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Abstract 

A lower bound nmin roughly equal log2(diam(T)/~)~ 

is established for the minimal number of function evaluations 

necessary to compute the topological degree of every function 

f in a class F. The class F consists of continuous 

functions f = (f
l
,f

2
) defined on a triangle T, f: T ~ 22, 

such that the minimal distance between zeros of fl and 

zeros of f2 on the boundary of T is not less than 

~, ~ > o. 

Information is exhibited which permits the computa-

tion of the degree for every f in F with at mo~t 2nmin 

function evaluations. An algorithm, due to Kearfott, 

uses this information to compute the degree. 

These results lead to tight lower and upper complexity 

bounds for this problem. 

Subject classifications: AMS(MOS)6SH10~ CR 5.15. 
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1. Introduction. 

The problem of computing the topological degree of a 

function has been studied in many recent papers, e.g. 

[3,4,6,8,9,10,11]. From the topological degree one may 

ascertain whether there exists a zero of a function inside 

a domain. Namely, Kronecker's theorem [1,4] states that if 

the degree is not zero, then there exists at least one zero 

of a function inside a domain. By computing a sequence of 

nonzero degrees for domains with decreasing diameters one 

can ascertain a region with arbitrarily small diameter 

which includes at least one zero of a function, see (2,3,4,8].· 

Algorithms proposed in thses papers were tested by their 

authors on relatively easy examples. They concluded that 

the degree of an arbitrary continuous function could be 

computed. It was observed, however, e.g. [3,4,11] that 

the algorithms may require an arbitrarily large number-of 
. 

function evaluations. In this paper we restrict the class 

of functions to be able to compute the degree for every 

element in the restricted class using an a priori bounded 

number of evaluations. 

We consider the class F of continuous functions 

T. are vertices of 
~ 

2 T, f: T ~ £ . We assume that each of 
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fl and f2 restricted to the boundary aT of T, say fl and 

f 2 , has at most one zero on each edge of T and that this 

zero is not a point of local extremum. We also assume 

that the f. (T. ) are not zero 
1. J 

for every i and j and that 

the distance between zeros of fl and f2 on each edge is 

not less than 11, 0 < 11 < min(IlT.-T.1I2). The last assump­
i~j 1. J 

tion with ,11 > 0 is necessary for the existence of the 

topological degree. 

The information N on f consists of n values of 
n 

fl and/or f2 on aT, which are computed adaptively. This 

form of information is assumed since the topological degree 

is determined uniquely by the values of f on aT, see [5]. 

In fact we can show that using adaptive evaluations of n 

arbitrary linear functionals on f one cannot do better 

than just using function values on aT. The proof is 

technically difficult and is based on the idea presented 

in [7]. 

The topological degree is computed by means of an 

algorithm which is a mapping depending on the information, 

~: Nn(f) ~ I, where I denotes the set of all integers. 

In this paper we solve the following problems: 

(i) Find a tight lower bound n. on the minimal 
m1.n 

number of function evaluations necessary to find the 



topological degree of f for every f in F using an 

arbitrary information N '. n 
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(ii) Exhibit an information N* with n roughly equal 
n 

2n. which allows to compute the degree for every f in 
m~n 

F. This information is used by an algorithm ~* developed 

by Kearfott [3] to compute the degree. 

We briefly summarize the contents of the paper. In 

Sect. 2 we define information and algori~. In Sect. 3 

we obtain a formula for n. and in Sect. 4 we exhibit the 
m~n 

information N* and algorithm ~*. 
n 



2. Basic definitions -formulation of the problem. 

2 
Let T = loT1T2T3 be a triangle in i. , where Ti are 

vertices of T, with the notation T. 3 = T., Vj. Let I 
J+ J 

be the set of all integers, 11·/1 = ". "2 the euclidean norm 

2 
in i. , and 9 = (0,0). Denote 

2 
G = (f: T ~ I ,f = (f

1
,f

2
), f continuous}. 

