
Change Management Support for
Large Software Systems

Gail E. Kaiser
Dewayne E. Perry·

Robert \V. Schwanke+

October 1986
(revised May 1988)

CUCS-224-86

Abstract

This technical report consists of three related papers in the area of management of source code
changes for large software systems. Infuse: A Toolfor Automatically Managing and Coordinat­
ing Source Changes in Large Systems presents Infuse, a software engineering environment that
automatically panitions the source code files to be changed in order to limit the complexity of
change propagation and negotiation of conflicting changes. Workspaces and Experimental
Databases: Automated Support for Cooperation Among Programmers describes Infuse in more
detail, focusing on the interactions between Infuse and source code modification tools. Smarter
Recompilation presents an algorithm that could be used by Infuse or other software engineering
environments to reduce recompilation costs after source code changes.

Part of this research was conducted while Dr. Kaiser was a Visiting Computer Scientist at the
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA. *Dr. Perry's ad­
dress is AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974. +Or.
Schwanke's address is Siemens Research and Technology Laboratories, 105 College Road East,
Princeton, NJ 08540.

Infuse: A Tool for Automatically Managing
and Coordinating Source Changes in Large Systems

Dewayne E. Perry
AT & T Bell La bora tories
\1urray Hill, NJ 07974

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

Abstnc:t

In current change management tools, the actual changes
occur outside the tool. In contrast. Infuse concentrates on
the actual change process and provides facilities for both
managing and coordinating source changes. Infuse
provides facilities for automatically structuring the
cooperation among programmers. propagating changes,
and determining the consistency of changes, and provides
a basis for negotiating the resolution of conflicting
changes and for iterating over a set of changes.

1. Introduction

A number of tools address the problems of managing
changes to large software systems. Most such tools
provide a framework in which programmers can reserve
modules I for change and in which the changes
themselves occur outside of the tool. Examples include
SCCS [Rochkind 751. Cedar's System Modeller
[Lampson 831, Darwin [Minsky 851 and DSEE [Leblang
841. When a change is to be made to a module, a
programmer reserves the module. obtains an official copy
of the module. and then proceeds by making changes
with an editor. The tool has no Iulowledge of the
changes as they are being made, though in most cues it
notices the differences between the two versions once the
new version have been deposited back into the database
maintained by the tool. The changes, as they are made
in the editor. are outside tbe scope of tbe change
management tool.

In contrast, InflAst concentrates on the actual change
process and provides facilities for both managing and
coordanating source chanacs. The change process iuelf is

We use the lerm 'modlllc' lytIOIIymoualy with 'aoun::c file',

Permission to co~y without f~ all or part of this malC~nal is ,ranted
pro\'lded that the COPies are not made or distributed for direcl
commercial advantage, the ACM copyri,ht notice and the title of
the pubhC<ltlon and Its date appear. and notice IS lillcn that copyrnl
IS by permission of the ASSOCiation for Computing Machinery. To
copy otherWise. or to republish. requires a r~ and/or spccfic
permIssIon.

© 1987 AC~ ~89791·218-7/87/0002.Q292 7S¢
292

supported within Infuse, not outside it. This enables
Infuse to actively participate in the change process,
assisting programmers by automating various aspects of
the process, most notably cllangt propagation. Change
propagation consists of detecting and notifying those
modules affected by a change in another module.
Inconsistencies detected in propagating changes can be
removed in two different ways: by making funher
explicit source changes (which of course bave their own
extent and implications) and by automated repr0ces5ing
such as recompilation and relinking (as required, for
example. in the reordering of the fields in a record).

Infuse is concerned witb assisting the programmer
making source changes, not with automated reprocessing;
tools already exist for restoring consistency by
recompilation. For example, Make [Feldman 791 and
similar tools deal with the problems of recompilation and
relinking without having any knowledge of the actual
source-level changes, except for the fact that cbanges
have been made. However, Ticby's 'smart recompilation'
[Tichy 861 deals nicely with syntactic dependencies, and
provides a suitable basis for change propagation. We
explain later how Infuse takes advantage of the
dependency analysis component of smart recompilation.

