
CUCS-97-84 

Unification in a Parallel Environment 

Stephen Taylor 

Daphne Tzoar 

Salvatore J. Stolfo 

Columbia University 

Department of Computer Science 

January 1984 

Submitted to The 1984 r\atlonai Conference on Artificial Intelligence 

This research is supported cooperatively by· Defense Advanced Research Projects 
Agency under contract )JOOO.19-82-C-0427, New York State SCience and Technology 
Foundation, Intel Corporation, Digital Equipment CorporatIOn, ValId Logic Systems 
Inc, Hewlett-Packard, Bell Laboratories and International Business ~1achlnes 

Corporation 
Copynght (C) 1984 Taylor 



1 

Abstract 

This paper presents a method which allows standard data structure sharing 

techniques to be applied in a parallel environment. The techniques used are 

explained in the context of many parallel processors executing the same unification 

algorithm on different data concurrently. This operation can create complex 

structures to be transmitted between processors and naive algorithms could take an 

exponential amount of time to achieve the communication. The approach IS 

compared to that advocated for the FFP machine. 

To demonstrate the techniques, we describe how a linear unification algorithm may 

be executed locally at each parallel processor and a single chosen resolvent 

comm unicated through an interconnection network to other processors. The 

structures are transmitted without applying substitutions and can be recreated :It 

the receiver. 

The algorithms were developed as part of basic research related to the parallel 

Logic Programming System (LPS) under design at Columbia University. They have 

been implemented on a working prototype parallel machine, DAD01. 

1. Introduction 

ResolutIOn, as first descnbed by Robinson [131. provides a smgle. machine-oriented 

mference mechanism combining the classical inference rules and aXioms of the first 

order predicate calculus The Unification Algorithm [13, 1-11 is an important step In 

the refutation of a system of clauses and is of central Importance In the 

development of programming languages based on logic formalisms [16, 12, .3] 

Given two clausal expressions, unification computes a substitutIOn of terms for 

vanables which when applied to the expressions makes them Identical. ThiS 

substitutIOn, or unifier, consists of a list of pairs. Each pair contains a varIable 



and a term which must be simultaneously substituted for the variable m order to 

make the expressions identical. 

Consider the following example (for consistency with our other work, we use the 

syntax associated with Prolog [16]): 

< g(X, Y), g(f(a, b), a) > 

The resulting unifier which makes the above terms identical IS: 

{ Xjf(a, b), Yja} 

Thus, unification may be viewed as a general pattern matching operation with 

special significance given to the logical variable. If logic formalisms are viewed as 

programming languages (where procedure declarations are represented by logical 

clauses and theorem provers are seen as interpreters [6]) the use of unification leads 

to pattern-directed invocation of clauses. 

A particularly interesting consequence of the use of unification in logic programming 

languages is that partially instantiated structures may be carried along With a 

computation and utilized as needed. ThiS presents a large degree of independence 

between goals that are set up during a computation. Coupled With the 

independence of logical clauses m a program, this has led to considerable interest m 

the fIeld of parallel architectures [5, 111· 

Provided that each processor IS of sufficiently large granularity, parallel 

archItectures, consisting of many processing elements may carry out the unification 

algonthm locally at each processor and communicate structures (i.e., literals, clauses 

and unifiers) between processors. Facilities to achIeve this communication may be 

Important to a number of proposed logIc-based, parallel languages. LPS, a logiC 

programmmg system under development by the DADO [IS] project at Colum bia 

Cnlverslty, is one such language. 



3 

2. The Cost or Unification 

Unfortunately the unification algorithm may be extremely expensive to compute and 

the structures it generates may require an exponential amount of space to represent 

uSing a naive syntactic form. Consider the unification of the following terms [10J: 

If the substitutions are represented explicitly as character sequences, the unification 

process will produce a result in which the length of terms grows exponentially. The 

value of Xn after unification contains 2n-1 occurrences of Xl. It should be noted 

that this problem bears no relation to, and is independent of, the variable renaming 

which is sometimes carried out in logic programming languages In order to 

distinguish semantically distinct variables. To emphasize this point, consider the 

following exam pIe: 

The unification of the two 'h' functions involves unifying the two terms shown in 

the previous example. 

