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Summary 

We present a model of distributed program editing and algorithms for the 

incremental checking of static semantic properties of modules that are at once 

semantically interdependent and physically distributed across a number of 

workstations connected by a high speed network. This makes possible the syn

thesis of modern program development hardware - workstations on high 

speed networks - and modern program development software - incremental, 

language-based program development systems - that until now have suffered 

from the problem of not being able to support incremental checking across dis

tributed modules. 

Introduction 

This paper deals with the problem of performing incremental semantic l analysis 

across a program that is split into I modules that are distributed across a network of m 

machines, with '1 modules dormant (not being edited or inaccessible due to network or 

machine failure) and the other 1-'1 being concurrently edited. 

:\. ~tate-of-the-art program development environment provides a programming 

team with a number of workstations connected by a high speed network. Each module in 

the system under development i!! typically the respon!!ibility of a programmer, and is 

resident on that programmer's workstation. The program under development is therefore 

distributed across the network. 

Slate-or-the art software ror program development support !!hould also be provided. 

Such software will Incr~me'1ta/ly enforce a module'!! syntax and indicate any semantic 

errors as the program is constructed (Reps 841. Syntax checking is an inherently local 
..... 
J Appem in AC~f Symposium on Principles 01 Distributed Computing. Calgary. Alberta. Canada. August, 1986. 

pp.121-130. 
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process, but semantic checking may require information imported from another module 

[Kaiser 83]. If the semantic information in that module alters, all users of the module 

should have the change propagated to them 50 that their programs can be checked to see 

if they are still semantically consistent. 

Currently no program development environments provide support for incrementally 

checking semantics across multiple distributed modules: they support only single monol

ithic programs (i.e. the entire program must be physically on the user's machine and not 

split into physically separate modules). There are several systems (most notably Cedar 

[Lampson 83]) that support the distributed program development effort of multiple pro

grammers: however, these systems perform semantic checking at p!'eviously agreed check

points. This for-m of checking is not incremental. 

Algorithms for incremental evaluation of semantic information are traditionally 

sequential iu nature [Reps 82a, Johnson 851. Having multiple programmers concurrentiy 

modify modules (and as a result propagate semantic information between the modules) 

requires ,an inherently concurrent view of semantic change propagation. Vi e postulated 

that if we could derive a concurrent semantic evaluation algorithm for the single edit 

case, this would extend naturally to the multiple edit case and then to the distributed 

multiple edit case. 

We begin by listing the original contributions of this paper. The next section briefly 

overViews attribute grammers, building language-based editors from grammars and 

sequential attribute updating strategies. Then we introduce and analyze our concurrent 

updating strategy for the case of a single edit. This is followed by a description and 

analysis of the multiple edit case, which in .turn is followed by the distributed. multiple 

edit case. We relate this paper to other work in the field and end with some conclusions. 

Original Contributions 

• \Ve introduce for the first time a model of incremental attribute evaluation amongst 

program modules distributed across multiple machines on a network. 

• \Ve provide algorithms for the concurrent incremental evaluation of attributes in a 

programming environment. We begin with a concurrent algorithm for incremental 

evaluation in a single user, single edit environment. We then expand this to handle 

multiple asynchronous edits, and then extend further to handle multiple asynchro

nous edits on modules that are distributed. 

Overview of Attribute Grammars and Incremental Semantic"'Checking 

An attribute grammar [Knuth 68] is a. context-free grammar that is enhanced to be 

capable of expressing context-sensitive information by associating with every symbol in 

the context-free grammar a set of attributes, and associating with every prcduction in the 

grammar a set of attribute equations that describe the relationships among the attributes. 

[Waite 84] and [Reps 82b] overview attribute grammars and their relation to construction 
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of compilers and program development systems, respectively. 

The context-free grammar can be used to parse a context-free sentence of the 

language specified by the grammar into tree form, where each node in the tree 

corresponds to an instantiation of a production of the grammar. Once this has been 

done, the attributes associated with each production can be added to the tree. Attribute 

flows will form a directed graph on the tree. A standard restriction employed by all incre

mental checking editors (and most compilers based on attribute grammars) is to consider 

only noncircular attribute grammars, i.e. those whose attribute flows form a directed acy

clic graph (DAG) on the tree. 

An attribute grammar specification can be used to generate a language-based editor 

that incrementally checks the consistency of a program. Edits in such a system are 

defined in terms of subtree replacement on the tree representation of a program. After 

each such replacement, the syntactic and semantic consistency of the program is reesta

blished. 

After a single subtree replacement, the tree is syntactically consistent and all incon

sistent attributes are located at the replaced node of the tree. A graph D of the dependen

cies (including transitive dependencies) amongst the attributes at that node, its parent, 

siblings and children is constructed from templates obtained by analyzing the grammar at 

the time that the editor waS generated. 2 This graph has attributes at the yertices and 

dependencies shown by the edges. Because transitive dependencies are included, this 

graph can extend arbitrarily far on the tree. Any vertex in this graph with in-degree 0 is 

said to be independent because it cannot depend on any other inconsistent attribute. 

Because the attribute flows form a DAG, at least one such vertex must always exist. 

An independent vertex is chosen and the associated attribute 0: reeyaluated. If the 

value of the attribute has altered, D is examined to see if there are any attributes f3 depen

dent on 0: not already in D. If so, f) is expanded to include all dependencies between each 

/3 and any attributes already in f), again including any transitive dependencies. The attri

bute 0: is removed from D, along with its associated edges, and the process is repeated 

until D is empty. 

This algorithm is due to Reps [Reps 82a] and is asymptotically optimal in time; its 

time complexity is OCAffected1)' where Affected is the set of attributes that change. The 

implied topological sort on D results in an attribute being reevaluated only when the 

reevaluation is guaranteed to yield its final value (because an attribute is only reevaluated 

after it becomes independent). 

2 In [Reps 82aj this ~aph is called the model. 



-4-

Introducing Parallelism 

We begin by proposing an algorithm that performs as many attribute evaluations in 

parallel as possible, by choosing the complete set of independent vertices at any time and 

evaluating all of them. This is a. simple modification to the sequencial optimal algorithm 

described above. Its major purpose is a paradigm shijt, by introducing parallelism, we 

provide the ability to handle the interesting cases: multiple asynchronous subtree replace

ments (with their reevaluations) and distributed evaluations. The algorithm is: 

~. 
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startup( T, x) 
let 
T = fully attributed tree 
,I( = node in tree with inconsistent attributes 
S = set of attribute instances 
fJ = attribute instance 

in 
setup(T; .1(, S) 
V /3 in S do propagate(/3) od 
terminate 

propagate(fJ) 
let 

/3 = attribute instance 
S = set of attributes 

in 
evaluate /3 
if /3 changed then expand(/3) fi 
remove(/3, S) 
V /3 in S do propagate(fJ) od 
terminate 

Setup, remove and expand are all calls on an abstract data type 0, which maintains 

the attribute dependency graph (which may in practice be divided into a number of dis

joint graphs). 

Setup(T, R, S) takes as arguments a tree Tand a particular subtree .1( of T, which has 

inconsistent attributes at its root, constructs the dependency graph 0 and returns in S the 

attributes that are ready for evaluation because they are independent (they have in

degree 0 on the dependency graph). 

Expand(fJ} takes as argument an attribute and expands the graph as described in the 

previous section. 

Remove(f3, S) takes as argument an attribute name and removes it and its associated 

edges from the graph. It returns in S a list of attributes ready for evaluation. 

These three operations must also maintain synchronized atomic access to the depen

dency graph, as well as a list of what attributes on the graph with in-degree 0 have been 

passed to a calling process as being ready for evaluation (to prevent an attribute being 

passed for evaluation more than once). 

The Startup process calls setup to create the initial graph, and then propagates a pro

cess for each element in the list returned by setup. 

Each propagate process reevaluates its argument attribute. If this has changed, it 

expands the graph to include any new implied dependencies as discussed above. The argu

ment vertex is then removed from the graph along with its edges. A list of attributes 

ready for reevaluation is ret urned to the process, which then in turn spawns evaluation 

processes for each elemen t in the list before terminating. 
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By the nature of f), once an attribute is independent it can be evaluated entirely 

separately from any others. This im plies that remove can return the fullest possible list of 

attributes waiting for reevaluation regardless of how they came to be included in D. so 

that the maximum possible parallelism may be attained. Because the attribute flow:: 

form a DAG, we also do not have to worry about deadlock problem". 

Analysis of the grammar when compiling it for use in an editor allows the precon

struction of templates for the dependency graphs. These can be instantiated in constant 

time when performing evaluations [Reps 82b]. Further, attribute reevaluations take con

stant time, so the only variable is the number of propagations needed to complete all 

attribute reevaluations. 

If we conceive of the attribute propagation processes forming a tree P, with the 

startup process forming the root, and each propagation forming the root of all the 

processes it propagates, and if h(P) i; the height of this process tree, then the time com

plexity is O(h(P)). The maximum parallelism obtained is the max-cut of P. In the worst 

case, with no parallelism (propagate runs as a procedure of startu.p). the tree (which now 

records calls to propagate) has height equal to the number of propagations, so the time 

complexity is related to the number of propagations. The number of propagations is the 

same size as the set Affected used by Reps. so in the sequential case we have the classic 

result for sequential incremental evaluation. In practice we are unlikely to achieve the 

maximum potential parallelism because of a shortage of processors; this point is discussed 

in the "Pragmatics" section below. 

