible. \ote that an .-\P L only broadcast5 if

it has r:nore recent information than information it receives: and .-\P Ls only

update themseh'es if they receive inforrr.ation :TIore recent t~an ;:~at ' hich

they already ha\'e; 50 the algorithm tends to give each .\PL the most recent

possible information. [f .V is empty for every .-\P L in the network. there can

be no ,\PL that has more recent information . .: mar not be empty, but the

.-\PLs in this set will simply absorb the informacion of the current broadca5t.

and thus bring themselves up-to-date. Since we know that the algorithm is

terminating, I .11 ' steadily decreases. and the information updating in an .\P L

tends to make bring the .\P L up-to-date, it follows that when N is empty for

each .\PL, all .\PLS either ha\'e the most up-to-date information or it has

been broadca..:;t to them. Since all broadcasts are eventually absorbed by all

.-\PLs. all .\PLs eventually get the same. most recent possible. information.

Theorem 1 The consistency establishment algorithm IS correct.

14

Proof Outline: Follows directly from the preceding two lemmata.

This algorithm has the desired updating properties necessary to restore

.\PLs to a consistent state after a failure. ~ote that it \vill also (as a trivial

c~se) handle normal attribute propagations and automatic extension of AP L

caches when new modules (and .\PLs) dynamically appear on the net. It is

fully decentralized: There is no single machine or APL that acts as a control

on the process.

The worst case-complexity of the algorithm (where we view complexity

as a factor of the number of broadcasts) for the update of a single attribute

cache is \~=l i. where n is T D. and every .\PL has a different value.

The crippling factor here is that the .\P Ls could agree on a most recent

value early on. but still ha\'e many messages with older information to pro

cess. Each such message will rield a broadcast of the older information.

which \vill get passively absorbed by the other .\PLs. However. this is a pes

simistic algorithm: in section 6.3 we discuss ways of improving the algorithm

in practice.

6.2 Removing the Assumptions

In the previous section. we assumed that the editors yield no attributes for

remote propagation during the re-establishment of consistency, and also that

only one APL comes up at a time. These assumptions were made purely to

simplify the analysis. In practice there is no reason why editors cannot prop

agate at any time, or \ ... ·hy .\PLs cannot come up at any time. The algorithm

will work in these cases. but the effecti\'e complexity of the algorithm (by this

we mean the number of broadcasts that would be seen by an observer watch

ing the network) would increase in proportion to the number of additional

propagations caused by the editor yielding an attribute for propagation or

an additional update request on tr.e part of an APL.

15

6.3 Doing Better

There are several ways that we can do better in practice than tne wors:: ca5e

of the algorithm suggests. However. each of these implies some assumptior.s

about the network topology or stability. or requires more space. We enumer

ate some of these improvements below. and indicate their assumptions .

• . \laintain history informatl·on. This improvement requires that eacb.

A.PL maintain a table that shows for e':ery other .. \PL the most rece:tt

information it has received from the other .-\PL. T:-ten if inror~at~on

less recent than the table entry is recei';ed. it can be discarded. This

improvement is only Ilseful in the e\'t~:;t that messages ar:i\"e O'lt of

order. The s?ace (0 store the table is a. facor of t:ce nu:nber of a::tr:~ute5

flowing throllgn the .-\PL and the numbe:- of other .-\PLs. The table

has (0 be capable of dynamic expar.sio~ as :1eW .-\P Ls a:1c mod'.des a~e

added .

• C51! point-to-pol"nt commum"crztlOl!. In rhis ;IT!pro\·ement. rr:essag~s .:t:e

passed point-to-point r~ther than broadcast. The disadvanta'6o:'s are

that the number of ,-\PLs and modules :5 'f1xed' lamper-?roc~~s is

required to update the database of .\PLs and modules on each ma

chine every time a new .-\PL module is added, a dimcult process in tb.e

event that the network is unstable), and that the network must be suf

ficiently stable for several message pairs to pass oetween two POi::t5 to

comple:e an update .. -\150. history information must also be maintained

as described above. However. broadcasts are the natural communica

tion strategy for an ethernet anyway (our implementation vehicle - see

section 8). Further, the broadcast algorithm given in figure 1 is safer:

Consider the case where .-\PLs Q and 3 communicate and become con

sistent. but an AP L 1 is excluded from the process although it has

more recent information because neither Q or .3 know this. The broad

cast strategy \vould dynamically add 1 to the updating process and the

other two AP Ls \vould get more recent information as a result.

l6

• Use knowledge 0/ the netzL'Ork topology. For example. if the network is

a star. point-to-point communication with the central server node is all

that is needed. If a ring-of-stars configuration exists. the nodes on the

rtng can use the basic algorithm (plus the improvements enumerated

above ",,-here relevant), and use point-to-point for the elements of the

star. (~ote that this is a generalization of the special case where the

.-\PL has multiple local modules and does point-to-point communication

with them).