A number of algorithms have been proposed to improve efficiency of the unificatlOn 

operation (e.g., [8, 9]). To economize on space, techniques for the sharing of 

structure can be used. Paterson and \Vegman [10] propose the use of directed" 

acyclic graphs (DAG's) in which common subexpressions are represented by a SIngle 

subgraph. The algorithms they propose require a linear amount of space and tah 

time whIch is linear in the number of nodes and edges in the DAG. 

In order to improve the representation of logical clauses, Boy~r and ~foore [~] have 

suggested another structure sharing technique. This allows a clause to be 

represented as a tuple of information referenCIng and sharing structure with its 

parent clauses 1ll a refutation. An essential feature of this technique IS that a 

clause is represented WIthout applying substitutions. Instead, a binding em"ironment 

IS established during umfication and when a variable value is needf>d It is retneved 



4 

from this enyironment. The binding environment for a clause is referenced from 

the tuple representing the clause in order to carry out this operation. The tuple 

representation for a clause achieves significant economy of representation compared 

to lists or arrays of characters. 

3. Parallel Unification 

Linear unification algorithms can be executed locally at each parallel processor 

provided that the clauses involved can be represented in the form of DAG's. This 

can be achieved by creating the DAG as a structure is received at a processor. 

This allows the creation of resolvents in linear time and space, however, if 

structures must be transferred between processors two problems occur: 

l. The required transmission time may grow exponentially; if a naIve 

algorithm is used and the structure of the nth binding (in the prevlOUS 

example) is traversed and explicitly communicated. 

2. The referencing environment changes; when a structure IS transferred 

bet\veen processors, the referencing environment used for pOInters within 

the structure changes. As a consequence, on arrIVing at another 

processor, pointers within the structure have no meamng. 

Transmission can be carried out, in linear time, uSing a SImple algorithm which 

applies the techniques used for structure sharing (descnbed above) to 

comm unIcation. The central motivation IS to only traverse and transmit a 

substructure once; for all following instances, simply the name of the substructure IS 

sent. This is analogous to representing common substructures only once and not 

applying substitutions until necessary, in the sequentIal case. The following abstract 

recursIve algOrIthm outlines the transmission of a logical term. 



5 

Se ndterm(Structure) 

{ if (Structure is ATOM) then transmit(Structure) 

else if (Structure is VARIABLE) then 

} 

{ send( name(Structure)) 

if (bound(Structure) and not sent(Structure)) then 

{ mark _ as _ sent(Structure) 

Sendterm(Structure.Binding) % send VARL,\BLE's Binding 

} 
} 

else if (Stucture is FUNCTION) then 

{ transmit(Structure.Predicate) 

foreach Argument in Structure do 

Sendterm(Argument) 

} 

% send FUNCTION's Predicate sym bol 

At the receiVIng processor, the stuctures may be recreated in a form which allows 

bllldings to be retrieved as appropriate. The above procedure can be used to 

transmit terms in a resolvent, literals and clauses 

There are two primary mechanisms that may be employed to overcome the problem 

caused by a change of referencing environment: 

1 send a symbolic representation of the structure as a stream of characters 

(e.g., a list) 

i) send a relocatable structure 

The first alternative IS simple to implement but has the disadvantage that It IS 

difficult to use additional structure sharing which may be present due to replicated 

ground sub-structures. For example 

f(g(a, b, c), g(a, b, c)) 

If a relocatable structure is sent, pointer values will not be affected by the change 



6 

of referencing environment. In this case it IS possible to use Hash-Consing 

techniques [4, 11 to reduce the space used by structures and the information which 

must be communicated. When dealing with list representations, Hash-Consing places 

the responsibility for maintaining distinct structures with the Cons function. If the 

result of a structure mampulation results (using a. hash function) in a. structure 

already present in the system, a pointer is used rather than creating a duplicate 

structure. This mechanism would cause the above 'g' structure to be represented 

and communicated only once. 