Handling Multiple ,A.,ynchronous Subtree ReplacementJ 

We have shown thus far that introducing paralleli.::m scheduled by a topological .::o~t 

on the attribute dependency graph can improve the running time of an incremental attri

bute evaluation algorithm. We look now at the case where multiple asynchronous subtree 

replacements are performed. This sets us up to consider the case of multiple asynchro

nous replacements across multiple distributed modules in the following section. 

This section introduces a major result of this paper: given the parallel change propa

gation algorithm introduced above, we can support multiple asynchronous updates on the 

tree and still end up with an efficient algorithm. 

\\'e modify setup to be atomic and to merge the graph it creates with any other 

graph in O. This merging operation is a union operation, so identical edges and yertices 

in the two graphs become one in the resultant graph. \Vhen a subtree replacement is per

formed, attribute evaluation proceeds as follows: 

• Execute the startup process. This will add to whatever is already in 0, the graph of 

the initial dependencies amongst the attributes of the changed subtree. 

• Continue exactly as before. From this point it makes no difference if the new 

dependency graph for the newly changed subtree overlaps with others or not; 

remOt'e and expand will return the correct results regardless. 
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This is a significant result. We can now build environments for multiple users and 

know that attribute evaluations will succeed. Further, we can look at the truly interest

ing case, namely distributed editors that propagate semantic modification to one another. 

The time complexity in the multiple subtree replacement case is slightly more com

plex than before. The dependency graphs grow on the fly, so when looking at an attribute 

with in-degree 0 in the dependency graph, we can be sure that it is truly independent of 

any evaluations propagated from the subtree replacement that ultimately was the cause 

of its evaluation. However, a graph from one replacement may grow to cover a part of 

the graph from another replacement that has already been evaluated, thus repeating the 

work of that evaluation. We need to show that there is an upper bound on this growth of 

attribute reevaluations. 

Theorem. Given a tree on which k subtrees are replaced asynchronously, in the worst 

case any attribute is evaluated at most k times. 

Proof. Suppose that each replacement is made immediately after the previous 

replacement's evaluations quiesce. This is the same as k separate replacements. \Ve 

have seen that each replacement evaluates an attribute at most once; this implies 

that in the worst case an attribute is evaluated k times. Now suppose that the 

replacements overlap in time with evaluations. The potential exists for an attribute 

to be independent in J) (and thus ready for evaluation), but that it will be 

reevaluated later by some other subtree replacement making J) grow to include it 

again. In this case the propagations will chase each other. They will either catch up, 

thus merging the graphs and reducing the number of replacements, or they will not. 

All k subtree replacements can exhibit this chasing behavior, so in the worst case 

each attribute will be reevaluated k times. 0 

In the single replacement case, a tree P of process propagations is formed; in the 

multiple replacement case, a graph 9 with k starting points is formed. Note that remove 

returns all possible attributes that can be evaluated, regardless of where on the graph 

they appear, so there is no relation between the various paths through 9 and the replace

ment graph J). Nonetheless, the time complexity of the multiple replacement case is 

O(h(g)). 

In general we would expect some expands on J) will overlay parts of the dependency 

graph that are already there, thus reducing the number of evaluations required. 

This model of users making arbitrary changes to the tree at any time in general 

poses some serious problems from the viewpoint of editing on the tree; a programmer 

wants to be sure that the part of the tree she is editing is not suddenly changed by some 

other user. We have found a solution to this problem, called firewalls which we discuss in 

the next section. 

---~-------------------
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Maintaining attribute~ consistently acro~~ a distributed tree 

We turn now to the problem of supporting semantic analysis for programming in the 

many. Whereas programming in the small refers to the problem of developing the con

tents of one module, and programming in the large reters to the problems associated with 

the combination of many modules to form large systems, programming in the many refers 

to the problem of coordinating the activities of many programmers as they attempt to 

create large software systems. In this paper we deal specifically with the problems associ

ated with maintaining consistent semantic information between a number of modules dis

tributed across a network. However, the algorithms developed are equally suitable to a 

time-shared mninframe environment. 

\Ve envis;,';e a model of program development where several programmers each use 

a workstation to develop a module. with the workstations connected by a high speed net

work. Each programmer runs a copy of a programming environment such as Gandalf 

!Notkin 85], POE [Fischer 84], the Program Synthesizer [Teitelbaum 81], or SAGA 

[Kirslis 84]. To the programmer, the module she is currently editing is the local module. 

All other modules are remote modules, regardless of their physical location (some remote 

modules may in fact by resident on the local workstation but not being edited). All 

modules are internally represented by the programming environment as attributed trees. 

When complete the trees may be combined (across machines) to form large programs. 

Some examples of this situation are: 

• Each programmer develops one or more modules, and all the modules are combined 

together to form a large program. 

• One programmer owns the declarations for a procedure, the body of which is edited 

by another programmer on a remote machine. 

Although a program can be broken into modules and split across a distributed sys

tem, there must still exist definitions in the context-free grammar that describe how the 

modules connect syntactically, and provide a channel for attribute flow. Every editor has 

a copy of the attribute grammar describing the language and its semantics. which it can 

use to determine when attribute flow crosses to a remote machine, and what the attribute 

dependencies there are. (Because of the precompilation of the attribute grammar. deter

mining this information requires minimal overhead). 

When a programmer replaces a local subtree, attribute reevaluation begins as usual. 

At each point that {) is expanded a check is performed to see if the cxpan:;ioll would cause 

a flow of attribute propagation onto a remote machine, or bet:ulUc dependent on an attri

bute from a remote module. For the former case, we build I) as normal, and then cut the 

graph so as to separate all remote attributes for a given remote module from the rest of 

I). We now insert a special vertex, called remote, into I) so that all attributes flowing over 

the cut out of the local module now flow via remote. We handle attribute values flowing 

into the local module by making them immediately independent and giving them the pre

vious values they had when propagating into the local module (how this is actually done 
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is described below). We then alter f) so that anything flowing out of remote is discarded, 

all attributes flowing into the local module are independent, and continue evaluation as 

normal3. 

'When the special vertex remote is independent, a packet of information is built con

taining local attribute information, which is then propagated to the remote machine. We 

assume that propagate is modified to handle this. \Ve further assume the existence of sup

port layers of software that handle the message passing across the network and recovery 

from errors. 

On the remote machine a semantic update will be triggered as if there had been a 

subtree replacement at the point where the syntactic link between the local and remote 

modules reaches the remote module. The dependency graph [) for that remote module is 

now built in dual to the approach used for the local module. Attributes flowing into the 

(new) local module are treated as independent, and attributes that flow out are assigned a 

remote as described above. 

This means that the subtree replacement model extends easily to handle remote 

attribute propagation. However, there are some problems with this. A module on a 

remote machine may be dormant (the module is not being edited, or it is inaccessible due 

to network or machine failure), or the user could be performing an editing operation that 

temporarily makes the tree unsuitable for receiving attribute information. 

We therefore propose the introduction into our model of a general concept called a 

firewall. A firewall acts as a barrier behind which a module can shelter if it is not ready 

to accept semantic change propagations from other modules, a circumstance that may 

arise either because a local user is actually changing the module, or because the module is 

dormant. The former case arises relatively infrequently in relation to the total amount of 

time that a module is not dormant. Much of a programmer's time is spent browsing the 

code and deciding what changes to make. It is only while the actual subtree replacement 

is taking place that the firewall need be in place. 

When an attribute propagation reaches a firewall that is in place, it queues until the 

firewall goes down, at which point the change is propagated to the module as if a subtree 

replacement had taken place at the firewall. If a module is dormant a propagation will 

queue until a programmer begins an editing session, at which time the propagation will 

enter the module. 

There are a number of implications of this strategy. Suppose a change propagates 

to a remote module which, in response, will propagate back Borne semantic information. 

To the programmer this may appear as two entirely separate operations. The local 

3 Note that we are guaranteed to get all remote dependencies in place the first time the graph ex
pands to imply remote relations, as the remote link is, from the viewpoint of the attribute gram
mar, just another link in the syntax tree. So expanding the graph to describe remote relations is 
just like expanding it to accommodate another node in the tree; the first attribute to get there 
triggers a complete expansion of f). 
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attribute evaluations will cause a message to be sent to the remote module causing 

further propagation there. This may be indefinitely delayed because of a firewall being in 

place or because of a failure of the network 4. The remote evaluations are not included in 

:. so the internal attribute evaluation will run to quiescence in the normal way. When 

the remote propagation eventually starts, it will propagate back some semantic informa

tion that will be evaluated as if it were a new subtree replacement on the local module at 

the firewall. 

Another important role of the firewall is to act as a place where previous values of 

remote attributes can be stored. Suppose an attribute depends on another attribute from 

a remote module. 'We do not want; to have to go across to the remote machine to get the 

attribute value, which may in general not be possible because of remote firewalls being in 

place or network failure, both of which could cause undue increases in response time. 

Instead, we store on the firewall the value of every attribute that passes througn it. 

When an attribute depends on a remote attribute, we need look no further than the 

firewall to discover its most recent value (which has to be correct as the most recent value 

will always by definition be propagated to the local module). Conversely, when a remote 

propagation triggers a local evaluation by passing a package of attribute information, the 

information on the firewall is updated. 

Another advantage of a firewall is that it can be used to place a border on areas that 

a programmer may edit. A programmer may be allowed to cross a firewall while brows

ing through code. but might not be allowed to edit anywhere except behind her own 

firewall(s). This simple strategy guarantees that two programmers cannot simultaneously 

change the same part of a module, a stancard feature of multiple user programming 

environments [Notkin 85, Leblang 851. 