We first describe the problems that must be solved in
order to automate the process of changing mUltiple pans
of a large system, wbere tbe cbanges arc being made
concurrently (j.e., simultaneously) by a number of
programmers. Next, we outline our assumptions about
the context of Infuse, including the model of syntactic
interconnections that we usc as the context for explaining
Infuse's facilities. 2 Then we present Infuse's facilities for
automating tbe management and coordination of source
cbanges and discuss iu tbree aspects: a bierarchy of
experimental databases, a partitioning of the modules to
be changed (and a merging back into tbe parent
database), and notionJ of consistency witbin a database.

2. Tb«: primary motivation for Infuse is to provide tbc clanlle
mana lemellt com poncIIt for the IIlJCa pc Etlvirorunetlt [Perry 8 S b.
86. and I7bl. lrucapc implclllCllu the acmantic intCfconnection
model in addition to the lyntactiC modcl and iJ Ibw able to
provlde morc oamprebmsivc cocuutellC)l cbec:ltinl and clanle
PfOPelition than wc dacribc here. We restrict ounelvcs hcre 10
tbe lynllctiC model for rc&JOlIJ or limplifyinl tbe disctwion; tbe
r ramewor k iJ Idcn tica I III both CUCI.

2. Problems of Coordinating Clwages

The problems of making source changes in large. multi­
programmer systems are different from those of single­
programmer systems. In the latter. it is relatively easy to
detect the modules affected by either single or multiple
changes and restore consistency. Changes to large
systems. on the other hand. have led to a wide variety of
horror stories due to incomplete andlor inconsistent
changes {Perry 85a. 87al.

The following are the basic problems in managing and
coordinating source changes in software systems:

• Dtlermi1ling the implications and extent of changes.
In spite of the effective use of techniques such as
information hiding to localize the effects of change.
changes often have effects beyond these limiting
boundaries. For example. a seemingly simple change
can easily cascade in complex and unpredictable
ways. There are two factors in considering these
effects: the extent of the change and the implications
of the change. The extent of a change is determined
by the number of modules that are affected while the
implications of a change are determined by what is
necessary to restore consistency to the system. Both
the implications and the extent of changes become
more complex in the presence of multiple. concurrent
changes. The problem of cascading changes is thus
further compounded.

• Handling temporary inconsislencies during changes.
The problem of temporary inconsistencies is readily
apparent in multiple. concurrent changes. but can
arise due to single changes. since these can cascade.
This problem is of particular importance when
determining the effects of change either incrementallv
on the entire system or entirely on only part of th~
system.

• Negotiating the resolUlion of conflicting changes.
The issue of change n.egotiation arises when
independent changes lead to a conRict (that is. tbey
are inconsistent with each other>. When a conRict
occurs. a forum is required in which to negotiate the
solution to the inconsistencies. The usual form of this
forum is managerial. i.e.. determined entirely by
humans without automated assistance.

• Merging multiple cltanges i1lto tlte haselin.e system.
Once negotiations have resolved conRicu and the
changes have been made. tben the changed modules
must be merged back into tbe system. This may be
done incrementally (tbat is, in planned stages) or it
may be done haphazardly. for example. merging all
the changed modules at once. Control of this
merging process is UJually manaserial.

• Supporting tlte ittrali..,e process of ma/cing furtlter
changes in response to changes i1l otlter modules. As
a result of inconsistencies and the subsequent cbange
negotiation. iterations of cbanges occur. Some
changes remain. others are undone, otbers are redone.
and new changes are introduced. The result is that
there are iterations in the modification cycle. Each
iteration has its own set of required changes.

293

complete with their respective cascade of changes.
that leads to the next iteration of changes. thereb~
causing a yo-yo effect.

2. J Our Assumptions

We make four assumptions. which allow us to
concentrate solely on the problems of automating the
management and coordination of source changes.