7 Comparison to Distributed Databases

In this section, we compare our approach against those taken in distributed

database systems. and explain why some of the problems that beset the

distributed database case are not an issue here. and why our solution would

in turn not be adequate for the cistributed database case. We look first at

some differences between the programming en\"ironment and database cases.

then at availability of the system. and finally at reliability issues. We briefly

relate our work also to other approaches to providing fault-tolerant systems.

In the distributed database case, a major problem is that of transaction

commit - the effort involved in processing a transaction is distributed among

several database servers and then the servers have to agree on whether the

transaction has been successfully processed. and commit it to the database

or to abort the transaction. Reliability and availability are intertwined here;

On the one hand, one wishes to commit only when all servers agree on an

answer, so that every local database has the same information: this gives high

reliability, but potentially low a\·ailability. On the other hand, one wants to

keep servers running as much as possible; this can give high availability but

low reliability. Another problem is the by=antine problem which arises in case

that processors yield faulty answers. 8: proves that if even one processor is

faulty. a commit decision cannot be made. Because only one node on the net

in our system can change attribute values. we do not have a commit problem.

17

and the im;>ossibility result is not rele';a~: in this system .

. -\. 5econa problem is that of database wn,s/stenc'j where the database is

replicated in different net\vork partitions and then changed. The issue is (0

reestablish co_nsistency among the replications in different partitions . . -t dis- ..

cusses strategies for partitioning the database network into smaller sections

and then achieving reliability and availability within partitions. together ·.-;ith

a strategy for re-establishing consistency among partitions when they ,eiot::

the network .. -\.Igorithms for the ~eestabli5hment of consi:;te!H inforrr.at:o~ ie:

this case are different to what we have use·! :,ecauie the da:a can be IT'.od:ne(:

by more than on.e node on the :letwork, [n tr.e case considered in this oaDer.
only one node can change particular attribute information, and all others

treat it in a read-only fashion, \\'e can ~herefore reestabPsh consistency by

referring only to timestamps. In the cii5t~ibutt::d database case. nowe·;e,.

the data ',\'ould need consideration a;so. 9 :;oh'es the problem by na';ir.g a

database administrator's tool that can be u::ed to patch ~he database: L,j

partition the network and ha\'e a "coordinator" within each partition to dea.l

with reestablishment of consistency; in their work control is therefore not de

centralized. :3, assumes that the network size is known. and that irs topology

is sufficiently stable that each site car. esta.blish the topology before reco';er

ing. an assumption that we do not make. and also assumes coordinating sites.

Further. they require "master" and "slave" sites whereas all our .. \ P Ls are

on an equal footing .. -\.150. both require :some knowledge or' network to;:>ology.

assume that some sites know they are "correct" while others know they are

"recovering", and assume sufficie:1t network stability to allow a number of

rounds of messages between recovering sites and correct sites to reestablish

consistency. Our algorithm makes none of these assumptions.

While not directly related to environments, ,Li is relevant in that it pro

poses a system in which processes are highly available. In this system pro

cesses are made available and fault-tolerant by replicating them on many

machines. :\'etworks are assumed to be stable and of known size,' topology.

processes are assumed to know if they are correct or reco1.-ering. and recovery

is made either by copying the state of a correct process and continuing or

by rollback :.5;)l. We need none of these assumptions in our system, and

recovery is by message-passing information. not by rollback.

In the case of distributed programming environments. the problems are

different to those in the distributed database or replicated process areas, and

it is these differences that make our solutions work. First. the number of at

tributes that flow among modules is a very small constant determinable from

the attribute grammar. This means that the amount of data that must be

replicated at each .\PL is very small compared with. say, a complete database.