This model of distributed incremental attribute evaluation is chosen to strike a bal

ance between the need for the programmer always to have absolutely correct attribute 

information, and the physical constraints Oil response time and dangers of ending up 

waiting for a network that is broken to yield a response. We adopted two complementary 

strategies to alleviate these problems. When a remote attribute needs to be reevaluated 

because of a local attribute change, the relevant information is packaged and transmitted 

to the remote site, which models the changed attributes as if they came from a subtree 

replacement. 'When a local attribute depends on a remote attribute, the most recent 

value (stored on the firewall) is just taken on the grounds that if a more recent value was 

available it would have been prop'l.gated to the local modllie. Note that more recent 

values may exist but be inaccessible due to network failure; we assume that in this case 

the network will eventually recover itself and perform the propagations. 

This means that once an attribute propagation crosses over into a remote module, 

from the viewpoint of the local module, th.at attribute has quiesced. If the remote module 

~ We assume a. sui table recovery mechanism for such network fa.il ures. 
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generates a propagation back into the local module, then that is considered a separate 

subtree replacement. Thus the complexity analysis for the multiple replacement case 

applies here also, from the viewpoint of one module. (We do not believe that considering 

the propagations across the entire network is meaningful or interesting; but the order 

across the entire network is as if all the affected modules were considered to be connected 

into one large tree). 

A final issue worth a brief mention is that queueing information on a firewall also 

allows a way of handling multiple propagations of the same attribute from a remote 

module whilst the firewall is in place. The most recent propagation can be used, and the 

others discarded, thus reducing the potential problem of repeating the same work k times 

for ~ propagations of the same attribute. 

Pragmatics 

Even with the processing power of a high speed workstation, if too many attributes 

become independent concurrently, the number of propagate processes will swamp the 

processor(s) and remove any advantages accruing from the parallelism. Simple 

modifications to the algorithm can limit the effect of this problem. For example, we can 

put an upper bound on the number of propagates that can run concurrently. The opera

tions on f) can be modified to restrict the list of attributes ready for reevaluation returned 

in S so that swamping of the processor(s) cannot occur. 

\Ve would at least need two processes for each editor incarnation (on a workstation 

we would usually only have one editor running, but there is no reason why these algo

rithms could not be used on a time-sharing mainframe on which there are as many editor 

incarnations as there are users); the first would be the conventional editor process. The 

second would manage the firewall, merge any attribute propagations that arrive at the 

firewall into f) as described above and handle transmission of packets of attribute values 

to remote editors. 

The model of a module being dormant until awakened by a programmer may in 

practice be unrealistic. Consider, for example, the situation where module lvf propagates 

an attribute to module N, and the effect of that propagation in turn has an impact on 

some other modules in the system (possibly including M). If N is dormant for a 

significant period of time, many of the advantages of this editing model will be lost as 

other programmers will have to wait until N's programmer reactivates an editor for N 
and causes the effect of the changes from M to propagate through the system. Therefore, 

associated with each module there should be a watchdog which can invoke an editor for a 

module if it has been dormant with queued attribute propagations at its firewall for more 

than a given period. The editor invocation can then handle attribute propagations, log 

any errors for future use by a .programmer and transmit any resultant remote propaga

tions to other modules before returning to the dormant state. 



- 12 -

We have said very little about the network that would be used to support the 

remote propagations; this network should contain an attribute propagation layer that 

interfaces the network to the editors and handles packing and unpacking of remote attri

bute propagations and the firewalls. The second editing process of the two described :n 

the first part of this section would then be subsumed into this network layer. 

Related Work 

There is some previous research that relates in various ways to this project, which 

we discuss below. However, we can find no reference in the literature to any previous 

attempts to solve the problem of incremental attribute updating across a distributed pro

gram representation. 

An obvious way to introduce parallelism into attribute evaluation is to treat attri

bute dependency graphs as petri nets and perform the obvious concurrent evaluation. 

Under circumstances where the attributes can be evaluated non-incrementally, this stra

tegy works well and has been the basis for some non-incremental approaches to attribute 

evaluation [Fang 72, Kennedy 76]. In the incremental case, with graphs constructed on 

the fiy, and with an attribute's propagation terminating if its value does not alter, there 

is no way that a vertex of the net can wait fer all its inputs to yield a value before firing, 

as some might never do so. Some might also never be included in the dependency graph 

at all, as they are not affected in any way by a particular change in the tree. If we allow 

the vertices of the net to wait for all inputs they might well wait forever; and if we allow 

a vertex to fire each time it receives an input, in the worst case we get exponential explo

sion of processes. Such approaches are therefore unsuitable for the distributed, incremen

tal situation. 

To prevent a similar exponential explosion in a sequential incremental evaluation 

algorithm for single replacements in a single environment editing monolithic programs, 

Reps proposed a topological sort on the dependency graph to delay evaluation of attri

butes until that evaluation is guaranteed to yield the final result of the evaluation [Reps 

8?a]. Our use of the topological sort is adopted from this work. In IReps 86]' the single 

;-"bLree replacement is replaced by multiple simultaneous replacements. This is done to 

mudel more powerful editing operations than single subtree replacements, such as pro

gram transformations. The algorithm obtained is unsuitable for asynchronous replace

ment, and is not extensible to distributed replacement. This result is subsumed into our 

asynchronous replacement result. It should be stressed that these, and all other incre

mental evaluation algorithms that we know of are sequential and restricted to single user 

systems. 

An incremental evaluation strategy based on attribute propagation by message pass

ing is proposed in [Demers 85]. The purpose of this work is to analyze more complex 

forms of static information concerning a program, such as dataflow information. This 

scheme does not support parallelism, multiple subtree replacements or' distributed module 
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editing. 

A distributed word processing system based on Argus [Liskov 851 has been con

structed to test problems in multiple paper authorship [Grief 86]. No semantic checking 

between distributed documents is performed. 

Several incremental program development environments have been constructed 

[Teitelbaum 81, Feiler 81, Fischer 84, Garlan 84, Kirslis 841, but none of these support 

distributed program development. A number of distributed program development 

environments have been constructed [Donahue 85, Lampson 83, Swinehart 85, Leblang 

85], but none of these support incremental semantic checking. 

Discussion 

We have introduced an algorithm for concurrent incremental attribute eyaluation in 

program development environments. \Ve have shown that this algorithm extends, natur

ally, first to supporting multiple asynchronous modifications to a program, and then to 

supporting incremental semantic checking across a set of program modules that are dis

tributed on a network. 

These are important results, because they pave the way for integration of modern 

programming hardware (workstations and high speed networks) with modern program 

deyelopment software (program development environments that guide and incrementally 

check the programmer). 

We have not restricted ourselves to any particular editing system, but given general 

algorithms that we believe may be introduced into any existing language-based environ

ment in order to extend it to the multi-user and distributed cases. 

Further, the algorithms are host environment independent. By this we mean that 

they will function equally well on workstations used by a single programmer or main

frames time-shared between many programmers. The more processors a particular 

machine has, the more the parallelism in our algorithm will be capable of being exploited. 

Many more evaluation processes (propagates) than processors can be generated, but there 

exists a practical upper bound on any system where the overloading of the processors 

outweighs the advantages of the parallelism in the algorithm. In such restrictive situa

tions, the algorithms are amenable to tuning to limit parallelism to prevent processor 

oyerloading. 
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Abstract 

We describe a system for programming in the many that adapts 
language-based environments for programming in the small so as to 
support the automatic checking of semantic interdependencies among 
modules as they are developed in parallel on a collection of worksta
tions connected by a local area network. We believe that accurate and 
productive programming in the large is made possible by supporting 
cooperation among environments for programming in the small. 

1 Introduction 

The management of large software systems involves large teams of program
mers whose members must cooperate together in the development of a soft
ware system. In general each programmer is responsible for the development 
of a piece of the system, usually a module. The module exports certain facil
ities to other modules, and in turn depends on facilities imported from other 
modules. Invariably a communications problem arises when module interfaces 
change or do not meet what programmers imagine to be their specifications. 
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One \\'ay around this problen is to use a message passing system among 
the programmers. In this scenario, ',','hen a programmer changes a module in
terface, he sends a message (usually electronic mail) to all other programmers 
that use the module to tell them of the change. However, in the real world the 
list of progranuners that use the module is constantly changing, because of 
changes the programmer is making to the module and concurrent changes by 
other programmers to their modules. So he sends the message to the entire 
team, just to be sure. The result is a deluge of mail. Some programmers will 
spend vast portions of their time reading mail (and accomplish little work). 
while others will ignore their mail and gets lots of work done. ~luch of this 
work may need to be redone la;er because of outdated assumptions made 
about other modules. 

The rise in popularity of networks of distributed workstations aggravates 
this problem as personnel become distributed along with the hardware. 

The easiest way to solve a problem is to make it go away. If the pro
grammers all use state-of-the-art language-based program development sys
tems, then the problem of inter-pro~rammer communication about module 
dependencies can be made to vanish by automating the process of identifying 
semantic interdependencies among modules. Then, when a module changes 
the set of facilities exported to the other modules in the system. the other 
modules can be automatically notified of the changes. 