For an arbitrary f = (f 1 ,f2 ), f € G, let fl = f11aT and 

f2 = f21a T be the restrictions of f1 and f2 to the boundary 

of T. Then for a given 'T'l, ° < 'T'l < minllT. - T.II, define 
iFj 1. J 

(2. 1) 

-
of f1 and f2 has at most one zero on 

[T.,T. 1]' which is not a point of a 
J J+ 
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local extremum, and "a-BI12 11, 'ia,e € [T.,T. 1] 
J J+ 

Our problem is to find the topological degree, 

deg(f,T,9), of f 'relative to T at 9, see [5], for 

every f in F. To solve this problem we use information 

N and an algorithm ~ using N. These are defined as 
n n 

in [12]: 

Let f € F and 



(2.2) N (f) - [f. ( xl) , f . (x2 ) , . . . , f . ( x )], 
n 1.1 1.2 l. n n 

where xl € aT and i
l 

€ (1,2) are given a priori, 

X.:I x.(f. (Xl),···,f .. (X j _ l », 
J J 1.1 l. J - l 

i. = r.(f. (xl),···,f. (x. 1»' 
J J 1.1 l. j _ l J-

- j-l -and x. is a transformation, x. : R ~ aT, i. is a 
J J J 

,... j-l 
transformation, i. : R ~ (1,2), j = 1, ... , n. 

J 

The total number of function evaluations n is 

called the cardinality of N. Let us denote the class of 
n 

all such information by ~. 
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Knowing N we approximate deg(f,~,9) by an algorithm 
n 

~, which is an arbitrary mapping 

(2.3) ~: N (F) ~ I. 
n 

By minimal cardinality number n* we mean the minimal n 

for which there exists information N which allows to 
n 

determine the degree of any f from F, i.e., 

N (1) = N (f) = d eg (1, T , e) = d eg ( f , T , e), V ,£, f E F. 
n n 

In the paper we solve the following problems: 

(2.4): Find a tight lower bound n. on the-minimal 
m1.n 

cardinality number n*. 



(2.5) Find information N* with cardinality close to 
n 

the n .. 
ml.n 

We also present an easily implementable algorithm ~* using 

N*, which computes deg(f,T,9) for any f in F. The n 

algorithm ~* was developed by Kearfott and is based on his 

Parity Theorem in [3]. 

We discuss the complexity (minimal cost) of finding 

the topological degree. Assume that one function evalua-

tion costs c and that arithmetic operation or comparison 

costs unity. Usually c is much larger than one. The 

complexity of the algorithm ~* is equal to the sum of the 

costs of computing N* and of computing ~* given N* .. If 
n n 

c » 1, then the complexity of ~* is roughly equal twice 

. the lower bound of the complexity of solving the problem. 

Therefore ~* is an almost optimal complexity algorithm. 

6 
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3. Minimal cardinality number. 

In this section we show how to bound from below the 

minimal cardinality number. Suppose without loss of gener-

ality that 

We prove 

Theorem 3.1: For every information N in ~ such that 
n 

f,g in F such that N (f) = N (g) and deg(f,T,S) = 0, 
n n 

deg (g, T, S) = -1. CJ 

Theorem 3.1 .says that if the number n of function 

evaluations is less than n. then for every information 
m~n 

N in ~ there exist two functions in F with different n I, 
degrees and hence we must use at least n. function 

m~n 

evaluations to be able to compute degree for every f in 

F, i.e. that n* 2 

First we prove the following Lemma: 

Lemma 3.1: For every n, N E~, N (f) = 
n n 

[ f . ( xl) , f . (x
2 

) , . . . , f . ( x )], see 
~l ~2 ~n n 

o < € < !IT2-T3 !1/2
n
+ l

, there exist 

(2 . 2 ), a > 0, and €, 

a function f = (f l,f 2)' n n, n, 



f e F, see Fig. 3.1, and intervals I 
n n,l = [X l' X 2]' n, n, 

I n ,2 = [Yn ,1,Yn ,2]' In,l c [Tl ,T3 J, I n ,2 c [T2 ,T3J, 

diam(I n ,l).2 IIT1-T31112n, diam(I n ,2) 2 !!T2-T3 /1/2
n

, such 

that 

(i) 

(ii) 

x./. [X l'X 2 JU [Y l'Y 2]~ 
~ n, n, n, n, 

f is an arbitrary continuous extension of the 
n 

- - 2 
function g = (f l,f 2)' g: aT ~ ~ , to the n, n, 

triangle T, where f and f 2 are given by 
n,l n, 

8 

the formulas (3.1) and (3.2). [J 

f lex) = f 2(x) = a, n, n, 
x e 

(3. 1) 
a 

where 

-a 

(3.2) f 2 (x) = n, 
a-2a/ £/Ix-Xn 111 x e , 
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where 

We remark that Lemma 3.1 implies that 

f l(x,) = f 2(x.), i = 1,2, ... ,n, and that the distances n, 1. n, 1. 

between zeros of f n ,1,fn ,2 on [T1,T3Jsay a1(fn,1)' 

a 1 (fn ,2) and on [T2 ,T3]say a 2 (fn ,1)' a 2 (f
n

,2) are 

a = f =f n,l n,2 

I 
I a 
1 

/ 
" f 1 n, 

f n,2 

\ T 
'. ;Yl 

I 
I ' ! 

