
* A REAL-TIME TRANSPORT PROTOCOL 

Yechiam Yemini 

CUCS-88-83 

* This research has been supported in part by an NSF grant 
No. MCS-8110319 and by the Defense Advanced Research Project 
Agency of the Department of Defense. 



1 

ABSTRACT 

A real-time protocol is usually concerned with the transportation of a 

real-time data stream over a packet switched network. A.'llong the major issues 

distinguishing real-time protocols from ordinary transport protocols is the 

problem of trading delay for loss. That is, if some loss of packets may be 

acceptable, and usually inevitable, the objective of the protocol is to 

minimize the delay of packets, subject to constraints on the acceptable loss. 

This is unlike usual transport protocols, which are designed to guarantee no 

loss at the expense of increased delays. 

This paper presents a model for the delay-loss tradeoffs in real-time 

transport protocols. It is demonstrated that, under very general assumptions, 

an optimal real-time protocol is a bang-bang protocol: there exists a 

threshold queue length such that as long as the packet queue length at the 

sender is less than the threshold the protocol should be an ordinary positive 

acknowledgement with retransmissions transport protocol. However, as soon as 

the threshold queue length is exceeded, a newly arriving packet causes the 

first packet in the queue to be discarded. Closed form expressions for the 

threshold buffer size are obtained and analyzed in terms of the given 

parameters of the sy~tem. 
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1. INTRODUCTION 

Problems of real-time communication over packet-switched computer 

corrrnunication networks arise in the context of packet voice corrmunication 

[COHEN 7S, BIALLY SO], video communication, and distributed sensors networks 

[DSN 7S]. A real-time communication problem typically involves a source that 

needs to deliver information about an observed signal to a destination that 

needs this information to perform some task based upon the signal (e .g . , 

estimate some of the signal parameters). 

Among the chief concerns in the design of a real-time communication 

protocol is the problem of trading speed for reliability. This arises because 

insisting that any packet of the real-time stream be delivered to the 

receiver, and in the order of arrival, may result in costly delays and buffers 

overflowing. Moreover, in many real-time communication problems (e.g., voice 

or sensors communications) losing a few packets would be less harmful than 

delaying packets. Therefore, a more appropriate policy would allow some 

packets to be lost in order to decrease the expected delays. 

A number of transmission schemes may be designed to facilitate the trading 

of reliability against speed. For instance, the receiver may discard packets 

arriving out of order, or the sender may discard packets when its queue grows. 

The objective of this paper is to study the fundamental tradeoff between 

reliability and time, for a class of real-time transport protocols. 

2. THE PROTOCOL 

Consider a transport station to which a stream of real-time packet traffic 

arrives. Toe sender end of the transport protocol transmits packets in a first 

come first serve manner. Packets may be lost in the medium (or equivalently, 

arrive out of order and be discarded at the receiver). Furthermore, the 

sender may discard packets as its queue grows, in order to to meet the real

time delay constraints. Packet loss results in a reduction in the quality of 

a system's response to the real-time task being processed; when packeti zed 

voice transmission is used the cost of packet loss is reduced voice quality, 

while in the case of a distributed sensors network it may be increased 

tracking errors. 
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The main question to be answered by this paper is what policy the sender 

should be using to determine which packets to discard, so as to meet 

externally specified real-time and quality of delivery constraints. We will 

first present a model for a real-time transport protocol in which the problems 

may be clearly posed, and then solve them to produce an optimal transport 

policy which, given some constraints on the expected rate at which packets may 

be discarded, minimizes the expected delay. 