In this paper, we describe a solution to this problem: a multi-user, dis
tributed language-based programming environmen.t. where the environment 
is responsible for propagating changes. The environment p:-opagates eacn 
change, in a timely manner, to the set of modules affected by the change. 
regardless of their physical location. Whenever an imported module changes 
in a way that affects an importing module, the programming environment 
automatically updates its view of the software database to include the new 
version and informs the programmer if any errors in his own module were 
introduced by the change in the imported module. The programmer can go 
about his business knowing that he will be informed of all changes that af
fect him. This information is provided in a manner that makes it easy for 
him to make any corresponding changes required in his own module. The 
programmer no longer has to spend hours sending and reading mail. 

Our solution meets three important goals. Changes are propagated auto

matically. Changes are propagated in a timely manner. And each change is 
propagated to exactly the modules affected by the change. We achieve these 
goals by generating our programming environment from an attribute gram
mar [81. Attributes are attached to each module to describe the interface of 
the module. Each interface has two parts: (1) the facilities exported by the 
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module and (2) the modules imported by the module and the facilities ac
tually required from these modules. In addition, we automatically maintain 
a use list [15] for each exported facility that records which modules import 
the facility. These attributes provide enough information to pinpoint the 
modules that are affected by a particular change to an exported facility: if a 
change doesn't involve an exported facility, then no inter-module propagation 
is required and none takes place. 

The advantage of using an attribute grammar to describe these inter
faces is that there are already incremental attribute evaluation algorithms 
[16.4.1,5]. v"'hich support automatic propagation to exactly those attributes 
that are actually affected by the particular change. The propagation occurs 
immediately, as soon as the change occurs. We have extended these algo
rithms to a parallel implementation Ii] that makes it possible to perform 
propagation in a distributed programming environment. 

Section 2 discusses the contributions of our work and section 3 places it 
in the context of related work. The remainder of the paper describes our 
model of incremental semantic checking across distributed modules by means 
of a running example. Section 4 discusses how language-based environments 
work internally by means of a simple example. Section 5 expands traditional 
single-user language-based environments to multi-user environments to allow 
multiple asynchronous edits on a program and briefly discusses some synchro
nization and safety issues. Section 6 expands this further to allow automatic 
attribute propagation (and semantic checking) across distributed machines. 
We end with a brief discussion of our prototype implementation. 

2 Contributions of this Paper 

The primary contribution of this paper is the development of a system for 
programming in the many that supports incremental checking of semantic 
interdependencies among modules distributed across multiple machines on 
a network. Each module is being edited using a programming environment 
that is language-based and normally suited to programming in the small. By 
having many environments for programming in the small cooperate together 
in the manner described in this paper, we achieve a synthesis of programming 
in the small called programming in the many. This approach represents a 
way to achieve programming in the large. 
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3 Related 'Nor!-< 

Cedar [14] is a distributed programming environment for the ),tfesa program
ming language. The Cedar. System :\lodeller [9j makes it easy for a program
mer to recompile his module(s) in the context of particular versions of other 
modules in the software system. If any errors are detected, the programmer 
can either modify his own copies of the modules that caused the problem or 
send mail to other programmers asking them to make appropriate changes 
in their modules. Cedar does not support incremental consistency checking 
and does not perform automatic change propagation. 

The Apollo Domain Software Engineering Environment (DSEE) [10] is 
a language-independent distributed programming environment. Like Cedar, 
DSEE makes it easy for a programmer to recompile his module(s) in the con
text of selected versions of the other modules in the system. If any errors are 
detected, the programmer can either modify his own copies or the conflicting 
modules or submit a task requesting other programmers to make appropriate 
changes to their modules. DSEE provides support for monitoring the other 
modules and informing the original programmer when the other program
mers have all checked off the activities listed in the task [lli. DSEE does 
not actually check whether or not all errors have been removed. It does not 
perform incremental consistency checking. 

The Gandalf System Version Control Environment (SVC~) [6J supports 
incremental consistency checking across module interfaces. Any errors in
troduced by a change in an imported module are .. utomatically reported to 
the programmer. SVCE is not a distributed environment. but a multi-user 
em'ironment for a mainframe. However. the problems of multi-user synchro
nization with respect to the software database (an attributed syntax tree) 
had not been solved at the time of the SVCE implementation [21, so SVCE 
is effectively a one-user-at-a-time environment. (The synchronization prob
lem for attributed syntax trees has now been solved by our introduction of 
firewalls. discussed in this paper.) 

The Unix l Source Code Control System (SCCS) [131 and the Revision 
Control System (ReS) [171 support synchronization among multiple program
mers using file locking mechanisl1l3. These mainframe systems use variants of 
the Make tool [31 to automate the recompilation and relinking of a program 
using the latest versions of modules after changes have occured. They do not 
automate change propagation or perform incremental consistency checking. 

I Unix is a trademarK of AT&T Bell Laboratories. 
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~.lODULE ~I ; 
EXPORT :< 

FROM II IMPORT Y 

EIID'M : 

MODULE N 
EXPORT Y 
FROM M IMPORT :< 

EIID N : 

Figure 1: Skeleton of Program with Two Modules 

4 Incremental Semantic Checking 

This section looks at how incremental semantic checking among modules is 
achieved in traditional single-user language-based programming environments 
(exemplified by the Cornell Synthesizer Generator [12]) by considering an edit 
on the program in figure 1. A logical representation of the tree structure of the 
program is given in figure 2. In this diagram the arrows represent attribute 
flow, not syntactic relationships. 

The full paper will discuss a simple edit (removing x from the export list 
of .\[) and its effect, for the classical single-user case [16J. 

5 Multi-User Semantic Checking 

We expand the traditional "programming in the small" language-based edi
tor paradigm - a single user editing monolithic programs - to the situation 
where many programmers can edit the same program asynchronously. We 
assume that programmers will not be able to edit the same part of the tree, 
ie that there will exist some division of the program among programmers. 
The obvious place to make this division is at the module level. We therefore 
propose a model of editing where many programmers have access to a com
mon program tree, but are each given an area on the tree that only they can 
modify. 

Consider the case where programmers Dick and Jane are editing our 
simple program. Dick can edit module A! only and Jane can edit module 
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Figure 2: Logic2.l Representation of program 

N only. Suppose that Dick deletes x from the export list of .\I. \Vhile the 
attributes affected by the change are being propogated, Jane deletes y from 
the export list of .V. A new set of attribute propogations for this change 
is started. \Ve now have a situation where the tree representation of the 
program in figure 2 is being asynchronously modified by two processes. 

In [71, we presented an algorithm that performs attribute reevaluation 
in the face of multiple asynchronous edits on a program. In this algorithm. 
the attribute propagations from the various replacements synchronize with 
one another to perform an optimal reevaluation of attributes. This is done 
by sharing the dependency graph structure (which is used by the algorithm 
to record dependencies among attributes and to select which attributes are 
Independent, i.e., ready for (re)evaluation) among the attribute reevaluation 
processes. One of the novel features of this algorithm is that the number 
of attribute evaluation processes running at any time is dependent not on 
the original number of edit sites on the tree but on the number of attributes 
that are independent. This allows us to achieve the maximum degree of 
parallelism. 

But what happens if module Ai is modified and the change is propagated 
to module N at just that moment when N is itself being edited (at the exact 
moment of subtree replacement). We do not want an attribute propogation 
to arrive in N when the tree representation of the module is in an inconsis
tent statez• To resolve this problem we introduce the concept of a firewall. 
A firewall can be up, in which case any attribute propagation attempting to 
cross the firewall is delayed, or down, in which case it is entirely invisible. 
The firewall provides a barrier behind which a program segment can shelter 
while it is being modified. It is generally a good idea to have the firewall 
at the same level as the split of programs among programmers, in this case 

"2 ~ote tha.t this is different to the attnbutt3 being in a.n inconsistent state. 
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at the module level. In figure 2 the boxes around the modules represent the 
firewalls. Firewalls need only be up when a tree is actually being changed; 
this is a minimal amount of time in relation to the time spent by the environ
ment performing attribute evaluations and the time the programmers spend 
browsing the tree. 

6 Distributed Seniantic Checking 

In section 5 we expanded the traditional single-user model of language-based 
editing to a multi-user model. This section further expands the model to 
distributed, multi-user language-based editing. 

Having allowed multiple edits on a program, with firewall protection, the 
next step is to split programs across multiple machines. We believe that 
the advent of the inexpensive workstation is rapidly making distributed pro
gram development with cooperation among the programmers the preferred 
mode of software development. We split a program in such a way that a 
firewall-protected section (in most cases a module) is assigned to a worksta
tion. (Naturally one workstation may be the home of many modules). In 
terms of figure 2 this means that modules M and N are each assigned to a 
workstation. The part of the figure representing the root of the tree becomes 
subsumed into the network. (For fault tolerance reasons the root information 
is duplicated on each workstation). 