! f 
'~n,2 "1 
X -_ ·1 

n 2 --

Fig. 3.1 

- a = f n,l 
------= f n,2 

-a 
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Proof: The proof is by induction (compare [7]). Let n = 1. 

Suppose without loss of genera1itYJ that xl € P = [T1JT21u 

[T 1, M11 u (T~,M2] where Ml = (T l +T3 )/2 and ~ = (T2+T3 )/2. 

Denote also e1 = (T3-Tl)/lIT3-TllI and e2 = (T3-T2)/IIT3-T211. 

Then define 

fl,l(X) = f l ,2(X) = a for x € P 

and 
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X1 ,1 = M1 , Xl J 2 - T 3' Y 1,1 = ~, Y 1,2 = T 3' 

and f 1,l(X1 ) - f 1 ,2(X1 ). Taking fl as an arbitrary exten­

sion of (£1,1'£1,2) to the whole of T completes the proof 

for n = 1. 

Assume now that lemma holds for n, (Fg. 3.1). If 

x = x... l(N (f » does not belong to [X l'X 2] n+l n+ n n n, n, 

U[Y l'Y 2] then the function f = f satisfies Lemma 3.1. n, n, n+l n 

Therefore suppose without loss of. generality that 

X E [X l'X 2]' and define n+l n, n, 

fn+l,l(X) = f 1 2 (x) = f 2 (x) for x E oT - [X l'X 2]'-n+ , .n, n, n,. 

and 

f 2 (x) n, x 1 E [M,X 2] n+ n, 

f 1 2 (x) = n+ , 

a x E [M 1,M] , n, 

otherwise 

-a 

where M = (X 1 + X 2)/2 and n, n, 



12 

a 

f 1 1 (x) = 

2a 
a--IIX- M+ee 1/ c 1 if x Ie [M,X' 2]' n+ n, 

n+ , 
-a xe[M,X 2 J n, 

f 1 (x) n, } otherwise. 

Then f 1 l(x.) = f (x), Vi = 1,2, ... ,n+l, and n+, 1. n+l,2 i 

I = I n+l,2 n+l, l' 

I = ([Xn,l,M] 

n+l,l 
[M,X 2] n, 

if x 1 e [M, X 2]' n+ n, 

otherwise. 

Therefore 

and the function f 1 defined as an arbitrary extension of 
n+ 

- -
(f ll,f 1 2) to the whole T satisfies Lemma 3.1 for n+, n+, 

n + 1. This completes the proof. 

Proof of Tbeorem 3.1: Take arbitrary information N e ~ 
n 

with n < n. and consider €, 
m1.n 

. n+l n 
o < e < m1.n(IlT2-T311/2 ,IIT2- T

3 11/2 -T1)' Note that 

CJ 

liT -T II 
!rT2-T3 //l2

n 
- T1 is positive, since T1 < ~n 3

1 

for. n < n.. , 
m1.n 
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and therefore c is well defined. Let f = (f l' f 2 ) n n, n, 

be a function from Lemma 3.1, such that 

)0 X E Int(T
1

,T 2 , a.2(f n ,1) , (11 (f n , 1) ) , 

f 1 (x) = 0 x E [ a 1 ( f n, 1) , a 2 (f n, 1)] , n, 

<0 x E Int(6 al(fn,1),a2(fn,1),T3)' 

)0 x E Int(T
l

,T 2 , <l:2(fn ,2)' 0.1 (fn , 2) ) , 

f 2(x) = 0 x E [al (fn ,2) ,a2 (fn ,2)J , n, 

<0 x E Int(6 al(fn,2),a2(fn,2~T3). 