• The initial set of modules to be changed has already
been determined - for example. by an analyst.

• We have available some form of version and
configuration control system (such as ReS {Tichy 851
or Gandalfs SVCE (Habermann 81. Kaiser 83» that
is used to determine the exact versions that comprise
system.

• There exists a base system (which. for example.
might be the previously released system) from which
we evolve the new system.

• The syntactic objects of the programming language
(procedures. types. variables. etc.) are used as the
unit of interconnection and dependency {Perry 86cl.
This model is exemplified by cross-reference listi!lgs
ITeitelman 811 that can be generated as a side-effect
of compilation.

3. (hc"ic" of Infuse

Infuse provides three main facilities for managing and
coordinating source changes in a large system: a
hierarchy of experimental databases; a means of
automatically partitioning the modules to be changed
into experimental databases and of merging the changed
modules back into the parent database; and some notions
of consistency within an experimental database.

An experimental database is a virtual copy of the
software system that permits a programmer or a group of
programmers to make changes to reserved modules in
isolation from the rest of the software tearr
Experimental databases provide the foundation fe'
iteration and the forum for negotiation. By partitioninb
the modules into separate experimental databases
recursively. we bound the determination of the
implications and eUent of changes. It is within an
experimental database that we resolve the problems of
inconsistencies among those modules before merging) the
components back into the parent database where the
problems of implication. extent and inconsistency are
then addressed for the parent experimental database with
respect to its own parent.

We use the following small example (Figure 1) to
illustrate the various parts of the discussion below. The
arrows indicate the direction of the dependencies <i.e .•

1. We UK wu,,~ .. itb respect to modules. tbat is. mergin, modules
Into an experimenlll dallbuc. We do not mean "''',~ in the
ICIUC of merlin, ICVcral venions of lbe same module Into a
Iln,le venion (1$ is pauible In. for example. Cedar and RCS)

who imports from whom). A and B, G and Hare
strongly connected - that is, they depend upon each
other. E and F depend on D, D and H depend on C, C
depends on A, B depends on E, and G depends on F.

Figure I

Given this set of modules to be changed, Infuse behaves
as follows. It partitions the set recursively into the set of
hierarchical experimental databases. The leaves of the
tree are singleton experimental databases, which contain
a single module; all editing is done in singleton databases
and then the databases are deposited into their parent
database. When all the children databases have been
deposited into their parent database, Infuse propagates
the changes to the appropriate modules in that database
and reports local inconsistencies to the responsible
programmers. Conflicting changes, if they exist, are
resolved by negotiation among those responsible for the
changes and then Infuse repartitions the database
recursively to the level of singleton databases to assist
the programmers in making the agreed upon changes.
When all the conflicts and local inconsistencies have been
resolved, Infuse deposits this database into its parent
experimental database. This process continues until all
inconsistenCies have been resolved and the top-level
experimental database has been deposited back into the
baseline system.

[n addition to the baSIC facilities discussed below, Infuse
also provides workspaces and simulation of change
propagation [Kaiser 861. Workspaces are a
complementary facility to experimental databases and
support Immediate consistency checks with user-selected
modules, independent of the hierarchical partitions. The
simulation mechanism permits a programmer to
determine the full extent and implications of a proposed
change without actually committing the change.

4, Hierarchy of ExptrilDtlltai DltabaJes

The notion of an experimental database was introduced
in Smile [Krueger 85, Notkin 851. We extend this notion
to that of a IriU4TClty of experimental databucs, where
each database is subdivided automatically during
partitioning into subcomponents. These subgroups then
form the next level in the hierarchy. At the luves of the
tree are singleton experimental databucs where tbe
actual changes to the modules take place.