On each machine. attribute propogation proceeds as if it were the only 
machine in the network as long as the attribute propagations remain within 
the bounds of the firewall. Once the firewall is accessed by an attribute 
propagation that will propagate outside the firewall, it becomes necessary 
to deal with remote machines. It is a feature of the attribute propagation 
algorithm that once an attribute propagation reaches the firewall, all other 
attributes that will cross the firewall in company with this attribute become 
known immediately3. We can therefore wait until all the attributes that 
will cross the firewall together are ready for propagation (more formally, 
when they are all independent of any other attribute values), then build a 
packet containing their values and propagage that packet across the network 
to the set of modules that depend on the changed module (this information is 
determinable from the use lists mentioned in the introduction). We assume 
that the network has an attribute propagation layer that can perform the 
packing, unpacking and dissemination of attribute packets to the actual target 

3 In fact, this is a feature of Rep's original algorithm and all optimal incremental algorithms 
that we know of; it i.s thLs very fact that makes the optimality of the algorithms possible. 
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modules. 
Conversely. when we need an attribute that originates in another module 

(such as the type of an imported variable) we do not want to have to go across 
the network to get this information (in the case of a network failure it may 
not be available). We therefore u~e the firewall as a cache. All attributes that 
pass through it are cached on the firewall and can be obtained from it when 
needed without any need to access the network. (An underlying assumption 
here is that the cache will be up to date on the grounds that if more recent 
information were available it would already have arrived). 

We also have to deal with the situation that arises when a new attribute 
value propagates through a firewall and reaches another module. The at
tribute propagation layer unpacks this information and compares it to the 
most recent value for the attribute on the firewall. If these are different, then 
the new value is propagated into the module. This is achieved by simulating 
an edit on the module at the firewall. It does not matter what is happening 
to the the module internally as th module is ready to recieve new att:-ibute 
values (because the firewall is down). We use the attribute propagation algo
rithm described in section 5 and [71. which supports multiple asynchronous 
edits and associated attribute propagations. 

Finally, the firewall acts as a protection in the event that the module 
is dormant (not being edited). Attribute propagations are stored on the 
firewall until an editing session for that module is resumed. This strategy 
also allows a simple optimization: when a module reawakens, only the most 
recent changed attribute values are passed to it. 

Thus, in our example, if the same editing sequence is follo\'·led as for the 
edits in section 5, the export list attribute from Jf will be bundled and 
passed across the network to N. If the firewall is up this will wait until the 
firewall comes down, at which point the attribute bundle will be unpacked 
and inspected. The attributes that differ in value from their values as cached 
on the firewall will have their cache values updated and then be propagated 
into N. 

7 Implementation 

We have implemented a prototype of the distributed language-based environ
ment for a local network of two VAX ll/i50's running UNIX 4.2 BSD. A 10 
Mb Ethernet is used for communication between the machines. Attributes 
flow between local and remote machines by means of the interprocess com
munication (IPC) mechanism provided by Unix using the Il'."TERNET TCP 
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protocol. The user interface consists of a rudimentary language-based struc
ture editor, which allows each user to create and modify sections of a program 
by a sequence of subtree replacements of the program's abstract syntax tree. 
The system can correctly handle asynchronous subtree replacements result
ing from either a local editing operation or a remote attribute propagation. 
We are in the process of adding firewalls and plan to complete a larger-scale 
implementation on a heterogenous network consisting of a number of lJnix 
workstations. In this version. the distributed incremental semantic analy
sis algorithm will be integrated with an improved user interface supporting 
multiple windows and mice pointing devices. 
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Abstract 

\Ve describe a system for progrflmmlng In the mllny that adapts 
language-based editors for individual programmers to support the au
tomatic checking of semantic interdependencies among modules as they 
are developed in parallel by multiple programmers on a collection of 
workstations distributed acr055 a local area. network. We fOCllS on the 
reliability of these distributed programming environments as some mod
ules become inaccessible and later return to availability. Our primary 
contributions are the decentralized control of the programming environ
ment. firewalls, a mechanism that encapsulates individual modules to 
protect them from external failures. and a special network layer that 
enables the system to be highly a\'ailable and reliable in the face of an 

'This paper was written while Dr. Kaiser was a Visiting Computer Scientist at the 
Software Engineering !n3titute. Carnegie-\!el!on !."niver::ity, Pittsburgh, PA. 
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unreliable network. The firew:dls and :lec·.vork lay~r co~echer ::;11PpO,~ re
e5~3.bli~hme~t of con5i3ter.cy )r!~(jng :·l;:iy iepLca~ed data, In :~e context 

of distnbuted programming environmeoc3, 

1 Introduction 

The development and maintenance of large 50ftware systems invoh-es teams 

of cooperating programmers. In general each programmer is responsible for 

the development of a piece of the syster:1 - a module. I Each module exports 

certain facilities to other modules. and in turn de?ends on facilities impor:ed 

from other modules_ [nvariably communication problems arise as program

mers change the interfaces of their modules. ~o they no longe~ meet the 5?~ci

ncatlons expected by other programmers. \\'e have sol\-ed tbs problem using 

a disln'buted. language-based. prOl]ramm!l1'1 ~nl.·rronment ll, C-si:'.g thi::: 5yS

:em. programmers can de\'elop modules in iiolation and tree system ta~es 

care of communicating changes amon~ the relevant set: or" their colleagues. 

regardless of their physical location. 

This paper focuses on reliability issue:; associated with the U:5e of these en

vironments_ Specifically. we are ir.teresteG i:l building a sys[em t~at is both 

reliable and highly cecrlable l". Each module is changed using ::tn edItor 

that operates entirely on a single machine. where the distributed collection 

of editors makes up the em·lronment. In this context. reliability requires 

that e\-ery editor should always have correct information. This information 

should also be as up to date as possible_ By highly al,-ailable we mean that 

an editor should be affected as little as pO:5sible by the failure of the network 

or of other machines. We have developed a sptem \'ihere control is fully 

decentralized: each editor operates independently of t,he others. and propa

,gates information to other editors whenever the interface information of its 

module is altered. The most recent possible information from other modules 

is always available for use. regardless of the state of the network or the state 

l By module we meJ.n the unit J.5=i~n~d to .In individuJ.l progrJ.mmer for ~ourcc code 

chJ.nge~_ 



of the machines on which the other modules are located. We use a provably 

correct algorithm for the re-establishment of information consistency when 

recovering from net\vork or machine failures. 

We begin by listing, in section 2, the contributions of this paper. We then 

overview briefly in section 3 our distributed language-based programming 

environment. Section 3.1 discusses how the system has fully decentralized 

control. Section -l: describes our special network layer. and section 3.2 our 

jireu'ail system for encapsulating modules. Section.') considers the case that 

the network and machines are completely reliable. This somewhat unrealis

tic scenario leads into a discussion of the case where the network and/or ma

chines are unreliable (section 6). We present the algorithm for re-establishing 

consistency, prove it is correct and address its complexity. We then look at 

some cases where we can do better than is implied by the worst-case of the 

algorithm. Finally. we compare our research with related work. specifically 

that in the field of distributed databases. in section -;, briefly describe the 

implementation in section 8 and conclude by summarizing our results. 

2 Contributions 

This paper makes several contributions tn the area of reliable. distributed, 

program development systems: 

• [t describes a system for communicating change information about 

modules among the programmers developing a software system in which 

control of the distribution of the information. and the effects of the dis

tribution, are completely decentralized . 

• The· system described is highly a\'ailable in that any machine can op

erate regardless of the state of the network or the state of any other 

machine. [nformation from other machines is always guaranteed to be 

correct, although it may be old: 1-1:, 
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• The system operates reliably in tha.t it will restore infor:nation cor!.s!s-

tenc)" af:er a network or ma.chine failure. 

3 Run-Time Support for Distributed Change 

Propagation 

Rather than building a particular distributed programming environment. we 

ha\'e de\-eloped a system for generating the de::ired en\'ironments from ;"or

mal descriptions. The formal description :s gi\'en as an attnbu.te '.lrammtlr 

: 12 : 13:. which describes the context-free and conrext-3ensitive properties of 

the prog:-amming langu.age. OUf generator (~an5~ates the de5crii=ltion for a 

particular programming la.ng'la~e into a:l i:He~na.l ,ep:-e:;er:tation 'j:1de~s(Qod 

by a lang'.lage-independent kernel. whic~ pro\-ides the COf:1r7COn rll:l-time 51.1p

port for these environments. This paradigm was originally de\-.,loped by 

Reps :6:, and has since been applied by many researchers to the generation 

of single-user. single-machine programming en~-ironmenr5 ·ll) lO ;. These 

environments support syntax-directed eciicir.g. type checking. code generat~on 

and other programming tools _ 

_ \11 of these environments process the pro~ram incrementally. after each 

subtree replacement command to the syntax-directed editor. For exa:nple. 

any static semantic errors are immediately flagged as soon as the programr.1er 

enters the erroneous part of the program and the object code is always kept 

up to date_ Auxiliary data structLres. called attnbutes. represent the symbol 

table, the object code. etc. and are modified as the program changes. For 

efficiency, only the attributes actually affected by the subtree replacement are 

recalculated. Reps de\'eloped an optimal algorithm for updating this internal 

information "17'. 

fn :11:. \\'e present an extensiol1 to Reps' algorithm that permits optimal 

updating when the programming environment is implemented on a multiple 

processor machine and/or distributed across a network. For the first time. 



a programmer working on a workstation could immediately be informed of 

errors in his module caused by changes to other modules being modified 

simultaneously by other programmers on other workstations. The details of 

the internal workings of the algorithm are not relevant to this paper, and so 

are omitted; interested readers are referred to ) 1.' 

The main idea is as follows. Within any particular editor, attributes are 

re-evaluated as necessary in response to changes in the source code of the 

module. When an attribute changes in value. all attributes that depend 

on the first attribute must also be re-evaluated. and 50 on. This is called 

attribute propagation. .-\S long as attribute propagation remains within a 

single module. the modules are effectively independent and distribution is of 

no concern. 