Since t < 
n 

IIT2 -T 3 11/2 -" then 

- c 2 ,., 

- 'f: 2 fl· 

Each of f n ,l' f n ,2 has exactly one zero on [Tl ,T3] and-

These properties imply that f belongs to F. 
n 

Observe however that f does not have a zero in T. 
n 

Kronecker's Theorem [l,S] yields that 

Now we define a second function. Let 



f 3(x) n, 

and 

f 4 (x) n, 

It is obvious that 

(3.3) f 3 (x. ) n, ~ 

f 1 (x) x € (T
l

,T
2

]U[T
2

,T
3

] n, 
= 

f 2 (x) x € [Tl' T3 ] n, 

en'l (xl 
x € [T l ,T

2
]U[T

l
,T

3
] 

= 

f 2 (x) x € [T
2

T
3

] n, . 

- -= f 4(x.) = f l(x.) n, ~ n, ~ 
= f 2(x.), n, ~ 

i=1,2, ... ,n. 

14 

Define £3 and f4 to be any continuous extension of I 3,i 
n, n,4 

into T such that 

and 

> 0 X € In t (T 1 f T 2 f CL 2 (f n f 2) f::t.l (f n , 1) ) . 

o X € 

This implies that gn = (f
3
,f

4
) belongs to F. Observe that 

g has exactly one zero a in T, 
n 

---- ------------



One can easily check that the topological degree of 9 n 
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is deg(gn,T,9) = -1 (by using for example the Parity Theorem 

of Kearfott [3]). 

and 9 imply that 
n 

Equation (3.3) and the definition of f 
n 

N (g ) = N (f ) n n n n 

which finally completes the proof. 



4. Optimality results. 

In this section we find information N* with 
n 

n* ~ n ~ 2n. (n roughly equal 2n . ) and exhibit an 
m~n m~n 

almost optimal complexity algorithm ~* using N*, which 
n 

requires only arithmetic operations and comparisons. The 

information N* consists of evaluations of function values n 

16 

of points x. € aT, i = l,2, ... ,n, which yield a sufficient 
~ 

refinement of aT relative to sign of f. Here sufficient 

refinement is defined as follows, see [3,4,10,11]. 

Definition 4.1: If f € F, then aT is sufficiently refined 

relative to sign of f iff aT is decomposed as an oriented 

(see [3)} union of intervals I
l

, ... ,I
k 

with the properties: 

(ii) For every I
j 

one of f
l
,f

2 
does not vanish on 

I ., say f. , and then 
J ~l 

f. (a. ) . f. (b.) ,. 0 where I. 
~2 J ~2 J J 

and (i
l
,i

2
) = (1,2). a 

Knowing the information N* we can compute the degree 
n 

by using the algorithm 0* based on the Parity Theorem of 

Kearfott [3]. This is described as follows: Let 

I. = [e. l,e. 2], I. = I.(f}, f € F, j = 1,2, ... ,m(f) form 
J J, J, J J 

a sufficient refinement of aT relative to sign(f}. Then 
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define the sign matrices of f: 

where i is the row, k is the column and 

sgn(x) = (1 if x 2 0 and 0 if x < 0). The parity of R(I.,f), 
J 

Par(R(I.,f) is given by: 
J 

Par (R (I . , f» = 
J 

1 if R(Ij~~) = [~ ~], 

if R(Ij,f) = [~ ~], -1 

o otherwis e • 

Define ep* by 

(4. 1) ep* (N* (f) 
n 

m (f) 
= t. 1 J= Par (R (I . ) , f) • 

J 

Then the Parity Theorem states that 

(4.2) ep* (N'*' (f» = deg(f,T, e), n V f E F. 

We remark that the implementation of ep* requires at most 

20 comparisons and 4 additions, since a sufficient refinement 

in our class F consists of at most 5 intervals (see beloW). 

We now proceed to the construction of the information N*. 
n 

Take an arbitrary f in F and compute ·f at ·the 



vertices of T. 

If sgn(f. (T.» = const. for one of the f., i = 1,2, 
1. J 1. 

then the decomposition 

forms a sufficient refinement of aT relative to sign of 

f. The Parity Theorem implies then that deg(f,T,9) = o. 

Assume now that none of f
l

, f2 has a constant sign 

at all vertices, i.e., that the following equations are 

satisfied: 

(4.3) 

(4.4) 

where 
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i,j € (1,2,3} and sign(x) = (-1 if x < 0, 0 if x =0, 

1 if x > 0). 

Two cases are possible: 

(4.5) If i ~ j then fl has a constant sign on [T.,T. 1] 
1. 1.+ 

and f2 has a constant sign on [T.,T. 1]' There-. 
J J+ 

fore to obtain a sufficient refinement of aT we 

need to subdivide only TkT
k

+
l

, where (i,j,k). = (1,2,3). 