As an expedient, in the implementation we describe, character sequences were used 

to communicate structures. The use of relocatable structures is the subject of 

ongoing research by researchers building system tools for the DADO project [171. 

4. Unification Example 

To illustrate how the above techniques are applied, consider the umfication of the 

following expressions: 

< h(f(X,X), f(Y,Y), f(Z,Z)), h(Y, Z, f(f(f(a,a), f(a,a)), [(f(a,a), f(a,a)))) > 

The following D:\.G's are created locally at a processor to represent these structures 

~ 
h 

[ f f f 

pp~ ~ 
f f 

A A 
f f f f 

4 /\ A ~ 
a a a a a a a a 



7 

The binding structures constructed as a result of unification are: 

Y Z X 

t ~ J 
f f a 

f) f) 
Y 

When the above structures (DAGS) are transmitted between processors they are 

traversed and sent using the 'sendterm' algorithm described previously. In the case 

of a literal the algorithm takes the literal as an argument, in the case of a set of 

bindings, it is used to transfer each binding individually. The following character 

stream would result when the above resolvent is communicated (we omit typing 

information for clarity, ,:' is a separator): 

{ Xa.Y{f X X):Z{f Y Y): } 

If the structure had been traversed and sent explicitly the following character 

stream would have been communicated: 

{ Xa:Y(f a a):Z(f((f a a) (f a a))) } 

When the result arrives at the receiving processor it IS reconstructed and stored in 

f d by the sender If the bindings for variables are needed 
the same orm as use . 
(e.g, if they are to be printed or retransmitted) they would be retneved and used 

In substitutIOns appropriately. For example, the follOWing bindings would be pnnted 

as a result of the above example: 

X a 

Y f(a,a) 

Z = f(f(a,a),f(a,a)) 

b <:liccessfully Implemented and venfled on a working The algorithms have een.., 

DADO!, using the Paterson and Wegman unlficatlOn prototype parallel machine, -

algOrithm 



8 

5. Rela~ed Research 

. Mago [71 has described an interesting approach to the problem of unification in a 

parallel environment for the FFP machine. The FFP machine is fine-grain parallel 

system obtained by interconnecting many simple processing elements in a regular 

pattern (binary tree). It uses the computational model of string reduction and 

disperses both code and data in a program to leaf cells of the machine, one symbol 

per processor. The Paterson and Wegman unification algorithm may be 

implemented on the FFP machine by applying various functional programmmg 

maclune primities in order to reduce the expressions in linear time. 

The essential difference bet.ween the approach advocated by tvlago and that 

descnbed m this paper IS one related to the granularity of the systems. In the 

FFP machine a smgle instance of a unification algorithm operates by the 

cooperati ve actions of a number oi processors thus achievIng parallelism. Since 

DADO uses significantly larger processmg eler:nents, many instances of the 

unificatIon algorithm operate concurrently, each at an individual processor. These 

use a conventIOnal sequentIal algorithm and all data structures are held locally 

Parallelism IS achIeved by executmg many unifications in par:lllel and these are 

carried out at arbitrary processing elements in the system 

6. Conclusions 

We have outlIned simple techmques that allow f" a unl Icatlon algorithm to be 
executl"d on multIple processors III paratll"l The central problems relate to thl" 

passmg of structures between processors By applYlllg commonly u51"d structure 

shanng paradigms to the dommn of comm umcatlon thIS can be carried out m Itnear 

tIme The essentIal techmques are to transmit common substructures only once and 

not to apply substitutIOns to expressions 

For the purposes of expedIency, a number of Improvements to the algorIt.hms 

relatIng to the nature of the representatIOn used have not Yl"t been made 

Improvements require the use of relocatable structures. which form part of our 

ongOIng research. 