However, certain attributes attached to each module depend on attributes 

in other modules. For example, the symbol table of a module depends on the 

symbol definitions imported from other modules. When any such attribute 

changes in value. it must be propagated across the net to all the external 

attributes that depend on it. When attribute propagation passes from one 

module to another, a new process is forked within the receiving editor. This 

process simulates a subtree replacement at the boundary of the second mod

ule. causing a chain of local attribute re-evaluations. This propagation may 

proceed concurrently with an attribute propagation initiated locally and with 

other propagations initiated externally. 

Sometimes the same attribute is affected by multiple propagations with 

respect to the same module. Rather than repeat attribute evaluation for each 

process, we effectively combine the separate threads of control by synchroniz

ing on a data structure called the dependency graph. The dependency graph 

is used by our algorithm. and by Reps', to order the evaluation of attributes 

so that inputs of attribute equations are ah ... ays evaluated and set to their 

final values before outputs are calculated. and no attribute is evaluated more 

often than nec~ssary. The details are rather messy, so we refer the interested 

reader to our previous paper :lli. 



3.1 Decentralized Control 

[n Reps' attribute e\'aluation algorithm. there is only one process and one 

thread of control. .-\ single dependency graph is used to order the caiculation 

of attribute values. The obvious distributed extension to Reps' algorithm 

would have been to simply distribute the program tree across the network. 

where certain links between nodes in the tree were implemented by inter

machine references rather than pointers. This would require a centralized 

dependency graph to order the e';aluation of a~tributes throughout the dis

tributed tree. 

However. a centralized data structure would make our distribuLed pro

gramming en\'ironrr,ent inherently ur.re!iab!e. The data .Hr:"CtUre \\·ould ~e-

5ide on some particular ::lachine. acting ;],5 a .;er·;e: for ~he client processe5 

on the other machines. If the .oer..-er went down. attribute propagation 'sould 

be impossible. even within the bo~r'(!J.rie5 or' a single mac::ine. Program 

editing could continue. howe\·er. withOllt local error checking. When the 

central dependency graph '.va5 restored. [hen an orr-line attribute e\-aluation 

procedure would be applied to restore consistency dCrO::i5 the distributed p,o-

gramming environment. :3im:larl:;. J the ne:·.\·ork Wcl5 bro~:e:: 50 that'oT.e 

machines could not access the central dependency graph. then attribute up

dating could not continue on these machines. Program modification could 

continue as before: the locally stored attributes could not be updated until 

the network was restored. 

To solve these problems. we have decentrali::ed the run-time control for 

our attribute evaluation algorithm. We maintain a separate. local dependency 

graph for every editor. which describes the dependencies among only the lo

cally maintained attributes. Any dependencies that cross module boundaries 

are represented by special pseudo-t'at:ces in the dependency graph. These 

pseudo-vertices represent both the points '.vhere attribute propagation passes 

into the local module and the poi:1ts where propagation leal;es the module. 

The only incoming and outgoing edges of each graph are with respect to other 
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local vertices. 

This representation allows attribute evaluation to proceed independently 

within each local editor, regardless of the state of the network. When a 

local edit causes local attributes to change in value, updating of dependent 

local attributes is carried out as described in the previous section. The only 

difficulty arises when a propagation reaches a pseudo-vertex. 

Since a pseudo-vertex does not have any outgoing edges to the dependent 

attributes in other modules, it is impossible to determine locally exactly 

where to propagate the changed attribute. [nstead. the changed attribute, 

including its identification and value. is broadcast across the net. When 

the attribute arrives at each destination. its identifier is compared to the 

attributes expected by the local p:5eudo-vertices. [f there IS a match. local 

attribute propagation continues from this point: if there IS no match. the 

attribute is ignored. 

3.2 Firewalls 

This works fine as long as the network itself is reliable, 50 that every attribute 

sent is eventually recei,'ed at all the other machines. Serializability cannot be 

guaranteed, but this is not a concern - attribute updating does not depend in 

any way on the order in which subtree replacements are made. After all the 

changes are made and attribute propagation is run to quiescence. the result 

is always the same. 

Our previous paper assumed that the network was reliable: the purpose 

of this paper is to extend our pre\'iOU5 work to the unreliable case. When 

the network is not reliable. additional support is needed. We need a way to 

guarantee that each change.to an attribute on the external boundary of a 

module will eventually be received by all the other modules. On the flip side, 

we need a way to get the value of an external attribute on the boundary of 

another module that is an input to the calculation of a local attribute, in 

spite of the fact that the remote module may not be accessible. 
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We solve these two problems with /ir,!1.!.'all.5. :\ flrewall is concepwally a 

ba~rier that encapsulaLes a modele. Firewalls can be up. in wnich case any 

remote attribute propagation that reaches a module with a firewall in the up 

position is queued until the firewall changes state. or down. in which state 

all attribute propagations can flow through it .. \ firewall is only up if the 

module is physically being modified (which takes very little time relative to 

the total time spent in an editod or if the module is dormant - not loaded 

into an editor . 

. \ second role of the firewall is as a cl1cne . . \11 anribute5 that pa.ss th~ollgh 

the firewall are (logically) cached on the fi:-ewall. Thus. all external attributes 

are replicated at e\'ery machine .. \ny reference (0 it non local attribute ca:l 

be satisfied simply by going to the firewall. on [he grou:1ds rhat if more 

recent information were a':ailable it would ha\'e arri\-ed. [n this way '.':e make 

our prog:amming en\·ironrr.ent highly a·;ailable. because !ocal editors can 

continue to operate e\'en in the case ot total di:iconnection from the net·.vork. 

The information thus obtained from the firewall is always correct. that is. 

:self-consistent. but may not be up-to-date. because of ne:work or machine 

tailures. 

Firewalls are actually a hlgher-Ie':el abstraction: we disc:.1sS their i:npie

mentation as a layer of the networking software in the following 5ection. 

4 Attribute Propagation Layer 

This 5ection introduces a special network layer - the attrzbute propagatIOn 

layer (.~PL), which interfaces the distributed prog!"amming environment to 

the network. Editors communicate entirely with thi~ layer. and the facilities 

to support firewalls and recovery from failure are built into it. This section 

discusses the .\PL and our assumptions about networks and machines. 

\Ve make no assumptions about the size. topology or reliability of the 

network. or the order in which it delivers messages, othe;. than that the net 

supports broadcast. We do not assume that the messages arrive at a node 



In any particular order. but do assume that they are never corrupted. \\'e 

allow the network to have internal nodes whose role is to pass along ;>ackets 

of information (for example, gateways between ethernet rings). 

We assume that machines are fails top, that is, they are either running 

correctly or down. \Vhenever a machine is up. its A,PL is running, even if 

the machine is disconnected from the network. The APL remains running 

until the machine is shut down (or fails). APLs are assumed to be robust, 

and communication between each editor and its local .-\PL is assumed to be 

reliable. Further. we assume that the A,PL knmvs the status of its connection 

with the network at all times. The .-\PL has the task of re-establishing 

consistent attribute information after failures. [n other words . .-\PLs solve 

the problem of consistency among replicated data in the context of distributed 

attribute propagation. 

Each .-\PL can interface several editors to the network: the number is not 

fixed, but depends on the machine. For example. a workstation is likely to 

have one editor, but a large mainframe could have several editors running 

at any time. The editors on the local machine are called local editors; all 

others are considered to be remote, and similarly we can ha\'e local and 

remote modules. \lodules can be either actit'e (being edited) or dormant 

(not loaded into an editor). [n either case. when an attribute from another 

module that affects a particular module is broadcast. the module should 

receive the attribute eventually, even if it is currently dormant. 

To support this, the .-\P L maintains for each local module an attribute 

cache and a boolean flag v"hich together implement a fire wall. The flag is set 

whenever the firewall is in the up state. [f the flag is set and an attribute 

propagation arrives for a module. :he cache for the module is updated, and 

no further action is taken. \Vhen the firewall flag is reset. the new cache 

value is propagated to the editor for the module. \Vhen a module is made 

dormant, the .-\PL cache information is stored with the dormant module's 

internal forms. When the module is made active again. the stored value of 

the cache is compared to the current ,-\PL cache values, and any necessary 
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updates are propagated to the module. 

For each rerr.ote :nodule the .-\.P L mair:tai~s a similar cac~e. but no nag. 

The remote caches are needed so that when local attributes that depend on 

the "alues of remote attributes need re-e\·aluation. there is no need to go '0 

the remote site to get the information. In this way the two functions of the 

firewall are implemented in the .-\.PL. .-\.150. this information will be needed 

in the unreliable net·.mrk case di:cussed i~ sectton 6. 

The .-\.PL performs the roltow:ng functions (c.isregarding for the momern 

issues of unreliability): 

• When it rece·lves a changed': attribute from a local editor. that attribute 

is then passed to eve,y local module. and hrna,icast on t~e ::et. 

• When it recel"'es an attriblHe brOac.G!.5t f:-om a remote .-\.P L. :;"e rele

vant cache is updated and that int'ormation is pa.:;sed to all local ~od

ules. 

We assume that each .\PL and each module a.5soc:ated · .... ith an .\PL a;"!? 

uniquely identifiable. 