An experimental database is distinguished from the main
database, or baseline system, in the following ways. A
main database is guaranteed to contain source files that
are consistent with each other whereas this need not be
true for an experimental database. In an experimental
database. the units within the database are self-consistent

even if they are not consistent with each other. 4 At some
point. however, the subcomponents become consistent
with each other, that is, the database as a whole becomes
self-consistent. Only when an experimental database is
self-consistent will Infuse deposit it back into the parent
database. Basically, then, a main database represents a
stable, consistent system while an experimental database
represents an unstable, changing part of a system.

The principal reasons for the hierarchy are to provide

• a structure for enforced cooperation among the
various programmers responsible for making changes
to a system, and

• a means for managing iterations inherent in the
change process.

As a result of decomposing the set of modules into a
hierarchy of experimental databases, we minimize the
cost of consistency checking (by bounding the amount of
checking), limit the extent of change propagation, and
restrict the number of potential conflicts to be negotiated.

S. PartitioninglMerging

When sets of changes are made to large systems. the
changes to individual modules are typically done in
isolation and then the modules are merged together in
some fashion (as. for example. in SCCS). In contrast.
Infuse partitions the set of modules into subsets in order
to provide a basis for the merging operation and to limit
the amount of interaction that must be coped with at one
time. The hierarchy of partitions limits the problems of
determining the implications and extent of changes and
provides a useful scoping mechanism for propagating the
changes being made. DSEE has the notion of tasks and
subtasks that might be used as the basis for partitioning
the database. However. this is primarily a managerial
approach in the form of taslclists in which tasks are
completed and checked off: it does not address the
technical problems that we solve with Infuse.

The partitioning algorithm is particularly important
because of the costs involved in providing consistency
checking and change propagation. These are the primary
costs: secondary costs include the cost of creating and
merging experimental databases.

Determining how to partition the modules into the
appropriate subsets is a problem because we do not have
available the optimal oracle: which pieces will change
and how. We may be able to get a reasonably close
approximation to the optimal oracle in the initial
building of the top-level experimental database by
simulating a change propagation to modules transitively
affected by the proposed changes. By having a
programmer indicate the specific procedures. types. etc.

4. We make an Clception ror linlle10n experimental databases: at
any liven point in tbe cianlc prOCCSl. the linaieton database
may be internally inconsistent; bowever. it must bcalme selr·
consiltent berore Inrusc will dCpoIit it into il$ parent database.

that will change and then automatically determining the
(initial) implications of these changes, we can get a
bener idea oj the interconnections that will be most
likely to change. However, this fine grain of change
indication may not be possible, either because it is not
vet known or because it is too fine a level of detail to ask
~f the programmers prior to actually making the
changes.

Instead. Infuse uses information that it can derive
automatically from the structure of the system. We have
chosen to use the strength oj the dependency
interconnections as the basis of partitioning. However.
these interconnections give only an approximation of the
possible effects of the actual changes; it could well be the
case that the changes are between weakly interconnected
pieces of the system rather than the heavily
interconnected ones.

Given the costs of creating experimental databases.
checking consistency. and propagating changes. there is a
higher cost oj finding inconsistencies at the upper levels
of the hierarchy and a lower cost of finding them near
the leaves. Therefore. the heaviest interconnections
should be near the leaves. so that the changes with the
most per.·asive implications are considered earlier rather
than later in the change cycle. Conversely. the number
of potential inconsistencies - that is. the number of
external interconnections between the partitions of a
database - should be fewer in each succeeding upper
layer.

There are certain kinds of interconnections that need to
be filtered out of the interconnection structure used for
the partitioning of the system. For example. the
canonical module that is included by everything in the
system serves only to provide an extra layer In the
hierarchy and provides no useful information for
partitioning the system; it is also the exception that
proves the rule - there is no way to partition the system
and sull have thiS heav) a connection near the bottom of
the hierarchy.

One further note on partitioning considerations: the
interconnection structure changes with each iteration in
the process of change. What was initially the
dependency structure IS modified by the changes and a
new structure is created which must be used in the next
cycle of partitioning (when changes conflict and must be
resolved). We ould also like to weight most heavily
those dependencies actually involved in the
inconSistencies detected in the previous iteration.

