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Abstract 

This technical report consists of three related papers in the area of management of source code 
changes for large software systems. Infuse: A Toolfor Automatically Managing and Coordinat­
ing Source Changes in Large Systems presents Infuse, a software engineering environment that 
automatically panitions the source code files to be changed in order to limit the complexity of 
change propagation and negotiation of conflicting changes. Workspaces and Experimental 
Databases: Automated Support for Cooperation Among Programmers describes Infuse in more 
detail, focusing on the interactions between Infuse and source code modification tools. Smarter 
Recompilation presents an algorithm that could be used by Infuse or other software engineering 
environments to reduce recompilation costs after source code changes. 
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Abstnc:t 

In current change management tools, the actual changes 
occur outside the tool. In contrast. Infuse concentrates on 
the actual change process and provides facilities for both 
managing and coordinating source changes. Infuse 
provides facilities for automatically structuring the 
cooperation among programmers. propagating changes, 
and determining the consistency of changes, and provides 
a basis for negotiating the resolution of conflicting 
changes and for iterating over a set of changes. 

1. Introduction 

A number of tools address the problems of managing 
changes to large software systems. Most such tools 
provide a framework in which programmers can reserve 
modules I for change and in which the changes 
themselves occur outside of the tool. Examples include 
SCCS [Rochkind 751. Cedar's System Modeller 
[Lampson 831, Darwin [Minsky 851 and DSEE [Leblang 
841. When a change is to be made to a module, a 
programmer reserves the module. obtains an official copy 
of the module. and then proceeds by making changes 
with an editor. The tool has no Iulowledge of the 
changes as they are being made, though in most cues it 
notices the differences between the two versions once the 
new version have been deposited back into the database 
maintained by the tool. The changes, as they are made 
in the editor. are outside tbe scope of tbe change 
management tool. 

In contrast, InflAst concentrates on the actual change 
process and provides facilities for both managing and 
coordanating source chanacs. The change process iuelf is 

We use the lerm 'modlllc' lytIOIIymoualy with 'aoun::c file', 
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supported within Infuse, not outside it. This enables 
Infuse to actively participate in the change process, 
assisting programmers by automating various aspects of 
the process, most notably cllangt propagation. Change 
propagation consists of detecting and notifying those 
modules affected by a change in another module. 
Inconsistencies detected in propagating changes can be 
removed in two different ways: by making funher 
explicit source changes (which of course bave their own 
extent and implications) and by automated repr0ces5ing 
such as recompilation and relinking (as required, for 
example. in the reordering of the fields in a record). 

Infuse is concerned witb assisting the programmer 
making source changes, not with automated reprocessing; 
tools already exist for restoring consistency by 
recompilation. For example, Make [Feldman 791 and 
similar tools deal with the problems of recompilation and 
relinking without having any knowledge of the actual 
source-level changes, except for the fact that cbanges 
have been made. However, Ticby's 'smart recompilation' 
[Tichy 861 deals nicely with syntactic dependencies, and 
provides a suitable basis for change propagation. We 
explain later how Infuse takes advantage of the 
dependency analysis component of smart recompilation. 

We first describe the problems that must be solved in 
order to automate the process of changing mUltiple pans 
of a large system, wbere tbe cbanges arc being made 
concurrently (j.e., simultaneously) by a number of 
programmers. Next, we outline our assumptions about 
the context of Infuse, including the model of syntactic 
interconnections that we usc as the context for explaining 
Infuse's facilities. 2 Then we present Infuse's facilities for 
automating tbe management and coordination of source 
cbanges and discuss iu tbree aspects: a bierarchy of 
experimental databases, a partitioning of the modules to 
be changed (and a merging back into tbe parent 
database), and notionJ of consistency witbin a database. 

2. Tb«: primary motivation for Infuse is to provide tbc clanlle 
mana lemellt com poncIIt for the IIlJCa pc Etlvirorunetlt [Perry 8 S b. 
86. and I7bl. lrucapc implclllCllu the acmantic intCfconnection 
model in addition to the lyntactiC modcl and iJ Ibw able to 
provlde morc oamprebmsivc cocuutellC)l cbec:ltinl and clanle 
PfOPelition than wc dacribc here. We restrict ounelvcs hcre 10 
tbe lynllctiC model for rc&JOlIJ or limplifyinl tbe disctwion; tbe 
r ramewor k iJ Idcn tica I III both CUCI. 