To fix our model let us assune that all packets are of a uniform size and 

that time is slotted to packet-size slots. Transmissions are restricted to 

occur only within respective time-slots* 

Packets arrive at the sender from a Bernoulli source· of rate ~ and are 

stored in a buffer of an infinite length*. As soon as a packet reaches the 

head of the queue the sender transmits it, and then either .retains a copy 

waiting for an acknowledgement, or discards the packet. Let Pn denote the 

probability that the packet is retained, where n is the number of packets in 

the· queue, or discards it with probability 1-Pn. A transmitted packet is 

delivered successfully with probability s, or lost with probability 1-s. A 

packet that is lost in the medit.rn but has not been discarded by the sender 

returns to the head of the queue (as a result of a time-out condition or a 

negative acknowledgement) and gets retransmitted. This model is depicted in 

figure 2-1. 

The asst.m1ption that the sender always discards the first packet in the 

queue is not essential; a simple variation would allow any packet to be 

dicarded. Also note that our model ignores a nt.m1ber of important parameters 

(for example, the propagation delay of acknowledgments). This reflects our 

decision to use a stripped-down model that will enable us to focus on the 

*This discrete model of the transmission mechanism describes a Slotted-ALOHA 
broadcast network, a TDMA network, and some ring-network protocols. However, 
this assumption is not essential to our solution which, with some minor 
modifications, ca~ also be applied to continuous-time transmission models. 

*One of the surprising results of our analysis will eliminate this 
requirement later. 
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Figure 2-1: A queueing model for the sender protocol 

significant tradeoffs of real-time communication, rather than a model where 

these tradeoffs are obscured by too many details. 

We will focus on two performance measures: the expected delay of a packet 

and the expected loss. The problem to be solved can be stated as follows; 

given a limit to the expected loss, find a policy {:n } CD for the discarding of 
o 

packets as a function of the queue length, which minimizes the, expected delay. 

Tne major difficulties are caused by the dependence of the service process 

upon the queueing process, and the necessity for optimization over the set of 

possible probability sequences {:n } CD • 
o 

3. OPTIMUM REAL-TIME PROTOCOLS 

Let us proceed to define and solve the optimization problem stated ,above. 

Let qn denote the number of packets queued at the beginning slot n. The 

process ~ ex~ibi ts a nearest neighbor random walk whose transition behavior 

is depicted in figure 3-1. 
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Figure 3-1: Transition behavior of the queueing process 

Where the transition probabilities are given by: 

n=O 
(1) 

n)O 

(Here x denotes 1-x and xn~ Pns) 

Let ~ denote the steady-state probability of n packets queued, then qn is 

easily computed [KLIE 75] to be: 

n-1 

IT 
i=1 ~) (2) 

Where Qo is the probability of an idle queue; this may be computed using 
<D 

the normalization condition: 1= 2: qn ' 
n=O 

<D 

The transform of the stead y state distribution Q(z) =2: qn zn , may be 
n=O 

Q) n 

(x~)as expressed in terms of the function X( z) = L: zn IT follows: 
n=O i=1 
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For example, when Pn=1 for all n (i.e., no packet is lost), 

1 1 + '>..z/-;" 
x(z)= --- where ~ ~ 

1 - 3Z/S 1 - flz 

Given a choice of a loss policy, described by the sequence {It!} (l) let L 
o 

denote the expected loss and let T denote the. expected delay. By definition, . 

L = t, <In P nS' Li. t tle ' s result [KLIE 75] implies T =Q' ( 1) / l.. 

The loss policy CLP) problem to be solved may now be stated as follows: 

Given: 

Minimize: 

l,olith respect to: 

An acceptable bound on expected loss L 

The expected delay T 

The loss policy {It! } (l) • 
o 

The major result of this section is given by the following theorem. 

THEOREM 1 

Given a rate of arrival '>.., a probability of successful transmission s and a 

bound on the acceptable expected loss L, there exists an integer nO=nOC'>..,s,L) 

such that the optimun loss poli~y {It! } CD is given by: 
o 

1 

Pn = 

o 

and n_ is a non-nega~ive number smaller than 1. 
'110 
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This bang-bang principle for optimal loss-policy selection translates into 

a very simple loss-control protocol: no packets are discarded unless the queue 

of packets exceeds the threshold nO; as soon as the queue of packets exceeds 

the threshold nO' every new packet arrival causes the packet at the head of 

the queue to be discarded immediately following its transmission. 