51 POSSIble PaT/ilio"i", Algorilhms

Our partitioning problem is similar to graph pOT/itio"i"g.
.... here the edges in the graph are directed and weighted.
Each module to be changed is represented by a vertex in
the graph. A syntactic object defined in one module and
used In another is represented by a directed edge leaving
the vertex representing the first module and entering the
vertell for the second. I f the second module references
several syntactic objects defined by the first. the edge is
weighted by the number of such dependencies.

29S

L' nfortuna tely. graph partitioning is intractable [Gare~
79 J. Therefore. we need an algorithm that opproximares
the correct partitioning. Because partitioning lasts only
until a set of changes are resolved and is repeated for
every set of changes. it is very important that the
algorithm be fast. ~oreover. as perfect graph
partitioning is only an approximation to our oracle
anyway. it is relatively less important that the
partitioning algorithm be very close to correct in all
cases.

Our partitioning problem has a number of characteristics
in common ith VLSI layout problems. We have
investigated various graph partitioning algorithm~

[Kirkpatrick 83. Heller 82) applied in VLSI to see how
they can be adapted to our problem of partitioning and
distributing the cost of managing the change process.
The Kernighan-Lin method [Kernighan 70. Dunlop 85)
seems closest. but it unfortunately produces an ~-ary
partition at each level of the hierarchy. where S must be
chosen in advance and cannot be automatically tailored
to the graph under consideration.

We are currently working on improvements to the
Kernighan-Lin method that adapt it to our situation. In
the meantime. we have found several optimizations that
can be applied to any graph partitioning algorithm to
reduce the amount of work and to improve the results of
the algorithm.

• Remove all edges with weight less than K I. The
purpose of this strategy is to set a noise threshold -
that is. to remove all the interconnections that are
insignificant in order to reduce the amount of I!.ork to
be done in the rest of the algorithm. This improves
the chances of finding natural partitions. An intuitive
refinement is to reduce K I by half at each level of
recursion.

• Remove from the graph all nodes whose number of
edges is greater than K2. This step takes care of the
situation where a module is too pervasive.

Eltperimentation is needed to determine strategies for
finding appropriate values for KI and K2. We would
like to tune these values to the particular system under
consideration. automatically adapting as the intermodule
connections change. One allTactive possibility is to plot
the nodes of the graph according to the weight of the
edges and choose K I as the dividing point where the
number of edges are less than K3 standard deviations
below the norm and K2 as the point K4 standard
deviations above the norm. The plot can be
incrementally updated after each change to the
interconnection structure. An intuitive value for both K3
and K4 is two standard deviations .

5.1 Example

Consider the small system composed of modules A
through H as shown in Figure I. Figure 2 illustrates
how the dependencies between D. E and F might appear
in an Ada-like source fragment.

-.-------------

Figure 2

willi C; _ C;
,.ckq~ 0 II

proc:ahn X (...);
JI'oadIln Y (. . .);

eod 0;

witll 0;_ 0;
PfOCedveEis

xc. J;

YC. J;

eod E;

willi 0; _ 0;

procecll1n F is

Y<.. J;

e.d F;

Note that procedure E uses two procedures from package
D while procedure F uses only one procedure.

Figure 3

2A , ~
Because there is a stronger dependency relationship
between units D and E than there is between D and F. D
and E are partitioned together. Figure 4 depicts the
portion of the hierarchical experimental database
structure that results from the dependency graph
depicted in Figure 3.

Figure 4

6. ComiJttoc:y

Ensunng the consistency of changes where multiple
programmers are concurrently changing many modules is
a very difficult problem because of the complexity of the
interactions among the modules. We use tbe hierarcbical
experimental databases to bound the complexity and tbe
number of interactions: Infuse determines that a subset
of components is self-a>nsistent before it allows tbe
merging of these components back into the parent
database.