2. Problems of Coordinating Clwages 

The problems of making source changes in large. multi­
programmer systems are different from those of single­
programmer systems. In the latter. it is relatively easy to 
detect the modules affected by either single or multiple 
changes and restore consistency. Changes to large 
systems. on the other hand. have led to a wide variety of 
horror stories due to incomplete andlor inconsistent 
changes {Perry 85a. 87al. 

The following are the basic problems in managing and 
coordinating source changes in software systems: 

• Dtlermi1ling the implications and extent of changes. 
In spite of the effective use of techniques such as 
information hiding to localize the effects of change. 
changes often have effects beyond these limiting 
boundaries. For example. a seemingly simple change 
can easily cascade in complex and unpredictable 
ways. There are two factors in considering these 
effects: the extent of the change and the implications 
of the change. The extent of a change is determined 
by the number of modules that are affected while the 
implications of a change are determined by what is 
necessary to restore consistency to the system. Both 
the implications and the extent of changes become 
more complex in the presence of multiple. concurrent 
changes. The problem of cascading changes is thus 
further compounded. 

• Handling temporary inconsislencies during changes. 
The problem of temporary inconsistencies is readily 
apparent in multiple. concurrent changes. but can 
arise due to single changes. since these can cascade. 
This problem is of particular importance when 
determining the effects of change either incrementallv 
on the entire system or entirely on only part of th~ 
system. 

• Negotiating the resolUlion of conflicting changes. 
The issue of change n.egotiation arises when 
independent changes lead to a conRict (that is. tbey 
are inconsistent with each other>. When a conRict 
occurs. a forum is required in which to negotiate the 
solution to the inconsistencies. The usual form of this 
forum is managerial. i.e.. determined entirely by 
humans without automated assistance. 

• Merging multiple cltanges i1lto tlte haselin.e system. 
Once negotiations have resolved conRicu and the 
changes have been made. tben the changed modules 
must be merged back into tbe system. This may be 
done incrementally (tbat is, in planned stages) or it 
may be done haphazardly. for example. merging all 
the changed modules at once. Control of this 
merging process is UJually manaserial. 

• Supporting tlte ittrali..,e process of ma/cing furtlter 
changes in response to changes i1l otlter modules. As 
a result of inconsistencies and the subsequent cbange 
negotiation. iterations of cbanges occur. Some 
changes remain. others are undone, otbers are redone. 
and new changes are introduced. The result is that 
there are iterations in the modification cycle. Each 
iteration has its own set of required changes. 
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complete with their respective cascade of changes. 
that leads to the next iteration of changes. thereb~ 
causing a yo-yo effect. 

2. J Our Assumptions 

We make four assumptions. which allow us to 
concentrate solely on the problems of automating the 
management and coordination of source changes. 

• The initial set of modules to be changed has already 
been determined - for example. by an analyst. 

• We have available some form of version and 
configuration control system (such as ReS {Tichy 851 
or Gandalfs SVCE (Habermann 81. Kaiser 83» that 
is used to determine the exact versions that comprise 
system. 

• There exists a base system (which. for example. 
might be the previously released system) from which 
we evolve the new system. 

• The syntactic objects of the programming language 
(procedures. types. variables. etc.) are used as the 
unit of interconnection and dependency {Perry 86cl. 
This model is exemplified by cross-reference listi!lgs 
ITeitelman 811 that can be generated as a side-effect 
of compilation. 

3. (hc"ic" of Infuse 

Infuse provides three main facilities for managing and 
coordinating source changes in a large system: a 
hierarchy of experimental databases; a means of 
automatically partitioning the modules to be changed 
into experimental databases and of merging the changed 
modules back into the parent database; and some notions 
of consistency within an experimental database. 

An experimental database is a virtual copy of the 
software system that permits a programmer or a group of 
programmers to make changes to reserved modules in 
isolation from the rest of the software tearr 
Experimental databases provide the foundation fe' 
iteration and the forum for negotiation. By partitioninb 
the modules into separate experimental databases 
recursively. we bound the determination of the 
implications and eUent of changes. It is within an 
experimental database that we resolve the problems of 
inconsistencies among those modules before merging) the 
components back into the parent database where the 
problems of implication. extent and inconsistency are 
then addressed for the parent experimental database with 
respect to its own parent. 