5 Reliable Attribute Propagation 

If the network is completely reliable. there are only two situations in which 

consistency among attributes must be established. namely: a new .-\.PL is 

added to the net or an .-\. P L has been removed from the net in an orderly 

fashion and is now being returned. In both cases. the .-\.PL broadcasts an 

update packet on the network. Every other .\P L that receives the packet 

returns its local cache information to the originator of the update. For the 

former case, this gh'es the originating .\PL a set of caches to pass to local 

= It is pOHlole th.lt .In .lccribuc<! can be prop.llp.ced from .In t!dicor J.nd hJ.ve e.uctly 

the :l.lme valut! a.:! it hJ.d on the previoll' propJ.~J.tion; in thi~ ca~e the APL, followin;: (he 

policy defint!d for our .lttribure evaluation .llgorithm, C.ln di~card the .lttribute. \Ve therefor~ 

.l~3Ume that unchanged .lttriblltes never pa53 throu~h .In .\PL. 
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modules. and in the latter the originating A,PL can now decide '.vhat infor

mation has changed and propagate this to local modules. We assume that :10 

editors local to the new., restartec .\P L are active while this startup process 

IS In progress. 

6 Unreliable Attribute Propagation 

In this section. we present an algorithm for maintaining consistent attribute 

information in the face of an unreliable network. We extend the information 

stored for each cache to include a timestamp, and then give an algorithm that 

restores consistency of attribute information among .-\PLs after a network 

failure. This is a pessimistic algorithm in that it makes as few assumptions 

about good network behavior as ;)Qs5ible: we require only that the network 

does not corrupt data. \Ve prm'e that the algorithm is correct and termi

nating. and discuss its complexity. We then show how we can do better by 

making certain assumptions about network topology and reliability . 

. -\s well as containing attribute information. each element of an .-\PL cache 

is labeled by a timestamp and the identifications of the originating .-\PL and 

the module within that .-\PL. Timestamps can simply be integers that are 

incremented by the originating .-\PL each time an attribute is broadcast'S'. 

The consistency re-establishment algorithm works as follows: When an 

:\PL comes up, or when its broken connection to the network is restored. it 

broadcasts an update request over the net. This will be received by all .-\P Ls 

that are accessible from this .-\PL. On receipt of an update request. an .-\PL 

broadcasts each attribute that it has cached, along with its timestamp and 

originating label: from now on. we refer to all this information as a cache. 

On receipt of a cache, the .\PL executes the algorithm given in figure l. 

When an .-\PL receives a changed attribute from a local module. it broad

casts the corresponding cache. and then all the .-\PLs follow the same strategy 

on receipt of the cache. :\ormal attribute propagation among .-\PLs is thus 

subsumed into the consistency re-establishment algorithm. We assume that 
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receive(p) is 
let 

in 

c = a local cache 
r = a remo:e cache recei\'ed f:om the net. 
time ~ the time it was sent. 
info = the information. 

if (there exists a local cache entry c corresponding to r) 
then if (c.time ~ r.tzmel 

fi 

then if (r.info = c.info) then update local modules f1 
else broadcast{c) 

else create a cache for r 

fi 
end 

Figure 1: Consistency Reestablisr.~,er.[ Recei\'e Part 

intermediate nodes in the network can also broadcast update requests if they 

rejoin pieces of the network that have becor::.e separated. in on':er :0 make 

the newly rejoined pieces consistent. 

:';ote that a broadcast ' .... ill re~:h the .\ P l rt-"H bro;";.c:c2.sts it. :00. ~o :[ 

wIll also participate in the re5tabilization of the net. This is necessary because 

it5 local modules may have been altered while the network was inacce5sible. 

resulting in changes to propagate to the rest of the net .. 

. -\lthough we have assumed that each time an .\PL comes up it broadca:Hs 

and update request, and that therefore it is technically the only out-of-date 

APL, the algorithm is fault-tolerant of this assumption and will deal with 

the situation where all AP Ls ha\'e different information and think that they 

are up-lo-date. [n this case the algorithm will reestablish most up-to-date 

information at each ,-\PL by the time it terminates, 
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6.1 Correctness and Complexity 

In this section. we argue for the correctness of the algorithm above. and 

show that it is terminating. We then investigate the complexity of the al

gorithm. We make several assumptions in order to simplify the arguments: 

these assumptions are not required in practice. so we end this section with 

an argument of correctness and complexity ignoring these assumptions. The 

assumptions are: 

• Local modules do not emit any attribute changes while the restabiliza

tion is progressing. 

• Only one .-\PL returns to the network at a time. 

Lemma 1 The attnbute consistency;trategy is terminating. 

Each time a cache and its timestamp is broadcast, the network is (\'irtually) 

partitioned into these sets: 

• .V - The set of .\P Ls whose cache holds more recent information than 

the packet just broadcast. 

• J - The set of .\PLs whose cache holds less recent information than 

the packet just broadcast. 

• S - The set of .\PLs whose cache information is the same as that of 

the .\P L originating the broadcast. 

• D - The set of .\PLs that are inaccessible and will therefore not receive 

the broadcast. 

Let T be the set of all .\ P Ls on the network, and let sidebars denote 

the size of a set, as in I T .V 0 i ~ ; S ~ I D I. Xow, suppose 

that some .\PL Q broadcasts an attribute cache. O! -"- I S AP Ls will 

absorb the new broadcast and produce no new broadcasts as a result, • D I 

.\PLs will simply fail to receive it. and .v I .\PLs will decide that they have 
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rr.ore recent information and rebroadcast ~heir packets. [n the worst ca.~e . 

• 1. 7" - 1 (e';er:: other .\PL has more recent ir.formation t::an 

Q); it can be much smaller. Each .-\PL that receives the broadcast will.in 

turn divide the net into the .11, ~O, .5 and:; sets. Each element of a .' .. ~et 

will rebroadcast, and each element of the 0 sets will absorb the information 

(there has to be at least one such .-\PL - the originator of the first broadcasc). 

So if N " is the size of the .v 5et of .-\PL 00. and 3 is SOf:'1e other .-\PL in 

.\;:. •. 1../3 must be smaller than .v:. (in the worst case. J = {Q}). Each tir.:e a 

broadcast is made. N must be smaller cha:1 pre';IOllS N sets in this · .... ay. tl.:1ci 

50 the algorithm eventually terminates. = 
Lemma 2 When the COf!31.stenC!] estabi:.;hmf.n: .zi..,ontnm termInate';. fj!lAPL.; 

that particI'pated in the brOfldcastzruJ proa.;.; hl.!L'e the .;ame cache t·alll~.'. 

Proof Outline: To prO\'e correctne5S. we show that if .v is empty. then .: 

mU5t become empty also. Then = ~ .5. and all .-\P Ls have the 

5ame information or are not accessible. \ote that an .-\P L only broadcast5 if 

it has r:nore recent information than information it receives: and .-\P Ls only 

update themseh'es if they receive inforrr.ation :TIore recent t~an ;:~at ' .... hich 

they already ha\'e; 50 the algorithm tends to give each .\PL the most recent 

possible information. [f .V is empty for every .-\P L in the network. there can 

be no ,\PL that has more recent information . .: mar not be empty, but the 

.-\PLs in this set will simply absorb the informacion of the current broadca5t. 

and thus bring themselves up-to-date. Since we know that the algorithm is 

terminating, I .11 ' steadily decreases. and the information updating in an .\P L 

tends to make bring the .\P L up-to-date, it follows that when N is empty for 

each .\PL, all .\PLS either ha\'e the most up-to-date information or it has 

been broadca..:;t to them. Since all broadcasts are eventually absorbed by all 

.-\PLs. all .\PLs eventually get the same. most recent possible. information. 

Theorem 1 The consistency establishment algorithm IS correct. 
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Proof Outline: Follows directly from the preceding two lemmata. 

This algorithm has the desired updating properties necessary to restore 

.\PLs to a consistent state after a failure. ~ote that it \vill also (as a trivial 

c~se) handle normal attribute propagations and automatic extension of AP L 

caches when new modules (and .\PLs) dynamically appear on the net. It is 

fully decentralized: There is no single machine or APL that acts as a control 

on the process. 

The worst case-complexity of the algorithm (where we view complexity 

as a factor of the number of broadcasts) for the update of a single attribute 

cache is \~=l i. where n is T D. and every .\PL has a different value. 

The crippling factor here is that the .\P Ls could agree on a most recent 

value early on. but still ha\'e many messages with older information to pro

cess. Each such message will rield a broadcast of the older information. 

which \vill get passively absorbed by the other .\PLs. However. this is a pes

simistic algorithm: in section 6.3 we discuss ways of improving the algorithm 

in practice. 

6.2 Removing the Assumptions 

In the previous section. we assumed that the editors yield no attributes for 

remote propagation during the re-establishment of consistency, and also that 

only one APL comes up at a time. These assumptions were made purely to 

simplify the analysis. In practice there is no reason why editors cannot prop

agate at any time, or \ ... ·hy .\PLs cannot come up at any time. The algorithm 

will work in these cases. but the effecti\'e complexity of the algorithm (by this 

we mean the number of broadcasts that would be seen by an observer watch

ing the network) would increase in proportion to the number of additional 

propagations caused by the editor yielding an attribute for propagation or 

an additional update request on tr.e part of an APL. 
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6.3 Doing Better 

There are several ways that we can do better in practice than tne wors:: ca5e 

of the algorithm suggests. However. each of these implies some assumptior.s 

about the network topology or stability. or requires more space. We enumer

ate some of these improvements below. and indicate their assumptions . 

• . \laintain history informatl·on. This improvement requires that eacb. 