296

Figure 5

In Figure 5, components D. E and F bave each been
changed and deposited back into the parent database.
Infuse then checks for consistency: the changes in E and
F are checked against the changes in D to determine
whether they are self-consistent. When they are
consistent. D, E and F are deposited into the parent
database and Infuse checks the consistency of D and C.
Similarly. Infuse propagates changes between A and B
and between G and H. Once the databases at the second
level are consistent, they are deposited into the database
at the top level. Infuse then performs consistency
checking for the changes that it did not propagate at the
lower levels (between A and C; Band E; C and H: and
G and F). At each level. if the consistency analysis fails.
then that database is repartitioned on the basis of the
inconsistent components and the appropriate changes are
negotiated and made. Similarly. when the top-level
database is deposited into the base system, Infuse checks
the consistency of the changed modules against the base
system and a new iteration of changes may be generated
to restore consistency.

Smile and SVCE support a similar notion of consistency
but require that a module be consistent before allowing
its deposit back into the database. Infuse differs from
this approach in that it does not require consistency at
this point. Instead, Infuse treats each experimental
database as a forum for determining consistency once all
the components in that database have been changed and
deposited.

Because Infuse localizes the determination of consistency
within an experimental database, it limits the scope of
handling the problem of temporary inconsistencies to the
local experimental database. All Infuse requires is that
the modules within a database be consistent with each
other. and not with the rest of the system. This
approach requires a concept of local consistency. PIC
[Wolf 85) defines a notion of conditional consisttncy that
allows partial consistency that is based on the
incompleteness (specified by an incompleteness construct)
of the parts that cannot be shown to be inconsistent.
This is not quite the notion that we need here - there is
no incompleteness in the sense of PIC, rather there are
inconsistencies that Infuse ignores because they come
from modules outside the local database.

The fundamental problem in determining the local
consistency of changes is that of determining the
implications of changes. deletions, additions and
rearrangements of the units of interconnections. Our
strategy is to ignore undefined objects (except when
restoring consistency with the base-line system) and
check tbe consistency only of those objects that are both

defined and used within the modules being checked. One
obvious refinement to this scheme is to check the
consistency of only those objects that have not been
previously checked - e.g .• at the next lower level in the
hierarchy.

Tichy's smart recompilation and Lint (johnson 781
provide consistency checking at the level of module
interfaces and could be modified to provide local
consistency checking in a form appropriate for Infuse.
For example. an appropriately structured symbol table
could provide much of the information needed for local
consistency checking. In this symbol table, the static
semantic analyzer would flag definitions that have
changed, keep track of deletions. note additions and flag
rearrangements.

7. Conclusions

The contributions of our research are

• hierarchical experimental databases.

• grouping modules together in an experimental
database according to the strengths of
interdependencies.

• the notion of local consistency within the context of
an experimental database,

• experimental databases as the forum for negotiating
changes in the process of resolving inconsistencies,
and

• experimental databases as the basis for iterating over
a set of changes.

We are implementing Infuse as an extension of Smile,
which already supports a single level of experimental
databases. The advantage of building from Smile is we
retain all its facilities. including its interfaces to
programming tools and its mechanisms for locking
databases and reccvering after system failures. We are
usang a variant of Tichy's smart reccmpilation algorithm
to support change propagation.~ The main modification is
ignoring references to symbols not defined within the
current experimental database.

Acknowledgemenl5

y oclle ~aarek IS orlung with us on the implementation
of Infuse as an eJotension of Smile. Maril Thompson
and Mark Freeland provided careful rcadinlS Ind
comments on earlier versiolU of this paper.

Ref~retlCH

[Dunlop 85] Alfred E. Dunlop and Briln W. Kernighan.
A Proudurt for Plaumtfll of StaN/ard­
etl/ VL.5I Circuits. IEEE T cUo. oe
Comput~r-A.lded Oesip. CAD-4: I
(January 1985). pp. 92-98.

ThiS .Inanl of Ticby's alaonlbm provides ILl wilb lbe basis (Of

~yntaCllC change propa,lllon. In addition. In(lIK. in lbe OlI1tUt
o(I nsca pc. explolu tbe scaanllC inlerconnectJOnl 10 provtde
cblnge prop&glllon 1\ Ibe scm&nuc level &S well.