We use the following small example (Figure 1) to 
illustrate the various parts of the discussion below. The 
arrows indicate the direction of the dependencies <i.e .• 

1. We UK wu,,~ .. itb respect to modules. tbat is. mergin, modules 
Into an experimenlll dallbuc. We do not mean "''',~ in the 
ICIUC of merlin, ICVcral venions of lbe same module Into a 
Iln,le venion (1$ is pauible In. for example. Cedar and RCS) 



who imports from whom). A and B, G and Hare 
strongly connected - that is, they depend upon each 
other. E and F depend on D, D and H depend on C, C 
depends on A, B depends on E, and G depends on F. 

Figure I 

Given this set of modules to be changed, Infuse behaves 
as follows. It partitions the set recursively into the set of 
hierarchical experimental databases. The leaves of the 
tree are singleton experimental databases, which contain 
a single module; all editing is done in singleton databases 
and then the databases are deposited into their parent 
database. When all the children databases have been 
deposited into their parent database, Infuse propagates 
the changes to the appropriate modules in that database 
and reports local inconsistencies to the responsible 
programmers. Conflicting changes, if they exist, are 
resolved by negotiation among those responsible for the 
changes and then Infuse repartitions the database 
recursively to the level of singleton databases to assist 
the programmers in making the agreed upon changes. 
When all the conflicts and local inconsistencies have been 
resolved, Infuse deposits this database into its parent 
experimental database. This process continues until all 
inconsistenCies have been resolved and the top-level 
experimental database has been deposited back into the 
baseline system. 

[n addition to the baSIC facilities discussed below, Infuse 
also provides workspaces and simulation of change 
propagation [Kaiser 861. Workspaces are a 
complementary facility to experimental databases and 
support Immediate consistency checks with user-selected 
modules, independent of the hierarchical partitions. The 
simulation mechanism permits a programmer to 
determine the full extent and implications of a proposed 
change without actually committing the change. 

4, Hierarchy of ExptrilDtlltai DltabaJes 

The notion of an experimental database was introduced 
in Smile [Krueger 85, Notkin 851. We extend this notion 
to that of a IriU4TClty of experimental databucs, where 
each database is subdivided automatically during 
partitioning into subcomponents. These subgroups then 
form the next level in the hierarchy. At the luves of the 
tree are singleton experimental databucs where tbe 
actual changes to the modules take place. 

An experimental database is distinguished from the main 
database, or baseline system, in the following ways. A 
main database is guaranteed to contain source files that 
are consistent with each other whereas this need not be 
true for an experimental database. In an experimental 
database. the units within the database are self-consistent 

even if they are not consistent with each other. 4 At some 
point. however, the subcomponents become consistent 
with each other, that is, the database as a whole becomes 
self-consistent. Only when an experimental database is 
self-consistent will Infuse deposit it back into the parent 
database. Basically, then, a main database represents a 
stable, consistent system while an experimental database 
represents an unstable, changing part of a system. 

The principal reasons for the hierarchy are to provide 

• a structure for enforced cooperation among the 
various programmers responsible for making changes 
to a system, and 

• a means for managing iterations inherent in the 
change process. 

As a result of decomposing the set of modules into a 
hierarchy of experimental databases, we minimize the 
cost of consistency checking (by bounding the amount of 
checking), limit the extent of change propagation, and 
restrict the number of potential conflicts to be negotiated. 

S. PartitioninglMerging 

When sets of changes are made to large systems. the 
changes to individual modules are typically done in 
isolation and then the modules are merged together in 
some fashion (as. for example. in SCCS). In contrast. 
Infuse partitions the set of modules into subsets in order 
to provide a basis for the merging operation and to limit 
the amount of interaction that must be coped with at one 
time. The hierarchy of partitions limits the problems of 
determining the implications and extent of changes and 
provides a useful scoping mechanism for propagating the 
changes being made. DSEE has the notion of tasks and 
subtasks that might be used as the basis for partitioning 
the database. However. this is primarily a managerial 
approach in the form of taslclists in which tasks are 
completed and checked off: it does not address the 
technical problems that we solve with Infuse. 