A.PL maintain a table that shows for e':ery other .. \PL the most rece:tt 

information it has received from the other .-\PL. T:-ten if inror~at~on 

less recent than the table entry is recei';ed. it can be discarded. This 

improvement is only Ilseful in the e\'t~:;t that messages ar:i\"e O'lt of 

order. The s?ace (0 store the table is a. facor of t:ce nu:nber of a::tr:~ute5 

flowing throllgn the .-\PL and the numbe:- of other .-\PLs. The table 

has (0 be capable of dynamic expar.sio~ as :1eW .-\P Ls a:1c mod'.des a~e 

added . 

• C51! point-to-pol"nt commum"crztlOl!. In rhis ;IT!pro\·ement. rr:essag~s .:t:e 

passed point-to-point r~ther than broadcast. The disadvanta'6o:'s are 

that the number of ,-\PLs and modules :5 'f1xed' lamper-?roc~~s is 

required to update the database of .\PLs and modules on each ma

chine every time a new .-\PL module is added, a dimcult process in tb.e 

event that the network is unstable), and that the network must be suf

ficiently stable for several message pairs to pass oetween two POi::t5 to 

comple:e an update .. -\150. history information must also be maintained 

as described above. However. broadcasts are the natural communica

tion strategy for an ethernet anyway (our implementation vehicle - see 

section 8). Further, the broadcast algorithm given in figure 1 is safer: 

Consider the case where .-\PLs Q and 3 communicate and become con

sistent. but an AP L 1 is excluded from the process although it has 

more recent information because neither Q or .3 know this. The broad

cast strategy \vould dynamically add 1 to the updating process and the 

other two AP Ls \vould get more recent information as a result. 
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• Use knowledge 0/ the netzL'Ork topology. For example. if the network is 

a star. point-to-point communication with the central server node is all 

that is needed. If a ring-of-stars configuration exists. the nodes on the 

rtng can use the basic algorithm (plus the improvements enumerated 

above ",,-here relevant), and use point-to-point for the elements of the 

star. (~ote that this is a generalization of the special case where the 

.-\PL has multiple local modules and does point-to-point communication 

with them). 

7 Comparison to Distributed Databases 

In this section, we compare our approach against those taken in distributed 

database systems. and explain why some of the problems that beset the 

distributed database case are not an issue here. and why our solution would 

in turn not be adequate for the cistributed database case. We look first at 

some differences between the programming en\"ironment and database cases. 

then at availability of the system. and finally at reliability issues. We briefly 

relate our work also to other approaches to providing fault-tolerant systems. 

In the distributed database case, a major problem is that of transaction 

commit - the effort involved in processing a transaction is distributed among 

several database servers and then the servers have to agree on whether the 

transaction has been successfully processed. and commit it to the database 

or to abort the transaction. Reliability and availability are intertwined here; 

On the one hand, one wishes to commit only when all servers agree on an 

answer, so that every local database has the same information: this gives high 

reliability, but potentially low a\·ailability. On the other hand, one wants to 

keep servers running as much as possible; this can give high availability but 

low reliability. Another problem is the by=antine problem which arises in case 

that processors yield faulty answers. 8: proves that if even one processor is 

faulty. a commit decision cannot be made. Because only one node on the net 

in our system can change attribute values. we do not have a commit problem. 
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and the im;>ossibility result is not rele';a~: in this system . 

. -\. 5econa problem is that of database wn,s/stenc'j where the database is 

replicated in different net\vork partitions and then changed. The issue is (0 

reestablish co_nsistency among the replications in different partitions . . -t dis- .. 

cusses strategies for partitioning the database network into smaller sections 

and then achieving reliability and availability within partitions. together ·.-;ith 

a strategy for re-establishing consistency among partitions when they ,eiot:: 

the network .. -\.Igorithms for the ~eestabli5hment of consi:;te!H inforrr.at:o~ ie: 

this case are different to what we have use·! :,ecauie the da:a can be IT'.od:ne(: 

by more than on.e node on the :letwork, [n tr.e case considered in this oaDer. . .. . 
only one node can change particular attribute information, and all others 

treat it in a read-only fashion, \\'e can ~herefore reestabPsh consistency by 

referring only to timestamps. In the cii5t~ibutt::d database case. nowe·;e,. 

the data ',\'ould need consideration a;so. 9 :;oh'es the problem by na';ir.g a 

database administrator's tool that can be u::ed to patch ~he database: L,j 

partition the network and ha\'e a "coordinator" within each partition to dea.l 

with reestablishment of consistency; in their work control is therefore not de

centralized. :3, assumes that the network size is known. and that irs topology 

is sufficiently stable that each site car. esta.blish the topology before reco';er

ing. an assumption that we do not make. and also assumes coordinating sites. 

Further. they require "master" and "slave" sites whereas all our .. \ P Ls are 

on an equal footing .. -\.150. both require :some knowledge or' network to;:>ology. 

assume that some sites know they are "correct" while others know they are 

"recovering", and assume sufficie:1t network stability to allow a number of 

rounds of messages between recovering sites and correct sites to reestablish 

consistency. Our algorithm makes none of these assumptions. 

While not directly related to environments, ,Li is relevant in that it pro

poses a system in which processes are highly available. In this system pro

cesses are made available and fault-tolerant by replicating them on many 

machines. :\'etworks are assumed to be stable and of known size,' topology. 

processes are assumed to know if they are correct or reco1.-ering. and recovery 



is made either by copying the state of a correct process and continuing or 

by rollback :.5; )l. We need none of these assumptions in our system, and 

recovery is by message-passing information. not by rollback. 

In the case of distributed programming environments. the problems are 

different to those in the distributed database or replicated process areas, and 

it is these differences that make our solutions work. First. the number of at

tributes that flow among modules is a very small constant determinable from 

the attribute grammar. This means that the amount of data that must be 

replicated at each .\PL is very small compared with. say, a complete database. 

Thus. full replication is an effecth'e strategy for making information highly 

available. Second, only one module \ .... ithin a specific APL is responsible for 

establishing new values of a particular attribute for propagation. Therefore 

the commit problem does not exist in our system. Instead we ha\'e a consis

tency problem: If an attribute is transmitted from an .\PL every other .\.PL 

must eventually receive the transmission. We do this with our consistency 

re-establishment algorithm. This algorithm has poor worst-case complexity, 

but it is very forgi ..... ing of network and machine failures. For example. if an 

.\PL 0: transmits a new attribute value. and it is received by some APL 3. a 

third .\PL -i that is not on the net will eventually get the attribute when it re

turns even if 0: is no longer up, because the information will be automatically 

propagated from .3 as part of the consistency re-establishment process. It is 

not dear that the approaches cited in related work can match this feature. 

Because each APL replicates the attributes of all other .\PLs. the remote 

attributes are highly available to a module. The values thus obtained may 

not be the latest possible, but local operations will continue and the later 

values of attributes are guaranteed to arrive as soon as network topology and 

machine status permit them to do so. In this we do better than [14:, who 

also aHow old information to be used but have no way of propagating ne\ver 

information to clients when it becomes available. Because of the consiste~cy 
. I' bT ble 

re-establishment results, the system achieves the highest re la I Ity POSSI 

in face of the reliability of the underlying network. 
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8 Implementation 

We have implemented a prototype system that generates distributed language

based programming environments for \'.-\.X II, 730s connected by a 10~(bit 

ethernet. This system employs the simple strategy outlined in section 6,1 

above. which assumes a reliable network .. -\.s the ethernet employs message 

broadcast we saw no need to use point to point communication. and because 

the number of ,-\.PL; in th.: test system is \'ery small. the complexity of the 

algorithm does not pose a practical problem at this stage. We are currentl:; 

implementing a new system as an extension of t~e Cornell Synthesizer Gen

erator : 16:, primarily to take ad·.antage of their user interface. Our new 

system is designed to test algorithms for dist~ibuted anr:oute propagation 

and strategies for re-establishmer.t of consis~enc:; of attribu~e in:'or:r~ation 

under the conditions of an un,eli.:.ble network. b"uture de\·dopmenr. work is 

focusing on trying on optimizations of the basic algorithm to obtain better 

complexity results, 

9 Conclusions 

\\'e discussed a programming environrr.ent where programmers and modules 

are distr.ibuted on a variety of machines and the system propagates change 

information among the modules as they are altered. We presented our solu

tions to the problems of making the system highly available and reliable in the 

face of unreliable machines and an unreliable network linking the machines, 

We employed several complementary attacks: 

• By having fully decentrah::ed control. any editor can operate indepen

dently of any other, regardless of the state of the netv·:ork or the state 

of other machines on the network .. -\lso, no "coordinator" is needed to 

ensure reestablishment of consistency, 

• By replicating attribute in/ormation \\'e h d h ave rna e t e system highly 
GL'ailable in that any editor can alwa,'"" t th 

,~ge e most recent tlOssible 
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values of attributes from remote modules . 

• By introducing a provably correct attribute consistency re-establl.;hment 

algorz"thm. the system is guaranteed to restabilize itself after machine 

and network failures by providing each APL with the most recent pos

sible attribute information. 

Our algorithm is very general and widely applicable in that it makes no 

assumptions about network topology or size, but it does have rather high 

worst-case complexity. If a particular network topology and 'or size is gi\-en 

- as will often be the case in practice - then we can do much better than is 

implied by the worst case. 

Our research addresses the increasingly important issues of distributed 

programming environments. Programming environments. also known as soft

ware engineering em·ironments. are reaching a state of maturity where they 

are produced and used commercially. It is crucial in this context that so

lutions be found to the problems of high availability and reliability of these 

environments. 
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