Thus. full replication is an effecth'e strategy for making information highly

available. Second, only one module \ ithin a specific APL is responsible for

establishing new values of a particular attribute for propagation. Therefore

the commit problem does not exist in our system. Instead we ha\'e a consis

tency problem: If an attribute is transmitted from an .\PL every other .\.PL

must eventually receive the transmission. We do this with our consistency

re-establishment algorithm. This algorithm has poor worst-case complexity,

but it is very forgi ing of network and machine failures. For example. if an

.\PL 0: transmits a new attribute value. and it is received by some APL 3. a

third .\PL -i that is not on the net will eventually get the attribute when it re

turns even if 0: is no longer up, because the information will be automatically

propagated from .3 as part of the consistency re-establishment process. It is

not dear that the approaches cited in related work can match this feature.

Because each APL replicates the attributes of all other .\PLs. the remote

attributes are highly available to a module. The values thus obtained may

not be the latest possible, but local operations will continue and the later

values of attributes are guaranteed to arrive as soon as network topology and

machine status permit them to do so. In this we do better than [14:, who

also aHow old information to be used but have no way of propagating ne\ver

information to clients when it becomes available. Because of the consiste~cy
. I' bT ble

re-establishment results, the system achieves the highest re la I Ity POSSI

in face of the reliability of the underlying network.

19

8 Implementation

We have implemented a prototype system that generates distributed language

based programming environments for \'.-\.X II, 730s connected by a 10~(bit

ethernet. This system employs the simple strategy outlined in section 6,1

above. which assumes a reliable network .. -\.s the ethernet employs message

broadcast we saw no need to use point to point communication. and because

the number of ,-\.PL; in th.: test system is \'ery small. the complexity of the

algorithm does not pose a practical problem at this stage. We are currentl:;

implementing a new system as an extension of t~e Cornell Synthesizer Gen

erator : 16:, primarily to take ad·.antage of their user interface. Our new

system is designed to test algorithms for dist~ibuted anr:oute propagation

and strategies for re-establishmer.t of consis~enc:; of attribu~e in:'or:r~ation

under the conditions of an un,eli.:.ble network. b"uture de\·dopmenr. work is

focusing on trying on optimizations of the basic algorithm to obtain better

complexity results,

9 Conclusions

\\'e discussed a programming environrr.ent where programmers and modules

are distr.ibuted on a variety of machines and the system propagates change

information among the modules as they are altered. We presented our solu

tions to the problems of making the system highly available and reliable in the

face of unreliable machines and an unreliable network linking the machines,

We employed several complementary attacks:

• By having fully decentrah::ed control. any editor can operate indepen

dently of any other, regardless of the state of the netv·:ork or the state

of other machines on the network .. -\lso, no "coordinator" is needed to

ensure reestablishment of consistency,

• By replicating attribute in/ormation \\'e h d h ave rna e t e system highly
GL'ailable in that any editor can alwa,'"" t th

,~ge e most recent tlOssible

20

values of attributes from remote modules .

• By introducing a provably correct attribute consistency re-establl.;hment

algorz"thm. the system is guaranteed to restabilize itself after machine

and network failures by providing each APL with the most recent pos

sible attribute information.

Our algorithm is very general and widely applicable in that it makes no

assumptions about network topology or size, but it does have rather high

worst-case complexity. If a particular network topology and 'or size is gi\-en

- as will often be the case in practice - then we can do much better than is

implied by the worst case.

Our research addresses the increasingly important issues of distributed

programming environments. Programming environments. also known as soft

ware engineering em·ironments. are reaching a state of maturity where they

are produced and used commercially. It is crucial in this context that so

lutions be found to the problems of high availability and reliability of these

environments.

References

1 Kenneth P. Birman. Replication and fault tolerence in the isis sys

tem. In 10th AG.\[SlCOPS Symposium on Operating Systems Princi

ples. pages 79-86. Orca Island. Washington. December 198.5.

2 Roy H. Campbell and Brian Rendell. Error recovery in asynchronous

systems. lEEE Transactions on So/tlL'are Engineering. SE-12(8):811-

826, August 1986.

3 Danca Davcev and Walter _A.. Burkhard. Consistency and recovery con

trol for replicated files. In 10th A G.\{ SlCOPS Symposium on Operating

Systems prz'nciples, pages 87-96, Orca Island, Washington, December

198.5.