Let us proceed to prove theorem 1 and derive a closed fonn expression for 

the threshold no(A,s,L). Returning to equation (3), the normalization 

condition Q(1)=1 gives: 

A 
X(-) 

l. 
(4) 

Equations (3) and (4) imply the following expression for the expected 
delay: 

A 
X'(-) 

l. 
(5) 

Therefore, minimization of the expected delay is equivalent to minimization 
>.. 

of qoX'(l.). 

The expected 
CD 

L{z) = s :L 
n=1 

L( z) 

loss L may be computed in terms of the loss 

Clnp~zn, Le., L=L(1). A simple derivation yields: 
/ 

From which one may derive: 

L = L(1) = sqO + A - s 

transform 

(6) 

(7) 
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Finally, the probability of idle queue may be computed from equation (7) to 

be: 

(8) 

Which, in turn, gives (using equation (4): 

(9) 

~ 
Let us define <l: ~ - , the loss policy problem may now be re-stated as 

L-)"+s 
follows: 

Minimize: 

With respect to: 

Subject to constraints: 

In order to solve the LP problem another 
n 

linearize the problem.Let .!o=l and .!n = IT 
CD i=l 
2: ~ n. 

n=O 

transformation is required to 

~~~)when n)O, then X (~ z} 

~s 
For every n ~ 0, 0 ~ p n~ 1 implies 0 ~ ! n~ p"X n+ 1, where P-l. s ; and vice 

versa: given numbers Xn such that ~(f~ an(d ~O. ~)xn ~ e Xn+1' there exist 

unique nt..rnbers 0 ~ Pn ~ 1 such that Xn =!T __ 1_ where Xi ~ Pis. 
1=1 ~i 

Therefore, rather than solving the LP problem by minimization with respect 

to {Pn10CD, 'lie may minimize the delay '.-lith respect to {~loCD subject to the 

constraints 0 ~ Xn ~ p ~+ 1 . 
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. Consider the space £1 [YOSI 71] of absolutely summable infinite sequences. 

Let us define a subset of £1 

Tne set .d. is a convex and weakly compact [YOSI 71] subset of t 1. The 

optimum loss policy problem may finally be stated as follows: 

Minimize: 

With respect to: 

Q) 

L: n1t 
n=O 

{Xn} ~.d,. 
o 

The LP problem is thus reduced to a minimization of a linear functional 

over a convex and compact set. Convex analysis ( [HOLM 72], Lerrrna 5.d, page 

10) shows that the optimun sequence (1t} Q) is an extreme point of the set 
o 

~. Therefore, it is sufficient to compute the extreme points of ~ and select 

those points which minimize t n:f,. 

LEMMA 1 

The extreme points of the set.e1 have the form: 

1, = (1, ~ , ~ 2 • • • •• f11- 1 , a n~ , 0 , O ••••• ) 

Where n and ~ satisfy the equality: 

AS 
pi+ ~ PI=-

L-)"+s 

and ~<1. 

(10) 

Tne proof of this lemma is straightforward and of little interest which is 

'..Jhy we omit it. The characterization of the extreme points of .d, leads to the 
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conclusion of the proof of theorem 1. All that is left is the computation of 
).. 

the optimum extre:ne point(s) En (Le., the one minimizing X' (-)L Tne value 
~ 

>. 
of X'(-) at En is: 

J, 

~ i ~-1 
~ 

( 11) 

Clearly this fUnction is minimized when n is chosen to be minimal. 

Therefore let nO be the minimal value of n for which: 

( 12) 

this is the minimal value of n for which !n~~. The optimum solution of the LP 
n a nO . 

problem is thus {~}o CD=! • The expressions Xi = Ei = e 1 for i<rt imply ~ =.~ 

for i <nO or, in other t,.,Qrd s, Pi = 1 for i <nO' For Dna Xi =0, implying xi =0 or 

Pi=O. This concludes the proof of theorem 1. 

As a final touch let us use equation (12)' to compute the value of optimum 

threshold nO=nO()..,s,L). 

1_enO 
").s 

-<----< 1-e L - ).. + S 

Tnis in turn implies: 

In[ L/L-)..+s] 

nO = l Inr J ( 13) 

Usually the loss rate L will be specified as a fraction ~ of the arrival 

rate, i.e., L = ~)... T~at happens when the utilization factor r approaches the 