The partitioning algorithm is particularly important 
because of the costs involved in providing consistency 
checking and change propagation. These are the primary 
costs: secondary costs include the cost of creating and 
merging experimental databases. 

Determining how to partition the modules into the 
appropriate subsets is a problem because we do not have 
available the optimal oracle: which pieces will change 
and how. We may be able to get a reasonably close 
approximation to the optimal oracle in the initial 
building of the top-level experimental database by 
simulating a change propagation to modules transitively 
affected by the proposed changes. By having a 
programmer indicate the specific procedures. types. etc. 

4. We make an Clception ror linlle10n experimental databases: at 
any liven point in tbe cianlc prOCCSl. the linaieton database 
may be internally inconsistent; bowever. it must bcalme selr· 
consiltent berore Inrusc will dCpoIit it into il$ parent database. 



that will change and then automatically determining the 
(initial) implications of these changes, we can get a 
bener idea oj the interconnections that will be most 
likely to change. However, this fine grain of change 
indication may not be possible, either because it is not 
vet known or because it is too fine a level of detail to ask 
~f the programmers prior to actually making the 
changes. 

Instead. Infuse uses information that it can derive 
automatically from the structure of the system. We have 
chosen to use the strength oj the dependency 
interconnections as the basis of partitioning. However. 
these interconnections give only an approximation of the 
possible effects of the actual changes; it could well be the 
case that the changes are between weakly interconnected 
pieces of the system rather than the heavily 
interconnected ones. 

Given the costs of creating experimental databases. 
checking consistency. and propagating changes. there is a 
higher cost oj finding inconsistencies at the upper levels 
of the hierarchy and a lower cost of finding them near 
the leaves. Therefore. the heaviest interconnections 
should be near the leaves. so that the changes with the 
most per.·asive implications are considered earlier rather 
than later in the change cycle. Conversely. the number 
of potential inconsistencies - that is. the number of 
external interconnections between the partitions of a 
database - should be fewer in each succeeding upper 
layer. 

There are certain kinds of interconnections that need to 
be filtered out of the interconnection structure used for 
the partitioning of the system. For example. the 
canonical module that is included by everything in the 
system serves only to provide an extra layer In the 
hierarchy and provides no useful information for 
partitioning the system; it is also the exception that 
proves the rule - there is no way to partition the system 
and sull have thiS heav) a connection near the bottom of 
the hierarchy. 

One further note on partitioning considerations: the 
interconnection structure changes with each iteration in 
the process of change. What was initially the 
dependency structure IS modified by the changes and a 
new structure is created which must be used in the next 
cycle of partitioning (when changes conflict and must be 
resolved). We .... ould also like to weight most heavily 
those dependencies actually involved in the 
inconSistencies detected in the previous iteration. 

51 POSSIble PaT/ilio"i", Algorilhms 

Our partitioning problem is similar to graph pOT/itio"i"g. 
.... here the edges in the graph are directed and weighted. 
Each module to be changed is represented by a vertex in 
the graph. A syntactic object defined in one module and 
used In another is represented by a directed edge leaving 
the vertex representing the first module and entering the 
vertell for the second. I f the second module references 
several syntactic objects defined by the first. the edge is 
weighted by the number of such dependencies. 
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L' nfortuna tely. graph partitioning is intractable [Gare~ 
79 J. Therefore. we need an algorithm that opproximares 
the correct partitioning. Because partitioning lasts only 
until a set of changes are resolved and is repeated for 
every set of changes. it is very important that the 
algorithm be fast. ~oreover. as perfect graph 
partitioning is only an approximation to our oracle 
anyway. it is relatively less important that the 
partitioning algorithm be very close to correct in all 
cases. 

Our partitioning problem has a number of characteristics 
in common .... ith VLSI layout problems. We have 
investigated various graph partitioning algorithm~ 

[Kirkpatrick 83. Heller 82) applied in VLSI to see how 
they can be adapted to our problem of partitioning and 
distributing the cost of managing the change process. 
The Kernighan-Lin method [Kernighan 70. Dunlop 85) 
seems closest. but it unfortunately produces an ~-ary 
partition at each level of the hierarchy. where S must be 
chosen in advance and cannot be automatically tailored 
to the graph under consideration. 