(4.6) 
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If i = j then f1 and f2 have constant sign on 

[T
i

,Ti +1] and both change sign on the intervals 

[T. 1 Ti 2] and [T. l,T.]. Therefore to obtain l.+, + l.- l. 

a sufficient refinement of ~T we need to sub-

divide both [Ti +1,Ti +2 ] and [Tk ,Tk +1], where 

(i,j,k) E (1,2,3). 

Consider first the case (4.5). We will see below that to 

find a sufficient refinement of ~T it is necessary to find 

a point z € [a(f1),a(f2 }], where recall that a(f
1

} (a(f
2

}) 

is the zero of f l (f2 ) on [Tk,Tk+l ]. 

To do this we use the bisection method to locate 

the zero a(fl } to within 6 < ~, see Fig. 4.1. 

II (l ( f 2 ) - (l ( f 1 ) II 2 ~ 
___ ----A--_.. 

Fig. 4.1 

f 
2 

Therefore we compute n times f l , where n is the smallest 

integer such that IITk+l-TkIl/2n < ~, 1. e. , 
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n = r II Tk+l-Tkll 1 
log2 ~ + 1. 

In this way we obtain the interval I = [x*,x**], 

a(f
l

) € I. Then a(f
2

) does not belong to I, since 

to find which point from x*, x** is in E = [a(f
l
),a(f

2
)]. 

Namely, 

(4.7) 

If then 
[

if 

if 

then x** e E, 

f2 (x**) > 0 then x* e E, 

(4.8) 

If tt'hen 
[

if 

if 

f2 (x**) < 0 then 

f2 (x**) > 0 then x** € E, 

(4.9) 

If then 
{

if 

if 

f2 (x**) < 0 then x** € E, 

f2 (x**) > 0 then . x* € E, 

(4.10) then x* € E, 

If 
f2 (x**) > 0 then x** € E. 

By checking (4.7)-(4.10) we find a point z in E, 

z = x* or z = x**. Observe that the point z subdivides 

[Tk,T
k

+
l

] in such a way that one of f
l
,f

2 
has a constant 

sign on [Tk,Z] and one of f
l
,f

2 
has a constant sign on 
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[Z,Tk+1J. Therefore the decomposition 

or 

forms a sufficient refinement of aT relative to sign of f, 

which means that the information N* 7 allows to determine the 
n+ 

degree, where N~+7 is given by 

and xl = (Tk +Tk + l )/2, xi' i = 2, ... ,n., are defined by the 

bisection method applied to the function fl on [Tk ,Tk + l l, 

x** = 
otherwise, 

and 

n = 

We now consider the case (4.6). To construct a 

sufficient refinement we need to apply the procedure from 

the case (4.5) to both intervals [T. l,T. 2] and [T. <l,T.]. 
1.+ 1.+ 1.- 1. 

Therefore an information which allows to determine the degree 

is given by 



(4. 12) 

where 

f2 (T3) ,fl (xl)'···' fl (X
nl

) , f2 (x**), 

f 1 (Y 1) , . • . , f 1 (Y n
2 

) , f 2 (y* * ) ] , 

Xl = (T. l+T. 2)/2, 
l.+ l.+ 

Yl = (T. 1+T.)/2, 
l.- l. 

Xi (Y
j

) are defined by the bisection method applied to fl 

on [ T. 1 ' T. 2 ] ([ T . 1 ' T . ] ) , 
l.+ l.+ l.- l. 

and 

n l = r IITi-Ti+llll 
log2 f1 + 1, 

IITi_l-Ti" 
n2 = flOg2 f1 1 + 1, 

otherwise, 

{

Yn 

y** = Y 

n-1 
otherwise. 

By checking (4.7)-(4.10) for k = i-1 (k = i+1) we find a 

point zl in [T. l,T. 2] (z2 in [T. 1,T.]) such that 
l.+ l.+ l.- l. 

sufficient refinement of aT relative to sign of f is 

22 



given by 

. Observe that for the "worst" mapping f in F the infor-

mation N; consists of n = 8 + n l + n
2 

function evaluations, 

where 

L 
IIT2-T3I1J 

Since n. = 1092 " ,then rnl.n 

(4. 13) 

We summarize (4.2) and (4.13) in 

Corollary 4.1: The algorithm ~* using N* computes the 
n 

topological degree for every f in F. The information 

N* has almost minimal cardinality, since n = 2n . (1 + 0(1» 
n ml.n 

as " -+ O. o 
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