value 1 (equivalently when the arrival rate ~ approaches the service rate s)? 
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It is easy to see that the value of nO' given by equation (13), approaches 

:5/~. Tnis last expression gives the maximum buffer size required by the optimum 

real-time protocol when the acceptable loss fraction is ~. 

What happens when the acceptable loss rate ~ converges to O? The protocol 

converges to ordinary posi ti ve acknowledgment with retran&nission transport 

protocol. The buffer size requirement nO converges to infinity. 

4. GENERALIZATIONS 

The question arises: to what extent are the results of the previous section 

dependent upon the particular choice of model and optimization problem? In 

this section we show that the bang-bang loss control law remains valid under 

significant generalizations of the loss-policy problem. 

THEOREM 2: 

Let f and g be tw:::> continuous monotonic non-decreasing functions. Consider 

the following modified loss-policy problem: 

Minimize: 

Wi th respect to: 

the function ~(T), where T is the expected delay. 

choice of a loss policy {:n } <D 
o 

Subject to constraints: gel) ~ D, where D is a constant. 

There exists a threshold number nO such that the optimal loss policy is 

given by the following rule: 

Pn = 

o 

and Pn is a non-negative number smaller than 1. o 
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Tne functions f and g may be considered as the cost of delay and the cost 

of loss respectively. The theorem then states that the bang-bang behavior is 

optimal whatever continuous monotonic pricing of delay and loss is considered. 

An alternative optimization of real-time protocols might consider a dual 

minimization of the loss cost function g(L), subject to delay constraints. 

Again a bang-bang principle governs the optimum loss policy. 

THEOREM 3: 

Let f and g be two continuous monotonic non-decreasing functions and consider 

the problem of minimizing the loss cost function gel) with respect to the 

choice of a loss policy {In} (]), subject to the delay cost constraints 
o 

f(T) < D. The optimum policy is a bang-bang policy. 

The proofs of theorems 2 and 3 are generalizations of the ideas presented 

in the proof of theorem 1. Therefore we only sketch the differences. Cefine 

the subsets of 11 : 

.d2 ; 1 (XJ o XCfl, 0 ~ Xn ~ fJ ~+1 and g(L) < D! 

d.3 ; 1 (XJ 0 I X(fl, 0 ~ Xn ~ fJ ~+ 1 and f(T) < D ! 
Here L is given by equation (7). 

The two sets. R:fi 2 and d 3 are convex and weakly compact in 11 , as may be 

trivially demonstrated. Consider first the minimization problem of theorem 2. 

Tne function f(T) is minimized when T is minimal (due to its montonicity). 

Therefore the problem is reduced to a minimization of T over a convex and 

compact set, just as in theorem 1. 

Now consider the optimization problem of theorem 3. The function gel] is 

minimized when L is minimized. Using equations (7) and (4) L is minimized when 

A A 
XC~) is maximized, this happens at an· extreme point of43 since X( ;.) is a 
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So both problems can be reduced to that of identifying optimum extreme 

points of the respective sets .e:1 i (i=2, 3). It is easy to show that these 

extreme points correspond to bang-bang policies. 

5. CONCLUSIONS 

We saw that imder most general assumptions an optimun loss-control policy 

for a real-time protocol should process packets just like an ordinary 

transport protocol, as long as the size of the packet queue does not exceed 

some threshold. As soon as the threshold is exceeded, any newly arriving 

packet causes the first packet in the queue to be lost. 
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