We are currently working on improvements to the 
Kernighan-Lin method that adapt it to our situation. In 
the meantime. we have found several optimizations that 
can be applied to any graph partitioning algorithm to 
reduce the amount of work and to improve the results of 
the algorithm. 

• Remove all edges with weight less than K I. The 
purpose of this strategy is to set a noise threshold -
that is. to remove all the interconnections that are 
insignificant in order to reduce the amount of I!.ork to 
be done in the rest of the algorithm. This improves 
the chances of finding natural partitions. An intuitive 
refinement is to reduce K I by half at each level of 
recursion. 

• Remove from the graph all nodes whose number of 
edges is greater than K2. This step takes care of the 
situation where a module is too pervasive. 

Eltperimentation is needed to determine strategies for 
finding appropriate values for KI and K2. We would 
like to tune these values to the particular system under 
consideration. automatically adapting as the intermodule 
connections change. One allTactive possibility is to plot 
the nodes of the graph according to the weight of the 
edges and choose K I as the dividing point where the 
number of edges are less than K3 standard deviations 
below the norm and K2 as the point K4 standard 
deviations above the norm. The plot can be 
incrementally updated after each change to the 
interconnection structure. An intuitive value for both K3 
and K4 is two standard deviations . 

5.1 Example 

Consider the small system composed of modules A 
through H as shown in Figure I. Figure 2 illustrates 
how the dependencies between D. E and F might appear 
in an Ada-like source fragment. 

-.-------------



Figure 2 

willi C; _ C; 
,.ckq~ 0 II 

proc:ahn X ( ... ); 
JI'oadIln Y ( . . . ); 

eod 0; 

witll 0;_ 0; 
PfOCedveEis 

xc. J; 

YC. J; 

eod E; 

willi 0; _ 0; 

procecll1n F is 

Y<.. J; 

e.d F; 

Note that procedure E uses two procedures from package 
D while procedure F uses only one procedure. 

Figure 3 

2A , ~ 
Because there is a stronger dependency relationship 
between units D and E than there is between D and F. D 
and E are partitioned together. Figure 4 depicts the 
portion of the hierarchical experimental database 
structure that results from the dependency graph 
depicted in Figure 3. 

Figure 4 

6. ComiJttoc:y 

Ensunng the consistency of changes where multiple 
programmers are concurrently changing many modules is 
a very difficult problem because of the complexity of the 
interactions among the modules. We use tbe hierarcbical 
experimental databases to bound the complexity and tbe 
number of interactions: Infuse determines that a subset 
of components is self-a>nsistent before it allows tbe 
merging of these components back into the parent 
database. 
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Figure 5 

In Figure 5, components D. E and F bave each been 
changed and deposited back into the parent database. 
Infuse then checks for consistency: the changes in E and 
F are checked against the changes in D to determine 
whether they are self-consistent. When they are 
consistent. D, E and F are deposited into the parent 
database and Infuse checks the consistency of D and C. 
Similarly. Infuse propagates changes between A and B 
and between G and H. Once the databases at the second 
level are consistent, they are deposited into the database 
at the top level. Infuse then performs consistency 
checking for the changes that it did not propagate at the 
lower levels (between A and C; Band E; C and H: and 
G and F). At each level. if the consistency analysis fails. 
then that database is repartitioned on the basis of the 
inconsistent components and the appropriate changes are 
negotiated and made. Similarly. when the top-level 
database is deposited into the base system, Infuse checks 
the consistency of the changed modules against the base 
system and a new iteration of changes may be generated 
to restore consistency. 

Smile and SVCE support a similar notion of consistency 
but require that a module be consistent before allowing 
its deposit back into the database. Infuse differs from 
this approach in that it does not require consistency at 
this point. Instead, Infuse treats each experimental 
database as a forum for determining consistency once all 
the components in that database have been changed and 
deposited. 

Because Infuse localizes the determination of consistency 
within an experimental database, it limits the scope of 
handling the problem of temporary inconsistencies to the 
local experimental database. All Infuse requires is that 
the modules within a database be consistent with each 
other. and not with the rest of the system. This 
approach requires a concept of local consistency. PIC 
[Wolf 85) defines a notion of conditional consisttncy that 
allows partial consistency that is based on the 
incompleteness (specified by an incompleteness construct) 
of the parts that cannot be shown to be inconsistent. 
This is not quite the notion that we need here - there is 
no incompleteness in the sense of PIC, rather there are 
inconsistencies that Infuse ignores because they come 
from modules outside the local database. 