[F eldman 791 S. I. Feldman. Make - a program for
maintaining computer programs. Sofnoare
- Practice" Experience. 9 (l979J. pp
255-265.

[Garey 791 M. R. Garey and D. S. Johnson.
Computers and Intractability: A Guide to
tb~ Theory of Np.completeaess. San
Francisco: Freeman, 1979.

[Habermann 81] A. Nico Habermann and Dewayne E.
Perry. Sysrem Compos ilion and Version
Conlrol for Ada. in Software EngioeHiDg
Environmenl5. H. Huenke. editor. North­
Holland, 1981. pp. 331·343.

[Heller 821 William R. Heller. G. Sorkin, Klim
Maling. Tht Planar Package for System
Designus. 19tb Design Automation
Conference Proceedings. IEEE. 1982. pp
253-260.

[Kaiser 831 Gail E. Kaiser and A. Nico Habermann.
An Environmtnt for Sysltm Version
Control. Digest of Pipers Spring
CompCon '83. IEEE Computer Society
Press. February 1983. pp. 415·420

[Kaiser 86] Gail E. Kaiser and Dewayne E. Perry.
Workspaces and Experimental Databases:
AUlomattd Support for Soflware
Maintenance and Evolution. Technical
Report. Computer Technology Research
Lab, AT&T Bell Laboratories. November
1986.

[Kernighan 701 B. W. Kernighan and S. Lin. An
tfficient hturislic procedurt for
partilioning graphs. Bell System Technical
Journal, 49:2 (1970), pp. 291-308.

(Kirkpatrick 831 S. Kirkpatrick. C. D. Blatt. Jr., and M.
P. Vecchio Optimizalion by simu/altd
aflfltaling. Sci~ce, 220 (~ay 13, 1983).
pp. 671-680.

[Krueger 851 Charles W. Krueger. The SMILE User's
Guide. Carnegie-Mellon University,
Department of Computer Science, The
Gandalf Project, October 1985.

[Lampson 831Butler W. Lampson and Eric E. Schmidt.
Organiziflg Soflwart in a DiSlributed
Environmenl. Proceedings of the Silplln
'83 Symposium Oft Protnmminl l..angual~
Issues ill Software Systems. SilPlan
Notices, 18:6 (June 1983).

[Leblang 841 David B. Leblang and Gordon D. McLean.
Jr. Computer-Aidtd Softwart Enginttring
ifl a Dislributed Workstalion Environmenl.
Proceediqs of IDe ACM
SIGSOFT /SIGPLAN Software ~ring
Symposium Oft Practical Software
[)e,elopmeal uniroamet!l5. SIGPLAN
Notices, 19:5 (~ay 1984). pp. 104-112.

depend on postconditions provided by the
implementations of both E and F; E uses only two of the
combined postconditions supplied by X and Y while F
uses all three of the postconditions supplied by Y. Hence
the stronger connection is between D and F rather than
between D and E.

Figure B

;JK
J(~

Because of the stronger connectivity between D and F.
they are partitioned together as the illustration of the
hierarchical experimental databases for this model shows
in Figure C. ~ote that the partitioning is different from
the syntactic example because of the differences in the
interconnection structure.

Figure C

~99

[Johnson 78) S. C. Johnson. Lint. a C Program
Cnecker. Cnix Programmer's 'hnual.
AT&T Bell Laboratories, 1978.

[Minsky 85) Naftaly Minsky. Controlling the
Evolution of LArge-Scale Software
Systtms. Worksbop on Software
Engineering Emironments for
Programming-in-tbe-Large, June 1985, pp.
1-16

[NotIOn 85) David S. Notkin. The Gandalf Project.
The Journal of Systems and Software. 5:2
(May 1985). pp.91-105.