21

-I Susan B Davidson, Hector Garcia-~[olina. and Dale :Skeen. C0!15is-

reney in partitioned networks .. -lC.\{ Comp'Llznq S'J.n;ey5, 1 ;"(3):3-11-370.

September 1985.

,J, C. T. Davis. Data processing ::pheres of control. (R\{ Systems JourT'a{.

1 i(2):1 i8-198, 1973.

6 .-\lan Demers, Thomas Reps, and Tim Teitelbaum. [neremental evalua

tion for attribute grammar:: 'sith ap~lieations to 5yntax-directed edi:ors.

In Conference Record of the Eighth Annual AC.\{ SymposilLm on Prin

e/'ples oj Programming Languages (POPL). January 19SL

7' .\lan Demers .. \nr.e Rogers. and Frank I'ennech Zadeck .. \ttribute prop-

agation by mes5age pa55ing. [n Proa,~dznl).) oj th~ :~(CPL1.S '?5 ::'jmpo

slum on Language [SSIU.5 In. P"0'lrcT7:m:n'l £n':zron.ment.;. page;; 1'3-)9.

Seattle. W.-\. June 1!)·~·). Proceedings published as ~i':S[GPL\:-" :-"0-

tices. 20(7). July, 19~').

S ~{ichael J. Fischer. ~·ancy :\. Lync~. and ~[icnae! 5. Paterson. [m~o:5-

sibility of distributed consenslls with or.e faulty proce5S. Journal oj the

IC\{ 3')('»'3--1 <),;(.) \ 'I ["';'-.1. •• __ •• -.J'..;.;. ... ;Jrl J,_,),

9: H. Garcia-~lolina. T. Allen. 8, Blaustein, R. ~l. Chilenskas, and D. R.

Reis. Data-patch: integrating inconsl:Hent copies of a database aiter

partition. In Proceedings of the 3rd [£££ i'jmpo.):um on Rdiabd:ty In

DIstributed Software and Database Systems. pages l50-l62. 1953.

10\ Gregory F. Johnson and Charles :-.:. tischer. :'\on-5y'ntactic attribute flow

in language based editors. [n Conference Record of the .\'inth Annual

.-tC.\{ Symposium on PrinCl'pies of Programmz'ng Lahguages (POPL).

January 1982.

11; Simon)"L Kaplan and Gail E. Kaiser. Incremental attribute evaluation

in distributed language- based environments. In 5th AC.\{ SICA CT·

SICOPS Symposium on Princz'ples of Dz'strib,Lted Computing (PODC).

pages 121-130, Calgary, .\Ibena. Canada .. \ugust 1986.

12 Donald E. Knuth. Semantic~ of context-free languages . . \!athematical

Systems Theory. 2(2):127-14.j. June 1968.

13] Donald E. Knuth. Semantics of context-free languages: correction .

. \lathematical Systems Theory, .j(I).),farch 1971.

14] Barbara Liskov and Rivka Landin. Highly a\'ailable distributed services

and fault-tolerant distributed garbage collection. In 5th A C.\{ SICACT·

SICOPS Symposium on Principles of Distributed Computing (PODC),

pages 29-39. Calgary .. \Iberta, Canada •. \ugust 1986.

15 .\. V.),[a and C. C. Belford .. \ failure and recovery detection protocol

for optimistic partitioned operation on distributed database systems.

In Proceedings oj the 6th lEEf lnternatlonal Conference on Distributed

Computing Systems. pages 13'2-.'j39. Cambridge.),[ass ..),[ay 1986.

16 Thomas Reps and Tim Teitelbaum. The synthesizer generator. In Pro·

ceedings oj the SICSOF T/ SIC PL.4.S Soft u:are Engineering Symposium

on Practical Softu:are Development Enlll'ronments. Pittsburgh. P.\. April

1984.

17, Thomas Reps. Tim Teitelbaum. and .\Ian Demers. Incremental context

dependent analysis for language-based editors. ACJf Transactz'ons on

Programming Languages and Systems (TOPLASj. 5(3):449-477, July

1983.

'181 Andrew S. Tannenbaum and Robbert van Renesse. Distributed operat

ing systems . .4.CJf Comput,'ng Surz.:eys, 17(4):-ll9-470, December 1985.

23