The fundamental problem in determining the local 
consistency of changes is that of determining the 
implications of changes. deletions, additions and 
rearrangements of the units of interconnections. Our 
strategy is to ignore undefined objects (except when 
restoring consistency with the base-line system) and 
check tbe consistency only of those objects that are both 



defined and used within the modules being checked. One 
obvious refinement to this scheme is to check the 
consistency of only those objects that have not been 
previously checked - e.g .• at the next lower level in the 
hierarchy. 

Tichy's smart recompilation and Lint (johnson 781 
provide consistency checking at the level of module 
interfaces and could be modified to provide local 
consistency checking in a form appropriate for Infuse. 
For example. an appropriately structured symbol table 
could provide much of the information needed for local 
consistency checking. In this symbol table, the static 
semantic analyzer would flag definitions that have 
changed, keep track of deletions. note additions and flag 
rearrangements. 

7. Conclusions 

The contributions of our research are 

• hierarchical experimental databases. 

• grouping modules together in an experimental 
database according to the strengths of 
interdependencies. 

• the notion of local consistency within the context of 
an experimental database, 

• experimental databases as the forum for negotiating 
changes in the process of resolving inconsistencies, 
and 

• experimental databases as the basis for iterating over 
a set of changes. 

We are implementing Infuse as an extension of Smile, 
which already supports a single level of experimental 
databases. The advantage of building from Smile is we 
retain all its facilities. including its interfaces to 
programming tools and its mechanisms for locking 
databases and reccvering after system failures. We are 
usang a variant of Tichy's smart reccmpilation algorithm 
to support change propagation.~ The main modification is 
ignoring references to symbols not defined within the 
current experimental database. 
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depend on postconditions provided by the 
implementations of both E and F; E uses only two of the 
combined postconditions supplied by X and Y while F 
uses all three of the postconditions supplied by Y. Hence 
the stronger connection is between D and F rather than 
between D and E. 

Figure B 
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Because of the stronger connectivity between D and F. 
they are partitioned together as the illustration of the 
hierarchical experimental databases for this model shows 
in Figure C. ~ote that the partitioning is different from 
the syntactic example because of the differences in the 
interconnection structure. 

Figure C 
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Appendix - An Example of Semantic-Based Partitioning 

In Figure A we present the ·interface specifications as 
they might occur in an Inscape·like environment for an 
Ada-like language. In addition to the syntactic objects 
that are defined in the interface specifications. we have 
the behavioral descriptions of the various components in 
the form of preconditions (predicates that must be true 
before execution - that is. assumptions that must be 
satisfied), postconditions (predicates that are guaranteed 
to be true afterwards - that is. descriptions of results 
and side-effects), and obligations (predicates that must 
eventually be satisfied - see [Perry 87b)). The keyword 
sats is an abbreviation for satisfies and sat by is an 
abbreviation for is satisfied by. (~ote that the lists 
< ... > denote statement labels. most of which are elided 
for the sake of brevity') Preconditions and obligations 
are satisfied by postconditions; postconditions may satisfy 
both obligations and preconditions. The predicates. then. 
are the points of interconnection between components In 

the semantic model. 

Figure A 

";tb C; use C; 
,.eule D ill 

procedure X ( . . , l; 
POSI: bL') 
Obi: eLl 

procedure Y ( . . .> 
P,t: dL'> 
POSI. eLl. eL.l. fL.l 

etId D; 

"ilb D; 11M D; 
~ocHure E ill 

<5> XC,.); 
POSI: bL') sou < 11 > 
Obi: eLl sal by <8> 

<8> YC,.l; 

_E; 

P,t,· dL.l Sal by < 2> 
POSI' eL.l sou < 5 > 

eLl. rL.l salS < > 

'"~ D;_ D; 
lIfO«dure F ill 

<,,> YC .l; 

etId F; 

P,t: dLl Sal by < 3> 
Post: eLl. eLl SOlS <5> 

rL.l sou < 10> 

Figure B illustrates the dependency graph for the above: 
system fragment. Note that there are two-way 
dependencies (actually there is also a dependency within 
D that is not shown here: the postcondition c of Y 
satisfies the obligation c of X): the operations in D each 