[Perry 85a) Dewayne E. Perry and W. Michael
Evangelist. An Empirical Study of
Software interface Faults. International
Symposium on]'Iiew Directions in
Computing (JEEE), Trondheim. NO!".l.·ay,
August 12-14. 1985.

[Perry 85bl Dewayne E. Perry. Position Paper: The
Constructive Use of Module interface
Specifications. Third International
Workshop on Software Specification and
Design. IEEE Computer Society. August
26-27. 1985, London. England.

[Perry 86) Dewayne E. Perry. The inscape Program
Construction and Evolution Em'ironment,
Technical Report. Computer Technology
Research Lab. AT&T Bell Laboratories,
August 1986.

[Perry 87al Oewayne E. Perry and W. Michael
Evangelist. An Empirical Sludy of
Software interface Faults - An Update.
20th Hawaii International Conference on
System Sciences. January 1987.

[Perry 87b) Dewa)'ne E. Perry. Soft ... 'are
inttrconnecllon Models. To appear in the
9th International Conference on Software
Engineering. March 30 - April 2. 1987.
~ow available as a Technical Report,
Computer Technology Research Lab,
AT & T Bell La bora tories.

[Rochkind 75) M. J. Rochklnd. The source code control
sysltm. IEEE Transacrioas oa Software
~,SE-1 ([975), pp. 364-370.

[Teitelman 81) Warren Teitlenan and urry Masinter.
Tne Inltrlisp Programming Environment.
C~ 14:4 (April 1981), pp. 25·34.

[Tichy 85) Walter F. Tichy. ReS - A Sysrem for
Version Con"ol. Software - Practice "
Experiace. 15:7 (July 1985). pp. 637-654.

[Tichy 86) Walter F. Tichy. Smart Recompilarion.
ACM Transacrioas 011 PrOlTSmmiD&
1...aapa,t5 lAd Sy!utmS, 8:3 (July 1986).
pp.273·291

[Wolf 85) Allexander L. Wolf. Lori A. Clarke. and
Jack C. Wileden. Ada-Baud Support for

298

Programming-in-tne-LArge. IEEE
Software, 2:2 (~iarch 1985). pp. 58-71.

Appendix - An Example of Semantic-Based Partitioning

In Figure A we present the ·interface specifications as
they might occur in an Inscape·like environment for an
Ada-like language. In addition to the syntactic objects
that are defined in the interface specifications. we have
the behavioral descriptions of the various components in
the form of preconditions (predicates that must be true
before execution - that is. assumptions that must be
satisfied), postconditions (predicates that are guaranteed
to be true afterwards - that is. descriptions of results
and side-effects), and obligations (predicates that must
eventually be satisfied - see [Perry 87b)). The keyword
sats is an abbreviation for satisfies and sat by is an
abbreviation for is satisfied by. (~ote that the lists
< ... > denote statement labels. most of which are elided
for the sake of brevity') Preconditions and obligations
are satisfied by postconditions; postconditions may satisfy
both obligations and preconditions. The predicates. then.
are the points of interconnection between components In

the semantic model.

Figure A

";tb C; use C;
,.eule D ill

procedure X (. . , l;
POSI: bL')
Obi: eLl

procedure Y (. . .>
P,t: dL'>
POSI. eLl. eL.l. fL.l

etId D;

"ilb D; 11M D;
~ocHure E ill

<5> XC,.);
POSI: bL') sou < 11 >
Obi: eLl sal by <8>

<8> YC,.l;

_E;

P,t,· dL.l Sal by < 2>
POSI' eL.l sou < 5 >

eLl. rL.l salS < >

'"~ D;_ D;
lIfO«dure F ill

<,,> YC .l;

etId F;

P,t: dLl Sal by < 3>
Post: eLl. eLl SOlS <5>

rL.l sou < 10>

Figure B illustrates the dependency graph for the above:
system fragment. Note that there are two-way
dependencies (actually there is also a dependency within
D that is not shown here: the postcondition c of Y
satisfies the obligation c of X): the operations in D each