9 

The method has been demonstrated on a working, 15 processor, prototype machine, 

DADO I. The algorithms used are part of basic research aimed at the 

implementation of a logic based programming system (LPS) for the machine. 

Acknow ledgmen ts 

This work has greatly benefited from the ideas of Gerald ~Iaguire Jr. who 

although absent during the implementation was an integral part of its inception. 

The authors also wish to extend their thanks to the other members of the DADO 

project whose help and comments have been receIved and are greatly appreciated. 

Rererences 

1. Allen, L Computer Science Series. Volume : Anatomy of Lisp. ~1cGraw Hill, 
1978. 

2. Boyer, R. S. and Moore, 1. S. The sharing of structure in theo.rem-proving 
programs. In A!achine Intelligence, Edinburgh University Press, 1972, pp. 101-116. 

3. Clark K L., McCabe F. G. and Gregory S. IC-PROLOG Language Features. 
In Logic Programming, Academic Press, 1982, pp. 243-266. 

4. Goto, E. t-.lonocopy and AssociativE.' Algorithms In an Extended Lisp. 
Information SCience Laboratory, 1-hy, 1974. 

5. Doug DeGroot (Program Chairman) (Ed). 1984 International Symposium on 
Logic Programming. IEEE Computer Society Press, Bally's Park Place Casino, 
Atlantic City. New Jersey 08401, 1984 

6. Kowalski, R A. Predicate Logic as a ProgrammIng Language IFIP Congress. 
1974, pp ,:)69-.:)74 

7. i\lago, G "Data Shanng in an FFP ~fachinel' Conference REcord of the 
1982 ADA! Symposium on Lisp and FUTlctionai Programming \01. 1 (August 15-18 
1982), pp 201<~07 

8. tviartInelli, A. and Montanari, U. "An EffiCient Umfication Algorithm" AC~\[ 

Transactions on Programming Languages and Systems 4, :2 (Apnl 198:2), 2.58-282 

Q. ~fartInellt. A and ~Iontanari, U Theorm proving With structure shanng and 
effiCient umficatlon. Tech. Rept. S-77-7, Istltuto di SClenze del'Informazlone, 
University of Plsa, February, 1977. 



10 

10. Paterson, M. S. and 'Wegman, M. N. "Linear Unification." Computer and 
System Sciences Vol. 16 (1978), pp. 158-167. 

11. Pereira, L. M., Porto, A., Monteiro, L. and Filgueiras, ~L (Ed.). Proceedings 
of Logic Programming Workshop '83. Universidade Nova De Lisboa, Praia da 
Falesia, Algarve/Portugal, 1983. 

12. Robinson, 1. A. and Sibert, E. E. LOGLISP: Motivation, Design and 
Implementation. In Logic Programming, Academic Press, 1982, pp. 299-313 

13. Robinson, 1. A. "A Machine-Oriented Logic Based on the Resolution 
Principle." Journal of the ACM Vol. 12 (1965), 23-44. 

14. Robinson, 1. A.. Logic: form and function. Edinburgh University Press, 1979. 

15. Stolfo, S. 1., Miranker, D. and Shaw, D. E. Architecture and Applications of 
DADO, A Large-Scale Parallel Computer for Artificial Intelligence. Proceedings of 
the Eighth International Joint Conference on Artificial Intelligence, International 
Joint Conferences on Artificial Intelligence, Inc., Karlsruhe, West Germany, 
August, 1983, pp. 850-854. 

16. Warren, D. H. D. Implementing Prolog - Compiling Predicate Logic 
Programs. Tech. Rept. D.A.I. 39/40, Department of Artificial Intelligence, 
Edinburgh University, May, 1977. 

17. \Veisberg, Iv1. K., Lerner, M. D., Maguire, G. and Stolfo, S. 1. IIPSL' A 
Parallel Lisp for the DADO ~1achine. Columbia University, New York, 1\1'y 10027, 
February, 1984. 


